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KINETIC EQUATIONS FOR PLASMAS 

by 

Toyoki Koga 

Polytechnic Institute of Brooklyn,   Graduate Center 

Farmingdale,  New York 

SUMMARY 

Because of the time scale assumption necessary 

for its derivation,   the Bogoliahov-Born-Green-Kirkwood- 

Yvon (BBGKY) hierarchy of equations is not applicable to 

systems consisting of charged particles,   except for special 

subsystems.     A new class of equations governing the 

evolutions of charged particles is derived from the Liouville 

equation and is coarsed-grained with respect to time and 

similar particles.     In the zeroth approximation,  there are 

two basic types of inter-particle interactions:    One is of the 

Vlasov type and the other of tie Boltzmann type characterizing 

interactions among nearest neighboring particles.     In higher 

order approximations,  mutual perturbations among those 

basic interactions result in secondary effects; for example, 

two nearest-neighboring particles exert a force of microscopic 

order to another particle.     Depending on the ratio between the 

This research was supported under Contract Nonr   339(38) for 
PROJECT DEFENDER,  and the Advanced Research Projects 
Agency under Order No.   529 through the Office of Naval Research. 
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number of electrons and the number of ions in a real system,   the 

simulating model varies.       The main purpose of the paper 

is to present schemes of rational treatment,   rather than 

to provide      juimerical results in detail for a particular 

system. 



I.    INTRODUCTION 

The Bolt^mann collision integral,  based on the 

binary collision assumption and the Stosszahlansatz ( the 

assumption of collision number),   diverges in the case of 

charged particles.     As a more radical approach,  many 

authors    have attempted to investigate ionized gases by 

treating the Bogolmbov-Born-Green-Kirkwood-Yvon (BBGKY) 

hierarchy of equations derived from the Liouvillt equation. 

As has been argued often by the present author  ,  however,   the 

BBGKY hierarchy is not feasible for consideration as the basis 

of treating ionized gases in general,  because of the time scale 

assumption necessary for the derivation of the hierarchy; the 

time scale relation necessary for the derivation differs,   except 

for special cases,  from the time -^cale relation conceivable 

in a real system of charged particles.     The purpose of the 

present article is to propose schemes of treating the Liouville 

equation feasible for ionized gases. 

In Section 11, we shall integrate partly the Liouville 

equation to derive equations of evolution of distributions of 

sub-systems.     After investigating possible time scales of 

dynamical processes in real systems in Section III, we shall coarse- 

grain these equations for sub-systems with respect to time and 



similar particles so that they will yield kinetic equations for 

plasmas in the following sections.     Each of the resultant 

equations his its limited regime of feasibility; the feasibility 

depends on the nature and the condition of an ionized gas under 

consideration.     Providing numerical results in detail for a 

particular system is left for future publication. 

———aitlliilWi» HI nn  jsgs. 



II.    EQUATIONS OF EVOLUTION OF SUB-SYSTEMS 

We consider a system consisting of N particles which 

are represented by material points with masses m.,m,,..., mN. 

The distribution of the system in the 6N-dimensional phase space 

(N) (N) is denoted by D4   '.     Function D       satisfies the Liouville equation 

D *      pi ^ N      O. ^ 
0 i.l    mi      ö'i        i=1        1      DPi 

D(K) 

where p. is the momentum of particle i,   r.  the position vector 

of the same particle,   and 

J'i   " v^io   +   '■'.   v7i j 

Ji. is the total force exerted on particle in/?    the  external force, 

%.   the force exerted by particle j.     Since we are investigating 

(Nl the evolution of a single system,   D    ' is known to be given by 

(N)      N « 
D1^ =   TT      6 (X   - X *(t) ) 

i= I 1        l 

where X. denotes the six-dimensional vector p., r., and X. (t) 

represents the trajectory of particle i obtained by solving the 

equations of motion of the N particles  .      The equations of motion 

(2.1) 

V.t) 



constitute the characteristic equations of Sq. (2. !).     Of course, 
(N) 

D       given abo\ * satisfies Eq. (2. 1).     It is noted that X. is 

an   ndependent variable while X.  is a function of time.     We 

mav define F^''1 s by 

F(1)(X.;t) = V f D(N)TT    dX. 
j/i       J 

k^i, j       k 
Fx ,(X.X.;t) = Va i  D(IN,

n      dX (2.3) 

etc. 

where V    is invariant and denotes the volume of the space within 

which the system is known to exist throughout the period of time of 

our investigation.     Since the velocity of a particle is finite.V is 

also finite.     It is convenient to define 

F(1){i)   =   F(1)(X.;t) 

FU)(ij)   = FU,(X. X.;t)F    if i   < j 

= 0 .  if i = j 

etc. 
(2.3)' 
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On integration of each term of Eq.   (<J. 1) with respect to the 

phase-space coordinates of all the particles,   except for 

particle i,  we have 

(i) 

dX,  ...dX.   = 0 (2.4) 

Here   v.,      ,, means the summation of similar factors,   each 

of which is formulated with respect to one of the %.-particle 

subsystems   lade by grouping the particles,   except for particle i, 

of the system.     Grouping of the particles to v-particle subsystems 

is possible only when (N-l)/    is an integer,  and the number of the 

su-ysystems is (N -  l)/\j.     If (N-l)/vis not an integer,   for example 

101. 36,  we have to admit that one of the 10Z subsystems consists 

of less than      pa"ticles.     In general (N-l) » v, and hence the 

number of the subsystems is large so that we may ignore the 

peculiarity of one subsystem.      Therefore we always treat (N-l)A 

I 



as if an integer.     For i,  there are N different choices.     When i 

is given,  the number of different ways of dividing the remaining N - 1 

particles into v -particle subsystems is 

     (N - i)l  

(N-l)/ , 
(v,!) [(N-Dv]! (2-5) 

In the microscopic sense,  the implication of Eq.   (2. 4) does not 

change by changing the way of grouping. 

It is easily shown that 

77 pij • 51; F^dJ...*) «ixJ...dxk 

F(2)(iJ)  dXi 

and hence we may write for  Eq. (2.4) 

,   ^        pi      ^ />      ^        m 

+?/?.• ä F(2)(1J)  «j  » 0 
(2.6) 

where p?   tide j represents all the particles of the system except 

for particle i.     As is well-known,   Eq.   ^  6) is the very equation 

8 

I   ■  «HW^ HWIIIFMM'dllllllliMI II    r-rrr*    ¥■>■".■' 



which yields,  after being coarse-grained,  the first equation of 

the BBGKY hierarchy.     There is no difference between Eq. (2.4) 

and Eq.   (2. 6),  as long as we consider them in the precise and 

microscopic sense.     After being coarse-grained,  however,  the 

two   resultant equations are different.     The difference is due 

to the fact that the equations of motion of particles in mutual 

' .iteraction are non-linear, qnd  intencticns are more laultiple tnan  binary. 

For the equation of evolution of F'M      ',  we obtain, 

[; 
by integrating properly Eq.   (2. 1) 

<) Pi       ^ P. <) Pk        ^ 
—.  ♦ —-   •   —  * —*   .   —  ♦••.♦ —  • —• 

* ••• 

dX^.^dX.   = 0 

(2.6) 



In the above,   in general,  it is not trivial to choose a 

proper value for v' •     As has been stated with respect to 

coarse-graining of Eq. (2.4),  coarse-graining of Eq.  (2.6) 

with a different value for v*  leads to an equation of different 

physical implications.      We assume,  however,  that \  is 

sufficiently large that the effect of additional v1 particles 

is trivial; this assumption is of a nature similar to that of 

the assumption of binary collision where \j = 1   and v'  = 0. 

Further we may define f  dX by 

N      X+dX 

V 
f{X)dX   = J_   -     f      F (1,(X.)dX.. 

i= 1     X 

f   dX gives the number of the particles which exist in the states 

between X and X + dX. 

(2.7) 

10 
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til.     GENERAL SCHEMES OF DERIVATION OF KINETIC EQUATIONS 

First of all,  we should realize that the limitations of our 

mathematical ability prevents us from treating precisely 

more than tv/o body problem ..     Therefore our effort muat 

be directed toward converting N-body problems to a combination 

of many two-body problems in an approximation. 

Suppose that particle I is the test particle of which 

the time evolution of our main concern.       One of the field 

particles is named by 2.      What is the effect of particle Z on 

the test particle?     If particle Z happens to come close to the 

test particle within a certain distance,  they will interact with 

each other as if they are isolated from the other field particles: 

their mutual interaction is much stronger than their interactions 

with the other field parf.cles.     But such a strong and distinctive 

interaction continues to exist only for a short period of time. 

Particle 2 will soon be remote from the test particle,  and particle 

2 will be in a strong interaction with its new nearest neighbor, 

particle 3.     Of course,  particle 2 does yet continue to exert a 

force on the test particle.     But the behavior of particle 2 

is almost independent of the behavior of particle 1 and hence 

the force exerted  by particle 2 on particle 1 as a function of time. 

1 1 



changes according to the nature of the interaction between 

particle Z and particle 3; the behavior of particle 2 appears 

as a matter of fluctuation from the view point of particle 1. 

In spite of such fluctuations appearing in the behavior of 

particle Z,   the state of particle Z is steadily localized in 

a larger scale,  because of the finiteness of its velocity. 

Therefore,  the average of the fluctuating force due to particle 

2 over a proper time period does not vanish; particle 2 exerts 

a weak but almost stationary force on particle 1.     Such weak 

forces due to many field particles of similarly localized states 

culminate to the Vlasov type force exerted on particle 1.   See Fig.3.1. 

According to the above investigation,  there are at 

least three different time scales of the force exerted on particle 1 

by particle 2:      1)   the time scale of the close interaction be''veen 

the test particle and particle 2;   2)   the time scale of the close interaction 

between a field particle and particle 2;    3)   the time scale of tne 

average fligh of particles 2.     If all the particles are of the same 

single species,   time scale 1 and time scale 2 are of the same order. 

On the other hand,   if the system ander consideration is composed 

of particles of more than two species,   the time scale of the interaction 

between the test particle and particle 2 may be different from the 

time scale of ths interaction between particle 2 and a third particle; 

12 



the latter may also vary depending on the species of the third 

particle.     Finally the time scale of the third category is 

almost macroscopic. 

A conclusion derived from the above consideration is 

that,  in the simplest case where the system is constituted of 

particles of a single species,  it is necessary to take for v in 

Eq.  (2.4) at least 2 so that the close interaction between two 

neighboring field particles is taken into consideration with the 

same time scale as ti.at of the close interaction between the test 

particle and a field particle.     This caution is essential for coarse 

graining Eq.   (2. 4) with respect to time. 

Since it has been realized that consideration of the time 

scales of close interaction? between two nearest neighboring 

particles is essential,  we investigate the orders of such time 

scales with respect to typical particles in the following: 

By assuming that the gas under consideration is fully 

ionized the constituent particles are ions and electrons.      It is also 

assumed that those ions are of a single species.     The charge of 

an electron is denoted by -e    the mass by m  ,  and the total number 

of the electrons in the system by N  •     The charge of an ion is 

denoted by g ,   the mass by m- and the total number of ions by 

N j   .     In g neral we may assume that 

■Ne e + 1^     r    = 0 (3. 1) 

\J a > ^000 (3.2) 

13 



We also assume that __ mT 

e in e 

Due to relation (i. i) the velocity Df an electron is usually 

much larger than the velocity of an ion, not only when the gas is 

in thermal equilibrium,  but also when the state is non-uniform: 

In thermal equilibrium,  it may be easily shown that 

(the average magnitude of the velocity of electron) ^Q 

(the average magnitude of the velocity of an ion)       ~ 

(3.4) 

If the gas is not in thermal equilibrium,   the situation is not as 

simple.     However,  if the acceleration of an electron and the 

arceleratioii of an ion occur due to the same external electro - 

magnetic field relation (3.4) may be a reasonable expectation, 

because the acceleration of an ion is (e;/e)(m   /m  ) times larger 

than    the       acceleration of an electron. 

The time scale of the interaction between two nearest 

neighbroing electrons is of the order of 

-1/i 
= n /   - c   -. ee e e 

(3.5) 

where n    is the number density of electrons and <r c   ^ is the 
e e 

av     age speed of an electron.      As compared with the average 

14 



speed of an electron,   the average speed of an ion is much 

smaller; and an ion appears as if it is at rest, while an electron 

appears to move swiftly.     The time scale of the interaction 

between an electron and its nearest neighboring ion is of the 

order of . 

Tei   =  n j      / <c e> (3.6) 

where < c > is the average velocity of an electron and nT 

is the number density of ions.     Since n«and n   are assumed to 

be of the same order,  we have 

Tell   Tee 

Cn the other hand,   the time scale of the interaction between 

two nearest-neighboring ions is of the order of 

1 

I!   -nI       / c<ei: TTT   - n T      I « CT> 

(3.7) 

and is much longer »han T   T and I or T      due to ^<B    N    ^-> <r-e   > 
ei ee I e 

In summation,  we have 

•b>>TeI-Tee (3.8) 

15 



IV.    MODEL 1 

4. 1.  General Cunsideration 

The first model is a system constituted of similar 

particles and a uniform background of electric charge which 

compensates the total charge of the particles.     The present 

model is simply a model by which the procedure of manipulations 

typical for our schemes of approach is demonstrated.     It is 

too hasty to assume that the model simulates either the ion 

system or the electron system in a real plasma.     As is 

discussed in subsection 4. 10,  it is necessary to investigate 

model II as is given in the next section for evaluating more 

precisely all the effects of possible interactions on the evolution 
4 

of the ion distribution as well as of  the electron distribution. 

A test particle may experience three main sorts of interaction 

with the field particles.     1)   Strong interaction with its nearest 

neighbor;   2)   Interaction with particles which are not nearest 

neighbors bat are fairly  _iuse to it; each of those field particles 

has its own nearest neighbor and exerts a fluctuating force to the 

test particle.      3)   The force exerted by remote field particles; 

the force    due     to each field particle is trival but culminates 

to a Vlasov type force in the macroscopic sense. 

16 
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Let us take particle i for the test particle; by taking 

2 for v , Eq.   (2. 4) yields 

, a     .   Pi        Ö    . r(l) /a 

+ ^ Jk  J" {^ ^ '*k F(3)<wdxjdxk = 0 

(4. 1) 

and Eq.  (2. 6) leads to 

•> Pi       ^ Ps      ^ Pi,       «> r i       Pi     ^       P.    ;       Pk     i)       .>      2- ,    ^ 

Here 

+ (^i+ ^)k>-^ + (^i 'üi^'™"™ " 0 

(4.2) 

F(3,ajk) = V3 J D(N)TTd^        (l^i.j.k) 

F^^X.X.^^). ifi<j<k 

(4.3) 

F^XjX.X^ t),if j <i < k 

etc. 

17 
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Equation (4. 1) is a partial differential equation of F    ' (X. ;t} 

with X. and t for the independent variables.     It is possible, 

in general, to determine F     (X.;t) along a certain trajectory 

during the time period from t to t + s.     If the trajectory is 

specified by 

x!    =   X,   +   x/is).       x/=p;.r[ 
(4.4) 

x|(0) = 0 p|(0) = p.. rl(0) = r. 

the function is given,   along the trajectory,  by 

F^{x| ; t + s) 

Considering the above, we coarse-grain Eq.  (4. 1) with respect 

to   s   from 0 to T   along trajectories determined by 

(4.5) 

pl   =   ^ 

dt m 

r; (0) = r. 

(independent of s) 

/ 
(4.6) 

(trajectory   0 ) 

18 



From now    on,trajectories determined by Eq.  (4. 6) will be 

referred to by class 0,    and we assume that T   Is much shorter 

than the macroscopic time scale and much longer than the time 

scale of interaction between two neighboring particles.        The 

coarse-graining of the first two mentf   rs of Eq.  (4. 1) leads to 

^jT C(-L+A. JL) F^(X;; t + s) ] ds 
T     J 0        as       m        ar.' 1 

i along   ü 

where 

^Jl-^'V-'"" 

^-^•^"K 
(4.7) 

< F(1)(ib        .-L     f    F(1,(Xy;t+ s)d£ 
Ü T      J 0 l 

(Along trajectories 0) (4. 8) 

The integral term in Eq.   (4. 1), by the same coarse-graining, 

yields 7 

.7«       V * 
da 

(4.9) 

Note  thnt  the time overa/te is rnnde after the summation  2.,. 

■: 

: 

19 



Here X' . is a function of s according to Eq.   (4. 6} and £., 
I jK 

means that similar f ctors are to be summed up with respect 

to (N-l)/2 pairs of particles.      See (2. 5).     It is noted that 

the factor of a pair cannot be decomposed into two factors» 

each made with respect to one single field particle,  after 

the coarse-graining with respect to time; the reason is that 

the interaction a-nong three particles i,  j and k is a non-linear 

phenomenon.     Hence the equation of evolution of < F^ '(i) > 0 

is given 

dt       m       dr. 0 0 

(4. 10) 

In order to obtain F      to be inserLed   .i the above 

integrand,  it is necessary to solve Eq.  (4. 2),  a three body 

problem.     The solution must be given along trajectories 0 

determined by Eq.  (4. 6).     In the following howe'-ör, we obtain 

particular solutions of Eq.   (4. 2) integrated along several different 

classes of trajectories of particle i,  j and k by sv.r cessive 

approximation methods.     Later the differences among the results 

due to the differences among these classes of trajectories are 

eliminated by conjideration of proper coarse-graining operations 

with respect to similar particles.      For the purpose of providing 

20 



F       during the tim? between t and t + s we rewrite £q.   (4. 2) 

as follows: 

L) "     brl       B       ar»        "   ^r^        ^id ik ^ p' 

^J J   ^Pk 
(4.11) 

As is stated in Appendix A,   F      is invariant,  if Eq. (4. 11) 

is integrated along a trajectory specified by X'. ,   X'. ,   X', 

obtained as functions of s by solving Eqs.   (A. 1).     Since 

solution of Eqs.   (A. ') is a three-body problem,  we consider 

combinations of two-body problems which approximate the 

three-body problem under various circumstances.     For 

eacli case of approximation,  we take a different set of 

differential equations in place of Eqf.   (A. 1).      For each 

case,  the ini+ial conditions are always given by 

Xi   =   X. .   X.'   = X   ,   x'      = X^ (4. 12) 
t i J j k k 

8   a 0 

Each different set of differential equations replaced for Eqs.   (A. 1) 

determines a differei    set of trajectories.     Along those 

trajectories,   F*  ' is no more invariant; it is a function of s. 

In each case,   F*  ' is obtained by solving E«.^  (4. 11) by 

a different sucessive approximation method.     In order to 

21 



introduce proper sets of differential equations in place of 

Eqs.  (A. 1). we define, as is detailed in appendix B,   W.. 

which is the probability that particle i and particle j are 

their mutual nearest neighbors.     Similarly we may define W., 

and W.. 

W. .W.k  ,0,    if j / k. {4-I3) 

The"., defined by 

Fd/j/k) = (1-W..) (1-W.k)(l-W.k) F(3)(ijk) 

= "'"a - wik - vF<3,{ijk, 

(4. 14) 

F(i/j/k) is the joint distribution of particle i,  particle j and 

particle k among which none is probably the nearest neighbor 

of the others.     Similarly we define 

22 



F(ij/k)   = W.. F(3)(ijk) 

F(ik/j) = W,,   F(3)(ijk) (4, 15) 
ik 

F(l/jk) = W.,   F(i)(ijk) 

Obviously 

F(3)(ijk) = Fi/j/k)   +   F(ij/k)   +   F(ik/j)   + r(i/jk) 

(4. 16) 

In view of the definition of the W s,  those members in the 

right hand side of Eq.   (4.l6)cannot be significant all at the 

same time;    If one is significant,   the others are trivial. 

In solving Eq.   (4. 11) for obtaining F     (ijk) appearing in 

(4. 14) and (4. I5),  we have four different methods of approximation. 

For example,   for calculating F      (ijk) involved in F(i/j/k),  we may 

assume that interactions among the three particles are always weak, 

ar d hence,  in the zeroth approximation,  those three particles are 

regarded as in free flight.     On the other hand,  for F     (ijk) in F(ij/k), 

it is essential to assume that the interaction between particle i and 

particle j is strong,  although these two particles interact with 

particle k only weakly.     On obtaining F*    (ijk) in four different 

cases respectively by four different methods,   the results are 

presented as follows: 

23 



I-    F<3)ajk) = F(i/j/k)(0, + F<i/j/k)(1) + 

II.    F(3)(ijk) = F{ij/k)(0) + F(ij/k)     ♦... 

II'    F(3)(ijk) =r(ik/j)(0) + F(ik/j)(1)+ - - - (4. 17) 

III.   F(3){ijk) = F(i/Jk)(0) + F(i/3k)(1,+ - - - 

After obtaining F     (ijk) in four different cases, 

we substitute each of the solutions to its proper place 

in (4. 14) and (4. 15).     Thus for F     (ijk) as presented 

by (4. 6), we obtain 

where 

F(3W0) = (1 . w.. - W.k. Wjk) F(i/j/k)(0) 

+ W.. F(ij/k)(0)   + W.kF(ik/j)(0) 

+ WjkFa/jlr)<0) 

(4. 18) 

24 



Sk 

F(3)(ijk)(1) = (1 - W.. -  ,V.k - W.k)F(i/j/k)(1) 

(4. 19) 

+   W..F(ij/k)(1) + W.kF(ik/j)(1) 

+ W.kF(i/jk)(1) 

etc. (4.20) 

In the next step of our treatment,  we substitute 

F     (ijk) presented by (4. 18) in the integral member in Eq.   (4. 1) 

J'7= :k 11 «^j t<Ä> ■ 4-F(3,<ijk,dXjd^ 

=   jW.jCI + jWt.-. (4.21) 

here J     ,   for example,   is due to F      (ijk)       given by (4. 18): 

j(0) = i 3k II^^^-^^w^x^ 

40) * 40) * 4V ♦ ^0) <4-") 

25 



and 

Ji0)- -7 ^ \v%i ♦^'•j|:<1-«i1-wu-V,<i/3/k)W,,,xj,,I't 

(^.25) 

(4.2^) 

(^.25) 

(^.26) 

26 
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Similarly we have 

in which 

(4.27) 

jk 

(4.Z8) 
- W.k)F(i/j/k)(1)dXjdXk 

J
2

(1) = ^- ; II^ij +^-T|- w^ij/kja)«.^ 
(4.-i9) 

^^-Ti 11 ^J^^^I wiKF^)<1)^Vx* 
(4.30) 
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(4.31) 

etc. 

For coarse-graining J with respect to time from t    to t + T, 

we may have more than one method.   In (4. 9).  X1 . changes as a 

function of s according to (4. 6), while X' . and X'.  are invariant 

during the time of coarse-graining.     If we choose for X' ., X' . and X'. 

a different class of fuu"     ms of s,  we may obtain a different result 

of coarse-graining.     In the following we obtain four different 

functions for F* '(X". X' . X'.; t + s) by integrating Eq.  (4. 11) along 

four different classes of trajectories.     These classes of trajectories 

are also different from the one determined by Eq.  (4. 6).     The result 

of coarse graining J,  and/or a part of J, along a class of trajectories 

is different from the result made along another class of trajectories. 

Later, however,  it will be shown that, by a proper coarse-graining 

operation with respect to similar particles, the differences among 

the results due to the difference among classes of trajectories along 

which the coarse-grainings with respect to time are done, are 
(3) eliminated.     In the following we obtain for F      four different functions 

of s,   respectively corresponding to four different afVie^ expansions 

given by (4. 17), 
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^.2.     Equations   for sub-syptetns. 

4.2.1.F(3)(ijk) in F(l/j/k) 
(u) 

According to (4. 17), we define F{V /j' /k' ;t + s) M' 

,(u) for F(i/j/k    j^1'   where X., X., X,   and t are replaced respectively 

by X! , X'.. X'     and * + s.     Here X'., X'.   and X'   are functions of s 

(0) 
as will be specified soon.     We assume that F(il /j' /k* ; t + s)x 

satisfies 

(^. + 4-^-'   +^-*F'   +-^-.^-.)F(i//j'/k';t+s)<0> = 0 as        m       ^r. m      ^r. m       ar, 

(4.32) 

and F^' /j' /k' ; t + s)^1' for u > 0 satisfies 

■s P; '       a        P*'        a Pw'      ^ ^^ 

1 J K 

M?kV^"kJ').5fei Fii'/r/k-t.s^-1 

U  =  1,2.3,--- 

where Jf.' is a function of   r'  - r.' instead of r.  - r .     By 

taking 

Fii'/j'/k'  ; t+ a)(0,   =   F(i'; t+ s)(0)F{j';t+ s)(0) 

29 

(4.33) 

F(k';t+s)(0) (4.34) 



equation (4. 32) leads to 

öS       m ^j-)F(i';t+s)(0)   =0. 

XT*-^-^' rV:t+*)m-o 

Bs m -|-7)F(k';t+s)(0, = o 
9rk 

(4.35) 

On integration of Eqs.   (4. 3) along trajectories determined by 

dr.' 
i = 

pi 
m 

dr/ 
.1 .   Pk 

ds ds m 

■V 
i 

Pk 
ds m 

Pi *>' =   Pj' ■V = 

(4.36) 

r.'  (0) = r   ,    r.'{0) = r..    r. (0) = r, 
i i j j k k (4.37) 

we have 

[ trajectory I] 
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F(i'  ; t + s)(0) = FC.   t)W 

F(i'  ; t+ S)
{0) = F(j ; t)<0, (4. ?8) 

F(k/; t + 9)'0) = F(k ; t)(0) 

The next procedure is to obtain F(i' /j'/k1   ; t + s)*  '   by 

solving Eq,   (4. 33) for |a = 1.      On substitution of (4. 38) in 

the right hand side of Eq.   (4. 33), we have 

P;' a P/ ^ PL 

1 J K 

(4. 39) 

Since the right hand side member is already given, we may obtain 

Ffi1 /j' /k1 ; t + sy     along trajectories .     I      determined by Eqs. 

(4. 36) and (4. 37).      We may repeat the same procedure to 

obtain FO' /j' /k' ; t + s)(u' for u > 1.     It is obvious that 

FCi'/j'/k1 ; t + s){u) = 0, 

if       u   f   0,   s = 0 (4.40) 
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sine« w« assume that 

F(i/j/k;t)(0) = F(l) (X.;t) F(1)(X.;t) F(1)(Xv;t) (^1) 

V.2.2.   F(i)(ijk) in F(ij/k) 

In this cae,  particle i and particle j are in a close 

(3) interaction.     By taking the second expansion of Fx    (ijk) given 
(0) 

by (4. 17) and defining F^' j* /k1 ; t + s)      ,   etc.  in the same way 

as of   Fli' /j' /k' ; t + s)     ,   etc. we have 

P.' * P;' ^ PL' 

and 

(-2— + 11-      -2_   + _i_     _2_   + 
^s m hr., m dr.» 

(4.42) 

^s m      '',r;'       rn    * 5r;        "^       ' ^ ri,/ 
1 J it 

<-' ik       dp/ v  ik       To >P/ ^ jk   "   XpT' 
i J 
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r>' +   ^ki   4j)   .^]F(i'j'/k.;t+s) 
(M-1) 

Ü = 1,2, 3, . .. 

Those equations are integx-ated successively along trajectories 

II determined by 

(4.43) 

dr.,        p.' dp.;        r>i 
„  = __   .  ^_ = jr.. 

ds m ds 

dr.'        p 
 3    _ Jj 
ds m ds Jl 

(4.44) 

K   Pk,' 
m 

(trajectories II) 

with initial conditions at s = 0 

Pi 

r.   ,    p.'   = p. 
J J        KJ    . (4.41) 

k k 
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We may assume that 

F(i'j7k' ; t+ 8)(0) =   Fd'j'; t+ 8)(0)   F(k'.t + 8)(0) 

(4.46) 

\where F^1 j' ;t + s)^  ' and FCk' ;t + s) are solutions  of 

(^- + ^L ._5_ +Zil .-£-, v äs       m        ^r.        m     * ftr. 
i J 

+3rij'-ilr+^-4,,F(i'i'itt"<0,"g     (4•47, 

and 

(*     + .* *     )F{k'; t+ s)   =0 (4.48) 
as m       ar^ 

•A/hen integrated along rajectories II determined by (4.40) 

and (4. 45),    Since we assume that 

F(r'j,/k'; t+ 8)(u) = 0 

U  >  0 

when n iA   tif\\ 3 = 0 (4. 50) 

it is easily seen that 

F(i'j'> t+ s){0) = F^^ij) 

F(k, ;T + s)(0)   =   F(1)(k) 

when 
s = 0 
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i 

Solution of ^q.   (4.47) is a two body problem; we may imitate 

the method of Boltzmann setting Stosszahlansatz for the initial 

condition of a binary ■ ollision.      Of course,   it is to be expected 

thai the solution will become meaningless as the distance between 

iwo particles i and j increases.     However,  at thf same time 

W. . tends to vanish,   and hence such meaningless solutions do 

not affect the final result,   F(ij/k). 

k,->_.7.  F(3)(ijk) in F(ik/j) 

We may repeat the same treatment in this case as in the 

case   of- F(ij/k),   simply by changing subscripts.      The trajectories 

which correspond trajectories II are denoted by trajectories 11' 

in this case. 

4.2>.F(3)(ijk) in F(i/jk). 

Trajectories along which coarse-graining operations are done 

are named   trajectories III.     The treatment is similar to those 

in the two preceding cases under the condition that the interaction 

oetween j and k are strong. 

Considering F*  '{X' . X'   X'    ; t + s) obtained in four 

cases in the above,  we may coarse - grain J /  ',   J.      ,   J,, 
(0) III. 

and J .      , with respect to time,   respectively along trajectories 
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1,11,11' and in. 

4. 3.    Coarse-graining 

.3.1..  Coarse-Graining   J^0^, J^0,^0* Jj*0* with Respect to Time. 

According to (4. 22),   (4. 33) and (4. 36), we have 

jk 

F{i'i t + 8)(0)F(j/. t + 8)(0,F(k';t + s)(0,dX'jdXk
/] 

= V jk ^ ( ' " WiJ " Wik ' W^ (^ ^   F( 1,(j)   F(Ii(k, 

^-F(1)^dXjdXk 
i 

(") 

= i7LJ"wij,3rij Fi',«'dxj-^rF (i) 

In the above,  it is noted that   £   means the summation with 
jk 

respect to a possible set of pairs made of all the particles 

except for the test particle; hence the number of the pairs is 

(N-l)/2.     By the time i verage,  the symmetry is produced in 

the distribution function.     It is also assumed that 

(4. 52) 
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— r    f 1   W..   F(1)(j) F(1)F(1,(k) dX   dX 

,ij negligible as compared with the other members.      < J.      >   gives 

ine Vlasov effects.     With necessary cautions similar to those 

for (4. 51),  we obtain 

^     ii      v        ^       J    ij    u  ^Pj J n 

(4,53) 

T     /(Ü) 1        N-l r   ^ .. > TT^)/-,   V   oV 
<J/ = < h7o  A ,   • ?^-F    {lk> dXk>ii II'        V        <i J     1 lA    nP^ K  ll 

(4.54) 

H is noted that    " F{1)(X)dX/V -  1,   and I Jr. ■!' - I (f-J in (4-5i) 

and l^j-l   ^ l^\.l ^n (4- 54).      Therefore,   the second member in 

t-ach is ignored,   and the sum of them leads to 

T  (0) +       T     (0) 
Jz     ^l   +     Jz 

-   N-l PTT   ,„ S      c,^)/ <  fj. VV      . -i_F(i)(ij)dX.> 
•   W1J U "P.; V   J J    n 

(4. 55) 
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This will be converted to the Boltzmann collision integral by 

proper treatment.     Here the convergency of the result is assured 

by the existence of W...      Finally we have 

< j/0)>      =~    Üllli <   \\{(fi- tfc) W-,   F     (jk)dX.dX,> 

• TI- < F(1)(i) > (4.56) 
Bpi III 

It appears that the effect is similar to    J,      >.     The difference is 

that <J,     > involves W., .     Therefore 3 jk 

(0) (0) 
^J,      > ^<<J1> 

^       III *        I 

(4.57) 

Hence we ir ay ignore the effect given by (4. 56) 

;f.3.2. Coarse-Graining Jj      ■ J/     ' J2'        '   Ji       with Respect to Time 

The J(1)l s given by (4. 28), (4. 29). (4. 30) and (4. 31) ax-e 

coarse-grained in ihe same way as the J     ' s.     The trajectories 

along which those functions are coarse-grained are respectively the 

same    as those along which the J^    ' s are coarse-grained. 

< J.      > ,   There are correlations among three particles 

i, j and k in this approximation.     It is easily seen,  however, 

that those particles are m itually remote.     According to (4. 39), 

we obtain 

FU/j'/k«; t + 3)
(1) 
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+ ^     ^.j)   • ^Ij-IFd'/j'/k-t+a^da 

Since 

F(i'/j'/k1 : t + s)(0)   =   F(1)(i;t) F(1)(j;t) F(1)(k;t) 

and those trajectories,   along which the coarse-graining 

is done,   are free m aualK,   the summation   r „   results in 
Jk 

cancellation among the effects of those particles.    Hence we 

ignore the present effect. 

< J_        ,,   +    ' J>i        "^ ,-,, , It is easily shown that 

integrations of Eq.   (4.43) ; ad v^ me similar equation for 

F(u' (i1 j' /k' ; t + s) along trajectories II and II1  lead to 

IT V \V 2V 

(4.58) 

N-i   i(Trrr'£/   a 
^2-—j  [JJ^ik-TV 

^ij'    r        ^ik    •   ^|r    F(2)(i.j.;t+8)F(1)(k»5t*8)d8dX'dxJd8 

N-l      1 

2VC r tU       ^^^    ^k    *J   Jo ^P^ 

;j«i] F(1)(k,;t*8)d8dX'dXi ( d8 
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In the above,   the first member in the right hand side gives 

the diffusion effect in the momentum space of particles i and 

the second member the friction.     The    significant feature of 

those terms is that the correlation period is regulated by 

W...  the probability of strong interaction between i and j. 

< J,     ^j.T.By means of similar method as before,  we 

obtain 

3      III      ZV*        T    Jo   JJ ^'J  1^      Jk 

J       ^ij   • "air   ^U'* ' Wa)F(1)(i';t+8)d8 dX'dxJds 

T 
N-l 1       •    . " 

2V 

S   -,/ 

r-yJI^ij'-^v 

5"..   .-i^   F(2)(jk;t+8)F(1)(i';t*8)dXJdXij  d8 

(4.60) 

In eflect,   there is no difference between <J/  '^     + --J,      > 

and <r J 
3        III 
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• 

In summation ol all those effects,  we may write 

T 

dX' . dX' . i ds 

~^" T~J o • ■ ^ik • ^r Wij ^ o ^ki * ^ 

F^^i1 j' ; t + s) F(1^k' ; t + 8)ds 

dX."  dX, ' Id» J k J 

where it is noted that we have ignored the difference among 

trajectories over which those coarse-graining operations 

are considered.    As is shown below,   however,   the difference 

is not essential in the result.      The effect given by (4.61) 

is of the Fokker-Planck type. 

(4.61) 
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^•3.3..   Distribution functions in generic spaces 

So far,  various functions constituting J have 

been coarse-grained along different classes of trajectories. 

For completing Eq. (4. 10),  however,  J is to be coarse-grained 

with respect to the particular class of trajectories named 0 as is 

given by (4. V,     It is necessary to show that the differences among 

those classes of trajectories along which J and/or parts of J 

have been coarse-grained do not result in any inconsistency 

in the final result.      For this purpose,  we compare,  for example, 

the results ol coarse-graining F    '(X.;t) along different classes 

of trajectories in the following:    According to (2.3), 

F(1)(X.;t)   =   vrD(N) TT   dX. 
1 J j/i      J 

= V6(X.- X.*(t)) (4.62) 

Here X.   (t) is a complicated function of time because of the interaction of 

particle!    with the other   N-l   particles. 

First,   let us coarse-grain F        along trajectories determined 

by (4. 6) over a time period from t   to t + T: 

< F.(1)(X.:tK  =±-   f   F
{l)Vi   ;t+s)ds 

(4.63) 
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where 

X'.    =   X.   +   x.'is) 

Those trajectories,   according to (4. 6),   are independent of the 

other particles.     As is shown in Fig.  4. 1,  none of those trajectories 

is similar to X. ' (t + s) in view of time scale T.      Hence 

<F       (X.;t)> is spread over a comparatively broad domain of X.. 

There may be a group of v. particles,   i . i of which 
i 1    ^ 

(1) (1) <Fil     {X;t)>   = <F^(X;t)>= --- 

These are localized in a narrow domain of X.     We define 

<F(1){X;t)> by 

N (1) 
N< F(1)(X; f)>   --   y     < F      (X;t)> 

i =1 

(1) = ^[  <  F.,    (X;t)> 

." <F(V„  (X;th   + --- 

vi'   +   -i" +- 

(4.64) 

(4.65) 
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Hnhke <F.      (X;t)x ,   <F*    (X;t)-> is spread mere uniformly ovei 

the entire domain of X. 

We may also coarse-grain F.      (X. ;t) along another set 

trajectories 

X'!   = X.   + x'l (s) 

which,  for example,   is determined by ( k,kk) t 

« F.(1)(X.-t) ^ = J_ f     F.(1){X."; t +s) 

(4.66) 

Those trajectories,   according to (4.44) are determined by 

tsKing into account the nearest neighbors' interactions. 

Therefore,   a '.rajecotry coincides    with X.   ( t + s) in the time 

scale T.      Hence «  F.      (X. ;t-^   is much more localized than 
i i 

<F.(1'(X.;t>   as is illustrated in Fig.  4. 1. 

<r.(1)(X.:tK   * «F.(1)(X.; t ) » 

Ntverthelejs,   it is obvious that 

f < F.(1)(X.;t)>dX.   =   r «F.(1)(X.;t)->^dX. J . i i        J ii i 
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We may define      «F^ l,{X;t)>> by 

.-<F(1)(X;t)»   = -L   r .;-F.U)(X;t)» 
N     i 

(4.69) 

If N is sufficiently large,   the coarse-graining in the sense of (4.64) 

and (4. 69) may result in 

< F(1)(X;t) >   =   «F(1)(X;t)>; (4. 70) 

In the -«bove,  we have seen coarse-graining operations 

in the sense of (4. 64) and (4. 69) -re essential for reconcilliation 

(4. 70) betveen two classes of time averages.     In other words, 

time averages are not enough for deriving proper kinetic equations; 

it is necessary to make averages over many particles. 

AppJving the same consideration as above, we make average 

of Eq.   (4. 10) with respect to particles so that < JV s made with 

respect to different classes of trajectories are equivalent to those 

made with respect to trajectories 0.      By this procedure of 

coarse-graining over particles,  we obtain in effect the same 

function as f defined by (2. 7).   /The Boltzmann equation is the 

very equation which governs    the evolution jf f of a gas where 

the collisions are assumed to be binary. )     After the present 

coarse-graining operation with respect to similar particles, 

the effect given by (4. 55) may amount to the Boltzmann collision 

integral; because of W.. in the integrand,   the effective interaction 
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terminates quickly as the dist.      c between particle i and paiticle j 

inc.-eases. 

k t1**   Evaluation of the luteractiou Effects. 

Because of the W s involved in those interaction integrals,   the 

integrals converge always.     As is given in appendix A,  we take for W 

W = exp ( -9" n r   /4) 

where n is the local number density and r is the distance between 

the test particle and a ('. ild particle under consideration.      The 

range of spaco of a close correlation (almost binary) .s of the 

order of 

-1/3 
9^n 

- j _ 

n R. = (^-) 

and the time scale is 

-    = R   /(<p>/m) 

Here <p> is the average magnitude of momentum of a particle 

1 
. p > „   r   3kT ,  Z =   0   [ JUl^-l 

m 

If r - R   ,   then W or i.      The Boltzmann tyoe interaction effect n '- 

J(,(0)      +    , J21 
(0) . is of the ü1der of 
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0[<J^+<J2.<0).]=TT   (Rnr-^~   nF^^i) 

= TT   n   R ?   (ihI_)-Z-F(1)(i) n    *   m * ' 

The order of  the   interaction   effect ^^z     " + <r^2        > 

is sh iwn to be 

Of.jW+    .J2.>(1)1=    Rn        h     nl00   JlllÜ-dr-1-^1^) 
1 l (3kT/m)^ •]  Rn        r P 

. F^^i) 
3        mr(3kT/m)ya 

Hence we obtain 

 W lüT— ^n-^—)a] 0[< J/0'+ ^J-.^Sl kt 

(4. 71) 

4 19 
If we take T =  10  ,   n =  10     ,  we obtain 

(   ean -   ) ~ 10"1 

kT 

,  /3      . 
(e  n        ) 

, rp decreases further as T increases and n decreases. 
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<; j,     > is the same order as of <J?     > +   < J^«      >  • 

The ratio given above suggests that the effect or remote 

interactions may be ignored in ordinary cases where 

4 19 
T> 10    and n <10     .     This conclusion appears to be 

different from those obtained by other authors,  based 

on the original interpretation of the BBGKY hierarchy. 

It is noted that the present definition of close interaction 

according to the nearest neighborship is different from 

the usual definition of close interaction according to 

ehe polarization effect of the Debye-Huckel type. 

One,  who has been familiar with theories based 

on the BBGKY hierarchy,  might ask:     Why is the effect 

of field pa* deles which are not nearest neighbors of the 

test particle so small by the present theory?     The answer 

is as follows:     By a theory based on the BBGKY hierarchy, 

the test particle and a field particle may interact with an 

indefinitely long correlation time,   in spite of the presence 

of perturbations by third particles.     On the other hand, 

the behavior of a particle,  by the present theory,  appears 

in microscopic order only for a short period of time during 

its interaction with its nearest neighboring particles.       In 

other words,   the time scales of microscopic orders are always 
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finite.     Note that the above statement is feasible,   only because 

laws of interaction forces are not linear with respect to inter- 

particle distances. 

4. 5.    Validity of the Model 

As is investigated in section III,  the time scale of a 

close interaction between two ions is much longer than the 

the time scale of a close interaction where an electron 

participates.     Therefore the present model appear to be 

suitable for simulating,  in an approximation,   evolution of the 

ion distribution in a real system,  if the number of the ions 

is the same as the number of the electrons (charge of an ion 

being the same as of a proton).     This is because the electrons 

appear to make an almost, uniform background in view of the 

motion of an ion.     But at the same time, we find no definite 

reason for saying that the effect of electron-ion (close) 

interactions on the evolution of the ion distribution is negligible: 

although the average magnitude of the momentum of an electron 

is much smaller than the average magnitude of the momentum 

oi an electron,   (the ratio being about 1/50 with respect to the 

lightest ion),   the frequency of electron-ion collision (close) is 

% 

I 
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about 50 times higher than the frequency of close ion-ion 

interactions.     If we wish to consider the situation more 

precisely and reasonably, both ions and electrons must 

be considered as discrete particles.     In view of the above, 

model II will be investigated in the next section. 
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V.    MOL^L il 

As stated in subsection 4. 10,   the validity of model I 

as simulating a real system is fairly dubious.      It may be 

plausible to think that the model has a meaning only as 

providing an example of manipulation of reducing the Liouville 

equation to coarse-grained kinetic eqaations governing evolutions 

of subsystems.     In this section,  we consider a model which may be 

more realistic than the previous one.     The plasma which the 

present model is intended to simulate is the same as is considered 

in the last section; the gas is fully ionized and the number of the 

ions is the same as the number of the electrons. 

We consider four particles,   two ions and two 

electrons,  for representing the field particles.     By this way, 

it is necessary to treat the evolution of a five-particle distribution 

(5) function Fx  '(X.X.X. X.X    ;t) where one of the five particles is the 

test particle.     However, as a simpler   approach we shall consider 

F(3)(o,i,j) 

F(3)(o,k, O (5.1) 

F(3)(o, r^r) 
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where particle o is the test particle,   either an ion or an 

electron,  particles i, j, k are electrons which represent 

the N/3 groups of the field electrons,   and particles £ • n . * 

are ions represeniing the N/3 groups of the field ions; 2N 

is the total number of the field particles,  N electrons and 

N ions.     The evolution of F    '(o) of the test particle is 

obtained by integrating partly the Liouville equation of 

the N+l particle system as follows: 

(4_ +1^ .   *   )F{I)(O) 
^ mo       5ro 

J      > 'a 

+ JJ < ^uk ^ ■ w- F(3){0' k'p) d-vx. 

+ fl^+Jo^-a|;F(3)<0^'C)dxr^5i = o 

(5.2) 

After coarse-graining,     v     v will be replaced by multiplier 
ijk    Er\r 

2N/6.      Equation (5. 2) corresponds to Eq. (4. 1) for model I.     Cor- 

responding to    E,q. (4. 2).   we have the following three equations: 
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+ ^oa   + ^oß) 'WT + ^ao   + ?aß) '^ 

+ (?ß04a)   •%1F(3>(0'Q'ß)   =   0 

(a. ß)   =   (i. j).   (k,^ ),   (^ , C ) 

where 

(5.3) 

m. = m. = m,    =   electronic mass 
i j k 

m  = m    =m      = ionic mass. 

The interaction to the zeroth approximation is given by 

^^^^^ii^^.-^^'-^x- 
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= J(0)(oee)    +   J(0)(oee),   +   J(0)(oee)   ,    +   J(0)(oee) 

+ J
(0)(oel)     +   J(0)(oel)    + J(0)(oel)   ,    +   J(0)(oel) 

f Ji0)(oll)      +   J(0)(oII)    +  J<0)(oll)   ,    +  J<0)(oII) 
12 3 3 

where J    '{oel).   for example,   is an effect due to field 

(5.4) 

parades k and » ,  k representing field electron»and 5 representing 

field   iona.     Those members in the above may be obtained as 

analogous to those J     ' s obtained in the last section.     In 

coarse-graining these terms,   it is necessary to pay attention 

to the difference between the time scale of ion-ion interaction and 

the time scale of those in which electrons are involved.     The 

time scale of ion-ion interaciion is denoted by TTT   while the time scale of 

those involving     electrons is denoted by j   .     Then,   according 

to the investigation given in section HI,   it holds that 

TT      ^>      T 

II e 

If the macrojcopis time scale T        is larger than TTT,  we r m 0 11 

may choose   T    SO that 

T -'"> T   •>>   TTT   ^> T m He 
(5.5) 

54 



T is the very time scale with which we may coarse-grain 

those terms in Eq.   (5.4).     All the procedures of coarse- 

graining are the same as demonstrated in section IV. 

Taking an ion for test particle o. 

^J^Iee)^  +   <J(0)(IeI)1 >  +   <J(0){1II)1 -> (5.6) 

gives the effect of the Vlasov type interaction.     The effect of 

the Boltzmann type interaction among nearest neighboring 

particles is presented by 

J^Ieek >   +   <J(0)aee):)
/ 

+    <J(0)(IeI)„ >  +   <j'0)(IelU 

+     <J(0)(III)8>    +  <J(0)(III)2' > 

(5.7) 

We may also obtain. 

r(l) <Jvl'(Iee);) >   t-    'Jvl,(Iee)  ' (1)/ 

+    <J(1)(IeI). +   <J(1) <J^,(IeI)   'v 

+   <J(1)(ni), > + <j(1)(iii)8' 

(5.8) 
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for the significant effect in the approximation of the next order. 

By comparing the effect given by (5. 8) with the effect given by 

(5. 7) in the same was as we did by (t, 71), we may see that effect 

(5. 8) is negligible in ordinary case«.     The situation is exp)ained 

as follows:      1)   First,  let us take an ion for the test particle o. 

Then,   take an electron for the particle nearest neighbo1 ing to the 

test particle o.     The effect of the interaction (a part of the 

zeroth approximation effect) is larger than the effect of the 

force exerted by two mutually neighboring field particles 

of which one is an electron.     Note that the time scales of 

two events are the same.     Take an ion for the nearest 

neighboring particle of the test particle o.     Then the effect 

of the interaction is larger than the effect of the force exerted 

by two mutually neighboring field particles of which both are 

ions.     2)   The situation is similar for the test particle which 

is an electron. 
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"V.    MODEL III 

Suppose that a fully ionized gas is composed of N 

electrons and N' ions of a single species.     Here the charge 

of an ion is denoted by Q,  and 

Q = v e,   e:   electronic charge 

N/N'    =„ (4.1) 

If K   is much larger than unity and we wish to investigate the 

evolution of the distribution of ions,  the models given so 

far are not feasible:    Model I is not feasible because neither 

ions nor electrons can be represented b-   a uniform charge 

distribution in the present case; model 11 is not feasible 

because N >> N1.     Due to tie large mass and the large charge 

of an ion,  two nearest neighboring ions which are separated 

at a distance much larger than the average distance between 

two nearest neighboring electrons may have a strong mutual 

correlation of which the time scale is much longer than the 

time scale of the behavior of an electron interacting with 

an ion or another electron.     See Fig.  6. 1.     This condition 

is quite favorable for applying the ordinary BBGKY hierarchy, 

up to the third equation,  to the investigation of the evolution of 

57 



the ion distribution.     Here the test particle is an ion,   the 

field particles appearing in the first equation of the BBGKY 

hierarchy are also ions,  and those field particles appearing 

in the integrand of the second equation are electrons.     The test 

ion and a field ion may interact through a    space in which many 

electrons are present and the distribution of those electrons 

are polarized by the field induced by the two ions.     The case 

has been in 

hierarchy. 

has been investigated by many authors    as based on the BBGKY 



VII.  CONCLUDING REMARKS 

If the number of io-.is is the same as the number of 

elec   -ons in a plasma,   tl^re are two basic types of inter- 

particle interactions in the zeroth approximation:    One is of the 

Vlasov type and the other of the Boltzirann type characterizing 

interactions among nearest neighboring particles.    In higher order 

approximations,   mutual perturbations among those basic 

interactions resu f in secondary effects which are not 

significant under ordinary conditions of high temperature 

and of low density. 

As the ratio betw.   n the number of electrons and 

the number of ions incre?,aes in a real system,  the 

simulating model becomes more complex; in cases where 

the ratio is extremely large,  the BBGKY hierarchy is useful 

for investigating the evolution of the ion distribution. 

The presence of any external force field of which the 

time scale is much larger than the maximum time scale 

of close inter-particle interactions does not affect the 

validity of the present approach.     If ti.Te is an external 

force field of which the time scale is comparable to or smaller 

than the time scale of any close inter-particle interactions,  the 

method must be considerably modified  . 
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APPENDIX   A 

Solution cl Eq.   (4. 11) 

Equation (4. 11) is a partial differential equation where 

F^fX' .X' .X'    ; t + s) is unknown and X« .. X' ., X',  and s 

are independent variables.     It is possible to obtain particular 

solutions by taking arbitrary functions of s for X'   , X' .. X'. . 
S J K 

If one takes for X' ., X1 . and X'     particularly those which satisfy 

the characteristic equations of Eq.   (4. ' 1) 

dr.1        p.' dp.1 

"3s m        ' cTi" 3 w ij       ** ik 

dr! op; 
ds ds 

^k' . "k' ^k' =1,%?..' 

(A. 1) 

m "3s "•'ki      v kj 

(3) then F'  '.   the solution of Eq.   (4. 11),is invariant with respect 

to s.     Ii is noted tha. X' .(s),   X' .(s) and X1. (s) which satisfy 
i j k 

Eqs.   (A. 1) present a set of trajectories of particles i,   j and k 

which are in mutual interaction.     The solution of Eqs.   (A. 1) is 

a three-body problem.      In order to avoid the difficulty of solving 
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the three-body problem precisely,  one may choose a set of 

approximate differential ecuations in place of (A. 1) depending 

on circumstr.nces,   and may integrate Eq.   (4. 11) along a set of tra- 

jectories given by X'. ,  X'. and X'. which satisfy the approximate 

differential equations.     In tills case, 

precisely invariant with respect to s. 

differential equations.     In tills case,  the solution F* ' is not 
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APPENDIX   B 

The Probability of Two Particles being their Mutual Nearest Neighbors ' 

If it is definite that n particles exist m a space 

domain of unit volume,  the probability of no particle being 

present in a domain of volume v,  which is smaller than unit 

volume,  is given by 

wo(v) = exp<-nv) 'B. 1) 

The proof is as follows:     Let us consider a variation 6v of v « 

the probable number of particlej in 6v is n6v.     The probabi    -y 

of any   M   particles appearing,   at the same time,  in 6v is denoted 

by w  (6v).     Then,  we have 

n 
r        v w      (6v)   =   r,6v (B. 2) 

v- 1 

Obviously 

n 
w    (6v)   +   r       w   (6v)   = 1 (B. 3) 

V - 1 
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Since we know that 

lim 

6v - 0    w    (6v) oc (6v)v 

v 

(B. 2) leads to 

Urn       w. (6v)   »  n6v 
6v-. 0 

Hence (Ei • 3) yields 

w  (5v)   +   n6v = 1 (K.4) 
o 

at the limit 6v -• 0. 

On the other hand, we have 

w    (v + 6v)   = w  (v) w  (6v) (B. 5) o oo 

By expanding the left hand side of (B> 5), we obtain 

dw o 
wo(v)   +    dv      ^   =   wo(v)  < ! " n5v) 

where ( B>.4) is taken into account,  or we have 

dw  (v) 
0        = - ndv 

w  (v) o'  ' 
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On integration of the above under the condition w  (0? = 1, 

we obtain Eq.  (B. 1)„ 

Two particles i and j can be their mutual nearest 

neighbors, if there is no other particle in the sp" ce domain 

enclosed by two spheres,  one with its center at r. and with 

radius r.. and the other with its center at r. and with the same 
3 

radius.     See Fig. P. 1.     The volume of the domain is (9rr/4)r..  . 

Hence 

W.. = exp [ -   *L_  r. .3 n] ( B. 7) 

is the probability that particle i and particle j are their mutual 

nearest neighbors.    It is noted that the above consideration is 

simply a matter of geometry. 
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APPENDIX   C 

Distrrbation Functions Decomposed According to Inter-Particle Distances 

The distribution function F^ '(X.X.Xjjt) of three particles 

1, 2,  and 3 is divided into parts as follows: 

F(3) =   F(3)(X1X2X3;t) 

F(l/2/3)   = d-W^Hl-WjjO-W^) F{3) 

F(12/3) = Wlz(i-W13)(l-W23)F(3) 

F(13/2) = (1-W12)W13{1-W23)F(3) 

(3) 

(C.l) 

F(l/23) = (l.W12)(l-W13)W23F 

F(l2/13) = W12W13(]-W23)F(3) 

F(13/2i)= (1-W12)W13W23F<J) 

F(12/l3/23) = W12W15W23F(3) 

where,  for example,   W.    is the probability o'f particles 1 and 2 

being their mutual nearest neighbors.     The sum of the right hand 

side members is shown to be F      itself.     If it is considered that 

a particle has only one nearest neighbor at each moment of time, 

we may have 

W12W23   =   W23W12 = W13W23 = 0 <C-^ 
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and equations \G . 1) yield 

^(1/2/3) = (3 - W12-W13-W2:3)F
(3) 

F(12/.V = W12F(3) 

F(13/2) = W13F(3) (C'3) 

F(l/23) = W23F(3) 

and it holds that 

F(l/2/3) + F(i2/3) + F(13/?0 + F(l/23)   = F (3) 

(C.4) 

Those relations given by [C. 3) are illustrated in Fig.   C. 1. 

If we consider test particle 1 and four field particles 2, 3, 

4, 5,  the possible relations among them are illustrated äs in Fig.   C. 2. 

By taking into consideration relations similar to (C.2)   we obtain 

F{5) s   F(5>(XiX2X3X4X5;t) 

F(l/2/3/4/5) = (1-W12) ( 1 -  W13) - - - (1     W45)F(5) 

•11-*     Vf..    +        L WiiWk^ 
l<j     lJ i<j< k<^ lJ   k£ 

- (i - w12 - w13 - w14 - w15 - w23 - w24 



•W25-W34-W35 " W45 + W1Z W34 + W12 W35 + Wl2 W^ 

+ W23W45)F<5) 

F(12/3/4/5)   = Wl2(l-W34 - W35 - W45) F(5) 

F(12/34/5)   =Wl2W34F
<5) (C. 5) 

etc. 

Finally it holds that 

F(l/2/3/4/5)   + F(12/3/4/5)+ --- 

= F(5) (C.6) 
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FOOTNOTES AND REFERENCES 

«Supported by the Office of Naval Research Under Contract 

Nonr 839(38) for Project Defender. ARPA Order No.   529; 

presented partly at the meeting of American Physical Society, 

Washington D. C. April,   1967; preliminary accounts were 

published in PIBAL Report No.  836 (Polytechnic Institute of 

Brooklyn,   1965). 

1   See,  for example,  CM. Tchen,  Phvs.   114,394(1959); 

Rostoker and Rosenbluth,  Phys.   r aids,  3,1(1960). 

2. T. Koga,   Phys.  Fluids,   3, 454(1963); Bull. Am.  Phys. 

Soc.   11,   554(1966): paper presented at the annual meeting of the 

Division of Pia ma Physics,  APS,   1966. 

(N) 3. The reason for giving D       by (2. 2) has been discussed 

in detail in the second paper mentioned in footnote 2.     The reader 
IM» 

might th' "k that,  as long as D*   ' is given by (2. 2),   there is no 

(N) need of consideration of Eq.   (2. 1) since D       given by (2. 2) 

is a solution of Eq.   (2. 1).    In spite of its simple appearance, 

(N) * 
D       given by (2. 2) is not a simple function of t.     X . becomes 

known only by solving simultaneously the equations of motion of 

the N particles; these equations are the characteristic equations 

of Eq.  (2. 1),  and the sol ition is out of the scope of our mathematical 

ability. 
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4. We often use the pres nt model for simulating the electron 

system in a plasma.     The simulation is feasible when our 

interest is in the interaction between a plasma and an external 

electro-magnetic field of a macroscopic scale.     However, 

the simulation is not feasible if we are interested in effects 

of inter-particle interactions. 

5. An electron-electron interaction,   for exanr-S.e,  means an 

interaction of two electrons which are their mutual nearest 

neighboring particles. 

6. See footnote 1. 

7. C.  Oberman,  A.  Ron,  and J.  Dawson,   Phys.  Fluids,   5, 1614(196Z), 

investigated the effect of an external force of a short time scale, 

as based on the BBGKY hierarchy; but the assumption of time 

scales necessary for the hierarchy was not properly considered 

there. 

8. Th: problem was first discussed by Hertz,  according 

to S.  Chandrasekhar,  Rev.  Mod. Phys.   15,   1 (1943). 
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CAPTIONS OF FIGURES 

Fig.  3. 1.    A field particle Z interacts with the test particle 1 

at close distances with time scale T! after the interaction particle 

2 interacts with partWe 3,  particle 4,  and so forth.     The time 

scale of those close interactions is the same       as T.     The 

space domain in which particle 2 is localized over a longer period 

of time is indicated with shadow.     The force exerted on particle 

1 by particle 2 is classified as follows:    1) The force during the 

close interaction particle 2 with particle 1;    2)   the force during 

the close interactions of particle 2 with particles 3, 4,  etc;      3) 

the averaged force during the existence of particle 2 in the 

shadowed domain 
* 

Fig. 4. I.    In A,   X.    is the precise trajectory of particle i 
i 

under the influence of all the fieH particles; X.    is the trajectory 

of particle i when the influence of the field particles is ignored; 
ii 

X.    is the trajectory of particle i interacting with particle j only. 
" * 11) X.    is much closer to X.   .     In B,  F.       at t is shown by a 6-function; 

<F.1  '>  is the result of averaging F.    ' from t to t + T. along a 
i ID 

set of trajectories of the same class as X.   ; «F.    '» is the 
m 

result of averaging F,     ,  from t    to   t + T i along a set of 
II 

trajectories of the same class of X.   . 
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Fig.  6. 1.  Ion 1,  with a large charge and a large mass,   interact 

with a similar ion 2.     Many electons,  depicted with small dots, 

interfer the ion-ion interaction. 

Fig. B. 1   The volume of the space domain closed with two 

spheres with radius   r.. is —,— r. .3. 

Fig.  C. 1.  Particle 1 is the test particle; particle 2 and particle 

3 represent the field particles.     There are four typical relations 

among them:    a)   the threes are mutually remote;   b) particle i 

and particle 2 are their mutual nearest neighbors; c) particle 1 

and particle 3 are their mutual nearest neighbors;   d) particle 2 

and particle i are their mutual nearest neighbors. 

Fig.  C. 2.    Particle 1 is the test particle; particles 2^ 3,4, 5, 

represent the field particles;among them particles 2 and 3 are 

ions and particles 4 and 5 are electrons.     There are 26 relations 

among them; full and short lines indicate nearest neighborhood 

and long and dotted lines  remote relations. 
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FIG.    B.  1 
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