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ABSTRACT: A class of random transient signals has been defined as
the product of a deterministic envelope waveform of finite integral
square and a continuous random process with a well-defined power
spectrum and autocorrelation function. The time average autocorrela-
tion function and energy density spectrum of the resulting waveform
have been found to be random variables at every value of their
arguments. The means and variances of these random variables are
derived as functions of the characteristics of the envelope and
original noise process. The average autocorrelation function is
found to be the product of the autocorrelation functions of envelope
and noise, and the average spectrum is given by the convolution of
the energy spectrum of the envelope function and the power spectrum
of the noise, Examples of the mean and variance calculations are
presented for both rectangular and decaying exponential pulses of
both broad and narrow band noise. Finally, the implications of these
findings for measurement programs and monopulse signal processing are
discussed.
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ON THE STATISTICAL PROPERTIES OF TRANSIENT NOISE SIGNALS

A class of random signals has been modeled as the product of a trans-
ient, deterministic envelope waveform and a well-behaved continuing
random process. The properties of the energy density spectrum and
autocorrelation function of such signals are studied and the results
related to current problems in signal processing and monopulse detec-
tion systems. The work on this project was f'unded under Task
ASW2-21-OOO-W270-70-O0. The report will be oi interest to those
concerned with statistical communication and detection theory, active
sonar systems, signal processing, and noise immunity studies.
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Chapter I

1INTRODUCTION

in the study of a large class of communication and signal detec-
tion systems, one is often faced with the analysis of the effects of
interfering noise of a transient, non-continuing nature. Examples
of such noise phenomena include the reverberation background of a
sonar signal and impulsive interference of the type seen on telephone
lines and atmospheric radio links. When formulating a system for the
detection of wanted signals in such a background, it is often neces-

ry to know in some detail the frequency distribution of energy in
.he interference or how such a noise comoonent behaves under
-orrelation processing. The intent of this report is to detail an
Lnvestigation of certain statistical properties of a class of noise
bursts suggested by the above. It is hoped that the results gained
here place in somewhat better perspective the problems faced in the
analysis and synthesis of processing systems working against non-
stationary backgrounds.

The noise signals to be treated here are neither continuing
stochastic processes in the usual sense nor deterministic transients
amenable to immediate treatment by the Fourier integral. They share
the properties of both broad classes but lack the mathematical
convenience that arises from the usual assumptions. (It is suggested
that these signals, bearing many properties of both transients and
random signals, be known as "random transients".) Since a noise burst
is defined only for a given epoch, its statistical properties are
tied to a given instant of time, and stationarity disappears. Since
ensemble averages no longer equal time averages, ergodicity soon
evaporates also. On the other hand, such a burst does not have a
deterministic Fourier transform, and Fourier integral analysis must
be approached with great care. Even so, by carefully defining terms
and remaining reasonably aware of the necessity of continually relat-
ing the mathematics to the physical situation, it is possible to achieve
a consistent and useful interpretation of impulsive noise phenomena.

Eventually, it emerges that the autocorrelation functions and
spectra of such noise signals no longer possess determin.stic values
at every point, but rather become random variables with calculable
means and variances. Fortunately, it is possible to show that the
means are given by quasi-intuitive expressions similar to those
developed in traditional transient or random theory. The variances,
in turn, provide an indication of the uncertainty of the spectra and
correlation functions for a given value of their arguments. The
analysis thus lends a good deal of insight to noise measurement

€1
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programs and also to the choice of a processing scheme that allows
sufficient latitude to encompass the great majority of interfering
background noise that may arise.

I
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Chapter I-I

A MODEL FOR THE GENERATION OF RANDOM TRANSIENTS

The model used to generate the transient noise signals to be
treated herein is portrayed in Figure 1. The random transient is
taken as the output Of a multiplier whose inputs 'are a zero-mean
Gaussian random process n(t) and an "envelope waveform" e(t), both
of which are real. The former is assumed to be stationary and ergodic,
thus possessing a well-defined power spectrum and autocorrelation
function as described in reference (a). The "envelope waveform" is
held to be a deterministic transient of finite integral square which
is zero for t 4O. The output of the multiplier is the product of
these functions and evidently equals zero when 'e(t) a 0.

Some justification of this model is provided by noting that many
of the processes which yield random-transient-like signals can be
approached from a theoretical basis which yields a prediction of some
quantity which can loosely be described as the "average level" as a.
function of time. In sonar applications for example, it is possible
to derive theoretical expressions for the acoustic power returned as
a function of range from either volume or boundary reverberation.
Similarly, in the study of transients caused by impulsive phenomena

I' such as chemical explosions or spark gaps, a theoretical treatment
may well provide an expression for some kind of envelope within which
the detailed structure of the transient is more or less random. it
is certainly visionary to claim that such a multiplicative envelope
function can be r'igorously defined for the physical processes of the
real world., The poiAt is, however, that although the detailed
structure of a particular transient may be vastly different from every
other, such a .quantity as an average "level" of perhaps some. analogous
statistical measure may well display a uniformity from sample to
sample that can be described with the artifice of a multiplicative
envelope.

Here, this envelope waveform has been considered a deterministic
transient, probably the simplest assumption that might haye been made.
It is felt that such an approach is consistent with the class of
situations described immediately above, but certainly a more elao-
rately structured model could be envisioned to accomodate a larger
class of natural phenomena. As a first step upward from the present
assumption, one might r-Andomize the envelope by considering such para-
meters as length and amplitude to be random variables with appropriate
distributions. Another possibility is to model the envelope waveform
itself as a segment from a relatively low frequency process so that
both functions entering the multiplier are completely random. These

3
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FIGURE 1. IDEALIZED MODEL or WAVEFORM GENERATION.
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approaches are not developed here but remain 
in interesting avenue

for future study. At least at the outset of this investigation 
it

was felt that the simplest model was adequate 
to deal with the

phenomena of immediate interest. We shall now concentrate our atten-

tion on the model of Figure 1.

The term "envelope waveform" is actually 
something of a misnomer

here since it does not play the same role as the corresponding concept
in, for example, amplitude modulation where 

e(t) would represent the

slowly varying envelope of a more rapid oscillation. 
Consider the

output waveform:

~S(t) =e(t) n(t)()

where at every instant of time t, (t) is a Gaussian random var-

iable with mean zero and variance y . At this same instant of time,~N

s(t) is thus also a Gaussian random variable with zero mean and with
variance.

a 2 (t) e2 (t) 2 _ (2)
! s N

Alternatively,

a5S(t) (etfN(3)

61-rnd it is seen immediately that the most meaningful interpietation of
e(t) ts as the time varying factor whose magnitude relutes tho stand-
ard deviations of the input and output. It-is also a;parent now that

s(t) can in no way be considered a stationary random, variable since
Lndeed its variance is a function of time. This is hardly surprising
since we are now dealing with a transient signal for which coneopts
of stationarity are irrelevant.

4 Consider, however, an infinite ensemble of waveform generators
on this model, each with its separate independent random processn~t), bt with .ia envelope waveforms e(t), The ensembl.e of
output transients generated by such an assemblage can be expected to

display a large measure of statistical regularity, and it is with
this ensemble of all possible transients with identical e(t) that
we propose to work.

-: 
5
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CHAPTER III

NOISE BURST AUTOCORRELATION FUNCTIONS

For a real deterministic transient such as the envelope wave-
form e(t), the autocorrelation function i3 generally defined as

(ee (e) C' e(t) e(t+e)dt()
00

such that

0

'ee(O) fe 2(t)dt (5)

where Nee(O) is known as the energy of e(t) in the sense that if e(t)
were a voltage or current waveform, this expression gives the total
energy dissipated by e(t) in a pure one ohm resistance (reference (a)).

For a real random process such as n(t), extending in time from
-@ to + co , two autocorrelation finctions can be defined. First
the ensemble average autocorrelation function:

Rn (tlt 2 ) = E n(tl)n(t2)1 (6)

where E[ ] denotes the statistical expectation taken over all
members of the ensemble. Rn is, in general, a function of t1 and t2 ,but if the process is stationary, it becomes a function only of 'Y,
the difference between t1 and t2 :

Rn(tlst2) =Rn(-e) E[n(t)n(t+'r)] (7)

where 2'= tl-t 2 and tI is arbitrary

6
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The time average autocorrelation function is defined as

lira 1 !T
T-- 2Tn( t)n(t+'+)dt (8)

-T

- with with nn() =lim 1 .T
LJn (9)l-im 2- n 2 (t)dt 9

*~(0) -.-.o 2T -T

which is the average ower of n(t) in the sense that this expression

gives the average power dissipated in a one ohm resistor by n (t).

If the process is ergodic, time and ensemble averaging are
equivalent, and in particular,

Rn(T) = Yn(ri) (10)

With this background, we can proceed to a meaningful definition
and evaluation of the autocorrelation function of the signal s(t)
defined in equation (1) and Figure 1. Consider first the attempt to
form an ensemble average autocorrelation function for s(t) as in
equation (6):

Rs(tltt 2 ) = E [s(tl)s(t2)]

= E[e(tl)e(t 2 ) n(tl)n(t 2 )] (11)

Since e(t) is deterministic, we may write

Rs(tl,t2 ) = e(tl)e(t 2 )E [n(tl)n(t2)] (12)

Because n(t) has been assumed to be ergodic, this becomes

Rs(tlt 2 ) = Rs(tl,T+tI) = e(tl)e(tl+T) 'Pnn(t) (13)

T = t2-tI

Since Rs is a function of both ti and 2 , s(t) is nonstationary, and
the ensemble average autocorrela ion function loses much of its
interest. Such is generally the case in treating a transient waveform.

* It may be well to point out that in this report, the letter P(phi)
will be used to denote the autocorrelation functions of eneray signals
as in equation (4), whereas the letter # (psi) will be used for the
autocorrelation functions of powe signals as in equation (8).

7
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By using, however, the formula of equation (4) which is appro-
priate for traditional transient analysis, we can write that

~00
T ss(Tr) " S (t) a(t+r) dt~o

fe(t)e(t+r)n(t)n(t+T) dt(1+)

0

where the lower limit of the integral becomes zero since e(t) = 0
for t < 0. Now since n(t) is a random variable for all t, it be-
comes apparent that the integral of equation (14), if it exists, is
also a random variable. The existence of an integral such as that of
equation (1) is examined in reference (b) which treats expressions
of the form

b

y( h(tt')x(t) dt (15)

where only x(t) is a random variable. Now, if

",ilh(t,T)x(t-) dt " h(t) E Dx(t))] dt 4 (16)

then y(T) exists for all sample functions-of x(t) except for a set
of probability zero, and furthermore

E[y()] a h(t,T) (t)dt (17)

Looking at equation (i) in this light we sae that

]E e(t)e(t+V)n(t)n(t+r)] dt 2]ie(t)e(t+)EEIn(t)i n(t+r)J]dt (18)

Now Ef In(t)l In(t+-r)j can be interpreted as the autocorrelation func-
tion of a full-wave rectified version of n(t), which exists if n(t)
is a sufficiently well-behaved stochastic process as we have assumed.
But by the basic property of the autocorrelation function that its
maximum occurs at the origin for any random or transient function,

E [In(t)I In(t+-e) ] E [In(t)( In(t) I E [n2(t)J '(O) (1.9)

I 8
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Therefore,
00@

je(t)e,(t+Te)j E [n(t)n(t+-e)l dt : 1n0)4je~tlle l dt

(20)

since n(t) is assumed to convey finite power and since e(t) is a
transient with finite energy.

It has thus been shown that 5ss(T) exists for all members of
the ensemble except for a set of probability zero (whatever that means),
and it begins to make sense to speak about the autocorrelation function
of s(t) in these terms. Since vss(r)< for all 'r

lim Ts lira
'Ps s ( T ) = T4-n (t)s(t+ )dt = T). (21)

T

= 0, for allr

and this form of the time average autocorrelation function, appropri-
ate for continuing random signals, becomes meaningless here. Thus
s(t) is an en signal rather than a power signal and in that sense
is more akin to a transient than to a continuing random process.

If one defines the autocorrelation function of 3(t) in the form
of equation (4), the result is a random variable whose mean and vari-
ance at every r must be related to the correlation functions of e(t)
and n(t). Thus if

ss(e) Js(t)s(t+t)dt :fe(t)e(t+)n(t)n(t+t)dt (22)
0 f

the ensemble average becomes

E['Pss(le)] = E [ e(t)e(t+1r)n(t)n(t+'r)dt (23)

and using equation (17), this is

E[%S(T)] = fe(t)e(t+T) E[n(t)n(t+r)]dt (21+)

9
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Finally, by equations (1), (7), and (10).

Eriss(oT)] = (nn() vee(r) (25)

It becomes evident, then, that the expected value of the autocorrela-
tion function is, for every T , equal to the product of the
autocorrelation functions of the envelope waveform and the original
noise process, and is therefore similar to the result gained in
seeking the autocorrelation function of the product of two independent
stationary random processes, where the autocorrelation function of the
product is equal to the product of the autocorrelation functions.

Some care must be taken in the interpretation of equation (25).
What is being claimed is precisely this: Given a sample functionfrom the ensemble generated by the model of Figure 1, we calculate

the time average autocorrelation function as in equation (22) - by
multiplying the sample function by a shifted replica of itself and
integrating the product from 0 to oo . If this operation is performed
on a number of sample functions and the results averaged for fixed 7',
the average will tend to the expression of equation (25) as the number
of sample functions grows large.

If T = 0, equation (25) provides the average total energy:

E [ s s(0)] = n(0) Yee(0) (26)

numerically equal to the product of the energy of e(t) and the
average power of n(t) (bu. bearing, of course, the dimensions of
energy). This is to say that if we form the integral

-ss(0) JS2(t)dt (27)

for a number of sample functions, the average value approaches
E [sss(O)] as the number of sample functions taken grows large.

Next to be considered is the variance of the random variable
'ss(r) generated by the correlation process of equation (22). From
elementary probability theory it is known that

or in words, that the variance is equal to the mean square minus the

10
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square of the mean, The mean square of (T) must thus now be
calculated. The square of sss() is given by

SS " e(t)e(t+)n(t)n(t+r)dt e(x)e(x+r)n(x)n(x+Z')dx (29)

: fYe(t)e(x)e(t+)e(x+-r)n(t)n(x)n(t+)n(x+r)dx dt
fi0

Taking the expectation and interchanging with the Integration yields

E[Pssr)] ff e(t)e(x)e(t+r)e(x+r) E[n(t)n(x)n(t+r)n(x+rj)dx dt (30)

At this point, for the first time, we must make explicit use of
the fact that n(t) is a .. anrandom process. Indeed, it can be
shown (c.f., reference (c)) that if nit) is a zero mean Gaussian
process, then

E[n(tl)n(t 2 )n(t 3)n(t)] : E[n(tl)n(t 2 )] Eln(t 3 )n(tjgii (31)

+ E[n(tl)n(t 3 1) E[n(t 2 )n(t))]

+ E[n(tl)n(t.)] E[n(t 2 )n(t 3 )]

Now using ergodicity and equations (6), (7), and (10), we may write
that

E[n(t)n(x)n(t+T)n(x+r)] : '2(-) +'(t-x) + kr.(t-x-') VYn(t-x+r) (32)

Following through,

lU

A
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* E(~QZ') :fe(t)(x) e(t+) e (x+,?) ~t~(r) x Adt

1 fe(t)e(x)e(t+V)e(x+?')[?n(tx _ X_ d d

The first integral may immediately be writte .as

but by equation (25)9

nn eeQ) E (35)

'And, directly, by cancellation in equation,' (28),,
CO 00:f e (x) e(trex)

0 (36)

7 nl +?P± (t-x+') 3k("t -x-jdt dx

The, evaluption of' th-is horrendous integral can 'be somewhat eased by
m:igtechdnge- of'variables u t t-x and t v 't,, and theon elimiri-

atrig. x f'rboj the, pqu ation ( IJacobiahi a 1; f izst quadrant, area of
tx plane -orrezppnds 'to the upper hal3% I'' of the tu plane).

* Var kP..I)1P,-, t-e-t,)e(+ U

Lv2 + *h(u+V)3pln(u...jdu~dt

Rever sing the-order of integration then yields

Var~ws(7) :f4n(u) u '(+'" ~" -r)]

(38)

e(t),e(t-u)e-(t+TVe(t+?r-u)dt du

k 12
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Consider now the inner integral, which can be expressed as

10t) e(t+t) e(t-u) e(t+-r-u) dt -- pt,-r)p(t-u, V)dt (39)

a 0

where

p(t,t) s e(t)e(t+t), (40)

a function defined as e(t) multiplied by a shifted replica of itself.
p(t,t) possesses an autocorrelation function defined as

, pV (u, V) = p(t~r)p(t-u,T)dt, 91
0

identical with the inner integral. The variance may now be written

Var [(' 5 5 (t)] =fPOP (U,1) [Y4I-'(u) + Y'nn(u+") Ynn(u-r)] doi (1+2)

As defined above, P (u,r) is merely the autocorrelation
function of the signal geirated by multiplying e(t) by a replica of
itself shifted 'r seconds. Several examples of this function will be
computed in a later section, but some general properties emerge at
once. Since Vpp(u,r) is a bona fide autocorrelation function with
u as the independent variable and ? as a parameter, it must be an
even function of u and, having no periodicity, assume its maximum
value (for given r ) when u a 0. Also, since e(t)e(t+r) is identical
with e(t)e(t-r) except for a shift in the time origin, vpp(U,t)
is an even function of the parameter 1 and for a given u obtains its
maximum value when 0 . 0. Since the integrand factor in square
brackets (equation (+2)) is also even, the variance may also be
written as

2 inpuv)1du (1+3)Var Lvss(' 2 J p,]) nnu) + Ynn(U+r) nn(U- du 0+3)

The expression for the variance derived here is particularly
easy to evaluate on a digital computer using numerical integration
techniques, and several examples of this calculation will be pre-
sented later. The result is to be interpreted as supplying the
variance of the random variable Iss(,r) as a function of r
Since by definition

Var [s s] E E[~s r) - E []]2) s(s)

13
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we have found a measure of how tightly the distribution of %,(r
,,cleaves to the mean, and hence of the amount of variability to'be
expected between points of equal T on the empirical autoc rrelation
functions of representative samples. Evidently, when Var l%s(r)]
becomes small, we can reasonably expect that the empirical measure-
ient will be close to the expected value. It is of considerable
interest to know where the variance is a maximum.

Consider then the expre~sion of equation (43);

V ar (T. s0e) 2 fp (u, Y) (u)du

f'4 PfWpu)jnu? n(Td

Since '4p(u,O) Wpp(u,) for all u, then

p(u,Y)Vrn'(u )du p(uO) (U) 6)

and the first integral i- obviously a maximum for T'= 0. It is also
true that

00p(U,'Y) 3rn (U+?'),?Pnn(U-?))dui : _fqpp(u,O) Vn(u+ ),*nn(U-q')du '(47)

and it is shown using the Schwarz inequality in Appendix A that if

Wp(u.0) -0 for all u, then,

p ~ P jfPP
0 0

From equations (47) and (48) then

Var [WfsS0)] Var [~(fs s1 for all T' (49)

subject only to the condition, essentially, that the envelope wave-
form be everywhere positive. The maximum variance thus occurs at
the 6rigin, as one might have expected intuitively, and its value
is given by

...
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Max{Var [%.5er)j} Var[We55(0)]

0 0
1- Yd(u) fe2(t)e2(t-u)dt du (50)

Since (pp(u,'r) approaches zero for all u as r grown large, it
should be apparent that

Var [ 5 r)..oas co... 0 5.
One more general result will now be discussed having to do withthe behavior of the autocorrelation variance as the extension intime of the envelope waveform increases. If the statistical proper-ties of the original noise process remain constant while the envelope

duration grows larger (in the sense that a rectangular pulse of widthT or an exponential pulse of time constant T become "longer" asT increases), we might reasonably expect i a variance of the auto-
correlation to be decreased since in effect che integration-averaging
process of equation (22) is being carried out over a longer and
longer period. In other words, by taking a longer and longer "piece"
of the input noise, one approaches the operation of equation (8)
which yields an expression of zero variance. Actually, since themaximum variance is related to the average total energy (see equation(50)), the variance will increase (absolutely) as the envelope dura-tion (and hence its energy) increases. For this reason it is moreinstructive to work with a normalized form of the maximum standard
devistion. We form, then, the ratio of the standard deviation at
*. 0 to the expected value of (ess(r) at ?= 0:

jVa re 5 ()
Ro  EWe(o)](

This ratio expresses the standard deviation of Cf~s(O) as a percent-
age of the mean of Yss(O) and thus measures the extent that the
distribution of (ss(T) clusters about the mean in the worst case.
From equation (50),

2ef= 0 (uO)jp2(u)dt (5u
? n (O)e2(t )d't

0
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Consider the following heuristic argument. As the width of the
envelope function increases (as Ynn(u) remains the same), epp(U,O)
becomes "wider" also, and in most cases can be considered a constant
near the origin. If T is some measure of the duration of e(t),
then as T increases, a point is reached where the integral in the
numerator approaches a constant value (due to the relative narrowness
of lPnn(u)). Meanwhile, the integral of the denominator grows roughly
as T, and hence

Lim Ro  Lim -J : 0 (54)
T- T-+ T

This shows that as the duration of the envelope increases, we can
expect the autocorrelation function of s(t) to depart percentage-
wise less and less from E [ss(t)2 at every point.

We turn next to the spectrum of s(t), where it is found that such
convenient limiting behavior does not occur.

<I1
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Chapter IV

NOISE BURST SPECTRA

To continue this investigation of the properties of noise
bursts, it is now appropriate to turn to a consideration of the
energy spectrum of signals of this type. As described in reference
(a), a deterministic transient can be specified by its Fourier
integral:

S( )= T. f s(t) e dt (55)

such that

5(t) f fS()ej t djot (56)

Pow by Parseval's theorem (referenco (a), pp 33-39),

2n S(o) S do s2 (t) dt (57)

where the superscript bar represents complex conjugation. Since the
right hand integral is simply the total energy of s(t) as defined in
equation (5),- the expression

_-- nS -o )(( ) 2  (58)

* can be interpreted as an energy density svectrum indicating how the
total energy of s(t) is distributed in the frequency domain. This
is to say that if s(t) were passed through an ideal low pass filter
with a sharp cut-off frequency oc, then the total energy dissipated
in a pure one ohm resistance following the filter would be

E( <c) = fd : 21 4'ss(w)dw (59)

Alternatively, D () can be interpreted as giving the total
energy dissipated in tfle ubiquitous one ohm resistor by a band of

17
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frequencies one radian/sec wide centered at the argument radian
frequency, .

For a signal of the random transient type, the integral of
equation (55) can be written, at least formally, as the first step
of obtaining the energy density spectrum of the burst. From the
same considerations that led to the formation of the autocorrelation
integral, It can be shown that the integral of equation (55) exists
for all members of the ensemble except for a subset of probability
zero. But since every member of the ensemble is different from every
other member, every S(w) will be different also, and hence there is
generated an ensemble of integrals of the type of equation (55) de-
fining S(") as a new random variable. Thus, by equation (58),

0 (w) will also be a random variable for every value of w and will
notspossess a deterministic value.

The next step, evidently, is to compute the expected value ofDss(w). By definition,

4:ss(o) = 2v S(w) -(w) = f s(t)eiJwtdt (x) e+Jcax dx

(60)

-dt

Following through,

E [OSS(w)] w e(t)e(x) E [n(t)n(x)] e'Ji(t'x)dx dt
o * (61)

Because n(t) has been assumed ergodic and stationary,

E [n(t)n(x)] m =(t-x) : c(u) (62)

where u = t-x

18
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Thus,

E- f e(t)e(t-u) Vnn(u)e- j au dudt (63)

0

= f nn(u)e -u fe(t)e(t-u)dt du

OD 0

And finally,

:ES( C41 W2 nn(u) <Oee(U)e'Jcu du (61+)

which can be interpreted as the inverse Fourier transform of
E F'lss(u)] found in equation (25). Actually, by using the Wiener-
Khlnchin relation, it is possible to relate the expected value of
Zss(c) to the energy density spectrum of e(t) and the power density
spectrum of n(t). Indeed, with %Pnn(t") given by equation (8), the
power density spectrum of n(t) is given by the Fourfeo transform

n( : -- f2 nn(,)eC dr (65)

and the energy density spectrum of e(t) is given by the transform*

ee(Q) f e(')e d (66)

The inverse transform of cZee('v) is given byf0
Oee(T) = f Dee(O)e j t dc (67)

and hence equation (61) can be written as

*Similar to our convention in Chapter III, the upper case Greek
letter li (Psi) will be used to denote g density spectra, whereas
the upper case letter D (Phi) will be used for energy density spectra.

19
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,E [c)(8J = nU Je(I)e J Ou  da du

(68)

f Ifj nn(u) Dee(O)e j u (Ca4 ) do du

Now setting o' a w - o' we can write that

00

E~(w) nU e(-'e j '  du d. (69)

Using equation (65),

Et[4 S S( f Onw)Dec-wd'

(70)

"i~~r = ( '  ee ( w)

i*

Thus, the expected value of the energy spectrum of the random
transient is found to be the convolution of the energy spectrum of
the envelope waveform and the power spectrum of the original noise.
At least as far as expected values are concerned, it has been shown
that one can here apply the well known "folk theorem" that
"multiplication in the time domain corresponds to convolution in the
frequency domain."

Continuing with this Fourier integral approach, it is possible
to investigate the variance of ss (w) at every point. First, by
equation (58),

2

Sss(W) 4V2 S2(W) -(J7 2 (71)
N ow using equation (55))j9E')ffff / s(t)s(xls(nls(v)eJ (t-X+ Vdtdxd idv (72)

0.00
000 O co 0"

fff (t)e(x~(i )e (72
o (t -X-v) t dd

0 E[n(t)n(x)n(p)n',je "(tX+PV)dtdxdpdv (73)
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Since n(t) is assumed to be Gaussian, equation (31) still
applies, and this becomes

....1.affe(t)e(x)e(DI)e(v)

00 00

I dt dx dui dv (7))

This is plainly the sum of three integrals, two of which are identical.
The fir st and th ir d ar e of the form

9000f dtdxdiidv

(75)

Using the substitiitions; a: t - .and b )ap v. these are equiva-
lent to

11 *3 1 dtdadpdb

ffn~a~icafet~et~)dt daf nn(b)en' b e (;a b)
-) -eQ *db

f f (a)Pee(a)eni(a daf nn)S ee(b)e-j(wb

*{-9; f a) ee a)e j a daJ{E ss(w~)]} (76)
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" The second integral is

2°' "fe P(x-v)e~jQ(t-x+PI-v)
12 ifff(t)e(x)e(p)e(v) Pnn(t-) Vnn dt dx d;u dv

00 0 0

(77)• 00 00

e(t) e (p) nn(t-p)eJ(t+P)dt du

00 Ca 00

jfe(x)e(v)nn(-v)e+ic(x+v) dx dv

0 0

The first integral of this product is identifiable as the complex
conjugate of the second, so

12 "- . e(t)e.) nnt-)eiOtt+P)dt d12 (78)
4 0

Therefore, froom equations (74), (76), and (78),

E (.s (.i Ii + 12 + 13
(79)

' .~~~~2 IE ,ss(,,-l 1 + 7/et)e ),n~.)eJot d
000

and by the definition of the variance,

Val E[Vs~w] . f(t) e(p) Pnn(t-p) e J (t+J) dtcl

oo (80)

Var >d~ss(c) _ E Lcss(w)}

We have found, then, that the variance of the energy density
spectrum is, for each w at least as large as the square of the mean
of the energy density spectrum at , or alternatively, that the
standard deviation of (ss(w) is always larger than the mean - regard-
less of the form and duration of e(t). This somewhat surprising
result is a more general statement of the relatively well known fact
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that the so-called "periodogram" which can be drawn from an empirical
record as an estimate of spectral density of a continuing process
does not converge in the mean to the true spectral density as the
observation period increases without limit. (see reference (b),
pp 107-108).

The implication of these findings is the following: If a large
number of random transient sample functions are taken and their
energy density spectra computed or measured, the arithmetic average
of zss ( w) will tend toward the expressions of equations (61+) or (70)
for every w o Because of the magnitude of the variance, however, it
is quite likely that the value of Oss(co) for a given sample will be
nowhere near the mean. Consequently, at a given value of frequency,
there will in general be a wide variation of the energy density spec-
trum from sample to sample. Unlike the autocorrelation function
which becomes percentagewise more precise as the duration of e(t)
increases, the empirical spectrum of each sample function remains
widely distributed regardless of the form of the envelope.

In Appendix B, an alternative approach to the noise burst
spectrum is based on the assumption that the Wiener-Khintchine rela-
tion applies to signals of this type. The results obtained are
identical to those presented above, and it appears that such an
assumption is valid.
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Chapter V

EXAMPLES OF NOISE BURST AUTCORRELATIONS AND SPECTRA

To demonstrate the application of the principles derived above,
this section will. be devoted to the presentation of seveil ,examples
of the calculatioh of noise burst autocorrelation functions and energy
spectra. For this purpose, two idealized noise spectra will be treated:
-Uhe rectangular low-pass broad band spectrum, and the rectangular
narrow band spectrum. These will each be modulated by two envelope
functions: a rectangular pulse of duration T seconds; and an expo-
nential decay with a time constant of T seconds. This yields ,four
cases:

A. Broad Band Spectrum with Rectangular Envelope
B. Broad Band Spectrum with Exponential Envelope
C. Narrow Band Spectrum with Rectangular Envelope
D. Narrow Band Spectrum with Exponential Envelope

The two noise spectra and their associated autocorrelation func-
tions are'.shown in Figures 2 and 3. For the rectangular low pass
broad band spectrum,

* nn(c) = No, w2  <w <'w 2 (81)
= 0, elsewhere

By the Wiener-Khintchine relation,

T nn(r) =f *nn(w)e dw No ej'T d. (82)

Thus, w

sin w2 r
?nn()= 2No w2 (83)

For the rectangular narrow band spectrum,

*nn (Q ) = No, 1 <g <

= No, -w2 s w . (84)

= O, elsewhere
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I

41nn(cu)
" 2~ 0 N

o 2N 2

Sin w 2 Ttnn (r) 2 2No" 2  T---

4nn (r) =2N~w

-6/ -4 4r 6

FIGURE 2. RECTANGULAR LOW PASS BROAD BAND NOISE SPECTRUM
AND ASSOCIATED AUTOCORRELATION
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-W2 w., w, 0wl. W6 W2

A w 1/2 (w 2 w I w021/A2() 2+4W6) 

4AWN

.'T/r'~=~wMsinAWCS
0

Envelope is Awrll'~~
4ANsinAWT''.1W No 0A,., j

- 'a-' ('I

6v 6

-4AWN0

FIGURE 3. RECTANGULAR NARROW BAND SPECTRUM AND ASSOCIATED
AUTOCORRELATION.
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W (2
Thus 41nn (T) = 2 No cos wrdw (85)

= 4Aw No n COS WoT

where Ao a (interpreted as the half (86a)

2 bandwidth)

w2 4w1(02 (interpreted as the center (86b)

2 frequency)

Turning now to the first of the envelope functions, consider the
rectangular pulse shown in Figure 4.

e(t) = 1, OtsT (87)

= 0, elsewhere

The autocorrelation function is computed from equation (4)

Pee(T) = ]e(t)e(t +r) dt (88)

= T -rl, -T e, T

The energy spectral density can be fouad as either the Fourier
transform of equation (88) or as 2ff IE() where E(w) is the
Fourier transform of the envelope waveform.

'Dee( ) = T2  sin 2 wT/2 (89)
2 - wT/2 )2

One more quantity is needed in the study of rectangular noise
bursts, and this is the function Ppp(ur) defined by equations (40)
and (41). If is positive,

p(t,r) = e(t)e(t +r) = 1, Ot_<T-T (90)

Therefore, ]D T-r-L

ppU = ]P(t, r )p(t-u, r )dt = 1 dt, P2:0
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e (t)

T __ ( ) = T - Il

-T T

'Opp(u,r)

T --

-T+I'I 0 T- I'I

FIGURE 4. RECTANGULAR ENVELOPE AND ASSOCIATED AUTOCORRELATION
FUNCTIONS
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/ pp(u T -'- u foxrand u>O (ql)
O-u< T -T

L . Since Yp (u,r') is an even function of both rand u,

Wpp(u,2') =T -121 - Jul , [l+ Iu lT (92)

= 0, elsewhere

Let the exponential envelope function portrayed in Figure 5 be
defined as

e(t) = e - t/T O:too (93)

= 0, elsewhere

Defining the autocorrelation function precisely as in the case
of the rectangular pulse, we find

'e00= 1- e , -oo 00<T < 00 (94)

The energy density spectrum b.icomes

c ee(w) = T2  1 (95)
2( Vw2 T2 +I

and finally,
2- ( l u l + Iqel)

pp (u,) =-eoou'r (96)

For convenience, these functions are collected in Table I

AUTOCORRELATIOU CALCULATIONS

1. RECTANGULAR PULSE OF BROAD BAND NOISE. By equation (25),

X F-~~ [Rs s (-)] =P nn(e) Yee( t)

and for this case, the autocorrelation functions for the rectangular
pulse and the broad band noise spectrum are found in Table I. Using
these expressions,

E Lss(?r = 2Now 2 (T -I) , -Tin2 - T (97)

= 0, elsewhere
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Oeer

T

0Tr e-Ir/ T

IIo

01

T e2I7*1/ T

Tu)= -2(IuI+ITI) /T

Opp(u,r)=.Le

0 
O

FIGURE 5. EXPONENTIAL ENVELOPE AND ASSOCIATED AUTOCORRELATION
FUNCTIONS.
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From equation (43) can be found an expression for the variance of
~ss()

Var [ss(-) = 2 Ppp(u,,r) [nn2  )+ nn(U+7) 'nn(U-r)] du
Lto

Referring again to Table 1, (98)

V ar[~s 2r) 8o 2f(T- Y-r){sin 2 + sin'42(r+u) sin(& (r-u) dI's *r] Now2 (--2u 2  2 0 "2I,'u T,(r-u" du
0 29 w2(-r+u) olru

The standard deviation of Pss(r) is, of course, the positive square
root of this expression.

For more generality of presentation, the expressions of equa-
tions (97) and (98) will now be normalized and parametized. We note
first that since Pss(O) is equal to the total energy of the noise
burst (as defined in equation (27)), E[ ss(O)]can be described as the
average total energy:

ETav = E Pss (0)J (99)

For the present case,

ETav = 2No w2T (100)

which makes sense since it turns out to be equal to the average power
per radian times the bandwidth times the duration of the transient.
E E vss(7)] will be normalized by dividing by ETav and Var[Ess (r)]
by dividing by (ETav)2 . This latter step puts the standard deviation
of Oss(r) in the same units as the mean. Thus:

En Eos(i)] (1 -S 0 sin w2, -T:5T T (101)
(2 I

= 0 , elsewhere

T- I'rI
V0 = Fsin2w2 +sinw2 (T+u) sin )U ( d u

Ban ss(T] f 2 T2  L 2 2 w2(-r+ sin w2 du

(102)
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Now let the following parameters be defined: (103a)

p = 91 i.e. the argument as a fraction of the total pulse
T length

T w2 T
q - = , or the number of periods of the highest

2 r 2 noise frequency contained in a pulse
w2 length. (103b)

The normalized, parametized equations can now be written as

FP sin 2r wpq (104)EpL ss(P/i = (l-p)27q
2r pq

-l-p (105)
2 px) sin2 2rqx + sin 2rq(x+p) sin 2irq(x-P) dxVarp [ss 2f3=  (2.x)2)

VarpL0 (p)]= 2 q (x +p) 2wq(x-p)

By equation (52), the ratio of the standard deviation at7= 0 to

the expected value of Pss(-r) at 7= 0 is

R0 = E[ s(O0 (106)

and it should be recalled that this ratio is the maximum value of the
standard deviation expressed as a fraction of the mean. It should
be apparent from the foregoing normalization and parameterization that

Ro = Re(q) =2 Ffl-x) sin2 2Q- dx (107)
0 (27rqx)

The functions of equations (104), (105), and (107) have been
programmed for evaluation on the IBM, 7090 computer at NOL, the
latter two expressions requiring the use of numerical integration
subroutines. Computer generated plots of the normalized expected
value of qs (p) are found in Figures 6 and 7 for this case when
q = 0.1, 1., 10.0, and 100.0. It should be realized that all such
autocorrelation functions are even functions of p and disappear
for pI >1. Also note the change of scale for the p axis when q=100
(in Figure 7). Figure 8 shows a typical plot obtained by graphing
on the same axes Ep , ss(p)] and this mean value plus and minus the

standard deviation of lp,(p) as calculated as the square root of
equation (105). In some sense, such a graph provides a rough idea

of how closely the distribution oftss(P) cleaves to the mean as a
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RECTANGULAR BROAD BAND Q =0.1000
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FIGURE 6. RECTANGULAR PULSE OF BROAD BAND NOISE
AVERAGE AUTOCORRELATION
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function of p. Generally, the standard deviation will be largest for
p = 0 and then decrease as p increases. This decrease, however, is
not always monotonic, and the expression Ro(q) remains perhaps the
best single estimate of the tightness of the distribution of ss(P).
A plot of Ro(q) is portrayed in Figure 9 and mirrors the result
predicted in equation (54). Since the parameter q is a measure of
the length of the envelope pulse in terms of the period of the highest
noise frequency, it will be directly proportional to the envelope
"duration" discussed in the derivations of equation (54). Thus as q
increases, we can expect Ro to decrease sharply, and indeed this is
what has been found here. As the pulse length increases relative to
the period of the highest noise frequency present, the distribution
of Y9s(p) clusters closer and closer to the mean for all p, and the
value of the mean at p becomes a better and better estimate of the
actual value of (fss(p).

2. EXPONENTIAL PULSE OF BROAD BAND NOISE. Again using equa-
tions (25) and (43) and the appropriate entries from Table I, it is
found immediately that "1T sinO (0

and that E [Wss()] = No 2 T e (108)

Vr= 2 o2 2 e2T
N02 2 T e 

(109)

-2u/T [sin2 w u sin c0 2(u+z) sin w 2 (u-4)d
e- u + w(u+) -T u

It follows directly that

ETav =E[((ss(0)] = No0"'2 T =N 0" fe2 (t) dt (110)

As before, the functions of equations (108) and (109) will be
normalized and parametized. Defining,

p=- ,i.e., the argument as a fraction of the envelope
time constant (lla)

and W T

q = , the number of cycles of frequency w 2 contained
2?V in the time constant T (11b)

the functions become

Ep [Ys (p)] e-P sin 21W pq (112)
2 pq
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FIGURE 9. RECTANGULAR PULSE OF BROAD BAND NOISE
NORMALIZED AUTOCORRELATION STANDARD DEVIATION.

38



NOLTR 67-25

o (113)

Var'[%e5 (P)] 2e-2pf,,2x E 2irx sin 2*'cf(x+p) sin *qxp
(2l Wqx)2  2?rq (x +p) 2 V q(x-p) ]

and following through,

Roq) = 2 Je" (sin227rqx'_ (2;q) d x (114)

(2rqx)2

Equations (112) and (114) have also been programmed on the
IBM 7090 computer, and the results appear in Figures 10, 11, and 12.
As before, the average autocorrelations are presented for q = 0.1,
1.0, 10., and 100. Note again that as q increases, Ro falls towarl
zero. As the time constant of the envelope increases, the distribu-
tion of'ss(p) closes more tightly about thc mean, as one would
expect from previous considerations.

3. RECTANGULAR PULSE OF NARRCW BAND NOISE. Following exactly
the same procedure as before and again referring to Table I, one can
write that

E[cess(r)] 4 No -T-ITI ) sin 1T cos &0  (115)

2f [L .2AW)
Varjss(r) : 32 No 24Aw (T-I't1-u)si , cos 00A

+ sinWc(-T) sincoag+7)

cosb ('q-r)coso (joA +-r)] du

where as before

0 2 2

Now from equation (115),

ETav = 4 No A T (117)

which is what one would expect intuitively. For this case, the
following parameters will be defined:

39



NOLTR 67-25

EXPONENTIAL BROAD BAND Q = 0.1000
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FIGURE 10. EXPONENTIAL PULSE OF BROAD BAND NOISE
AVERAGE AUTOCORRELATION
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EXPONENTIAL BROAD BAND Q =10
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FIGURE 12. EXPONENTIAL PULSE OF BROAD BAND NOISE
NORMALIZED AUTOCORRELATION STANDARD DEVIATION
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P =T- the argument as a fraction of the pulse length (118a)
q=_T= , the number of cycles of the center

2T 2r frequency found in a pulse lenqth (118b)0)0

=IWO the ratio of bandwidth to center frequency (i18c)

Utilizing these expressions, it is found for a rectangular burst ofnarrow band noise that

Ep[ [ss(p)] = -) (1-p) cos 2wpq (119)
qzp

Varp jss(P)J 2 (l-p-x) sin qzxx(,?tqzx )2 cs

(120)

sin+fq (x-p) sinTr qz (x+p) c 2q(x-p)cos dx+ qz(x-p T- ?rqz(x+p) 27rq(x+p dJ

Ro ~q~) = 4 _x) in27rqzx sR(qz) =2 qjL_ cos 27rqx dx (121)

Typical results when equation (l19)is evaluated on a digitalcomputer appear in Figures 13 and 14, for which z = 0.1. In Figu re 14Ro (q,z) is plotted as a function of q with z as a parameter. Thez-value of 2/3, which may seem like an odd choice at first glance,corresponds to an octave band spectrum, as may easily be verified.Note that Ro(qz) approaches zero as q increases for all values of zbut that the decline is markedly more rapid for the larger values ofz, corresponding to wider and wider band-widths.
4. EXPONENTIAL BURST OF ARROW BAND NOISE. Using the properentries from Table I, one finds immediate~yI7t

AeJ
2 [ssr] 2NoT &we T s2in~o cos W0 r (122)

where A oand 0o are defined as before
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RECTANGULAR NARROW BAND Q =0.1000
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RECTANGULAR NARROW BAND Q = 10
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FIGURE 15. RECTANGULAR PULSE OF NARROW BAND NOISE
NORMALIZED AUTOCORRELATION STANDARD
DEVIATION PARAMETERIZED BY BANDWIDTH.
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Va rla()]=8NO2 T& W2 e 2'/fec02u/T [sjf2&Wu cos 2 u (123)

+sinZJu--,) sinazw(u+?')+ SiurJ ' u
W (U- -r) Ao Tu-+--r)-

cos o,(U-r) cosw (u+r)] du

ETav 2NoT &) (124)

The parameters for this case are precisely the same as those
defined for the rectangular narrow band '-urst with the exception
that T is now to be taken as the envelor time constant. This yields

E [ess pI] -P sinfqlzp cos 27rpq (125)s qzp

-2pfe 2x sin2! zx cos2 2rqx (126)Varp #ss (p)I = 2e j F
L i (irqzx )2

sin+qz(x-p- sin.gzx+p) cos 2?rq(x-p)cos 2w'q(x+p)] dxrqz(x-p) -%qz (x+p)

Ro(q,z) = 2 sin 2 rqzx. qx"---- cos2 2-NqX dx (127)

0 (rqzx )2

Typical plots of these equations are found in Figures 16, 17,
and 18. They tend to bear out the generalizations previously noted
for the other cases.

SPECTRUM CALCULATIONS
Thne Expected vaIue of the energy density spectrum of a noise

burst for some argument a) has been found to beI,
E 10 SSW)] f j*n n (d0  ~ee)) dw'

= 4nn(W) 0 *ee(W)

' by equation (70) and is interpreted as the convolution of the power
spectrum of the noise and the energy spectrum of the envelope

1+7
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FIGURE 18. EXPONENTIAL PULSE OF NARROW BAND NOISE
NORMALIZED AUTOCORRE LAT ION STAN DARD DEVIATION
PARAMETERIZLD BY BANDWIDTH.
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waveform. Since both members of the convolution are even functions,
the expected value of css(wo) can be written as the cross-correlation
of 'nn(w) and (Dee(OJ):

E[(DSs(C0)j j 4nn(Q1) 4ee(zo'-w) dw' (128)

-Q)
Obtaining the spectral functions of the various envelopes arid noises
from Table I it is straightforward, although often tedious to
calculate E t ss(o)] for the examples treated here.

1. RECTANGULAR BURST OF BROAD BAND NOISE. Using formula (128),

E [ u)s 1 = sin2 CO T/2  dco' (129)

2 - C ()2 +uJ (to' T/2) 2

Now introducing the same parameters defined in the study of the
autocorrelation function for this case (equations (103)) and adding
another:

-w
=-&7, the argument as a fraction of the highest noise

frequency, a normalized and parametized version of equation (130)
can be written as

rq (r+l)

-s 2 fq(r-) (x d2

such that

f D [ (r) dr =1(132)

From the normalized expression, one obtains the spectral density
for a one radian band atvo= r02 by writing

2 ss W

N q(r+l)
=NOT sin2 7x dx

q(r-) (x)

A
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Now integrating equation (131), it emerges that (134)

E [,"Ds -- 1 1-r sin 27tqr sin 2irq-2 cos 2'qr cos 27ms J 2 7r q(r2.1)

+ L Si [2?rq(r+l)] -Si[2-rq(r-1)j

where Si is the sine integral function defined as
SiWx sin x dx (135)

(See reference (d))

Evidently, if the spectral width of the envelope is narrow com-pared to that of the original noise, the convolution of equation (128)
will just return an approximation to the latter. Such a condition
implies q very large (by reciprocal spreading arguments), and in
equation (134, the first term will become negligible in comparison
with the second. Since for large positive argument, Si(x) T/2,and for large negative argument, Si(x) - /2

E [s (r)] Si [2#q(r+l)] -Si [21rq(r-l)] (136)
1/2, -1 <5r _5+1

0, elsewhere

which checks with the intuitive solution.

2. EXPONENTIAL BURST OF BROAD BAND NOISF. Using formula (128),

Ef 's(J N°T 2 fCO2 dW2 W

E -- d ct " (137)2 T _V+ T2 +1
where T is the decay time constant. Normalizing and para,..tizing

as before,
q(r+l)

[ )] fq dx (138)E (r) f=d
s47(2 x2+1

q(r-1)

where r
22
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[Integrating,
ssEr) 2 T" 1 + 4'T2 q2 (r2_)J (139)

3. RECTANGULAR BURST OF NARROW BAND NOISE. The condition

integral can be written as

-No2 +++ au (140)

d2 - 1 + + !_ -

" s =2  snOj' T/2 T2 +2 (icot T/2  dw

-0oo +U)- AW ( 0 +W- W

Defining as before,
r 4 T 2 a' co.r

2 7r ' o

this can be written as

q(r-l+ z/2) q(r+l+ z/2)

E L(Vss (r)] = 1 -in dx + in 2 7r x dx (141)2zTfx) (7r X)2
q(r-1 -z/2) q(r+l- z/2)

in the parametized unit energy version. In this fo5.m,
C

fE[ [ss(r)] dr = 1, and the relationship between E ss( ) and

E[ss can be expressed as

E ss(W) = 2 NoTz E r

_ a E [(t a r (142)

At any Tate, integration yields
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8 r q[I- 1 1 Fx12
Z/4] [+)

j { 2 (xr-1)sin 27(g g(X-1) sin ?(qz + z Cos 21( q (r-1 )cos ?gz

4 [(~-)~ - z/4]

+ 2(2+l) sin -27wg(z,+l) sin Wqz + z cos 27f (k+fl. sz}
[(.r+1)2 -z2/4

It can be shonta £2 x~ largeS~1~ (+. /2

(Ds -2z1 z/2 :5 'r'5 + /(4)

2z '2

~ 0, elsewher~e

as it should.

4. EXPONENTIAL BURtST.OF NARRON BAND NOISE. Evidently,

NFT21 d___ _ N0 duS (145)1

27 /i2T 2 +l t 22
... L~~~b +1~COC

0 + c
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Proceeding as before,

q(r-+z/i
Er s (r)] 1 dx (146)

Z 47( x2  1 4 4r2x 2 +

I--z f1 : (r:'=2)q (r+'-z12)

such that

E[s(t)j= 'ov E{s (X= No Tz E [ss(r (147)

Integration of equation (146) yields

tan-1  2Y qz 2 1
21rz 1 + 4 f 2 q2[(T_1)2 _z2

(148)
+ tan-1  __ _ __ _ __ _ __ _ __ _

s l + 47r 2 q2 (r+i)2 z2

The resulting expressions for E[css(cO)J in all cases emet-qeso complicated that in truth they are of but limited value. It isprobably best just to keep in mind-,tfn relatively simple graphicalinterpretation of the convolution operation to provide the requiredinsight into the resulting spectra.

This concludes our consideration of illustrative examples.

IS5
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Chapter VI

The foregoing discussions have attempted - 3-7,mulate a means
for obtaining statistical descriptions of the 'prop='.z.-_ of a class
of 'andom transients perhaps well described as "noise bursts'0 . In
so doing, it has been necessary to thread a careful course between
the methodology that applies to deterministic transients on the obne
hand and that intended for continuing stochastic processes on the
other. Attention has been restricted to the time average auto-
correlation function and the energy density spectrum for given values
of time displacement and radian frequency, respectively.

Given a random transient drawn from the ensemble of all such
signals available from the generating mechanism, it is possible, at
least formally, to compute the time average autocorrelation function
by the familiar process of displacement, multiplication, ind integra-
tlon. It is similarly possible to calculate the energy spectral
density of the sample function by either Fourier transformation :of
the measured autocorrelation function- or by a Fourier integral treat-
ment of the function itself. Now since each of the transient sample
functions is different, it is hardly surprising to find that each of
the measured autocorrelations and spectra will be different also.
This implies that these latter functions are, for every value of
their arguments, random variables, in the sense that we lack exact
a priori knowledge Qf their values and therefore cannot predict th:.
autocorrelation funcfitn and spectrum of each individual transient
with exactitude. Thus, the autocorrelation function and spectrum of
a random transient must be described by probability distributions
parametized, in a sense, by the arguments of the functions. This
investigation has not "ttempted the derivation of the form of these
distributions at each point, but has been restricted to a calculation
of the means and variances of the spectra and autocorrelations as
functions of the arguments.

If the random transients treated here are modeled as the product
of an envelope waveform and a continuing random process, the calcula-
tion of the means and variances described above is straightforward.
In the case of the resultant autocorrelation function, the mean value
at every point is found to be the product of the autocorrelation
functions for the envelope and the original noise process. This
result agrees with intuition and is similar to that found in seeking
the autocorrelation function of the product of two independent random
processes. The variance of the resultant autocorrelation function
can similarly be expressed in terms of the autocorrelation functions

5
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of the original signals, but admits no ready intuitive explanation.
The most important characteristics of the variance, however, re
first that it achieves its maximum value at the origin (where the
mean corresponds to the total average energy), and second that as
the suitably defined "duration" of the transient increases with
respect to a typical noise period, the standard deviation becomes a
smaller and smaller percentage of the mean. This merely reflects the
fact that as the transient lengthens, the signal looks more and more
like a continuing random process, for which the autocorrelation
function every point is well defined.

Turning to the mean value of the spedtrjim at a point, a satisfy-
ing and intuitive rerulot is found. Since' the random transient is
formed by the multiplication of twd signals, in the time domain, one
might expect the resuIting energy density spectrum to emerge as the
convolution of the two corresponding spectra in the frequency domain.
When speaking of the mean value at each point, this is found to be
the case, The variance cf tl-e spectrum has also been treated and
expressed in terms of the parameters of the original signals. In
contrast to the autocorrelatioh standard' deviation, that of the energy
density spectrum is always larger than the mean at a point, regardless
of the duration of the transient. Thus, the measured spectrum does
not converge in the mean to the value predicted by the convolution as
the transient lengthens, and it appears that, at least on the basis
of a pointwise comparison, a large spread of measured spectra will
always 'be observed. This result, as was pointed out previously, is
the major <defect of so-called periodogram analysis, which can be
treated as a special case of the. problem faced here.

It has been stressed throughout this report that the results
derived apply only at specified points on the autocorrelation and
spectral functions wEn knowlede is assumed about the behavior of'
the function at other points. In other words, the means and variances
derived here stem from unconditional probability distributions for
every argument value, in which the behavior at a point is treated in
isolation. For this re,'son, it is risky to attempt to extend the
present findings to describe the extent to which the empirical auto-
correlations and spectra _U a w are predicted by the calculated
mean values. One could envisage, for example, a sample functi6n that
yielded an empirical autocorrelation function quite similar in form
to the expected value but having one or two pathological points of
substantial disagreement. The examination of this sort of effect
requires the study of conditional distributions of the autocorrelation
functions and spectra, or alternatively, the determination of the
Joint density functions of their values at two or more arguments.

lt This has not been done here and remains a large and interesting area
for future investigation, At present, we must limit ourselves to the
consideration of single points and resist the temptation to extend
the poihtwise conclusions to the autocorrelations and spectra in theirentirety"

The problem of power spectral estimation from empirical records is
an area that resembles, in many ways, the study of random transients.
~57
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In both fields one must work with finite length segments of random
processes whose good, behavior arises primarily from their extending
in time from -oo to +oa and this leads to computational difficult-
les., A good many of the techniques of power spectrum measurement can
probably be applied to the present st dy. Blackman and Tukey (refer-
ence (f)), for instance, study the problem of joint estimation~of
neighboring points on an empirical power spectrum and derive express-
ions for smoothed spectral density estimates which abandon the concept
of point estimation in favor of band-wise calculat-ions which display
a higher statistical reliability. This appears to be a particularly
fruitful approach for the class of problems treated here and may lead
to more meaningful prediction of the spectrum and autocorrelation of
a sample noise burst.

A- closely related area is the derivation of a linear system theory
for signals of this type. In effect, this would indicate the results
to be ex-)ected when random transients are subjected to filtering and
other linear operations. It would relate directly to practical
problems of -measurement, detection, and interference elimination, and
may even lead to-, the development of optimum linear filters in the
Wiener sense. These are only a few of the new directions that can be
followed in further work on noise-burst-like waveforms.

Despite the limitations set forth above, the present theory has
several interesting implicati6ns for the processing and measurement
of random transient signals. It indicates to some extent, for example,
the degree of reliability that can be'assumed in basing- a measurement
program upon a given number of sample functions. The average auto-
correlation function for a given displacement or the average spectral
density for a given value of w can be found by averaging -a sufficiently
larg, number of empirical calculations. The variance of these averages
can in turn be estimated by turning to the theory set out here.
Evidently, the long6r the transient, the fewer the sample functions
required to give reasonably good knowledge of the average 'autocorrela-
tion at a point. This consideration does not, however, apply to the
estimation of the energy spectrum- in the form defined here.

More important, though,is the illumination shed on the problem
of formulating signal processing systems intended for use with non-
stationary backgrounds or in situations, such as explosive echo
ranging, where the waveform to be detected is itself a random trans-
ient. We have seen, that under certain conditions of envelope duration
and noise characteristic that it is possible for the spectra and
autocorrelations of the individual transients to be rather different
at the same value of an argument, even though the expectations are
the same from sample to sample. This implies immediately that it may
not be advisable to tailor the characteristics of a monopulse process-
ing system too closely to the mean values of autocorrelation and
spectrum. A filter painstakingly devised to reproduce or complement
the mean spectral density may well do serious violence to the
individual transients just because they very well may have spectra
which differ significantly from the mean. The same" considerations
apply to correlation processing. It is hoped that the present theory
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contributes at least some understanding of this problem and aids in
quantifying the latitude that must be allowed for accommodating pulse
to pulse differences. Admittedly, a rigorous treatment of this
question must await the extensions described above, particularly the
derivation of joint and conditional probabilities and a suitable
linear system theory. These first considerations, though, should at
least alert the researcher to the existence ,of 'the problems involved.

* It is especially hoped that more care will be taken in the measure-
ment and description of such, phenomena as sonar reyerberation in
connection with the study of monopulse detection ,systems.. There is

j little evidence that these areas have been approached in the past
with the rigor they deserve.

EDWARD C. WHITMAN
Magnet ics and Electrical Division
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APPENDIX A

ON BOUNDING THE INTEGRAL fcpp(u,O) Vn(u+r) '0nn(u-?)du

Since the Integrand is an even function, we can consider the
infinite integral

/(u,') nn(UA-r) 'Pnn(U-)du A-I
-000

and write it as follows:

-00il( ) - p~uo? nn(U+?') ffp (uo'; "rn(U-r)du A-2

Now using the Schwarz inequality as in rekerence (e)

pp(Uo1 IP 2(u+r) du (UO) p (u-ldu A-3

Since (f (u,o) is a real even function, the factors on the iight are'
equal an positive. Therefore,

f00

$il(? °) j pp(U,O) 'Cu-4)duA-

Consider now the integral on the right of A-4 and denote it i2(r).
Thus,

'00

l1 2 UT
Since 'IW(x) is a real even function, 'r2(u-T) : ?k(r-u) and
therefore

A-1

-'4.. .
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i 2 ('r) * j ~(u*,0) 2 ((r-u)du : epp(U,0) y Vy2(u) A-6

where 0 denotes the operation of convolution. Now, let us enter
the frequency do-main where the transforms of i 2 (-), qpp (uo), and
yn(U) are rospectively I2(w), P(w), and Q(w)o In reference (a)

itn-s pointed out that the Fourier transform of a realizable auto-
correlation function must always be positive. Thus P(w) is always
positive, and since Q(w) is the transform of the square of a real-
izable autocorrelation function, it must be the convolution of a
-positive transform with itself. Thus Q(w) is also everywhere greater
than.mero. Writing (A-6) in the transform domain yields

12(o) -" P(&)) Q() A-7

and re-transforming to the time domain gives
00

~i2(, )  ./p(w) Q(w)e1 j d A-8

Now

i2 (q) P')IIQ A-9

b ut since by A-6, i2 (T) must always be positive and since P(w) and
;+ Q() are greater than zero, this becomes

,2(T) <_ P(5) "(.)dc. i2 (0) A-10

By A-5,

i l (r) < i 2 (r) _< i 2 (0) A-1l

and f inal-ly

00"

A-2

,it

i
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when 0 (pp ,O ) is always positive. Under this restriction, it has

been sho,,n that the maximum of the integral of interest occurs when
.0.

A

C

A-3
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A.PPENDIX B

AN ALTERNATIVE APPROACH TO 'THE NOISE BURST SPECTRA USING THE

WIEIER-KHINTCHINE RELATION

As -applied to transient signals, the Wiener-Khintchine relation
states that the autocorrelation function of a signal (as defit.a:d in
equationi (4), of the ma.in body) and its energy spectrum constitute a
FourJ,'r trans!torm pair:

~Y fe w)J'dd B-la

ss( e_ Wl 'T -

Thus, it appears that one can compute the energy density spectrim
from,'the second of thesi equations. From our previous considerations,
however, we know that (Dss(w): is a random variable for all w and
that we thus must 'be content with, computing means and variances.

cbsE~,deJrdir B-2

By equation '(23)of ,the main body,

and thus

precisel'y the same expression found in the main body from the Fourieir
integral approach (equation (64)).

B-I
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Turning now to a calculation of the variance of (Z'S(LO) fr!M
this standpoint, we must first compute the mean square value -of the

* spectrum for each co

2 Ff,-

: -j ~ ~%jj (i) (r) e j ('td dcr

-0O -00

~L~s~w] E [SS&( 4esde dr da c3-
-00-0

iNow by definition,

(Pss(=1 f:sT 'te t r ~ ntr t e(x) e(x+0)n(x) n(x+u) dx

fx B-6

000

=*1 'ffcx~(tr)e(x+(rt)(x ~nt)n(x)n(t+rrn ~ ~ n~d x c13-6

~CID(00]

o B-7

and combining (B-5) and (1B-7), there emerges that

JE _Ij9,-ffff(t)e(x)e(t+)e(:k+-i EB(t)n(x)n(t+?r)n(x+6])

e-jwv dt dx d?- do- B3-8

H B-2
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Now with the substitution of variables u . t +T , v . x +0',

'E S 2 ( "J-hTffff e ot)e o~(u~e v) EFn(t)n(x)n(ul)n(v,)]

e-jO (ut+Vx)dt dx d;A dv B-9

:1

which is equivalent to the integral

E[4f2//f e(t)e(x)e(u)e(v) E n(t)n(x)n(u)n(v)
*a@@

e-iJa(t-x+u-v) dt dx du dv B-10

This ,expression is identical with ,that found as equation (03) in
approaching the variance from Fourier integral considerations. If
both the mean and mean square are identical for the two methodsi the
-variance must be also and hence it appears that the Wiener-1hintchine,
relation is directly applicable to the expectations of the statistical
quantities associated with random transients.

-B4,
It o
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