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ABSTRACT 

Improved and new steady periodic heat flow methods for the direct 

measurement of the thermal diffusivity of carbons and graphites at very 

high temperatures have been developed.   Their main features are techniques 

that overcome the difficulties arising from the radiative environment with 

thermal conductance much greater than that of the material under investiga- 

tion.    In addition to the previously reported double disc method,  a new 

technique using multiple radiation shields to suppress the radiative ex- 

change of the critical surfaces, of the specimen with the surroundings has 

been explored. A brief analysis of the thermal driving point impedance of 

such shields by means of matrix methods is given in conjunction with a 

description of the implementation of the derived requirements for proper 

functioning with stacks of tantalum carbide discs. »* 

The thermal diffusivities of various carbons and graphites were 

determined with these techniques and were found to be essentially indepen- 

dent of temperature throughout the entire range investigated.    It is argued 

that the observed c-direction conduction in pyrolytic graphite is probably 

not of intrinsic nature,  but is at best a small component of the a-direction 

conduction caused by tilt angle variations of the microcrystallites.    It is 

further suggested that the heat conduction in graphites at high temperatures 

is substantially of electronic nature,  a point supported by Lorenz numbers 

based on more recent data.    The essentially temperature-independent 

diffusivity of graphite reflects,   then,   the behavior of ordinary metals 

above the Debye temperatures. 

An unexpected and yet unexplained frequency dependence of the 

diffusivity was found at extremely low frequencies of the periodic heat 

flow.    It is not clear whether this is a natural phenomenon or an experi- 

mental imperfection of the methods employed. 

*: 
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It is a widely accepted belief that all time-dependent thermal 

propagation processes in a material are determined by a d^ffusivity 

and a conductivity K that are uniquely related by K = a p C  , where 
P 

p C   is the specific heat per unit volume at constant pressure.    If the 

specific heat is known,  a determination of a is simply an indirect 

method for obtaining the conductivity, a concept frequently used in the 

classification of thermal propagation parameters.    Since the measure- 

ment of K is often the easier one at high temperatures,  the determina- 

tion of a appears rather superfluous. 

This widely accepted belief is based on the assumption that the 

process of heat propagation at any point within a material can be fully 

described by a pair of simple equations, which relate the fJux q to the 

temperature gradient and its divergence to the rate of temperature 

change. 

q = K grad T 

div q = pC   d T/dt 
P 

and from which the above-mentioned relation between K and Ct originates. 

There are at least three reasons why such a pair of equations might be 

insufficient to fully describe the thermal propagation process in mate- 

rials. 

1. In heterogeneous materials, a characteristic conductivity 

of the composite may be defined provided that the dimen- 

sions of the specimen remain large in comparison with the 

dimensions of the aggregate particles.    However,  the 

diffusivities of the elements of the composite do not simply 

average out, but appear in independent arguments of the 

solutions.    In consequence, a common diffusivity related 

in the normal fashion to the specific heat and the conductivity 

of the composite does not exist. 

■I- 



,mi i r-r-     « 

1 

r" 

The simple Fourier equations entirely omit inertial phenomena, 

implying,  for example,  that the heat flux is "instantaneously" 

proportional to the temperature gradient at any point within the 

material.  This,   of course,  is incorrect in principle, as was 

already known to Maxwell and has been more recently considered, 

for example, by Vernotte (Ref. 1).    If a relaxation time exists, 

a second time derivative of the temperature must be added, 

which results in a typical wave equation«    In consequence,  a 

short heat impulse will not diffuse into the material, but will 

lead to oscillations.    Such processes should be noticeable where 

the frequency--relaxation time product COT approaches unity.    For 
-12 typical phonon relaxation times on the order of 10        sec,   such 

phenomena will not occur at frequencies very much less than 

10    cps,   so that under ordinary circumstances such relaxation 

times may indeed be omitted in the equations (Ref.  2).    How- 

ever,  it should be mentioned that for certain thermal blast con- 

ditions,   relaxation phenomena nay have to be considered. 

Ve'ry slow relaxation processes can occur when a thermal gradi- 

ent initiates a maas transport.  This phenomenon is known as the 

Soret effect,  and it leads normally to a concentration gradient. 

Such processes are well known in liquids and are usually con- 

sidered in the theories of irreversible thermodynamics (Ref.  2). 

There is no known reason why such processes should not occur 

in solids,   particularly at high temperatures,  where the mobil- 

ity of atoms becomes quite noticeable (Ref.  3).    Thermal dif- 

fusion in a temperature gradient in solids has indeed been ob- 

served (Ref. 4).    The effect of mass transports in a tempera- 

ture field on the conductivity is obvious.  As the moving mass 

carries a heat of transfer,  the added heat fluxes will initially 

increase or decrease the conductivity,  depending on the direc- 

tion the additional heat flux takes in a static temperature field. 

-2- 



Normally, after some time,  a concentration gradient is t. ilt 

up sufficient to stop the mass flow entirely,   so that only the 

ordinary heat flux remains.    Consequently,  the initial and the 

final conductivity can differ significantly.    In a periodically 

changing temperature field,  only an insufficient concentration 

gradient will be generated, which stops the mass transport 

only partially and results in frequency-dependent conductivity 

and diffusivity. 

There is still no direct evidence for such thermal conductivity pro- 

cesses in solids.  This may,  however, be because the preponderance of 

work on thermal conduction in solids is concerned with steady state con- 

ductivity, which,  by its very nature, determines only the state of affairs 

after all transient phenomena have died out.    Only transient or steady 

periodic thermal propagation data can yield information concerning time- 

dependent phenomena. Any attempt to obtain from the relation K = apC 

a diffusivity that uniquely determines time-dependent conduction processes 

is futile. 

Probably the most drastic demonstration of the existence of such 

phenomena as described above is the appearance of a frequency-dependent 

"diffusivity" with steady periodic thermal flux variations,  if the analysis 

is based only on the ordinary Fourier theory.    Obviously,  a simple rela- 

tion between such a diffusivity and the specific heat and conductivity can- 

not exist. 

In general,  then,  conclusions from steady state measurements on 

time-dependent processes,  transient or periodic,  must be preceded by 

direct investigations into the behavior of the diffusivity.    Only if the 

diffusivity is clearly a frequency-independent constant will a normal 

relation between a and K exist.    Even though in the majority of cases, 

and particularly at low temperatures,  normal relations will prevail, 

there is no basis for the assumption that this will be true for all cases. 



r 
In a sense,  then,  the measurement of diffusivity in solids is more 

than an indirect method for the determination of conductivity.    It is a direct 

means of revealing conduction phenomena inaccessable by ordinary con- 

ductivity measurement methods. 

In this study we are concerned with appropriate techniques for 

extending the steady periodic flux methods to very high temperatures, 

and we illustrate the techniques with measurement.«5 on a quasi-isotropic 

carbon (CEP) and strongly anisotropic pyrolytic graphite (PG). 

f 



II.    EXPERIMENTAL TECHNIQUES 

A.       DESIGN CONSIDERATIONS 

If a single slab of material, maintained at some mean temperature, 

is subjected to a periodic heat flux on one side,  the temperatures of both 

the front face and the back face will vary periodically. The relation be- 

tween the amplitude and phases of the temperature variations can be ex- 

pressed in terms of a complex attenuation.    The attenuation is not only a 

function of the material properties, but depends strongly on the thermal 

load,  produced mainly by radiation from and to the backside of the slab. 

Obviously,  the material slab is in series with the purely resistive ele- 

ment of the gap between the backside of the material slab and the environ- 

ment. 

The relation between the complex attenuation and the characteristic 

parameters of the material and the radiative environment is most readily 

obtained for such series arrangements by the matrix product method.    It 

is well known that the behavior of the materials,  as well as that of the 

radiation gap,  can be fully described by square matrices with elements 

given, for example,  in Ref.  5.    Using this method, we find that the attenu- 

ation Z of the temperature wave between the frontside and the backside of 

a single slab under the condition of a radiative or convective load at the 

backside is 

A A 
Z = cosh B + Nu sinhc B 

B = B(l + j) , j = /-l , 
A A „J A 

sinhc B = B      sinh B 
(1) 

where B is the thermal thickness of the slab expressing the actual thick- 

ness in terms of the wavelength A of the thermal wave in the material. 

It is this parameter from which the diffusivity a must be extracted on 

the basis of the relation 

/ 
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B = 2tr£/X = (ü/2od1/2£ (2) 

where tcis the angular frequency of the thermal wave.    In addition to B, 

Eq.  (1) contains the Nusselt (or Biot) number Nu characterizing th*> effect 

of heat losses at the backside.   The Nusselt number expresses the losses 

in term* of tne i  >nductance of the material slab.  At very high temperatures 

this numbe'   has a profound effect on the measured results.    In the case of 

pure radiation exchange between completely black surfaces,   the loss num- 

ber is simply {0 = Stefan-Boltzmann constant) 

Nu = 4CTJX/K (3) 

On this basis,  a PG slab 1 mm thick exhibits at 3000  K a Nusselt number 

of approximately 6,  which clearly indicates the significance of this number. 

In general,   neither will the material be black nor will the heat losses be 

entirely due to radiation if a gaseous atmosphere must be used.    It is clear 

that either the Nusselt number must be determined from the experiment or 

provisions must bfj made for eliminating its effect by suppressing the heat 

loss from the backside. 

The effect of large Nusselt numbers can readily be seen from a polar 

presentation of Eq.  (1) in the form 

Z = | Z| ,*p (4) 

where    |Z|    is the magnitude and 0 the phase of Z.    The lcci of Z are plotted 

in Figure 1.    We recognize that with increasing frequency, which increases B, 

both magnitude and phase shift of the attenuation increase regardless of the 

value of the Nusselt number.    The effect of the Nusselt number, however,  is 

to increase the magnitude of the attenuation and to decrease the phase shift. 

In any event,  large Nusselt numbers greatly change the Z vector from its 

value cosh B without heat loss.    On the other hand, any specific pair Nu, 

B results in a unique Z vector.    If,  therefore, the magnitude and phase of 

the attenuation are measured,  both Nu and B will be uniquely determined. 

The determination of the magnitude of the attenuation Z involves accurate 

measurements of the temperature amplitude at the frontside and backside 
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Figure 2. 

Influence of Nusselt number Nu on 
the relation between phase shift cp 
and thermal thickness B of a slab 
of material. 
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THERMAL THICKNESS B, rgdiOM 

Figure 1. 

Loci of temperature attenuation 
Z in the complex plane. 
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Figure 3. 

Errors in diffusivity if heat 
losses are neglected in the 
analysis of phase shift data. 
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of the specimen,  a task that is notoriously difficult and should be avoided. 

At very high frequencies the influence of the Nusselt number on the phase 

disappears (Figure 2),  but the associated large attenuation prevents ex- 

perimental use of this region.    Neglecting the effect of Nusselt numbers 

entirely leads to very large errors (Figure 3).    The only correct approach 

for avoiding amplitude measurements is to suppress the heat loss at the 

backside altogether.  This can be accomplished in two different ways: 

1. The heat loss can be compensated by a completely symmetrical 

arrangement (Ref.  6). 

2. The heat exchange can be suppressed by an appropriately de- 

signed heat shield.    It is this method with which we are con- 

cerned here. 

With an effective Nu = 0,   the phase lag alone defines the thermal thick- 

ness B,  which,  in turn,  determines the diL'usivity a. 

B. EXPERIMENTAL DETAILS 

We have  previously reported a new technique to determine a of 

materials at very high temperatures (Ref.  6).    Elimination of the ther- 

mal load at the backside of the slab under investigation was accomplished 

by a symmetrical arrangement in which two discs,   operating back to 

back,  were subjected to the same periodic conditions.   This method has 

since been   greatly improved.    One of the conditions for proper function- 

ing is identical amplitudes and phases of the periodic temperature varia- 

tions on the frontsides of both slabs.    Identical fluxes are not sufficient 

because differences in the frontside Nusselt numbers (due to different 

emissivities) may involve both amplitude and phase of the temperature 

variations.   To avoid these difficulties,   we developed a different tech- 

nique,  which uses a stack of heat shields at the backside of a single disc 

to suppress the heat exchange to a negligible amount.   We concern our- 

selves in the following mainly with details of this technique,   the results 

of measurements,  and their significance. 

-8- 



The experimental setup was essentially the same as that previ- 

ously used with the double disc method.    A schematic presentation of 

the new experimental arrangement is shown in Figure 4a.    Figure 4b 

is a close-up photograph of the apparatus.     The specimen was again 

imaged back onto   itself  after   modulation   of  the   radiation; this 

re-imaging   caused  variations   of  the specimen's surface tempera- 

ture on the order of 0.1 K.    Rather than extracting a mean value of the 

phase delay from graphical recordings, we used a precise digital tech- 

nique.    The time interval between the zero crossings of the two traces 

was counted with the time interval measurement technique available on 

digital counters.  By a slight modification, we could disengage the reset 

of the counter after each time interval measurement so that up to 50 

totals of the time interval measurements could be printed out, from 

which a highly smoothed mean value of the delay time could be obtained. 

In some of the experiments we employed a modified optical system.    It 

produced an intermediate image of the sample outside the furnace, where 

a field stop prevented the return of any modulated radiation originating 

from parts of the furnace other than the specimen.    No significant 

difference in the results was observed, however, which indicates that 

the surroundings of the specimen in the furnace presented a sufficiently 

large heat sink to prevent wall temperature variations. 

The main feature of the new method is the use of heat shields to 

suppress the heat loss from the backside of the sample.  The effect of a 

heat shield is a high thermal load impedance.    If properly designed,  it 

will reduce the initial Nusselt number to a small and insignificant frac- 

tion.  The analysis of such stacked heat shields with the matrix method 

is tedious.     For thi/s reason,  only the most important aspects   are 

mentioned here. 

If the heat capacity of the thermal resistance of the shield material 

is vanishingly small,  then the load impedance of a stack of n elements 

with small radiation gaps is simply n times the load impedance of a 

single gap. Accordingly,  the Nusselt number is effectively reduced to 

Nu/n.    Unfortunately,   such conditions are difficult to obtain at high 

temperatures with useful refractive materials and geometries.    In 

*   ' 
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Figure 4a. 

Schematic drawing of optical arrangement. 

Figure 4b. 

Apparatus with modified optical system. 

10- 

am - 



consequence, a stack of radiation shields may show a driving point im - 

pedance whose attenuation is insufficient and whose phase factor can- 

not be neglected. Figure 5 illustrates such a case.  The apparent diffu- 

sivity is lower than that of a single disc without a shield, but increases 

consistently with frequency.  The analysis of this heat shield confirms 

this behavior and correctly indicates that such a heat shield would fail 

even at frequencies as low as 0.0018 cps.    It also becomes clear that 

there is little cl.^nce of building a successful heat shield unless much 

thinner discs of more conductive materials,  capable of standing the 

extremely high temperatures,  can be found.    Our efforts have finally 

proved successful with tantalum carbide elements, which we produced 

by sandwiching tantalum metal discs between carbon discs and exposing 

the stacks to temperatures of 2000 C. 

*. 

\. 
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Figure 5. 

Characteristic effect of an 
improperly designed heat shield. 
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Figure 6. 

The diffusivity of pyrolytic 
graphite in the c-direction.  The 
lower curve shows the effect of 
radiation loss suppression by a 
properly designed heat shield. 

8<I0 : 

is 
/ 

2477•« 065«» 
'«!««[ »•■;«! SHIELD! 

2«9I'K 0.25w» 
ismmrg pc ~ "~I      <H»DI»TI<* SHIELD T«C 

02 03 04 05 

FREQUENCY I. cps 

Of 07 08 

12- 



HI.    RESULTS 

% ■ 

I 

■ 

We begin the report of the results with some measurements of 

the diffusivity of pyrolytic graphite (PG) in the c-direction (Figure 6), 

which illustrate the points previously made.   The upper curve shows 

a single disc measurement without heat loss suppression.  The lower 

one shows the result obtained with a stack of tantalum carbide shields. 

The difference between the flat parts of the curves corresponds roughly 

to a complete elimination of radiation exchange. 

Below 0.15 cps,  a becomes frequency dependent.    The effect occurs 

in curves both with and without heat shields.    Indeed,   this behavior is 

found at all temperatures and will all carbon and graphite materials 

investigated. All of the Of values are within the range   estimated from 

reported conductivity values [a = 0.0015 to 0.0035 cm  /sec (Ref. 7) 

and a = 0.00075 cm2/sec (Ref. 8) at 2500°K]. 

The frequency dependence of Of brings us back to our introductory 

remarks concerning the appearance of a frequency-dependent diffusivity 

caused by transport phenomena neglected in the differential transport 

equations.  We have investigated the low frequency portion of the curve 

quite extensively but the evidence,  as yet,  does not permit us to make 

a definite statement in this respect.      Experimental variations definitely 

alter the shape of the low frequency portion of the curve and may even 

reverse its slope.    It is not yet clear to what this effect should be 

attributed; further exploration is needed.    It is mainly for this reason 

that for the present time we delete the low frequency portion of the 

curves from our considerations and concern ourselves with a values 

of only the flat sections of the curves.    Figure 7 shows the temperature 

dependence of the a values for the c-direction of PG.    Except for the 

very highest temperature point, where possibly the onset of the  vacancy 

effect (Ref.  9) occurs,   the diffusivity is essentially temperature indepen- 

dent.    We compare this with similar measurements of CEP type carbon 

(Figure 8), which shows practically the same behavior despite the fact 

-13- 
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Figure 7. 

The diffusivity of pyrolytic 
graphite in the c-direction as 
function of temperature. 
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The diffusivity of CEP type graphite 
(carbon) as a function of temperature. 
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that the materials structure is quite different.    Measurements on other 

graphite materials not yet completed seem to confirm this general 

behavior.    Similar results have been reported by Juul (Ref.  10), who 

used transient techniques for a variety of polycrystalline graphites. 

It remains,  however,  remarkable that a highly ordered material such 

as PG exhibits,  on a different level,  the same qualities. 

/ 
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IV.    DISCUSSION AND CONCLUSIONS 

We are,  of course, aware that the conduction process in carbons 

and graphites is affected by a variety of factors,  such as microstruc- 

ture ard its regenerative nature, heat treatment, and cracks (Ref. 7). 

However,  here we will look briefly at consequences resulting directly 

from the lattice structure and its anisotropy.  This is most conveniently 

done in terms of the reciprocal lattice (CT-space),  the structure of the 

Brillouin Zone (BZ),  and the constant frequency surfaces resulting from 

the characteristic dispersion equations.    To find, for example,  the 

specific heat, we simply sum up the contributions of each point in the 

0"-space of the BZ.    In the case of lattice conductivity,  these contribu- 

tions must be weighted according to the group velocity and the lifetime 

of the modes of vibration.  We see this clearly from the equations for 

the heat capacity per unit volume C    and for the corresponding thermal 

conductivity when they are written in parallel form 

.*£/■«< u)ff dS 

8      fJ JJ  |^co 

|Aaw|(2irr 
2T dS 

| (27)3 

(5) 

(6) 

where the double integral in Eq.  (5) is simply the density of modes at a 

given frequency per unit frequency interval and unit volume.    E(co) is 

the Einstein specific heat function,  k is the Boltzmann constant,  v is 

the group velocity, and T is the relaxation time.  The subscript j refers 

to the various acoustical and optical branches,  the subscript s to one 

of the selected principal axes of the lattice structure; otherwise the 

symbols have the usual significance.    The double integration is carried 

out over constant frequency (oo) surfaces. 

i 

■'  I   f ' 
< v   ■ 

•4^ 

■17- 

3W 



i 

-i-*'»-*-»!»1*''"^ 

V 

If we form from these equations the diffusivity a, we obtain 

a   = ( v   T^   representing some grand mean of weighted averages of 
8 *) 

the v    T products within the BZ of all branches.    In the simplest iso- 
s 

tropic case, the group velocity v and the relaxation time T are every- 

where the same and independent of the direction, which implies that 

the a;-surfaces are spherical.  We obtain the usual Debye results: 
2 2 tt   =<v   >T = V T/3 = A v/3.    If the group velocity is identical to the 

0 9 

phase velocity of sound, we can define a meaningful relaxation length A 

In general, however, this is not the case. 

However,  certain conclusions of very general nature concerning 

the temperature dependence of the characteristic thermal parameters 

can still be drawn.  They are most readily obtained from illustrations. 

In order to save time, we immediately consider the Brillouin 

Zone and co-surfaces of the graphite structure.  The best known illustra- 

tion (Figure 9) is the one by Krumhansl and Brooks (Ref.  11). Since 

the unit cell of graphite contains four atoms,  there should be 12 acousti- 

cal and optical modes. After doubling the height of the BZ in the Z- 

dire'tion in consideration of the degeneracy at the top and bottom,  we 

are left with three acoustical and three optical branches,   so that,  in 

principle,   six different oo-surface structures exist.    While sufficient 

for the discussion of the properties of specific heat,   the above picture 

cannot be used for a discussion of thermal conductance because in its 

simple form it violates the principle that the cü-profiles must end 

normally on the BZ surfaces.    If we calculate the profiles from the de- 

tailed theory,  this imperfection disappears.    In Figure 10 we show the 

true behavior.  Typical profiles are shown, all of which end properly on 

the BZ surface.   This theory has more recently been modified (Ref.  12) 

by the introduction of a strong dispersion in the planar direction due to 

bond bending.   The overall picture,  however,   remains the same; except 

for the lowest frequencies,  the co-surfaces rapidly assume cylindrical 

character.   The general consequences discussed here therefore remain 

the same. 

■ 18. 
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Figure 9. 

The Biillouin Zone for the graphite 
lattice.    The ellipsoid is a simpli- 
fied surface of constant frequency 
according to the theory of Krumhansl 
and Brooks for the specific heat. 

Figure 10. 

Details of profiles of constant 
frequency surfaces near the 
center of the Brillouin Zone, 
required for the discussion of 
thermal conductivity. 

Figure   11. 
Schematic drawing of the Brillouin Zone of 
graphite with profiles of constant frequency 
surfaces.    The strong lines enclose the 
equivalent conduction part of the zone, the 
shaded part indicates regions (nearly) sat- 
urated in specific heat at some intermediate 
temperature.    The upper diagram refers to 
c-direction conduction, the lower one to 
conduction parallel to the planes of the 
graphite lattice. 
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The main contribution to the conduction comes from the parts of the 

uj-surfaces where the group velocity has a significant component in the 

selected direction.  For a direction parallel to the planes there is a large 

contribution coming from almost all 60-surfaces. For the direction perpen- 

dicular to the planes the main contribution comes only from co-surfaces 

close to the center.  Some very slight contribution may also come from the 

left and right sides of the BZ.    Actually,  this region is very small,   so its 

contribution to the conductivity is neglected.  To indicate the contribution 

in the vicinity of each co-surface, we have marked out symmetrically to 

the horizontal axis in Figure 11 the fractional participation of zone regions 

to the conduction process.   This fraction has an exact meaning; within the 
2 

BZ exist points where the product v   T reaches a maximum value.     Any s 
other pioduct is measured then by a distribution function ß <■ 1.    The frac- 

tion of modes of frequency to that contribute "fully" to the conductivity is 

M(w) = 
_   l\ß dS/ |  Vg<0| 

J7dS/|va<o| (7) 

This is the function that produces for three-dimensional Debye lattices 

the factor 1/3 and for two-dimensional Debye lattices the factors 1/2 and 0, 

parallel and perpendicular to the planes,  independent of CO.    In the case of 

PG,  ß (Cü) will be very small in the c-direction for higher frequencies,  as 

indicated in Figure 11.   The total of these fractions over all frequencies 

marks out the equivalent conductive portion of the BZ.  To be actually con- 

ductive,   this zone must be occupied by phonons.   They contribute a frac- 

tion E(co) of the specific heat available for each frequency.  The shaded 

zone indicates where the saturation is essentially completed.  The volume 

of the saturated area expands with increasing temperature.  From the 

picture shown on the left side,  we immediately conclude that the con- 

ductivity reached its maximum value far below temperatures where 

the specific heat function covers the entire zone and the specific heat 

approaches its maximum. 
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It is further evident that any conclusion from conductivity data on 

relaxation lengths in anisotropic materials must be drawn with consider- 

able caution. Even if there were a relaxation length of considerable mag- 

nitude,  say, due to crystallite boundary effects, its mean value over the 

whole BZ would be very small, due to the small conductive fraction of the 

zone. Such mean values, which one obtains by indiscriminate use of the 

relations for the isotropic cases, have no simple physical meaning in the 

anisotropic case. 

Finally., we should note that regardless of the type of scattering 

mechanism due to static imperfections,  the conductivity can show a maxi- 

mum value only at the highest temperatures and can never show a peak in 

some intermediate temperature region. It is evident that the effect of a 

temperature-dependent phonon--phonon interaction is a contraction of 

the conductive zone at elevated temperatures, which,  in turn,  must 

finally lead to a decreasing conductivity.    Indeed,  once the contraction 

sets in,  it increases as the temperature rises,  extinguishing the conduc- 

tive zone more and more. 

The behavior of the diffusivity as a function of the temperature 

cannot always be interpreted so simply, because the total diffusivity can- 

not be obtained from the sum of the diffusivities of the individual branches, 

as is the case for the specific heat and the conductivity. At sufficiently 

high temperatures,  however, where the specific heats of all branches are 

saturated,  a is the mean value of the diffusivities of the individual branches. 

In this region,  Of reflects the behavior of the conductivity directly. 

Thus far, we have discussed the conductance contribution of only 

one branch.   To explain the essentially temperature-independent high 

temperature conductivity of a material like graphite after a drop of the 

conductance at intermediate temperatures on the basis of phonon con- 

ductance only,  one is forced to accept the idea that at least one of the 

branches is not subject to thermal interactions.  The static imperfections 

would indeed level out the conductivity at high temperatures.    However, 

since direct phonon interactions have to occur between phonons of different 

branches,   it is difficult to see how one branch can survive while others 

suffer from rapid thermal extinction of their conduction properties. 

' 

& 

"\ 
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The nearly temperature-independent conductivity and diffusivity at 

high temperatures are therefore likely to be of different origin. 

Before we examine this point further, however, we must consider 

more closely the nature of the conductivity in the c-direction.  Pyrolytic 

graphites are polycrystalline solids with an unusual degree of preferred 

orientation.    However,  the orientation is by no means ideal.    Inclination 

angles as great as 20 and 30 deg relative to the symmetry axis are readily 

found,  even in heat-treated PG specimens.  Guentert and Klein (Ref. 13) 

arrived at some significant conclusions concerning the effective aniso- 

tropy ratio for thermal and electrical conductivities and its relation to the 

true intrinsic anisotropy.  For materials heat-treated at 3000  C and the 

highest orientation index of 200,  intrinsic anisotropy ratios of more than 

approximately 10 simply cannot be observed.    Higher observed effective 

anisotropic ratios do not reflect the true anisotropy ratio, because a sub- 

stantial component of the a-direction conduction is thrown into the c-direc- 

tion by tilt angle variation.  Regardless of the value of the intrinsic aniso- 

tropy ratios,  the effective ratio is limited due to tilt angle variation. 

Slack (Ref.  14) concluded that ideally ordered graphite might exhibit in- 

trinsic thermal conductivity anisotropy of possibly 1000 even at 300 K. 

Such ratios cannot be observed with materials subjected only to the above- 

mentioned heat treatment.   Taking the lack of crystal perfection into account, 

we must conclude that probably none of the presently available c-direction 

conductivity data give reliable information about the intrinsic c-direction 

properties of ideal graphite.   The observed c-conductivity might often be 

nothing other than a small fraction of a-direction conductivity turned into 

the c-direction by tilt angle variation. 

Tilt angle variation alone would lead to a temperature-independent 

effective conductivity anisotropy,  which,  as yet,  has not been found.   The 

observed c-direction conductivity does not normally exhibit the steep 

increase of the a-conductivity at temperatures below 1500  K; consequently, 

the observed data (Rcf. 7) indicate anisotropy ratios from 400 to 1000 

at room temperature -- ratios that,  as already mentioned,  cannot even 

be attributed to tilt angle variation,  but must be due to the faulty c-direction 
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flow (i.e., lifting of the radiation shorts of cracks at lower temperatures, 

etc.).   At high temperatures in the range of the flat portions of the con- 

ductivity curves, however, anisotropy ratios of about 35 (Ref. 7) could 

be understood to be cauced by tilt angle variation of a-conductance into 

the c-direction if the intrinsic anisotropy ratio is very high and a sufficient 

heat treatment of the material has been carried out.    If this is correct, 

then the flatness of the normal c-direction conductivity simply reflects 

the flatness of the a-direction conductivity.    Therefore, from here on 

we need only concern ourselves with the interpretation of the flatness of 

the a-direction conductivity at high temperatures. 

We have already pointed out that the conduction by phonons alone, 

barring extraordinary effects, does not lead to temperature-independent 

conduction at high temperatures. 

The possibility of high temperature conduction in solids by elec- 

trons and holes has long been recognized (Ref. 15) as leading most readily 

to a temperature-independent conduction at high temperatures.   It is now 

quite definitely extablished (Ref. 16) that both types of carriers exist in 

PG.    The idea of a substantial electronic thermal conduction at high tem- 

peratures has, however, been rejected (Ref. 17),  since previous data of 

the electric and thermal conduction did not lead to Lorenz numbers 

sufficiently close to the theoretical Sommerfeld value.    An analysis of 

more recent data (Ref. 7) on PG indicates, however, that the gap is 

closing. 

Table 1.    Lorenz Numbers for Pyrolytic Graphite at High 
Temperatures 

(We*2 T, °K Data From Material 

23 2000 Hove,  Ref.   1.7 PG a-direction 
10 2477 Pears and Allen,  Rei.   7 PG a-direction 
6 -- Klemens,  Ref.   18 Graphite (theory) 
3.29 2 Klein,  Ref.   19 PG a-direction 
3.29 -- Sommerfeld Value 
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The experimental L values at high temperatures are still considerably 

larger than the Sommerfeld value.   However, there is nothing sacrosanct 

about this value, as Klemens (Ref. 18) pointed out.   Only in the case of 

complete degeneracy of the electron gas at very low temperatures should 

the Sommerfeld value be approached, which indeed occurs (Ref. 19).   In 

the nondegenerate case at high temperatures and under certain simplify- 

ing assumptions about the band structure of graphite, Klemens (Ref. 18) 

obtained a much higher value.   The value is subject to the condition that 

the mean free path is independent of energy, a requirement readily ful- 

filled in grain boundary scattering.   For certain types of electron--phonon 

interactions this is also true for strictly two-dimensional lattices.   Since 

more detailed knowledge of the electronic band structure of graphite is 

now available (Ref. 16), indicating the existence of bipolar conduction in 

graphite, further corrections of the theoretical Lorenz number must be 

expected. 

In any event, the values of Table 1 indicate that the possibility of a 

substantial, and perhaps pure, electronic heat conduction in graphite at 

high temperature can no longer be refuted.   The presence of bipolar elec- 

tronic conduction may explain the fact that temperature-independent 

thermal conductance coupled with temperature-proportional electrical 

resistance results in a temperature-independent Lorenz number at high 

temperatures. 
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