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SUMMARY

Integer programming by implicit enumeration has been the subject

of several recent investigations. Computational efficiency seems to

depend primarily on the ability of various tests, applied to the con-
straints in connection with "partial solutions," to exclude from
further consideration a sufficiently large proportion of the possible
solutions. Most of the simpler or more appealing of these tests can
be applied at reasonable computational cost essentially to only c¢ne
3 constraint at a time. Two main approaches have been suggested for
mitigating this limitation. One is to periodically apply linear |
1% programming to continuous approximations of the subproblems generated

:* by the partial solutions. The other approach, promulgated by F. Glover, ‘

ER Ty

is to periodically introduce composite redundant constraints which

tend to be useful when tests are applied to them individually. Ie—
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this paper vwe wotivate-a measure of/ihe "strength" of a composite

—

constraint thet—-is—slightly gifferent from the.one ueed-by Glover, and
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3 %? show how composite constraints that are as strong as possible in this
sense can be computed by linear programming. It further develops that
the dual of the required linear program coilncides with the appropriate
continuous approximation to the subproblems generated by the successive
partial solutions. This leads to a complete synthesis of the two
approaches mentioned above by means of an imbedded linear program.
Computational experience is presented which confirms that this synthe-
sis is indeed a useful one for the classes of problems tried. For

numerous problems taken from the literature with up to 80 variables,

the imbedded linear program typically reduced the number of required
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f{terations by one or two orders of magnitude, and execution times by

a factor of between 3 and 20.
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L. INTRODUCTION

The general 0-1 integer linear programming problem is:

(P) Minimize cx subject to b + Ax 3 0, x, binary,

]

wheve ¢ and x are n-vectors, b is an m-vector, and A is an m x n
matrix. The implicit enumeration approach to this problem has been

the subject of considerable recent investigation (see, e.g., references
1, 2, 4, 7, 8, 10, 11). This approach 1is based on a "backtracking"

procedure for what amounts to implicit enumeration of all 2" possible

solutions. 1Its efficiency depends on the ability to exclude a large
proportion of the possible solutions from further consideration by

means of various tests applied to partial solutions. A partial solution

is a subset of the n variables with a specific binary value assigned to
each. (The variables not in the subset are termed free.) The tests
usually amount to examining the constraints in an effort to determine
whether any completion of the current partial solution could possibly
yleld a feasible solution of (P) that has a lower value of the objec-

tive function than the best known feasible solution. Accordingly, the

e
il

algorithm either continues by augmenting the current partial solution
or backtracks to a different one.

Most of these tests can be gpplied at reasonable computational
cost essentially to only one constraint at a time. Two main approaches
have been suggested for mitigating this limitation. One is to peri-
odically .pply linear programming to the continuous verions of (P) in
ral is

the free variables. The other approach, promulgated by Glover,

to periodically introduce additional constraints which are redundant

9
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in the usual sense and yet effective when the tests are applied to
them individually. We shall call these additional constraints com-

posite constraints, since they will be composed primarily (but not

b Sty e

entirely) from the given constraints by non-negative linear combination.

In this paper we motivate a measure of the 'strength" of a com-
posite constraint that is slightly different from the one proposed by
Glover. It then develops that strongest composite constraints can
always be computed by linear programming, thereby obviating the need
for approximate methods. It further develops that the dual of the
required linear program coincides exactly with the continuous version
of (P) in the frece variables. This leads to a complete synthesis of
the two approaches mentioned above. The available computational evi-

dence suggests that this synthesis is indeed a useful one.
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II. IMPLICIT ENUMERATION WITH COMPOSITE CONSTRAINTS

e ——

Denote a partial solution by an ordered set S, where each element
is a non-zero integer between -n and n that may or may not be under-

lined. An element j (- j) of S indicates that xj takes on the vilue

1 (0) in the partial solution. Using an obvious notation, we write

xS
X th

the k  position (counting from the left) is that all completions of

=1 (=0) if J (- j) Ls in S. The significance of an underline at

the partial solution up to and including the kth element complemented
have been accounted for. Associated with any partial solution S is an
integer program (Ps) involving the free variables (the variables not
fixed by S):

S
Minimize z c.x, + c,x, subject to

(P.) b, + IE: a xS +-:E: a . x, >0,i=1,..., m
[ i jeés 1373 igs i3]

xj-Oorl,j¢S.

where the notation j € S (¢ S) refers to the fixed (free) variables.
In addition to the original m constraints, (PS) may also be

expanded to include one or more composite constraints, each of which

1s a non-negative linear combination of the original constraints plus

the constraint (2 - cx) > 0, where z is the value of the currently

%*
best known feasible solution of (P). More precisely, each composite

*
If no feasible solution is known a priori (indeed, (P) may be
infeasible), z can be initially taken as
n
b)) le |.
=1
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constraint is the form

u(b + Ax) + (z - cx) > 0

for some n.n-negative m-vector u. Such & constraint is clearly satis-

g i i

fied by any feasible solution of (P) that has a better value of c¢x
than z.

From the results of Ref. 7 or 8 it follows that the following
procedure terminates in a finite number of steps either with an optimal
solution of (P), or with an indication that no feasible solution of
(P) exists with value less than the initial value of z. The sequence

of partial solutions generated 18 non-redundant in the appropriate 1

sense.

A PROCEDURE FOR SOLVING {P) BY IMPLICIT ENUMERATION

Step 0: Initialize z at a known upper bound on the optimal value
of (P), and S at an arbitrary partial solution without under-
lines.

Step 1: If (PS) is obviously devoid of a feasible solution with
value less than z, go to Step 4. If (Ps) has an obvious optimal

solution with value less than z, then replace z by this value,

store the optimal solution as the incumbent, and go to Step 4.

If any free variable must obviously take on a particular binary

value in order for (Ps) to have a feasible solution with value

less than 5, then augment S on the right by j (- §) for each

variable x, that must take on the value 1 (0). i
1

Step 2: Add a new composite constraint and /or delete one or more

current composite constraints, or do neither.

P e S e T e 3o s ek e e
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Step 3: Augment S on the right by + § for some free variable
(or several free variables) xj-
Step 4: Locate the rightmost element of S which is not under-
lined. If none exists, terminate; otherwise, replace the element
by its underlined complement and drop all elements to the right.

Return to Step 1.

There is a wide variety of possible mechanisms for implementing
Steps 1 and 3. Many can be found in, or adapted from, Refs. 1, 2, 4,
7, 8, 10 and 11. The possibilities are further multipled by the fact
that the conditional instructions of Step 1 can be executed in any
order or even in parallel. It is important to observe that many cf the
possible mechanisms , and perhaps most of the ones that are relatively

inexpensive computationally, essentially apply to the constraints only

one at a time. At Step 1, for example, a prominent role is often

played by tests for binary-infeasibility and for conditional binary-
infeasibility, with each constraint being considered individually. A

constraint is said to be binary-infeasible if it has no binary solution,

and is said to be conditionally binary-infeasible if its binary-feasi-

bility {3 conditional upon certain of the variables taking on particular

binary values. It is easily verified that g + 25 ajxj 20 (> 0) is

binary infeasible 1f and only if g + 25 Max (O, 03} <0 (s 0); and

o - 1
B+ T, Max {o, aj] |aj°| <0 (5 0) implies x, =0 or
according as ajo < 0 or ajo > 0 in any binary solution satisfying
+ x, 20 (>0).
ARG

This leads naturally to the desire to introduce composite constraints
at Step 2 that are '"'strong' in the sense that such mechanisms are

effective when applied to them.

o s b
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IIT. COMPUTING COMPOSITE CONSTRAINTS

Since at any given stage of the calculations only a subset of
the variables are free, the "strength'" of a composite constraint must

be defined relative to the current partial solution S. For simplicity

we introduce the notation

zS = z cjxj and bs bi + 2: a, xS,

jes

The special role played by conditional and unconditional binary-
infeasibility (see Sec. II) suggests the following definition of the :

"strength' of a composite constraint. i )

Definition. The composite constraint ul(b + Ax) + (z - cx) >0
is said to be stronger than the composite constraint uz(b + Ax)

+ (z - cx) >0 relative to S Lf the maximum of the left-hand

side of the first constraint is less than the maximum of the
left-hand side of the second constraint, the maxima being taken

over binary values of the free variables; i.e., if

m m
iz-;uibf +z -2 +jZ¢sMax[0 éua -cj}<§uibf J
+z - S Zﬂlx fo, Eua - }
jes 1=1

(For purposes of comparison, the corresponding definition used by
Glover seems to be: the surrogate constraint ul(b + Ax) 2 0 is said
to be stronger than the surrogate constraint uz(b + Ax) 2 O relative
to § 1f the maximum of (i - ¢cx) subject to the first constraint {is

less than the maximum of (i - cx) subject to the second corstraint,

[ ta— it iy st




the maxima being taken over binary values of the free variables.)

Finding a strongest composite constraint is, then, the problem

of minimizing

m m
2 upd e Y 2

u, b’ -z° + Max {0, u,a,, -c,}
gmp L1 3es m L4

(we have dropped the constant 2) over all u > 0. But this problem is

clearly equivalent to the following linear program:

m
(LPS) Minimize E uibi -zs + E w subject to
w,w,  del yes
b
m
2 s 11 S

wj ?:-1 uiaij cj all j ¢

ugo2 o, i=1, , m

w, 20, L ¢s

Note that (LPS) is necessarily feasible (for any choice of the U

let the wj be sufficiently large). Denote the optimal value of (LPS)

by v(LPS)- We thus have

Theorem 1: Let S be an arbitrary partial solution. Then (LPS)

is feasible, and

(1) v(LPS) = - ®» o there {8 no strongest composite con-

straint relative to §;

[P I CPUT UL SR PG PRI PP IS ke banahate,




w
B
b

{

— o YT I F R TR T TR TR
o e ey T gl s g ¥ G d Y
. o
‘

4 AT

(i1) v(LPS) > - » = any optimal u yields a strongest composite
constraint relative to S.
The usefulness of (LPS) for finding strongest composite con-
straints is greatly enhanced by the fact that it is precisely the

dual of (§S), the continucus version of (PS) (replace x, = 0 or 1 by

b
0 < xj < 1). By the Dual Theorem of linear programming and the re-
lationship between (PS) and (ﬁs), one can easily prove
Theorem 2: Let S be an arbitrary partial solution. Then
(1) v(LPy) = - = o (ﬁs) is infeasible = (p,) is infeasible. i
(1) - =<« v(LPS) < -z e (ﬁs) is feasible and has optimal

value » z = (PS), if feasible, has optimal value 3> z.

ittt st .

(iit) v(LPS) S-ze (§S) is feasible and has optimal value

< Z.

Furthermore, if v(LPS) > - o then the optimal dual variables of
(Lps) are optimal in (PS) 1f they are integers.
The significance of this result is that {t often enables the aim

of Step 1 to be accomplished, at no extra computational cost, in the

course of attempting to construct strongest composite constraints
at Step 2. More specifically, one would set out to construct a
strongest composite constraint by executing simplex iterations on
(LPS) until one of the following mutually cxclusive events occurs:
(a) the value of the objective function of (LPS) becomes < - z;
(b) the optimal value of (LPS) is reached and it is > - z and the
optimal dual variables are all integers; (c) the optimal value of
(LPS) is reached and it is > - z and not all of the dual variables

are integers. 1In event (a), a strong (binary infeasible, in fact)
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composite constraint is obtained from the values of the uy variables
in (LPS). and one may go to Step 4; in event (b), the optimal solutiun
of (PS) is given by the optimal dual variables of (LPS), so one should
replace z by the new value and the incumbent by the new solution and
go to Step 4; in event (c), a strongest composite constraint is ob-

tained from the optimal u, variables solving (LPS).

i
Post -optimality techniques primal to (LPS) can conveniently be
used to take advantage of the results ot »revious calculations each
time Step 2 is to be executed. (Since we do not always optimize
(LPS), some of the "optimality techniques' are 'pre-'" as well as
"post-".) The Revised Simplex format is convenient for such tech-
niques. Use should be made of the fact that the columns of the wj are
just the negatives of the unit vectors associated with the corre-
sponding slack variables. One consequence is that the wj can be
treated logically rather than algebraically, so that (LPS) is re-
duced to essentially m non-trival variables and as many constraints
as free variables. The other important consequence is that it is
easy to write down a basic feasible solution to (LPS) for any S;
in fact, there is an obvious and simple procedure for modifying a
basic feasible solution for (LPS) until it becomes basic feasible

for (LPS.), where S' # S. This avoids the need for post-optimality

technirues that are dual to (LPS).
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IV. COMPUTATIONAL EXPERIENCE

The particular version of the implicit enumeration procedure
chose 1 for implementation emphasizes simplicity of design and ease
of programming above all. It is of completely general applicability,
and takes no advantage of special problem structures. Step 1l uses
just the simple tests for conditional and unconditional binary-
infeasibility mentioned at the end of Sec. II; it recognizes an
obvious optimal solution of (PS) only by minimizing

Z ijj

jé€s

over binary values of the free variables while ignoring the constraints,

ani then testing the resulting solution for feasibility. Step 2

follows the outline and suggestions given at the end of the previous
section. Step 3 uses a simplified version of Balas' augmentation
rule: Augment S by jo' where jo maximizes over all fre¢ variables

the expression

m
S
E Min {0, b] +a, 1.

1=1

(This assumes, without loss of generality, that c 2 0.)

The program was written entirely in Fortran IV for RAND's 32,000
word 7044. The object program and its data i{s all-in-core, treats all
A problem data as floating point, and will handle problems with up to
90 variables and 50 constraints (including composite constraints, if

any). The linear programming subroutine is basically a Revised Simplex
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method with explicit inverse, the starting point having been a routine
due to R. Cllsenraj. Pre /post-optimality techniques were incorporated
that use a labeling procedure rather than more conventional matrix

manipulations. The basis of the labeling procedure is the observation
that fixing a variable at the value 0 or ! can be viewed as demanding

equality in the appropriate inequality constraint among 0 < x, < 1,

j -
J € S, in the continuous version of (Ps). This means that the corre-

sponding dual variables (the w, and slacks in (LPS)) become uncon-

]
strained in sign; the appropriate variables are therefore labeled
and treated as 'unsigned." This procedure, while easier to program
than a more conventional one using matrix manipulations, has the
drawback that (LPS) (and therefore the explicit inverse) always has
n rows, instead of only as many rows as free variables. Hence, each
plvot requires more work, and additional core is used.

The code has been used to solve numerous different test problems
with up to 80 variables taken from the literature (Refs. 1, 2, 4, 9,
10, 11 and 12). The number of iterations (executions of Step 1) and
execution times (until termination, to the nearest hundredth of a
minute) for most of these problems is presented in Table 1. We have
omitted the problems too small to be of interest. Each problem was
run twice: once skipplng Step 2, so that no composite constraints
were ever computed; and once with Step 2 fully implemented, so that
an attempt was made to compute a new composite constraint each time,
with only the last four composite constraints being kept and used.
The columns corresponding to these runs are labeled 'No LP'" and '"LP

Every Time," respectively, in Table 1.

P -
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Table 1 Footnotes

%Wwhen termination did not occur within the 10-minute time limit,
the best feasible solution yet found and the percent of the 2" possible
solutions that had been implicitly enumerated were printed out. For
B & M 24, Flelschmann I-60, and IBM 5, an optimal solution was in
store and the percent of the possible solutions accounted for was
47, 75, and 3 respectively. For L & S D2, no feasible solution was
in store althougi 87.5 percent of the possible solutions were accounted
for. For Petersen 6 and 7, and IBM 4 and 6, feasible solutions were
available that were sub-optimal by 0.6 percent, 2.4 percent, 10 per-
cent, 39 percent respectively, and the percent of possible solutions
accounted for were 42.68, 0.77, 12.35 and 0.002 respectively.

bAverage for five slightly different problems of the same size.

cAverage for ten slithly different problems of the same size.
In a recent communication 51, better times as a result of further
modifications were announced as follows: for I-35, 0.04 min.; for
1-50, 0.24 min.; for I-60, 1.68 min.; for I-80-1, 8.95 min.; for
I-80-2, 8.28 min.




ihe

No prior information, such as an obvious initial feasible solution
or upper bound on the optimal value of the objective function, was
used. Such information was usually available, but we did not wish to
further confound comparability with the computational results of other
investigators, which are reproduced for easy reference in Table 1.
These other investigators are Bouvier and Melloumian.[zl whose problems

[4l

are randomly generated without any special structure at all; Fleischmann,
whose "economic'" problems are highly structured; Lemke and SPLclbcrg.r1°]
whose problems Band D2 were attributed to Mr. M. Sidrow of Texaco, and

problem C to Mr. W. Acuri of IBM; Pctorscn,rll1 whose problems are of

a well-known capital budgeting variety; and Trauth and Hboluoy.rlz] who
tested the LIP 1 code of Haldi and Isaacscn among others on a number
of problems including Haldi's fixed charge problcnl.r91 and some of the

"IBM test problems'" published by Hnldt.r91

LIP 1 appears to be among
the most efficient of the available codes based on Gomory's cutting-
plane approach to linear integer programming. With this important ex-
ception, each of these investigators used a different adaptation of the
implicit enumeration approach.

The data presented in Table 1 indicates that use of the imbedded
linear program (LPS) dramatically reduces the number of required iter-
ations, typically by one or two orders of magnitude; and that this re-
duction is more than enough to pay for the time spent working on (LPs).

since execution times were typically reduced by a factor of between
3 and 20.
The present algorithm is evidently quite efficient relative to the

others; but differences in programming and machine speed make it in-

advisable to hazard a quantitative estimate of the apparent improvement.
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No attempt has been made as yet to optimize program efficiency,
or to try any of the many alternative implementations for Steps 1 and
3. PFor this reason the computational results of Table 1 should be
considered as preliminary and subject to improvement. For example, the
more powerful tests used by Fleischmann could be incorporated in the
present program to improve its efficiency without the imbedded linear
program, and therefore presumably with it. Significant reductions in
computing time can also be achieved by computing composite constraints
less often than at every opportunity. For example, Petersen 7 was
solved in 0.60 instead of 1.12 minutes, and L&S C in 0.71 instead of
1.37 minutes, when (LPS) was used every eighth time instead of every
time. Another source of improvement would be the use of prior in-
formation.[7] As an illustration, inspection of the data for IBM 6
reveals an obvious good feasible solution, the use of which resulted
in termination in .07 rather than in 2.39 minutes. Finally, we should
point out that advantage could be taken of special problem structures.
The tests introduced by Petersen in his modifications R-1 and R-2,
for example, were very effective in taking advantage of the sign

homogeneity in his capital budgeting problems.
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