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KINETIC EQUATIONS FOR PLASMAS*

by

ta
™~

Toyoki Koga

Polytechnic Institute of Brooklyn, Graduate Center

Farmingdale, New York

SUMMARY

Because of the time¢ «cale assumption necessary
for its derivation, the Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy of equations is not applicable to
systems consisting of charged particles, except for special
subsystems. A new class of equations governing the
evolutions of charged particles ie derived from the Liouville
equation and is coarsed-grained with respect to time and
similar particles. In the zeroth approximation, there are
two basic types of inter-particle interactions: One is of the
Vlasov type and the other of tle Boltzmann type characterizing
interactions among nearest neighboring particles. In higher
order approximations, mutual perturbations among those
basic interactions result in secondary effects; for example,
two nearest-neighboring particles exert a fcrce of microscopic

order to annther particle. Depending on the ratio between the

1‘This research was supported under Contract Nonr 839(38) for
PRCJECT DEFENDER, and the Advanced Research Projects
Agency under Order No. 529 through the Office of Naval Research.
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number of electrons and the number of ions in a real system, the
simulating model varies. The main purpose of the paper

is to present schemes of rational treatment, rather than

to provide numerical results in detail for a particular

system.
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I. INTRODUCTION

The Bolizmann collision integral, based on the
binary collisicn assumption and the Stosszahlansatz ( the
assumption ci collision number), diverges in the case of
charged particles. As a more radical approach, many
authors1 have attempted to investigate ionized gases by
treating the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy of equations derived from the Liouville equation,

As has been argued often by the present authorz, however, the
BBGKY hierarchy is not feasible for consideration as the basis
of treating ionized gases in general, because of the time scale
assumption necessary for the derivation of the hierarchyv; the
time scale relation necessary for the derivation differs, except
for special cases, from the time. <cale relation conceivable

in a real system of charged particles. The purpose of the
present article is to propose schemes of treating the Liouville
equation feasible for ionized gases.

In Section 11, we shall integrate partly the Liouville
equation to derive equations of evolution of distributions of
sub-systems. After investigating possible time scales of
dynamical processes in real systems in SectionIjI, we shall coarse-

grain these equations for sub-systems with respect to time and

L
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similar particles so that they will yield kiretic equations for
plasmas in the tollowing sections. Each of the resultant
equatior.s h1s its limited regime of feasibility; the feasibility
depends on the nature and the condition of an ionized gas under
consideration. Providing numerical results in detail for a

particular system is Jeft for future publication.
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II. EQUATICNS OF EVOLUTION OF SUB-SYSTEMS

We consider a system consisting of N particles which
are represented by material points with masses m P Mpreces My

The distribution of the system in the 6N-dimensional phase space

is denoted by D(N). Function D(N) satisfies the Liouville equation
p) N op ®) N )
(T2 w5t 2, F g0 w0
izl B3 9Ty ia OP;
(2. 1)
where P; is the momentum of particle i, r, the position vector
of the same particie, and
V. - - e
F - Fo s Vi
A .
Ji 13 the total force exerted on particle i"fio the external force,
37“ the force exerted by particle j. Since we are investigatinz
the evolution of a single syste:n, D(N) is known to be given by
N
X
p™ . = sx - x )
i=1 i i
(2.2)

- - . j ’k
where Xi denotes the six-dimensional vector P I, and Xi {t)
represents the trajectory of particle i obtained by solving the

equations of motion of the N particles3. The eguations of motion




constitute the characteristic enuations of ©q. (2. !). Of course,
N
D( ) given abow @ satisfies Eq. (2. 1). It is noted that Xi is
*
an ‘ndependent variable while Xi is a function of time. We

mav define F(V)' s by

FOx:y=v | o™, ax.
1 o

j;i )
F(z)(Xin;t) =y J o™ ax (2. 3)
kK#i,j k
etc.

where V is invariant and denotes the volume of the space within
which the system is known to exist throughout the period of time of
our investigation. Since the velocity of a particle is finite,V is

also finite. It is convenient to definre

F) = F(x )

Fy) - F(z)(xi Xith ifi <

F("‘)(xj Xsth ifi >

=0 , ifi = j

(2.3)!
etc.
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- é%
On integration of each term of Eq. (4. 1) with respect to the
phase-space coordinates of all the particles, except for
particle i, we have
(—-+——i-.——+b .——)F(l)(i)
it By 9Ty 1o ° 5p,
+ - Z (UJ' . ’.oo’f )o—— F o (ijoook)
¢V ek 13 ik api
= 2.4
dX, «..dX, = 0 (2.4)

Here vj#"_ ™ means the summation of similar factors, each

of which is formulated with respect to one of the v ~-particle
subsystems :1ade by yrouping the particles, except for particie i,
of the system. Grouping of the particles to -particle subsystems
is possible only when (N-1)/. is an inieger, and the nuraber of the
suLsystems is (N - 1)/,,. If (N-1)/.,is not an integer, for example
101. 36, we have to admit that one of the 102 subsystems consists
of less than  pa-ticles. 1In general (N-1) > .,, and hence the
number of the subsystems is large so that we may ignore the

Peculiarity of one sul.system. Therefore we always treat (N-1)/.,

HIRTIREETRELES
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as if an integer. For i, there are N different choices. Wheni
is given, the number of different ways of dividing the remaining N - 1
particles into y -particle subsystems is

N - i)

(N' 1)" R
w!) L(N-1),7! (2.5)

In the microscopic sense, the implication of Eq. (2. 4) does not
change by changing the way of grcaving.

It is easily shown that

J

1_ (7 2 )
vy fjid ¢ bpi F (ij°°°k) dxj...dxk

afm 2 @

and hence we may write for Eq. (2. 4)

D) Py p ~

2 . a
(STO-—-;.a—r;#Lﬁ —)F()(i)

io 0P4
Z <z F(Z)(ij) dx
3 )15 17 (2.6)

where p: ticle j represents all the particles of the system except

for particle i. As is well-known, Eq. \. 6) is the very equation




which yields, after being coarse-grained, the first equation of
the BBGKY hierarchy. There is no difference between Eq. (2. 4)
and Eq. (2.6), as long as we consider them in the precise and
microscopic sense., After being coarse-grained, however, the
two resultant equations are different. The difference is due

to the fact that the equations of motion of particles in mutual

.ateraction are non-linear. and interacticns are more niulti-le tnan binary.

For the equation of evolution of b l), we obtain,

Lty integrating pronerly Eq. (2.1)

wn: § e e +— P ’ooo*_
ot 2Ty My Ty B 0Tk

~ ~ 0

+ (Jio + i + ese * 5P

J

* osse

Y (J’ 1)
+ ( kO + LZJ» \ﬁkd ’oo.)o ---] * (ijoook)
J

l -
' 7’[....... ﬂ‘f“""’ R
¢(J jo*eet 'fjn 2.

0%
- 9
+( Y Jk-) -5-’:

dxl oo .dX-

F("’l”’(ij...kl...n)

= 0

(2.6)

IR



In the above, in general, it is not trivial to choose a

proper value for \,'. As has been stated with recpect to
coarse-graining of Eq. (2. 4), coarse-graining of Eq. (2.6)
with a different value for ;' leads to an equation of different
physical implications. We assume, however, that ., is
sufficiently large that the effect »f additional ' particles

is trivial; this assumption is of a nature similar to that of
the assumption of binary collision where y, = 1 and ' =0,

Further we may define f daX by

N X +dX

o [ rWix)ax.

v ) 1 1
i=1 X

£(X)dX =

(2.7)
f dX gives the number of the particles which exist in the states

between X and X + dX.
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GENERAL SCHEMES OF DERIVATION OF KINETIC EQUATIONS

First of all, we should realize that the limitations of our
mathematical ability prevents us from treatinyg precisely
more than tvio body problem .. Therefore our effort must
be directed toward converting N-body problems to a combination
of many two-body problems in an approximation,

Suppose that particle 1 is the test particle of which
the time evolution of our main concern. One of the field
particles is named by 2. What is the effect of particle 2 on
the test particle? If particle 2 happens to come close to the
test particle within a certain distance, they will interact with
each other as if they are isolated from the other field particles:
their mutual interaction is much stronger than their interactions
with the other field part.cles. But such a strong and distinctive
interaction continues to exist only for a short period of time.
Particle 2 will soon be reraote from the test particle, and particle
2 will be in a strong interaction with its new nearest neighbor,
particle 3. Of course, particle 2 does yet continue to exert a
force on the test mrticle. But the behavior of particle 2
is almost independent of the behavior of particle 1 and Lence

the force ~xerted by particle 2 on particle 1 as a function of time,

11




changes according to the nature of the interaction between -

particle 2 and particle 3; the behavior of particle 2 appears

as a matter of fluctuation from the view point of particle 1.

In spite of such fluctuations appearing in the behavior of

particle 2, the state of particle 2 is steadily localized in

a larger scale, because of the finiteness of its velocity.

Therefore, the average of the fluctuating force due to pax:ticle

2 over a proper time period does not vanish; particle 2 exerts

a weak but almost stationary force on particle 1. Such weak

forces due to many field particles of similarly localized states

culminate to the Vlasov type force exerted on particle 1. See Fig.3.1.
According to the above investigation, there are at

least three different time scales of the force exerted on particle 1

by particle 2: 1) the time scale of the close irteraction be’*/een

the test particle and particle 2; 2) the time scale of the close interaction

between a field particle and particle &; 3) the time scale of the

average fligh of particles 2. If all the particles are of the same

single species, time scalel and time scale 2 are of the same order.

On the other hand, if the system under consideration is composed

of particles of morethan two species, the time scale of the interaction

between the test particle and particle 2 may be different from the :

time scale of ths interaction between particle 2 and a third particle;

12




the latter may also vary depending on the species of the third
particle. Finally the time scale of the third category is
almost macroscopic.

A conclusion cerived from the above consideration is
that, in the simplest case where the system is constituted of
particles of a single species, it is necessary to take for y in
Eq. (2.4) at least 2 so that the close interaction between two
neig..boring field particles is taken into consideration with the
same time scale as tnat of the close interaction between the test
particle and a field particle. This caution is essential for coarse
graining Eq. (2.4) with respect to time.

Since it has been realized that consideration of the time
scales of close interactions between two nearest neighboring
particles is essential, we investigate the orders of such time
scales with respect to typical particles in the foll>wing:

By assuming that the gas under consideration is fully
ionized the constituent particles are ions and electrons. [t is also
assuned that those ions are of a single species. The chargs of
an electron is denoted by -e the mass by m_, and the total number
of the electrons in the system by N The charge of an ion is

denoted by ¢, the mass by m; and the total number of ions by

N7 . Ing:neral we may assume that
-N,e+N, = =0 (3.1
mI/ m, > 2000 (3.2)
13
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We also assume that

. My
S (3. 3)
e

Due to relation (3. 2) the velocity of an electron is usually
much larger than the velocity of an ion,not only when the gas is
in thermal equilibrium, but also when the state is non-uniform:

In thermal equilibrium, it may be easily shown that

(the average magnitude of the velocity of electron) _ ¢

-

(the average magnitude of the velocity of an ion)
(3. 4) ©

If the gas is not in thermal equilibrium, the situation is not as
simple. However, if the acceleration of an electron and the
arceleratioa of an ion occur due to the same external electro -
magnetic field relation (3. 4) may be a reasonable expectation,
because the acceleration of an ion is (:;/e)(me/mI) times larger
than the acceleration of an electron,

The time scale of the interaction between two nearest
neighbroing electrons is of the order of

-1/3
T =n /(C Y
ee e e
(3. 5)

where n, is the number density of electrons and «c > is the
e

av age speed of an electron. As compared with the average

14
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speed of an electron, the average speed of an ion is much
smaller; and an ion appears as if it is at rest, while an electron
appears to move swiftly. The time scale of the interaction
between an electron and its nearest neighboring ion is of the
order of 1

Tp T mp /<o (3.6)

where < Co> is the average velocity of an electron and n,
is the number density of ions. Since nxand n_ are assumed to

be of the same order, we have

TerZ Tee

Cn the other hand, the time scale of the interaction between

two nearest-neighboring ions is of the order of
1

T Ty /<<ep
(3, 7)

. " T
and is much longer *han Tel and / or be due to <<¢I S >>ce >

In summation, we have

" 1177 12 Tee (3.8)

15




Iv. MODELI

4, 1. General Consideration

The first model is a system constituted of similar
particles and a uniform background of electric charge which
compensates the total charge of the particles. The present
model is simply a model by which the procedure of manipulations
typical for our schemes of approach is demonstrated. It is
too hasty to assume that the model simulates either the ion
system or the electron system in a real plasma. Asis
discussed in subsection 4. 10, it is necessary to investigate
model Il as is given in the next section for evaluating more
precisely all the effects of possible interactions on the evolution
of the ion distribution as well as of the electron distribution?

A test particle niay experience three main sorts of interaction
with the field particles. 1) Strong interaction with its nearest
neighbor; 2) Interaction with particles which are not nearest
neighbors but are fairly _iose to it; each of those field particles
has its own nearest neishbhor and exerts a fluctuating force to the
test particle. 3) The force exerted by remote field particles;
the force due to each field particle is trival but culminates

to a Vlasov type force in the macroscopic sense.

16




Let us take particle i for the test particle; by taking
2 for ,, , Eq. (2.4) yields

p.
BT tw s F

,
F Y

— iy 3 3. i

P.
1
(4. 1)
and Eq. (2.6) leads to
pp 2 P, J P, J ~ )
/e 25w T s Y R,

3 2 . (% .7 ll»
+ (in* g;:lk)o 0-33- + (gﬁn ‘ka).‘)_p;]l‘ (1jk) = 0

Here

F e = v3 i DM pax  w#iK

3 e

= Fl )(XinXk;t). ifi<j<k
3 o

- F )(xjxixk; t)if j <i < k

etc,

17
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Equation (4. 1) is a partial differential equation of F(l) (‘Xi;t)

with X,l and t for the independent variables. It is possible,
in general, to determine F(l)(Xi;t) along a certain trajectory
during the time period from t tot + 8. 1f the trajectory is

specified by

: { ) ’ )
Xi = Xi +ox (s), Xi =P T
(4. 4)
1 ‘0 1 1
x, (0)=0 p; (0) = Py r.(0) =
the function is given, along the trajectory, by
1
F(l)()(i it +s) (4. 5)

Considering the above, we coarse-grain Eq. (4.1) with respect

to s from 0 to 7 along trajectories determined by

P; = P; (independent of s)
1
(4.6)
dr; B
dt m
1
r; (0) = r.

(trajectory 0)

18




From now on,trajectories determined by Eq. (4. 6) will be

referred to by class 0, and we assume that 1 is much shorter
than the macroscopic time scale and much longer than the time
scale of interaction between two neighboring particles. The

coarse-graining of the first two mem! rs of Eq. (4. 1) leads to

T [}
» P;
.L_J [(a b— . a')F(l)(Xi';t+s)]ds
T 0 38 m ari along 0
- 0o _d F(l)(x t + s)ds
= ], 5
s P; 3 (),
= (at - . ari)<F (1)>0
(4.7)
where T
cFWG L T P+ s) ds
0  dy 1
(Along trajectories 0) (4. 8)

The integral term in Eq. (4. 1), by the same coarse-graining,
yields

<J>o - % (2:}: (J'i 119'5%' r(”(x'x Xk;tw)dxjdxg ds
i

(4. 9)

Nole that the time average is made after the summation ij

19
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Here X! i is a function of s according to Eq. (4.6) and zjk
meane that similar f ctors are to be surnrned up with respect
to (N-1)/2 pairs of particles. See (2.5). It is noted that

the factor of a pair cannot be decomposed into two factors,
each made with reaspect to one single field particle, after

the coarse-graining with respect to time; the reason is that
the interaction among three particles i, jand k is a non-linear
phenomenon. ilence the equation of evolution of < F(l)(i) >0

is given

P.
3 1 3 [y (l) Y. < -
Gttt car i< F > t<i> =0
i 0 0
(4. 10)
In order to obtain F(3) to be insevied .. the above

integrand, it is necessary to solve Eq. (4.2), a three body
problem. The solution must be given along trajectories 0

determined by Eq. (4.6). In the following howe'cr, we obtain

particular solutions of Eq. (4. 2) integrated along several different

classes of trajectories of particle i, j and k by surcessive

approximation methods. Later the differences among the results

due to the differences among these classes of trajectories are

eliminatec by corsideration of proper coarse-graining operations

with respect to similar particles. Ior the purpose of providing

20
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F(B) during the time between t and t + s we rewrite £q. (4.2)

as follows:

3 Pl 2 Py ) RO .~ J
ror-ai i e +-J ¢ emmm +.-§.-. +( + )O—
L A H1s d'“‘ap.'

*(J';u J’jk)""" G *J‘kj).‘)-;-] ‘3)(X{szl'tgt+s) =0
P k

As is stated in Appendix A, F(3)

is invariant, if Eq. (4. 11)
is integrated along a trajectory specified by X'i , X'j ) X'k
obtained as functions of s by solving Eqs. (A.1l). Since
solution of Eqs. (A. ) is a three-body problem, we consider
combinations of two-body problems which approximate the
three-body problem under various circumstances. For
eacli case of approximation, we take a different set of

differential equations in place of Eqs. (A.1l). For each

case, the initial conditiors are always given by

X; = X, X, =X, X =X (4.12)

Each different set of differeiutial equations replaced for Eqs. (A. 1)
Aetermines a differer et of trajectories. Along those
trajectories, F(B) is no more invariant; it is a function of s.

In each case, F(B) is obtained by solving E«;. (4. 11) by

a different sucessive approximation method. In order to

21
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introduce proper sets of differential equations in place of
Eqs. (A. 1), we define, as is detailed in appendix B, wij
which is the probability that particle i and particle j are

their mutual nearest neighbors. Similarly we may define wik

and ij
(4. 13)
WiWi =00 if § £ K,
Ther, defined by
. = (1. ) ) (3),..
Fg/j/k) = (1 wij) (1 wik)(l ij) F'(ijk)
- (3),..
= (l-Wij - W - ij)F (ijk)
(4. 14)

F(i/j/k) is the joint distribution of particle i, particle j and
particle k among which none is probably the nearest neighbor

of the others. Similarly we define

22




F(ij/k) = W, F3)i5k)
Fik/j) = W, FO3)ijK) (4. 15)

3
P/ = Wy F

Obviously

Fik) = Fi/j/x) + Fj/x) + F(ik/j) + FG/jk)

(4. 16)

In view of the definition of the W' s, those members in the
right hand side of Eq. (4.16)cannot be significant all at the
same time; If one is significant, the others are trivial.

In solving Eq. (4. 11) for obtaining F(3)(ijk) appearing in
(4. 14) and (4. 15), we have four different methods of approximation.
For example, for calculating F(3)(ijk) involved in F(i/j/k), we may
assume that interactions among the three particles are always weak,
ard hence, in the zeroth approximation, those three particles are
regarded as in free flight. On the other hand, for F(B)(ijk) in F (ij/k),
it is essential to assume that the interaction between particle i and
particle j is strong, although these two particles interact with
particle k only weakly. On obtaining F(3)(ijk) in four different
cases respectively by four different methods, the results are

presented as follows:

23
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1. Fg) = risinag'® + ragngt) « - -

(1)
i POk = Faim) @ + Fajk)  sees

w FPgi0 = rae/)® + praps - -

g3

m. F g = P/’ + Famt .o

3)

After obtaining F( (ijk) in four different cases,

we substitute each of the solutions to its proper place
3
in (4. 14) and (4. 15). Thus for F( )(ijk) as presented

by (4.6), we obtain

0.

where

3000 - (1 - Wi - Woe s Wy Fii/j/'®
+ Wy, P+ w /p©

t wjk F(i/jl’)(o)

24
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o3

300 - 1 - W Wy ij)F(i/j/k)(l)
(4. 19)

+ wFait s wy eyt

s (1)
+ ijF 4i/jk)
etc. (4. 20)

In the next step of our treatment, we substitute

F(3)(ijk) presented by (4. 18) in the integral member in Eq. (4. 1)

1 L] ~~a N
TRy S % 3 i5) dX_dX,
A J

JO g @, (4. 21)

where J(O), for exanmple, is due to F(3)(ijk)(0) given by (4. 18):

.1 _ ¢ L 3 (3), . (0)
d Ve ik fj(ij Jad 3P, Folgk) ™ dx,dx,

(0) (0) (0)
> + 350 ¢ I, (4. 22)

J{o) + J

25
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and

T, ()
J{°). _tz Z ”(3; p ’J'u:) (1-w, J‘Wu"’;k"“/-"/") 39%,

2 '
(ke 23)
~ 0 . (O)dx ax
J§°’- _%2 > ”‘J'u . m"{fq v, F(13/10) 4%,
Jk (4.24)
> 0 (0)
Jk = (4.25)
-~ J (0)
@_ 2 2 (F vF w ra/i0@ax ax
Jy = K k
3 R JkJI 13 Y1k R i d
(4.26)

26
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Similarly we have

1y _ ;) (1) (1) (1)
51 ..Jl( + 3,043,000y

(4.27)
in which
:‘) - J j"j‘(:; 3 -aap_i (1-We-wy
- ij) F(i/j/k)(l) dxjdxk (4. 28)
J;fl) v_:. I(J‘J lk) % W, F(‘J/k)(l)dXdek
(4.29)

1 1 ; A e 73y (1)
J( ) - = _VT;I; j ( ij +yik)' -Wl wikF(lk/J ) dxjdxk
(4.30)

27



1 [
J3(1) - © ” (];j +3;k"?aﬁ ij!'(i/dk)(l)dxjdxk

(4.31)

etc.
For coarse-graining J with respect to time fromt tot+ T,
we may have more than one method. In (4. 9), X'i changes as a
function of s according to (4. 6), while X'j and X', are invariant
during the time of coarse-graining. If we choose for X' Y X'j and X'k
a different class of fu.. s of 8, we may obtain a different result
of coarse-graining. In the following we obtain four different

(3)

functions for F (X'i X'i X'k; t + 8) by integrating Eq. (4. 11) along
four different classes ofbtrajectories. These classes of trajectories
are also different from the one determined by Eq. (4.6). The result
of coarse graining J, and/or a part of J, along a class of trajectories
is different from the result made along another class of trajectories.
Later, however, it will be shown that, by a proper coarse-graining
operation with respect to similar particles, the differences among
the results due to the difference among classes of trajectories along
which the coarse-grainings with respect to time are done, are
eliminated. In the following we obtain for F(s) four different functions
of 8, respectively corresponding to four different s#:.:3 expansions

given by (4. 17),
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L,2, Equations for sub-systems.

4.2, 73 (15%) 10 F(4/3/K)
According to (4. 17), we define F(i' /j' [kt + s)(u)
for F(i/j/k )(“) where X., Xj' Xy and t are replaced respectively
k
as will be specified soon. We assume that F(i' /j' /k'; t + s)(O)

by X; ) X'j. X' and * + s. Here X'i. X'j and X'k are functions of s

satisfies
p.' p_’ ) p ;
(2 | 2 a3y Rl ) _
‘as + i aril + ™ .Arj’ + — -ark/)F(‘l/J/k .t+5) =0
(4. 32)

and F(i'/j' /k'; t + s)(“) for y ~ 0 satisfies

P. P. ) (;.L)
3 i ) 9 k A a——
(as m ari’+m ' arj m 'ar’k) F(i7jlk’; t + s)

- _ [, xo ) T ’ ' )
= - Uy +J;ik)'—'rapi+ i T jk)'_apj

1
F(Frg ki )-5'%: 1 FE 5 v WY

u = 1,2,3.--'

(4. 33)
where&.' is a functionof r.’ -r.’ insteadof r, - r.. By
1) 1 J 1 J
taking
Fa'/i' e e+ o) 0 - Rt e+ )OFG L+ )@
Fk'; t+ S)(O) (4. 34)
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equation (4. 32) leads to

A P 3 (0)

K « o/ -
‘as+m .ar,i)F(l,t+s) = 0.
P. -

3 i 3 ‘ol (0)_
(a.,+m'arj')FU’t+s) =0
&+ P 2 ) Fkst+ )@ =0
o8 m- 3Ty '

On integration of Eqs. (4. 3) along trajectories determined by

) ’ /]
dr _ P dr' _ Py
ds m ds m

1
dre” Py
“ds “Tm

’ - ! - ’ -
pi - pir pj - pj' pk - pk

‘ _ ’ _ M-
r, 0) = r.. rj (0) = rj, rk(O) =T
[ trajectory 1]

we have
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Fi' s+ 8) 0= Fr, 9

Fi' st + )0 - w0 (4. 22)

Fi'; t + )0 = pec; 9@

- 1
The next procedure is to obtain F(i' /j'/k' ; t + s)( ) by
solving Eq. (4. 33) for u= 1. On substitution of (4. 38) in
the right hand side of Eq. (4.33), we have

(2 Pt 3 Py
s m ar. m Arj

Py 20 A0 10 (1)
, o+ ark,)F(l /3" 1k’ t + 8)

LG AL 2 s G e 2
=- 03y +Fie ) - e T Ui tugd 3P

’ e ) sl gty 0
+ "]ki +‘-7‘kj)'ﬁ'1F(l /J/k.t+s)()

(4. 39)
Since the right hand side m ember is already given, we may obtain
F(i'/j' /k'; ¢ + s)(l) along trajectories . I determined by Egs.
(4. 36) and (4. 37). We may repeat the same procedure to

obtain F(i' /j' /k'; t + s)(u) for u > 1. 1t is obvious that

F('/j' /k'; t + s){“) = 0y

if u # 0, 8=0 (4. 40)
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since we assume that

Fi/iin’® = B e 7 e (kob1)

bo2.2. FOVij) in F(ij/x)

In this cae, particle i and particle j are in a close

interaction. By taking the second ~xpansion of F(3)(ijk) given

(0)
by (4. 17) and defining F(i' }' /k'; t + s) , etc. in the same way
as of F(i'/j'/x'; t + s)(o). etc. we have
7 [4
( + = ' 5t + 3 + 3T
As il m rjl m kl
c T et F L FE /R e e 0=
ij "3p; Vi " 3p,
. (4. 42)
and
P.. P.s P, .
[a +— Al" J a—/'f'—k .——ar
AS m Ar m or. m Ark
/! A e P ()
q s1:0 00,
+ZJ.TPT +\fji o apj:] F(IJ /k,t+s)
r~= re!
: . 9 d
[J'ik RTTH * J’jk ’ rp—j'
i
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~' =z (-1)

+ (S +‘£j) .-a%-l:,]F(i'j'/k';t+s)

=123, .. (4.43)
Those equations are integrated successively along trajectories
Il determined by
drl, _ px' pl’ —3 !
ds m ds K
dr. p/'/ dp.’ !
L -3, =J.. (4. 44)
ds m ds th
) ’
drk = pkt ! =
T m Pk Py
(trajectories II)
with initial conditions at s = 0
' _ r
S L SRS < SR 1
r. = r ( B
I B S S I (4.41)
] -
Ty =T
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We may assume that

F(i'j'/k'; t+ 8% = Fi'j' t+ )0 Fut, 4 s){0

(4. 46)
0
where F(i'j';t + s)(o) and F(k';t + s)(a)re solutions of
p [
(a— + = a_ 4 Py’ 2
Y " AT m ar.
1 J
. ’ d 4 3 e, (0)
+3ij‘_ap_i'+3;ji‘$;')“"'”s) 2 v (4. 47)
and
P, (o,
) k 9 ,. -
when integrated along rajectories Il determined by (4. 40)
and (4.45). Since we assume that
F(i'i'/k'; t 4 s)i4) - o
>0
when s=0 (4. 50)
it is easily seen that
F(iljl ; t + 8)(0) = F()‘)(IJ)
(4.51)

F(k';T + s)(o) = F(l)(k)

when
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Solution of ©q. (4.47) is a two body problem; we may imitate

the method of Boltzmann setting Stosszahlansatz for the initial
condition of a binary < ollision. Of course, it is to be expected
that the solution will beconie meaningless as the distance between
(wo particles i and j increases. However, at the same time

Wij tends to vanish, and hence such meaningless solutions do

not affect the final result, F(ij/k).

bo20%0 F‘”(ijk) in F(ik/j)

We may repeat the same treatment in this case as in the
case of F(ij/k), simply by changing subscripts. The trajectories
which correspond trajectories Il are denoted by trajectories II'
in this case.

4.2, F3)ijk) in F(i/jK).

Trajectories along which coarse-graining operations are done
are named irajectories III. The treatment is similar to those
in the two preceding cases under the condition that the in.eraction
oetween j and k are strong.

Considering F(';)(X'i X! jX' wtt 3) obtained in four

cases in the above, we may coarse - grain Jl(o), J&(O), JZ' (0)

0 . . .
and Jj( ), with respect to time, respectively along trajectories
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I, 11, 11! and I1I.

4.3, Coarse-graining

(0), (0)
)JZ J

‘e341ls. Coarse-Graining Jl(o), J ) 3(0) with Respect to Time.

2
According to (4.22), (4. 33) and (4. 36), we have
(0)

<d, > =gt (3- k?’.lk) B, (1- Wi, - Wi W)
I v ke T
Fii's t+ 8)OFG, t+ o) P+ s)(o)dX’j dXIZ]
1 r (1) (1)
L (1-W- W - Wo) (JF wF) FH6) B
Vv? jz;( \r ij k ik
3 (1.
SNy T BV ax 2 F )
Ty I i)’ M ij j 3P,

1

(4.52)

In the above, it is noted that ¢ means the summation with
jk

respect to a possible set of pairs made of all the particles

except for the test particle; hence the number of the paire is

(N-1)/2. By the time : verage, the symmetry is produced in

the distribution function. It is also assumed that
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Lo (0w ¢ rrMyg ax. ax
JJ ik J

va k k

(0)

.» negligible as compared with the other members. <« ‘]1 '~ gives
ine Vlasov effects. With necessary cautions similar to those

ifor (4.52), we obtain

©, . 1L N1 _rgo, A (2),. .
< J ST —— < N FY(i3) dX. -
¢ n v 2 Jiy M APy U ¥

(4.53)
(V)

~ p 3 (2.0
— < ‘7:\ o "3P; FUoGiky dX, >y

y 1 M-l J" . FGax.. 2 T Fl@k) W, X~
Ve 2 K I oap. I

1

(4. 54)
it is noted that | FD(x)dx/v = 1, and /;]y'ij/w./ﬁ'ik/ n (4. 53)
and /ﬂ7i.j/ "(/kgiok/ in (4. 54). Therefore, the second member in

each is ignored, and the sum of themn leads to

(0) A0)
T,y v Y, e

ML TF w2 FlBgj ax
v o 'J l.] .p'i J n

(4. 55)
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This will be converted to the Boltzmann collision integral by
proper treatment. Here the convergency of the result is assured

by the existence of wij' Finally we have

O . L (N1 e (2)
<Y m v z— < (‘zj +‘-?i;<) Wy Foo(klax;ax, > -
3 (1),.
— < F ) > (4. 56)
oP; 111

It appears that the effect is similar to /J1(0)>. The difference is

that <J3(0)3 involves ij. Therefore

(0) (0)
<J > < < J; >
3 11 1 7

(4.57)
Hence we may ignore the effect given by (4. 56)
. 1
“t+3.2e Coarse-Graining Jl(l), Jz(l). JZ' (1) ; Jj(” with Respect to Tirne
The J(l)' s given by (4. 28), (4.29), (4. 3C) and (4.31) ace
(0)

coarse-grained in the same way as the J' ''s. The trajectories
along which those functions are coarse-grained are respectively the

same as those along which the J(O)’ s are coarse-grained.

()_
-

i, j and k in this approximation. It is easily seen, however,

< J1 There are correlations among three particles
that those particles are mitually remote. According to (4. 39),
we obtain

F@/) /k'; t + s)(l)
38
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Zz! A T’ .3
”&ﬁ.j +‘zk’)'—3_PT+ (Jgihz;k ) . -A—}?S-

+ (,]" + 7,_" ) . a_xaak" TFGE /Rt + s)(o)ds

(4.58)
Since
i /it /x4 )@ - FW%Gy FW i F W gy
and those trajectories, along which the coarse-graining
is done, are free mutually, the summation « ik results in
cancellation among the effects »f those particles. Hence we

ignore the present effect.

nt “J o (. I e It is easily shown that

integrations of Eq. (4.43) ¢.d . the similar equation for

(1).
T2

F("” (i'j' /k'; t + s) along trajectories II and II' lead to

z /
g (1), (1) - N-1 1t'jerF 3

1 2! g A i
=7 3 ( 1)
Wy’ ) .71 cxpr T 2)(i'j';t+s)F( (k';t+a)dsdx3dx,gds
0 i

s
N-1 1 o S ] ')
T T3 Jo [J[Jik‘;: i J.?ki = @ (geg0ite8)

2V T o s apl,{

F(l)(k';td-a)dadxsdx:(.] ds

(4. 59)
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In the above, the first member in the right hand side gives
the diffusion effect in the momentum space of particles i and
the second member the friction. The significant feature of
those terms is that the correlation pericd is regu.lated by

wij' the probability of strong interaction between i and j.

< J3(l)fn,By means of similar method as before, we

obtain

;
(1) N-1 1 s NS A /
A L0 2 [J 2 W,
3w v 4ot T 3p ik

F(z)(j'k': t+s)F(1)(i';t+s)dx3dx;‘] ds

(4. 60)

In effect, there is no difference between <Jz(l)\[I + ./Jz(l);su,
(1)

and ~J ~ .
3 m
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In summation of all those effects, we may write

.
1 N-1 1 [ ) 1 3 1
<J( )\, = -( ) — J [ “\Z:ik by Wij
Ve ( 0 7 Ap;'
1
o8 ') (2),., ., (N, |
+J0$ik"a—15?'F @ist+s) F K s t4s)ag
dX'j dx' k’ ds
N-1) 1 rTrTFJ' 3w’ it
B V! T o 0 1. 1k ' api ij J 0 \j ki ' Bpk

F(Z)(i'j' y t+ 8) F(l)(k' i t+ 8)ds

de' ka’ 1ds
(4.61)
where it is noted that we have ig;lored the difference among
trajectories over which those coarse-graining operations
are considered. As is shown below, however, the difference
is not essential in the result. The effect given by (4.61)

is of the Fokker-Planck type.
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b,3,3, Distiibution functions in generic spaces

So far, various functions constituting J have
been coarse-grained along different classes of trajectories.
For completing Eq. {4. 10), however, J is to be coarse-grained
with respect to the particular class of trajectories nan.ed 0 as is
given by (4. Yy, 1Itis necessary to show that the differences among
those classes of trajectories along which J and/or parts of J
have been coarse-grained do not result in any inconsistency
in the final result. For this purpose, we compare, for example,
the results of coarse-graining F(l)(Xi;t) along different classes

of {rajectories in the following: According to (2.3),

N

| F(l)(Xi;t) - VJ'D‘N) n dX.
| j#i
= Va(X,- X, " (1)) (4. 62)

* 0. . . .
Here Xi (t) is a complicated function of time because of the interaction of

particle i with the other N-1 particles.

First, let us coarse-grain F (1) along trajectories determined

by (4.6) over a time period fromt tot+ T:
T
1),y . 1 » (1) g v .
< Fi )(Xi.t)\ = - JO F (Xi ptt B)dS

(4. 63)




where

] - !
Xi = Xi + X, (s)

Those trajectories, according to (4.6), are independent of the

other particles. As is shown in Fig. 4.1, none of those trajectories

ot

is similar to Xi"‘(t + 8) in view of time scale 1. Hence
<Fi (l)(Xi',t)> is spread over a comparatively broad domain >f Xi'
There may be a group of Vi particles, il,i . ., of which

(1)
<Fi; (Xit)> = <Fg)(x;t)> Z-e-

2’

These are localized in a narrow domain of X. We define

<Fm(X;t)> by

Ne FOx; 1) =

N (1)
b
=1

.
\)i < Fl’ (X;t)>

+ \!ill <F(li)/' (X;t)\ + -

(4. 64)

vit P tro= N

(4. 65)
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Tinl.ke z,Fi“)(X;t)\ . <F“)(X;t)> is spread mcre uniformly over
the entire domzin of X.
We may also coarse-grain Fi“)(xi;t) along another set

trajectories

Xi =Xi +x‘i (s)

which, for example, is determined by ( 4.4&)
(g S VP
« FUN(x i) s> = ._f FUNX. 5 t +s) dS
1 1 T O 1 1

(4. 66)
Those trajectories, according to (4.44)’are determined by
taking into account the nearest neighbors' interactions.
Therefore, a '‘rajecotry ccincides with Xi*( t + s) in the time
scale 1. Hence « Fi(l)(Xi;t\> is much more localized than

)
<F-;(1'(Xi;t> as is illustrated in Fig. 4. 1.
1
<i _.( )(X.;t)\. # <<F.(1)(X.; t) >
1 1 1 1
(4.617)

Nevertheless, it is obvious that

I < FUO s ax. = [ «F. Wixit)ss ax
o X {7 <F XS 4

(4.6%)
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We may define <<F[ I(X;t)‘» by

«F(l)(X;t)» = T Fi“)(X;t)>>

1
N i
(4.69)

If N is sufficiently large, the coarse-graining in the sense of (4. 64)

and (4. 69) may result in

)

< F(l)(X;t) > = <<F(1 (X;t)>> (4. 70)

In the ~bove, we have seen coarse-graining operations
in the sense of (4. 64) and (4.69) .re essential for reconcilliation
(4. 70) betwreen two classes of time averages. In other words,
time averages are not enough for deriving proper kinetic equations;
it is necessary to make averages over many particles.

App!7ing the same consideration as above, we make average
of Eq. {4.10) with respect to particles so that «<J>'s made with
respect to different classes of trajectories are equivalent to those
made with respect to trajectories 0. By this procedure of
coarse-graining over particles, we obtain in effect the same
function as f defined by (2. 7). (The Boltzmann equation is the
very equation which governs the evolution >f f of a gas where
the collisions are assumed to be binary.) After the present
coarse-graining operation with respect to similar particles,
the effect given by (4. 55) may amount tc the Boltzmann collision

integral; because of Wij in the integrand, the effective interaction
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terminates quickly as the dist- ~ between particle i and patticle j

increases.

4 4. Evaluation of the Interaction Effects.

Because of the W's involved in those interaction integrals, the

integrals converge always. As is given in appendix A, we take for W

W=exp(-97n r3/4)
where n is the local number density and r is the distance between
the test particle and a f’:ld particle under consideration. The

range of spac. of a close correlation (almost binary) .s of the

oraer of
-1/3
_ 9n
7 5 (e
and the time scale is
- =Rn/:((rp\/m)

Here <p> is the average maygnitude of momentum of a particle

Ifr-~ Rn’ then W .« 1. The Boltzmann type interaction effeci

23,0 5O

2 <J, . is of the order of
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of < JZ(O)\. +<J, VR (R_) —E= n Filg)

1
- n Rn;, (3:1'1" )TF“)(i)

The order of the interaction effect (Jz(l)\, + <J2' “)>

is sk >wn to be

oo

(1) (1) Rn o 4-e*re |, 1 (1),.
or -J >+ J,, > = — n - ar F (i)
2 2] (3KT/m) * JRn r
- 4. nel F“)(i)
3 m’ (3kT/m)y/2
Hence we obtain
of 3,1+ 3,0 =0 [ e’ ]
o[ < JZ—(D)_*!- ('32, (O)>'] kt )
(4. 71)

1f we take T = 104, n = 1019, we obtain

o
. M T
KT .

3 °
e‘n )'
KT decreages further as T increases and n decreases.

(

47



(0)

<J3 > is the same order as of <J (l)>+ <J (l)>

Zl

2
The ratio given above suggests that the effect or remote
interactions may be ignored in ordinary cases where
T> 104 and n <1019. This conclusion appears to be
different from those obtained by other authors, based
on the origiral interpretation of the BBGKY hierarchy.
It is noted that the present definition of close interaction
according to the nearest neighborship is different from
the usual definition of close interaction according to
the polarization effect of the Debye-Huckel type.

One, who has been familiar with theories based
on the BBGKY hierarchy, might ask: Why is the effect
of field pa.iicles which are not nearest neighbors of the
test particle so small by the present theory? The answer
is as follows: By a theory based on the BBGKY hierarchy,
the test particle and a field particle may interact with an
indefinitely long correlation time, in spite of the presence
of perturbations by third particles. On the other hand,
the behavior of a particle, by the present theory, appears
in microscopic order only for a short period of time during
its interaction with its nearest neighboring particles. In

other words, the time <cales of microscopic orders are always
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finite. Note that the above statement is feasible, only becaus=z
laws of interaction forces are not linear with respect to inter-

particle distances.

4.5. Validity of the Model

As is investigated in section III, the time scale of a
close interaction between two ions is much longer than the
the time scale of a close interaction where an electron
participates. Therefore the present model appear to be
suitable for simulating, in an approximation, evolution of the
ion distribution in a real system, if the number of the icns
is the same as the number of the electrons (charge of an ion
being the same as of a proton). This is begause the electrons
appear to make an almos. uniform background in view of the _
motion of an ion. But at the same time, we find no definite

reason for saying that the effect of electron-ion (close)

interactions on the evolution of the ion distribution is negligible:

although the average magnitude of the momentum of an electron
is much smaller than the average magnitude ¢f the momentum
o: an electron, (the ratio being about 1/50 with respect to the

lightest ion), the frequency of electron-ion collision (close) is

49

'hmtmm,ir




about 50 times higher than the frequency of close ion-ion
interactions. If we wish to consider the situation more
precisely and reasonably, both ions and electrons must

be considered as discrete particles. In view of the above,

model Il will be investigated in the next section.
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V. MOL%L il

As stated in subsection 4, !0, the validity of model 1
as simulating a real system is fairly dubious. It may be
plausgible to think that the model has a meaning only as
providing an exainple of manipulation of reducing the Liouville
equation to coarse-grained kinetic equations governing evolutions
of subsystems. In this section, we consider a model which may be
more realistic than the previous one. The plasma which the
present model is intended to simulate is the same as is ccasidered
in the last section; the gas is fully ionized and the number of the
ions is the same as the number of the electrons.

We consider four particles, two ions and two
electrons, for representing the field particles. By this way,
it is necessary to treat the evolution of a five-particle distribution
function F(s)(XinXleXm;t) where one of the five particles is the

test particle. However,as a simpler approach we shall consider

o, 1, )
3, x, =) (5. 1)

F‘”(o,mr)
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where particle o is the test particle, either an ion or an
electron, particles i, j, k are electrons which represent
the N/3 groups of the field electrons, and particles ¢ -, -
are ions representing the N/3 groups of the field ions; 2N
is the total number of the field particles, N electrons and
N ions. The evolution of F“)(o) of the test particle is
obtained by integrating partly the Liouville equation of

the N+1 particle system as follows:

P
3 o 3 (1)
(at = . 3T ) F' 7o)
o o
1 A A 3),. . .
+ SO ot ) — 0,1, j) dX.dX.
V3 ijk gng RIRERES 9P, 105 30 43855

+ TCF b Fo) F‘”(o,k,?)dxkdxf

. ot’ " 3p,

TR i T ). F®

| — =
+ TG, Tjo,).apoF ©.n ) dX dX 1 = 0

(5.2)

After coarse-graining, v <
l_lk "—'ﬁ{:
2N/6. Equation (5. 2) corresponds to Eq. (4. 1) for model I. Cor-

will be replaced by multiplier

responding to Eg.(4.2). we have the following three equations:
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[‘F‘_+_l_);_ 9 +p°.a N
2 m or m ard m(, arp

v (J'ou J'OB) Ap v ('juo v aﬂ) ap

Ne
+ (Fpo +J5a) -aip—‘; 170, a,8) = 0

(0" p) = (an)' (krg ). (‘ﬂ » C )
(5. 3)

where

electronic mass

3
H
3
1]
3

=
1]

ionic mass,

3
1l

3
n
3
n

The interaction to the zeroth approximation is given by

e .. 0
J U’oi +,3":;j )°3_?;>— F(3)(o. 1.3)( )dxidxj
o

3

0.2 o g
V2 ijk Fye

il 3 (3) «1(0)
1] (Fop ) s FPo, 1, 2) ax,4x,

F(3)(o. .o )(O)dxﬁ er 1

+
>
S

N
N
'U'y

53




= 10ee) + 1P ec), + 3%0ee)  + 3 (0ce)
1 &

2

+ 19%0en + 10en +1D0en , + 1%

3

¢ 3%+ 1% + 1%, + 1 em
1 & 2
(5.4)

where J(o)(oel)l' for example, is an effect due to field

parucles k and ¢, k representing field electrorrand ¢ representing

field . ions. Those members in the above may be obtained as

analogous to those J(o)' s obtainced in the last section. 'In
coarse-graining these terms, it is necessary to pay attention

to the difference between the time scale of ion-ion interaction and

the time scale of those in which electrons are involved. The

time scale of ion-ion interaction is denoted by T while the time scale of
those involving electrons is denoted by Te Then, according

to the investigation given in section III, it holds that

~SS 7

1 e

If the macroacopis time scale r m is larger than v, we
1

II

may choose 1 so that

LST OSD T >
Tm 11 Te

(5.5)
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T is the very time scale with which we may coarse-grain
those terms in Eq. (5.4). All the procedures of coarse-
graining are the same as demonstrated in section IV,

Taking an ion for test particle o,

1 eers + <30en, > + <@qm), ~

(5. 6)

gives the effect of the Vlasov type interaction. The effect of

the Boltzmann type interaction among nearest neighboring

particles is presented by
<J(0)(Iee):, > 4+ <J(0)(Iee),!' ~

v <39, > + <39, -
v <3O, s + <1, >
We may also obtain
I Vee), > + -3 (tee), ' ~
v <tWaen, ~ + s e, ~

voaaMam, s o+ <dWqmy, ¢
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for the signifirant effect in the approximation of the next order.
By comparing the effect given by (5. 8) with the effect given by
(5. 7) in the same was as we did by (2. 71), we may see that effect
(5. 8) is negligible in ordinary cases. The situation is explained
as follows: 1) First, let us take an ion for the test particle o.
Then, take an electron for the particle nearest neighboring to the
test particle 0. The effect of the interaction (a part of the
zeroth approximation effect) is larger than the effect of the

force exerted by two mutually neighboring field particles

of which one is an electron. Note that the time scales of

two events are the same. Take an ion for the nearest
neighbcring partide of the test particleo. Then the effect

of the interaction is larger than the effect of the force excrted
by two mutually neighboring field particles of which both are
ions. 2) The situation is similar for the test particle which

is an electron.
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V. MODEL III

Suppose that a fully ionized gas is composed of N
electrons and N! ions of a single species. Here the charge

of an ion is denoted by Q, and

Q= 4 e, e: electronic charge

N/N' =, (4. 1)
If » is much larger than unity and we wish to investigate the
evolution of the distribution of ions, the models given so
far are not feasible: Model I is not feasible because neither
ions nor electrons can be represented b* a uniform charge
distribution in the present case; model II is not feasible
because N 5> N'. Due tothe large mass and the large charge
of an ion, two nearest neighboring ions which are separated
at a distance much larger than the average distance between
two neares: neighboring electrons may have a strong mutual
correlation of which the time scale is much longer than the
time scale of the behavior of an electron interacting with
an ion or another electron. See Fig. 6.1. This condition
is quite favorable for applying the ordinary BBGKY hierarchy,

up to the third equation, to the investigation of the evolution of
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the ion distribution. Here the test particle is an ion, the

field particles appearing in the first equation of the BBGKY
hierarchy are also ions, and those field particles appearing

in the integrand of the second equation are electrons. The test
ion and a field ion may interact through 4 space in which many
electrons are present and the distribution of those electrons
are polarized by the field induced by the two ions. The case
has been investigated by many authors6 as based on the BBGKY

hierarchy.




VII. CONCLUDING REMARKS

If the number of ious is the same as the number of
elec "7ns in a plasma, ‘..cre are two basic types of inter-
particle interactions in the zeroth approximation: One is of the
Vlasov type and the other of the Boltzmann type characterizing
interactions among nearest neighboring particles. In higher order
approximations, mutual perturbations among those basic
interactions resu:i in secondary effects which are not
significant under ordinary conditions of high temperature
and of low density.

As the ratio betw. 'n the number of electrons and
the number of ions increzses in a real system, the
simulating model becomes more complex; in cases where
the ratio is extremely large, the BBGKY hierarchy is useful
for investigating the evolution of the ion distribution.

The presence of any external force field of which the
time scale is much larger than the maximum time scale
of close inter-particle interactions does not affect the
validity of the present approach. If ti.ere is an external
force field of which the time scale is comparable to or smaller
than the time scale »f any close interparticle interactions, the

method must be considerably modified7.
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APPENDIX A
Solution ¢ Eq. (4. 11)
Equation (4. 11) is a partial differential equation where
F(S)(X' X' . X' ; t+ 8)is unknown and X'., X' , X' and s
i7 7k i j k
are independent variables. It is possible to obtain particular
‘ solutionsg by taking arbitrary functions of s for X' , X'., X! K’
!
: 1f one takes for X' i X'j and X' K particularly those which satisfy
the characteristic equaticns of Eq. (4.'1)
dr.' p.' dp.' ¢
i _ i i . .
ds ~m ' ds S'.ij * jik
dr! ! dp.'
J - p,} Pj = +3¢," '
i ds m ds J‘j: Jk
(A.1)
' ] ]
dri’ Py Py o
ds ~m ' Tds ki J’kj

then F(3), the solution of Eg. (4. 11),is invariant with respect

to s. It is noted tha, X' i(s). X'j(s) and X' k(s) which satisfy

Eqs. (A. 1) present a set of trajectories of particles i, j and k

which are in mutual interaction. The sclution of Eqs. (A.l) is

a three-body problem. In order to avoid the difficulty of solving
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the three-body problem precisely, one may choose a set of

approximate differantial ecuations in place of (A. 1) depending

on circumstsnces, and may integrate Eq. (4. 11) along a set of tra-
jectories given by X' , X'j and X' K which satisfy the approximate
differential equations. In thie case, the solution F(s) is not

precisely invariant with respect to s.
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AFPENDIX B

v
The Probability of Two Particles being their Mutual Nearest Neighbors”’

If it is defini’e that n particles exist 1n a space
domain of unit volume, the probabi.ity of no particle being
present in a domain of volume v, which is smaller than unit

volume, is given by

wo(v) = exp{-nv) B, 1)
The proof is as follows: Let us consider a variation év of v,
the proubable number of particles in 6v is név. The probab.’ .y
of any .. particles appearing, at the same time, in &v is denoted

by w (6v)., Then, we have

n
T vw  (6v) = név (8. 2)
v
v=1
Obviously
n
w (6v) + < w (6v) =1 (B.3)
O v - l Ny
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Since we know that
lim
6v = 0 w, (6v) o (6v)V

(B, 2) leads to

lim w, (6v) = nbv
Sva0

Hence (B . 3) yields

w°(6v) + név=1 (B.4)
at the limit 6v - 0,
On the other hand, we have

w, (v +68v) = wo(v) wo(év) (R, 5)

By expanding the left hand side of (B. 5), we obtain

dw
o

wo(V) t—g v = wo(v) (1-név)

where ( B,4) is taken into account, or we have

dw _(v)
° = - ndv

W, (v)
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On integration of the above under the condition wo(O}- =1,
we obtain Eq. (B. 1),

Two particles i and j can be their mutual nearest
neighbors, if there is no other particle in the sp~.ce domain
enclosed by two spheres, one with its center at r, and with
radius rij and the other with its center at rj and with the same
radius. See Fig. R.1. The volume of the domain is (911/4)rij3.

Hence

9n
= T o 3 .
wij exp { - —— rij n] (B.7)
is the probability that particle i and particle j are their mutual
nearest neighbers, It is noted that the above consideration is

simply a matter of geometry.
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APPENDIX C

Distribution Functions Decomposed According to Inter-Particle Distances

The distribution function F(3)(X1X ;t) of three particles

ZX3

1, 2, and 3 is divided into parts as follows:
(3) _ (3) .
F*©"= F (X]X2X3,t)

F(1/2/3) = (1-W |, 0(1-W ;(1-W,,) r3)

- , (3)
F(12/3) = W, (1-W  (1-W,,)F

F(13/2) = “'le)wl3(1'W23)F(3)

F(1/23) = (1-w12)(1-w13)wz3F(3’

F(2/13) = W W 13(1-W23)F(3)
F(13/23) = (1-w12)W13W23F(3)
¥(12/13/23) = WIZW13W23F(3)

where, for example, le is the probability of particles 1 and 2
being their mutual nearest neighbors. The sum of the right hand
side members is shown to be F(3) itself, If it is considered that
a particle has only one nearest neighbor at each moment of time,
we may have

LS

=W 3Wyy =0

WiaWas = WoaWp,
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(C.2}

iy

byl



",

and equations (C. 1) yield

A1/2/3)= () - W, ,-W

(3)
127 W13~ Wp3)F

w £

F(12/2 12

w g (C.3)

F(13/2) 13

F(1/23) = W23F(3)

and it holds that

F(1/2/3) + F(i2/3) + F(12/2) + F(1/23) = 7(3)

(C.4)
Those relations given by (C. 3) are illustratzd in Fig. C. 1.
If we consider test particle 1 and four field particles 2, 3,
4, 5, the possible relations among them are illustrated as in Fig. C.2.

By taking into consideration relations similar to (C.2) we obtain

F(s) = F(s)(XleX3X4X5;t)

F(1/2/3/4/5) = (1-W ;) (1- W ) --- (1- W gF'®)

=(l-% W,. + T w..W
125 B icjckeg ke
LW Wi =W - Wig- Wyy - Wy,

6
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W Wy - W = Wyg + Wy o Wy + Wy Wag + W W
~(5)
+ Wy W) F
/ = . . - (5)
F(12/3/4/5) = W (1-W,, - Wy - W) F
- (5)

F(12/34/5) = W W, F

etc.

Finally it holds that

F(1/2/3/4/5) + F(12/3/4/5) + - - -

- 05
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1 See, for example, C.M. Tchen, Phvs. 114, 394(1959);
Rostoker and Rosenbluth, Phys. r uids, 3,1(1960).

2. T. Koga, Phys. Fluids, 3, 454(1963); Bull. Am. Phys.

Soc. 11, 554(1966): paper presented at the annual meeting of the
Division of Pla' ma Physics, APS, 1966.

3. The reason for giving D(N) by (2. 2) has been discussed
in detail in the second paper mentioned in footnote 2. The reader
might th’ +k that, as long as D(N) is given by (2.2), there is no
need of consideration of Eq. (2. 1) since D(N) given by (2. 2)
is a solution of Eq. (2.1). In spite of its simple appearance,

D(N) given by (2. 2) is not a simple function of t, X*i becomes
known only by solving sim:ultaneously the equations of motion of

the N particles; these equations are the characteristic equations

of Eq. (2.1), and the solition is out of the scope of our mathematical

ability.
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4. We often use the pres -nt model for simulating the electron
system in a plasma. The simulation is feasible when our
interest is in the interaction between a plasma and an external
electro-magnetic field of a macroscopic scale. However,
the simulation is not feasible if we are interested in effects
of inter-particle interactions.

5. An electron-electron interaction, for examr:‘ie, means an
interaction of two electrons which are their mutual nearest
neighboring particles.

6. See footnote 1.

7. C. Oberman, A. Ron, and J. Dawson, Phys. Fluids, 5, 1514(1962),
investigated the effect of an external force of a short time scale,
as based on the BBGKY hierarchy; but the assumrption of time
scales necessary for the hierarchy was not properly considered
there,

8. Th: problem was first discussed by Hertz, according

to S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
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CAPTIONS OF FIGURES

Fig. 3. 1. A field particle 2 interacts with the test particle 1
at close disiances with time scale t; after the interaction particle
2 interacts with parti~le 3, particle 4, and so forth., The time
scale of those close interactions is the same asT. The
space domain in which particle 2 is localized over a longer period
of time is indicated with shadow. The force exerted on particle
1 by particle 2 is classified as follows: 1) The force during the
close interaction particle 2 with particle 1; 2) the force during
the close interactions of particle & with particles 3,4, etc; 3)
the averaged force during the existence of particle 2 in the
shadowed domain

Fig. 4. 1. In A, Xi* iz the precise trajectory of particle i
under the influence of all the fielt particles; Xi' is the trajectory
of particle i when the influence of ihe field particles is ignored;

1"
Xi is the trajectory of particle i interacting with particle j only.

Xi” is much closer to Xi*. In B, Fi(l) at t is shown by a &-function;
<Fi(l)> is the result of averaging Fi(l) fromttot+r, along a

set of trajectories of the same class as Xi' ; <<Fi(l)>> is the

result of averaging Fi“'), fromt to t+r7,along a set of

"
trajectories of the sam: class of Xi .
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Fig. 6. 1. Ion 1, with a large charge and a large mass, interact
with a similar ion 2. Many electons, depicted with small dots,
interfer the ion-ion interaction.

Fig. B.1 The volume of the space domain closed with two

9

. . . 3
spheres with radius rij is o rij c

Fig. C. 1, Particle I is the test particle; particle 2 and particle
3 represent the field particles. There are four typical relations
among them: a) the threes are mutually remote; b) particle i
and particle 2 are their mutual nearest neighbors; c) particle 1
and particle 3 are their mutual nearest neighbors; d) particle 2

and particle 3 are their mutual nearest neighbors.

Fig. C.2. Particle 1 is the test particie; particles 2, 3, 4, 5,
represent the field particles;among them particles 2 and 3 are
ions and particles 4 and 5 are electrons. There are 26 relations
among them; full and short lines indicate nearest neighborhood

and long and dotted lines remote relations.
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FIG. B.1
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FIG. C. 1
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