Research Report 227 SOME MECHANICAL PROPERTIES OF ALPINE SNOW, MONTANA 1964-66

by C.M. Keeler and W.F. Weeks

MARCH 1967

U.S. ARMY MATERIEL COMMAND COLD REGIONS RESEARCH & ENGINEERING LABORATORY HANOVER, NEW HAMPSHIRE

AUG 7 1967 CFSTI

RR 227

CRREL

655528

AD

Distribution of this document is unlimited

Erratum - USA CRREL Research Report 227

Page 26 - The following reference should be added to the list of "Literature Cited":

Bradley, C. C. and Bowles, D. A. (1966) Consolidation and metamorphic weakening. Opposing correlatives in avalanche initiation, International Conference on Low Temperature Science, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.

Research Report 227 SOME MECHANICAL PROPERTIES OF ALPINE SNOW, MONTANA 1964-66

by C.M. Keeler and W.F. Weeks / MARCH 1967

U.S. ARMY MATERIEL COMMAND COLD REGIONS RESEARCH & ENGINEERING LABORATORY HANOVER, NEW HAMPSHIRE

DA Task 1V014501852A02

Distribution of this document is unlimited

PREFACE

This paper was prepared by C. M. Keeler and Dr. W. F. Weeks, glaciologists. It constitutes an interim report accomplished in conjunction with the U. S. Army Cold Regions Research and Engineering Laboratory (USA CRREL) project on Mountain Snow Research (Snow and Ice Branch, Research Division). This project was supported by the Director's In-House Laboratory Independent Research Program.

The data discussed in this report were collected by the following people: winter of 1964, W. F. Weeks and D. L. Alford assisted by G. Thompson and D. Eberl, winter of 1965, W. F. Weeks and D. L. Alford assisted by D. Carter and S. Toth; and winter of 1966, C. M. Keeler and D. Bowles assisted by D. Carter.

The authors would like to thank W. K. Boyd, Chief Engineer, USA CRREL, for his support of the project; D. L. Alford, J. A. Bender, D. Carter, M. Mellor, and R. Ramseier for their critical comments on the manuscript; and D. L. Alford for allowing us to refer to his unpublished manuscript on the stratigraphic aspects of the 1964 Goose Lake, Montana, snow cover.

USA CRREL is an Army Materiel Command laboratory.

ū

CONTENTS

Profession	Pag
Pretace	11
Summary	v
Introduction	1
Previous work	3
Nature of the snowpacks	5
Goose Lake, 1964	5
Goose Lake, 1965	6
Goose Lake, 1966	6
Bridger Bowl, 1966	0
Results	0
Ram hardness	1
Centrifugal tensule strength	
Shear strength	8
Registograph shoan strength	10
Other results	22
Conclusions and	23
	24
	26
Appendix A. EGIG shear vane strength measurements and as-	
sociated pit data (Goose Lake, 1964)	29
Appendix B. EGIG shear vane strength measurements from a	
sampling grid (8 May 1964, Goose Lake)	33
Appendix C. EGIG shear vane strength measurements at abla-	
tion stakes (15-18 May 1964, Goose Lake)	35
Appendix D. Large shear vane strength measurements, centri-	
fugal tensile strength measurements, and associated nit	
data (Goose Lake, 1965)	37
Appendix E. Shear strength as measured using a shear box	
(Goose Lake, 1965)	41
Appendix F. Large shear vane measurements and	-11
densities (Bridger Bowl 1966)	4.2
(arrage: Down, 1,00)	4.5

ILLUSTRATIONS

	ILLUSTRATIONS	
Figur	e	
1.	Goose Lake Basin, 1964	,
٤.	Goose Lake Basin, 1965	4
3.	Snowpack water equivalent vs elevation	2
4.	View west from the summit of Bridger Range	2
5.	View east from the summit of Bridger Range	4
6.	Pit observations from Goose Lake and Bridger Bowl	1
7.	Ram number vs dry snow density (Goose Lake 1064-65)	2
8.	Ram number vs dry depth hoar density and wet snow den- sity (Goose Lake, 1964)	,
9.	Centrifugal tensile tester	0
10.	Tensile strength vs porosity of fine grained snow (Goose Lake, 1964-65)	7
11.	Tensile strength vs porosity of depth hoar (Goose Lake, 1965)	10
12.	Schematic of shear box operation	11
13.	Shear box shear strength vs porosity (Goose Lake 1965) -	17
14.	Schematic of shear vanes	12

CONTENTS (Cont'd)

and the second se		
Figure	e	Page
15.	EGIG shear vane strengths: predrilled vs non-predrilled-	13
16.	EGIG shear vane strengths: large vs small vane, fine	
	grained snow	14
17.	EGIG shear vane strengths: large vs small vane, wet snow	14
18.	EGIG shear vane strengths: large vs small vane, depth	
	hoar	15
19.	Variance and mean of large EGIG shear strengths vs nor-	
	malized depths	16
20.	Mean large EGIG shear strength vs standard deviation of	
	shear strength values	16
21.	Large EGIG shear vane strength vs porosity for dry, fine	
	grained snow	18
22.	Large EGIG shear vane strength vs porosity for wet snow-	18
23.	Large EGIG shear vane strength vs porosity for depth	
	hoar	19
24.	Large EGIG shear vane strength vs ram number	19
25.	Large shear vane strength vs porosity	20
26.	Large shear vane strength vs porosity	21
27.	Large shear vane strength vs ram number	21
28.	Large shear vane strength vs shear box strength	22
29.	Recording head of snow resistograph	22
30.	Comparison of large shear vane strength with snow resis-	
	tograph strength	23
31.	Areal variation of snow resistograms	24
34.	Time variation of strength properties	24
33.	Centrifugal tensile strength vs large shear vane strength -	45
34.	Log ₁₀ (Canadian hardness number) vs porosity, dry snow-	25

TABLES

	IADLES	
Tabl	e	
Ι.	Analysis of variance table: three-level nested model	17
п.	Hypothesis tests and variance estimates from the three-	
	level nested EGIG shear vane experiment	17

1V

SUMMARY

Data on the physical properties of seasonal alpine snow have been collected from the Beartooth Mountains near Cooke City, Montana (elevation ~ 3000 m) and the Bridger Range near Bozeman. Montana (elevation ~ 2200 m). Systematic measurements of snow density, temperature, structure, ram and Canadian hardness, centrifugal tensile strength and shear strength measured with a shear box and several types of shear vanes are included. Test results were grouped according to gross snow types (cohesive fine-grained "winter" snow, depth hoar, new snow, etc.) and whether the snow was wet or dry. Then interrelations between the different test parameters were studied. A plot of ram number vs density for winter snow gave a log-linear relation similar to that suggested for polar snows. Both shear vane and centrifugal tensile results when plotted as a function of porosity are well described by the negative exponential relation suggested by Ballard and Feldt. Depth hoar and wet snow invariably have lower strength values at any given density. There is an excellent one to one agreement between values obtained with the shear vane and the shear box. Limited observations are made on the change in mechanical properties with time.

Several field experiments were performed to study the sources of error in making in-situ mechanical tests on snow without utilizing a pit wall. Statistical analysis of the results shows that the main factor contributing to the experimental scatter is lateral inhomogeneity in the snow cover. There was no significant difference between the results of different operators. The standard deviation of a group of strength tests is shown to be directly proportional to the mean value of the group. This indicates that a loge transformation should be made in handling snow strength results in order to stabilize the variance. It is emphasized that the systematic relations between snow properties invariably become obscured when different snow "types" are indiscriminantly grouped together.

SOME MECHANICAL PROPERTIES OF ALPINE SNOW, MONTANA 1964-66

by

C. M. Keeler and W. F. Weeks

INTRODUCTION

The USA CRREL Mountain Snow Research Project was initiated in 1964 to obtain additional information on the behavior of the "low" density snow that commonly forms the winter snowpack in mountainous regions. During and since the IGY, considerable information has been obtained concerning the properties of typically older and denser polar snows. It was hoped that the present project would be able to extend these studies into the low density range (< 0.350 g/cm³) using, when possible, tests identical to those used on polar snow. When this was not possible, it was planned to develop new tests. Because a wide lateral variation in snow depths and presumably physical properties was expected, attention was focused on tests that were reasonably portable or could readily be made so. It was then planned to establish as many interrelations as possible between the parameters measured by these tests. This would facilitate the rapid characterization of a given snowpack for any specific purpose by a minimum num-

During the months of April and May 1964 and 1965, field studies were undertaken 19 km north of Cooke City, Montana, in the cirque basin occupied by Goose Lake (Fig. 1, 2). The area of the cirque is roughy 2.5 km² and a considerable portion of its floor exhibits a gently rolling relief ideal for snow studies. The general elevation of the cirque floor is 3000 m, placing the research site just above the tree line. A detailed description of the Goose Lake area is given in Alford and Weeks (1965).

Because Goose Lake basin has rarely been visited during the winter, little was known about its snow conditions. Based on the observations reported in this paper, 2.5 to 3 m is probably a reasonable estimate of the depth of the snowpack during an average winter. Snow accumulation usually starts in late October or early November and the pack does not become isothermal until early May. The weather systems supplying snow to the area come from the west and there is a pronounced orographic effect on the accumulation between Cooke City (2330 m) and Goose Lake (Fig. 3). Although Goose Lake proved to be an excellent location for snow studies, it was abandoned at the end of the 1965 field season because of the logistic difficulties in keeping it supplied during the winter.

The research program was continued during the winter of 1965-66 at Bridger Bowl, Montana, a small ski area located approximately 32 km northeast of Bozeman, Montana. This area has been instrumented for research by the Montana State University at Bozeman. The instrumentation includes a digital data gathering system which transmits data, via radio, to the computer center at the University. This system, which is administered by the Water Resources Research Center, can be adapted to accept data from a large variety of sensors.

The Bridger Range is a long steep ridge which rune north-south. The ridge crest is generally 2400 m in elevation and rises approximately 760 m above the surrounding country (Fig. 4, 5). The weather systems which supply snow to this area come from the west and northwest. Because of the abrupt rise of the range, snow accumulation is a pronounced function of elevation (Fig. 3). Although there are no long records of snow accumulation for the Bridger Bowl area, one can probably expect from 1.5 to 2 m of snow on the ground at the ski area in February and March. The snow is normally dry until April when it becomes isothermal.

2 MECHANICAL PROPERTIES OF ALPINE SNOW, MONTANA 1964-66

Figure 1. Goose Lake Basin, 1964: view north toward Wolf and Sawtooth Mountains.

Figure 2. Goose Lake Basin, 1965: view west toward Mount Fox.

MECHANICAL PROPERTIES OF ALPINE SNOW, MONTANA 1964-66

Figure 3. Snowpack water equivalent vs elevation. Top: Bridger Range, 15 March 1966; Bottom: Cooke City -Goose Lake Traverse, 30 April 1965. The field season at Bridger Bowl occupied the months of February, March and April. Unfortunately, the snowpack was less than normal and warm weather prohibited implementing a more complete research program. In March of 1966 the Goose Lake site was revisited to make comparative measurements.

3

PREVIOUS WORK

The study of the properties of snow is a young discipline and the methodology has largely been adapted from other fields. Systematic measurements of the gross properties of a snow cover were first made by Seligman (1936) who was primarily interested in avalanche occurrence. Since that time the study of snow "in situ" via the "pit" method (i.e., the description of stratigraphy and the determination of density and temperature profiles) has been developed into a routine and is perhaps best described by Benson (1962). Pit

studies have been used to study the broad regional variation of snow characteristics in Canada and the United States (Klein, 1949; Gold, 1958; Williams and Gold, 1958; Bilello, 1957, 1966), in Russia (Rikhter, 1945; Formozov, 1946; Dmitrieva, 1950) and in Japan (Ishiwara, 1955). In the Rocky Mountain area of the United States detailed continging programs of routine pit measurements including grain size and ram hardness profiles have been carried out at Alta, Utah (Atwater et al., 1953-1956) and at Berthoud Pass, Colorado (Judson, 1965).

Measurements of the strength properties of mountain snow have been much more sporadic, particularly those coupled with detailed pit observations. After the initial studies by the Swiss who first successfully adapted soil mechanics tests to low density snow (Bader et al., 1939; Bucher, 1948; de Quervain, 1950) and the later studies by the Japanese using more refined techniques (Yoshida, 1955), strength studies have been made mainly on the higher density polar snows. The reasons for this emphasis are obvious: (a) most laboratory and field tests are much simpler to perform on the higher density snows (> 0.4 g/cm³) and (b) snows with densities less than 0.35 g/cm³ are rare in the polar regions (Mellor, 1964) where most recent field studies have been concentrated as a result of the IGY emphasis on polar glaciology. Typical references to recent studies of the mechanical properties of high density snows are Diamond (1956), Diamond and Hansen (1956), Butkovich (1956), Rula (1960), Ramseier (1963) and Mellor and Smith (1965). Unfortunately many of the test procedures used by these investigators necessitate removing specimens from the snowpack. Because of the extremely fragile nature of low density snow and the high air temperatures and large amounts of incoming short wave radiation encountered in temperate mountain regions, such tests are impractical. In addition many of the successful high density tests become insensitive to physical property variations in the low density range. This coupled with the naturally high variability in the characteristics of low density snow has resulted in its mechanical properties being quite poorly understood.

Figure 4. View west from the summit of Bridger Range.

Figure 5. View east from the summit of Bridger Range.

MECHANICAL PROPERTIES OF ALPINE SNOW, MONTANA 1964-66

NATURE OF THE SNOWPACKS

A characteristic of seasonal snow in mountainous areas is its extreme variability both during a given winter and between different winters. The three winters reported in this paper are no exception, showing pronounced differences in average density, thickness and depth hoar development. To aid in the discussion of the strength data some representative pit data are included here (Fig. 6).

Goose Lake, 1964

The winter of 1963-64, based on snow course information from Silver Gate, Montana, appeared to be a near average snow year. Snow depths in the Goose Lake basin measured on 16 April varied between 2.3 and 3.5 m with an average value of roughly 2.6 m. The winter in general was quite cold with no evidence of a pronounced densification of the snowpack until the period of warm weather in early April (D. Carter, personal communication). During the months of April and May when the pit observations were performed, three major stratigraphic units were distinguishable, both visibly and in the density and ram profiles. A layer of depth hoar roughly 0.7 m thick occurred at the bottom of the snowpack. This thick layer of hoar was presumably produced by large temperature gradients in the snow during the cold early part of the winter when the pack was still quite thin. Although this depth hoar showed no visible layering, the ram and density profiles showed the presence of layers with slightly different physical properties. The depth hoar layer gradually changed upward into a thick (1.0 m) layer of uniform fine grained snow showing a complete lack of either melt features or depth hoar development. This snow undoubtedly fell during the winter months when the air temperature was appreciably below OC. Because the winter layer - depth hoar transition was gradational and difficult to fix visually, the boundary was usually located from the ram and shear strength data. The top of the winter layer was marked by a pronounced crust which formed during the few warm days preceding a storm on 11 to 14 April.

6 MECHANICAL PROPERTIES OF ALPINE SNOW, MONTANA 1964-66

Above this crust was the new snow which fell while the field site was occupied. This snow was characterized by wide variations in physical properties and contained several sun crusts. The most pronounced stratigraphic marker in this new snow was a colored layer apparently produced by large amounts of dust in the storm accumulation of 24 April.

These stratigraphic units were sufficiently pronounced to be identifiable for several days after the snowpack became isothermal on 7 May 1966. Fortunately the great majority of the strength measurements reported in this paper were determined prior to 7 May so that stratigraphic interpretation was not a major problem. After the snowpack became isothermal, the gradual recrystallization and the ice lens formation produced mainly by percolating melt water gradually caused the earlier stratigraphy to become indeterminate.

Goose Lake, 1965

The winter of 1964-65 was a heavy snow year in Gcose Lake and the northern Rockies in general. The average snow accumulation at Goose Lake was considerably more than that of the previous year (Fig. 6). The snow started to accumulate early and a heavy snowpack developed before extremely cold air temperatures were observed. For instance, it rained in December in Cooke City. There was, of course, no evidence of a rain crust in the pits at Goose Lake. This does, however, indicate that large amounts of snow were rapidly accumulating at Goose Lake at temperatures only slightly below freezing, effectively preventing the development of any significant depth hoar near the bottom of the pack. Instead a thick (0.8-m) layer of dense medium grained snow containing no pronounced stratigraphic markers was formed. This snow graded upward into 2.5 m of fine grained dense homogeneous snow. Above this there was, in general, 1 m of relatively new snow showing a few thin sun crusts.

Goose Lake, 1966

Goose Lake was visited on 28 March 1966 for the purpose of making comparative measurements. As was the case over the entire Rocky Mountain area, the first snowfalls of this winter were light and accompanied by cold temperatures which resulted in strong temperature gradients and the formation of a considerable layer of depth hoar. At Christmas time there was almost no snow at Cooke City (Dean Carter, personal communication) which is a highly unusual occurrence. The pit profile in Figure 6 is approximately 2/3 as deep and much less uniform that that of the previous year.

Bridger Bowl, 1966

The winter of 1966 was marked by low accumulation rates in the early season with the consequent formation of depth hoar. Heavy accumulation in February accompanied by relatively high temperatures caused the formation of numerous crusts. The pack went isothermal between late March and early April (depending on elevation). The extreme lateral variability of snow depth as a function of elevation over a small horizontal distance has been mentioned earlier (Fig. 3). Even at a single elevation, for example the 2000-m level, the snow depth varied from 1.5 to 2.5 m in a distance of 100 m due to wind effects.

RESULTS

Almost all of the physical property measurements were performed either on the wall of a pit or in the snow a few meters from a pit. This procedure was adopted in an attempt to provide as much supplementary data as possible for the interpretation of the strength results.

Ram hardness

The Rammsonde is a cone penetrometer which measures the "resistance to penetration" of a snow layer. A detailed description of the instrument is given by Haefeli (Bader <u>et al.</u>, 1939). The ram profile is quite easy to measure even under adverse weather conditions and the technique has been used for years as a rapid means of locating depth hoar layers in avalanche studies. Even though it has proved impossible to provide an exact physical interpretation of the meaning of the ram number (Nakaya, unpublished results), useful correlations have been obtained between the ram number and unconfined compressive strength (Abele, 1963) and density (Bull, 1956) for polar snows.

Figure 7 shows individual ram values obtained during 1964 and 1965 prior to the snowpack becoming isothermal plotted against snow density measured at the same level in a nearby pit. Depth hoar is excluded from this figure. If for comparative purposes a relation similar to that used by Bull (1956)

$$\log_{10} \mathbf{R} = \mathbf{a} + \beta \rho$$

is used to fit these data (403 points), one obtains by least squares $\hat{a} = -0.8446$ and $\beta = +6.399$ with a correlation coefficient r = +0.941. The 0.95 confidence limits on these estimates of a and β are ± 0.182 and ± 0.519 respectively. These values are quite comparable to those ($\hat{a} = -0.6107$ and $\beta = +5.3106$) obtained by Bull for a similar density range on the British North Greenland Expedition. It should be noted that in this type of plot considerable emphasis is given the lower ram values (R < 3). Unfortunately, the standard Rammsonde is not as sensitive to slight density changes in this low R range as at higher values. Figure 8 (top) shows a similar plot for depth hoar which indicates that for snow of a given density, depth hoar gives consistently lower ram values. This is quite reasonable in view of the pronounced decrease in cohesion associated with the development of depth hoar. It should be noted that the ability to discern the top of the depth hoar from the ram profile is more the result of the change in the ram number for a given density than it is due to basic density differences between these two snow types.

Figure 7. Ram number vs dry snow density (Goose Lake, 1964-65).

(1)

Figure 8. Above, Ram number vs dry depth hoar density; below, Ram number vs wet snow density; (Goose Lake, 1964).

Figure 8 (bottom) shows ram values obtained after the snowpack had become isothermal and in some cases water saturated. Although there is a pronounced increase in the scatter on this plot, it is evident that, in general, lower ram values occur for a given density. There are probably at least two reasons for this. One is the result of conversion of a percentage of the ice to water. As long as this water is not lost in sampling, there would be no change in density. However, the reduction in the total volume of the solid would definitely reduce the ram number. The other reason is that the majority of the melting occurs in the region of the bonds between grains, reducing the overall cohesion of the snow. The increase in the scatter in the values from the later isothermal pits is undoubtedly the result of the formation of numerous irregularly spaced ice lenses and glands which may be present at a given level in a pit and absent a fraction of a meter away where the ram profile was determined.

Centrifugal tensile strength

The centrifugal tensile test is first mentioned in the literature by Haefeli (Bader et al., 1939) and is more fully described by de Quervain (1950). The chief advantage of this test, in addition to its rapidity, is its ability to test very low density snow. In our apparatus (Fig. 9) the sample was pushed from a standard snow tube into a similar cylinder which is rotated about an axis normal to the axis of the cylinder. The sample is held in place by a two-pronged clip which reduces the cross sectional area of the center of the sample. The speed of rotation of the cylinder is then increased until the snow samples fails and the revolutions per minute at the time of failure are read from a calibrated ammeter. The failure strength of the sample is then determined by finding the force exerted on the cross sectional area of the failure surface and integrating over the half lengtu of the cylinder. For the dimensions of the cylinder used, this reduces to

$\sigma_t = 1.166 \times 10^{-9} M N^2$

where σ_t is the failure strength (kg/cm²). M is the mass of the sample and N is the number of revolutions per minute at failure. A nomograph for determining values of σ_t is given in Bader <u>et al.</u> (1951).

Figure 9. Centrifugal tensile tester.

Figure 10 shows a plot of σ_t vs porosity for new and winter snow from both the 1964 and 1965 seasons. The plot appears linear up to a porosity of roughly 0.60 when the σ_t values "tail off" towards a porosity of 0.87 at $\sigma_t = 0$. An extrapolation of the linear portion of the curve to $\sigma_t = 0$ yields a porosity of 0.65 which is somewhat higher than the n_t of 0.56 which Ballard and McGaw (1965) obtained from the data of Butkovich (1956). This discrepancy is probably partially due to the range of porosities covered as this will affect the graphical

Because of the obvious "tail" in Figure 10 it was decided to fit the relation

$$\frac{\sigma_t}{\sigma_i} = \exp\left[-\frac{2n}{1-n}\right] \tag{3}$$

where σ_i is the strength of fine grained bubble-free ice with a random orientation and n is the porosity. This relationship is a theoretical one suggested by Ballard

9

(2)

10 MECHANICAL PROPERTIES OF ALPINE SNOW, MONTANA 1964-66

Figure 10. Tensile strength vs porosity of fine grained snow (Goose Lake, 1964-65).

and Feldt (1966). Because σ_i is unknown it was obtained by least squares by regressing σ_t on exp $\left[-\frac{2n}{1-n}\right]$. The predicted value was 27.3 with a correlation of .867. This is in remarkable agreement with the value of 28.3 extrapolated by Ballard and McGaw (1965) from Butkovich's ring tensile data. This close agreement would indicate that the Goose Lake data (Appendix D) could well be used as the low density continuation of Butkovich's data.

Figure 11 shows a similar plot containing σ_t values for depth hoar. If Figures 10 and 11 are compared, it can be seen that the depth hoar has a lower σ_t value for a given porosity. This is quite reasonable inasmuch as the formation of depth hoar is invariably associated with a decrease in cohesion as constructive metamorphism proceeds.

It is interesting to compare the Montana σ_t values with the results of similar tests from the literature. The Montana snow appears consistently stronger by a factor of 2 to 3 over the results of Bucher (1948) and de Quervain (1950). It is presently not possible to explain this discrepancy. It is encouraging to note that the present tests show far less scatter and a much simpler relation to density than previous tests by the centrifugal method (see Bader, 1962, p. 36).

Shear strength

Shear box. Although the shear box has been mentioned in the literature for a number of years (de Quervain, 1950), it is only recently that any appreciable number of measurements have become available (Roch, 1965). The shear box measurements are normally made parallel to the stratification by cutting a "step" in the wall of a pit (Fig. 12). This prevents failure occurring over an area wider than the area of

MECHANICAL PROPERTIES OF ALPINE SNOW, MONTANA 1964-66

Figure 11. Tensile strength vs porosity of depth hoar (Goose Lake, 1965).

Figure 12. Schematic of shear box operation.

the shear box. The measurement of the force applied to the box at the time of failure was made with a Chatillon scale. Unfortunately the use of the shear box is limited to low densities and even at the lowest densities the failure surface was rarely planar.

Figure 13 shows the relationship between shear strength as determined using the shear box and porosity. It can be seen that the data extend only to porosities of about . $6(\rho < .35)$. The narrow range of the data makes curve fitting suspect. However, at the higher porosities a "tailing off" appears to be indicated in a fashion similar to that observed in the centrifugal tensile tests. The porosity of .61 proved to be about the limiting value for the use of the shear box.

The values for shear strength determined in this manner and reported by de Quervain (1950) are quite similar. His high value is $.160 \text{ kg/cm}^2$ at a porosity of .65. Unfortunately the data of Roch (1965) are not directly comparable as he was concerned with the temperature dependence rather than the density dependence of the shear strength.

"In situ" shear vanes. Shear vanes have commonly been used in determining the "in situ" shear strength of soil. The general technique is well described by Cadling and Odenstad (1950). Recent preliminary studies by Haefeli and Brandenberger (1964) performed in conjunction with an EGIG field party have indicated that a simple shear vane may prove a useful tool in characterizing the vertical variation of shear strength in the near surface snow layers of the Greenland ice sheet. Their Figure 12 shows an excellent correlation between ram hardness and shear strength. In addition, Diamond and Hansen (1956) and Rula (1960) showed that reasonable correlations could be obtained between vane shear strengths and several other snow attractive as the apparatus is both simple and portable. The EGIG shear vane is particularly desirable as a field instrument because it, like the Rammsonde, does not require the preparation of a snow pit.

Figure 13. Shearbox shear strength vs por- Figure 14. Schematic of shear vanes. osity (Goose Lake, 1965). Each data point represents the mean of at least 3 individual tests.

Several different types of shear vanes were used on this project (Alford and Weeks, 1965). During the 1964 field season, the general dimensions of the vane were based on the design of Haefeli and Brandenberger (1964). Both 3 x 3 cm (large) and 1 x 3 cm (small) vanes were used (Fig. 14a, b). The height of the vane was deliberately kept small to permit the sampling of thin homogeneous snow layers. The vanes were inserted to known depths in the snowpack using extension rods and kept at those depths during a given test by the use of a sliding ring equipped with a set screw which could be located at any point of the rod. This ring then rested on a flat aluminum plate which was set on the surface of the snow and through which the rod passed. The plate was used as the reference level during the tests. For convenience these vanes will be referred to as either the large or small EGIG shear vanes in this paper.

During the 1965 and 1966 field seasons a larger shear vane (3 x 10 cm), similar to those used in soils, was used (Fig. 14c). The vane was on the end of a short rod and was inserted horizontally into the walls of the snow pits. The use of pits allows one to avoid such disturbing influences as ice lenses and allows accurate depth determinations. This vane will be designated as the large shear vane.

The reduction of shear vane data is treated theoretically by Cadling and Odenstad and can be reduced to the following equation:

$$M_{max} = \sigma_{s} \left[(2 \pi r_{0} h) r_{0} + 2(\pi r_{0}^{2} - \pi r_{i}^{2})(r_{i} + 2/3(r_{0} - r_{i})) \right]$$
(4)

where Mmax is the torsional moment at failure read from the maximum deflection of the torque wrench, σ_s is the failure shear strength, r_0 and r_i are the outer and inner radii of the shear vane (see Fig. 14) and h is the height of the vane. In making these computations the effect of side friction is assumed to be negligible. The rotation rate of the vane, although not accurately controlled, is estimated to be roughly 90°/sec. There are undoubtedly considerable problems relating to the precise shape and constancy of the failure plane. Unfortunately no information was obtained on this problem because in these tests failure occurs some distance away from the free face.

MECHANICAL PROPERTIES OF ALPINE SNOW, MONTANA 1964-66

EGIG shear vanes: The EGIG shear vane is located on the end of a rod with a diameter of 2.5 cm. The ends of the vanes are sharpened to minimize the disturbance of the snow as the vane is inserted. To determine whether the presence of the rod had a serious effect on the results, several tests were made at identical locations in which the vane was both (1) inserted directly into the snow and (2) inserted into a 2.5-cm predrilled hole. These results for dry snow are shown in Figure 15. Although there is an appreciable scatter, there does not appear to be any significant difference between the results obtained by these different methods for either the large or small vanes. In light of this, most subsequent tests were conducted without a predrilled hole. We feel that these results are inconclusive in indicating whether or not predrilling makes an appreciable difference as it is our impression that in the low density snow encountered at Goose Lake in 1964, the shear vane would not remain in the predrilled hole.

Next the results from comparable snow types using both the large and small shear vanes were compared. Figure 16 shows the relationship between strengths determined using the large and small vanes in fine grained dry snow. It is clear that on the average the large shear vane gives higher strengths than does the small shear vane. This is thought to be a reflection of the fact that the larger vane has a higher probability of encountering stronger layers as it samples a larger area at any given depth indicated on the extension rod. It is, therefore, very desirable to keep shear vane sizes constant when making comparative studies on the strength of snow or any other inhomogeneous material. Figure 17 shows a similar plot for wet snow. The pronounced distinction between results obtained from different sized vanes disappears. The authors have no explanation for this change.

Figure 18 is a plot of results obtained using the large and small vanes for both wet and dry "depth hoar." In this case there appears to be no apparent difference in strength, even for the case of dry "depth hoar." The explanation for this presumably lies in the fact that depth hoar is relatively homogeneous. It is interesting to note the considerably lower strength values due to the lack of cohesion in the depth hoar layer.

Figure 16. EGIG shear vane strengths: large vs small vane, fine grained snow (Goose Lake, 1964).

Figure 18. EGIG shear vane strengths: large vs small vane, depth hoar (Goose Lake, 1964).

In order to obtain some feel for the effects of the lateral variation of snow properties and differences due to different operators several experiments were performed. Between 15 and 18 May 1964, 11 ablation stakes that had been inserted at different locations in the Goose Lake cirque were visited and vertical profiles of shear strength were made. Because the snow depth varied from location to location (240-300 cm) it proved difficult to directly compare the results from specified levels. Therefore, to show the broad features of the vertical strength profile we used a non-dimensional thickness Z_N obtained by dividing the depth of a given sample Z by the total thickness of the pack H at that location. This assumes that the thickness of a given snow layer is proportional to the thickness of the snowpack. We then calculated the mean and variance of the 11 samples, one from each profile, that were located nearest to the normalized depth of interest. These results are presented in Figure 19 which shows the low average strength of the newer snow at the top of the pack, a stronger layer in the middle portion and the weak depth hoar layer at the base. The large variances encountered in the mix dle of the pack are presumably the result of the presence of inhomogeneities such as thin bedded ice lenses. The magnitudes of the variances appear to be directly related to the magnitudes of the average strength values (i.e., on the average, snow layers with a higher strength also show a greater scatter). This can be readily seen in Figure 20, which shows the mean shear strength plotted against the associated standard deviation at that depth. The relationship is linear, giving a constant coefficient of variation $(S_s/\overline{\sigma}_s)$.

In order to assess the differences in the strength values due to differences in locations and operators, a 30 ± 30 m grid was laid out. Locations on this grid were then established using a random number table and two operators determined two replicate shear profiles at each location. The sample size is admittedly small; however, it was thought best to complete these measurements in a short in the snow. Shear strength values were taken at 20 cm intervals starting at a depth of 10 cm and terminating at 190 cm. These profiles do not include measurements made in depth hoar.

Figure 19. Variance and mean of large EGIG shear strengths vs normalized depths (Goose Lake, 1964).

The results from the sampling grid were analyzed for a given level using a three-level random nested analysis of variance (AOV) model.

 $Y_{ijk} = \mu + a_i + b_{ij} + c_{ijk}$ (5)

where $i = 1 \dots I$, $J = 1 \dots J$, and $k = 1 \dots$. . K. This model states that any shear strength observation $\sigma_s = Y_{ijk}$ is equal to an overall mean µ plus the deviation of the ith location mean from overall mean, plus the deviation of the jth operator mean from the location mean, plus the deviation of kth replicate from the operator mean (Krumbein and Graybill, 1965). The analysis of variance table for this model is given in Table I. In our specific case I = 6, J = 2 and K = 2. Because the standard deviation was shown to be directly proportional to the mean we used a ln transformation on the data to stabilize the variance before the AOV calculations were made (Brownlee, 1960, p. 114). The results of these calculations are presented in Table II. Here ϑ_a^2 , ϑ_b^2 and $\hat{\sigma}_{c}^{2}$ represent the estimates of the variance components associated with differences between locations, between operators, and between replicates respectively. Inasmuch as it is reasonable to assume that in this case the variance associated with replication is very small, the values of $\hat{\sigma}_c^2$ are thought to represent scatter produced by small scale lateral inhomogeneities in the snow itself. The fact that the maximum value of ∂_c^2 is found at a depth in the pack where a large number of thin ice lenses occur tends to support this conclusion. Although there is considerable variation in Table II, in most

cases the hypotheses that $\hat{\sigma}_a^2$ and $\hat{\sigma}_b^2$ equal zero are accepted. This indicates that the apparent variation between locations and between operations could (in the sense that the probability is greater than 1 in 20) be due to local scatter.

Figure 20. Mean large EGIG shear strength vs stan dard deviation of shear strength values (Goose Lake, 1964).

MECHANICAL PROPERTIES OF ALPINE SNOW, MONTANA 1964-66

Source	Segrees of	Sums of squares	Mean	Expected mean #guare
Between locations	1-1	$\frac{\Sigma_{i} Y_{i}^{i}}{JK} = \frac{Y_{i}^{i}}{IJK}$	MS,	"c" + K "b" + KJ "a"
Between operators within locations	1(J-1)	$\frac{\Sigma_i \Sigma_j Y_{ij}^4}{K} = \frac{\Sigma_i Y_{ij}^4}{JK}$	MSb	σ _c ² + Kσ _b ²
Between measurements within operators within locations	IJ(K-1)	$\Sigma_i \Sigma_j \Sigma_k Y_{ijk}^{\delta} = \frac{\Sigma_i \Sigma_j Y_{ij}^{\delta}}{K}$	MSc	«c²
Total	IJK-I	$\Sigma_i \Sigma_j \Sigma_h Y_{ijh}^4 - \frac{Y_{ijh}^4}{\Pi K}$		

Table I. Analysis of variance table: three-level nested model.

Table II. Hypotheses tests and variance estimates from the three-level nested EGIG shear vane experiment (variance estimates are presented on an untransformed scale).

	H :m ² 0	H :rat : U	Estimat	ed variance componer	nte
Z.	Computed F	F(5, 6, 0. 05) 4. 39 Values	Between locations	Between operators	Local scatter
10	2.15 NS	4.70	. 015	. 01 1	
50	-4.35 NS	-0.52 NS	. 014	. 007	. 012
70	2. 30 NS	0. 68 NS	. 004	. 01 1	. 02.
90	2.10 NS	2.01 NS	. 008	. 01 3	. 015
110	0. 37 NS	2.41 NS	. 010	. 011	. 01 3
130	-1.64 NS	0.10 NS	. 006	. 035	. 014
170	4.52	0.78 NS	. 009	. 010	. 010
199	-6. 58 NS	-0.21 MC	. 013	. 010	. 010
		-V. LI NO	. 006	. 017	. 008

Since, during all the field experiments, it had become quite obvious that the type of snow (i.e., fine grained, wet, depth hoar, etc.) being tested strongly affected the test results, it was decided to separate the data as much as possible by snow type. Figure 21 shows the relationship between shear strength, as measured using the large EGIG vane, and porosity for dry fine-grained snow. As was the case with tensile strength the plot shows a strong "tail off" at porosities higher than .60. Similar data gathered using the small EGIG vane gave slightly lower strength values and more scatter.

Figure 22 shows a similar plot except in this case the snow was isothermal and wet. The scatter is greater, perhaps because of inhomogeneities induced by diurnal freezing and thawing, and the strength values are lower. This is to be expected since in warm snow both the cohesion and the volume of ice are less. Si milar plots were made for both dry and wet "depth hoar" (Fig. 23). It can readily be seen that the poor cohesion of the depth hoar results in low strengths at any porosity. The wet and water saturated cases do not appear to be appreciably different than the dry case.

Since it was shown earlier that a functional relationship exists between ram hardness and porosity (density), it might be assumed that there would be a relation-ship between ram hardness and shear strength. These data are plotted in Figure 24.

Figure 23. Large EGIG shear vane strength vs porosity for depth hoar (Goose Lake, 1964).

While there is a trend of increasing shear strength with increasing ram number, the scatter precludes an explicit statement of this relation. Similar plots for wet snow showed an even greater scatter. In all cases the depth hoar appears to have a lower shear strength at any specified ram number.

Large shear vanes: The experiments conducted with the EGIG shear vanes suggested that the scatter of data was primarily a function of inhomogeneities in the snowpack. In order to counteract these effects it was decided (1) to use an even larger shear vane which would, to some extent, average the strength values over a larger volume of snow and (2) to insert the vane horizontally into the pit wall making it possible to precisely locate the depth of sampling and make visual comparisons with the stratigraphic description. The possible errors resulting from this method of testing have already been discussed. This larger vane was used in the field seasons of 1965 and 1966 at Goose Lake and 1966 at Bridger Bowl. Its routine use throughout these periods has enabled us to amass quite an amount of data.

20 MECHANICAL PROPERTIES OF ALPINE SNOW. MONTANA 1964-66

The shear strengths of the snow at Goose Lake in 1965 are plotted against porosity in Figure 25. The data show remarkably little scatter when the values for depth hoar are considered separately. This good relationship is thought to be in part due to improved measurement with the large shear vane and in part a testimony to the relative homogeneity of the snowpack that year. The range of porosities and strengths makes it possible to fit the data with the expression used earlier for the tensile strength data (eq. 3). In this case σ_i for shear is found to be equal to 4.15 kg/cm² when a least squares analysis is conducted. The correlation coefficient is 0.892.

The data from Bridger Bowl (Fig. 26) show considerable scatter. However, as they represent only a very limited porosity and strength range this scatter is not surprising and in fact would be expected due to the warm temperatures and extreme inhomogeneity of the snowpack that season.

The correlation between ram hardness and shear strength for the 1965 season at Goose Lake is very good (Fig. 27). By least squares a = 0.065 and $\beta = 0.0038$ with r = +0.868. No physical significance can be attached to the value of the intercept as in all likelihood it should be zero; however, the curve was not forced through zero as we were not sure of the exact relationship. It is suspected that a relationship such as the one obtained could only be valid in a uniform snowpack. It should be noted that the Rammsonde measurement is not made at the same point in space as the shear vane measurement and consequently lateral variations in the snowpack affect the correlation.

Figure 28 shows a plot of shear strengths obtained using the shear vane and shear strengths obtained using the shear box. The agreement is good indicating that the same parameter is being measured in each case.

Figure 25. Large shear vane strength vs porosity (Goose Lake, 1965).

Figure 26. Large shear vane strength vs porosity (Bridger Bowl, 1966).

21

strating contra

Figure 28. Large shear vane strength vs shear box strength (Goose Lake, 1965).

Figure 29. Recording head of snow resistograph.

Resistograph shear strength

During the seasons of 1965 and 1966 some comparative measurements of shear, strength were taken using the large shear vane and a snow resistograph. The snow resistograph, designed and developed by Dr. Charles C. Bradley of the Montana State University, is a blade on a long probe, which is first inserted in the snow, then drawn upwards through the snowpack at a constant rate. The resistance encountered by the blade is balanced by a spring in the handle and transmitted to a scribe which records on a paper roll (Fig. 29). The paper unwinds at a rate controlled by the rate of withdrawal of the probe. The instrument is more fully described by Bradley (1965).

The curve plotted by the instrument, called a "resistogram," bears a strong resemblance to a ram profile. If the instrument is calibrated, the x axis can be read as strength and the y axis as depth. The instrument has been used to give a predictive index for avalanche hazard by determining the strength of the weakest layer. When this figure is compared with the load on this layer (determined by density measurements), the ratio of strength to load provides an indication of stability (Bradley and Bowles, 1966).

It was initially believed that the comparison of shear vane measurements to resistograph measurements should show a one to one correspondence; however, this does not appear to be the case. Figure 30 shows "shear" strengths measured

both with the resistograph and with the large shear vane plotted as a function of depth for two locations. The ratio of the "strengths" measured by the two methods varies from 1:1 to 10:1 with the resistograph always indicating the higher strength. It is not the difference in the absolute values of the strengths but the changes in the strength ratios which are disturbing in that they suggest that the resistograph strength is neither proportional to the shear strength or to the tensile strength (which is itself a linear function of the shear strengthsee Figure 33). Therefore, it is doubtful whether the (strength/load) ratio as utilized by Bradley and Bowles (1966) actually is a measure of the true value of this parameter. This criticism, however, in no way affects the usefulness of the resistograph in rapidly locating discontinuities in shallow, low density snowpacks. Furthermore, it should be noted that the strength/load ratio

apparently serves as a reasonably accurate predictive index. Figure 31 shows composite resistograms (averages of three profiles) taken at four different elevations on the west side of the Bridger Range. The presence of crusts and a weak basal depth hoar layer is particularly evident.

Other results

Figure 32 shows the change with time of both the large shear vane strength σ_s and the centrifugal tensile strength σ_t in a given snow layer. A general increase in the strength values with time is indicated. The fact that these are not smoother curves is probably the result of difficulty in precisely locating identical snow layers in the different pits and the natural lateral variability of a snow layer at any given date. These curves are similar to the results of Roch (1965) from Swiss snows.

Figure 33 presents a comparison of shear vane measurements and centrifugal tensile strengths from identical snows. In general the tensile values appear to be roughly 10 times the shear values. Similar results have been obtained by Roch (1966) using a shear box. Butkovich, however, obtained comparable shear and tensile strengths for high density snow.

Figure 34 presents the observed change in the value of \log_{10} (CN) vs porosity where CN is the hardness of the snow (g/cm^2) determined with a Canadian hardness gauge. The changes are quite systematic and within the range of the data may be approximated by the straight line \log_{10} (CN) = 6.95 - 5.88 n with a correlation coefficient of -0.903.

24

CONCLUSIONS

We feel that the results presented in this paper are quite encouraging in that they demonstrate that the mechanical properties of low density snow can be investigated in the field using simple portable tests. The results show simple systematic relations with appreciably less scatter than would be anticipated from surveying the literature. Several excellent correlations are established between the results of different types of tests which should facilitate the rapid characterization of a given snowpack. It should be stressed that the systematic relations shown in this paper invariably become obscured when different "types" of snow are indiscriminantly grouped together. This points to the need for a more thorough study of the structural properties of low density snow and for an independent means of determining the degree of bonding in a snowpack. Only when such a technique is available will it be possible to adequately separate the different degrees of constructive metamorphism and incorporate the important process of depth hoar formation into an overall strength theory. The need for continued field studies using carefully controlled conditions is obvious.

Figure 33. Centrifugal tensile strength vs large shear vane strength (Goose Lake, 1965).

LITERATURE CITED

Alford, D. L. and Weeks, W.F. (1965) Goose Lake, Montana, 1964: Accessibility, field methods and logistics, U. S. Army Cold Regions Research and Engineering Laboratory (USA CRREL) Special Report 77, 30 p.

Atwater, M. et al. (1953-1956) Studies in avalanche control, Alta progress reports, informal reports to U. S. Forest Service.

Bader, H. (1939) <u>Der Schnee und seine Metamorphose (Snow and its metamorphism</u>), Beiträge zur Geologie der Schweiz, Geotechnische Serie, Hydrologie, Lieferung 3. U. S. Army Snow Ice and Permafrost Research Establishment (USA SIPRE) Translation 14, 1954, 313 p.

(1962) Snow as a material, Cold Regions Science and Engineering, (F. J. Sanger, Editor), USA CRREL monographs, Part II, Sect. B, 79 p.

; Hansen, B.L.; Joseph, J.A.; and Sandgren, M.A. (1951) <u>Preliminary</u> investigations of some physical properties of snow, USA SIPRE Report 7, 48 p.

Ballard, G.E.H. and McGaw, R. (1965) <u>A theory of snow failure</u>, International Union of Geodesy and Geophysics, International Association of Scientific Hydrology, Symposium of Davos, Publication 69, p. 160-169.

and Feldt, E.D. (1966) A theoretical consideration of the strength of snow, Journal of Glaciology, vol. 6, p. 159-170, also USA CRREL Research Report 184, 1965.

Benson, C.F. (1962) <u>Stratigraphic studies in the snow and firn of the Greenland ice</u> sheet, USA SIPRE Research Report 70, 93 p.

Bilello, M.A. (1957) A survey of Arctic snow-cover properties as related to climatic conditions, USA SIPRE Research Report 39, 9 p.

(1966) Relationship between climate and variations in seasonal snowcover density in North America, International Conference of Low Temperature Science, Sapporo, Japan.

Bradley, C.C. (1965) The snow resistograph and slab avalanche investigations, International Association of Scientific Hydrology Publication 69, p. 251-260.

Brownlee, K.A. (1960) Statistical theory and methodology in science and engineering. New York: John Wiley and Son, Inc.

Butkovich, T.R. (1956) <u>Strength studies of high-density snow</u>, USA SIPRE Research Report 18, 19 p.

Bucher, E. (1948) <u>Beiträge zu den theoretischen Grundlagen des Lawinenverbaus</u> (Contribution to the theoretical foundations of avalanche defense construction), Beiträge zur Geologie der Schweiz, Geotechnische Serie, Hydrologie, Lieferung 6. USA SIPRE Translation 18, 1956, 109 p.

- Bull, C. (1965) The use of the Rammsonde as an instrument in determining the density of firn, Journal of Glaciology, vol. 2, p. 714-725.
- Cadling, L. and Odenstad, S. (1950) The vane borer, Royal Swedish Geotechnical Institute Proceedings, no. 2, 88 p.
- de Quervain, M. (1950) <u>Die Festigkeitseigenschaften der Schneedecke und ihre</u> <u>Messung (Strength properties of a snow cover and its measurement)</u>, Geo-<u>fisica Pura e Applicata</u>, vol. 18. USA SIPRE Translation 9, 1951, 8 p.

LITERATURE CITED (Cont'd)

Diamond, M. (1956) Studies on vehicular trafficability of snow, Part I, USA SIPRE Report 35, 24 p.

and Hansen, B.L. (1956) Use of a shear vane in snow, USA SIPRE Technical Report 40, 10 p.

- Dmitrieva, N.G. (1950) <u>Raschet plotnosti snezhnoga pokrova po meteorologi-</u> scheskim dannym (Calculation of snow-cover density using meteorological <u>data</u>), Meteorologiia i Gidrologiia, no. 2, USA SIPRE Translation 24, 4 p.
- Formozov, A.N. (1946) Sneyhnyi pokrovi kak faktor sredyi ego znachenie v zhizni mlekoptaiushikh i ptits (Snow cover and its importance in the ecology of mammals and birds), Moscow Society of Naturalists, Boreal Institute, University of Alberta Translation (occasional paper no. 1), 176 p.
- Gold, L.W. (1958) Changes in a shallow snow cover subject to a temperate climate, Journal of Glaciology, vol. 3, p. 218-222.
- Haefeli, R. and Brandenberger, F. (1964) "Messungen und Versuche in situ: Ramm-und Drehwiderstande (Measurements and experiments in the field: ram and shear resistance)" in <u>Faszikel Rheologie</u>, Report of the International Glaciological Greenland Expedition (EGIG), chapter 3.
- Ishiwara, K. (1955) Examples of snow surveys in Japan, Government Forest Experiment Station, Research on Snow and Ice, January, p. 203-236.
- Judson, A. (1965) The weather and climate of a high mountain pass in the Colorado Rockies, U. S. Forest Service Rocky Mountain Forest and Range Experiment Station Research Paper RM-16, 28 p.
- Klein, G. J. (1949) Canadian survey of the physical characteristics of snow-covers, Geografiska Annaler, heft 1-2, p. 106-124.
- Krumbein, W.C. and Grayhill, F.A. (1965) An introduction to statistical models in geology. New York. McGraw-Hill Book Company, 475 p.
- Mellor, M. (1964) Properties of snow, Cold Regions Science and Engineering, (F. J. Sanger, Editor), USA CRREL monographs, Part III, Sect. Al, 105 p.
- and Smith, J.H. (1965) <u>Strength studies on snow</u>, International Association of Scientific Hydrology Publication 69, p.
- Ramseier, R. (1963) Some physical and mechanical properties of polar snow, Journal of Glaciology, vol. 4, p. 753-769.
- Rikhter, G. D. (1945) <u>Snezhnyi pokrov, ego formirovanie i svoistva (Snow cover, its formation and its properties</u>), Akad Nauk SSSR, USA SIPRE Translation 6, 1954, 66 p.
- Roch, A. (1965) <u>Les variations de la résistance de la neige (Variations of the strength of snow</u>), International Association of Scientific Hydrology Publication 69.
- Rula, A.A. (1960) <u>Trafficability of snow, Greenland studies, 1955 and 1957</u>, U.S. Army Engineer Waterways Experiment Station Technical Memorandum no. 3-414, report 3, 65 p.
- Seligman, G. (1936) Snow structure and ski fields. Edinburgh: R. and R. Clark, Ltd., 555 p.
- Williams, G.P. and Gold, L.W. (1958) Snow density and climate, Transactions of the Engineering Institute of Canada, vol. 2, p. 91-94.
- Yoshida, Z. (1955) Physical studies on deposited snow, Contributions from the Institute of Low Temperature science, no. 7, 9, 11, 13, Sapporo, Japan.

APPENDIX A

	hose	×	×	×	×	××																	×	* *	< >	: ×	×	×	*>	< ×	×		And A	hoar											
	5	5000	3000	3000	2000	5500			50	00	001		29	2																			NU		100	40	20	220	350	000	200	0007	1-00	1000	1222
(p)	4	6.5	13.		4.5	5°.			٤.	~					13.	42.	26.	.10		.16	75.	72.			31.	12.	22.	5		16.	2.	996	4	4	-	••	1	2.	2.	2.	.21			14	
64 (Cont	•	110	. 304	. 315	- 532	. 524	1964		.108	011.	. 152	101.	150	190	. 252	. 284	. 322	875 .	174	. 380	. 396	405	. 333	205 .	320	. 330	. 332	. 278	. 324			1 11-1	•												
April 19	110	. 020	150.	110.	870 -	150.	26 April		- 015	- 205	200	200		. 056	060	. 243	. 179	6.1.	217	243	. 246	164 .	. 123	871.	054	990	.072	. 038	100	067	190	and 4. 27	en												
24 3. 24	3	. 017	. 631	.034	150.	. 119	Pit 3A.		. 020	600 -	600 .	210.	210	090	220.	.128	179		449	386	. 367	. 653	245	280.	068	. 065	. 060	E+0 -	150.	058	.085	Pits 3A	4.	3											
	S	.018	.028	. 028	440	.051			800	010	800	206.	110	067	.064	.116	502.	001	205	995	428	. 368	123	100	.056	.046	.072	.025	040	650	110.	Near		12	~ 10	200	210	. 027	210.	+60 .	.128	+07 -		440	
•	4	.060	-010	5	540.	. 073			C1C.	600 -	210	- IC -		611	. 985	.136	. 187	- 105	127	408	. 347	1155.	597.	190	068	. 077	. 068	110	+10.	++0	. 119			TT	000	200	600	510	210.	. 048	. 068	871 .	191	674	
۴	1	150	160	170	0.91	270			01	20	05			202	80	90	001		071	140	150	160	021	001	200	210	220	230	240	560	270		•	J			30	0	50	69	20	0.0	001	110	
									1																										1										
ONA S	tin ait	was pe	Indicate	-19-1			Death	hour															:	×>	* *	× ×	×	×	×>	< ×	×											×	×	×	
KEMENT	comb en	r the test	ben used				Z			0.14	0007	1000	2500	4500	5000	0009	6500	0002	0009	2000	7000	4000	3500	3500	2000	0008	1500	2000	3500	0007			100	004	800	956	0057	2000	0000	4500	2000	1 500	1100	1100	
MEASUF	terface	whether	Her D W				~	:		2 ~	•••	20	4	61	54	*	29			62	12	15		**	10	12	*8	72	+ 4	2	20		-	5	C1	24.					42.	27.	27.	18.	
VENG TH	w - air ir	indicate	te/cm			1 1964	•			107 -	104	288	204	. 351	. 331	. 380	. 364	0.04	112	101	. 370	. 406	402	+65 -	100	. 384	. 429	- 380	815 .	. 352	. 348	1964	248	. 265	. 314	. 328	\$75 ·	245	100	197	340	358	. 379	. 326	
ANE STE	elow sno	a Land	w densit	m ⁴).		13 April	SD	•																								24 April	500 .	1+0.	.061	060	040 -	101	746	123	190	. 102	101.	.051	
HEAR V	istance b	he letter	S INAIL S	ber (g/c)		Pit 2.	TD																									Pat 3.	. 026	. 048	102	162	6 T T T	1.44	273	327	245	. 102	. 122	.041	
EGIG S	erucal d	cm ²) - t	ge or me e-drilled	num essi				11	1.10	970	046	. 153	205	621.	. 243	179	+19 -	892	061	. 246	121.	. 246	. 368	190 .	680	101	· 22.9	1+1 .	150	.056	650.		1013	. 923	. 102	060.	. 176	201	442	246	130	. 123	. 192	. 0 38	
A XIQUE	on: Z. v	ngth (kg/	ie was pr	ian hard			."	4		070	041	. 286	644	. 327	. 367	6++ .	804	276	408	469	. 571	. 263	. 510	201 -	282	.061	. 327	- 165	190	996 .	. 105		610.	. 068	. 119	. 367	10.7	571		510	. 245	. 245	+22.	. 361	
APP	Notati	Par stre	it the ho	4. Canad			2			20	10	0+	50	60	20	0	06	001	120	130	140	150	160	180	190	20.3	210	077	240	250	260		10	7	20	Q	2 4	30	0.0	06	100	110	120	1 30	

																						A	F	Þ	P	El	NI	D	D	C	A																									
	Depth					*	<>	<>	< 3	×	×	×	×	×																	;	*	<>	< >	<>	<>	*	*																		
	CN																																									150	150	100	1000	5000	2000	000+	2000	3500	2500	5500	5000	6500		
	ac		25	83.	15							20.	5.	5.				÷.,			24.0				-		20.5		77.	34.5					17:	24		.+1				1.		١.	Ι.	1.	18.5	11.	28.	56.	50.5	90.	73.	.66		
	a	1	418	. 426	412	181				195 -	946	. 359	. 431	. 333		1 1966		107.	212 -		140			141	165	- 382	410	514	. 356	195 -	104	946	072	169	417	191	324			964		. 215	. 192	. 194	. 306	. 304	. 298	. 326	. 354	. 418	. 388	. 430	408	. 466		
1	SĽ															SU APri	0.0	010			190	290		201 -	611.	261.		0.7.4	1+1 -		871.		150		072	026	.026	. 102		7 May 1																
	2														1	71. 2.	010	010	240		162	048	7	0.1	611.	542-	C07 .	196.	542	101		111	040	990	102	.036	160.	160.		Pit 6.																
	5	146	115	141	056	036	010	120		010	10-	. 046	110 -	140 -				10.	820	410	190	115		261 .	507.	041	558	190.	260 .	100.	151	110	010	046	190	. 028	.041	.051				110.	060 -	. 026	.153	. 046	.056	.064	-174	. 123	.123	. 123	.123	. 368	124	
	5 -	286	. 265	. 388	122	.082	111	610	020	100.		150 -	120.	+10.			000	600	910	210	105	011	1.51	100	790 .	647 ·	\$77.	\$77 ·	647.		200	120	017	+20	265	180.	. 026	1EC -				.037	. 020	160.	150.	. 068	- 082	. 126	. 170	- 245	. 163	143	. 347	- 204	204	-
1	7	110	120	130	140	150	160	170			041	2007	017	077			10	0	201	4	205	09	-	2 4				011	071	041	150	160	170	180	140	200	210	220				10	50	30	-	20	60	10	09	06	100	110	120	130	140	
	hoar																	Denth	hoar															*	< >	< >	< ×	×	×	×	×	×														
2	c's	2000	2000	2000	2000	500	400	800	300	200								NO			100	-	02	220	350	009	200	0007	1 500	3500	3000	4000		2000	2003	2000	203	400	008	300	200															
0	4	75.	79.	67.	35.	34.	30.	18.		20.								2			.		-		2.5	<u>۲</u> .	12.	24.	29.	42.5	.25						II.		6.5	26.5	3.	3.				2.	2.	3.	Э.		14.		30.	17.		2.2
	•															1964		•	•		-		.175	. 148	. 256	292 .	. 332	. 372	. 348	. 386	1984	914 .	0.14	141	104	376	191	346	. 359	.431	. 333	. 303		11 1964		.144	181.	. 176	. 148	. 256	292	. 332	. 372	348		
SD	20															28 April		SD																										1. 29 Apr												
1.0																Pit 4.		2																										ear Pit 4												
	4	+11.	. 163	087 -	+07 .	- 082	.017	.077	.085	. 163	.020	150	040		-				S	000	070 .		c 10 ·	.013	.033	190.	- 067	. 230	511.	- 276		949	200	089	115	010	010	160.	060.	. 336	. 026	. 046		Z		.015	610.	.018	. 026	. 056	. 046	179	.079	460		-
	F	. 367	064	271 -	971	0.1.	. 060	.051	.071	. 327	. 017	04.1	1041	110					-		070		070 .	510.	. 043	. 077	. 102	542	. 163	195 .	-07	194	121	082	0.12	. 051	048	780.	.119	.034	.034	. 043				210.	. 020	. 036	. 066	. 086	- 085	184	. 184	388		
		0								-	•	-												0	0		0	0									-			-		_				-									1	

APPENDIX A

	Depth	1000		×	×	×	×	×	×	×	×	* *														×	×	×	×	×	*)	* >	<												×	*>	< >	: ×	×
	CN			nne c	2 500		2000		1000		1 590																									009	2003		1200	1 600	AAC 1	2590		3500		6077	0001		503
	æ		103.		47.5	63.	.65	19.	11.5	18.	\$	42.			~ ~	- 24			26.	28.	32.	23.		56.5		2	51.	3	38.	23.	11.	14. 5	.63			12.	•	ń	12.	6.71		1	20.	47.	17.5	13.		5.5	
H (Cont'd)	•		. 468	254		480	414	. 390	. 368	. 386	. 356			r 1966			100	438	084	464	. 472	. 434	. 532	- 512	110.	044	446	444	. 400	. 382	. 362	474	287.	1 1964		404	. 466	442	492	414	010	442	502	. 562	- 584	064	204	404	. 560
May 196	SD													. 19 May																				0. 23 Ma															
16 8. 15	9													Par 9																				pii 1(
a ,		2	. 368	997		260	100	190	. 756	1+0 .	.056	. 736				260.			203	215	276	1.374	460	164 .	122	100		184	.092	.061	190 .	190.	190 -			.123	240.	169	+19.	. 184	525	1. 574	645	184	.179	. 217	105	246 .	150.
	•	-	. 327	. 612	291.	191	200	. 782	-10	150.	. 785	150.	167 .			- 382	105 -		440	115	212	336	. 694	. 510	694	. 245	245	143	280	.082	140 .	- 28C	. 961			. 245	190 .	. 163	. 653	. 163	904	1.656	061	. 571	245	542 .	694	141 .	- 135
	2		130	140	051	001		00	200	219	220	230	047			1			20	83	52	08	90	100	110	120	00	051	160	170	100	061	200			10	20	30	42	53	5			11)	110	120	130	041	160
	Depth	hoar		×,	<>	< >	< >	**	×	×	×	×																*	* *	×	×	×	× >	<>	< >	×													
	CN		2200	2500	2000	0051		1000	000	004	00+				100		005	000	1000	2000	4500		5000		0009		0009	1000		3000		1000		0607						00+	300	000		1000		000+	0007	0000	1500
	R		72.	41.	53.	1.4	10.	2.5		0												22	64.5	33.	64.	90.	.111		4B.	36.	25.5	23.	18.5				:			17.	÷.	11	1	31.5	18.	54.	64°		108.
Cont 'd)	٩		.426	428	264	101	004 -	197	404				1964		151.	. 266	. 256	967				425	197	430	450	462	164 .	114	661	393	. 376	. 364	. 416	+++	976 .			1964		. 348	427.	435	1011	001	101	. 410	101	+2+	0.61
ay 1964 (ŝD												VAV																									15 May	•										
1 6. 7 M	9												Pit 7.													,												Pat 8.											
ฉี		S	.092	102	060 .	126	660.	224		1.1	056	***			.013	.026	.050	. 056	201.	226 .	671 -		512	. 123	. 368	.184	. 368	617.	100	191	511.	150.	.038	110	. 248	1.0.				260 .	970 -	179	160.	179	410	. 430	. 123	181	- 564
	e .	-1	. 245	. 286	. 082	. 163	280	190			.051	153			210.	110.	e11 .	510.	542.	195	. 105	104		. 163	469	. 286	- 286	592.	201 .	193	190	110	140.	910.	090	110				.153	150.	- 204	780.	191	167	104	. 163	115.	513
	.2		150	160	170	180	061	200	017	072	140	250			4.4	20	90	Ut	20	2	01	000	100	110	120	1 30	140	150	1 2 0	0.1	061	200	210	220	230	017	116.9			10	50	20		0.4	300	0.0	06	001	110

APPENDIX A

APPENDIX B: EGIG SHEAR VANE STRENGTH MEASUREMENTS FROM A SAMPLING GRID (8: May 1964, GOOSE LAKE)

*

18-19-1

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	ocation L. Time 12	5			-	Location 5. Time 190	0
			:			2	E	L1	
	2	11	11	ž	\$	-	110	520.	
	10	140.	89C .	. 128	647 ·	29	100	090	•
	30	076 .	150.	110.	780 .		150	+60	•
	95	. 296	. 068	SHC .	140.	2 2	286	327	
	20	.143	. 153	1.531	271 -	28	161	. 163	•
	5	064	. 499	111	156.	2	286	. 327	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	110	. 327	. 347	. 327			107	404	
	110	265	. 136	404 .	427 .	061		404	
	150	136	. 327	BOT .	. 469	150		217	
	173	161	163	. 245	542.	021		404	
Lactura L, Trare 100 Lactura L, Trare 100 1 001 <t< td=""><td>190</td><td>. 245</td><td>. 306</td><td>408</td><td>. 327</td><td>661</td><td>B04 *</td><td></td><td></td></t<>	190	. 245	. 306	408	. 327	661	B04 *		
			all and the second					Location 6. Time 20	8
			OCATION C. TIME 13	~					
				24.4	. 945	10	150.	611.	
	01	S+0.		100	017		043	090	
	10	10.	160.	110	280	29	102	.128	
	2	+60.	100 ·	714	404	22	119	.184	
	0.		191	245	.204	00	. 224	. 102	
	De	166.		067	408	110	. 163	184	
1000 1000	011	647	244	115	. 612	110	408	. 429	
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10	1 30	107 .	484	644	.245	150	. 449	. 367	
$ \begin{array}{ccccc} 1.253 & 1.245 & 1.45 & 1.45 & 1.45 & 1.245$	2	544	245	141	.143	170	. 265	067	
10 -0.01 -0.01 -0.01 200 -0.01 -0.01 -0.01 200 -0.01 -0.01 -0.01 200 -0.01 -0.01 -0.01 200 -0.01 -0.01 -0.01 200 -0.01 -0.01 -0.01 200 -0.01 -0.01 -0.01 200 -0.01 -0.01 -0.01 200 -0.01 -0.01 -0.01 200 -0.01 -0.01 -0.01 200 -0.02 -0.01 -0.02 200 -2.05 -1.02 -1.02 200 -2.05 -1.02 -1.02 200 -2.05 -1.02 -1.02 201 -2.05 -1.02 -1.02 201 -2.05 -1.01 -1.02 201 -2.05 -1.01 -1.02 201 -2.05 -1.01 -1.03 201 -2.05 -2.04 -1.03 201 -2.05 -2.04 -2.04 201 -2.05 -2.01 -2.04 201 -2.04 -2.04 -2.04 201 -2.04 -2.04 -2.04 <td></td> <td></td> <td>245</td> <td>. 245</td> <td>.429</td> <td>190</td> <td>. 327</td> <td>592 -</td> <td></td>			245	. 245	.429	190	. 327	592 -	
Location J. Time 1545 10 -0.91 -0.11 -714 -165 70 -1022 -0.91 -714 -165 70 -1022 -0.91 -0.12 -1026 70 -1022 -0.91 -0.26 -0.61 70 -1022 -0.91 -0.26 -0.61 1100 -1222 -0.91 -0.26 -1026 1100 -1222 -1002 -1022 -1026 1100 -1227 -1012 -1026 -1026 1100 -1227 -1012 -1026 -1026 1100 -1016 -1016 -1016 -1016 1100 -1016 -1016 -1016 -1016 1100 -1016 -1016 -1016 -1016 1100 -1016 -1016 -1016 -1016 1100 -1016 -1016 -1016 -1016	0.1								
10 -011 -011 -011 201 -011 -011 -011 201 -011 -011 -011 201 -011 -011 -011 201 -011 -011 -012 201 -011 -011 -012 201 -011 -012 -011 201 -011 -012 -011 201 -110 -110 -112 201 -111 -111 -111 201 -111 -011 -011 201 -111 -011 -011 201 -111 -011 -011 201 -111 -011 -011 201 -111 -011 -011 201 -111 -011 -011 201 -111 -011 -011 201 -1119 -011 -011 201 -1119 -011 -011 201 -1119 -011 -011 201 -1119 -011		-	ocation 3. Time 15	45					
000 001 001 000 002 001 000 002 001 000 002 001 000 002 001 000 002 001 000 002 001 000 002 001 000 002 001 000 002 001 000 003 001 000 003 001 000 003 001 000 004 001 000 004 001 000 004 001 000 004 001 001 004 001 001 004 004 001 004 004 001 004 004 001 004 004 001 004 004 001 004 004 001 004 004 001 004 004 002 004 004 004 004 004 004 004 004 005 004 004 004 004			061	- 714	.145				
77 77 102 102 77 111 102 102 111 103 104 104 114 104 104 104 115 104 104 104 115 104 104 104 116 104 104 104 116 104 104 114 116 104 114 114 116 114 114 114 116 114 114 114 116 114 114 114 116 114 114 114 116 114 114 114 116 114 114 114 116 114 114 114 116 114 114 114 116 114 114 114 116 114 114 114 116 114 114 114 116 114 114 114 116 114 114 114 116 114 114 114 116 114 114 114 116 114 114 <td>2</td> <td></td> <td>210</td> <td>041</td> <td>.026</td> <td></td> <td></td> <td></td> <td></td>	2		210	041	.026				
70 1100 100 100 1100 1245 100 1245 100 122 1245 1245 122 1245 1245 122 1245 1245 122 1245 1245 122 1245 1245 122 1245 1245 124 1245 1245 124 1245 1245 124 1245 1245 124 1245 1245 124 1245 1245 141 1245 1245 141 1245 1245 141 1245 1245 141 1245 141 141 1245 141 141 1245 141 141 1245 141 141 1245 141 141 124 141 141 124 141 141 125 141 141 126 141 141 124 141 141 124 141 124 141 125 141 126 141 <t< td=""><td>20</td><td>100.</td><td></td><td>127</td><td>. 102</td><td></td><td></td><td></td><td></td></t<>	20	100.		127	. 102				
1 1 <td>2</td> <td>276.</td> <td></td> <td>167</td> <td>184</td> <td></td> <td></td> <td></td> <td></td>	2	276.		167	184				
110 245 141 161 150 127 167 111 170 128 127 161 170 128 161 176 170 128 161 176 170 128 184 171 184 238 184 176 184 238 184 101 184 238 184 100 184 184 101 101 190 016 014 101 101 014 1119 101 102 014 1119 101 103 128 224 110 128 224 111 120 114 112 128 224 113 128 234 114 128 124 115 128 244 116 128 124 117 120 141 118 140 140 119 128 141 119 128 141 119 140 141 119 140 119 140	0.		004	122	. 327				
100 127 167 714 176 170 127 167 114 176 170 126 127 161 176 170 126 127 161 176 181 184 147 161 176 184 184 184 147 161 184 184 147 164 161 184 184 147 164 161 184 184 119 101 101 10 051 119 119 101 10 051 128 124 10 187 187 119 10 186 128 124 10 186 128 124 10 186 128 124 110 186 128 124 111 186 128 147 112 186 169 149 111 190 140 141 112 140 141 141 113 140 141 114 141 141 115 141 141 116 <td></td> <td>1.667</td> <td>545</td> <td>141</td> <td>. 163</td> <td></td> <td></td> <td></td> <td></td>		1.667	545	141	. 163				
170 286 127 612 510 170 163 164 171 600 163 164 164 164 600 164 164 164 164 166 165 164 164 164 100 160 065 104 104 100 10 065 014 119 001 10 065 014 119 014 10 051 014 119 101 10 065 128 204 141 110 128 204 141 111 128 204 141 112 167 204 141 113 167 204 141 114 167 128 128 115 167 128 128 116 167 140 112 117 167 128 140 118 167 128 140 119 167 140 140 119 160 140 140 119 140 140 140 110 140 140		262	167	+12.	. 776				
170 181 181 101 163 181 181 101 10 163 181 147 10 065 181 119 10 065 014 101 10 065 014 101 110 051 014 101 110 051 014 101 110 051 014 101 111 024 014 104 112 025 014 104 113 026 014 104 110 128 123 124 111 128 124 124 112 123 124 124 113 126 124 124 114 100 104 144 115 100 104 144 110 103 140 112 111 112 112 124 112 112 124 124 113 147 140 144 114 140 140 144 115 140 140 144 112 140 140 <td>160</td> <td></td> <td>127</td> <td>. 612</td> <td>. 510</td> <td></td> <td></td> <td></td> <td></td>	160		127	. 612	. 510				
100 .163 .184 .347 .400 10 .085 .084 .119 .017 10 .085 .043 .119 .017 10 .085 .044 .017 .017 10 .085 .044 .017 110 .085 .014 .017 111 .119 .017 .014 112 .128 .224 .224 113 .128 .224 .224 114 .224 .224 .224 112 .128 .224 .244 112 .264 .128 .224 113 .409 .673 .477 114 .510 .409 .419 112 .409 .412 .412	1 70	147	245	181.	904 .				
Location 4. Time 1645 Location 4. Time 1645 10 .085 .043 .017 30 .051 .026 .014 .017 50 .116 .026 .014 .017 70 .127 .286 .049 .017 90 .128 .224 .026 .128 110 .286 .060 .147 .224 90 .128 .224 .224 .224 91 .204 .128 .224 .224 91 .27 .204 .128 .224 110 .504 .128 .224 .224 911 .204 .128 .224 .128 112 .409 .671 .409 .651 .112 .510 .409 .409 .409 .112 .714 .490 .409 .409 .714 .490 .401 .401 .401	061	. 163	.184	. 347	. 408				
10 .065 .041 .017 .017 50 .065 .041 .017 .017 50 .065 .041 .017 .017 50 .065 .041 .017 .017 51 .051 .017 .017 .017 51 .051 .016 .017 .017 51 .051 .051 .016 .017 51 .051 .051 .051 .017 51 .051 .051 .051 .051 51 .051 .051 .051 .051 51 .051 .051 .051 .051 51 .051 .051 .051 .051 51 .051 .051 .051 .051 51 .051 .051 .051 .051 51 .051 .051 .051 .051 51 .051 .051 .051 .051			1						
10 .085 .049 .017 50 .051 .019 .017 50 .051 .026 .019 50 .051 .021 50 .051 .026 51 .051 .017 50 .051 .026 51 .051 .026 52 .128 .026 547 .286 .060 510 .018 .018 510 .018 .018 510 .018 .018 510 .018 .018 510 .018 .018 510 .018 .018 .018 .018 .018 .018 .018 .018 .019 .018 .018 .010 .018 .018 .011 .018 .018 .011 .018 .018 .011 .019 .018 .011 .019 .018 .011 .011 .011 .011 .012 .012 .011 .012 .012 .011 .012 .012 .011 .012 .012 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
10 .051 .026 .014 .034 50 .051 .026 .014 .034 50 .051 .026 .014 .034 70 .156 .051 .128 .224 90 .128 .026 .128 .224 91 .051 .067 .128 .124 92 .127 .264 .184 110 .127 .204 .184 120 .184 .447 .184 110 .121 .184 .184 120 .184 .184 .184 110 .184 .184 .184 110 .184 .184 .184 110 .184 .184 .184 111 .184 .184 .184 112 .184 .184 .184 112 .184 .184 .184 112 .184 .184 .184 1110 .184 .184 .184 1110 .184 .184 .184 1110 .184 .184 .184 1120 .184 .184 .184 1120 .184		085	.045	611.	210.				
50 115 051 128 224 70 126 060 147 90 127 206 184 91 167 204 147 92 127 204 184 93 127 204 149 10 128 651 162 130 147 651 163 170 71 490 163 170 710 162 1.120		150	. 026	101	.034				
70 .367 .286 .060 .347 90 .327 .204 .184 90 .327 .204 .43 110 .327 .204 .447 130 .347 .653 .653 140 .409 .663 .653 170 .347 .612 .1.120 170 .714 .490 .469	20	. 136	150.	. 128	922 -				
9 .127 .167 .204 .147 110 .127 .204 .149 .651 120 .140 .651 .651 120 .140 .406 .651 120 .140 .401 .651 120 .149 .490 .490 170 .714 .490 .490	10	. 367	. 286	090	1 9 4 2				
110 127 204 449 561 130 586 406 671 651 150 510 169 512 170 714 490 512 170 714 490 490	66	. 327	. 367	107					
130 . 386 . 406 . 510 . 510 150 . 347 . 510 . 469 . 512 170 . 714 . 490 . 512 . 714 . 490 . 512 . 140	611	. 327	507	6++					
	130	. 388	807	519.	C15				
	150	. 347	015	101	1 120				
	170	\$12°	144.		067 .				

APPENDIX B

1 5288828238

APPENDIX C: EGIG SHEAR VANE STRENGTH MEASUREMENTS AT ABLATION STAKES (15-18 May 1964, GOOSE LAKE)

Notation: see Appendix A. Ablation stake number given first followed by vane size; ZN, the sample position in the snow pack measured from the snow-air interface divided by the total thickness of the pack.

-	ZN	15	25	35	45	55	65	75	85	95	175	110	
	.05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95	. 128 . 051 . 215 . 184 . 552 . 215 . 064 . 179 . 077 . 179	. 153 . 051 . 230 . 184 . 246 . 491 . 368 . 123 . 064 . 077 . 051	.077 .179 .246 1.228 1.074 .184 .921 .307 .179 .051 .179	. 217 . 051 . 767 . 307 . 737 . 153 . 522 . 064 . 038 . 077 . 153	.153 .051 .153 .215 .307 .491 .123 .077 .064 .038 .001	.056 .128 .133 .600 .614 .400 .184 .092 .061 .060 .051	. 128 . 090 . 051 . 614 . 368 . 184 . 061 . 205 . 054 . 077 . 217	. 230 . 179 . 767 . 184 . 368 . 123 . 460 . 123 . 051 . 077 . 192	95 .153 .077 1.258 1.074 .614 .246 .338 .217 .152	125 .077 .179 .256 .184 1.535 .307 .368 .737 .184 .102	135 .077 .230 .179 .338 1.368 .491 .614 .491 .090 .217	
										/-		. 102	

2

APPENDIX B: EGIG SHEAR VANE STRENGTH MEASUREMENTS FROM A SAMPLING GRID (8 May 1964, GOOSE LAKE)

1-16

ser Appendix A. The operators are designated by number after Notation. the

APPENDIX B

.

APPENDIX C: EGIG SHEAR VANE STRENGTH MEASUREMENTS AT ABLATION STAKES (15-18 May 1964, GOOSE LAKE)

Notation: see Appendix A. Ablation stake number given first followed by vane size; ZN, the sample position in the snow pack measured from the snow-air interface divided by the total thickness of the pack.

 ZN	15	25	35	4S	5 S	65	75	85	95	125	135	
. 05	.128	.153	. 077	. 217	.153	. 056	. 128	. 230	. 153	. 077	. 077	
.1	.051	. 051	.179	.051	.051	.128	. 090	.179	.153	.179	.230	
. 2	.215	. 230	. 246	. 767	.153	.133	. 051	. 767	.077	. 256	.179	
. 3	. 184	. 184	1.228	. 307	.215	. 600	. 614	.184	1.258	. 184	. 338	
. 4	. 552	. 246	1.074	.737	. 307	.614	. 368	. 368	1.074	1.535	1.368	
. 5 .	. 522	. 491	.184	.153	. 491	. 400	.184	. 123	. 614	. 307	. 491	
. 6	.215	. 368	. 921	. 522	.123	.184	. 061	. 460	.246	. 368	614	
.7	. 064	.123	. 307	. 064	.077	. 092	. 205	. 123	. 338	. 737	. 491	
. 8	.179	. 064	.179	. 038	. 064	. 061	. 054	. 051	.217	. 184	090	
.9	.077	.077	.051	.077	. 038	.060	.077	.077	.152	. 102	.217	
. 95	.179	. 051	.179	. 153	.001	.051	.217	. 192	. 090	. 179	. 102	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Notation: same as Appendix A exception: same as Appendix A exception of the second with large shear neasured with centrifugal tester. Plt of 28 March 19	TA (GOOSE LAK)., 1965						
		<u>Notation:</u> same as Appendix A excep (cm ¹) as measured with large shear ¹ neasured with centrifugal tester. Pit of 28 March 19			Z	e	-0	10	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		fom") as measured with large shear , measured with centrifugal tester , Pit of 28 March 19,	pt that es is "in situ" si	hear strength	\$.106		600 -	
		Pit of 28 March 19	vane and et in tensile a	trength (kg/cm ²)	0	100		290.	
		Pit of 28 March 19			50	.126	. 002	.015	
		4	65 (Jamesway site)		25	. 146		140.	
					20	. 1 58	.006	. 132	
			10 01	×	55	101	210	. 1 57	
		6. 801. 2	010	1		201	150	. 105	
		10 · · · · · · · · · · · · · · · · · · ·	500	1	25	236		550	
		13 . 136		-	69	.226		256	
		0. 291. 07	500		65	272		1.156	
		101 . 101		-	20	- 266	160	628	-
		0. 044 21	610		75	. 318		. 650	-
					68	. 318		. 603	-
		45		-	65	. 318		1.251	-
		50 .112 0			66	. 3 3 8	.112	. 504	-
		55 I.2M			56	. 342		1.561	
		60 240	74		001	. 344		2.053	-
		65 252		- (501	. 346		1.936	~
		70 .114	10		110	. 384	. 164	2. 437	•
		75			511	. 382			m
		A0 520			120	. 392		2.488	•
11. 11. 11. 11. 11. 11. 11.		8 5 . 352			125	. 394		2.813	61
9.9 1.00 1.00 1.00 1.00 1.00 1.00 1.100 1.100 1.100 1.100 1.000 1.000 1.100 1.100 1.100 1.100 1.000 1.100 1.100 1.100 1.100 1.000 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100	9.1 1	90	~		150	. 378	. 254	3. 524	
100 111 <td>Production 100 100</td> <td>95</td> <td></td> <td></td> <td>135</td> <td>. 386</td> <td></td> <td>3.26%</td> <td>61</td>	Production 100 100	95			135	. 386		3.26%	61
100 100 100 100 100 100 100	1 1	100 . 162							
110 110 110 110 110 140 140 140 110 1		110 .352 .2	20			+ lo 114	April 1965 (Jam	caway site)	
1100	110 140 140 1	120 . 392 3		4					
140 -490 -490 180 -491 -87 180 -491 -87 180 -491 -87 180 -491 -87 180 -491 -87 180 -491 -87 180 -491 -87 191 -87 -97 192 -97 -97 193 -97 -97 193 -97 -97 193 -97 -97 193 -97 -97 193 -97 -97 194 -97 -97 195 -97 -97 194 -97 -97 195 -97 -97 195 -97 -97 196 -97 -97 196 -97 -97 197 -97 -97 197 -97 -97 197 -97 -97 197 -97 -97 197 -97	1400 .400 .400 1700 .400	130 . 394	06		0 4	1011		100.	
1100	1100	140 .400 .40	06	56		151		100.	
100 -446 -057 -057 100 -448 -020 -01 100 -448 -00 -01 220 -490 -00 -01 220 -490 -00 -01 220 -490 -00 -01 220 -490 -00 -01 220 -490 -00 -01 220 -490 -00 -01 220 -490 -01 -01 220 -490 -01 -01 221 -110 -110 -01 222 -112 -010 -01 222 -112 -010 -010 222 -112 -010 -010 222 -124 -000 -010 222 -124 -000 -010 211 -124 -010 -010 211 -010 -010 -010 211 -010 -010 -010 211 -010 -010 -010 <td>1100 </td> <td>150 . 438</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1100	150 . 438							
170 -410 -410 -100 170 -426 -511 -951 -910 -100 2200 -440 -511 -910 -910 -100 2200 -440 -510 -170 -001 -910 2200 -440 -171 -001 -910 -100 2100 -510 -174 -001 -170 -001 220 -510 -174 -001 -170 -001 2100 -510 -174 -001 -170 -001 2111 100 -174 -001 -170 -001 2101 -522 -011 106 -276 -001 2111 114 10 -276 -010 -010 2120 -512 -010 -276 -010 -010 2131 -522 -010 -276 -010 -010 214 -520 -010 -276 -010 -010 2150 -510 -114 -010 -114 -010	1100 -410 -0.0 2000 -490 -0.0 2000 -490 -110 2000 -490 -111 2000 -490 -1110 2010 -490 -1110 2010 -490 -1110 2010 -490 -1110 2010 -490 -1110 2010 -490 -1110 2010 -491 -1110 2010 -1120 -1110 2010 -1120 -1120 2010 -1120 -1120 2010 -2010 -1170 2010 -2010 -1170 2010 -2010 -1170 2010 -2010 -1170 2010 -2010 -1170 2010 -2010 -1170 2010 -2010 -1170 2010 -2010 -1170 2010 -2010 -1170 2010 -2010 -1170 2010 -2010 -1170 2010<	160 .426 .85	57	66	29	200		1.1.1.1	
100 -428 -0.0 9,1 200 -458 -551 111 200 -466 -551 111 210 -406 -561 111 210 -406 -561 111 210 -406 -671 101 210 -512 -101 -013 210 -512 -114 -003 210 -174 -013 211 -174 -013 212 -174 -013 213 -226 -060 214 -228 -060 214 -228 -060 214 -228 -060 215 -228 -060 214 -228 -060 215 -228 -060 216 -201 -070 217 -228 -060 218 -214 -010 219 -214 -010 210 -214 -010 2114 -010 -014 <tr< td=""><td>1420 1420 1420 2200 1426 551 2200 1426 551 2200 1426 551 2200 1426 551 2200 1426 560 2100 111 100 2100 114 10 2100 114 10 211 114 10 2120 114 10 5121 104 001 5222 511 200 5123 511 200 514 200 104 522 114 10 522 511 200 512 114 10 513 205 205 514 205 114 205 215 104 100 114 10 114 10 100 114 10 104 114 10 104 100 104 100 114 10</td><td>170 .418</td><td></td><td>113</td><td>00</td><td>160</td><td></td><td></td><td></td></tr<>	1420 1420 1420 2200 1426 551 2200 1426 551 2200 1426 551 2200 1426 551 2200 1426 560 2100 111 100 2100 114 10 2100 114 10 211 114 10 2120 114 10 5121 104 001 5222 511 200 5123 511 200 514 200 104 522 114 10 522 511 200 512 114 10 513 205 205 514 205 114 205 215 104 100 114 10 114 10 100 114 10 104 114 10 104 100 104 100 114 10	170 .418		113	00	160			
220 -458 551 111 551 220 -440 -551 111 -005 240 -612 111 -003 210 -512 -117 -003 210 -512 -117 -003 210 -512 -612 114 -003 210 -512 -612 114 -003 210 -522 -613 104 -003 211 202 -174 -013 212 -512 117 -003 213 -522 -617 114 214 203 -226 -003 213 -226 -226 -013 214 -225 -314 -013 215 -226 -174 -010 216 -266 -060 -060 213 -226 -266 -060 214 -203 -226 -014 215 -255 -114 -010 214 -266 -060 -060 215 -256 -114 -010 216 -126 -136 -010 216 -136 -146 -010 </td <td>220 - 440 - 551 111 220 - 440 - 551 117 220 - 440 - 551 117 220 - 440 - 551 117 220 - 440 - 551 117 220 - 512 - 117 - 003 210 - 512 - 117 - 003 210 - 512 - 117 - 003 211 - 206 - 003 - 206 220 - 513 - 206 - 003 211 - 206 - 003 - 206 211 - 205 - 206 - 003 211 - 205 - 206 - 003 211 - 205 - 206 - 004 211 - 205 - 206 - 004 211 - 205 - 206 - 010 212 - 205 - 206 - 010 214 - 205 - 206 - 010 214 - 205 - 206 - 010 214 - 205 - 206 - 010 210<!--</td--><td>160 .428 .62</td><td>50</td><td>93</td><td></td><td></td><td></td><td>0.1</td><td></td></td>	220 - 440 - 551 111 220 - 440 - 551 117 220 - 440 - 551 117 220 - 440 - 551 117 220 - 440 - 551 117 220 - 512 - 117 - 003 210 - 512 - 117 - 003 210 - 512 - 117 - 003 211 - 206 - 003 - 206 220 - 513 - 206 - 003 211 - 206 - 003 - 206 211 - 205 - 206 - 003 211 - 205 - 206 - 003 211 - 205 - 206 - 004 211 - 205 - 206 - 004 211 - 205 - 206 - 010 212 - 205 - 206 - 010 214 - 205 - 206 - 010 214 - 205 - 206 - 010 214 - 205 - 206 - 010 210 </td <td>160 .428 .62</td> <td>50</td> <td>93</td> <td></td> <td></td> <td></td> <td>0.1</td> <td></td>	160 .428 .62	50	93				0.1	
200 440 171 171 210 551 111 100 250 460 561 001 210 551 111 101 251 510 174 001 252 561 100 101 252 561 101 101 252 561 100 101 252 561 100 101 252 561 100 101 252 551 126 101 252 552 100 101 252 552 100 101 253 55 126 101 254 55 126 101 255 555 114 010 255 555 126 114 255 555 126 114 255 555 126 114 100 555 126 114 110 126 126 126 111 126	111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 1	190 . 458		133		Pat of 5	April 1965 [Tra	ler altel	
220 -490 111 10 -170 000 100 -551 10 174 00 110 -522 -673 174 001 110 -522 -673 174 001 110 -522 -673 174 001 111 10 -170 -011 001 110 -522 -673 174 001 111 10 -226 -206 -011 111 10 -228 -228 -000 111 10 -228 -228 -228 111 10 -228 -228 -228 111 10 -228 -238 -238 111 10 -238 -238 -238 111 10 -238 -238 -238 111 205 -238 -338 -338 111 -238 -338 -338 -338 1111 -238 -338 -338 -348 111 -238 -348 -368 -348 1111 -238 -348 -368 -348 1111 -248 -348 -348 </td <td>2.20 </td> <td>200 · 426 · 55</td> <td>15</td> <td>174</td> <td></td> <td></td> <td></td> <td></td> <td></td>	2.20	200 · 426 · 55	15	174					
100 101 101 101 110 522 511 101 111 102 202 111 102 203 111 102 204 111 102 205 111 102 205 111 102 205 111 103 205 111 103 205 111 103 205 111 104 205 111 105 101 111 105 101 111 105 101 111 105 101 111 105 101 111 104 106 111 105 101 111 105 101 111 105 101 111 106 101 111 106 101 111 106 101 111 101 101 111 101 101 111 101 101 111 101 101 111 101 101 111 101 101 101 <td>100 101 101 101 110 522 522 101 101 111 101 101 101 101 1120 522 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101</td> <td></td> <td>0.4</td> <td>114</td> <td>10</td> <td>.170</td> <td>003</td> <td></td> <td></td>	100 101 101 101 110 522 522 101 101 111 101 101 101 101 1120 522 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101 111 101 101 101 101		0.4	114	10	.170	003		
320 522 673 104 30 266 060 140 522 673 174 30 266 060 150 522 673 174 30 278 060 170 522 603 174 30 278 060 170 522 605 174 30 252 170 514 255 555 252 170 514 208 50 314 170 514 208 56 314 170 514 208 516 004 100 514 208 516 006 114 205 516 010 101 514 205 516 101 514 206 516 101 514 206 516 101 514 206 516 101 516 75 516 114 216 75 516 114 216 196 010 114 216 196 196 114 216 196 196 114 216 196 <t< td=""><td>200 522 673 164 30 266 060 300 522 522 673 174 30 266 300 522 532 278 278 278 310 522 531 153 278 278 310 522 532 164 30 278 310 532 533 255 535 255 311 205 535 535 146 30 312 535 535 535 535 146 314 205 545 505 146 00 400 531 214 205 545 505 314 205 545 505 146 00 410 552 545 505 146 00 410 552 545 505 146 00 514 205 545 505 146 00 410 551 196 00 146 146 514 50 146 00 146 146 515 516 00 146 00 146 516 516</td><td></td><td></td><td>181</td><td>20</td><td>194</td><td>.013</td><td></td><td></td></t<>	200 522 673 164 30 266 060 300 522 522 673 174 30 266 300 522 532 278 278 278 310 522 531 153 278 278 310 522 532 164 30 278 310 532 533 255 535 255 311 205 535 535 146 30 312 535 535 535 535 146 314 205 545 505 146 00 400 531 214 205 545 505 314 205 545 505 146 00 410 552 545 505 146 00 410 552 545 505 146 00 514 205 545 505 146 00 410 551 196 00 146 146 514 50 146 00 146 146 515 516 00 146 00 146 516 516			181	20	194	.013		
110 222 278 278 150 522 21 15 278 150 522 205 15 225 171 155 155 255 255 170 511 205 105 225 170 511 205 105 205 170 511 205 105 205 170 511 205 505 106 170 510 205 505 114 0070 100 510 205 505 114 010 100 556 505 114 010 011 100 556 505 114 010 010 110 556 505 114 010 010 111 205 505 114 010 010 110 556 114 010 010 010 111 101 101 010 010 010 1111 101 101 01	174 174 174 174 174 179 522 228 174 174 179 522 174 174 179 522 174 174 179 522 175 175 179 522 175 175 179 531 175 175 179 531 175 175 179 531 175 175 179 531 175 175 179 531 175 175 179 531 175 175 179 545 555 175 179 545 555 176 179 545 566 174 179 546 565 176 179 546 566 176 179 546 566 176 179 546 566 176 170 546 566 176 171 546 566 176 171 546 566 176 171 547 566 176 171 546 566 176 171		21	101	30	. 266	. 060		1
370	370 .226 360 .314 371 .48 372 .48 373 .514 374 .514 375 .514 370 .514 371 .514 372 .514 373 .514 374 .514 375 .514 370 .514 371 .514 372 .514 373 .514 374 .514 375 .514 375 .514 375 .514 375 .514 375 .514 375 .514 375 .514 375 .514 375 .514 375 .514 375 .514 375 .514 375 .514 375 .514 375 .514 375 .514 375 .514 <t< td=""><td>140</td><td></td><td>P.1</td><td>35</td><td>. 278</td><td></td><td></td><td></td></t<>	140		P.1	35	. 278			
360 -148 55 -252 -252 377 -514 -004 -114 -004 377 -514 -010 -010 310 -514 -010 -010 410 -520 -314 -010 410 -520 -314 -010 410 -520 -314 -010 410 -520 -314 -070 410 -526 75 -314 426 75 -314 -070 410 -526 75 -314 426 75 -314 -070 430 -526 85 -364 430 -364 -070 430 -364 -070	350 45 252 45 370 514 205 352 380 514 205 352 380 514 205 352 380 514 205 352 390 514 205 352 310 514 206 352 400 511 205 352 400 511 205 314 200 514 006 314 410 526 351 314 410 526 364 070 410 526 364 070 410 536 364 070 410 546 364 070 545 364 070 546 364 070 547 364 070 548 364 076 549 364 076 544 364 076 545 364 076 546 364 076 547 364 076 548 364 076 549 364 076 540 364 076	275		155	40	. 226			
370 514 205 50 108 .004 380 5310 .552 552 552 .552 380 .531 .055 .552 .552 .552 390 .531 .552 .552 .552 .552 300 .531 .056 .552 .552 .016 410 .550 .114 .070 .114 .070 410 .551 .314 .070 .114 .070 410 .551 .314 .070 .114 .070 410 .551 .314 .070 .114 .070 410 .551 .314 .070 .114 .070 410 .551 .356 .364 .070 .126 426 .364 .070 .364 .070 .426 .364 .070 .364 .070 .426 .364 .070 .364 .070 .426 .364 .070 .364 .070	170 100 100 100 180 530 50 152 190 531 152 152 190 531 152 152 190 531 152 152 190 545 60 146 190 545 60 146 190 545 60 146 190 545 60 146 191 196 70 146 191 226 85 50 191 226 196 070 191 226 80 166 191 106 166 166 192 196 166 166 193 164 166 166 194 100 166 166 195 166 166 166 196 166 166 166 196 166 166 166 196 166 166 166 197 166 166 166 198 166 166 166 198 166 166 166 198 166 166 <	160 488		606	45	. 252			•
300 .530 55 .352 390 .530 .140 390 .545 60 .140 390 .540 .140 .070 400 .520 75 .354 .070 410 .520 75 .354 .070 410 .520 75 .356 .070 420 .314 .070 .114 .070 420 .356 .366 .070 420 .364 .070 .364 420 .364 .070 .426 .364 .070 .426 .364 .070	300 .532 .352 310 .530 .352 400 .510 .314 .520 .60 .314 .600 .510 .314 .600 .510 .314 .600 .526 .66 .520 .526 .358 .114 .070 .126 .314 .126 .358 .126 .358 .126 .354 .070 .314 .126 .358 .126 .354 .070 .314 .070 .314 .070 .314 .070 .314 .070 .314 .070 .314 .070 .314 .070 .314 .070 .314 .070 .314 .070 .3164 .070 .3164 .070 .070 .070 .070 .070 .3164 .070 .3164 <td></td> <td></td> <td>555</td> <td>50</td> <td>. 308</td> <td>. 084</td> <td></td> <td>-</td>			555	50	. 308	. 084		-
390 .510 .348 400 .520 60 .348 410 .520 .070 .314 .520 .314 .070 410 .520 .314 .520 .314 .070 410 .520 .314 .520 .314 .070 .520 .314 .070 .520 .314 .070 .520 .314 .070 .520 .358 .070 .141 .226 .364 .142 .364 .070 .142 .364 .070 .142 .364 .070	300 .530 .90 .340 400 .520 .96 .114 410 .520 .314 .070 410 .520 .314 .070 410 .520 .526 75 .314 410 .520 .564 .070 410 .520 .564 .070 .148 .070 .314 .070 410 .526 .85 .364 .148 .070 .364 .070 .148 .070 .364 .070 .149 .070 .364 .070 .141 .070 .364 .070 .142 .364 .070 .364 .142 .364 .070 .070 .142 .364 .070 .070 .142 .364 .070 .070 .142 .364 .076 .226 .143 .076 .364 .076	380 510		502	55	. 352			-
400 500 500 196 70 314 10 410 520 226 70 314 .070 410 520 358 .070 10 410 520 358 .070 10 410 .520 226 80 .364 12 420 .914 .070 .070 10 420 .544 .070 .070 .070 430 .426 85 .364 .070 430 .364 .096 .096 .096	400 .500 194 .010 .114 410 .520 .520 .914 .070 410 .520 .526 70 .314 420 .514 .070 .114 .520 .526 80 .358 .10 .526 80 .364 .11 .226 80 .364 .12 .144 .070 .14 .070 .144 .10 .526 80 .14 .070	615 061			04	. 348			11
410 .520 70 .314 .070 10 420 .514 .070 .12 .358 .070 12 420 .514 .070 .12 .356 .070 12 430 .426 83 .364 .096 .22	410 .520 70 .314 .070 16 420 .514 .070 12 .358 .358 12 420 .514 .226 80 .364 11 430 .426 85 .364 .096 21 430 .364 .096 .364 .096 21	400		507	69	. 314			10
420 .514 .256 .358 .358 .12 .256 .364 .096 .226 .364 .096 .226 .362 .362 .362 .266 .362 .266 .362 .266 .362 .266 .362 .266 .362 .266 .366 .226 .366 .266 .366 .266 .366 .266 .366 .266 .366 .3	420 .514 .226 75 .358 .11 430 .426 80 .364 .11 226 85 .364 .096 .24 95 .358 .096 .21	410 520		941	20	. 314	.070		10
430 .426 80 .364 10 226 85 .362 26 90 .364 .096 22	430 .426 .50 .564	15 074		977	75	. 358			12
26 364 . 365 . 26 26 26 26 26 26 26 26 26 26 26 26 26	12 960 196 196 197 196 197 196 197 196 197 196 197 196 196 197 196 197 196 197 197 197 197 197 197 197 197 197 197	430		977	80	. 364			
90 . 1564 . 22	12 - 364			977	58	. 362			26
	95 358				06	- 364	.096		22

APPENDIX D

	70	85	2	P	3	1.	
		23	10			• • • •	
	33	\$:	15	. 122	110.	- 057	
	73	22	52	. 216	670.	454	
		27	02	. 186		. 212	
	21		40.4	100	010 .	. 247	
.1.		19	45	. 236	.049	1.003	
		70	20	.264		496	
i		69	55	104	. 146	1.196	
		25	84	940	541		
of 8 April 196	(Jamesway sile)		20	278	. 140	1.207	
			25	. 314	. 146	1.435	
	120.	-	06	. 306		1. 334	
	780 .	1	58	. 330	.171	1.106	
	140.	-		. 358		2.412	
8.	901 . 10	-	56	951	. 196	2.412	
10	101 101	• •	100	215.		161.9	
5	567		501	. 360	. 213	. 208	
0.	46 . 531		115	30.0	221	196.2	
	- 529	•	120	402		2.109	
		13	125	.422	+0+ "	4.135	
10	1.252	9	130	.416		3. 502	
	1.252	12	135	414.	. 373	3. 860	
0.	97 1. 300	10	145	404	144	5.272	
	669.	•	150	.412		1.112	
3	50	2	155	. 428	. 396	2.245	
	667	1	(91	. 436		3. 294	
	1 115	22	165	. 452			
1	101 2 67	22		Die of 15	1946 / Tame	Andre mente	
•	2.336	22			supplicate mid-	lasse Asme	
12.	2.128	65	5	. 148		.031	
	566 .7	39	0	. 186	010.	. 313	
° 30	30 3.400	35	~	791-		. 272	
1	C77 1 22	10	25		170 -	965 .	
	1.846	25	30	. 210	.028	1641	
. 37	3. 671	53	35	.214		- 517	
	5.777	69	0	.274	.076	1.535	
. 55	57 1. 552	66	4	- 264		1.293	
		101	25	. 304	. 207	1.020	
	3.866	5 I I	c 9			2.184	
. 28	2.162	15	65	. 362			
			20	. 298	. 166	. 755	
			75	. 342			
				. 336			
			60	. 570			
			10	. 366	. 186	1.794	

APPENDIX D

APPENDIX D

	i																	1	AF	PF	E	NI	DD	<	D																				
æ	101	501	46	2	114	11+	90	204	169	217	277																																		
1.	5 146	2. 110 F 410	A																																										
63		610					.453	816 .	096.	265.																																			
	. 456	098	460	. 452	.472	. 462	. 468	- 522	204	866.	9cc .																																		
2	190	200	210	220	230	240	520	905	040	095																																			
X	+1	16	30	11	62	69	10	64	69	26	13	13	59		22	103	103		33	103	123		1	-	1				-	•••	24	30	20	22	26	22	30	30		13	11	57	69	113	103
	1.161	1.263	2.224	3.263	2.813	2. 345	3.112	1 025	2.842	3.052	2.077	2. 628		2.945	5.670	3. 687	3.233	4. 383	4 062	4.548	4.096	way site)	.025	. 116	182.	. 024	2.2	. 383		503	. 8 39	. 795	161	2. 799	1.899		1.675	1.764	1.888	2. 585	2. 399	2. 691	2.252	3.777	2.287
		. 107		. 239		147.	141		114		. 526		. 406	400		. 437		. 428	561		. 661	day 1965 (James	\$00.		.010	410		.022			. 178				. 183		. 219			. 163		. 474	. 379		. 526
	.278	. 302	. 330	. 368	***	945 .	2040	000	398	404	. 396	414	904	416	. 436	.438	428	974 .	416	244.	. 462	Pit of 10 h	.120	.118	011.	911.	166	.182	. 186	216	. 360	. 378	. 338	392	. 362	. 366	. 160	160	. 360	. 362	. 378	396	402	.426	. 436
4	58	06	56	00				25	30	35	••	45	20	09	65	70	15			56	00		10	15	50	59	5	0	45	20	29	59	02	0	58	0			0		0 0	2.0	9	0	

1

...

1'

APPENDIX E: SHEAR STRENGTH AS MEASURED USING SHEAR BOX (GOOSE LAKE, 1765)

1

40.57

Notation: "max. maximum shear strength; emin. minimum shear strength;

		28 March 1965					26 April 1965	
	THAT .	CILI .	•		2	fmAx.	,min	•
	900	100.	50C .	.050	10	.070	. 026	044
	110.	500 -	800 .	. 166	50	050.	.029	030
	.20	10.	810 .	221.	0	190.	. 041	. 052
	120			067.	2 5	010	. 045	. 058
				****	2.9		660 .	. 117
001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001		3 April 1965			62	. 126	.092	.076
0101 0102 0103 0104 0101 0101 0101 0101 0101 0101								
0000 0001 0004 0004 0001 0005 0005 0005 0001 0002 0005 0005 0001 0002 0005 0005 0001 0002 0005 0005 0001 0002 0005 0005 0001 0002 0005 0005 0001 0005 0005 0005 0001 0005 0005 0005 0001 0005 0005 0005 0002 0005 0005 0005 0002 0005 0005 0005 0003 0005 0005 0005 0004 0005 0005 0005 0004 0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 0006 0005 0005 0005 0006 0005 0005 0005 0006 0005 0005 0005 0005 0005		+00 -	· 004	.116				
0000 0001 0000 1150 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 1000 1000 0000 0000 1000 1000 0000 0000 1000 1000 0000 0000 1114 1000 0000 0000 1114 1000 0000 0000 1114 1000 0000 0000 1114 1000 0000 0000 1114 1000 0000 0000 1114 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000	510.	210.	•10.	.126				
0001 0004 0005 0005 0012 0005 0005 0005 0013 0005 0005 0005 0014 0005 0005 0005 0015 0005 0005 0005 0016 0005 0005 0005 0017 0017 0017 0017 0017 0017 0017 0017 0018 0005 0005 0017 0019 0005 0005 0005 0010 0005 0005 0005 0011 0025 0005 0005 0011 0025 0005 0017 0011 0025 0017 0016 0011 0025 0017 0016 0011 0025 0017 0016 0011 0025 0017 0016 0011 0025 0017 0016 0011 0025 0017 0016 0011 0012 0016 0016 0012 0013 0116 0016 0111 0118 0116 0111 0111 0116 0111 0111 0116	070 -	£10 ·	.016	. 150				
0000 0000	. 061	. 046	. 056	. 203				
0.02 0.03 0.04 0.04 0.05 0.05 1123 0.045 0.045 0.05 0.05 0.05 0.093 0.002 0.002 0.012 0.012 0.012 0.004 0.003 0.003 0.003 0.003 0.012 0.004 0.003 0.003 0.003 0.003 0.012 0.004 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.005 0.003 0.003 0.003 0.003 0.004 0.004 0.003 0.003 0.003 0.003 0.004 0.005 0.003 0.003 0.003 0.004 0.004	· 00 ·	. 073	080 .	. 302				
1000 1000 1000 1000 1000 1000 0000 0000 1100 1100 1000 0000 1000 1100 1000 0000 1100 1100 1000 0000 1100 1100 1000 0000 1100 1100 1000 0000 1000 1100 1000 0000 1000 1100 1000 0000 1000 1000 1000 0000 1000 1000 1000 0000 1000 1000 1000 0000 1000 1000 1011 1010 1110 1000 1011 1010 1000 1000 1011 0000 0001 1000 1011 0000 0001 1000 1111 0000 0001 1000 1111 0000 0000 0000 1111 0000 0000 1000 1111 0000 0000 0000 1111 0000 0000 0000 1111 0000 0000 0000 1111 0000 0000 1111	.052	.036	.045	. 226				
1123 005 005 0111 003 006 0112 0111 1004 002 001 101 1004 003 001 106 1004 003 001 106 1004 003 100 106 1004 003 100 106 101 003 100 106 101 003 100 106 101 004 100 106 101 003 106 106 101 004 106 106 004 003 106 106 004 003 106 106 004 003 106 106 004 003 106 106 111 004 116 106 111 004 106 106 111 011 111 111 011 011 111 111 011 011 111 111 0106	. 066	. 045	050	266				
099 000 000 000 000 000 000 000 000 000 000 000 000 100 001 000 000 100 001 000 000 100 001 000 000 100 001 000 000 100 100 000 100 100 111 000 100 1120 1130 100 1140 114 110 1140 114 114 1140 114 114 1140 114 114 1140 114 114 1140 114 114 1140 114 114 1141 114 114 1141 114 114 1141 114 114 1141 114 114 1141 114 114 1141 114 114 1141 114 114 1141 114 114 1141 114 114 1141 114 114 1141 114 1141 <td>. 123</td> <td>500</td> <td>111</td> <td></td> <td></td> <td></td> <td></td> <td></td>	. 123	500	111					
.001 .002 .002 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .106 .003 .106 .003 .106 .003 .106 .106 .003 .106 .106 .106 .106 .106 .106 .116	603	064	07.0					
April 1965 0004 0002 0003 1106 0010 0003 1106 0011 0003 1106 0012 0003 1106 0013 0003 1106 0014 0004 0003 0014 0004 001 0014 0004 001 0014 0004 001 0014 0003 1114 0014 0003 1114 0014 0003 1114 0014 0003 1114 0014 0003 1114 0014 0003 1114 0014 0003 1114 0014 0003 1114 0014 0013 1118 0014 0013 1118 0014 0013 1118 0014 0013 1118 0014 0119 1118 0111 0111 1118 0111 0111 1118 0111 0111 1118 <td>643</td> <td>002</td> <td>200</td> <td></td> <td></td> <td></td> <td></td> <td></td>	643	002	200					
• April 1965 • 004 • 002 • 003 • 003 • 0104 • 003 • 003 • 003 • 011 • 003 • 003 • 003 • 011 • 003 • 003 • 003 • 011 • 003 • 003 • 106 • 011 • 012 • 013 • 106 • 1117 • 012 • 013 • 116 • 014 • 006 • 007 • 118 • 014 • 006 • 001 • 118 • 014 • 006 • 001 • 118 • 014 • 006 • 001 • 118 • 014 • 006 • 011 • 118 • 014 • 003 • 023 • 011 • 011 • 011 • 023 • 011 • 011 • 013 • 024 • 011 • 011 • 013 • 024 • 024 • 011 • 013 • 024 • 024 • 011 • 014 • 024 • 024 • 011 • 014 • 024 • 024 • 011 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
.004 .002 .003 .003 .003 .004 .003 .003 .003 .106 .017 .013 .023 .003 .106 .017 .012 .003 .003 .106 .017 .012 .003 .106 .018 .003 .003 .106 .019 .024 .023 .1140 .014 .006 .007 .118 .014 .006 .001 .118 .014 .006 .001 .118 .014 .006 .001 .118 .014 .006 .001 .118 .014 .006 .001 .118 .014 .006 .001 .118 .014 .009 .001 .118 .014 .003 .001 .118 .014 .012 .023 .210 .010 .013 .220 .017 .108 .206 .117 .004 .206 .017 .004 .206 .017 .004 .206 .017 .004 .206 .018 .004 .206		8 April 1965						
004 000 000 000 017 003 000 100 017 003 000 110 017 003 000 100 117 004 000 114 110 111 003 110 100 100 114 114 101 114 114 114 100 014 007 114 110 014 009 011 114 111 014 009 011 111 114 014 009 011 111 111 021 023 026 021 100 021 023 026 111 116 024 023 026 103 106 111 040 022 031 126 111 040 022 031 126 111 041 196 104 104 111 041 196 104 104 1	+00*	.002	100	100				
0.00 0.00 0.00 0.00 1117 0.15 0.02 1140 1117 0.02 1140 1117 0.02 1140 10 April 1965 1134 10 April 1965 1134 001 007 1118 001 007 1134 001 007 1134 001 007 1134 003 007 1138 003 007 1138 003 003 1138 003 003 1138 003 003 1138 003 003 1138 003 003 1138 004 003 1240 013 024 23 014 1965 23 015 003 240 111 003 240 011 104 240 011 019 240 011 019 240 011 019 240 011 019 240 014 104 240 015 104 240 0160 240	+00 ·	003	001	401				
.027 .015 .023 .015 .025 .140 .117 .002 .129 .104 .025 .105 .117 .002 .023 .106 .114 .001 .013 .003 .114 .114 .001 .014 .007 .114 .114 .014 .006 .007 .118 .114 .014 .009 .011 .118 .118 .014 .009 .011 .118 .118 .021 .011 .118 .118 .023 .024 .026 .210 .024 .023 .026 .210 .023 .023 .026 .210 .024 .019 .210 .210 .025 .026 .210 .210 .026 .026 .210 .210 .111 .012 .118 .216 .011 .011 .111 .216 .011 .011 .011 .216 .011 .012 .011 .216 .011 .011 .108 .216 .011 .011 .108 .216 .011 .011	.010	600	000					
033 024 025 025 026 140 1129 1095 1136 1136 10 10 1136 1136 116 1014 006 007 1118 0014 007 1118 0015 007 1118 0014 009 001 1118 0015 019 001 1118 0025 011 1118 1118 0026 001 1118 1118 0021 013 022 103 0031 022 033 1200 111 034 038 1304 1117 034 103 103 013 036 038 106 114 064 103 104 117 034 103 104 117 034 103 104 035 036 106 106 117 034 106 106 118 044 106 106 119 044 106 106 111 044 106 106 111 044 106 106	.027	015	024					
117 .092 .109 .109 .109 .109 .114 .100 10 April 1965 .114 .114 .114 .114 1014 .006 .007 .114 .118 .114 .016 .006 .007 .114 .118 .118 .016 .009 .001 .118 .118 .118 .027 .023 .021 .011 .118 .118 .027 .023 .026 .230 .210 .210 .028 .019 .026 .230 .210 .210 .040 .012 .026 .230 .210 .220 .040 .013 .226 .001 .220 .210 .040 .022 .031 .220 .031 .220 .111 .004 .004 .206 .206 .206 .111 .0104 .109 .206 .206 .206 .111 .0104 .119 .016 .216 .206 .111 .010	. 933	•20	029	206				
. 140 . 129 . 134 . 134 10 April 1965 . 007 . 118 . 008 . 006 . 007 . 118 . 014 . 006 . 007 . 118 . 014 . 006 . 007 . 118 . 025 . 019 . 011 . 118 . 026 . 019 . 023 . 118 . 023 . 023 . 023 . 118 . 024 . 023 . 023 . 2106 . 023 . 023 . 023 . 2106 . 024 . 023 . 024 . 2106 . 024 . 023 . 024 . 2106 . 024 . 023 . 024 . 226 . 109 . 034 . 226 . 034 . 113 . 034 . 206 . 278 . 034 . 034 . 036 . 236 . 034 . 036 . 036 . 236 . 034 . 036 . 036 . 236 . 034 . 036 . 036 . 236 . 035 . 036 . 036	. 117	260	105	401				
10 April 1965 .004 .006 .007 .118 .014 .009 .001 .118 .025 .009 .001 .118 .026 .009 .001 .118 .021 .023 .011 .118 .021 .023 .026 .230 .023 .026 .230 .020 .023 .026 .230 .040 .022 .031 .222 .040 .031 .222 .041 .111 .026 .033 .222 .111 .041 .196 .242 .111 .041 .196 .242 .111 .041 .196 .242 .111 .041 .242 .242 .041 .041 .242 .041 .041 .041 .196 .242 .041 .041 .196 .242 .041 .041 .196 .242 .041 .041 .196 .964 .041 <td>. 140</td> <td>. 129</td> <td>114</td> <td>110</td> <td></td> <td></td> <td></td> <td></td>	. 140	. 129	114	110				
10 April 1965 .008 .006 .007 .118 .014 .009 .001 .118 .021 .009 .001 .118 .023 .023 .023 .023 .023 .026 .230 .024 .023 .026 .230 .025 .026 .230 .048 .032 .041 .196 .040 .032 .041 .196 .040 .032 .031 .220 .113 .041 .196 .206 .111 .041 .196 .206 .113 .004 .001 .220 .049 .004 .091 .206 .111 .004 .004 .206 .010 .010 .103 .210 .011 .011 .103 .216 .011 .011 .111 .111 .011 .011 .111 .111								
.008 .006 .007 .118 .014 .009 .001 .118 .027 .023 .011 .118 .027 .023 .011 .118 .027 .023 .011 .118 .027 .026 .230 .230 .048 .012 .041 .196 .040 .032 .041 .196 .040 .022 .031 .220 .040 .032 .091 .196 .111 .041 .196 .220 .113 .004 .031 .220 .113 .004 .036 .230 .049 .036 .036 .232 .049 .036 .036 .232 .041 .103 .103 .226 .044 .036 .036 .236 .045 .036 .236 .306 .046 .039 .306 .306 .046 .039 .306 .306 .041 .039		10 April 1965						
.014 .009 .011 .113 .027 .023 .013 .023 .023 .024 .014 .023 .025 .023 .023 .026 .230 .024 .023 .025 .025 .026 .230 .048 .032 .041 .040 .022 .041 .040 .022 .041 .040 .022 .041 .040 .022 .041 .040 .022 .031 .040 .022 .031 .040 .022 .031 .111 .049 .204 .103 .103 .240 .044 .056 .276 .044 .056 .276 .044 .076 .260	000	and.	100					
.027 .019 .021 .019 .027 .023 .023 .024 .026 .023 .026 .230 .040 .022 .041 .196 .040 .032 .041 .196 .040 .032 .041 .196 .040 .032 .041 .196 .040 .043 .222 .041 .040 .049 .033 .222 .113 .046 .094 .304 .113 .046 .096 .242 .113 .004 .278 .004 .047 .096 .096 .206 .0103 .096 .266 .278 .011 .012 .019 .210	•10	000						
.027 .023 .026 .210 .040 .022 .026 .210 .040 .032 .041 .190 .040 .022 .041 .190 .109 .026 .210 .111 .026 .282 .111 .069 .091 .113 .006 .282 .114 .069 .096 .113 .109 .282 .113 .006 .282 .113 .006 .282 .113 .006 .282 .010 .109 .106 .011 .010 .266 .006 .111 .011 .011 .011 .111	470			001.				
25 April 1965 .041 .196 .040 .032 .041 .198 .040 .022 .033 .220 .109 .025 .031 .220 .114 .065 .091 .222 .113 .103 .222 .113 .103 .222 .114 .065 .091 .222 .113 .103 .103 .226 .041 .103 .103 .226 .041 .075 .076 .275 .013 .0103 .103 .266 .011 .011 .111 .111	.027	.023	026	011				
25 April 1965 .048 .032 .041 .198 .040 .032 .041 .199 .040 .032 .041 .199 .040 .022 .031 .220 .114 .069 .091 .282 .113 .069 .096 .282 .113 .009 .282 .013 .286 .304 .013 .099 .286 .013 .096 .306 .013 .099 .260 .013 .013 .311 .013 .019 .306 .017 .095 .278 .017 .095 .260								
.048 .032 .041 .196 .040 .022 .041 .196 .109 .025 .031 .220 .114 .069 .096 .232 .113 .103 .096 .242 .113 .103 .096 .242 .113 .103 .109 .306 .061 .096 .242 .071 .096 .266 .073 .013 .111 .074 .095 .278 .073 .095 .266		25 April 1965						
.040 .022 .033 .220 .109 .045 .061 .240 .114 .069 .096 .240 .113 .103 .096 .304 .117 .006 .306 .306 .017 .096 .306 .306 .071 .095 .276 .071 .095 .266	.048	012	190					
.109 .045 .081 .282 .114 .069 .088 .304 .113 .069 .098 .304 .017 .044 .056 .278 .117 .074 .056 .278	040	022						
.114 .069 .081 .282 .113 .103 .106 .304 .113 .103 .106 .304 .113 .103 .106 .304 .114 .044 .076 .275 .105 .076 .275 .117 .079 .260 .118 .111 .314	100			0.5.7				
113 . 103 . 106 . 306 . 306 . 306 . 306 . 308 . 308 . 308 . 367 . 044 . 056 278 . 117 . 077 099 260 260 260 260 260		640	100.	287 .				
.067 .044 .056 .278 .066 .105 .105 .278 .117 .094 .260 .260 .278 .117 .094 .131 .314			8.0.	104				
	611.	501-	. 108	. 308				
.117 .077 .099 .260 one value only .131 .314	100.	++0.	. 056	. 278				
one value only . 131 . 314	. 117	. 077	000	.260				
	one val	ue only	. 131	. 314				

APPENDIX E

															~		E	N	U	IJ	ς.	r															
			-																																		
	Site B																																				
arch 1966		•																																			
N OK				560	111	111	200.																														
	Site A		160	. 360	. 392	. 362		. 1207																													h hoar
		2	~	•	99	0.0	001																														findicates dent
		:	110	050	190 -	010			010	720.	. 069	180 .	. 074	.055	510				190	150.	.078	140	601.	100	.034			010	020	140	.052	.125	+11.	290.	.052	.010	
	Site B	•	.252	. 266	•11.	1604			.176	252.	. 272	. 288	+05 -	- 500	. 300			100	.210	. 260	\$ 67 .	045 -	016 -	3660	. 353*		24 March 1966	204	.216	.288	. 276	. 288	. 340	. 296	- 3004	. 2760	
larch 1966		2	64	3		011		larch 1966	10	20	30	21			130	arch 1966			3	70		001	140	091	180			10	20	40	60	00	100	071	041	001	
4			+20.	.057	270.	510		11 1	.016	.052	180.	801.				Z1 M	040	104	. 156	140.	250.	361	146	.003	100.	1010		010	.036	. 057	.125	. 166	.156				
	Site A	•	. 130	504	202.	. 286*			. 212	. 276	. 205	. 320	2884				156	180	204	.228	. 228	100	. 366	. 360+	•386 .	. 3164	3 March 1966	. 240	. 256	. 264	. 352	. 392	. 376				th hoar
		2	15	0	22	100			10	30	2		100				20	•	3		001	140	160	180	200	240	2	20	•	3	00	00		R			stes dep

(Security classification of title, body of abstract	ENT CONTROL DATA - RAD	
1 ORIGINATING ACTIVITY (Corporate author)	2 a	REPORT SECONDERV. C. Anternet
U. S. Army Cold Regions Resear	rch and	Unclassified
Engineering Laboratory, Han	over, N.H.	GROUP
3 REPORT TITLE		
SOME MECHANICAL PROPERTI	ES OF ALPINE SNOW	MONTANA 1964-66
4 DESCRIPTIVE NOTES (Type of report and inclusive	(ate +)	
Research Report		
5 AUTHOR(5) (Last name first name, initial)		
Keeler, C. M. and Weeks W. F.		
and weeks, w.r.		
REPORT DATE	TA TOTAL NO OF PAGE	. The second second
March 1967	56	36
A CONTRACT OR GRANT NO	94 ORIGINATOR'S HTPOP	T NUMBERS
A PROJECT NO	Pagaanah h	
	Nesearch Repo	ri 221
DA Task IV014501B52A02	SH OTHER NEPORT NOTS) (Any other motion days
4	mus report)	The As As Aren
CAVAILABILITY LIMITATION NOTICES	al antes de colonie anna colonie alla colonie anna colonie de colonie a colonie e colonie	allered - Al-Maladauska statistic - Arabitatio da stati una -
Distribution of this document is u	ulimited	
SUPPLEMENTARY NOTES		
	12 SPONSORING MILITARY	
	Engineering	Taboratory
1 ABSTRACT		
Data on the physical properties of	seasonal aluin a	
	seasonal alpine snow	have been collected from
the Beartooth Mountains near Coo	ke City, Montana and	the third to be
the Beartooth Mountains near Coo Bozeman, Montana, Systematic r	ke City, Montana, and neasurements of snow	the Bridger Range near density temperature
the Beartooth Mountains near Coo Bozeman, Montana, Systematic r structure, ram and Canadian hard	ke City, Montana, and neasurements of snow lness, centrifugal tens	the Bridger Range near density, temperature, ile strength and shear
the Beartooth Mountains near Coo Bozeman, Montana, Systematic r structure, ram and Canadian hard strength measured with a shear bo Test results were grouped accord	ke City, Montana, and neasurements of snow lness, centrifugal tens ox and several types of	the Bridger Range near density, temperature, ile strength and shear shear vanes are included
the Beartooth Mountains near Coo Bozeman, Montana. Systematic r structure, ram and Canadian hard strength measured with a shear be Test results were grouped accord was wet or dry. Interrelations be	ke City, Montana, and neasurements of snow lness, centrifugal tens ox and several types of ing to gross snow types tween the different	the Bridger Range near density, temperature, ile strength and shear shear vanes are included s and whether the snow
the Beartooth Mountains near Coo Bozeman, Montana. Systematic r structure, ram and Canadian hard strength measured with a shear bo Test results were grouped accord was wet or dry. Interrelations bo studied. Experiments were also o	ke City, Montana, and neasurements of snow lness, centrifugal tens ox and several types of ing to gross snow types tween the different tes conducted to study the	the Bridger Range near density, temperature, ile strength and shear shear vanes are included s and whether the snow t parameters were
the Beartooth Mountains near Coo Bozeman, Montana. Systematic r structure, ram and Canadian hard strength measured with a shear bo Test results were grouped accord was wet or dry. Interrelations be studied. Experiments were also o in-situ mechanical tests on snow y	ke City, Montana, and neasurements of snow lness, centrifugal tens ox and several types of ing to gross snow types tween the different tes conducted to study the s without utilizing a pit w	the Bridger Range near density, temperature, ile strength and shear shear vanes are included and whether the snow t parameters were sources of error in makin all. The main factor
the Beartooth Mountains near Coo Bozeman, Montana. Systematic is structure, ram and Canadian hard strength measured with a shear bo Test results were grouped accord was wet or dry. Interrelations be studied. Experiments were also o in-situ mechanical tests on snow y contributing to the experimental so	ke City, Montana, and neasurements of snow lness, centrifugal tens ox and several types of ing to gross snow types tween the different tes conducted to study the s without utilizing a pit w catter is lateral inhom	the Bridger Range near density, temperature, ile strength and shear shear vanes are included and whether the snow t parameters were sources of error in makin all. The main factor ogeneity in the snow cove
the Beartooth Mountains near Coo Bozeman, Montana. Systematic r structure, ram and Canadian hard strength measured with a shear bo Test results were grouped accord was wet or dry. Interrelations be studied. Experiments were also o m-situ mechanical tests on snow y contributing to the experimental so towever, the standard deviation o lirectly proportional to the mean	ke City, Montana, and neasurements of snow lness, centrifugal tens ox and several types of ing to gross snow types tween the different tes conducted to study the without utilizing a pit w catter is lateral inhom f a group of strength to	the Bridger Range near density, temperature, ile strength and shear shear vanes are included s and whether the snow 1 parameters were sources of error in makin all. The main factor ogeneity in the snow cove ests is shown to be
the Beartooth Mountains near Coo Bozeman, Montana. Systematic is structure, ram and Canadian hard strength measured with a shear bo Test results were grouped accord was wet or dry. Interrelations be studied. Experiments were also o in-situ mechanical tests on snow y contributing to the experimental so dowever, the standard deviation o lirectly proportional to the mean octween snow properties invariabl	ke City, Montana, and neasurements of snow lness, centrifugal tens ox and several types of ing to gross snow types tween the different tes conducted to study the s vithout utilizing a pit w catter is lateral inhom f a group of strength to value of the group. Th y become obscured who	the Bridger Range near density, temperature, ile strength and shear shear vanes are included and whether the snow t parameters were sources of error in makin all. The main factor ogeneity in the snow cove- ests is shown to be e systematic relations
the Beartooth Mountains near Coo Bozeman, Montana. Systematic r structure, ram and Canadian hard strength measured with a shear bo Test results were grouped accord was wet or dry. Interrelations be studied. Experiments were also o n-situ mechanical tests on snow w contributing to the experimental so dowever, the standard deviation o lirectly proportional to the mean octween snow properties invariable are indiscriminantly grouped toget	ke City, Montana, and neasurements of snow lness, centrifugal tens fox and several types of ing to gross snow types tween the different tes conducted to study the s without utilizing a pit w catter is lateral inhom f a group of strength to value of the group. Th y become obscured who ther.	the Bridger Range near density, temperature, ile strength and shear shear vanes are included and whether the snow t parameters were sources of error in makin all. The main factor ogeneity in the snow cove ests is shown to be e systematic relations on different snow "types"
the Beartooth Mountains near Coo Bozeman, Montana. Systematic r structure, ram and Canadian hard strength measured with a shear bo Test results were grouped accord was wet or dry. Interrelations be studied. Experiments were also o in-situ mechanical tests on snow y contributing to the experimental so to the standard deviation o lirectly proportional to the mean op octween snow properties invariabl are indiscriminantly grouped toget	ke City, Montana, and neasurements of snow lness, centrifugal tens ox and several types of ing to gross snow types tween the different tes conducted to study the s without utilizing a pit w catter is lateral inhom f a group of strength to value of the group. Th y become obscured who her.	the Bridger Range near density, temperature, ile strength and shear shear vanes are included s and whether the snow 1 parameters were sources of error in makin all. The main factor ogeneity in the snow cove ests is shown to be e systematic relations on different snow "types"
the Beartooth Mountains near Coo Bozeman, Montana. Systematic r structure, ram and Canadian hard strength measured with a shear bu Test results were grouped accord was wet or dry. Interrelations be studied. Experiments were also o in-situ mechanical tests on snow w contributing to the experimental so towever, the standard deviation o lirectly proportional to the mean octween snow properties invariable are indiscriminantly grouped toget	ke City, Montana, and neasurements of snow lness, centrifugal tens ox and several types of ing to gross snow types tween the different tes conducted to study the s vithout utilizing a pit w catter is lateral inhom f a group of strength to value of the group. Th y become obscured whether.	the Bridger Range near density, temperature, ile strength and shear shear vanes are included and whether the snow t parameters were sources of error in makin all. The main factor ogeneity in the snow cove- ests is shown to be e-systematic relations on different snow "types"
the Beartooth Mountains near Coo Bozeman, Montana. Systematic r structure, ram and Canadian hard strength measured with a shear be Test results were grouped accord was wet or dry. Interrelations be studied. Experiments were also o in-situ mechanical tests on snow w contributing to the experimental se However, the standard deviation o lirectly proportional to the mean octween snow properties invariable are indiscriminantly grouped toget	ke City, Montana, and neasurements of snow lness, centrifugal tens ox and several types of ing to gross snow types tween the different tes conducted to study the s without utilizing a pit w catter is lateral inhom f a group of strength to value of the group. Th y become obscured who her.	the Bridger Range near density, temperature, ile strength and shear shear vanes are includer s and whether the snow t parameters were sources of error in makin all. The main factor ogeneity in the snow cove ests is shown to be e systematic relations on different snow "types"
the Beartooth Mountains near Coo Bozeman, Montana. Systematic is structure, ram and Canadian hard strength measured with a shear but Test results were grouped accord was wet or dry. Interrelations be studied. Experiments were also d in-situ mechanical tests on snow we contributing to the experimental sub- towever, the standard deviation of lirectly proportional to the mean octween snow properties invariable are indiscriminantly grouped toget	ke City, Montana, and neasurements of snow lness, centrifugal tens ox and several types of ing to gross snow types tween the different tes conducted to study the s vithout utilizing a pit w catter is lateral inhom f a group of strength to value of the group. Th y become obscured who ther.	the Bridger Range near density, temperature, ile strength and shear shear vanes are included and whether the snow t parameters were sources of error in makin all. The main factor ogeneity in the snow cove- ests is shown to be e systematic relations on different snow "types"
the Beartooth Mountains near Coo Bozeman, Montana. Systematic r structure, ram and Canadian hard strength measured with a shear be Test results were grouped accord was wet or dry. Interrelations be studied. Experiments were also d in-situ mechanical tests on snow w contributing to the experimental se However, the standard deviation o lirectly proportional to the mean octween snow properties invariable are indiscriminantly grouped toget	ke City, Montana, and neasurements of snow lness, centrifugal tens ox and several types of ing to gross snow types tween the different tes conducted to study the s without utilizing a pit w catter is lateral inhom f a group of strength to value of the group. Th y become obscured who her.	the Bridger Range near density, temperature, ile strength and shear shear vanes are included s and whether the snow t parameters were sources of error in makin all. The main factor ogeneity in the snow cover ests is shown to be e systematic relations on different snow "types"
the Beartooth Mountains near Coo Bozeman, Montana. Systematic is structure, ram and Canadian hard strength measured with a shear bu Test results were grouped accord was wet or dry. Interrelations be studied. Experiments were also d in-situ mechanical tests on snow w contributing to the experimental su However, the standard deviation o lirectly proportional to the mean octween snow properties invariable are indiscriminantly grouped toget	ke City, Montana, and neasurements of snow lness, centrifugal tens ox and several types of ing to gross snow types tween the different tes conducted to study the s vithout utilizing a pit w catter is lateral inhom f a group of strength to value of the group. Th y become obscured who her.	the Bridger Range near density, temperature, ile strength and shear shear vanes are included s and whether the snow t parameters were sources of error in makin all. The main factor ogeneity in the snow cove ests is shown to be e systematic relations on different snow "types"
the Beartooth Mountains near Coo Bozeman, Montana. Systematic r structure, ram and Canadian hard strength measured with a shear be Test results were grouped accord was wet or dry. Interrelations be studied. Experiments were also o in-situ mechanical tests on snow v contributing to the experimental se However, the standard deviation o lirectly proportional to the mean octween snow properties invariable are indiscriminantly grouped toget	ke City, Montana, and neasurements of snow lness, centrifugal tens fox and several types of ing to gross snow types tween the different tes conducted to study the s without utilizing a pit w catter is lateral inhom f a group of strength to value of the group. Th y become obscured who her.	the Bridger Range near density, temperature, ile strength and shear shear vanes are included s and whether the snow t parameters were sources of error in makin all. The main factor ogeneity in the snow cove- ests is shown to be e systematic relations on different snow "types"
D Form 1473	ke City, Montana, and neasurements of snow lness, centrifugal tens fox and several types of ing to gross snow types tween the different tes conducted to study the s vithout utilizing a pit w catter is lateral inhom f a group of strength to value of the group. Th y become obscured whether.	the Bridger Range near density, temperature, ile strength and shear shear vanes are included shear vanes are included shear vanes are included shear vanes are included sources of error in makin all. The main factor ogeneity in the snow cove ests is shown to be e systematic relations on different snow "types" lassified

Unclassified Security Classification							
14		LIN	K A	LIN	KB	L	NKC
PEA WORDS		HOLE		HOLE		HOLE	1
Snow cover Montana Snow cover Physical properties M ment Snow surveysMontana	easure						
INST	RUCTIONS						
1. ORIGINATING ACTIVITY - Loter the same and address							
 a dividy or other organization (corporate author) issuing the report. 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations. 2b. CROUP. Autom is downgrading is specified in DoD Directive S200,10 and Amerit Forces Industrial Manual. Enter "the strong number: Also, when applicable, show that optional tated, have be in undit if drong and Group 4 as authorized. 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all case is should be unclassified. If a meaningful title canot be selected without classification, show title class the attor. 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered. 	itations o imposed b such as: (1) * (2) * (3) * (4) * (5) *	n further y securit 'Qualifies eport from 'Foreign eport by 1 'U. S. Go his report isers shall 'U. S. na eport dire shall requi- thed DDC	dissemin y classif f request n DDC-'' announce DDC is n vernment directly il request litary age octly from est through	ation of t ication, u ers may o ment and ot authori agencies from DIX t through encies ma n DDC. O gh of this rep- null reque	he repor sing sta btain co dissemi zed." may ob C. Othe y obtain ther qua ort is co st throu	t, other the inderd state opies of the ination of tain copies r qualified copies of olified user ontrolled.	this this this d DDC d this d DDC d this d DDC
5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the print toal author is an absolute minimum requirement.	If the Services, cate this 11, SUP	report ha Departme fact and PLEMEN	nt of Co enter the TARY N	unished (mmerce, f price, if DTES: Ut	o the Of or sale known	lfice of To to the pub Iditional e	chnical lic, indi-
6. REPORT DATE: Enter the date of the report up day, month, year, or month, year. If more than one date appears on the report, use date of publication.	tory notes 12. SPO the depar	n NSORING tmental p	MILITA roject of	RY ACTIN	VITY: I poratory	Enter the sponsoris	name of
 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information. 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report. 	13 ABST summary it may als port. If a shall be	ne resear RACT: E of the do- so appear idditional attached.	ch and de nter an a cument ir elsewhe space is	velopmen hstract gi idicative i i n the l request	ving a b of the re body of t a conti	nde addres rief and f port, even the techni invation s	actual 1 though 1 cal re- hect
 Ba. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written. 8b, &, & 8d. PROJECT NUMBER: Enter the appropriate multi-appropriate 	It is 1 ports be 1 end with of the inf (C), or (1)	highly de unclassif an indica ormation 7).	strable th ied. Eac tion of th in the pa	at the al- h paragra e military ragraph, r	t of ch of the securit represen	f c lassifi e abstract ty classif te l as (T)	ed re- shall location S). (S),
subproject number, system numbers, task number, etc. 9a. ORIGINATOR'S REFORT NUMBER(S): Enter the offi-	There ever, the	is no lin suggeste	nitation o d length	n the lenguist from 1	gth of th 50 to 22	e abstrac 5 words.	. How-
cial report number by which the document will be identified and controlled by the originating activity. This number must	14. KEY or short p	WORDS: hrases th	Key wor nat chara	ds are tec cterize a	hnically report a	meaning nd may be	ful terms used as

be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s). 14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words muse 'a selected so that no security classification is required. Iden fiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

> Unclassified Security Classification