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ON THE STATISTICAL PROPERTIES OF TRANSIENT NOISE SIGNALS

Prepared by:
Edward C, Whitman

ABSTRACT: A class of random transient signals has been defined as
the product of a deterministic envelope waveform of finite integral
square and a continuous random process with a well-defined power
spectrum and autocorrelation function, The time average autocorrela-
tion function and energy density spectrum of the resulting waveform
have been found to be random variables at svery value of their
arguments, The meaans and variances of these random variables are
derived as functions of the characteristics of the envelope and
original noise process. The average autocorrelation function is
found to be the product of the autocorrelation functions of envelope
and noise, and the average spectrum is given by the convolution of
the energy spectrum of the envelope function and the power spectrum
of the ncise, FExamples of the mean and variance calculations are
presented for both rectangular and decaying exponential pulses of
both broad and narrow band noise, Finally, the implications of these

findings for measurement programs and monopulse signal processing are
discussed.
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ON THE STATISTICAL PROPERTIES OF TRANSIENT NOISE SIGNALS

A class of random signals has been modeled as the product of a trans-
ient, deterministic envelope waveform and a well-behaved continuing
random process., The properties of the energy density spectrum and
autocorrelation function of such signals are studied and the results
related to current problems in signal processing and monopulse detec-
tion systems., The work on this project was funded under Task
ASW2-21~000-W270~70-00, The report will be of interest to those
concerned with statistical communicaticrn and detection theory, active
sonar systems, signal processing, and noise immunity studies,

The author wishes to acknowledge with thanks the aid of Mr, Ralph
Ferguson and Miss Ann Penn of the Computer Applications Division in
prepariug much of the computer programming underlying these results.
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1 Chapter I

b, INTRODUCT LON

]

i

; , in the study of a large class of communication and signal detec-

tion systeus, one is often faced with the analysis of the effects of
interfering noise of a transient, non-continuing nature. £xamples
of such noise phenomena include the reverberation background of a
! sonar signal and impulsive interference of the type seen on telephone
# lines and atmospheric radic links., When formulating a system for the
to detection of wanted signals 1n such a background, it is often neces-
, ry to know in some detail the frequeiicy distribution of energy in
,he interference or how such a noise comnonent behaves under
\ correlation processing. The intent of this report is to detail an
‘ Jnvestigation of certain statistical properties of a class of noise
. pursts suggested by the above, It is hoped that the results gained
! here place in somewhat better perspective the problems faced in the

analysis and synthesis of processing systems working against non-
stationary backgrounds.

The noise signals to be treated here are neither continuing
stochastic processes in the usual sense nor deterministic transients
amenable to immediate treatment by the Fourier integral. They share
the properties of both broad classes but lack the mathematical
convenience that arises from the usual assumptions. (It is suggested
that these signals, bearing many properties of both transients and
random signhals, be known as "random transients'.) Since a noise burst
is defined only for a given epoch, its statistical properties are
! tied to a given instant of time, and stationarity disappears. Since

X ensemble averages no longer equal time averages, ergodicity soon
evaporates also, On the other hand, such a burst does not have a
deterministic Fourier transform, and Fourier integral analysis must
be approached with great care. Even so, by carefully defining terms
and remaining reasonably aware of the necessity of continually relat-

. ing the mathematics to the physical situation, it is possible to achieve
. a consistent and useful interpretation of impulsive noise phenomena.

RO e

e

Eventually, it emerges that the autocorrelation functions and

‘ spectra of such noise signals no longer possess determinjstic values
at every point, but rather become random variables with calculable
means and variances, Fortunately, it is possible to show that the
means are given by quasi-intuitive expressions similar to those
developed in traditional transient or random theory. The variances,
in turn, provide an indication of the uncertainty of the spectra and
correlation functions for a given value of their arguments., The
analysis thus lends a good deal of insight to noise measurement
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programs and also to the choice of a processing scheme that aliows
sufficient latitude to encompass the great majority of interfering
background noise that may arise,
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Chapter II
A MODEL FOR THE GENERATION OF RANDOM TRANSIENTS

The model used to generate the transient noise signals to be:
treated herein is portrayed in Figure 1. The random transient is
taken as the output of a multiplier whose inputs are a zero-mean
Gaussian random process n(t) and an "envelope waveform" e(t), both
of which are real. The former is assumed to be stationary and ergodic,
thus possessing a well-defined power spectrum and autocorrelation
function as described in reference (a). The "envelope waveform" is
held to be a deterministic transient of finite integral square which
is zero for t <0, The output of the multiplier is the product of
these functions and evidently equals zero when e(t) = O,

Some justification of this model is provided by noting that many
of the processes which yield random-transient-like signals can be
approached from a theoretical basis which yields a prediction of some
quantity which can loosely be described -as the "average level" as a.
function of time., In sonar applications for example, it is possible
to derive theoretical expressions for the acoustic power returned as
a function of range from either volume or boundary reverberation,
Similarly, in the study of transients causzd by impulsive phenomena
such as chemical explosions or spark gaps, a theoretical treatment
may well provide an expression for some kind of envelope within which
the detailed structure of the transient is more or less random, It
1ls certainly visionary to claim that such a multiplicative envelope
function can be rigorously defined for the physical processes of the
real world. The point is, however, that although the detailed
structure of a particular transient may be vastly different from every
other, such a quantity as an average '"level" of perhaps some: analogous
statistical measure may well display & uniformity from sample to

sample that can be described with the artifice of a multiplicative
envelope,

Here, this envelope waveform has been considered a deterministic
transient, probably the simplest assumption that might haye been magde,
It is felt that such an approach &s consistent with the class of
situations described immediately above, but certainly a more elabo-
rately structured model could be envisioried to accomodate a larger
class of natural phenomena. As a first step upward from the present
assumption, one might randomize the envelope by considering such para-
meters as length and amplitude to be random variables with appropriate
distributions, Another possibility is to model: the envelope waveform
itself as a segment from a relatively low frequency process so that
both functions entering the multiplier are completely random. These
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GAUSSIAN n (1) s{)=e(t)n ()
RANDOM = MULTIPLIER e
PROCESS

e} =0, t<O
"ENVELOPE" e ()
WAVEFORM
R |

FIGURE 1. IDEALIZED MODEL OF WAVEFORM GENERATION,
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not developed here but remain 2n interesting avenue
?ggrgiiﬁii zigdy. At leagt at the outset of this invest%%agéon it
was felt that the simplest model was adequate to deal wi e attene
phenomena of immediate interest, We shall now concentrate our

tion on the model of Figure 1.

j isnomer
The term "envelope waveform" is actually something of a m
here s?gceeit does nbg play the same role as the corresponding goggept
in. for example, amplitude modulation where e(t) would representh e
sléwly varying envelope of a more rapid oscillation, Consider e

output waveforms:
s(t) = e(t) n(t) (1)

where at every instant of time t, B(t) is a Gaussian random var-
iable with mean zero and variance g< . At this same instant of time,

s(t) is thus also a Gaussian random variable vwith zero mean and with
variance, L.

2 - 2y 2
o (t) = e \t)GN- _ 2) .

Alternatively,

Og(t) = |e(t)|oN N (3)

and it is seen immediately that the most meaningful intarpretation cf
e(t) s as the time varying factor whose magnitude relutes the stand- -
ard deviations of the input and output., It is also aj-parert now that
s(t) can in no way be considered a stationsry random wariable since
indeed its variance is a function of time, This is hardly sucprising
since we are now dealing with a transient signal for which coneupt

of statlionarity are irrelevant, I

Consider., however, an infinite ensemble of waveform generators
on this model, each with its separate independent random process
n(t), out with *4ientical envelope waveforms e(}). The ensemble of
output transienis generated by such an assemblage can be expectsd to
display a large measure of statistical regularity, and it is with

this ensemble of all possible transients with identical e(t) that
we propose to work.

. - . N . — .
T N S, _’M__:";““{:,‘A,"”_
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CHAPTER III
NOISE BURST AUTOCORRELATION FUNCTIONS

For a real qeterministic transient such as the envelope wave-
form e(t), the autocorrelation function is generally defined as

@ (7) = /;(t)e(t+‘z’)dt ()
such that
©,.(0) aﬁg(t)dt (5)

where €.(0) is known as the gnergy of e(t) in the sense that if e(t)
were a voltage or current waveform, this expression gives the total
energy dissipated by e(t) in a pure one ohm resistance (reference (a)).

For a real random process such as n(t), extending in time from
-=99 to +99, two autocorrelation furctions can be defined, First

the ensemble average autocorrelation function:

R (b1,85) = B [nCepin(eo)] (6)
where E[ ] denotes the statistical expectation taken over all
members of the ensemble., Rj is, in general, a function of t) and tp,

but if the process is stationary, it becomes a function only of v,
the difference between t; and ty:

Rn(tl:tZ) = Rn('?') u E[n(t)n(t-l-’t‘)] (7)

where = tl-t2 and ty is arbitrary

e sttty s o - D R i .

I
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;j The time average autocorrelation function is defined* as
. Yon(7) = lim 1 /F
= mt) 2 (B [ nte)n(eem)ar (8)
| with . T
- Pud0) = 20, L fT n2(t)dt (9)

which is the average power of n(t) in the sense thst this expression
gives the average powex dissipated in a one ohm resistor by n (t).

| If the process is ergodic, time and ensemble averaging are
‘ equivalent, and in particular,

Rn(?) = ¥nrl7) (10)

With this background, we can proceed to a meaningful definition
A and evaluation of the autocorrelation function of the signal s(t)
defined in equation (1) and Figure 1, Consider first the attempt to

form an ensemble average autocorrelation function for s(t) as in
equation (6):

Rg(ty,t0)

E [s(tl)s(tgﬂ

E[e(ty)e(ty) n(ty)n(ty)] (11)

Ly

Since e(t) is deterministic, we may write

R (t1,to) = elty)e(ta)E [n(ty)nlty)] (12)

Because n(t) has been assumed to be ergodic, this becomes

i W -
f

Rg(t1,tg) = Rs(t1,74t1) = e(ty)e(ty+?) W (7) (13)
T = to-t;
Since Rg is a function of both tj and ¥, s(t) is nonstationary, and

4 the ensemble average autocorrelation function loses much of its
4 interest., Such is generally the case in treating a transient waveform,

e T S S —

* It may be well tc point out that in this report, the letter ¥Y(phi)
will be used to denote the autocorrelation functions of

energy signals
as in equation {4), whereas the letter ¢y (psi) will be used %or the
autocorrelation functions of power signals as in equation (8).
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By using, however, the formula of equation (i) which is appro-
priate for traditional transient analysis, we can write that

i P o fs®aten) o

» OO0

= fe(t)e(t+‘t‘)n(t)n(t+‘r) at (14)

(=]

where the lower limit of the integral becomes zero since a(t) = 0

for t < 0, Now since n(t) is a random variable for all t, it be-
comes apparent that the integral of equation (14), if it exists, is
also a random variable., The existence of an integral such as that of

equation (14) is examined in reference (b) which treats expressions
of the form

S e <Ly =) T
g n > L LAVt .
et <
% "
.

it

o

b
y(r) = / h(t,T)x(t) at (15)
a

ME A Fpeods DI
b ey S
%

—

where only x{(t) is a random variable, Now, if

b b -
_[E[Ih(t,r)x(taﬂ at = [ |h(t)|E|]x(t)l] dt < o= (16)

e P
[

. s,

pO s e AR
PR

then y(T) exists for all sample functions of x(t) except for a set

é of probability zero, and furthermore

[hr f b - -

& slym)] = J ne,m Blxe)]as (17)
é Looking at equation (14) in this light we sae that -

o0 (-
: ﬁ:[e(t)e(*+7)n(t)n(t+r)] at = ﬁe<t>e<t+~z>lm[|nct>lln(tmllat (18)
E (4

Now E[In(t)lln(t+1?ﬁ can be interpreted as the autocorrelation func-
tion of a full-wave rectified version of n(t), which exists if n(t)
is a sufficiently well-behaved stochastic process as we have assumed,
But by the basic property of the autocorrelation function that its
maximum occurs at the origin for any random or transient function,

E [ln(t)l |n<m>i]sE [In(t)l | n(t)l) . E[n2(t>] = Pan(0) (19)

ol St L i L b A
. .
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Therefore,

ﬂe(t)e(t+'t‘)l B [(n(t)n(m)(] at £ ?,fmw)f(e(t)} le(t+2)] at

(o}

(20)
<¥Pn(0) Bel0) < 0@

since n(t) is assumed to convey finite power and since e(t) is a
transient with finite energy.

- It has thus been shown that ¢gg(?) exists for all members of
: the ensemble except for a set of probability zero (whatever that means),

and it begins to make sense to speak about the autocorrelation function
of s(t) in these terms., Since ¢gg(7)<ee for all ¥,

2 lim T lim ¢ (%
: qpss('l') = T.»n?%- / s(t)s(t+7)dt = 5o, s ()
' - T

55 (21)

= 0, for all®

and this form of the time average autocorrelation function, appropri-
i ate for continuing random signals, becomes meaningless here. Thus

! s(t) is an gpergy signal rather than a power signal and in that sense
' is more akin to a transient than to a continuing random process.

If one def'ines the autocorrelation function of 5(t) in the form
d of equation (4), the result is a random variable whose mean and vari-
{

ance at every ¥ must be related to the correlation functions of e(t)
and n(t)., Thus if

‘”ss(i’)E/s(t)s(‘t+'z')dt =fe(t)e(t+'t')n(t)n(t+'r)dt (22)
é the ensemble average becomes
E[“’ss(‘t‘)] = El;/ e(t)e(t-;-r)n(t)n(tﬂ‘)dt] (23)
and using equation (17), this is
20
E[""ss(‘l')] = /e(t)e(t-w) E[n(t)n(t+r):]dt (24)
[o]

9
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Finally, by equations (%), (7), and (10).

E[?ss(m)] = Y@ Peel?) (25)

It becomes evident, then, that the expected value of the autocorrela=-
tion function is, for every ¥ , equal to the product of the
autocorrelation functions of the envelope waveform and the original
noise process, and is therefore similar to the result gained in
seeking the autocorrelation function of the product of two independent
stationary random processes, where the autocorrelation function of the
product is equal to the product of the autocorrelation functions,.

e 3 SEE o Al S e

T

3 '{:"“" -

R CL AT

Some care mst be taken in the interpretation of equation (25).
What is being claimed is precisely this: Given a sample function
from the ensemble generated by the model of Figure 1, we calculate
the time average autocorrelation function as in equation (22) - by
multiplying the sample function by a shifted replica of itself and
integrating the product from O to oo , If this operation 1is performed
on a number of sample functions and the results averaged for fixed ¥,

the average will tend to the expression of equation (25) as the number
of sample functions grows large.

e

TR TR

3

If ¥ = 0, equation (25) provides the gverage total energy:

E[?:5(0)] = ¥ pn(0)  $eel0) (26)

s
b S b et 1 o,

numerically equal to the product of the energy of e(t) and the
average power of n(t) (but bearing, of course, the dimensions of
energy). This is to say that if we form the integral

7 050 = [ Atrat (27)
. [«}

for a number of sample functions, the average value approaches
E wss(o{] as the number of sample functions taken grows large,

Next to be considered is the variance of the random variable

©g5(T) generated by the correlation process of equation (22). From
elementary probability theory it is known that

Var[¢ 5(v)] = B[S0 - {E [¢5s(v)] b2 (28)

or in words, that the variance is equal to the mean square minus the

T
scpweiies ooy 1K R S N A R A ’
.
- .
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square of the mean, The mean square of “°§('2') must thus now be
calculated, The square of ¥Ygq(7) is given by

o0

2 o
Pesl?) = [e(t)e(ﬂ’l’)n(t)n(t«"t’)dt ./e(x)e(x+'l‘)n(x)n(x+'f)dx (29)

0

s

OGrOO
= [_/ e(t)e(x)e(t+T)e(x+)n{t)n(x)n(t+)n{x+)dx dt
o ©

Taking the expectation and interchanging with the integration yields

O<? O
E[‘Psg('r)] =ffe(t)e(x)e(t+'r)e(x+2') EB(t)n(x)n(t+’l')n(x+'z'ﬂdx at (30)

At this point, for the first time, we must make explicit use of
the fact that n(t) is a random process. Indeed, it can be
shown (c.f., reference (c)) that if n(t) is a zero mean Gaussian
process, then

E[n(t;)n(to)n(t3dn(t,)] = E[n(ty)n(to)] Ein(tsin(tyd] (31)
+ E[n(tn(t3)]) Elntea)n(ty)]
+ E[n(ty)n(tyJ] B[n(t2)n(t3)]

ngtusing ergodicity and equations (6), (7), and (10), we may write
a

E n(t)n(x)n(t+'t‘)n(x+'r)] = %?,(7) +%§(t-x) + B (t-x=7) Wn(t-x+7) (32)

Following through,

1l
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Ele2@)] = / / e(t)e(x)e(t+Me(x+?) Yud()ax at
o 0

0 oo (33)
+/ /e(t)e(x)e(t+?‘)e(x+?’) {V’ng(t-x\)' + z‘&*(t-x‘*"!’)\gﬁm(t-x-'r)‘]dx dt
The ‘z‘ir?st int;ggral may immedéately be ‘written .as
’ifnﬁ(?“) f e(t)e(t+?‘)dt] e(x)e(x+?)dx = ?}L%(.’?}‘{%g('f‘)‘ (34)
0 o

but by equation (25),

2
Y2 €2 = E[gsm]} ; (35)

and directly, by cancellation in equation (28),

;\’\ar‘[@g \3‘\(‘1‘)] = f f e(t)e(x)e(t+¥)e(x+7)

o Yo

| | (26)
L%ﬁ tex) + %n(t-xw)?ﬁne‘t-x-rﬂdt dx
The evaluvation of this horrendous integral can be somewhat eased by
making the .change of variables u = t=-x ang t % t, and then elimin-
ating x from the equation (|Jacobian| = 1j first quadrant area of
txX plane coz:res;;o&ds‘x;to the upper half of the +tu :plane),
o gL
Var [‘Ps s"(?‘)]: :f J eft)e(t-Wel(t+?¥)e(t+r-u)
0 %o

. (37)
\ -‘l"‘f’nf,"(,u) + ?/'m(u*r?‘)?/fm(u-?)] du. dt;

Reversing the -order cof integration then yields

Var[@gs ()] = f[iﬁni(w + Y (uy) ?/’nn(u-‘r)i]
- (38)
JCs(t),e(t-u)é(t+?)e(t+?’-u)dt du
(v}
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Consider now the inner integral, which can be expressed as

(-]

fe(t)e(t+t‘)e(t-u)e(t+‘t“-u)dt = jp(t,‘!’)p(t-u,?')dt (39)

where

p(t,t) = e(t)e(t+1), (40)

a function defined as e(t) multiplied by a shifted replica of itself,
p(t,t) possesses an autocorrelation function defined as

o

ooptw®) = [ p(t,Tp(t-u,at, (1)

[~

identical with the inner integral., The variance may now be written

Var Epss(r)] f b[ sopp(u,‘r) E//nﬁc u) + Yo (utt) Wm(u-r)_-_l dn (42)

As defined above, ¥ ,.(u,7) 1is merely the autocorrelation
function of the signal geﬁgrated by mltiplying e(t) by a replica of
tself shifted v seconds. Several examples of this function will be
computed in a later section, but some general properties emerge at
once, Since ¢pp(u,r) 1is a bona fide autocorrelation function with

u as the independent variable and 7 as & parameter, it must be an
even function of u and, having no periodicity, assume its maximum
value (for given 7 ) when u = O, Also, since e(t)e(t+?) is identical
with e(t)e(t-t) except for a shift in the time origin, ¢pp(u,t)

is an even function of the parameter T and for a given u obtains its
maximum value when T = O, Since the integrand factor in square

brackets (equation (42)) is also even, the variance may also be
written as

o

Var [‘Pss("')] = Zf‘Ppp(u,'t‘) [‘I’ni(u) + ¥Yon+1) V’nn(u-‘r)] du (43)

The expression for the variance derived here is particularly
easy to evaluate on a digital computer using numerical integration
techniques, and several examples of this calculation will be gre-
sented later. The result is to be interpreted as supplying the
variance of the random variable @gg5(7) as a function of ¢ .
Since by definition

2
Var [‘Pss(")] = Eg[‘oss(") - B [st('r)]] } ()

13
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we have found a measure of how tightly the distribution of ‘Q s(?)
«clcaves to the nean, and hence of the amount of variability to be
expected between points of equal ¥ on the empirical autoc rrnlation
functions of representative samples, Evidently, when Var s(’l‘)]

becomes small, we can reasonably expect that the empirical measure-
ment will be close to the expected value, It is of considerable
interest to know where the variance is a maximum.

Consider then the expreasion of eguation (43);

Var [‘?sq(?’)] [(epp(u 'r‘)?/fm(u)du

(45)
*2 f @ p (V) Fp (ut?) #ip(u=D du
(]
Since ¥hp(u,0)2%®p,(u,7). for all wu, then
o0 ©0
fo‘epp(u,'t)vn‘,%(u'-)du < [ @p(1,0)¥5(u)du (46)

and the first integral ic obyiously a maximum for 2= O, It is also
true that

(o) .00
f‘%p(uﬂ’) ¥ (ut ) B (u-7) du S/‘ﬁ,p(u,o) ¥+ ¥ (n-7) du (47)
o [o]
and it is shown using the Schwarz inequality in Appendix A that if

Qpp(u,O)ZO for all u, then

f‘gp(u,o) Yn(u+?) ¥ (u-7)du Sf‘epp(u,o)%ﬁ’(u)du (48)
o o

From equations (47) and (48) then

Var [‘?ss(?’)]s\lar [%5(0)] for all U (49)

subject only to the condition, essentially, that the ervelope wave=-
form be everywhere positive, The maximum variance thus occurs at
the origin, as one might hLave expected irtuitively, and its value
is given by
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Max{Var [\’Pss('z‘)]} = Var[(Pss(O)]

=4 [ W2) [ e2(t)e2(t-u)at qu (50)
[w ]

Since (?pp(u,'r) approaches zero for all u as 7 grown large, it
should be apparent that

Var [‘%s('z’)]»o as Y—e OO0 (51)

One more general result will now be discussed having to do with
the behavior of the autocorrelation variance as the extension in
time of the envelope waveform increases, If the statistical proper-
ties of the original noise process remain constant while the envelope
duration grows larger (in the sense that a rectangular pulse of width
T or an exponential pulse of time constant T beconme "longer" as
T increases), we might reasonably expect 1 2 variance of the auto-
correlation to be decreased since in effect che integration~averaging
process of equation (22) is being carried out over a longer and
longer period. In other words, by taking a longer and longer '“piece"
of the input noise, onec approaches the operation of equation (8?
which yields an expression of zero variance. Actually, since the
maximum varianrce is related to the average total energy (see eguation
(50)), the variance will increase (absolutely) as the envelope dura=-
tion (and hence ils enecrgy) increases, For this reason it is more
instructive to work with a normalized form of the maximum standard
deviation, We form, then, the ratio of the standard deviation at
T = 0 to the expected value of Gs(T) at T = O

— yVar [€:5(0)]
° T B [@g(0)]

This ratio expresses the standard deviation of @sc(0) as a percent~
age of the mean of (s(0) and thus measures the extent that the
distribution of (@;5(T) clusters about the mean in the worst case.
From equation (50),

(52)

Ry, = 2 ‘/o (e)o(u30)wn%(u)dt

N (53)
hn(e) [ e?(t)at

15
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Consider the following heuristic argument. As the width of the
envelope function increases (as Y pn(u) remains the same), ¢ p(u,O)

becomes "wider" also, and in most cases can be considered a constant
near the origin, If T is some measure of the duratizn of e(t),
then as T increases, a point is reached where the jntegral in the
numerator approaches a constant value (due to the relative narrowness

of Yyn(w)). HMeanwhile, the integral of the denominator grows roughly
as T, and hence

Lim R, = Lim K.
T—>c T—>c0

n
o

(54)

This shows that as the duration of the envelope increases, we can
expect the autocorrelation function of s(t) to depart percentage-
wise less and less from E [st(¢Z] at every point.

We turn next to the spectrum of s(t), where it is found that such
convenient limiting behavior does not occur.

16
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j Chapter IV
. NOISE BURST SPECTRA

To continue this investigation of the properties of noise

b bursts, it is now appropriate to turn to a cousideration of the
energy spectrum of signals of this type. As described in reference
(a), a deterministic transient can be specified by its Fourier

integral:
? S(a) = =k f“s(t) % at (55)
such that
s(t) = J/ms(m)e"“'c do : (56)
; N Now by Parseval's theorem (reference (a), pp 33-39),
‘ | 21:/:(0) 507 do =/°:2(t>, at (57)
b "o oo

where the superscript bar represents complex conjugation., Since the
right hand integral is simply the total energy of s(t) as defined in
equation (5), the expression

HE T

cbss(u) z 2nS(w) S(a) = 21riS(w)|2 (58)

can be interpreted as an gnergy density spectrum indicating how the
total energy of s(t) is distributed in the frequency domain, This

is to say that if s(t) were passed through an ideal low pass filter
with a sharp cut-off frequency v,, then the total energy dissipated
in a pure one ohm resistance following the filter would be

N ) S e s LN e ot LR
N 3 R O

oA gt S

we We
E(w<°°c) :/ Cbss(w)dm o 2] ‘bss(“’)dw (59)

¢}
Alternatively, P (o) can be interpreted as giving the total
energy dissipated in the ubiquitous one ohm resistor by a band of

17
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frequencies one radian/sec wide centered at the argument radian
frequency, 4, o«

For a signal of the random transient type, the integral of
equation (55) can be written, at least formally, as the first step
of obtaining the energy density spectrum of the burst, From the
same considerations that led to the formation of the autocorrelation
integral, it can be shown that the integral of equation (55) exists
for all members of the ensemble except for a subset of probability
zero, But since every member of the ensemble is different from every
other member, every S(w) will be different also, and hence there is
generated an ensemble of integrals of the type of equation (55) de=
fining S(v) as a new random variable. Thus, by equation (58),
®gg(w) will also be a random variable for every value of «@ and will
nog possess a deterministic value,

The next step, evidently, is to compute the expected value of
®¢s(«). By definition,

(=]

Pgsl®) = 2r (o) 5(w) = -21‘;—[ s(t)e-jmtdt/ s(x)e"‘ij ax

-0

00 p oo (60)
= -?L— ][ s(t)s(x)eJolt=X) gy gt

-p@ =0

Following through,

E [®gg(0)] & b f/ e(t)e(x) B [n(tIn(x)] e do(t"F gy at

(61)

Because n(t) has been assumed ergodic and stationary,

E[n(t)n(x)] = ¥oplt=x) =z Ypn(w) (62)

where 3 = t-=x

18
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B E[bggl0)] = _21;./ e(t)e(t=-u) yfnn(u)e'J““ dudt (62)

= -%17/ wm(u)e""“u/e(t)e(t-u)dt du
—_ o

And finally,

: 3 [@g5()] = e f Pon(w) Guaue 39U qu (64)

which can_be interpreted as the inverse Fourler transform of
E [%gs(u)] found in equation (25). Actually, by using the Wiener-

Khinchin relation, it is possible to relate the expected value of
®gs(w) to the energy density spectrum of e{t) and the power density

spectrum of n(t), Indeed, with V¥, () given by equation (8), the
power density spectrum of n(t) is given by the Fourler transform

oo
x ‘I’nn(w) = -él;-‘/‘\f)nn('t’)e‘ju'r dv (65)
\, - Q0
: and the energy density spectrum of e(t) is given by the transform*
: oo

The inverse transform of Cbee(ft') is given by

L €eelt) =/“’ee<w>e3” do (67)

-0

and hence equation (64%) can be written as

*Similar to our convention in Chapter I1II, the upper case Greek
letter ¥ (Psi) will be used to denote power density spectra, whereas
the upper case letter ¢ (Phi) will be used for gpergy density spectra,

19
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- gmJjwu
E[CDSS(GH = ?L'/ \/Jnn J / (w)ejou do du
—ox (€8)

- (V LY 3
x [[;llnn(u) Deelole He-a de¢ du
- o Lo
Now setting w’ = © =0, we can write that
E : *2p 00 2.0
bﬁg E':c-b&‘»s(“’-gJ = -él;//y’nn(U) Peglo~0)e ™ dquda’ (69)
E% Using equation (6%),
i - '
; ? E[éss(wﬂ ] ',/- ‘ynn(wl) q)ee‘l«)"w,)du
¢ s (70)
-
o = ¥pn(e) @ Peelw)
F
o Thus, the expected value of the energy spectrum of the random
. transient is found to be the convolution of the energy spectrum of

the envelope waveform and the power spectrum of the original noise.
¢ At least as far as expected values are concerned, it has been shown
: that one can here apply the well known "folk theorem" that

"multiplication in the time domain corresponds to convolution in the
G frequency domain,"
“ﬁ Continuing with this Fourier integral approach, it is possible
: to investigate the variance of ss(“’) at every point, First, by
: equation (58),
- 2 2
1 dssw) = Un? 52(w) F(@) (71)
Now using equation (59),
o @0 00 00 O9
2. o =Jw (t=x+p-v) . 2
L Do (w) = ﬁff[f s(t)s(x)s(n)s(v)e dtdxdudv (72)
A oeo0o0
T} ) D0 QOO OC
3 EEb (] ._l.! fff[ e(t)e(x)e(ple(v)
°°°  BMn(eIn(on(unive PV ataxapav  (73)
20
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Since n(t) is assumed to be Gaussian, equation (31) still
applies, and this becomes

O8O0 OO o0

d’ (“) J—f/f/e(t)e(x)e(p)e(\l)

[ - <]

Ep,m(t-X) Yon(u=v)+ Win(t=u) B x=v)+ ¥in(t-v) Y’m(x-ui‘

=Jo(t=xHi=v)
emdoltoxmmy dt dx du dv (74)

This is plainly the sum of three integrals, two of which are identical,
The first and third are of the form

O ¢y 00 o0

I I3 = ..e.é q/fe(t)e(x)e(p)e(v)Wnn(t.x)y)m(p_v)e-Jo(t-x-!-p-v)
I | dtdxdudv

(75)

9000

Using the subsiicutions a- =t - xand b =pn - v, these are equiva-
lent to

Q') .’& /" ) @0
N

I; = I3 .,11'1]?2]} i}“(t)e(t-a)e(u)e(b-n)y’nn(a)%n(b) 'J°(8+b)dtdadpdb

< a1 @

o>os “00

= -l-z ‘Pnn(zat)e"j“’a /e(t)e(t-a)dt daf’l'nn(b)e'J‘"bfe(m)e(,u(-;'lic)l

(]

,-i‘z f‘Pnn(a)'P e(«'at)e"J"“’l da./’wnn(b)S"ee(b)e"‘l“'b db

Jeo

o 2 2
'{ZJ? f\pnn(a)weega)e'j“a da} ={E [‘bss(‘*’)]} (76)
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5 L e
Tekr % g

The second integral is

I

o8 02 00 OO

2 * gy [ [ et®etmetew) Fppttm Yon(xv)e 00 av

To. % ¢
° o
b s o e, st ey

FRN L

P

3 cooo
o oo (77)
= ':t‘gf fe(t)e(p)wnn(t-p)e'j"’(tm)dt du

jf e(x)e(v)l)”nn(x-v)e”"’(xw)dx dv

The first integral of this product is identifiable as the complex
conjugate of the second, so

-7 e B o AN
. - o s
S orenns s BB e O BRI T

Iy = l-};f“J:(t)e(n) lpnn(t-u)e':'“(tm)dt dn 2 (78)
% Therefo;re, from equations (7%), (76), and (78),

4 EEpSg(u_)] = I + Ip+ I3

E (79)
: . 2§E@ss(uﬂ}2 + | fﬁ(t)e(p)lpm(t-p)e-ﬁw(t*ﬂl)dt o,r

? oo

and by the definition of the variance,

o 0o 2
Var[cbss(w)]: 3E[:&’ss(“’)] iz + 2;|1.; f/e(t)e(p)lpnn(t_p)e-ju(uu)dt d.u,
° (80)

T T

2
) Var Ebss(w):l > {E Ebss(“’):l}

We have found, then, that the variance of the energy density
spectrum is, for each v , at least as large as the square of the mean
of the energy density spectrum at ® , or alternatively, that the
standard deviation of ¢gg(w) 1s always larger than the mean - regard-
less of the form and duration of e(t)., This somewhat surprising
result is a more general statement of the relatively well known fact

22
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that the so-called "periodogram" which can be drawn from an empirical
record as an estimate of spectral density of a continuing process
does not converge in the mean to the true spectral density as the
observation period increases without limit, (see reference (b),

pp 107-108),

The implication of these findings is the following: If a large
number of random transient sample functions are taken and their
energy density spectra computed or measured, the arithmetic avera%e
of dgg(w) will tend toward the expressions of equations (64) or (70)
for every w , Because of the magnitude of the variance, however, it
is quite likely that the value of &gg(w) for a given sample will be
nowhere near the mean, Consequently, at a given value of frequency,
there will in general be a wide variation of the energy density spec-
trum from sample to sample. Unlike the autocorrelation function
which becomes percentagewise more precise as the duration of e(t)
increases, the empirical spectrum of each sample function remains
widely distributed regardless of the form of the envelope.

In Appendix B, an alternative approach to the noise burst
spectrum is based on the assumption that the Wiener-khintchine rela-
tion applies to signals of this type. The results obtained are
identical to those presented above, and it appears that such an
assumption is valid.

23
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Chapter V'

EXAMPLES OF NOISE BURST AUTOCORRELATIONS AND SPECTRA

To demonstrate the application of the principles derived above,
this section will be devoted to the presentation of sevexal examples
of the calculation of noise burst autocorrelation functions and energy
spectra, For this purpose, two idealized noise spectra will be treated:
the rectangular low-pass broad band spectrum, and the rectangular
narrow ‘band spectrum, These will each be modulated by two envelope
functions: a rectangular pulse of duration T seconds; and an expo-
nential decay with a time constant of T seconds., This yields four
cases:

A. Broad Band Spectrum with Rectangular Envelope
B. Broad Band Spectrum with Exponential Envelope
C. Narrow Band Spectrum with Rectangular Envelope
Des Narrow Band Spectrum with Exponential Envelope

The two noise spectra and their associated autocorrelation func-
tions are shown in Figures 2 and 3. For the rectangular low pass
broad band spectrum,

\Pnn(w) = No, ) <wW< w2

(81)
= 0, elsewhere
By the Wiener-Khintchine relation,
oo . w2 .
Yon(7) =/ ifnn(w)eJ“’T dw =f No e”“" de (82)
“"G -
Thus, 2
sin wo7
¥nn(7) = 2No %5 XA (83)
For the rectangular narrow band spectrum,
(@) = No, @1Se S o
= Noy =-9s s ~w (84) i

= 0, elsewhere
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A \Ilnn(w)
NO
?\2N0w2
sinwaT
‘Pnn(r) =2N°w2 wzgr

\//-\l\/\/ \__ N~

.

{
67 -41r\-/ -2%7

-

FIGURE 2. RECTANGULAR LOW PASS BROAD BAND NOISE SPECTRUM
AND ASSOCIATED AUTOCORRELATION
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FIGURE 3. RECTANGULAR NARROW BAND SPECTRUM AND ASSOCIATED
AUTOCORRELATION.
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w2
Thus Yanlr) = 2/ No cos wrdw (85)
w
sin A wr
=4Aw No-—z-zu—;-— COS wo T
(=W}
where bw & ——— (interpreted as the half (86a)
bandwidth)
Wy Hwy
Wo ¥  ee————— (interpreted as the center (86b)
2 frequency)

Turning now to the first of the envelope functions, consider the
rectangular pulse shown in Figure 4.

e(t) =1, OstsT (87)
= 0, elsewhere
The autocorrelation function is computed from equation (4)
w
veolr) = fe(tlett +) at (88)

=T~ |I7], -Ts7 =T

The energy spectral density can be foqu as either the Fourier
transform of equation (88) or as 2¢ |E(w)|< where E(w) is the
Fourier transform of the envelope waveform,

T2 in2 T/
¢’ee(w) = —_— 520 2

(89)
o («T/,)2

One more quantity is needed in the study of rectangular noise
bursts, and this is the function ¢pp(u,r) defined by equations (40)
and (41). If r is positive,

p(t,7) = e(t)e(t +7) =1, O<Lt<T-7 (90)

Therefore, o Ter=-t
¢pp(un T ) = /p(ty T )p(t“‘uo T )dt = ‘.4‘1 dt, }JZO

(o]
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-t

—g T
A ¢pp(UlT)
T-I7|
¢pp(urr) =T =|7v]-{y]
1 T -y
-T+|7l 0 T- |7l

FIGURE 4. RECTANGULAR ENVELOPE AND ASSOCIATED AUTOCORRELATION
FUNCTIONS
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©op(u, T) =T -7~ u forrand ud0 (91)
{; OSUST-T

. Since pr (u, ) is an even function of both rand u,

(epp(us 7)

i

T -7 - |ul , [m+ |u|]<r (92)

g ’ = 0, elsewhexe

Let the exponential envelope function portrayed in Figure 5 be
defined as
e-t/T

; e(t)

, 0S¢& 00 (93)

0, elsewhere

Defining the autocorrelation function precisely as in the case
of the rectangular pulse, we find

-7l
Cee () = ’z"" e /T y ~00<L Y (™ (94)

The enexrgy density spectrum hzcomes

-]
N
}—

D (w) = (95)

and finally,

QORI AT AT e M

2
- ul + 17|
Cop(u, ?) =—— e T (1 ) , 004U, L o0 (96)

e

For convenience, these functions are collected in Table I.

AUTOCORRELATION CALCULATIONS

PUNCLIRAAP AN PV Py

1., RECTANGULAR PULSE OF BROAD BAND NOISE, By equation (25},

3: . E [‘st('z')] = ¥nn(?) Ce( %)

and for this case, the autocorrelation functions for the rectangular

pulse and the broad band noise spectrum are found in Table I, Using
these expressions,

sin Wy, i
E[Rss(2)] = 2Noewy (1 -120) Ty TST ST (97)
0, elsewhexe

1]
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-~ FIGURE 5. EXPONENTIAL ENVELOPE AND ASSOCIATED AUTOCORRELATION
FUNCTIONS.
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From(e?uation (43) can be found an expression for the variance of
14 T):
§S .

o<

Var[“’ss (’I‘)] = 2[ ‘Ppp(uof) [V’nnz(“)"‘wnn(ll'i"r) V”nn(u"'r)] du
o]

Referring again to Table I,

(98)
|7l ¢, .
"“[“’SS‘T’J = 8N26p2 [ (Twy-u) [SEN 92 B sin@p(ru) sin“pr-u) |
0 Wyt M walr+u] —  w@2lT-uj

The standazd deviation of ¢g5(7) is, of course, the positive square
root of %“his expression,

For more generality of presentation, the expressions of equa-
tions (97) and (98) will now be normalized and parametized, We note
first that since ¥s55(0) is equal to the total energy of the noise

burst (as defined in equation (27)), E[¢ss(02]can be described as the
average total energy:

BTav = B[ %55 (0)] (99)

For the present case,

ETav = 2No w2T (100)

which makes sense since it turns out to be equal to the average power
per radian times the bandwidth times the duration of the transient.
EC ¢s5(7)] will be normalized by dividing by ETay and Var[ ¢¢g(7)]

by dividing by (ETav)2. This latter step puts the standard deviation
of ¢5g(7) in the same units as the mean, Thus:

Il .
En [%s(7)] = (1 - ——) %'15‘37-2;1. ~TST ST (101)
=0 , elsewhere
T~ |7
1 7 [sinZwon sinw,(r+u) s
Var [go (’)")] = 2/(—- - ..E_) 2F 4 2 sS1nw (’r"ﬂ-l) du
n SS 5 T -_I:Z T2 w22 }JZ w2(1-+ P) '—w"2"(';h7,)-_‘7__p -
(102)
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t' Now let the following parameters be defined:
\ (103a)
, p = - , i.e. the argument as a fraction of the total pulse
I T length
[ L]
L T wy T

q = = , or the number of periods of the highest

. 2T 2 noise frequency contained in a pulse
w5 length, (103b)

!

Cid

The normalized, parametized equations can now be written as

Ep[ ¢esslp)] = (1-p) s; : & (104)
1l-p (105)
s 1] 2 e[S e o btaal s bt
By equation (52), the ratio of the standard deviation at7T= 0 to
the expected value of ¢g5(7) at 7= 0 is

. R = \f\larE"SS(O)—]

° E[:<pss(0)] (106)

; and it should be recalled that this ratio is the maximum value of the
! standard deviation expressed as a fraction of the mean. It should
: be apparent from the forecgoing normalization and parameterization that

b 1 »
_ R, = Ro(q) =2/f(],-x).§.m._.?2.1£2£_ dx (107)
- 0 (27I'qx)2

The functions of equations (104), (105), and (107) have been
programmed for evaluation on the IBM 7090 computer at NOL, the
latter two expressions requiring the use of numerical integration
subroutines. Computer generated plots of the normalized expected
value of ¢4 (p) are found in Figures 6 and 7 for this case when
q = 0.1, 1:0, 10,0, and 100.0, It should be realized that all such
autocorrelation functions are even functions of p and disappear
for |p|>1. Also note the change of scale for the p axis when q=100
(in Figure 7). Figure 8 shows a typical plot obtained by graphing
on the same axes Ep ¢ss(p) and this mean value plus and minus the
standard deviation of ¢..(p) as calculated as the square root of
equation (105). 1In some sense, such a graph provides a rough idea
of how closely the distribution ofggs(p) cleaves to the mean as a
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FIGURE 7. RECTANGULAR PULSE OF BROAD BAND NOISE
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FIGURE 8, RECTANGULAR PULSE OF BROAD BAND NOISE
AVERAGE AUTOCORRELATION * AUTOCORRELATION
STANDARD DEVIATION
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function of p. Generally, the standard deviation will be largest for
p = 0 and then decrease as p increases. This decrease, however, is
not always monotonic, and the expressicn Ry(q) remains perhaps the
best single estimate of the tightness of the distribution of %ss{p).
A plot of Ry(q) is portrayed in Figure 9 and mirrors the result
predicted in equation (54). Since the parameter q is a measure of
the length of the envelope pulse in terms of the period of the highest
noise frequency, it will be directly proportional to the envelope
"duration" discussed in the derivations of equation (54)., Thus as q
increases, we can expect Ry to decrease sharply, and indeed this is
what has been found here. As the pulse length increases relative to
the period of the highest noise frequency present, the distxibutien
of ¥%s(p) clusters closer and closer to the mean for all p, and the

value of the mean at becomes a better and better estimate of the
actual value of %@s(Pg.

2, EXPONENTIAL PULSE OF BROAD BAND NOISE. Again using equa-

tions (25) and (43] and the appropriate entries from Table I, it is
found immediately that Ry

E [‘Vss('z')] =No™H Te

sinh¥ (108)
:22
and that

var [%s(2)] = 2 No2 )2 1 2VT (109)
o0

/e_2u/_r sin2 Wy + sin ‘02(u+'2') sin wz(u..'z*) .
Q22 W(utz) — “olu-?)

0
Jt follows directly that

o0

ETay = E[‘(’SS(O)] = Ng@y T = Noth [ 22(t) dt (110)
[*4

As before, the functions of equations (108) and (109) will be
normalized and parametized., Defining,

p = ;%- » i.e., the argument as a fraction of the envelope
time constant (111a)
and uﬁT
q = —==— , the number of cycles of frequency ¥, contained
2N in the time constant T (11lb)
the functions become
Bp [0yo(p)] = e-p Sin 2WRA (112)

2N pq

37




L2 TS

AP e,

Lo 2

vy

¥ L r oy s

NOLTR 67-25

RECTANGULAR BROAD BAND
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FIGURE 9, RECTANGULAR PULSE OF BROAD BAND NOISE
NORMALIZED AUTOCORRELATION STANDARD DEVIATION.
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(113)
o0
Varp[kgs(p{] = 2e"2§/[e’2x [ain2 279X + Sin 2»q(x+p) sin 2«q(x?p)]dx
P (27qx)2 2nq (x+p) 2mq(x-p)
and following through,
©
S S
Rolq) = 2 /e SINT2TAX gy (114)
° (27"(1)()2

Equations (112) and (114) have also been programmed on the
IBM 7090 computer, and the results appear in Figures 10, ll, and 12,
As before, the average autocorrelations are presented for q = 0,1,
1.0, 10., and 100, Note again that as q increases, Ro falls towaxd
zero, As the time constant of the envelope increases, the distribu~
tion of ®gs(p) closes more tightly about the¢ mean, as one would
expect from previous considerations,

3. RECTANGULAR PULSE OF NARRON BAND NOISE, Following exactly
the same procedure as before and again referring to Table I, one can
write that

E[tess(’r)] = 4 NodAT- |71 ) ﬁlﬁ:’; cos W, T (115)
AW

T-17
in2
var[¢$s(7‘)] = 32 NOQAw2/ (T _I,n_u)[f—lﬂ—._é_(%l‘. c°52wol( (116)

0 (bww)

4 sin A p=-T) sinawy+7)
(u-1) aw(y+T)

COS%(/(-T)COS%(MW)] du
where as before
w1ty

Wy Wy

; Aw )
Now from equation (11%),

ETav = 4 No AwT (117)

which is what one would expect intuitively, For this case, the
following parameters will be defined:
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FIGURE 10. EXPONENTIAL PULSE OF BROAD BAND NOISE

AVERAGE AUTOCORRELATION
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FIGURE 12. EXPONENTIAL PULSE OF BROAD BAND NOISE
NORMALIZED AUTOCQRRELATION STANDARD DEVIATION
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p= -:%‘;’ the argument as a fraction of the pulse length {118a)
~L.

= LT » the number of cycles of the center

1= 2r 2x frequency found in a pulse length (118b)
a)o

zZ = -220-9-“), the ratio of bandwidth to center frequency (118c)
o

Utilizing these expressions, it is found for a rectangular burst of
narrow band noise that

Ep [QSS(P)] = (1-p) -ﬂ-n:}gf-g cos 2r pq (119)
l-p 2
Vaz*p [‘Pss(P)]'-' 2/ (l-p-x)[f'%%% cos2 2m7q %
o . (120)

sinrgz (x-p) sin7r 9z (x+p)
TAz1X-PT gz (x4p)

cos 2wq(x-p)cos 27rq(x+p)] dx

1
s 02
Ro{q,z) = 2 l-x) Sinfmazx (2 5.0 4 121
olq,2z) '[( x) o )? cos® 2rgx dx (121)

Typical results when equation (119)is evaluated on a digital
computer appear in Figures 13 and 14, for which z = 0.1, 1In Figure 15
Ro {q9,2) is plotted as a function of q with z ac a parameter., The
z-value of 2/3, which may seem like an odd choice at first glance,
corresponds to an octave band spectrum, as may easily be verified.
Note that Rp{q,z) approaches zero as q increases for all values of z
but that the decline is markedly more rapid for the larger values of
2, corresponding to wider and wider band-widths,

4., EXPONENTIAL BURST OF NARRON BAND NOISE, Using the proper
entries from Table I, cne finds 3 mmeaiatelfy that

E [QSS(T)] = 2NoT awe | SinAWT ¢oq W, T (122)
AWT

where A @ and W, are defined as before
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FIGURE 13. RECTANGULAR PULSE OF NARROW BAND NOISE
AVERAGE AUTOCORRELATION FOR Z=0.1
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FIGURE 15. RECTANGULAR PULSE OF NARROW BAND NOISE
1 NORMALIZED AUTOCORRELATION STANDARD
¢ DEVIATION PARAMETERIZED BY BANDWIDTH.
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277 [©
- /Tﬁ ~20/T[ 5
Sinf0WU  ¢og2 yu (123)

Vaz| @y ()] = aNo2Taw2e J e
Awu

+ sinacfu- 7) sinawu+7)
oW (u-7) aw(u+7)

cosw,(u-7) cosd) (u+r) du

Etay = MNoT A @ (124)

The parameters for this case are precisely the same as those
defined for the rectangular narrow band "urst with the exception
that T is now to be taken as the envelor time constant. This yields

-p .
Ep[‘?ss(p)] = e %Qazti%z_p cos 2xpq (125)

[ »)

-2p| -2x .

Var, |e..(p)| = 2e e sinmgzx cos2 2uqx (126)
piTss (> ('rrqzx)z

sinrqz {x- sinmrgz (x+p)
+ q (_YE). cos 2wq(x-p)cos 2mq(x+ dx
rqz (x-p mqz/x+p) Ax-p) Tl

-2 2
Rolq,z) = 2 fe sin” Tqzx 2 d 127
/ — cos4 2qgx dx (127)

Typical plots of these equations are found in Figures 16, 17,
and 18. They tend to bear out the generalizations previously noted
for the other cases,

SDPECTRIM CALCULATIONS

Tne expected value of the energy density spectrum of a noise
burst for some argument @ has been found to be
-

E [cbss(a))]
= ‘I’nn(w) ® @ee(w)

by equation (70) and is interpreted as the convolution of the power
spectrum of the noise and the energy spectrum of the envelope
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FIGURE 16, EXPOMENTIAL PULSE OF NARROW BAND NOISE
AVERAGE AUTOCORRELATION FOR Z = 0.1
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FIGURE 17 . EXPONENTIAL PULSE OF NARROW BAND NOISE

AVERAGE AUTOCORRELATION FOR Z = 0.1
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waveform, Since both members of the convolution are even functions,
the expected value of dgg(w) can be written as the cross-correlation
of ¥pnl(w) and Peelw):

-3

E[@ss(w)] = f\pnn(w‘) Pee (W' -w) du (128)

Obtaining the spectral functions of the various envelopes and noises
from Table I, it is gtraightforward, although often tedious to
calculate E td>ss(w)] for the examples treated here,

1. RECTANGULAR BURST OF BROAD BAND NOISE. Using formula (128),

wotw .
2 Syt W' 17202

Now introducing the same parameters defined in the studxg of the

autocorrelation function for this case (equations (103)) and adding
another:

T = -%, the argument as a fraction of the highest noise

frequency, a normalized and parametized version of equation (130)
can be written as

' 1 f Az4) sin2rx
_ L inZrx g 131
E [q,ss(r)] TR~ (131)

such that
[E [cp;s(r)] dr = 1 (132)

Y.
From the normalized expression, one obtains the spectral density
for a one radian band atw= ru, by writing

E
E[¢’ss(‘0)] = -.zg_z—! E [CI);S (r =-,$-2:-2 )] (133)

» q(r+l)
= NoTj -——-wiinz';”é dx
x X
q(r-1)
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Now integrating equation (131), it emerges that (134)

E[tb ' (ri1 = 1 l-r sin 27gr sin 2Ng-2 €0Ss 27qr €os 2
SS J o272 q(r2-1)

+ 557? {Si [27rq(r+l)] -Si [zﬂfq(r—l)] }

where Si is the sine integral function defined as

X

X .
$i(x) = j; sin x gy (135)

(See reference (d))

Evidently, if the spectral width of the envelope is narrow com-
pared to that of the original noise, the convolution of equation (128)
will just return an approximation to the latter., Such a condition
implies q very large (by reciprocal spreading arguments), and in
equation (134), the first term will become negligible in comparison
with the second. Since for large positive argument, Si(x) ~ /o)
and for large negative argument, Si(x)x - s,

E ‘:cb;s(r)] “?2"17,’ {Si [2'nq(r+l)] -Si [Z?rq(r-l):l } (136)
= 1/2, ~l<r<+l

= 0, elsewhere

which checks with the intuitive solution.

2. EXPONENTIAL BURST OF BROAD BAND NOISE, Using formula (128),

E (bss(w) = 2 [ dw (137)
27{ J \ ,2 T2 +l
where T is the decay time constant, Normalizing and para..tizing
as before,
q(rzl) (138)
' X
E l:cb (I)] = —-—..2__._...._.
ss a2 x24)
q{z-1)

where r = w/w2 -
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Integrating,

' o 1 -1 4q
" [d’ss(r)] o [1 + 412 2 (r2-1)] (139)

3. RECTANGULAR BURST OF NARRON BAND NOISE. The condition
integral can be written as

-ttt AW . Aw ( )
NoT2 . ' 2 (l)o'*‘“". [ 140
E[¢ss(w)] = 33 f Slnz'w——'—T/Q dw' + N [ —'—""51n2w' ,..-.._--T/é det
27 . (@' 15 )2 2% (o' T/p )2
~Wp TW- pw W, +w- AW
Defining as before,
_ WoT _ 20w _w
1= 27 P25 W tE W, ’
this can be written as
q(r-1+ z/2) g{r+l+ z/2)
E [ ] = 2 si: dx + L in® T x g 141
e 22/ s L sin? 75 (141)
q{r-1~-2/2) q(r+l— z/2)

in the parametized unit energy version, In this foum,

[+
[E [@'ss(r)] dr = 1, and the relationship lLetween E[@ss(w)] and
~®

E[Cb;s(r)] can be expressed as

r
El¢ss(w)] = 2 NoTZ E [CP’ss(r = 'CEU; )]
= .E_I_a_! E [Cb' (J" x @ )J (142)
W, SSv™ 55

At any Tate, integration yields
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id‘; ! 1 . 1
E [ Ss(r)] 8‘”2 qL(r_l)Q - 22,{4] + q[(::'*-l)f‘ 23224—"]

- 1 {Z(r-llsn.n 2nq(x-1) sinNgz + z ‘cos 2N q(r—l)cos nqz
[(z-1)* - %]

+ 2(r+l)sin ~27_€q(r+l) sin ®qgz + z cos 2nq(r+l) cosm’qg}

[(z:-l-l)2 - 22/4]

-1
2Kz

+ -

{Sl [2 'Nq(1+r+zé)] - S§ [21(q (l4r - 2/s )]} {143)
It can be shown. that for q large,

1.t 21 ‘

~ 1 : . ey
NE' 1—2/251‘:.‘,1,4-2/2

= ‘0, elsewhere
as it should,

4, EXPONENTIAL BU?STiQF NARROW. BAND NOISE, Evidently,

_c% 4 W4 Aw ’wo+w+Aw
 NoT2 det NoT? deut (145)
E <I>SS((‘")) = 2% ) - + ' ——T—Z——-
(_JA T° + 1 2% ~ w T +1
..(A.b + W. Aw wo +w-AU)
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Proceeding as before ’

| q (r-l+z/é) Q(r+lszy, )
1 dx dx
z 4W2x2~? z . 4ﬂ2x2 + 1
q(r=1~§49 q(r+l~§@ )
such that
Etav _ T s r | \
E[cbss(w) = @, E '_(bss (r)J,= Ng T2z E [cbss(r)] (147)
Integration of equation (146) yields
]
E[‘bss(r*)j = ..17(.._ tan~1 2% qz .
I (148)
+ tan"l, 2N qz : .
1 +4n2 g2 [(z~+l):'2 - 22/4]

The resulting expressions for E[Cbss(to)] in all cases emerge
so complicated that in tzuth they are of but limited value, If is
probably best just to- keep in mind %ne relatively simple graphical
interpretation of the convolution operation to provide the required
insight into the resulting spectra,

This concludes our consideration of illustrative examples,
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Chapter VI
CONCLUSIONo> . ™™ RECOMMENDATIONS

The foregolng discussions have attempted <. J~»mlate a means
for obtaining statistical descriptions of the propori.es of a class
of random transients perhaps well described as "noise bursts", In
so doing, it has been necessary to thread a careful course between
the methodology that applies to deterministic transients on the one
nand and that intended for continuing siochastic processes on the

other, -Attention has been restricted to the time average auto-

correlation function and. the energy density spectrum for given values
of time displacement and radian frequency, respectively.

Given a random transient drawn from the ensemble of all such
signals available from the generating mechanism, it is possible, at
least formally, to compute the time average autocorrelation function
by the familiar process of displacement, multiplication, :and integra-
tion, It is similarly possible to calculate the energy spectral

‘density of the sample function by either Fourier transformation :of

the measured autocorrelation function or by a Fourier integral treat-
ment of the function itself, Now since each of the transient sample
functions is different, it is hardly surprising to find that each .of
the measured autocorrelatlons and spectra will be -different also.
This implies that these latter functions are, for every value of
their arguments, random variatles, in the sense that we lack exact

a priori knowledge of %heir wvalues;:and therefore cannot predict the
autocorrelation function and spectrum of each individual transient
with exactitude. Thus, the autocorrelation function and spectrum of
a random transient must be described by probability distributions
parametized, in a sense, by the arguments of the functions, This
investigation has .not attempted the derivation of the form of these
distributions at each point, but has been restricted to a calculation
of the means and variances of the spectra and autocorrelations as
functions of the arguments,

If the random transients treated here are modeled as the product
of an envelope waveform and a continuing random process, the calcula-
tion of the means and variances desc¢ribed above is straightforward,
In the case of the resultant autocorrelation function, the mean value
at every point is found to be the product uf the autocorrelation
functions for the envelope and the original noise process. This
resvlt agrees with intuition and is similar to that found in seeking
the autocorrelation function of the product of two independent random
processes. The variance of the resultant autocorrelation function
can similarly be expressed in terms of the autocorrelation functions
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of the original signals, but admits no ready intuitive explanation.
The most important characteristics of the variance, however, «re
first that it achieves its maximum value at the origin (where the:
mean corresponds to the total average energy), and second that as
the suitably defined “duration" of the transient increases with
respect to a typical noise period, the standard deviation becomes a
smaller and smaller percentage of the mean, This merely reflects the
fact that as the transient lengthens, the signal looks more and more

like & continuing random process, for which the autocorrelation
function 2v every point is well defined. .

Turning to the mean value of the spectrum .at a point, a satisfy-
ing and Intuitive recylt is found. Since the random transient is
formed by the multiplication of two signals in the time domain, one
might expect the resulting energy density spectrum to emerge as the
convolution of the two corresponding spectra in the frequency domain,
When speaking of the mean value at each point, this is found to be
the cases The variance of t'e spectrum has also been treated and
expressed in terms of the parameters of the original signals. In
contrast to the autocorrelation standard deviation, that -of the energy
density spectrum is always larger than the mean at a point, regardless
of the duration of the transient, Thus, the measured spectrum does
not converge in the mean to the value predicted by the convolution, as
the transient lengthens, and it appears that, at least on the basis
of a pointwise comparison, a large spread of measured spectra will
always be observed. This result, as was pointed out previously, is
the major defect of so-called periodogram analysis, which can be
treated as a special case of the .problem faced here,

It has been stressed throughout this report that the results
derived apply only at specified points on the autocorrelation and
spectral functions yhen po knowledge is assumed about the behavior of”
the function at other points. In other words, the means and variances
derived here stem from unconditional probability distributions for
every argument value, in which the behavior at a point i3 treated in
isolation. For this reuson, it is risky to attempt to extend the
present findings to describe the extent to which the empirical auto=-
correlations and -spectra ag a whole are predicted by the caleulated
mean values., One could envisage, for example, a sample functién that
yielded an empirical autocorrelation function quite similar in form
to the expected value but having one or two pathological points of
substantial disagreement. The examination of this sort nf effect
requires the study of conditional distributions of the autocorrelation
functions and spectra, or alternatively, the determination of the
Jeint density functions of their values at two or more arguments.,

This has not been done nere and remains a large and interesting area
for future investigation. At present, we must limit ourselves to the
consideration of single points and resist the temptation to extend

the pointwise conclusions to the autocorrelations and spectra in their
entirety,

The groblem of power spectral estimation from empirical records is
an area t

at resembles, in many ways, the study of random transients,
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In both fields one must work with finite length segments of random
processes whose good. behavior arises primarily from their extending
in time from ~oe to +oo and this leads to computational difficult-
les. A good many of the techniques of power spectrum measurement can
probably be applied to the present st .dy. Blackman and Tukey (refer-
ence (f)), for instance, study the problem of joint estimation of
neighboring points on an empirical power spectrum and derive express-
ions for smoothed spectral density estimates which abandon the concept
of point estimation in favor of band-wise calculations which display
a higher scatistical reliability. This appears to be a particularly
fruitful approach for the class of problems treated here and may lead
to more meaningful prediction of the spectrum and autocorrelation of
a sample noise burst,

A closely related area is the derivation of a linear system theory
for signals of this type. In effect, this would indicate the results
to be expected when random transients are subjected to filtering and
other linear operations, It would relate directly to practical
problems of measurement, detection, and interference elimination, and
may even lead ‘to: the develepment of optimum linear filters in the
Wiener sense, These are only a few of the new directions that can be
followed in further work on noise-burst-like waveforms.

Despite the limitations set forth above, the present theory has
several interesting implications for the processing .and measurement
of random transient signals. It indicates to some extent, for example,
the degree of reldability that can be assumed in basing a measurement
program upon a given number of sample functions., The average auto=-
correlation function for a given displacement or the average spectral
density for a given value of w can be found by averaging a sufficiently
larg? number of empirical calculations, The variance of these averages
can in turn be estimated by turning to the theory set out here,
Evidently, the longer the transient, the fewer the sample functions
required to give reasonably good knowledge of the average autocorrela-
tion at a point, This consideration does not, however, apply to the
estimation of the energy spectrum in the form defined here,

More important, though,is the illumination shed on the problem
of formulating signal processing systems intended for use with non-
stationary backgrounds or in situations, such as explosive echo
ranging, whgre the waveform to be detected is itself a random trans-
ient. We have seen that under certain conditions of envelope duration
and noise characteristic that it is possible for the spectra and
autocorrelations of the individual transients to be rather different
at the same value of an argument, even though the expectations are
the same from sample to sample, This implies immediately that it may
not be advisable to tailor the characteristics of a monopulse process=-
ing system too closely to the mean values of autocorrelation and
spectrum. A filter painstakingly devised to reproduce or complement
the mean spectral density may well do serious violence to the
inq;vidgal transients just because they very well may have spectra
which differ significantly from the mean, The samé considerations
apply to correlation processing., It is hoped that the present theory
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contributes at least somé understanding of this problem and aids in
quantifying thé latitude that must be allowed for accommodating -pulse
to pulse differences. Admittedly, a rigorous treatment of this
question must await the extensjons described above, particularly the
derivation of joint and conditional probabilities and a suitable
linear system theory. These first considerations, though, should at
least alert the researcher to the existence -of ‘the problems involved,
It 1s especially hoped that more care will be taken in the measure=-
ment. and description of such. phenomena as sonar reverberation in
connection with the study of monopulse detection :systems,. There is

1little evidénce that these areas have been approached in the past
with the rigor they deserve.

EDWARD C. WHITMAN
Magnetics .and Electrical Division
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APPENDIX A
ON BOUNDING THE INTEGRAIL f‘(’pp(u,o) ¥rn(u+?) Yon(u-2)du
o

Since the integrand is an even function, we can consider the
infinite integral

o

il(r) = /‘Ppp(\ugo) ?Pnn(u""r) 1Prn-l(ll"?')du A-1

-0

and write it as follows:

1,(1) =jﬂ/“3p(;,d) Younlu+?) iﬁfbb(u,oS.th(u-t?du A-2

Now using the Schwarz inequality as in reference (e)

i 0| [cepp(u,of) wn?,(umdu] fcepp(u,o)%ﬁ(u-r)du A-3

Since Q& (u,0) is a real even function, the factdrs on the right are
equal ang positive, Therefore,

o0

il('f) S[ifpp(u,O) vnﬁ(u-?)du A"Lf'

Consider now the integral on the right of A-4 and denote it 12Tr).
Thus, )

o0

1) S i) = _[;‘fpp(u,o) Yp2(u-2)du A-5

Since QPn%(x) is a real even function, 'Vhﬁ(u-?) = VﬁiCr-u) and
therefore
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-

iy(r) = fq’pp(u,o) Yp2(r-wdu = €,(n,0) 8 Yp3m) A-6

where @ denotes the operation of convolution, Now, let us enter
the frequency domain where the transforms of is(r), qpp(u,o), and

Y 2(y) are respectively Io(w), P(w), and Q(w)., In reference (a)
itngs pointed out that the Fourier trarisform of a realizable auto-
correlation function must always be positive, Thus P(®) is always
positive, and since Q(w) is the transform of the square of a real-
izable autocorrelation function, it must be the convolution of a
positive transform with itself., Thus Q(w) is also everywhere greater
than zero, Writing (A-6) in the transform domain yields

I(w) = P(a) Q(e) A=7

and re=transforming to the time domain gives

12(’3') = f P(w) Q(o)ej “T qa A-8

Now
|10 |sf |peorilate)| o, A<9

but since by A-6, i,(#) must always be positive and since P(w) and
Q(w) are greater than zero, this becomes

15 ¢ [ P) o)do * 1(0) A-10
By A-3,

i1(r) < 1(%) < 15(0) A-11
and finally
f¢:p(u,0) Yon(ukr) P (=) dy Sf;;p(u,onpng(u*), du A-12

A-2
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when @pp(p,o ) is always positive, Under this restriction, it has

been shown that the maximum of the integral of interest occurs when
T = Oo
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APPENDIX B

a2

AN ALTERNATIVE APPROACH TO THE NOISE BURST SPECTRA USING THE

o/
+

T WIENER-KHINTCHINE RELATION

A .

s As '‘applied to transient signals, the Wiener-Khintchine relation

; states that the autocorrelation furiction of a signal (as defi..d in

A equations(h) of the main body) and its energy spectrum constitute a

: Fourjer transform pair:

g L

Pes(7) Ef ¢>§$(w)ej “Tao B-la

P - oe

1 o

i ? P (w) = ;_J,;- f?ss(‘r)e"" o¥ar B-1b

< -o0

#’ ] ‘ Thus, it appears that one can compute the enérgy density spectrim
from“the second of thesé cquations. From our previous considerations,

; however, we know that ®,.(e) is a random variable for all w and
that we thus must 'be conteant with computing means and variances.

e

»EE&SS(W)] = #/EE’SS( 1.)]6"ij dr B~2

By equation (23) .of the main bedy,

ERL N s e T

)

EE"ss(ﬂ] = Yin(T) Peelt)

and thus

B[P w)] = ok [ Vi) Poe(r)e 9% 4 B-3

procvsely the same expression found 1n the main body from the Fourier
intégral approach (cquation (64)).
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Turning now to a calculation of the wvariance of ®gq(Ww) from

this standpoint, we must first compute the mean square value -of the
spectrum for each w .

[:q’,s}'s(“’ﬂ i

n
g
—
g.\.
R Y
o 3
wn
Fan
i
&
€
L2 4
-2

e [7‘?35(?) egl@)e™d® T g0 4o Bl

-0 =00

2 Pree - )
EE(-)SS(“))—_-] = LH"?‘ f[ E [st(‘t) ‘egs(d-)]e er(f'f'() dv de B=5
1% -

-o0 =00
Now by definition,
o0 =Y
g5(r) Yg5(0) =/e'(t)e(tﬂ’)n(t)n(t*-?)dt [e(-x)e(x+¢)n(x)n(x+¢)dx
o °
o0
:[/e(t)e(X)e(t"'-‘l’)e(xM’)n(»t)n(x)n(t+t')n(x+d')dt dx B=-6

- O - OO

S[:Q'ss(fr) fess(o-il =~f/c(t)e(x)n\(t+f)e(x+cr) Elzn(t)n(x)n(tﬂ‘)n(xwi]dt dx
o O . B-?
and combining (B-5) and (B-7), there emerges that

o0 on OV oo

B[“’si(wﬂ = LM“ff/fe(t)e(x)e(t+‘t')e()’c+_a‘) EEx(t)n(X)n(t-&-‘r)n(xw-ﬂ

.08 =02 O ©

ed@ T+ 4t Gx av d B-8

"
o ke
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Now with the substitution of variables u=z t+7, v =x +7,

p‘oﬂﬂm

'E‘}sg(w)l) ffffe(t)e(x)e(u)e(v) E[-(t)n(x)n(“)n("/):]

_oo-w-ﬂ-“

g~do @t H)gp gx apqv B9

which is equivalent to the integral

©0 o9 o0 o

Be 2(w)] = oy f/f e(t)e(x)e(u)e(v) E[n(t)n(x)n()n(v)]

oo e

e (B=xtu=v) 44 or qu av  B-10

This expression is identical with that found as equation (73) in
approaching the variance from Fourier integral considerations. If
both the mean and mean square are identical for the two methods; the
variance must be also ard hence it appears that the Wiener-Khintchine
relation is directly applicable to the expectations of the statistical
quantities associated with random transients,
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