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Let S be an arbitrary set, and E a field of 

subsets of S,,   Let v be a bounded real function 

defined on E with non-negative values, such that 

v(«) = 0 and v(S) > 0.  We shall call the triple 

[S,E,v] a game;  S is the set of players,     T,    the set of 

coalitions and v is the payoff  function.  An outcome 

of the game is a bounded additive real function X defined 

on E,  for which \(S) = viS)0       If an outcome X fulfils 

X(A) 2 v(A) for each A 6 E,  it belongs, by definition, 

to the core of the game«  For A € E,  let x.  be the 

characteristic function of A,  i„eo  XA(S) = 1  if s € A 

and xA(
s) =0 if s 6 S \ A, for all £ € S0  A game 

is balanced if 

supEiaiv(Ai) « v(S) , 

when the sup is taken over all finite sequences of a. and 

A., where the a.  are non-negative numbers, the A.  are 

in E, and ^a^ * Xs g XS» 
i 

♦ ♦ 

♦ ♦♦ 

E fulfils:  (a) * € E.   (b) A € E -» S \ A € E» 

(c) A 6 E, B € E »• A U B € E. 

v is often called the "characteristic function" of 
the game.  We refrain from that terminology because 
the same term is used with a different meaning in this 
paper. 

It is easy to verify that this sup does not change 

even if it is constrained by E.a.x» = Xa (instead of 
1 1 A-     Jj 

the inequality); also, for balanced games, the sup 

equals v(S)(, 
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This concept ia due to LoS„ Shapley [2], who proved 

that a finite game (S is finite) has a non-empty core if 

and only if it is balanced»  In this paper we extend this 

result to an arbitrary set S, 

Uo Liberman [3] dealt with the case when (S,E,ii)  is 

a finite, separable, non-atomic measure space (|i is a 

measure)o  He required, in addition to the balancedness 

condition, that the payoff function v be continuous on 

(E,p) where p is the metric induced on E by iXo       Then, 

using Shapley's theorem for the finite case, he proved the 

existence of a measure in the core, absolutely continuous 

w.rot. |io  We prove such a result with weaker assumptions. 

The author wishes to thank Professor R0J, Aumann and 

Dr. B, Peleg for some helpful conversations» 

The Main theorem  A game has a non-empty core iff 

it is balanced,, 

Proof  We shall show that a balanced game has a 

non-empty core,,  The other side of the implication is easily 

verified» 

Let X denote the linear space of all finite real 

combinations of characteristic functions of sets in E» 

(The completion of X in the sup metric is denoted in 

Dunford and Schwartz [1] by B(S,E)J  For non-negative 

vectors x in X,  (ioS» x(s) » 0 for s 6 S) we define: 

p(x) = supE.a,v(A.) 

,   ,.,. . ■... ^.■>^.».-:^J !^.^^ ^^^— .^-   
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where the sup is taken over all finite sequences of a. 

and A., where the a.  are non-negative real numbers, the 

Ai are in E, and ^j^a^ « \So 

Let X+ denote the positive cone of X,  i.e., 

X+ = {x € X | x » 0) . 

*•♦♦ 
Then p is a super-additive positive-homogeneous 

functional on X ,  We shall prove the existence of a linear 

functional P on X for which F(x) » p(x)  when x € X+9 

and FCXQ) = v(s)o  Naturally, the set function induced by 

P on E is in the core of the game»  The idea behind the 

proof is closely related to the Hahn-Banach theorem»  (See, 

for instance, [I])» 

Let Y be a subspace of X containing Xc» and let 

Y+ = Y n X+o  Assume that a linear functional P is defined 

on Y    for which P(x) a p(x) when x € Y+,  and 

p(Xs) = viS)a      If Y ^ X,     there is a set A in E such 

that xA ^ Yo       Define Z = span{Y U {XA}K  Every vector 

in Z has a unique representation in the form y + ax* with 

y 6 Y„  Por any real c the function G defined on Z by 

the equation G(y + ax*) = P(y) + ac is a proper extension 

of Po  It remains to show that c may be chosen so that 

G(y + aX^) * p(y + aXA^ when y + ax* * 0.,  Because of the 

positive-homogeneity of p,  it is sufficient to prove the 

**** A functional p is called super-additive if 

p(x+y) * p(x) + p(y)0  It is called positive- 

homogeneous if ap(x) = p(ax) when a a Oo 

■-  --■ ■- ■■ ■■ --■   ■ - -—•  — ■— —;—J^^__J_____ 
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existence of c, such that for any y,z in Y, y + XA * 0 

and z - xA » 0 imply F(y) + c ^ p(y + xA) and 

P(z) - c a p(z - xA)0  The last two inequalities are equivalent 

to 

P(z) - p(z - xA) » c a p(y + xA) - F(y).. 

So it is sufficient to prove: 

F(z) - p(z - xA) a» p(y + XA) - F(y) 

or, 

P(z) + P(y) » p(z - xA) + P(y + XA) » 

But y + xA * 0 and z; ~ XA ^ 0 imply y + z € y+,  so 

p(z - VA) + p(y + XA) ^ p(z + y) ^ P(z + y) = P(z) + P(y) 

and the  desired inequality is proved,,       The proof  is  completed 

by a standard use of  Zorn's lemma.       Q.EoD0 

Next we  deal with the problem of existence of a a-additive 

outcome  in the core,  assuming that    £    is a a-field0 

A necessary and sufficient  condition for an additive set 

function    X     to  be o-additive  is that    X(A.) ■• X(S)     for any 

)tone  increasing sequence    (A.}._^     in    E    with    Ui_1 A. =   S , mono" 

If for every such sequence v(A. ) -• v(S) and X  is in the core, 

i.e» X(A) * v(A) A € T, we can easily conclude the desired 

condition X(A. ) -• v(S) = \(S)„  So we have proved: 

^^^ ^A-.-t^iTtii'i.ni 1ifc->rir- -'-" 
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Lemma A  If v(A. ) -• v(3) for any monotone increasing 

sequence {A.}. .,  in E,  the union of which is 3,  then 

every outcome in the core is 0-additiveo 

Indeed we know a little bit morec If X belongs to 

the core, then X(A) » p(A), A € T and we get a somewhat 

stronger result: 

Lemma B  If p(A. ) -• p(3) for any monotone increasing 

sequence {Ai}._1  in Z,  the union of whicn is 3,  then 

every outcome in the core is a-additive« 

Of course the second condition is not necessary for the 
<r 

existence of a jSf'-additive outcome in the core„  Por example 

let: 

v(A) = 

A = S 

0  otherwise .. 

So two open questions may be asked:  Is the condition 

of lemma B necessary that every outcome in the core should be 

c-additive?  and what is a necessary and sufficient condition 

for tne existence of a o-aaditive outcome in the core9 

(Assuming the core is non-empty)„ 

The treatment of another problem was found to be more 

successful.  Assume a game [S,Etv] and an additive function 

M  on E„  What is the "continuity" condition on v with 

respect to ti,  such that every outcome in the core will be 

''continuous" with respect to ii? 



-6- 

If v(S \ A) = v(S) then for each \ in the core 

X(A) = 0;  otherwise 

v(S) = v(S \ A) • X(S \ A) = \(S) - X(A) < \(S) = v(S) , 

a contradiction.      On the other hand,  if    X     is  in the core 

and    X(A)  = 0,     then    v(A)  = 0.       We can state  this result as 

follows: 

Lemma C       (i)     If    v(3 \ A)  = v(S)    for every    u-null 

set    A,     then any outcome  in the core vanishes on the    u-null 

sets. 

(ii)    If an outcome in the core vanishes on 

li-null  sets,   then    v    does  the  same. 

Another similar simple result is given  below: 

Lemma D      If    v    fulfils  the conditions of lemma B 

and lemma C  (i),  then any outcome in the core  is absolutely 

continuous w0r„t,    |i. 
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