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PROBLEM
Inivstiae thfereticelly the dynamic charactewistics of underwater

bodies towed at speeds of 6bout 45 knots. Specifically:
1. Deiise a gceneral procedmr for designing to%,ved undkrwr bodies of
ojptimum dynamic pedcxmance.
2. Present a practical design fulfilling the design requirements.
3. Design system for autox-natic cotitrol of both longitudinal and IWeral
motion.

RESULTS
L* Gene-ral guidelines for the design of an underwater towed body %v.re derived
from an xialysis of the pertinent hydrodynamics.
Z A practical tow body war, designed. For a speed of 45 knots, the max.imum
diameter is 30 inches and the main-body length/diameei ratio is 2.7.
3. The cable tie-point location has a great influence on ti-s body's stability.
and it should be forward and above the body's center of gravity.
4. The hydrodynamic coefficients can he predetermined by means of a mnathe-
matical model which can he checked on analog or digital computers.
5. Important parameters determining the dominant characteristic equation
roots for longitudinal and lateral motion are the cable tension and the damping
coefficients.
6. Tow bodies can be easily designed to have longitudinal and lateral dynam-
ic stability.

7. Automatic control systems are desirable, and proposed systemas are
described herein. An automatic longitudinal system can hold the tow body at a
commanded depth and improve the stability and damping. An automatic lateral
system- can improve the stabiiity and damping, coordinate the rudder and ailerons.
and provide a yaw-rate directional control.
8. The attainable depth and required horsepower depend primarily on the
towing cable and on the body drag. Small-cross-section, laminar-type streamlined
cables are required to achieve low drag and to prevent cavitation.

RECOMMENDATIONS
I. Consider the use of the body designated Body A"l in this report, as a
practical tow body,
2. Use the design procedure outlined herein to design additional tow bodies.
3. Consider incorporation of the automatic control systems proposed in this
report in tow body designs, and consider development of the necessay hardware.
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INTRODUCTION
This report covers a study made to originate (1) a general design procedure

for towed underwater bodies. and (2) a pra-ctical body and cable design. Thbe

body and cable should be such as to enable a high-speed surface craft to drag
a specifed load at a specified depth. If a sufficiently large horsepower were
available at t~h surface crafl, the load could be towed at the specified depth and
speed by any stabie cable of adequate length. In actual pratice, it becomes
necessary to optimize the cable and body design so that (1) the power require-
ments are minimum, (2) the o, -tem is stable so that the body stays down at the
prescribed depth, and (31 the transient characteristics are satisfactory.The cable design has to be closely related to the towed-body design. The

cable influences the body dynamics, changing the motion modes from those of a
self-propelled body; and the dynamics are also significantly dependent on the
location at which the cable is attached to the body. Cable requirements are
statistical and dynamic stability, minimum drag, no cavitation effects, low
vibration, and low transmission of random energy such as noise.

The dynamics of the body control its stability and transient characteris-
tics. The dynamics can be treated by application of Newton's second law of
motion, since the acceleration of the body is resisted by hydrodynamie forces,
body weight, buoyancy, and cable tension. The hydrodynamic forces can be
defined in terms of hydrodynamic coefficients that depend on the shape and
proportions of the body. These coefficients can be approximated for a given
body, and thus be used to form the basis of a design procedure. The
coefficients and the effect of varying them are examined in detail in this
report.

One of the most critical design requirements is minimum drag. The ratio
of the depression-force-needed-to-hold-the-body-down to the drag has to be made
larger as the depth increases and as the towing horsepower decreases.

The maneuverability of the surface ship with its towed load probably is
determined principally by the ship's characteristics. In this report we examine
the desirability of automatic controls, and propose both longitudinal and lateral
control systems. The longitudinal system tends to hold the towed body at
commanded depths. The lateral system coordinates the rudder and ailerons and
controls the yaw-rate orientation. These systems improve the stability and
damping of the towed body.

Structural vibrations of the cable and body are mainly randomly excited.
One major source of vibration is the turbulent boundary-layer energy around
the body produced by its high-speed motion through the water. An elastic
cable, and a compliant surface on the body, can act as filters and attenuate this
random energy.

DYNAMICS ANALYSIS
The dynamical properties of the tow body can be explained byV the six

equations of motion that express Nepon'9 second law. Three of these equations



equate applied force to the rate of change of linear monentum with time in the
thee space directions. The other three equations equate applied moment to the
rate of change of angular momentun with time in the Le space directions.
Although these equations apply to a body moving with respect to fixed inertial
coordinates, the mathematical solutions can be simplified by a transformation to
a system of moving coordinates that are instantaneously related to the body. In
such a system, the monents of inertia become independent of time. The relation-
ship between time derivatives referred to fixed inertial axes and those referred to
moving axes is given by the equation

dV dV

dtfixed - dtmving +CXVrotatior

where V is a linear velocity
ca is an angular velocity

The moving axes consist of the Cartesian body axes instantaneously fixed in
space according to instantaneous body position. The derivative term is position-
fixed, and then the rotation term is orientation-fixed. The time derivative of the
body velocity referred to the moving ayes appears as two terms, one accounting
for translation and the other for rotation. The equations of motion when written
in the Eulerian moving-coordinate form are given by the matrix equations

fFlIS m + COXV

lf* {M}j + (A)XH

where F is the applied force column matrix
M is the applied moment column matrix
H is the moment-of-momentum matrix, ho
I is the moment-of-inertia matrix
to is the angular velocity of the body

Six Eulerian coordinate transformations relate the space orientation of the
moving-body set of axes to the orientation of the fixed inertial set of axes,
through three angular rotations. For our purpose, the standard aircraft transfor-
mations of yawing, pitching, and rolling have been chosen (fig. 1). These
transformations are given by the equation

f c~ os ecos T' cos 0sin T -sin eO
Yl= sin (P sin0 cos Ti sin insin si Pcos • y'• -cos T sin + Co8 T Cos

z Icos p sin 0 cos If cos psin 0 sin ' cot; Tcos.e z,
-+sin q sin T -sin (Pcos T'

(Body) (inertiail)

6



LINE
.,y OFNDES

x,y,z'INERTIAL SET
Z P x, y, z MOVING-BODY SET

FIRST. POSITIVE ROTATION ABOUT z 'FOR y ANGLE
NEXT, POSITIVE ROTATION ABOUT LINE OF NODES FOR 0 ANGLE
FINALLY, POSITIVE ROTATION ABOUT x FOR p ANGLE

Figure 1. Coordinate transformation from inertial Cartesian set to moving-body Cartesian set.

where x, y, z are the moving-body set of coordinates
x',y',z' are the inertial set of coordinates

T is the Eulerian angle through which the inertial set is yawed
0 is the Eulerian angle of pitch following yawing
9 is the Eulerian angle of roll following pitching

The vector angular velocity of the moving body is the sum of the Eulerian
angular velocities. The yaw rate has components referred to the moving axes

x, y, and z equal to -P sin 0, P1 cos 0 sin q and T cos 0 cos ip, respectively.
The pitch rate has components referred to the y and z axes and equal to 0 cos q
and -0 sin qp, respectively. The roll rate occurs about the moving x-axis and
has only an x compnent, Thus, the vector angular velocity w has x, y, and z
components designated p, q, and r, which are, respectively:

p = - +? sin 0

q = cos + + cos e sin q

r = cos e cos q- 0 sin p

The geometry of a moving submerged body can be described by the use of
the two sets of Cartesian axes. The inertial set is chosen so that the x- and
z-axes are horizontal and the positive z-axis points downward. The moving-body
set is chosen so that the positive x-axis points longitudinally toward the nose,
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the positive y-axis to the right-hand side in the direction of motion, and the
positive z-axis downward as in a right-handed set of Cartesian axes (fig. D.

The six equations of motion can be separated into two sets of three
equations each, one set defining the longitudinal motion and the other the
lateral motion. Longitudinal motion consists of motion in the x-z plane and
pitching about the y-axis without coupling energy into side motion, yawing
motion, or rolling motion. Longitudinal motion is defimed by the force equations
in F, and Fz, and the moment equation about the y-axis in Af. The yaw and roll
rates, and the side-slip velocity, are assumed to be zero. The lateral motion
is defined by the side-force equation in F., and the yawing and rolling moment
equations in N and L. The pitching moment about the y-axis is assumed to be
zero. The longitudinal and lateral sets of equations are:

Longitudinal

AFX =m(; + wq'

MF z  W & - Uoq)

TAM 1y9 = lyy*O

where 'AF, is the sum of the differential forces from the equilibrium condition
in the x-axis direction

IAF Z is the sum of the differential forces from the equilibrium condition
in the z-axis direction

m is the body mass
lyy is the body moment of inertia about the y-y axis
u is the velocity change from the equilibrium condition in the

x-axis direction
Up is the velocity change from the equilibrium condition in the

z-axis direction
U0  is the equilibrium velocity in the x-axis direction
q is the angular velocity change from the equilibrium condition

about the y-axis of the body,
XAM is the total differential of moments about the y-y axis

Lateral

2AF y = m(t + Uor)

IAL =1 blX-rx
Z.AN = F*I2 - dxz

where 2AF is the total differential of side forces from the equilibrium
condition

XAL is the total differential of rolling moments from the equilibrium
condition

XeaN is the total differential of yawing moments from the equilibrium
condition

8. . . . . . . . . . . . . . . . . . . .
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p is the roiling angular-velocity change from equilibrium
r is the yawing angularvelocity change from equilibrium

Izz is the moment of inertia about the x-x body axisl is the moment of inertia about the z-z body axis :

Jxz is the product of inertia about the x and z body axes

The above equations have been written for small perturbations from the equilib-
rium condition of straight-line, constant-speed, level motion. The total
differential of the forces and moments from the equilibrium condition balances
the change in momenta from their steady-state condition (following the treatment
used by Bryan find Williams in their 1904 aircraft stability analysis). The steady-
state terms which balance one another across the sides of the equations have
been eliminated.

Figure 2 shows the geometry of a cable-towed underwater body in longi-
tudinal motion in the x-z plane. The cable tow point is above and ahead of the

CABLE

NITIATIE POINT

ao aC. G. q=6

a0

FINAL

LIFT CHORD INITIAL y -a'

a =a00+ a

0 IS CHANGE IN BODY ATTITUDE ANGLE IV- a
6e IS INITIAL CABLE ANGLE
0 o IS INITIAL ANGLE OF ATTACK

Figure 2. Motion in the x-z longitudinal plane

9



'-o Ili ._r'

L ~ ~ 'y' cetro aity. 7%e equilibrium coaditica is taken to be hoizontal
moio. 1U. body's ceter ot ravity md cente of 'oyicy are asmmed to be
at the same point. T!eI udinal equations of mation wrten in terms of the
*,|i mj force and moment differentials about the body's center of mrity
becom for the x compoent

- - + "w + L- w + a Fx, = roi - U-V)

aF at

where - u is the force differential with forwad velocityau "

"- ,a is the other applied force due to the cable and the controls

w is the frce differential with z-axis velocity
aw

In the equation above, the total differential is the sum of force differen-
tials due to forward and dowaward velocities, force differentials due to attitude
angle and angular velocity, and force differentials due to the cable and towbody
control surface. Each term is in units of force. Th terms are divided by a
quantity with the dimensions of a force to make each term nondimensional. All
the independent variables of the equation themselves aredivided by a quantity
of the same dimensions as those of the variable, and the derivative multiplier
of the variable is multiplied by the same quantity. Thus, the equation can be
expessed with nondimensional independent variables multiplied by nondimen-
sional derivative multipliers:

dF 2'JUI 6 . I c I clF.
+ -+- -__8$ u? U Sq dw U ST 8A, c U 2U Sq a0

Sq ca 2 U +  = Sq

where L is the change in angle of attack 'a
U

is the nondimensional forward velocityU

S is the litt surface area

is the dynamic pressure defined by 1/2 pU2. p being the fluid mass
per unit volume and U the forward velocity (the dimension of dynamic
pressure is force per unit area)

c is a representative length, the lift surface chord

U is the disturbed forward velocity: the sum of the equilibrium velocity
U0. and the velocity variation u

10



The, iondiaenioialA iaependet variables cm be written~ in a condensed fcwu

U U

HYDRODYNAMIC CO[FFICIENTS
The nondimensional derivative mltiliers are kniown~ as stiility deriva-

tives or hydrodynaic caefficierits Mor tmderwater bodies. They are written with
a capital C. subscripts idicating the paticular equation of motion and the
paticular independent variable. Thiese coefficients we neauly constant over
wide ranges of speeds. Their values depend on the lengths and areas used in
defining them. Sometimes. the maximum cross-sectional area i's used, but
lengths.raised to pows are usually employed with under-ater bodies. The
wafer mass density does not always featmr in the definition. Here, the aircraft
definition with lifting surface area and chord is adopted, because of the many
experimental data available for airplanes. Coefficients for air and wiater agree

in value. when derined by the same terms. T1he hydrodynamic coefficients iArI the x equation of lopgitudinal motion we as foillows:

I~S a1 ~ju xaS~ aw
20 82JF. I 2U OF

CX& Cxq =~ c 8

Hydrodynamnic coefficients can be ignored if they represent small differen-
tial force components that oppose the change in momentum. The 'ydrodynaznic
coefficient for the x component forward-velocity-derivative variations is small
for streamlined bodies with a large enough length-to-diameter ratio. This
coefficient is called the virtual mass effect and represents force due to the
chanige in momentum of the displaced water mass.

The hydrodynanmic coefficients can be estimated with reasonable
accuracy, and they can be used as the basis of the design of an underwater
towed body. Here, the nondirnensional coefficients are given per radlian angle.
also a nondimensional quantity. The longitudinal coefficients whose magnitudes
are large enough to affect the c ynaniics significantly are listed in table 1, along
with their definitions, simplified formulas for evaluating them, and typical
numerical values for .tircraft:



4,TABLE 1. LMMiQL!DNAL $YD4RODYNASHC OF1hiS
(Cosfmed on pap 13)

Coffcier Definitioa Fxmmla Aircraft[~ -rpica, Value

- - -2 1 - -0.05
ZU sq au

-r CL -~ 0.1

1z BF2 CL -40
Sq C ual

1 8F aP
____Sq cb Ba a~cS

C 2 E - -- I 2X-m2!!C-L-L. -1.0Sq cB Bala a C cS q

ma SqC a 0f

~ I dl W,)' CL f1 tS qt de .
sq C ; aada Baa c S q

I 2UBM dt e1lx

Ca Sq d

-2 - -B -0.0

CM M aCm dOIe 1 ~q o .

me SqcBS du BS, qc Sd8

-1-2 all - C 0.
28 e q O 7- 2 m I
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TABLE 1. (Continued)

Symbols are as follows:

S is the lift surface area
K is a numerical factor that compensates for the remainder of the body.

usually nearly equal to I
St is the horizontal tail area
f t is the distance between the body's center of gravity and the quarter-chord

of the tail area
at is the tail surface angle of attack

i is the downwash angle at the tail*
q is the dynamic pressure of free flow
a is a subscript indicating the control surface

*The downwash effect can be computed from the equation

d- 2dCL

where e is an efficiency factor -
AR is the lifting-surtacc aspect ratio

The lateral hydrodynamic coefficients whose magnitudes are large enough
to affect the dynamics significantly are listed in table 2, along with definitions,
approximate formulas, and typical numerical values for aircraft:

TABLE 2. LATERAL HYDRODYNAMIC COEFFICIENTS
(Continued on page 14)

Aircraft
Coefficient Definition Formula Typical Value

Ce I aL 2 r CLySr -005
____ _ Sqb 6 57.3 8a bS

I 2U aL
Ce, - - p function of AR and wing shape -0.5

I__ 1 2U aL CL w_ 0.05C"r Sqb b ar 4

1 aN Xoq S
C,,, Sq b o011 a t  q S b

I 2U aN &C"( a
CnP §qb b ap 8 a- 1 -0.01
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TABLE 2. (Continued)

- -Aircraft
-- Coefficient Definition Formula Typical Value

I 2 j ..2&L S. 2 .. J. -.
Sqb b 8r 4 S (b / _ _

I F c. qS,1' C S ii I I -0.5

C,8 , - 0.2

1 -0.!

8La C

Cr Sqb 6-tr  d5r

Cn a C n r -0.01
_ _ r _ _ _ _ _ _ _ _ _

C C-

iS Lqa 4 ~ 0.0,
r nr

I cL function of AR, aileron location, 0.6
a &b 86a  and chord ratio to wing chord

Cn I dNa -_C_" -0.015
Sqb c 8 C,

Symbols are as follows:

b is the lift surface span
r is the dihedral angle in degrees
y is the distance from body center along the wings to the center of pressure

of each wing

is the area of a wing with a dihedral angle
Sit is the area of the vertical tail surface
ftv is the moment arm from the vertical tail quarter-chord to the body's

center of gravity
CA, is the side force coefficient
q is an efficiency factor
Fya is the side force due to the control surfacesa is the yawing moment due to the control sufaces
La is the rolling moment due to the control surfaces

br  is the rudder deflection; positive rudder causes positive yawing
8a  is the aileron deflection; a positive aileron deflection causes a positive

rolling moment

Approximate equations for the lateral hydrodynamic coefficients can h,'
formed from the approximate formulas given in table 2 if the values of the nearly
constant quantities ar. taken as:

14
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On the basis of these values, the lateral hydrodynamic coefficients become
(approximately):

C = - CEp -0.5 (AR 5, elliptic) 4 =

C 7 .3t - 4LCnP = 2St --u !v CP Lw  Cnr= -4"-S\b

S b 6 b- 1"T

= 9 t
Cyp S8 = -0.Cy, C, -- 0.5 C

S CYr r n

= c L Cn C toabout0.6 C " = C "

LONGITUDINAL EQUATIONS OF MOTION
The longitudinal equations are defined by the force equations in F. and Fz,

and the moment equation about the y-axis in M. The force equations are:

2AF x = m(O + wq)

X.AP Z = m(& -Uoq)

For the towed underwater body, force differentials with the body attitude
angle arise because of body weight and buoyancy and because of the tow cable.
Figure 3 illustrates the resolution of the weight and the buoyancy forces in the
body axes. The center of gravity (c.g.) and the center of buoyancy are assumed
to be coincident. The x and z force components are then given by

PgX = -(mg - B)sin e

Fgz = (ag - B)cos 0

where mg is the body weight
B is the body buoyancy

The changes in these forces with attitude angle are given by the derivatives:

15



, Figure 3. Weight und buoyancy resolulion.

OF _ -(mg - B) Cos e

= -tMg - B sin 6

'" The tow cable produces differential forces in the x and z axes:

• t AFxTr = T cos oc  + To  sin O c0

r' AzT =-Tsin 0c + 0o c0

. ,~

; , where To is the undisturbed cable tension
"T is the differential cable tension

0c is the undisturbed cable angle

0 is the change in attitude angle
A differential moment is produced about the y-y axis due to the changes inattitude angle and cable tension:

AM! = -T cos OCdz + T sin Ocd~x - To sin OcdzO - To Cos Odx e

where dx is the distance the tie point is ahead of the body's c.g.

dz is the distance the tie point is above the c.g.
The Laplace transformations of the small perturbation equations of motion

can be written in terms of hydrodynamic coefficients that are the force and
moment derivatives of changes in angle of attack, changes in attitude angle,

,,- 16
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and changes in forward velocity. Their first-order time derivatives become for a

cable-towed underwater body with elevator control: r

x force equationI

('~-C u)+ jC.&oCx (>+ (Cos ) a+l CxqS- L i

= Cos c + eSq c S. q 0 e

z force equation

c -mU c 1
Su + --- js- TcsaO+

+lIV-B sin 0 - sinB0 + - e

C

y moment equation

-Cmu'U CmaS - C m  la + yyS2 CmqS + T sine dz +- cos 0c  0

1)_ - S 1 &-cs0

-T cos 0dz+Tsin0ecdx +Sq-e

fwdec s{caS

These complete longitudinal equations of motion can be simplified if the
variations with forward-velocity fluctuations are not significant, as may be the
case in constant-velocity towing. The motion can then be described by the
z force and the y moment equations, with 'a and 0 as the independent variables:

z force equation

(U C s-C 'a + Cz s- ' Tocosec + W-B sine ]

-T I
- sine + +- - 2 a

17
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t y moment equation

.. as - Cm\ a +SqS+ sin-C.dz 2. cosOcdx

qC nqss + TO si e c
\2U m2V Sqc Sqc c/

= (-TcosO dz+Tsinecdx c B 8e

LONGITUDINAL EQUATIONS FOR SPECIFIC TOWED BODIES

For this report, three specific underwater bodies were quantitaively
studied. A design parameter basic to all three bodies is a 30-inch maximum-
diameter cross section Below we detail the analysis of a body designated

-;. *o Body A (fig. 4),using both the complete longitudinal equations and the short
equations (for insignificant forward-velocity fluctuations). For the analysis,

-the body is assumed to be towed at 45 knots in a straight-line, level path. The
numerical parameters for Body A are:

., U =76ft/sec S =6ft2  n =60slugs

/yy = 400 slug-ft 2  To = 14,000 lb ft  = 6 ft

x, = 6.8 inches dz = 1.167 ft dx = 0.167 ft

St = 2 ft2  0c = 81.85 degrees -B = 500 lb

= 5776 lb/ft2

The hydrodynamic coefficients for longitudinal motion can be obtained
from the approximate formulas given in this report. Based on the body param-
eters, the coefficients become:

"XU -D = -0.12 Cma = 4- -1.5 s -0.7333• C C S

, 2

Cz, -CL-. 8  Cm -- 3 $ - 36.0

Cxa=C1 = -0.4 Cmq H S -72.0

C --a =-4.0 Cm8 =-1.5 t =3.
C -O- e cS

C
C It L 4.0CZ =- Crr -0.5
C S z8e F mt e

C., z -6 L -12.0
cS
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A. PLAN IVIEW

-12
WING 72 LIiONG 4

MAXIMUM DIAMETER 30K
LENGTH NOSE TO END BODY 81
TOTAL LENGTH 101

WING SECTIONS MODIFIED NACA FOUR DIGIT MAIN BODY DTNIB
M020-65 (LANDVE BER-GERTLER) FORMI5 INDICATES MAX IMUM AT 0.5 CHORD Xp0.5 m 

6INDICATES LEADING EDGE RADIUS 0.5 m .. 0.5 -~2.7

00 INDICATES SYMMETRY oRE
20 INDICATES THICKNESS 0.2 CHORD r- -r.501

d2- 0.4

Figure 4. Form of Bodies A, A', and A"' (dimensions in inches).
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and x' is the distance by which the lift-surface quarter-chord is ahead of
the c.g.

q, is the dynamic pressure at the tail
8 e is the angle of deflection of the elevator (taken positive for do%iward

deflections)

SMis the static margin (or the chord ratio) by which the c.g. is ahead of
the neutral point

Approximate design equations can be derived by using values near the
following for some of the quantities that do not vary greatly from design to design:

&E d a qt aCL  _
T -= 0.5 K =1.0, - = 0.5, -- =1.0, -- 3.0, =4.0
dde q taa

Based on the preceding approximations, the longitudinal hydrodynamic coeffi-
cients Z'ecome:

Czq = -6cF 'St Cza = -4 c tS C x = -2 CD

m ' \cIS C/ S

X1 fS a cL
Cma 4---1.5 C a-

c C S

c CS
CZ c C . -1 * -t- CZU =-2 CL
c, = -, iMC s

Thus, most of the longitudinal hydrodynamic coefficients are functions of
the moment arm from the quarter-chord of the horizontal tail area to the body's
center of, gravity and of the ratio of the size of the horizontal tail area to the
lifting-surface area. The magnitudes of the approximate coefficients agree fairly
well with measured values. The approximate design formulas are based on
assumed values such as 0.5 for the slope of the downwash angle with angle

• !of attack, dE ida. This value can be diminished by raising the tail.
Below are given the complete longitudinal equations of motion for Body A,

with numerical values of the coefficients inserted:

(0.13158s - 0.12) 'u + (0.4) 'a + (-0.29405)0

= 4.0830 x 10- 6 T

(-0.8) 'u + (0.17105s 1 4.000) 'a + (-0.05263 s-0.057162) e

=-2.8564x10 5 T -0.5 e
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4.4

(0) 'u+ (0.23684s + 0.73333)'a + (0.011542s 2 + 0.47368s + 0.36943)e

The solution of these equations of motion for the homogeneous case of no
right-hand applied terms gives transients of the same exponential form for all of
the independent variables 'a, u, and 0:

u = Aes i t + Be s2 + Ces3 + De84 '

where A, B, C, D are constants.
The quantities s1 , s2, s3, S4 are the roots of the characteristic equation,

which is the polynomial equation in s obtained from the determinant of tie
coefficients of the independent variables of the homogeneous simultaneous
equations. The value of the determinant is zero if the transient solution is to
exist. The roots of the characteristic equation must be negative or have negative
real parts for the transient solution to be stable. Stability can be indicated by
the Routh Hurwitz method without solving for the roots. Solution for the roots
directly indicates the stability of the solution. Graeffe's method is an accurate
and straightforward means of solving polynomial equations. It is based on raising
the polynomial to higher powers so that the roots separate.

The characteristic equation for the complete longitudinal equations of
motion for Body A is a quartic:

s4 + 71.649 s + 1096.8 s 2 + 2496.2 s + 1821.1 = 0

The roots of this equation obtained by Graeffe's method are a pair of negative
real roots and a pair of complex roots with negative real parts:

s1 =-51.14

s 2 = -17.96

S = -1.28 - .63

s 4 = -1 .28 + jO.63

The complex roots represent a damipd sinusoid. The complex pair can be
written as a quadratic equation in terms of the natural frequency, c.n, and the
damping ratio, :

82 + 2 con s + .on2 =0

For Body A, the natural frequency, wn, is 1.408 radians per second and the
damping ratio, ;, is 0.9055. The complex terms damp to half-amplitude in the
time

0.693
T= seconds
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The real rotransient terms represent pure exponentiars and damp to half-
amplitude in the following time:

0.693

root valueseod

The time to damp to half-magnitude for the complete longitudinal equations for
Body A is determined by the smallest of the two real root times 0.0136 and
0.038 second) and the complex root time (0.544 . - nd).

The short solution of the longitudinal equations ignores the u velocity
fluctuations and is determined by the z force equation as-d the y moment equation.
The characteristic equation is a cubic and becomes. for Body A.

s3 + 70.738 S2 + 1018. 12 s + 769.7:'I = 0

The roots of the cubic, obtained by Craeffe's method, are,

sl -- 51.18

s 2 = -18.82

s3 = -0.80

The transient solution is again stable but consists of three pure exponential
terms. The time to damp to half-amplitude for the three roots becomes 0.0135,
0.0368, and 0.866 second. The values of the first two are nearly those of the two
large ioots of the complete solution. These two are related to the short period
times of aircraft. The third root, resulting from the cable, is the dominant one
and determines the body damping. A study of the characteristic equation of the
short solution shows that the dominant or smallest root is approximately given by

TO sin Odz + -Lpcose dx
[Sqc Sov

S -
C

- Cmq

The dominant cable root can be increased (damping time reduced) by increasing
the cable tension (depression force). The cable tie point should be in the same
direcuon as the depression force-drag ratio of the body. The tow point should
be ahead and above the center of gravity of tne body. The pitch-damping hydro-
dynamic coefficient should not be too large. Increasing the tail length increases
the damping time of the dominant root.

For Body A, the time to damp to half-amplitude is larger with the short
solution than with the complete solution- Introducing the x equation of motion
makes a complex root of the dominant short-solution root. An approximate value
of the time to damp to half-amplitude can be obtained from
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This formula agrees with the short-solution approximation in that it shows Ote
desir ,bility or decreasing the pitch-damping hydrodynamic coefficient and
increasing the depression force in order to decrease the time to damp to half-
anplitude. The damping time is also decreased by increasing the drag and lift
coefficients of the body.

LAPLACE TRANSFORMS OF LONGITUDINAL EQUATIONS
The Laplace transform equations of motion under applied forces are

simultaneous linear algebraic equations that can be expressed in terns of the
independent variables by matrix inversion. They can be algebraically solved by
Cramer's rule:

[CIT

where {i} is the column matrix of the independent variables (u. 'a, 9)
[CIT is the transpose of the matrix of cofactors of the hydrodynamic

coefficients

Il is the determinant of the hydrodynamic coefficients

{f} is the column matrix of the applied forces

Transfer functions are the ratios between the independent variables and the
applied-force variables obtained from the simultaneous transform equations.
These s-plane variations of the independent variables 'u, ', and 0 with
changes in the elevator aigle and the cable tension are given for Body A by
the following equations:

-9.0676x 10- 2 [ +

. ,]s
+ + l s' + 1.286 s +

1,..+ 11r+ [5-W--T ][ --" + ],
I+I1.9, + 1 ."286 s +
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s1286s+ 1Js

[14+ ][7sW + ] .2P, s+ I

2 1.98 l
[71W 1[1796 M331[1 

2.5089 x 1O---+ll + 1
1.3.i6 + +.4

. + I > + + 1.286s+

s
5.738 I-4.3 -9I

+ 44 .3 2.6 J
-+ -_+1 -+I.286s+

Ll 114 + I 1596 i3
In the transfer functions above, the tension change T is in pounds, thevelocity fluctuation u is nondimensional, and the angles are in radians. The

Body A transfer functions for the complete longitudinal equations are shown in
Appendix A, and those for Body A, (with the opposite dihedral angle) are shown
in Appendix B.

The short-solution transfer functions for Body A are also shown in
Appendix A. The s-plane variations according to the short solutions are:

-0.23440 [ F .1 + [ +

8S

+ IH~
+-I (IT 8  L-.'7 k -( +

'0694 x0.916 - +

" 'a -0.69,1440.1-s.1 0 1.796 +

+1 8.-- +1 1

18.82 110.80 1
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-1.3784 x 10 + 1

[L5 1.18  iL18.82  110-80

Examination of the complete-solution and the short-solution transfer
functions indicates that there are two basic types for each solution:

Complete Solution

s2 + als + ao

Is + y) (s +8) 1[(s + a)2 + p2

s3+ a2s + as + a0

(s +y (s +8) [(S + a)2 + p2J

Shor: Solution

s + ao
(s + Y) (s + 5) (s + ?)

2 +as +a0

(s +y) (s +8) (s +A )

The Laplace transform of the independent variables is equal to the pr(duct
of the transfer function and the transform of the applied force. Since the trins-
forms of the impulse functions equal constants, the transforms of the independent
variables are of the same form as the transfer funct s for impulse-type applied
forces. For unit-stel)-function applied forces, the transforms of the independent
variables become the product of the transfer functions and the transfor of the
unit step, I S.

The time solution of the independent variables can be obtained by using
Laplace transform pairs. For the short solution, the angle-of-attack and the
attitude-angle variations with either elevator angle or cable tension impulse force
are of the form

Ae-Yt + Be-8 + (-At

where A, 13. C are constants depending on the transfer function constants

y, 8. A, are constants (roots of tle characteristic equation)

The solution consists of three transient terms that decay to zero at rates
determined )y the roots of the characteristic equation. The time-solution form
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depends primarily on the denominator of the transforms, the numerator (which is
at least one order smaller than the denominator) only influencing the constants
A, B, and C. The time solution for a step-function applied force is still of the
same form but adds a constant term. The steady-state response is zero for
impulses and constant for step functions as can also be seen from the equation
for the steady-state response:

f(l) = sF(sfs)

I-00 S -. 0

where F(s) is the transfer function

f(s) is the transform of the applied force
The above equation is zero for impulse functions and constant for step-function
applied forces.

For the complete longitudinal equations, the time solutions for the
independent variables (u, 'a, and 0) for impulse applied forces are of the form

Ae'Yt + Be "- +Ce " I cos (pt+ T

where A, B, C are constants depending on transfer function constants
is a constant

a is the damping term in the complex root, c,,

13 is the natural frequency term in the complex roots

y, 8 are roots of the characteristic equation

The solution for impulse forces consists of damped exponentials and a damped
sinusoid. The solution for step-function forces is of the same form but adds a
constant term. The steady-state response is zero for impulses and constant for
step-function inputs. Thus, the towed body's longitudinal response to impulses
consists of transients that decay to zero while the body follows step-function
amplitudes.

LATERAL EQUATIONS OF MOTION
The lateral small perturbation equations of motion can be written in terms

of the three independent angle variables of side slip, yaw. and roll:

AF y = ml )(p + T) (y force equation)

2AL =l . - x1. (x moment equation)

ZAN = --l (Y moment equation)

\ith i ;*1 and U = U0
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where v is the side-slip velocity

U0  is the undisturbed velocity ,

U is the disturbed velocity along the x-x axis

lx is the mgle of side slip auhx i

1xx is the moment of inertia about the x-x axis
izz is the moment of inertia about the z-z axis o:

lxz is the product of inertia about the x and z axes

Control forces and moments caused by both ailerons and a rudder are assumed.
The aileron control is assumed to be a differential system. the motion of the
aileron on the right wing opposing that on the left wing. The aileron deflection,
5 , is one-half the sum of the motion of the up and down ailerons. Positive
rudder and aileron deflections cause positive yawing and rolling moments. The
significant hydrodynamic forces and moments are functions of the independent
angle variables and their first derivatives. The body weight and buoyancy, and
the cable tension, produce differential forces and moments due to the changes
in angles of roll and yaw. These become hydrodynamic coefficients when they
are made nondimensional:

AF (Mg - B)P

AF = (-T O sinoe)q

-TA FyT  = (-T o Cos Oc)T

ALT = (-T 0 sinOdz)T

AN T  = (-To cos 0 dx) '

Figures 5 and 6 show the geometry.
With hydrodynamic coefficients CYP, C"'r. and Cya assumed zero, the

Laplace transforms of the equations of motion written in terms of the hydrodynamic
coefficients and the control forces and moments become:

y Force

W - Tosin [1 8 T. cos 0J.,+ - + s+ 1PT s- C
[sq + q Tf~iO I Sq Sq j Isq.C 4

Cv br

.\ Moment

1)~ ~ ~ ~ ~~~8 +lsnOd ('Fr r ~V-'3~f~~
+ Sqb Sqb 21' r
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BODY DIRECTION CHANGES DUE TO CHANGING THE
DIRECTION OF MOTION (TURNING) AND DUE TO SIDE
SLIPPING, SO THAT THE BODY AXIS IS NOT IN THE
DIRECTION OF MOTION

INITIALMOTION

TURN ANGLE

OPPOSING TURNING FINAL MOTION

TN 1 0  ANGLE MEASURES TIlE
AANGGLE -- CtIANGE IN BODY DIRECTION

'4-'-(3 ~ DUE TO SLIP; POSITIVE
17 CLOCKWISE MEASURED FROM

FINAL BODY DIRECTION TO
- DIRECTION OF MOTION

SIDE SLIPPING IN TIlE SAME
DIRECTION AS TURNING " ANGLE MEASURES CIIANGE

OF BODY DIRECTION WI'rH
TURNING AND SII)E SLIPPING;

,POSITIVE CLOCKWISE FROM
INITIAL TO FINAL POSITION

V 0

NO TURNING OCCURRING

ANGLE OF YAW IS NEGATIVE
OF ANGLE OF SIDE SLIP

Figure 5. \otion in the x-y laterl plane
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GRAVITY FORCE DUE TO ROLL

To sin e,

Y I ,

z x
TENSION FORCE DUE TO ROLL CABLE TENSION DUE TO YAW

T0 sin e. d,

Y

yC.d

GI, 

" Cl

z 9

z
TO Cos Od.

CABLEMI NKEN'I' DUE TO ROLL CABLE MOMENT DUE TO YAW

Figure 6. Lateral forces ind moments due to roll and yu\
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LATERAL EQUATIONS FOR SPECIFIC TOWED BODIES
The numerical analysis of the lateral equations of motion is detailed below

4. for Body A, assuming that the body is towed at 45 knots in a straight, level path.
The numerical parameters of Body A are:

U =76ft/sec S =6ft2  1 =60 slugs

lzz = '100 slug-ft2  To = 14,000 lb I'M = 6 ft
xx 45 d 1.167 ft dx = 0.167 ft

xz -100 slug-ft2  c = 81.85 degrees IV-B = 500 lb
Sto = 1.5 ft2  q =5776 lb/ft 2  b = 6 't

Based on these parameters, the hydrodynamic coefficients are:

Cp - -- 0.0524 C n. -, S  -1.0
57.3 S(

C = (AR, Shape) = -0.5 C, r = C1, = -0.1
4

Sf C t"n,
C,,, 2 t F = 0.5 C 8 = -1 r = -0.025

S b r 4 Cnr,

C 1 1 0.025 Cni 0.5 Cl = -0.25
16

St, -C1, Cer a

C -2 =-0.5 Cfl8 a 8 C 9 -0.06C S C" = 8 C11,

Cyr = 0.5C =0.25 Ci's = 0.6
r A1 a

The lateral equations of motion for Body A with the numerical values of the
coefficients inserted are as follows:

" Force

0.29405p + (0. 13158s + 0.057162)T + (0. 131.,s + 0.5)3 = 0.258.r
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x Moment

(0.00021641s -2 + 0.019737s + 0.0 7 778 1)p + (0.00048092S2 + 0.0039474s)

+ 0.0524P -0.0258r+ 0 .6a

z Moment

(0.00048092s 2 + 0.00098684s) + (0.0019237s 2 + 0.0 3 9 4 74s + 0.0015910)T-0.5P

-0.258 r -0.06 a

The solution of the homogeneous equations with no applied right-hand
forces gives transient exponentials and a damped sinusoidal term for each of the
independent variables p T. and P. The roots of the characteristic equation
obtained from the nonzero determinant of the multipliers of the independentvariables determine the exponential constants of the transients. The towed-body

characteristic equation is a quintic. Typical airplane characteristic equations
differ from those of the towed body in that they contain no constant term. The
zero root indicates that the plane is insensitive to the choice of heading, there
being no moment tending to return it to the original heading. The towed body's
path is determined by the cable. The characteristic equation for Body A is

s 5 + 247.48 s4 + 6689.3 s3 + 85,111 s 2 + 246,333 s + 92,743 = 0

Solution of this quintic characteristic equation by Graeffe's method
indicates stability, since there are three negative real roots and a pair of com-
plex conjugate roots with negative real parts. The roots for Body A are:

s 1 = -0.442

s = -3.34

S3 = -13.04 + j 10.867

s4 = -13.04 -j 10.867

s5 = -217.63

The transient solution for lateral motion is given for each independent variable
by an equation of the form:

p = Ae'0"442t + Be' 3 '34 t + Ce ' 2 17 "6 3 t +De' 13 "0 4 t cos 16.971

The times to damp to half-amplitude for each of the terms are 1.57, 0.2075,
0.0531, and 0.00318 seconds. The two small roots dominate the damping of the
transients. Examination of the equations of motion shows that the largest
damping time (smallest root) is approximated by
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The time to damp to half-amplitude is decreased for the smallest root by
increasing the cable tension and decreasing the yaw damping coefficient,

Cn, The time to damp to half-amplitude for the secosd smallest root is
approximated by

ii TO  rU b b b rnU. b' so'-7 s~~0ine dzC .-- - +C CC +-fC ,,

r=0.693

Ssindz b + mU T§q 2U Cnr Sn SI O9qZb

This next-to-smallest root resembles the spiral divergence root for aircraft. The
cable tension replaces the rolling moment coefficients. The damping time is
decreased by increasing the depression force and decreasing the roll damping
coefficient, C'p. The dihedral angle somewhat affects the size of the smallest
root, but generally does not affect the two smallest roots as much as in the case
of aircraft.

If straight-line, level motion is assumed with the side-slip angle equal to
the yaw angle, and the roll angle and its derivatives being zero, the yawing
moment equation becomes

-C.8
Or L- , 2 b +( +T cos dV)

s- 21Crs+(C '- Sqb C

For Body A. the denominator is

0.0019237 s2 + 0.039474 s + 0.5015910 = 0

The roots of this quadratic are

s1  -10.26 +jl2.47

= -10.26 - j 12.17

The damping coefficient is 0.635. and the ratural frequency c, is 16.15. For
the complete equatims of moton, the comlplex-pair roots give = 0.768 and

16.97. The complex roots represent the "Dutch Roll."
If the side-silip and the yaw angles are assumed to be zero with no applied

rudder forces, the rolling moment equation can also be (lirectl solved:
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For Body A, the denominator of tile transfer function is

0.00021641 s2 + 0.019737 s + 0.077781

The roots of this equation are -4.13 and -87.08. The transfer function equation
indicates that, for the towed body, the steady-state roll angle is zero with an
impulse-type aileron deflection. The steady-state roll angle becomes a constant
for a step-function aileron deflection. The ailerons act like elevators in that. for
a steady-state response, the deflections must be held.

LAPLACE TRANSFORMS OF LATERAL EQUATIONS
The Laplace transtorm lateral equations of motion can be solved in terms

of any of the independent variables (p, T, or P3. with either rudder or aileron
applied forces, by Cramer's rule. The transfer functions which are transform
ratios between the output and the input variables tire numerically evaluated for
Body A below:

-0.01561 + 1
11-86 0.V157 .6

s~ if r___ 2  1. 5362
7.0101 - + I + - + 1

1 04 J 0.34 217 (9 13.29

I s 
1.5,36-0+ I + I -I + - s+ 1____ _ I ( 2 27. M788.01167

41 3s3 1 6.9

0 187:3-11
T0.(W23 ] 2 7- ()'- +I]

r i 32 .536

0.12713 '280 !(0,()7
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The solution of the transforms in ime can be represented by exponentials and a
damped sinusoid for impulse inputs. The solution adds a constant to these
transients for a step-function input. The steMy-state response to an impulse-
type input is zero for all the above transfer functions. The steady-state
response to a step-function input is a constant for all the transfer functions.

The lateral motion analysis above was based on Body A with a dihedral
coefficient of -0.0524. Consider another body. Body A', with a dihedral
coefficient of + 0.0524 but with the same values as for Body A for the other
coefficients. Based oih this sign reversal, the roots of the qunmic characteristic
equation of lateral motion become

s1 
= -0.353

s 2 = -4.24

s3 = -12.42 + 111.69

s 4 = -12.42 -j 11.69

s 5 = -218.05

For these roots, the times to damp to half-amphtude are 1.96. 0.1634, 0.05.580.
and 0.003178 seconds, compared to 1.57. 0.2075. 0.05314, and 0.30.3184 seconds
for Body A with the negative dihedral coefficent The dominant cable root is
slightly smaller in magnitude while the other two real roots ae slightly larger.
The complex Dutch Roll mode has a shghtlv smaller real part but a slightly
larger absolute magnitude than for Body A Based on the damping time of the
dominant cable mode. the body with a negative value of Op appears more
(lesiral)le. (In the control-system analysis that follows, it is indicated that the
body with the positive dihedral coefficient may be preferable.)
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The tmansfer functionq giving the variations of the independent variables -

Y ,'. and A in Laplace t.ansfoms. in terms of the applied rudder and aileror,
inputs. are for Body A':
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I
CONTROL SYSTEMS GENERAL

An automatic control system is desirable if it enhances the accuracy of an
action anJ reduces the amount of needed human attention. The preceding
analysis of the towed body indicates stability for both longitudinal and lateral
motion. An impulse elevator deflection in longitudinal motion, and impulse
-udder or aileron deflections in lateral motion, all produce responses that return
the body to its initial reference position with time ill a stable manner. The
towed body follows step-finction inputs in both longitudinal mid lateral motion
with an error in the steady state. Automatic control systems should be installed

, if it is desired to tow the body in particular motion modes and if it is necessary
to improve the dynamic responses. Some advantages that can be obtained with
closed-loop feedback control systems are listed below:

1. Less attention is required.
2. The transient response can be improved, so that the body returns to the

reference condition after a disturbance without excessive oscillations. Transient
4 characteristics, such as the time to rise to maximum response after a step input,

the overshoot above the steady-state value, and the time required to settle to the
steady-state value, can be adjusted. Optimizing procedures, such as minimizing
the integral of the product of time and the absolute value of -r'or, can be used.

3. The response to specific inputs can be made to occur without error or
with only a small error, in the steady state.
T 4. The design can be such as to afford good stability characteristics.
The stability should not be affected by small changes in amplifier gains. After
a disturbance, the system should return to the reference condition quickly.

5. The control ratio between the output and the input can be made less
susceptible to undesired disturbances. The control system can be designed to
adapt itself to changing conditions.

6. The control system can be designed such that the response to random
statistical-type dist-irbances is minimum. A wide frequency bandwidth in the
system increases the random disturbance power, but allows more accurate
following of rapidly vary, ig input signals mid can improve the system's stability.
The bandwidth should be large enough to pass the desired input frequencies, but
should attenuate the higher frequencies. The system's resonant frequencies
should not be near external resonant frequencies.

In a single-loop, feedback control system, part or all of the output is fed
back to the input. (It can be fed back in any phase relationship to the input;
negative feedback occurs when the feedback signal subtracts from the input;
positive feedback when the feedback signal adds to the input.) The system error
E(s) is the difference between the reference input and the signal fed back, in
negative feedback; and is the sum of these two in positive feedback. The control
ratio between the Laplace transforms of the output and the input is related in
the transfer functions:

C(S) G(s)

R(.) I + G(s)II(s)

where C(.) is the transfer function of the output
R(sj is the transfer function of the input
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G(s) is the forward transfer function for the circuit connecting the output
to the system error, E(s)

H(s) is the feedback-circuit transfer function

For negative feedback, the algebraic sign of the G(s)H(s) term is positive for
real positive G(s) and H(s) values. In this case, the control ratio when l1(s)
equals unity varies from 0 to I as the forward transfer function G(s) varies from
0 tooe. For positive feedback with G(s) and H(s) positive and real numbers, the
control ratio with 11(s) equal to unity varies from 0 to co as G(s) varies from
0 to 1, and from -oto -1 as G(s) varies from 1 to ao. The product G(s)H(s)
is known as the open-loop transfer function. When this is large compared to
unity, the magnitude of the ratio between the output and the input becomes equal
to 1/It(s).

The system error, E(s), for negative feedback becomes equal to

E(s) 1

R(s) I + G(s)Il(s)

The algebraic signs of the transfer functions G(s) and H(s) are assumed to be
positive in the above equation.

The stability of closed-loop control systems is determined by the denomina-
tor, I + G(s)li(s), in these equations. Instability occurs when the open-loop
transfer function, G(s)lt(s), is of unity magnitude and has an 180-degree phase.
The open-loop transfer function can usually be written for linear systems as a
ratio between factorable polynomials:

s (s+a)(s+b)(s+c) (s2+ 2 jwtI +Ch 12)'G(s)[t(s) =
sf(s + k)(s + fM(s + m)(s2+ 2 2c2 +( .

where a,b,c are open-loop zeros

k,l,m are open-loop poles

K is the gain constant

ca is the natural frequency part of a complex pair

S is the damping ratio part of a complex pair

The form of the open-loop transfer function indicates the complexity of the control
system. The denominator must be at least one degree higher in s than the numer-
ator, for practical systems. When the denominator does not exceed the numerator
by more than two degrees in s, the phase does not generally equal 180 degrees for
finite frequencies unless there is an s 2 factor in the denominator. A factor, si,
shifts the phase n times 90 degrees. Factors, s+a, approach 90-degree shifts as
s = j&, increases in value. Quadratic factors approach 180-degree phase shifts as
o increases. Open-loop transfer functions with the denominator exceeding the
numerator by one or two degrees in s usually indicate inherently stable control
systems unless there are two open-loop poles at s = 0. When the denominator
exceeds the numerator by more than two degrees in s, the control system still
is usually stable over wide ranges of gain values, K. As the gain setting is
increased from zero (the open-loop value), the closed-loop poles change (move
along the root loci) and, eventually, instability occurs. It is desirable that the
closed-loop ioles (roots of the characteristic equation, I + G(sWI(s = 0) be
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sufficiently far to the lef in the complex plane to insure rapid transient decay
(large negative roots and large negative real parts of the complex roots of the
characteristic equation). Stated in another way, inherent stability occurs if the
magnitude of the open-loop transfer function decreases at the most 20 dB per
decade in frequency or 40 dB per decade with the sn factor in the denominator
having n equal to either 0 or 1. Each degree in s in the numerator causes the
open-loop transfer function to increase by 20 dB per decade, while each degree
in s in the denominator causes it to decrease by 20 dB per decade. The phase
of the open-loop transfer function is always less than 180 degrees for inherent
stability.

The steady-state error of the closed-loop systems depends on the form of
the input functions in addition to the system's transfer functions. Control
systems are classified into types by the power of the s'n factor of the denominator
of the open-loop transfer functions. Type 0 has n = 0, Type 1 has n = 1, and so
on. The final value Laplace theorem can be used to determine the steady-state
error. The theorem states that if the Laplace transform of f(t) is sFs), and if
sF(s) is analytic on the imaginary axis and the right-half plane. then the final
value of the time function is given by

lim () lim sF(s)
t -..- 00" S--*. 0

On the basis of the final value theorem, the steady-state-system following
error becomes

sR(s)e(t) = e(t) = lim

ss t -® s -0 I +G(s)H(s)

For a Type 0 control and a step function input, the steady-state following error
is a constant. For a Type 1 control and a step function input, the output follows
the input without error in the steady state.

Control systems are usually modified from a preliminary design to improve
the stability, the transient response, and the following error. Compensation
consists of changing the forward transfer function, the feedback transfer function,
or both by adding phase lead or phase lag networks. Networks added may
include 90-degree phase leads such as differentiation circuits, 90-degree phase
lags such as integration circuits, and RC filters which are integration and
differentiation circuits in themselves.

The effects on the control systems of various compensation methods are
examined below in a general manner. Hligh damping usually indicates better
stabiiity characteristics. Transient damping is indicated by tile time required
to damp to half-amplitude for either simple roots or complex root pairs. The
small roots (dominant roots) determine the least damped components. More
stability is indicated by larger negative real toots or larger negative real parts
of complex root pairs. The usual effects of compensation methods are:
1. Integration in feedback path. Adds a closed-loop pole and a 0.1 pole at

zero. The steady-state error is less since the system is one type higher.
The damping and the stability effectsare usually not large since the effects
on the dominant roots are generally small. The effects can be large for
large dominant roots of the characteristic equation.

2. Integration in forwcard transfer function Adds a closed-loop pole. Tle
system is one type higher and follows a more complicated input function
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without error. Damping and stability effects are usually smah for
small roots.

3. Differentiation in the feedback path. Removes a closed-loop pole and adds
an open-loop zero at zero. The lystem is one type lower and has a poorer
steady-state condition. The damping and stability effects are usually
small for small roots.

4. Differentiation in forward trwzsfer function. Removes a closed-loop pole.
The system is one type lower, and less complicated input functions can be
followed without error. The damping and stability effects are usually
small for small roots.

5. Tachometer feedback (1 + b s feedback loop). The steady-state-error
constant is higher, and thus the steady-state error is higher. The damping
and stability are both improved.

6. High-pass filter added in series with the differentiation in tachometer
feedback. The stebdy-state error is improved over tachometer feedback. t'1
The damping and stability are both improved.

7. Lead compensation in forward transfer function. I,+sT4 ,J'
T, > T2. Adds a closed-loop pole and a closed-loop zero. The steady-
state error is the same as without the lead compensation. The damping
and the stability are both improved.

8. Lag compensation in the forward transfer function [1
1 + Ts

TI< T2. Adds a closed-loop pole and a closed-loop zero. The steady-
state error is not changed by this compensation. The damping and the
stability are both improved.

9. The addition of unit), feedback. This makes a Type 0 control out of any
control type. Differentiation added to the feedback or the forward transfer
function of a Type 0 control changes the closed-loop pole positions. The
changed values of the poles usually improve the control-system stability
and damping. If the differentiation is in the forward transfer function, it
also adds a closed-loop zero.
The incorporation of a feedback control system into the towed body improves

the body's dynamics and assists in the performance of the towing missions.
Body A has been shown to be dynamically stable. It follows the elevator and
cable tension step input functions in longitudinal motion with a constant steady-
state error. In lateral motion, the body follows step input rudder or aileron
variations with constant error in steady state. The towed body in itself is a
Type 0 system in both longitudinal and lateral motion. For the complete longi-
tudinal equations of motion. the transient solution consists of two damped
exponentials with very short times to damp to half-amplitude and a damped
sinusoid with a damping coefficient of 0.906. The time to damp to half-amplitude
of the sinusoid is 0.544 second, For the short. equations of longitudinal motion,
the transient solution consists of two of the exponentials of the complete
solution and another damped exponential with a longer damping time. The time
to damp to half-amplitude of this longer-time term is 0.866 second. The dominant
or long-time-to-damp transient term is largely determined by the cable tension
and the pitch damping hydrodynamic coefficient, C,, for both the complete
and the short longitudinal equations, The time to damp can be decreased by
increasing tne depression force and decreasing the magnitude of the pitch
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4
damping coefficient. In the lateral equations of motion, the transient solution
has a damped exponential with a very short time to damp to half-amplitude
(corresponding to the roll subsidence mode), a damped sinusoid with 0.0552
second to damp to half-amplitude (corresponding to the Dutch Roll mode), a

damped exponential with a time to damp to half-amplitude of 0.2075 second
(corresponding to the spiral divergence mode), and a damped exponential with a
damping time of 1.57 seconds (cable mode). The term with the largest damping
time is determined by the cable tension and the yaw damping coefficient, Cnr.
The damping time can be decreased by increasing the depression force and the
body drag, and by decreasing the yaw damping coefficient. The critical long-
time damping terms for both longitudinal and lateral motion can be lowered by
increasing the depression force and decreasing the damping coefficients,
Cmq and Cnr. A longitudinal control system can improve the damping and
stability and provide a means of keeping the towed body at a constant commanded
depth. In addition, a lateral control system can provide coordination so that
turning can occur without skidding (side slipping). The lateral control system
can also be used to orient the direction of motion.

LONGITUDINAL CONTROL SYSTEMS
It has been previously shown that Body A is a Type 0 system in that it

follows a step input with an error. The longitudinal short solution indicates
that the dominant cable mode damps to half-amplitude in 0.866 second. Here
we shall describe a longitudinal control system designed to hold the towed body
at commanded depths, in addition to improving the stability and damping. The
control system parameters depend on the tow body with which the system operates,
here assumed to be Body A (which could be improved). The effects of the
elements in the control system are given by the transfer functions relating the
output to the input of the elements as functions of s, the Laplace transform of
time. The output/input conversion factors between angular and linear units in
the elements is included in the transfer finction constants. The components of
the control system are assumed to be available. There are many commercial
small-sized, accurate, and sensitive pressure gauges. It is assumed that a depth
gauge converting depth to a proportional electrical signal is available. The
elevator servo can be an electromechanical or a hydraulic unit, and is represented
in the analysis by a simple time lag and a gain factor. Idealized gyroscopes
without time lags are assumed. Commercial gyroscopes have been developed
that are accurate and sensitive and are not much affected by vibrations, heat
variations, or pressure variations. They are available as small, light units,
weights being about 3 pounds, lengths about 5 inches, and diameters about 3
inches. The proposed control system should, of course, be a realistic design.

Figure 7 consists of three block diagrams of proposed depth control
systems. The top diagram shows a basic feedback system to control depth.
Basic controls can be adjusted by compensating networks such as minor loops
and filters, in the middle diagram a damping minor loop is added to the basic
control, and in the bottom diagram a filter is added to the outer feedback path.
Three transfer functions indicated in the diagrams are related to the body dynam-
ics. The transfer function relating the attitude angle rate with the elevator

40



COMMAND h

IPTAMPLIFIER ELEVATOR TOW BODY

DEPTH
GAUGE

Ih

FILTTR GAUGE

Figue 7.Deph cotro sysemh

AMPLIIER EEVA4O

SERV



* angle deflection, 0 /5 e, is directly obtained from the longitudinal equations of
motion. The transfer function relating the depth with the attitude angle rate,
,Vi, is obtained uring the vertical acceleration, az:

e 0 s3

The vertical acceleration itself is calculated from the solution of the longitudinal
equations of motion:

az = U s

where U is the undisturbed forward velocity.
The transfer function relating the depth with the elevator angle deflection,
h/Se, is given by the relationship

h h x

The body dynamics transfer functions for Body A, based on the short-solution
longitudinal equations of motion, are given by the equations:

0 -7.6558 [2.4 +1 s

15118 8 +82 0.80 +

Is s 1+73.674 1 + -1
h1 [444.21h

h.-44s21 + I1!!29.47 1

" -564.03 s I
+ 'I[

e s + I s1 +
-5 1 18.82 .80

Feedback controls can be analyzed by many methods. The root locus
method is convenient for repetitive analysis. System design usually requires
several trial solutions that must be optimized. The root locus plots indicate
damping and stability in the location of the roots of the characteristic equation
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(closed-loop poles). They show, in graphical form, variations of the poles with
system gains. The zeros and the poles of the open-loop transfer function are
plotted on the complex plane, and root loci are obtained using the transfer
function of the feedback control system:

C(s) G(s)

R(s) 1 + G(s)II(s)

The roots of the denominator are the closed-loop poles. A plus sign in the
denominator indicates negative feedback, and a minus sign indicates positive
feedback. Positive feedback occurs when the algebraic sign of the open-loop
transfer function is a plus and addition occurs at the error detector, or when the
sign of G(s)H(s) is a minus and subtraction occurs at the error detector. Negative
feedback occurs when the product of the sign of G(s)lI(s) and the sign of the
error detector operation is a minus. The open-loop transfer function must be of
unit magnitude and of 0- or 180-degree phase at the closed-loop poles. The
root loci are plots of the 0-degree phase requirement for positive feedback, and
the 180-degree requirement for negative feedback. The magnitude requirement
produces closed-loop poles on the root loci. A point on the root locus is a
closed-loop pole when the open-loop transfer function is set equal in magnitude
to unity:

G(s)1(s)=1= K(s - Z1) (s - Z2)

(S - PI) (S - P2)

The product of the distances to the open-loop poles from the point, divided by
the product of the distances to the open-loop zeros from the point, is equal to the
loop gain, K, corresponding to the closed-loop pole. Figure 8A shows the zero
root locus for the basic depth control system corresponding to the upper block

diagram of figure 7. Most of the right-hand locus is in the right half of the plane
and corresponds to instability. The dominant closed-loop pole for the small
stable part of the root locus has a negative real part less than 0.4. When a
high-pass filter is added (fig. 8B), the root loci are shifted to the left increasing
both the stability and the damping. The dominant root now has a negative real
part of about 4. The time to damp to half-amplitude decreases from about 2
seconds for the basic control alone, to about 0.2 second for the basic control
plus the high-pass filter. The electrical filter can be designed using common
networks, for example:

RCs
1 I2 1+ RCs El
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A. MAJOR LOOP WITHOUT MINOR
DAMPING LOOP OR FILTER

-44.21 .
-51.18 -18.8 -10 -0.8

B. MIAJOR LOOP WITHOUT MINOR
DAMPING LOOP. FILTER ADDED

-44.21s

-51.18 -30 -18.82 -10 -0.8

Figure 8. L~ongitudinal depth control - zero root loci.
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C. DAMPING MINOR
LOOP ALONE

D. MAJOR Loop WITHj
MINOR LOOP ADDED

Figure 8 (Conltinuedi).
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E. MAJOR LOOP. WITH MINOR~LOOP AND FILTER ADDED

Figure 8 (Comfinued).

Figure 8C shows the root locus plot of the minor loop. T!-e dominant root is
debermined by the locus on the real axis from -0.8 to 0. The value of gain
constant of 320 produced a ciosed-loop pole at -14.21 and complex poles with a
damping constant of 0.9. Figure 8D shows the zero angle root locus of the closed
minor loop incorpoiated into the basic depth control system. The right-hand
locus has a very small section in the stable left half of the complex plane.
Figure 8E shows the effect of the addition of the same high-pass filter; the root
loci are shifted to the left. The dominant pole can havt a negative real part of
about 7. The time to damp to half-amplitude can be ibout 0.1 second with the
minor loop and the high-pass filter. Thus. compensation can change the control
system considerably. The transient response to an input such as a step function
depends on the chosen compensation. The rise time to design output, the over-
shoot above the design value, aid the time to damp are characteristics l,8ving
different damping requirements. The control system can be optimized according
to several principles usually b-.ed on minimizing errors.

LATERAL CONTROL SYSTEMS
The towed body is inherently siaale due to the stabilizing effect of the

towing cable. Unlike an aircraft. it tends to return to its original heading after a
disturbance. The cable root is dominant in th. dynamics. For Body A. it has
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been shown to have a half-amplitude damping time of 1.57 seconds. A ccntrol
system can be used to reduce the damping times. It can be designed to coordinate
the rudder am the aileron controls so that no side slip (skidding) occurs during a
turn. Coordination can be obtained by feedig back to the rudder input a voltage
proportional to the side-slip angle or the lateral acceleration. !lere. a rudder
cotrdination computer is discussed. It may be desirable to provide a method of
orienting the yaw angle of the towed body by means other than the cable. A
yaw-rate body orientation control is also discussed.

The top block diagram of figure 9 shows the closing of the rudder circuit
thro-igh a rate gyroscope to form a closed feedback loop. The root locus plots
of figures 10 (A through G) show that. for the feedback loop, the dominant
closed-loop pole is very near the origin in all cases for either positive or negative
values of the dihedral coefficient. When integration is added, for example, by
use of an integrating gyTo instead of the rate gyro, the root locus plots indicate
that the cdosed-loop poles can have negative real pa.-ts considerably larger than
the dominant c.ble root particularly for the body with the positive dihedral
coefficient.

The middle block diagram of figure 9 shows connection of the aileron
circuit to the ,udder circuit through a coupling network called the rudder coordina-
tion computer. The method is based on keeping the side-slip angle at zero during
turns by feeding back a required rudder input for a given aileron input. The total
side-slip angle is related to the rudder and the aileron angles by the equation

PT 7'Ffp/a'J - TF (@/r

where TFP/6 is the transfer function relating the side-slip angle with the

aileron angle

TF(PiS ) is the transfer function relating the side-slip angle with the
rudder angle

When the total side-slip angle is zero, the ratio between the perfectly coordinated
rudder and aileron angles becomes

b r _ TF @ /B ) = F C

The middle block diagram of figure 9 shows that the negative of the transfer
function ratios is equal to the transfer function of the rudder coordination com-
puter, TFrcc. Unlike an aircraft, positive rudder requires positive aileron, and
a phase reversal is not required in the rudder computer circuit. The rudder-
coordination-computer transfer functions for Body A(Cep -) and Body A, (Cep +)
are given by the equations

Body A

-. 012327 1TFrc c  = 2_ s79' +'k +;l +
T0 ]1 (5 +4- 1 13 738.82 1

47



YAW FEEDBACK CONTROL

TRN OORDIMATO

RUDDERCORNODINAT RUDE

COMPUTER L SERV

RUDDER COORDINATION RUDDER
COMPUTER SERVO

YAW_______________CONTROLSYSTE

FigureIN 9.LGRrYOonrl~ytls

48,



Body A'

-0.012077 I-( 12 +  + 206- 1

TF10.0022 1I 97 1206 LTFrcc 0.539 l~ s  --~

10.3 + 1. - I[ I2
3 [t5+ 19,122 1388

Values of transfer functions that are a decade in frequency away from a reference
frequency are 20 dB apart for first-order functiovi,. Thus. the rudder-coordination
transfer functions can be approximated for angular frequencies from about I to 10
radians ter second by tile equations

Body A (Ce-)

2.353 
+ 1

TFr ----

47.05 ,-

Body A' (Ceo +

1.9213 + I
TF -C

The transfer function between the total yaw rate and the input voltage of the
rudder-coordination-computer circuit, e8  is given by tie equation

= TF x 'f'8 +TFr x TFrcc x TF( 'Sr)

where TF.s is the transfer function of the aileron servo

TFr, is the transfer function of the rudder servo

As the equatien above indicates, the two applied inputs of the aileron and rudder
angles add algebraically in the yaw-angle effects. The bottom block diagram of
figure ( shows a yaw orientation system with rudder coordination. An integrating
yaw-rate gyr,.,scope is included The open-loop transfer functions for Bodies A
aid A' Ae given by tile approximate equations:
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0.44081 - + I1 1 1

ea + 1 -I L + 1 I F2+ +1.5 +1J1044 T 3.34 1L217. 6316. J

T [TI+ L77J 8 1L 14.14 tI-r..e.. r s 1s 1.46a s1 - 1,536033 J+ + 1 218.05 + 12083+ 17.05

The open-loop transfer functions are based on the approximate rudder-coordination
transfer functions. The rudder produces the principal effects on yaw. The
orientation system can be checked on analog computers. The more complete
rudder-coordination-computer transfer functions can be used if necessary. The
approximate transfer functions can be represented by the common network below:

a0

, R2
2 R2 Cs + I

_ _ I -,+R21 C S

C

The root locus plots for the approximate transfer functions are sho%%1l in
figure 10 for the yaw orientation system. It can be seen, at least at lower gains,
that both Bodies A and A' are stable. The dominant closed-loop-px)le damping
time for the positive dihedral body is about 0.2,14 second. For the negative
dihedral body, the damping time is at the best about 0.7 second. Additional
networks can be added to improve the transient response if desired. Phase-lead
differentiating networks tend to narrow the system bandwidth while phase-lag
integrating networks tend to broaden the bandwidth.

The control systems help reduce possible coupling between the longitudinal
and lateral equations of motion. The presence in the equations of the two terms
listed below causes intercoupiing:

1-I PR -V - 1J 110

where . is the body's moment of inertia about the longitudnmal axis

/z, is the body's moment of ine,,iu about the vertical axis

1,., is the body's moment of inertia about the lateral axis

The roll rate J) is not large in the tow bodies due to the cable. The addition of
control systems reduces the yaw rate R an( the pitch rate Q.
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Figure 10 ((Continued)
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Figure 10 (('ontinuvd).
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Figure 10 (Continued).

In summary. it) rference to closed-loop feedback systems, it can be said

that a control system u'.put follows the input better, and with less disturlnuce

effects, and with high Forward-transfer-function gains. The output-input transfer

fuiction becomes
GGb

I + GGbII

If the gain G is large and the gains Gb and II are not too small, the output-input

transfer function becomes I ,II.
'lThe disturbance output for the network shown below is given )y

iG b

I + (GG b"
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This becomes equal to the small value 1,'Gil when the gain G is large. An input
filter called a model call be added. For at high gain, G, the output follows the
model output. Adaptive control systems usually have high-variable-gainl circulits
and still retain stability. They canl have electronic counting devices which
measure the gain and adjust to at maximum stable value. In thle case of Body A'
(Crp + ), the cable cf pole onl the real axis approaches the zero at very high
gains. The Dutch Roll closed-loop p~ole then becomes dominant at high gainls Anld
approaches the imaginary axis; it must be limited for stability.

TOW BODY DESIGN
Preliminary design anialysis has- been performed m~ainly with three bodies,

designated Body A. Body 1, and Body 11. Detailed analysis was made ill both
longitudinal and lateral motion of Body A which has at negative (lililedral coei-
ficient, of Body A' which has at positive dihedral coefficient of thle Same magni-
tude, and of Body A' Nvincl., is of thle same form but has at zero dihedral coefficient.
In add~ition to tlae depressor angle, thle wing location and thle tail-cenlter-of-
pressure location in relation to thme body axis affect the dihmedral coefficient.
producing equivalent dihedral angles of ab~out :3 dlegrees or miore depenading onl thle
lateral area.

All the bodies studIied have thle samle ,M-inlch maximum diameter, but they
differ in other respects. Somne important design considerations are the drag; thle

4 4 ~hydrodyvnamic coefficients, particularly t he damping coefficients, (1,Ir ahilnd
andl the depression force. All the bodies are axi symmetrical. streamlnl ed forms
with depressor and control surf ace ap~pend~ages. We desigoed the a'xisymnmetrical
foin fs using thle D~avid TIaylor Modiel Ilisin method originated bN Landweber and(
(kert ler. The bodies have at length/diameter ratio of' about 2.7 for minium drug.
Drag has anl important effect onl the required towing horsepower aid the attainable
(leIpths. It has a1 benfeficial effect onl thle dampig tune of thme (loilhiiilllt cabile
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mode in lateral motion. A considerable portion of the required towing horsepower
is needed to counteract the body drag. For a 2000-pound drag, 276 horsepower is
required to tow the body at 45 knots, while for a 600-foot towing cable with a
drag of 15 pounds per foot 1530 horsepower is required. The attainable depth is
405 feet at 45 knots with a depression force of 14,000 pounds and a 2000- sound
drag.

The total body drag depends considerably on the depressor and tail
surfaces. Additional drag arises from the interference between components and
from imperfections on the surfaces. Hoerner shows how to estimate the total
drag on such bodies as aircraft. by adding together ail th drags of the components
in drag areas. A drag area is tie product tf the drag coefficient and the area
that it is defined for:

a-" D

where i7 is the dynamic pressure

CdS is the drag area

Here, the total drag is considered to be the sum of the depressor drag, the tail
drag, the depressor-induced drag, and the main body drag. The imperfection and
interference drags are neglected since they are small percentages of the others
and can be lessened by careful design. The drag area of the induced drag is
approximated by

c 12 Z C•

ARn 1n

where AR is the aspect ratio b2 S
S is the wing area

The main-body drag coefficient can be based on wetted area, or cross-sectional
area as it is here. 'rhe drag coefficient for an axisymmetrical body is approxi-
mated by lloerner as follows:

-f 
1; 1 / d2 2

C = cfk+ 4. + 21()

where Cf is tile skin-friction drag coefficient of the body

CDO is the drag coefficient defined for the frontal area

The wing and tail drags are based on the phn area. The profile drag is assumed
to be nearly zero. Tlhe sectional drag coefficient is based on the skill friction
for tile upper and lower surfaces modified by factors that account for the section
thickness. The coefficient is given by the equation

CDs = 2 Ct [ +
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where C., is the sectional drag coefficient

I is thle section thickness

c is the section chord

Thle wing and tail thick'ss-to-ch, rd ratios were taken to be 0.2 in the calcula-
tions. The skin-friction coefficient was assumed to be 0.0025. 'rhe average
skin-friction coefficient is about 0.102i for the body Reynolds number of
3.5 x 107 which corresponds to fully developed turbulence over an 81-inch body
ait 45 knots in i0 0F water. The transition to nieutral turbulence occurs on) the
body at about 15 inches back of the ntose. Transition to self-excited turbulence
occurs at about 22 inches back of the nose. Based onl these approximations. the

twbody drgareas tire:

Drag Area

Mainl Body 1:3.72 x C f x .1. 0874 0.1498

D)epressor 2.48 x Cf x 6 0.0372

Tail 2.48 x Cf x 4 0.02418

Induced W 1188 0. 1188

Total Drag Area 0.330fxi

Thle frontal-area drag coefficient is obtained by dividling tile drag area by thle
frontal area, 4.90874 square fe et. Thle frontal-area coefficient for thle values
listed aibove is 0.067:3. Thle body drag ait 415 knots equal., 1910 p)ound~s. The
skin-drag coefficient may be less than the chosen average value of 0.0025 uinder
ideal condlitions, but tile initerference and imperfection drags and the (drag ait the
tie point have beenl omlitted. The body is in fully developedl furbalence ait points
f'urther back than about 25 inclIes froin the nose at .15 knots. For fllly developed
turbulence, the broadband pressure am the boundary is about 80 d11 above
1 dx'ne cm,2. It is desirable to build the body' surface of soft rubber from about
10 inches back of the nose, to (lela, turbulence to thle self-excited value. The
outer p~ortion of the body should be imade of a low-elastic-moduluis material (.such
ais urethane foaml) of suifficieint structural strength, in order to present at filter to
the flow-noise p~ressuire. Flow noise is p~resent over bodies Of thle tow bod.N size
ait 45 knots. It canl be minimized by delay ing the Ixiiit s of transition and by
energy absorpt ion.

Th'le depressor wing mnust be large enough to p~rodu~ce a large dlepressionI
load at foxy lift coef'fic ients. A depression force of nearly 141,000 p~ouinds is
reqIuired to attaiii dlpjtlis of about 4100 feet \\ith a bxly (f. rog of 2000 potinids and
at 5(10-foot c-able with a dIrag of 15 pounds per foot. Because of' indticed drag.
tie li ft Coefficient shoul h( e Ii mait ed to Valutes Of' albout 0). 1 . The1 aSp~ect rat io
should be large for low indluced (frog. Thel willg, and tail section should be thin
For sml indI(rog. bilt must also be struet urll lyv strong enough. S1ynanetri cal wing
and toil sect ions w\ith at t hickness-t o-chordl ratio limited to about (1.2 should( be
used]. Thel N ACA four dig it n umber inig -vst em nutmber for this syinietri( of
sect iou is 00)20.

Thel hor izontal1 and veriticalI tail surfaces dlet ermine the damp inig 'oeffIiciments,

/?q a (nd C'. These coefficients affect all the root s for both lou citud(1ii ol and
lateral i-o t ion fmoxrab l, \, (eft the tloininant cabl)1e roots For bo th oiig it udmal
and( lateral miot ion Tlhie \a Ites are proportional to the square of the (list ance fromli
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the e.g. to the surface quarter-chord point, and proportional to the surface area
of either the horizontal or the vertical tail areas. The damping coefficients
should be laigebut not so large as to make the cable roots too small.

The dihedral angle affects the roots of the characteristic equation and
hence the transient response. Positive dihedral coefficients adversely affect the
dominant cable root. The response in yaw control systems appears to be better
for positive dihedral coefficients. A negative dihedral coefficient is required to
pull up the low wing in lateral gusts if the tie point is connected at the c.g. of
the body. If the tie point occurs above the c.g., no dihedral is required due to
the-stabilizing effect of the towing cable. The diagrams below indicate the top
view and front view of a tow body with positive side slip and a negative
dihedral coefficient.

MOTION T

CE S

+0

W-.B

The control surfaces are the standard aircraft type: an elevator, ailerons,

S 'and a rudder. A down elevator is assumed positive, and it produces a negative
moment. Figure 11 shows the effectiveness factors of the control surfaces. A
0.5 effectiveness factor,da t /d Se, is pr'wided by an elevator area of about 0.35

Vi" for an aspect ratio of 7. The factor depe,,ds somewhat on the gap and the type of
seal in addition to the aspect ratio. In general, the variations are not large. The
lateral controls are the ailerons and the rudder. Positive aileron, defined as

motion that lowers the right wing, corresponds to right aileron up. The ailerons
operate differentially in that when the right aileron is up, the left aileron is down.
Positive rudder, defined as rudder to the left, produces a force in the positive
Y direction. The ailerons extend over 0.7 of the depressor wing span, the ratio
of the chord of the aileron to the chord of the wing being 0.3. This produces
a value of 0.6 for C8a, the aileron moment coefficient. The values of this
coefficient vary from zero to about 0.7. The ratio of r,.,ader chord to vertical-

tail-surface chord is chosen to be about 0.35 for a 0.5 effectiveness factor. The
tail surfaces should have aspect ratios of about 3.

For a left turn, the tow body with positive or left rudder requires positive
ailerons to balance the centrifugal force. Positive aileron lowers the right wing
and requires positive or left rudder. For Body A' (positive dihedral coefficient),
Cgr, the rolling moment coefficient due to rudder, opposes the proper bank
angle; and Cn8a, the yawing moment coefficient due to aileron angle, helps the
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Figure 11. Effectiveness of control surfaces.



"-oper-tum. For Rody-A (negative dihedral coefficient), Cf 5r helps the proper
.- nk angle whi!- Cnb, helps complete the turn. For a 300-foot turn radius of
-BodyA, the centrifugal force is about 1155 pounds and requires a bank angle of
about4.73 degrees.

In addition to Bodies A, A', and A", a light body designated Body I and
-a heavy body designated Body II were analyzed for a towing speed of 45 knots
and astraight, level path. The numerical parameters of Body I are:

U 76 ft-sec S 3 ft2  m 10 slugs

,!yy 20 -lug ft2  TO  8400 lb t 6 ft
St  1-ft2  dz I ft dx 0 ft
q 5776 lb/ft2  c 81.85 degrees W-B 0 lb

The hydrodynamic coefficients for longitudinal motion of Body I are:

, 2a - 4 CZq - 2 CZS e -0.125

Ca -0.3 C . 3C -0.5M&. - 3 -o.5IjZ C -lI C~q -8

The transfer functions for Body I are shown in Appendix C. For Body II,
the numerical parameters and the hydrodynamic coefficients are:

,,.U? 76 Rt/see S 6 ft2  m 60 slugs

::!~,;l[y 1330 slug ft2  TO  14,00011b Et  6 ft

St  3 ft 2  dz 0 ft dx 0 ft

5776 lb/ft2  c 81.85 degrees W-B 0 lb

C C C~-0375" 'r. Cza - 4 Cma - 54 C2 e -0.7

Cma - 2 Czq - 9 Cm - 2.25
.' "'"Cza - 4.5 Cq - 108

The short-solution longitudinal equations of motion indicate the times to damp! t " to half-amplitude for Body I with the tie point at the e.g. to be 8.295, 0.01752,
and 0.007255 seconds. With the tie point 1 foot above the e.g., the damping
times of Body I become 0.05584, 0.02436, and 0.007342 seconds. For Body II
with the tie point at the e.g., the half-amplitude damping times are 18.15,
0.02128, and 0.04667 seconds. (The damping times for the short solution of
Body A were 0.866, 0.0368. and 0.0135 seconds,) These results show the
significant influence of the tie location on the dominant cable root. The light
Body I damps very rapidly for the dominant cable root because of the low value
of the coefficient Cmq , with the tie point above the e.g. The weight and thn
inertia are (optimistically) too small. The moment of inertia of Body II was
chosen to be very large. This affects the values of the nondominant roots,
increasing their value to about double those of Body A. Figure 12 shows the
analog computer solution setup for the longitudinal equations of motion for
Body 11.
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Figure 12. Analog computer setup for the longitudinil equations of motion (Body I1.
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TOW CABLE

Tow cables have been investigated by many, particularly M.C. Eames.
Figures 13 through 15, showing cablecharacteristics, are from a previous study
by the author. Figure 13 indicates that, at a ratio of thickness to chord of 0.25,

0.10-i

0.08

z

~0.06

0.04
oo0.04 o .p ,

0.02 .

10 2 4 *1 8 10 12 14 16 18

CHORD THICKNESS RATIO

Figure 13. Cable cross-section (frontal) area coefficient versus chord thicknessratio, fully turbulent flow.
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the cable drag coefficient based on the frontal area is 0.033. Table 3
shows the cable drag per foot at 45 knots for three drag coefficients and three
cable thicknesses.

TABLE 3. FRONTAL AREA DRAG OF CABLES

Cable Drag for a
Cable Frontal Area Drag Coefficient of:

Thickness (Inches)
0.033 0.035 0.040

0.375 5.51 5.84 6.68

0.600 9.53 10.11 11.%

0.700 11.12 12.79 13.48

The drag coefficients are based on a Reynolds number of 106 at normal incidence.
The drag under the varying conditions of actual motion will not attain the values
shown in the table. For a 0.6-inch thickness of optimum shape, the drag per
foot under operating conditions may be 11 pounds per foot or more. A 0.375-inch
thick, optimum-shape cable with dynamic stabilizers under operating conditions
probably produces a drag of 8 pounds per foot or more.

Figure 16 (A through H) shows the body depth plotted against depression
force for three depression force/drag ratios, for cable lengths from 500 to 900
feet, and for cable drags of 7 and 15 pounds per foot. For a cable drag of about
11 pounds per foot. a depth exceedin,' 400 feet is attainable with a 600-foot
cable length at 45 knots for a depresiion force of 14,0MX pounds and a 2000-
pound body drag. The attainable depth increases with the depression force, but
the required horsepoer to pull the body increases with the depression force
(fig. 17). About 1560 horsepower is required to pull a body with 2000-pound
drag at 45 knots if one uses a 600-foot cable with a drag of 11 pounds per foot.
Laminar flow cables are required for minimum drag and cavitation-free operation
at all depths at this speed.
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Figure 17. Required horsepower versus cable depression force; 600-foot cable.
2000-pound body drag, 45-knot speed.

NOISE CONSIDERATIONS
The tow body design must consider the random, statistical-type distur-

bances that are generated by surface activity and by the turbulent tow-body
boundary. The recommended tow cable design features small, streamlined cross
sections. The random energy generated in such a cable should be small, since
the boundary layer is laminar and no cavitation should occur.

Most of the tow body surface has a turbulent boundary at 45 knots. The
point of neutral transition to turbulence occurs at about 15 inches back of the
nose, while the self-excited transition point occurs at about 22 inches back of
the nose. The value of the broadband pressure for fully developed turbulence
at the surface can be estimated. The ratio of the broadband pressure to the
dynamic pressure of the flow is approximately constant at 0.0035 in most flow
conditions in both air and water. The power spectrum of this flow-noise energy
peaks at a particular value of the Strouhal number for both air and water at
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and turbulent flow over a flat plate corresponding to the Reynolds number at the
point; the Reynolds number can be obtained from figure 18. As an example,
assume the distance is 10 inches at 45 knots for 50F water. The Reynolds
number becomes 4.4 x 106. The boundary layer thickness is 0.17 inch. The
peak of the power spectrum should occur at 16,523 radians per second or 2629.8
cycles per second. A representative boundary layer thickness for Body A is
about 0.5 w 0.7 inch.

Random energy generated at the surface by ship's motion and wave motion
applies an input to the towing cable. The spectrum of this energy is probably
fairly wide-band. The w, ing cable conducts some of this energy dovn the
cable in the form of compressional and transverse waves, the cable acting as a
filter. The average input power to the cable is given by

P2Tr Ja

where 0(a) is the input power spectrum.
'1 he power output from the cable is gi- -n by

where G. is the transfer function of the cable.
If the cable is represented by a simple low-pass filter with a transfer function of

I + RCs

and the input power spectrum is white noise, the output power becomes

K
2 RC

where K is the constant white-noise spectrum.
The towing cables probably filter out much of the input surface energy

even at frequencies below 10M0 cycles per second.

RESULTS AND CONCLUSIONS
The following results and conclusions are based on a mathematical

analysis of the motion of underwater towed bodies:
1. A practical tow body, designated Body A, was designed. The maximum
diameter is 30 inches, and the main-body length/diameter ratio is 2.7.
2. The tie-point location was shown to be important to the body's stability.
It should be forward and above the body's center of gravity,
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3. The hydrodynamic coefficients can be predetermined to a fair degree ofI; -'accuracy. A mathematical model can be set up which can be checked on analog
= • or digital computers.

4. The most important parameters determining the dominant, characteristic
equation roots for both longitudinal and lateral motion are the cable tension and
the damping coefficients, Cmq and Cnr. The root values determine the body's
stability and transient response.
5. The body drag is an important parameter determining the required towing
horsepower and the attainable depth. The total body drag is the sum of the drags
due to the main body, the depressor wing, the tail surfaces, and induced drag.
Induced drag is a considerable portion of the total drag. The minimum attainable
drag under idealized conditions is probably about 1750 pounds at 45 knots.
6. Tow bodies can be easily designed to have longitudinal and lateral
dynamic stability. The hydrodynamic coefficients have the major influence on
the roots of the characteristic equations.
7. The tow bodies without automatic controls are "Type 0" systems. They
follow step inputs of the control surfaces with a following error.
8. The depressor wing area should be sufficient to produce high depression
forces at low value of lift coefficients. Low lift coefficients and high aspect
ratios reduce the induced drag.
9. A depressor-wing dihedral angle is required if the tie point is at the body's

-center of gravity. A negative dihedral coefficient is more favorable than a
' positive coefficient in its effect on the dominant cable root. A better lateral

control system can be obtained with a positive coefficient.
10. In choosing the tow body construction materials, one should consider the
pressure fluctuations of random flow noise.

A 11. The control surfaces can be designed with sufficient area to provide an
acceptable degree of control effectiveness.
12. Control systems greatly improve the transient characteristics. The stability
and damping can be favorably changed.
13. A longitudinal control system is presented. This system, in addition to
holding the tow body at a commanded depth, improves the damping and stability.
14. A lateral control system i8 presented. This system improves the stability
and damping, coordinates the rudder md ailerons so that no skidding occurs
during turns, and provides a yaw-rate directional control for the tow body.
15. Intercoupling of the longitudinal and lateral motion is very small even
without automatic controls. Roll damping of the tow bxly itself is excellent.
16. Turning is considerably aided by the introduction of turn coordination.
The required bank angle is less than 5 degrees for a Ml0O-fot-radhus turn for
Body A at 45 knots.
17. Flow noise study indicates a broadband pressure of 80 dB above I dyne
per cm2 in the turbulent boundary layer of the tow xly. A nondimensional power
spectrum curve is presented. The frequency at which the power spectrum peaks
depends on the speed and the boundary layer thickness. Nomograms are
presented which can be used to estimate the boundary layer thickness.
18. The streamlined towing cable attenuates much of the higher-frequency
random energy travelling down the cable, particularly for transverse modes.
19. The attainable depths and required horsepower depend primarily oi.
towing cable. The tow body's depression force/drag ratio must be large.
Small-cross-section, laminar-flow streamlined cables are ,-equired for the low
drag per foot, and for the prevention of cavitation at all depths.
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I) A STRACT

A general design procedure was originated for towed underwater bodies, based
on the longitudinal and lateral dynamics. A practical design was worked out for
a specific body to be towed at 45 knots. Characteristics that have a major influence
on towed underwater body design are the hydrodynamic coefficients, the damping

coefficients, the body drag, the cable tension, and the cable tow-point. The
attainable depth and required horsepower depend primarily on the cable, which
should be of small-cross-section, laminar-flow streamlined type. Automatic
longitudinal and lateral control systems are desirable.
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