Working Paper No. 120

20
IMPLICIT ENUMERATION
a USING AN IMBEDDED LINEAR PROGRAM 1
~

by

ARTHUR M. GEOFFRION

May, 1967

DDC

2rrAnn 10

l..i.(“‘f RIS N

AUG 2 1967
Loy U LY

WESTERN MANAGEMENT SCIENCE INSTITUTE C .-
University of California, Los Angeles . )

RECEIVED

(S

This document has been - 4
roved
A 4 1967 for publc rolaaze and la;:!:r;u
distribution {3 unlimitad,
- CFsTI 228

- T e ¥ o Urivze




- Best
Available
Copy



e [ S A it
e = T —— W 4 Y el o ¥ o

Univer: ity of California
Los Angeles

Western Management Science Institute

Working Paper No. 120

IMPLICIT ENUMERATION USING AN IMBEDDED LINEAR PROGRAM

by
0 i Arthur M. Geoffrion
j May 1967
| This working paper should be regarded as preliminary in nature, and '
i subject to change before publication in the open literature. It
should not be quoted without prior consent of the author. Comments
are cordially invited.

This work was jointly sponsored by the United States Air Force under
Project RAND, and by the Western Management Science Institute under
grants from the National Science Foundation and the Office of Naval

j Research. It is a pleasure to acknowledge the computational assistance
| & provided by R. J. Clasen and A. B. Nelson. The preseant paper develops
and 1mplemeFt’ results obtained in an earlier unpublished paper by

the author.[6],

. g empew W




—————ve R T S . b e 4 ™

-iii-

SUMMARY

Integer programming by implicit enumeration has been the subject

of several recent investigations. Computational efficiency seems to

depend primarily on the ability of various tests, applied to the con-
straints in connection with "partial solutions," to exclude from
further consideration a sufficiently large proportion of the possible
solutions. Most of the simpler or more appealing of these tests can
be applied at reasonable computational cost essentially to only c¢ne
3 constraint at a time. Two main approaches have been suggested for
mitigating this limitation. One is to periodically apply linear |
1% programming to continuous approximations of the subproblems generated

:* by the partial solutions. The other approach, promulgated by F. Glover, ‘

ER Ty

is to periodically introduce composite redundant constraints which

tend to be useful when tests are applied to them individually. Ie—

R e T
g 3

ey l

this paper vwe wotivate-a measure of/ihe "strength" of a composite

—

constraint thet—-is—slightly gifferent from the.one ueed-by Glover, and

At

x

¥

3 %? show how composite constraints that are as strong as possible in this
sense can be computed by linear programming. It further develops that
the dual of the required linear program coilncides with the appropriate
continuous approximation to the subproblems generated by the successive
partial solutions. This leads to a complete synthesis of the two
approaches mentioned above by means of an imbedded linear program.
Computational experience is presented which confirms that this synthe-
sis is indeed a useful one for the classes of problems tried. For

numerous problems taken from the literature with up to 80 variables,

the imbedded linear program typically reduced the number of required

Ty
» 5

S iy

: ) : -
.L o . L i . it e e = e *Mh—_ﬂj

V_;b_-r .
3 i |i~i"ﬁli! -t SUBBRRL Ll g g o gigh e Boadso . ol kA et i Atin i’ —
atain: A e st




f{terations by one or two orders of magnitude, and execution times by

a factor of between 3 and 20.

S




L. INTRODUCTION

The general 0-1 integer linear programming problem is:

(P) Minimize cx subject to b + Ax 3 0, x, binary,

]

wheve ¢ and x are n-vectors, b is an m-vector, and A is an m x n
matrix. The implicit enumeration approach to this problem has been

the subject of considerable recent investigation (see, e.g., references
1, 2, 4, 7, 8, 10, 11). This approach 1is based on a "backtracking"

procedure for what amounts to implicit enumeration of all 2" possible

solutions. 1Its efficiency depends on the ability to exclude a large
proportion of the possible solutions from further consideration by

means of various tests applied to partial solutions. A partial solution

is a subset of the n variables with a specific binary value assigned to
each. (The variables not in the subset are termed free.) The tests
usually amount to examining the constraints in an effort to determine
whether any completion of the current partial solution could possibly
yleld a feasible solution of (P) that has a lower value of the objec-

tive function than the best known feasible solution. Accordingly, the

e
il

algorithm either continues by augmenting the current partial solution
or backtracks to a different one.

Most of these tests can be gpplied at reasonable computational
cost essentially to only one constraint at a time. Two main approaches
have been suggested for mitigating this limitation. One is to peri-
odically .pply linear programming to the continuous verions of (P) in
ral is

the free variables. The other approach, promulgated by Glover,

to periodically introduce additional constraints which are redundant

9
{ Py o e g b




in the usual sense and yet effective when the tests are applied to
them individually. We shall call these additional constraints com-

posite constraints, since they will be composed primarily (but not

b Sty e

entirely) from the given constraints by non-negative linear combination.

In this paper we motivate a measure of the 'strength" of a com-
posite constraint that is slightly different from the one proposed by
Glover. It then develops that strongest composite constraints can
always be computed by linear programming, thereby obviating the need
for approximate methods. It further develops that the dual of the
required linear program coincides exactly with the continuous version
of (P) in the frece variables. This leads to a complete synthesis of
the two approaches mentioned above. The available computational evi-

dence suggests that this synthesis is indeed a useful one.

!

T

daia o




r-.‘

II. IMPLICIT ENUMERATION WITH COMPOSITE CONSTRAINTS

e ——

Denote a partial solution by an ordered set S, where each element
is a non-zero integer between -n and n that may or may not be under-

lined. An element j (- j) of S indicates that xj takes on the vilue

1 (0) in the partial solution. Using an obvious notation, we write

xS
X th

the k  position (counting from the left) is that all completions of

=1 (=0) if J (- j) Ls in S. The significance of an underline at

the partial solution up to and including the kth element complemented
have been accounted for. Associated with any partial solution S is an
integer program (Ps) involving the free variables (the variables not
fixed by S):

S
Minimize z c.x, + c,x, subject to

(P.) b, + IE: a xS +-:E: a . x, >0,i=1,..., m
[ i jeés 1373 igs i3]

xj-Oorl,j¢S.

where the notation j € S (¢ S) refers to the fixed (free) variables.
In addition to the original m constraints, (PS) may also be

expanded to include one or more composite constraints, each of which

1s a non-negative linear combination of the original constraints plus

the constraint (2 - cx) > 0, where z is the value of the currently

%*
best known feasible solution of (P). More precisely, each composite

*
If no feasible solution is known a priori (indeed, (P) may be
infeasible), z can be initially taken as
n
b)) le |.
=1




—e——— v 2 " e ooy ol il oL e Gadloai

constraint is the form

u(b + Ax) + (z - cx) > 0

for some n.n-negative m-vector u. Such & constraint is clearly satis-

g i i

fied by any feasible solution of (P) that has a better value of c¢x
than z.

From the results of Ref. 7 or 8 it follows that the following
procedure terminates in a finite number of steps either with an optimal
solution of (P), or with an indication that no feasible solution of
(P) exists with value less than the initial value of z. The sequence

of partial solutions generated 18 non-redundant in the appropriate 1

sense.

A PROCEDURE FOR SOLVING {P) BY IMPLICIT ENUMERATION

Step 0: Initialize z at a known upper bound on the optimal value
of (P), and S at an arbitrary partial solution without under-
lines.

Step 1: If (PS) is obviously devoid of a feasible solution with
value less than z, go to Step 4. If (Ps) has an obvious optimal

solution with value less than z, then replace z by this value,

store the optimal solution as the incumbent, and go to Step 4.

If any free variable must obviously take on a particular binary

value in order for (Ps) to have a feasible solution with value

less than 5, then augment S on the right by j (- §) for each

variable x, that must take on the value 1 (0). i
1

Step 2: Add a new composite constraint and /or delete one or more

current composite constraints, or do neither.

P e S e T e 3o s ek e e




1%

Step 3: Augment S on the right by + § for some free variable
(or several free variables) xj-
Step 4: Locate the rightmost element of S which is not under-
lined. If none exists, terminate; otherwise, replace the element
by its underlined complement and drop all elements to the right.

Return to Step 1.

There is a wide variety of possible mechanisms for implementing
Steps 1 and 3. Many can be found in, or adapted from, Refs. 1, 2, 4,
7, 8, 10 and 11. The possibilities are further multipled by the fact
that the conditional instructions of Step 1 can be executed in any
order or even in parallel. It is important to observe that many cf the
possible mechanisms , and perhaps most of the ones that are relatively

inexpensive computationally, essentially apply to the constraints only

one at a time. At Step 1, for example, a prominent role is often

played by tests for binary-infeasibility and for conditional binary-
infeasibility, with each constraint being considered individually. A

constraint is said to be binary-infeasible if it has no binary solution,

and is said to be conditionally binary-infeasible if its binary-feasi-

bility {3 conditional upon certain of the variables taking on particular

binary values. It is easily verified that g + 25 ajxj 20 (> 0) is

binary infeasible 1f and only if g + 25 Max (O, 03} <0 (s 0); and

o - 1
B+ T, Max {o, aj] |aj°| <0 (5 0) implies x, =0 or
according as ajo < 0 or ajo > 0 in any binary solution satisfying
+ x, 20 (>0).
ARG

This leads naturally to the desire to introduce composite constraints
at Step 2 that are '"'strong' in the sense that such mechanisms are

effective when applied to them.

o s b
PR VR ANS- TSN S IRP SHY e P A eis R G e il




IIT. COMPUTING COMPOSITE CONSTRAINTS

Since at any given stage of the calculations only a subset of
the variables are free, the "strength'" of a composite constraint must

be defined relative to the current partial solution S. For simplicity

we introduce the notation

zS = z cjxj and bs bi + 2: a, xS,

jes

The special role played by conditional and unconditional binary-
infeasibility (see Sec. II) suggests the following definition of the :

"strength' of a composite constraint. i )

Definition. The composite constraint ul(b + Ax) + (z - cx) >0
is said to be stronger than the composite constraint uz(b + Ax)

+ (z - cx) >0 relative to S Lf the maximum of the left-hand

side of the first constraint is less than the maximum of the
left-hand side of the second constraint, the maxima being taken

over binary values of the free variables; i.e., if

m m
iz-;uibf +z -2 +jZ¢sMax[0 éua -cj}<§uibf J
+z - S Zﬂlx fo, Eua - }
jes 1=1

(For purposes of comparison, the corresponding definition used by
Glover seems to be: the surrogate constraint ul(b + Ax) 2 0 is said
to be stronger than the surrogate constraint uz(b + Ax) 2 O relative
to § 1f the maximum of (i - ¢cx) subject to the first constraint {is

less than the maximum of (i - cx) subject to the second corstraint,

[ ta— it iy st




the maxima being taken over binary values of the free variables.)

Finding a strongest composite constraint is, then, the problem

of minimizing

m m
2 upd e Y 2

u, b’ -z° + Max {0, u,a,, -c,}
gmp L1 3es m L4

(we have dropped the constant 2) over all u > 0. But this problem is

clearly equivalent to the following linear program:

m
(LPS) Minimize E uibi -zs + E w subject to
w,w,  del yes
b
m
2 s 11 S

wj ?:-1 uiaij cj all j ¢

ugo2 o, i=1, , m

w, 20, L ¢s

Note that (LPS) is necessarily feasible (for any choice of the U

let the wj be sufficiently large). Denote the optimal value of (LPS)

by v(LPS)- We thus have

Theorem 1: Let S be an arbitrary partial solution. Then (LPS)

is feasible, and

(1) v(LPS) = - ®» o there {8 no strongest composite con-

straint relative to §;

[P I CPUT UL SR PG PRI PP IS ke banahate,




w
B
b

{

— o YT I F R TR T TR TR
o e ey T gl s g ¥ G d Y
. o
‘

4 AT

(i1) v(LPS) > - » = any optimal u yields a strongest composite
constraint relative to S.
The usefulness of (LPS) for finding strongest composite con-
straints is greatly enhanced by the fact that it is precisely the

dual of (§S), the continucus version of (PS) (replace x, = 0 or 1 by

b
0 < xj < 1). By the Dual Theorem of linear programming and the re-
lationship between (PS) and (ﬁs), one can easily prove
Theorem 2: Let S be an arbitrary partial solution. Then
(1) v(LPy) = - = o (ﬁs) is infeasible = (p,) is infeasible. i
(1) - =<« v(LPS) < -z e (ﬁs) is feasible and has optimal

value » z = (PS), if feasible, has optimal value 3> z.

ittt st .

(iit) v(LPS) S-ze (§S) is feasible and has optimal value

< Z.

Furthermore, if v(LPS) > - o then the optimal dual variables of
(Lps) are optimal in (PS) 1f they are integers.
The significance of this result is that {t often enables the aim

of Step 1 to be accomplished, at no extra computational cost, in the

course of attempting to construct strongest composite constraints
at Step 2. More specifically, one would set out to construct a
strongest composite constraint by executing simplex iterations on
(LPS) until one of the following mutually cxclusive events occurs:
(a) the value of the objective function of (LPS) becomes < - z;
(b) the optimal value of (LPS) is reached and it is > - z and the
optimal dual variables are all integers; (c) the optimal value of
(LPS) is reached and it is > - z and not all of the dual variables

are integers. 1In event (a), a strong (binary infeasible, in fact)




R e e o

. G

L

-~

composite constraint is obtained from the values of the uy variables
in (LPS). and one may go to Step 4; in event (b), the optimal solutiun
of (PS) is given by the optimal dual variables of (LPS), so one should
replace z by the new value and the incumbent by the new solution and
go to Step 4; in event (c), a strongest composite constraint is ob-

tained from the optimal u, variables solving (LPS).

i
Post -optimality techniques primal to (LPS) can conveniently be
used to take advantage of the results ot »revious calculations each
time Step 2 is to be executed. (Since we do not always optimize
(LPS), some of the "optimality techniques' are 'pre-'" as well as
"post-".) The Revised Simplex format is convenient for such tech-
niques. Use should be made of the fact that the columns of the wj are
just the negatives of the unit vectors associated with the corre-
sponding slack variables. One consequence is that the wj can be
treated logically rather than algebraically, so that (LPS) is re-
duced to essentially m non-trival variables and as many constraints
as free variables. The other important consequence is that it is
easy to write down a basic feasible solution to (LPS) for any S;
in fact, there is an obvious and simple procedure for modifying a
basic feasible solution for (LPS) until it becomes basic feasible

for (LPS.), where S' # S. This avoids the need for post-optimality

technirues that are dual to (LPS).




-10-

&

IV. COMPUTATIONAL EXPERIENCE

The particular version of the implicit enumeration procedure
chose 1 for implementation emphasizes simplicity of design and ease
of programming above all. It is of completely general applicability,
and takes no advantage of special problem structures. Step 1l uses
just the simple tests for conditional and unconditional binary-
infeasibility mentioned at the end of Sec. II; it recognizes an
obvious optimal solution of (PS) only by minimizing

Z ijj

jé€s

over binary values of the free variables while ignoring the constraints,

ani then testing the resulting solution for feasibility. Step 2

follows the outline and suggestions given at the end of the previous
section. Step 3 uses a simplified version of Balas' augmentation
rule: Augment S by jo' where jo maximizes over all fre¢ variables

the expression

m
S
E Min {0, b] +a, 1.

1=1

(This assumes, without loss of generality, that c 2 0.)

The program was written entirely in Fortran IV for RAND's 32,000
word 7044. The object program and its data i{s all-in-core, treats all
A problem data as floating point, and will handle problems with up to
90 variables and 50 constraints (including composite constraints, if

any). The linear programming subroutine is basically a Revised Simplex




Sk LeE LES S

=3

g e i S i i s ke 8 ais ake . -

method with explicit inverse, the starting point having been a routine
due to R. Cllsenraj. Pre /post-optimality techniques were incorporated
that use a labeling procedure rather than more conventional matrix

manipulations. The basis of the labeling procedure is the observation
that fixing a variable at the value 0 or ! can be viewed as demanding

equality in the appropriate inequality constraint among 0 < x, < 1,

j -
J € S, in the continuous version of (Ps). This means that the corre-

sponding dual variables (the w, and slacks in (LPS)) become uncon-

]
strained in sign; the appropriate variables are therefore labeled
and treated as 'unsigned." This procedure, while easier to program
than a more conventional one using matrix manipulations, has the
drawback that (LPS) (and therefore the explicit inverse) always has
n rows, instead of only as many rows as free variables. Hence, each
plvot requires more work, and additional core is used.

The code has been used to solve numerous different test problems
with up to 80 variables taken from the literature (Refs. 1, 2, 4, 9,
10, 11 and 12). The number of iterations (executions of Step 1) and
execution times (until termination, to the nearest hundredth of a
minute) for most of these problems is presented in Table 1. We have
omitted the problems too small to be of interest. Each problem was
run twice: once skipplng Step 2, so that no composite constraints
were ever computed; and once with Step 2 fully implemented, so that
an attempt was made to compute a new composite constraint each time,
with only the last four composite constraints being kept and used.
The columns corresponding to these runs are labeled 'No LP'" and '"LP

Every Time," respectively, in Table 1.

P -




i1

. Z1 1411 060L 88° L €90 L01 %0 166 g x 61 6
4 01 1d1zd 760L 00°06< | 6€°C 162 00°01<| 8g£0‘L < 1€ x 1¢ 9
& 1 1d11 060L 111 “ “ " “ " . A
2 01 1d1zQ %60L 119 68° 1 S9¢ 00" 01<| 868‘£1< S1 x 0¢
01 1d1za %60L L9°9 0 “ “ n " n
, 4 1411 069L 61°0 61°0 LL 00° 01<| 666° 1< S1 X 0¢ 4
4 - ¢l 1dY1 060L S0°0 10°0 6 70°0 L8 € X 0T €
| Z1 1411 060L S0°0 €0°0 L2 11°0 69¢ L x 1z z &
1 1411 060L €0°0 10°0 L1 %1°0 SeYy L x 12 1 [l
rA 1411 060L S1°0 90°0 €9 £€9°0 6SL 01 x O¢ 01-11 M
1 1411 060L S0°0 10°0 S1 10°6 €€ 9 x 21 6-11
A 1411 060L 110 90°0 L8 01°0 L0S % X 0Z 8-11 :
1 1411 060L €1°0 " " " " " " }
01 14120 0%/09¢ T0°0 €0°0 69 01°0 cSy % X 07 L-11 mauﬂvﬂam .L
11g-8 ® 1-¥ 0¢6 SAs 9¢ 0 " M m m " M
11 1-4 | 0€6 SAS o< | Z1°1 €y 00 01<| Log L1< ¢ x 0§ L :
1 11 1-4 | 0€6 sas 9 %S°0 L67 00° 01<| L1€‘61I< S X 6¢ 9 ,
i .nﬂ .—IM OMO sSas ﬂ " " " " " " !
A 11| ‘w3048 | 0¢6 SAS 9% 80°0 101 SY ¢ €10°S 01 X 8¢ S
11| °Wd0dxd | 0€6 SAS Vi 90°0 18 1€°0 609 01 x 0¢ V] !
05 11| °RW¥0dTd | 0£6 SAS 1 %00 1¢ 90°0 6S1 01 x G1 € [q3Uos3e3%d }
0 01 1d1Za 4%60L 0e< | 00°01< 866< | 00°01<| 8€8°€ < LE X 9/ za
o1 1d1zd 0%/ 09¢ S L€ 1 1SY 06° 1 190°Z 1 X %y o)
01 1d1z2a 0%/ 09¢ S¢S 6Z'0 €9 6£°T G66°1 87 X G¢ g hoﬁum 91
Vi $60L oe~ | e 0 Sy 11 x 08 7-08-1
Vi %60L o | 12°0 cE 11 x 08 1-08-1
i Vi %60L G0 8 L1°0 1% 00° 01<| £9€‘01< 11 x 09 09-1
Vi %60L %S 1 q70°0 4 00°01< 11 x 0§ 06-1
Vi 760L 5L0°0 q%70° 0 L1 050 600° 1 8 X G¢ se-1 mc_ccnenUm«uam
r4 9%0L 0Z°S1 16°1 182 00°01<| L11°8 < 07 x 82 %2
[4 790L 01°L 91° 1 1L1 80° 8 6969 0T x (2 94 3
ya %0, LT € 16°0 £v1 88"y L92'Y 07 X 62 &4
T 7901 16°0 %0° 0 1 65°0 696 €2 X 0T 81
T 2901 $8°0 €9°0 <11 90°1 688 € X 02 L1 _
) 4 7%0L L0°T 79°0 68 69°1 L1681 0T x 07 91
{ r4 %%90L (%0 01°0 94 8%°0 19 §9 0Z X 02 S1 euuz 9 g
*A  NOTSHIA | ANTHOVH! °NIW * NIN “MALI | CNIW | °¥3Il *ISNOD X dyA 1-0 NDILIVNOIS3a
SWHII¥OYIV ¥IHIO INIL X¥3AT d1 gd1 ON d4Z1S WT1904d KT104d

1 TI9vVL




-13-

Table 1 Footnotes

%Wwhen termination did not occur within the 10-minute time limit,
the best feasible solution yet found and the percent of the 2" possible
solutions that had been implicitly enumerated were printed out. For
B & M 24, Flelschmann I-60, and IBM 5, an optimal solution was in
store and the percent of the possible solutions accounted for was
47, 75, and 3 respectively. For L & S D2, no feasible solution was
in store althougi 87.5 percent of the possible solutions were accounted
for. For Petersen 6 and 7, and IBM 4 and 6, feasible solutions were
available that were sub-optimal by 0.6 percent, 2.4 percent, 10 per-
cent, 39 percent respectively, and the percent of possible solutions
accounted for were 42.68, 0.77, 12.35 and 0.002 respectively.

bAverage for five slightly different problems of the same size.

cAverage for ten slithly different problems of the same size.
In a recent communication 51, better times as a result of further
modifications were announced as follows: for I-35, 0.04 min.; for
1-50, 0.24 min.; for I-60, 1.68 min.; for I-80-1, 8.95 min.; for
I-80-2, 8.28 min.




ihe

No prior information, such as an obvious initial feasible solution
or upper bound on the optimal value of the objective function, was
used. Such information was usually available, but we did not wish to
further confound comparability with the computational results of other
investigators, which are reproduced for easy reference in Table 1.
These other investigators are Bouvier and Melloumian.[zl whose problems

[4l

are randomly generated without any special structure at all; Fleischmann,
whose "economic'" problems are highly structured; Lemke and SPLclbcrg.r1°]
whose problems Band D2 were attributed to Mr. M. Sidrow of Texaco, and

problem C to Mr. W. Acuri of IBM; Pctorscn,rll1 whose problems are of

a well-known capital budgeting variety; and Trauth and Hboluoy.rlz] who
tested the LIP 1 code of Haldi and Isaacscn among others on a number
of problems including Haldi's fixed charge problcnl.r91 and some of the

"IBM test problems'" published by Hnldt.r91

LIP 1 appears to be among
the most efficient of the available codes based on Gomory's cutting-
plane approach to linear integer programming. With this important ex-
ception, each of these investigators used a different adaptation of the
implicit enumeration approach.

The data presented in Table 1 indicates that use of the imbedded
linear program (LPS) dramatically reduces the number of required iter-
ations, typically by one or two orders of magnitude; and that this re-
duction is more than enough to pay for the time spent working on (LPs).

since execution times were typically reduced by a factor of between
3 and 20.
The present algorithm is evidently quite efficient relative to the

others; but differences in programming and machine speed make it in-

advisable to hazard a quantitative estimate of the apparent improvement.



3
1.

-15-

No attempt has been made as yet to optimize program efficiency,
or to try any of the many alternative implementations for Steps 1 and
3. PFor this reason the computational results of Table 1 should be
considered as preliminary and subject to improvement. For example, the
more powerful tests used by Fleischmann could be incorporated in the
present program to improve its efficiency without the imbedded linear
program, and therefore presumably with it. Significant reductions in
computing time can also be achieved by computing composite constraints
less often than at every opportunity. For example, Petersen 7 was
solved in 0.60 instead of 1.12 minutes, and L&S C in 0.71 instead of
1.37 minutes, when (LPS) was used every eighth time instead of every
time. Another source of improvement would be the use of prior in-
formation.[7] As an illustration, inspection of the data for IBM 6
reveals an obvious good feasible solution, the use of which resulted
in termination in .07 rather than in 2.39 minutes. Finally, we should
point out that advantage could be taken of special problem structures.
The tests introduced by Petersen in his modifications R-1 and R-2,
for example, were very effective in taking advantage of the sign

homogeneity in his capital budgeting problems.




10.

11.

12.

-16-

REFERENCES

Balas, E., "An Additive Algorithm for Solving Linear Programs
with Zero-One Variables," Operations Research, 13, 4 (July-
August , 1965) 517-546.

Bouvier, B. and G. Messoumian, "Programmes Linéaires en Variables
Bivalentes , Algorithme de Balas," Universitié de Grenoble,
France, June, 1965.

Clasen, R. J., "Using Linear Programming as a Simplex Subroutine,"
The RAND Corporation, P-3267, November, 1965.

Fleischmann, B., '"Computational Experience with the Algorithm of
Balas," Qperations Research, 15, 1 (January-February, 1967)
153-155.

Fleischmann, B., private communication, November 30, 1966.

Geoffrion, A. M., "An Improved Algorithm for Integer Programming
by Implicit Enumeration,'" August 23, 1965, privately circulated.

Geoffrion, A. M., "Integer Programming by Implicit Eanumeration
and Balas' Method," The RAND Corporation, RM-4783-PR, to appear
in SIAM Review.

Glover, F., "A Multiphase-Dual Algorithm for the Zero-One Integer
Programming Problem," QOperations Research, 13, 6 (November-
December 1965), 879-919.

Haldi, J., 25 Integer Programming Test Problems," Working Paper
No. 43, Graduate School of Business, Stanford University,
December 1964 .

Lemke, C., and K. Splelberg, '"Direct Search Zero-One and Mixed
Integer Programming,” June 1966, I.B.M. Technical Report 39.008,
International Business Machines Corp., New York Scientific
Center.

Petersen, C. C., "Computational Experience with Variants of the
Balas Algorithm Applied to the Selection of R & D Projects,"
to appear in Management Science.

Trauth, C. A., and R. E. Woolsey, "Practical Aspects of Integer
Linear Programming,” Sandia Corporation Monograph SC-R-66-925,
August 1966.




N

i e,

Unclassified

" Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classilication of title body of absteact and indexing arinotation must be entered when the overasll report ia clasailiad)

1 ORIGINATING ACTIVITY (Corporate author) 28 RCPORT SECURITY C LASSIFICATION
Western Management Science Institute Unclassified

University of California
lLos Angeles, California 90024

2b GRoOuP

3 REPORY TITLE
Implicit Enumeration Using An Imbedded Linear Program

4 DESCRIPTIVE NOTES (Type of report and inclusive dartes)

Working Paper

S AUTHOR(S) (Lest name. firit name. initial)

Geoffrion, Arthur M.

¢ REPORT DATE 78 TOTAL NO OF PAGES 7b NO OF REFS
June, 1967 16 1z
8e CONTRACY OR GRANT ND 92 ORIGINATOR'S REPORT NUMBER(S)

Nonr 233(75)

b PROJECT NO

Working Paper No. 120

G b OTHER n"on? NO(S) (Any other numbers that may be sesigned
this report

d

10 AVAILABILITY/LIMITATION NOTICES

Distribution of this document
is unlimited.

11 SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY

-
3 AeumAcr'\llnteger programming by implicit enumeration has been the subject of
several recent investigations., Computational efficiency seems to depend primarily
on the ability of various tests, applied to the constraints in connection with
“partial solutions,' to exclude from further consideration a sufficiently large
proportion of tne possible solutions., Most of the simpler or more appealing of
these tests can be applied at reasonable computational cost essentially to only one
constraint at a time. Two main approaches have been suggested for mitigating this
limitation,.,~\One is to periodically apply iinear programming to continuous approxi-
mations of the subproulems generated by the partial solutions. The other approach,
promulgated by F. Glover, i: to periodically introduce composite redundant constrain
which tend to be useful when tests are applied to them individually. In thi. paper
we motivate a measure of the "strength" of a composite constraint that is slightly
different from the one used by Glover, and show how composite constraints that are
as strong as possible ifn this sense can be computed by linear programming. 1.
furtner develops that the dual of the required linear program coincides witr the

partial solutions, Tnis 2ads to a complete systhesis of the two approaches mentio
above by means of an imbe¢ '‘ed linear program, Computational experience is presented

tried. For numerous problems taken from the literature with up to 80 variables, the
imbedded linear program typically reduced the number of required iterations by one o
two orders of maznitude, and execution times by a factor of between 3 and 20.

appropriate continuous e “roximation to the subproblems generated by the successive L
ed

which confirms that this s sthesis is indeed a useful one for the classes of problemk

DD %", 1473 oio1-s0r-6800 Unclassified

Secunty Classificaton




Secunty Classification

4
KEY WORDS

LINK A LINK B LINK C
ROLE wTY ROLE wY ROLE wT

Linear Programming
Integer Programming
Implicit Enumeration
Compttational Studies

INSTRUCTIONS

', ORIGINATING ACTIVITY: Enter the name ant address
of the contractor, subcontractor, yrantee, Department of De-
fense activity or other organization (corporate author) 18suing
the report.

2a. REPORT SECURTY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
‘‘Restricted Data’’ 15 included Marking 18 to be in uccord-
ance with appropriate security regulations.

2b. GROUP: Autom .1c downgrading 1s specified in DoD Di-
rective 5200. 10 ann Armed Forces Industrial Manual, kntee
the group number Also, when applicable, show that vptional
markings have been used for Group 3 and Group 4 4s author-
1ized

! FEPORT TITLE ' Enter the complete repont title 1n all
capital letters, ' Titles 1n all cases should be unclassified.
It a meaningful title cunnot be selected without classifica-
tion, show title (lassification in all capitals 1n parenthesis
nnmedidtely following the title.

t. DESCRIPTIVE NOTES: If appropriate, enter the type ol
report, e.g., 1ntenm, progress, summary, annusl, or {inal,
(nve the inclusive ddates when a speciflic reporting period 1s
covered.

5. AUTHOR(S) Enter the namets) of author(s) as shown on
nr in the report. Fnter last name, first name, middle initial.
I military, show rank #nibranch of seevice. The name of
the principal aythor s an ahsolute minimum requirement.

. REPORT DATE  Enter the date of the report as day,
nonth, yeds, or rionth, yedar. If more than one dute appedrs

' nthe teport, use date of publication,

Too TOTAL NUMBER OF PAGES  The total paye count
ceonld taollow normal pagination procedures, e, cater the
numbier ol pages contdining anformation

Th NUMHLER OF REFFRENCES  Enter the total number of
teferences cited an the report,

Ny CONTRACT OR GRANT NUMHBER. 1t appropriate, enteor
the applic wble nunber of the Contract or groant under which
the repoirt was wntten

ah, B, & B P'ROJEFCT NUMBER: FEnter the appropriate
litary departnent identihcation, such as project number,
subproject number, system numbers, task number, rte.

“a. ORIGINATOR'S REPORT NUMBER(S) Enter the offi-
cral report number by which the document will be identified
and cuntrolled by the orginating activity, This number must
be unique to this report.

b OTHER REPORT NUMBER(S): If the report has been
assigned any other report numhers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY LIMITATION NOTICES: Enter any lim-

itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) *"Qualified requesters may obtain « opaes of this
report from DDC.'’

(2) ‘“Foreign announcement and dissemination of this
report by DDC 13 not authorized. "’

(J) ‘*U. S. Government agencies may obtain copies of
this report duectly from DDC. Other qualified DDC
users shall request through

(4) ‘‘U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

(S) '*All distribution of this report 1s controlled Qual-
1fied DDC users shall request through

If the report hus been turmished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, |f known

1. SUPPLEMENTARY NOTES Use for additional explana-
tory notes.

12, SPONSORING MILITAI'Y ACTIVITY' Enter the name of
the departmental project office or laboratory sponsonng ‘pay
ing for) the research and development., Include address.

14 ARSSTRACT. Enter an abstract giving o brief and fac tual
summary of the document indicative of the report, even thaugh
1t may also appear elsewhere in the bady of the technical re
port If aditional space s required, a continadtion sheet shalt
be atlached

It s highly desirable that the abstract of lassified reports
be unclassified  Each paragraph of the ahatract ~hall on i with
an indicdtion of the military secunty classification of the an
formation 1n the paragraph, represented as TS sy 0o oo,

There ss no himutation on the length of the abstract  How
ever, the suggested fength 1s from 180 10 228 words

14 KEY WORDS: Key words are technically meaningful termms
or short phrases that characterize 4 report and may Le used as
index entries for cataloging the report  Key words must be
selected so that no securtty classafication s required  Identy
fiers, such as equipment mode! designaticn, trade name military
project code name, geographic location may be used as key
words but will be followed by an indication of technica!l con
text. The assignment of links, rales. and weights 1s optiona!l

R P OT Y, [ PR COPuie L e SO o ) e B e g

Security Classification




