
MD a. 

ESD-TR-67-91 

ESD RECORD COPY 
RETURN TO 

SCIENTIFIC & TECHNICAL INFORMATION DIVISION 
{EST1), BUIL0MG 1211 

MTR-252 

ESD ACCESSION LIST 
ESTI Call No.        ^i       5720' 
Copy No. -J-« U cys. 

THE INVERSE DIFFRACTION PROBLEM:   ANALYSIS OF SPECULARS 

e& 
JUNE 1967 

R. M.  Lewis (Consultant) 

Prepared for 

SPACE DEFENSE SYSTEMS PROGRAM OFFICE 
DEPUTY FOR SURVEILLANCE AND CONTROL SYSTEMS 

ELECTRONIC   SYSTEMS   DIVISION 
AIR   FORCE   SYSTEMS   COMMAND 

UNITED   STATES   AIR   FORCE 
L. G. Hanscom Field, Bedford, Massachusetts 

This document has been approved for distribution 

and sale; its distribution is unlimited. 

Project 4966 
Prepared by 

THE   MITRE   CORPORATION 
Bedford, Massachusetts 

Contract AF19(628)-5165 



When US Government drawings, specifications, or 
other data are used for any purpose other than a 
definitely related government procurement operation, 
the government thereby incurs no responsibility 
nor any obligation whatsoever; and the fact that the 
government may have formulated, furnished, or in 
any way supplied the said drawings, specifications, 
or other data is not to be regarded by implication 
or otherwise, as in any manner licensing the holder 
or any other person or corporation, or conveying 
any rights or permission to manufacture, use, or sell 
any patented invention that may in any way be related 
thereto. 

Do not return this copy.    Retain or destroy. 



ESD-TR-67-91 MTR-252 

THE INVERSE DIFFRACTION PROBLEM:   ANALYSIS OF SPECULARS 

JUNE 1967 

R. M. Lewis (Consultant) 

Prepared for 

SPACE DEFENSE SYSTEMS PROGRAM OFFICE 
DEPUTY FOR SURVEILLANCE AND CONTROL SYSTEMS 

ELECTRONIC   SYSTEMS   DIVISION 
AIR   FORCE   SYSTEMS   COMMAND 

UNITED   STATES   AIR   FORCE 
L. G. Hanscom Field, Bedford, Massachusetts 

This document has been approved for distribution 

and sale; its distribution is unlimited. 

Project 4966 
Prepared by 

THE   MITRE   CORPORATION 
Bedford, Massachusetts 

Contract AF19(628)-5165 





ABSTRACT 

Specular returns from radar targets contain large power which makes a 
technique based on the analysis of speculars attractive.    Herein, the specular 
returns from a flat region and from a smooth surface tangent to a plane along 
a curve, which are the largest returns for reasonably sized bodies, are used 
to obtain information about the geometry of the target. 
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INTRODUCTION 

Specular returns from scattering targets may be classified according to 

the order of magnitude of the return.    It can be shown that some typical returns 

are (after suitable normalization) of the following order in  ka,   where   k  is 

the wave-number and  a  is a typical target dimension: 

Order 

0   [(ka)2] 

0  U3/2] 

0   [(ka)] 

0   [(ka)1/2] 

0[l] 

Surface Geometry 

flat region 

smooth surface tangent to a 
plane along a curve 

Convex surface with non-zero 
Gaussian curvature 

edge-diffraction 

vertex-diffraction 

Because of the large power of a specular return it would be convenient to 

use it to obtain information about the geometry of the corresponding specular 

region.    In this paper we develop a method for doing this for the first two types 

of surface regions in the above table. 

QUASI-MONOSTATIC SCATTERING 

Let X  De a unit vector in the direction of propagation of the plane wave 

ikIX m u. = e , (1) 
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which is incident on a target.    If the total (scalar) field satisfies the boundary 

condition  u   =  o  on the surface of the target, then according to the Kirchhoff 

(physical optics) approximation,   the   scattered far-field is given by (see Equa- 

tion (2. 25) of [1] ) 

ikr 
ß
s 

= ifto g' (2) 

where 

g  =   _k
2(T i . N eik (I - J) •  X dg@ (3) 

Here   k  is the wave-number,   r   is the range.   N  is the outward unit normal 

vector on the surface of the target,   J  is a unit vector pointing from the target 

to the point of observation, and the surface integral of Equation (3) is taken 

over the illuminated portion   £   of the target.   A similar formula holds for the 

boundary condition  8 u/9 n  =  o , and for scattering of an electromagnetic wave 

by a perfectly conducting target (see [l] ). 

A rectangular coordinate system such that  1^  =   (0, 0, -1), J  = 

(sin 0,0, cos 0), and  X  =   (x, y, z) is introduced.    In the quasi-monostatic 

case   0 «1   and   J ~ (0 .  0 ,  1).    Then since   -I '  Nds= dxdy. Equation (3) 

becomes 

, 2 f f    -ik[0x + 2z(x, y)] J g (9)   =   k  JJ   e ^^ ' (4) 

P 

where   P  is the projection of   ft   onto the  xy-plane. 

[l]    R.  M.  Lewis, Notes on the Kirchhoff Method in Scattering Problems. 
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For simplicity it is now assumed that the region   P  is intersected, at 

most, twice by each line parallel to the y-axis.   Then its boundary is given by 

the two functions  y   (x)  and y   (x)  as illustrated in Figure 1.    These functions 

are defined so that they are continuous and have constant values outside of  P. 

(Then y    a   y    outside of P).    We take   2L  greater than the largest diameter 

of  P parallel to the  x-axis and choose the origin so that the points   ± L  lie 

outside of   P. 

From Equation (4) we now see that 

g(0)   -  k    \     y(x)e"      Xdx, 

-L 

(5) 

where 

y2(x) 

y(x)   -  kj        e-2ikz(X'y)dy. (6) 

From the theory of Fourier series it is known that if f(x)   is piecewise smooth 

and if the Fourier coefficients 

n 2L    J 
-L 

f(x)e 
-imrx 

(7) 



a   V2   ( * ) 

Figure 1 .    Boundary of   P   Given by Two Functions 

are introduced, then 

Therefore, if 

f(x) ^y a e 
in7rx 

oo 

n = -°° 

n      L 

0       = — ,   n   =  o.    ±1 , ±2,  . . . 

(8) 

(9) 

is set, then 

where 

y(x)   =  ; C e 
HITTX 

n      L 
n = -oo 

(10) 

c     =JL-    1Ö2Ü 
n 2kL  * kL (11) 



Thus if  g  can be measured for those values of  0   given by Equation (9) 

y (x) can be determined.    The latter function is closely related to the geometry 

of the target as illustrated in the next section.   A multi-static system for 

making the required measurements instantaneously is illustrated in Figure 2 

(other measuring systems can obviously be used). 

As illustrated in Figure 2, receivers are placed on a straight line at 

distances from the transmitter that are an integral multiple of  r .    The system 

is characterized by four length parameters: 

r     range 

T    receiver spacing 

2L  body dimension (upper bound) 

X   =  27r/k wave-length 

Since  r 9 ~ n T , we see from Equation (9) that the four parameters must 

satisfy the condition 

T 

r 2L 
(12) 

In practice one would first choose   2L  larger than the maximum expected 

dimension of the target and then set X   =  2L-r/r. 

Of course it is impractical to measure   C     except for small   n,    say 
n 

n  = o , ±1, ±2.    Therefore, it is envisioned that measurements will be made 

only of specular returns.    For such returns the larger Fourier coefficients 

will be negligible and a small number of terms in Equation (10) should give a 

very good approximation to y (x).    This is certainly true if y (x)   is smooth. 

If not, then a few terms will yield a smoothed approximation to y (x). 
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Figure 2.    Illustration of a Multistatic System for Making 
Required Measurements Instantaneously 

SPECULAR ANALYSIS OF A FLAT REGION 

The largest specular returns are produced by flat portions of a target. 

Assume that the region P in Figure 1 is a flat surface region normal to the 

direction of incidence I_.    Then one may take z(x,y) = 0 in Equation (6).    Now 

y (x)   =  kw (x) 

where   w   is the width function 

w (x)   =  y2 (x) -yx (x) . 

(13) 

(14) 

Furthermore 

J g (0)    =   k      ^     y   (X) dx    =   k  A, 

-L 

where  A  is the area of   P.    Thus the monostatic specular return of a flat 

6 

(15) 



region is of order   (ka)     as noted in the introduction.    Furthermore, since 

y(x)isreal, one sees from Equation (5) that   g*(0)   =  g(-9) .    Hence 

C       =  C  * .    Thus, for a flat plate, the number of receiver sites can be -n n 

reduced by a factor of two. 

The function w(x)   does not uniquely determine the shape of the region 

P,   i. e. , the functions  y.,(x)   and  y (x), but we will see in the next section 

that if a second measurement is made corresponding to a rotation in the 

xy-plane,   the shape of the region   P  can be found. 

SOLUTION OF THE WIDTH PROBLEM 

Let   P  be a region in the  xy-plane  whose boundary is intersected, at 

most, twice by each line parallel to the y-axis, as illustrated in Figure 1. 

We introduce a rotation 

|   = x cos a + y sin a, n = -x sin a + y cos a.. (16) 

Then 

y   =  | sin a + r) cos a , x = £ cos a-r) sin a. (17) 

The rotated axes are illustrated in Figure 3. 

Let x   (£ , a)  and  x   (£ , a)  be the  x- coordinates of the two boundary 
X — 

points on the dashed line  £   =  constant parallel to the  r\ - axis in Figure 3. 

From Equation (16) we see that the functions x.(£, a. )are defined implicitly by 

£   =  x. cos a + y. (x.) sin a , j   =   1,2 (18) 

Let  w (£ , a)  be the length of the dashed line joining the two boundary points, 

i. e. , the width of the region   P  in the direction of the  r\ - axis.    Then from 

Equation (16) 



[*l . V|  (xiO 

Figure 3.    Rotated Axes 

w (£, a) = v2 - r)1   = [- x2 sin a + y2 (x2) cos a]   - [-x1 sin a + y1 (x^ cos a] 

= (x1 - x2) sin a + [y2 (x2) - y^ (x^ ]   cos a . (19) 

The following width problem is considered:   Given w (4 , a ) for a - 0 

and a second value of  cv to determine the functions of y   (x)   and  y   (x) . 
i. tL 

Actually the second value of  a very near   a =  o  will be taken.    More 

precisely, the function  co   (I , 0) will be used. 

At  a =  0 , we see from Equation (18) that  x    =  | ,   and by differenti- 

ating Equation (18) with respect to a we obtain 

ax. 
*- - yM(i). d a 
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It follows from Equation (19) that at a =  0 

w(x, 0)   =  y2 (x) - yx (x) (21) 

and from Equations (4) and (5) one finds that 

wa (4.0)= y- (|) [-y2 ({)]   -yj (?) [^ («)]    =  -| jg ly^   -  y^ ]   .    (22) 

Since (see Figure 3) 

W   - yi <V 
Equation (7) may be integrated to obtain 

where 

2 2 
(y2 + yx) (y2 - yx) = y2 (x) = y± (x) = q(x) 

q(x)   =   -2\   w    (S , o)d{ . 
J      a 

From Equations (21) and (24) one sees that 

y2 <x) + yi(x) ■ ^ • 

and Equations (21) and (26) are easily solved to yield 

Wx) =l[^) ? w(x'°)] • 
Thus Equations (25) and (27) provide a solution to the width problem. 

(23) 

(24) 

(25) 

(26) 

(27) 



SPECULAR ANALYSIS OF A SMOOTH SURFACE WHICH IS TANGENT TO A 
PLANE ALONG A CURVE 

As a second example a regular surface which is tangent to the plane 
* 

z   =  o   along a curve  y   =  y (x) is considered.      Important examples are 

cylinders and cones; in these cases the curve is a straight line.    The integral 

Equation (6) is evaluated by the method of stationary phase.    A stationary point 

occurs at  y   =  y (x) .   If the phase function   <b (y)   =   -2 z(x, y) is introduced, 

then at the stationary point   $ =   0 .    0'   =  0 , and   <b"   = 2z    (x, y ) > 0. 
yy      o 

Hence 

y  (x) ~ <*k)1/2e ilrM [-.     (x. yo)] "1/2 . (28) 

But   -z     is the curvature of the normal section of the surface in the direction 
yy 

of the  y-axis.    If we introduce the principal curvatures   K    =   0  and 

2 
K    =   K =   I/o , then it can be shown that   -z       =   K cos   B where 

2 yy 

tan ß   ~ y f (x)   (see Figure 4). 

It follows that 

y (x) ~ e17r/4 V7rkp[x,yo(x)]  [1 + (y^)2]   . 

= J7 
(29) 

Since the element of arc-length is   ds   = v 1 + (yT )     dx  it follows that 
L 

g(0)   =   k    \    y  (x) dx - e1?r/4 k\/i  \ v/kp   ds . (30) 

-L 

*   It can be shown (by using the formula of Rodrigues) that the Gaussian curva- 
ture vanishes at each point of the curve and that the curve is a principal curve 
corresponding to the principal curvature   K =  o.    Conversely if   K =   o 
along a principal curve, then that curve is a plane curve. 
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Figure 4.   Smooth Surface Tangent to a Plane Along a Curve 

3/2 
Thus the monostatic specular return is of order   (ka)     '  as noted in the intro- 

duction. 

We see from Equation (29) that y (x)   depends on the curve of tangency 

y   = y (x)   and the non-zero principal radius of curvature  p   along this curve. 

These two functions characterize the geometry of the specular region in this 

case just as the two functions  y (x)   and y (x)  determine the shape of the 

flat region on pages 6 & 7.    On pages 7-9 it was proved how to determine y 

and y , given y .    The analogous problem for the determination of y    and 
Ci O 

p , given y , remains to be considered. 
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