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PROBLEM

Investigste theueetically the dynamic cheracteristics of underwater
bodies towed at spaeds of about 45 knots. Specificaily:
1.  Devise a geaeral procedire for designing towed underwater bodies of
optimum dynamic periomance.
2. Present e practical design fulfilling the desizn requirements.
3. Design sysiems for sutomatic contro! of both longitudinal and Isteral
motion.

RESULTS

i.  General guidelires for the design of an underwater towed body were derived
from an analysis of the pertinent hydrodynamics.

2. A practical tow body was designed. For a speed of 43 knots, the maximum
dismeter is 30 inches and the main-body length/diameter ratio is 2.7.

3.  The cable tie-point location has a great influence on the body's stability,
and it should be forward and above the bedy’s center of gravity.

4.  The hydrodynamic ceefficients can be predetermined by means of a mathe-
matical model which can be checked on analog or digital computers.

5.  Importent parameters determining the dominant characteristic equation
roots for longitudinal and lateral motion are the cabie tension and the damping
coefficients.

6.  Tow bodies can be easily designed to have longitudinal and lateral dynam-
ic stability.

7. Automatic control systems are desirable, and proposed systems are
described herein. An automatic longitudinal system can hold the tow body at a
commanded depth and improve the stability and damping. An automatic lateral
system can improve the stabiiity and damping, coordinste the rudder and ailerons,
and provide a yaw-rate directional control.

8.  The attainable depth and required horsepower depend primarily on the
towing cable and on the body drag. Small-cross-section, laminar-type streamlined
cables are required to achieve low drag and to prevent cavitation.

RECOMMENDATIONS

1. Consider the use of the hody designated Body A** in this report, as a
practical tow body.

2. Use the design procedure outlined herein to design additional tow bodies.
3. Consider incorporation of the automatic control systems proposed in this
report in tow body designs, and consider development of the necessary hardware.
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INTRCDUCTION

This report covers a studv made to originate (1) a general design procedure
for towed underwater bodies. and (2) a practical body and cable design. The
body and cable should be such as tc enable a high-speed surface craft to drag
a specified load at a specified depth. If # sufficiently iarge horsepower were
available at the surface craft, the load could be towed at the specified depth and
speed by any stabie cable of adequate length. In actual peactice, it becomes
necessary to optimize tae cable and body design so that (1) the power require-
ments are minimun, (2) the o, “tem is stable so that the body stays down at the
prescribed depth, and (3} the transient cheracteristics are satisfactory.

The cable design has to be closely related to the towed-body design. The
cahle influences the body dynamics, changing the motion modes from those of a
seif-propelled body; and the dynamics are also significantly dependent on the
location at which the cable is attached to the body. Cable requirements ace
statistical and dynamic stability, minimum drag, no cavitation effects, low
vibration, and low transmissicn of random energy such as noise.

The dynamics of the body control its stability and transient characteris-
tics. The dynamics can he treated by application of Newton's second law of
motion, since the acceleration of the body is resisted by hydrodynamie forces,
body weight, buoyancy, and cable tension. The hydrodynamic forces can be
defined in terms of hydrodynamic coefficients that depend on the shape and
proportions of the body. These coefficients can be approximated for a given
body. and thus be used to form the basis of a design procedure. The
coefficients and the effect of varying them are examined in detail in this
report.

One of the most critical design requirements is minimum drag. The ratio
of the depression-force-needed-to-hold-the-body-down to the drag has to be made
larger as the depth increases and as the towing horsepower decreases.

The maneuverability of the surface ship with its towed load probably is
determined principally by the ship’s characteristics. In this report we examine
the desirability of automatic controls, and propose both longitudinal and lateral
control systems. The longitudinal system tends to hold the towed body at
commanded depths. The lateral system coordinates the rudder and ailerons and
controls the yaw-rate orientation. These systems improve the stability and
damping of the towed body.

Structural vibrations of the cable and body are mainly randomly excited.
One major source of vibration is the turbulent boundary-layer energy around
the body preduced by its high-speed motion through the water. An elastic
cable, and a compliant surface on the body, can act as filters and attenuate this
random energy.

DYNAMICS ANALYSIS

The dynamical properties of the tow body can be explained by the six
equations of motion that express Newton's second faw. Three of these equations
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equate apolied force to the rate of change of linese momentum with time in the
three space directions. The other three equations equate applied moment to the
rate of change of anguiar momentun with time in the tree space directions.
Although these equations apply to a body moving with respect to fixed inertial
coordindes, the mathematical solutions can be simplified by a transformation to
2 system of moving cocrdinates that are instantaneously related to the body. In
such a system, the moments of inertia become independent of time. The relation-
ship between time derivatives referred to fixed inertial axes and those referred to
moving axes is given hy the eguation

d cld Xv '
—— T e— +w :
d‘ﬁxed d‘moving rotatior.

where V is o linear velocity

wis an angular velocity

The moving axes consist of the Cartesian body axes instantaneouely fixed in
space according to instantaneous body position. The derivative term is position~
fixed, and then the rotation term is orientation-fixed. The time derivative of the
body velocity referred to the moving ares appears as two terms, one accounting
for translation and the other for rotation. The equations of motion when written
in the Bulerian moving-coordinate form are given by the matrix equations

{F}=m{-§: ' eoXV}

dH
{M}-—{-:i-t- + wXH

where F is the applied force column matrix
M is the applied moment column matrix
H is the moment-of-momentum matrix, fo
1 is the moment-of-inertia matrix
w i8 the angular velocity of the body

Six Eulerian coordinate transformations relate the space orientation of the
moving-body set of axes to the orientation of the fixed inertial set of axes,
through three angular rotations. For our purpose, the standard aircraft transfor-
mations of yawing, pitching, and rolling have been chosen (fig. 1). These
transformations are given by the equation

xt lcos 9 cos ¥ cos O sin ¥ -8in 6 x!

yixising sing cos ¥ singsin@ sin'¥  singpcos 8|.lY
—~cos psin ¥ + cos gcos ¥

2} tcospsinBcosY cospsingsiny  cos gcos 2
+sin psin ¥ ~sin pcos ¥

(Body) {inertiai)
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x' y° 2" INERTIAL SET
x, y, 2 MOVING-BODY SET

FIRST, POSITIVE ROTATION ABOUT 2" FOR w ANGLE
NEXT, POSITIVE ROTATION ABOUT LINE OF NODES FOR 8 ANGLE
FINALLY, POSITIVE ROTATION ABOUT x FOR 9 ANGLE

Figure 1. Coordinate transformation from inertial Certesian set to moving-body Cartesian set.

where x, y, z are the moving-body set of coordinates
x',y',2' are the inertial set of coordinates
Y is the Eulerian angle through which the inertial set is yawed
6 is the Eulerian angle of pitch following yawing
9 is the Eulerian angle of roll following pitching
The vector angular vejocity of the moving body is the sum of the Eulerian
angular velocities. The yaw rate has cemponents ‘referred to the moving axes
x, y, and z equal to - sin 8, ¥ cos 6 sin @ and ¥ cos 8 cos ¢, respectively.
The pitch rate has components referred to the y and 2 axes and equal to 6 cos ¢
and -9 sin ¢, respectively. The roll rate occurs about the moving x-axis and
has only an x compcnent, Thus, the vector angular velocity whas x, y, and z
components designated p, ¢, and r, which are, respectively:

p=$-"Psineg
q =5cos+4’cosesin¢
r =*{'/cosecos¢-—(.) sin ¢
The geometry of a moving submerged body can be described by the use of
the two sets of Cartesian axes. The inertial set is chosen so that the x- and

z-axes are horizontal and the positive z-axis points downward. The moving-body
set is chosen so that the positive x-axis points longitudinally toward the nose,
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the positive y-axis to the right-hand side in the direction of motion, and the
positive z-axis downward as in a right-handed set of Cartesian axes (fig. 1).

The six equations of motion can be separated into two sets of three
equsations each, one set defining the longitudinal motion and the other the
lateral motion. Longitudinal motion consists of motion in the x-z plane and
pitching about the y-axis without coupling energy into side motion, yawing
motion, or rolling motion. Longitudinal motion is defined by the force equations
in F, and F,, and the moment equation about the y-axis in M. The yaw and roll
rates, and the side-slip velocity, are assumed to be zero. The lateral motion
is defined by the side-force equation in F,, and the yawing and rolling moment
equations in N and L. The pitching moment about the y-axis is assumed to be
zero. The longitudinal and lateral sets of equations are:

Longitudinal

SAF, = mlu + wg!

SAF, = mlid - Ugg)
2AM = Iyyq = Iyye
where ZAF_ is the sum of the differential forces from the equilibrium condition
in the x-axis direction
is the sum of the differential forces from the equilibrium condition
in the z-axis direction
m is the body mass
is the body moment of inertia about the y-y axis
is the velocity change from the equilibrium condition in the
x-axis direction
w is the velocity change from the equilibrium condition in the
z-axis direction
Uy is the equilibrium velocity in the x-axis direction
q is the angular velocity change from the equilibrium condition
about the y-axis of the body, 8
ZAM is the total differential of moments about the y-y axis

ZAF

2

yy

&, "~

Lateral
ZAF = mld + Uy)

ZAL =Pl ~Td,,
SAN =, - pd

X2
where EAF’, is the total differential of side forces from the equilibrium
condition
ZAL  is the total differential of rolling moments from the equilibrium
condition
ZuN  is the total differential of yawing moments from the equilibrium
condition
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is the roiling angular-velocity change from equilibrium
is the yawing angular-velocity change from equilibrium
is the moment of inertia about the x-x hody axis

is the moment of inertia about the z-2 body axis

is the product of inertia about the x and z body axes

The above equations have been written for smali perturbations from the equilib-
rium condition of straight-line, constant-speed, level motion. The total
differential of the forces and moments from the equilibrium condition balances
the change in momenta from their steady-state condition {following the treatment
used by Bryan and Williams in their 1964 aircraft stability analysis). The steady-
state terms which balance one another across the sides of the equafions have
been eliminated.

Figure 2 shows the gecmetry of a cable-towed underwater body in longi-
tudinal motion in the x-z plane. The cabje tow point is above and ahead of the

FINAL
INITIAL MOTION =

CABLE

TiE POINT

X

C.G. g¢=6
FINAL
LIFT CHORD INITIAL , = 8-
a =05 +a’
8 IS CHANGE IN BODY ATTITUDE ANGLE LA
8, IS INITIAL CABLE ANGLE U

ag IS INITIAL ANGLE OF ATTACK

Figure 2. Motion in the x-2 longitudinal plane
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bodysmdmxty The squilibrium condition is taken to be horizontal
motion; m&)d)seeuuotpwiwmdcadetof&oymcymusmedtobe
at the same point. The Jongitudinal equations of motion written in terma of the
hydrodynamiz= force and moment differentials ahout the body’s center of gravity
heconef«thexm-pomm

aF aF of_, oF ar_.
) el 37 e (0§ e} 4 + = mlif ~ uql
BB = S e S St O P

where %fiu is the force differential with forwaed velocity
u

bl is the other appiied force due to the cable and the controls

za
oF, . . e x . .
-5-; w is the force differential with z-axis velocity

In the equation above, the total differertial is the sum of force differen-
tials due to forward and dewnward velocities, force differeatials due to atiitude
angle and angular velocity, and force differentials due to the cable and towbody
control surface. Each term is in units of force. The terms are divided by a
quantity with the dimensions of a force to make each term nondimensional. All
the independent varisbles of the equation themselves are divided by a quantity
of the same dimensioas as those of the variable, and the derivative multiplier
of the variagble is multiplied by the same quantity. Thus, the equation can be
expressed with nondimensional independent variables multiplied by nondimen-
sional derivative multipliers:

U w UFow U WL 1

ST du U Sf ow U SF v ¢ U 2U S7 o8
p LW e Py Unfi
S§ ¢ D W & Sg\U U

w
where TJ. is the change in angle of attack ‘a

u
F is the nondimensional forward velocity

S is the lift surface area

7 is the dynamic pressure defined by 1/2 pU2 p being the fluid mass
rer unit volume and U the forward velocity (the dimension of dynamic
pressure is force per unit area)

¢ is arepresentative length, the lift surface chord

U is the disturbed forward velocity: the sum of the equilibrium velocity
Uy. and the velocity variation u

e

kg
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The vondimensional independent variables can be writies in a condensed form:

u i . &
2 - e = e g e
u U

HYDRODYNAMIC COEFFICIENTS

The nondimensional derivative multipliers are known: as stability deriva-
tives or hydrodynamic coefficierts for underwater bodies. They are writfen with
& capitel C, subscripts indicating the particular equation of motion and the
particuler independent variable. These ccefficients are neasly constant over
wide ranges of speeds. Their values depend on the lengths and areas used in
defining them. Sometimes, the maximum cross-sectional aea is used, but
lergths raised to powers are usually employed with underwater bodies. The
water mass density does not always feature in the definition. Here, the aircraft
definition with lifting surface area and chord is adopted, because of the many
experimental data available for airplanes. Coefficients for air and water agree
in value. when defined by the same terms. The hydredyramic coefficients sur
the x equation of Jongitudinal motion are as follows:

C.;-_{.]_Cl{‘:z ' :-l—]-zﬁx
xu ﬁ"au xx ﬁaw

U F
c.=2 4 ¥, c. =L 2 &
XX &G ¢ ow M 8§ c o6

Hydrodynamie coefficients can be ignored if they represent small differen-
tial force components that oppose the change in momentum, The "ydrodynamic
coefficient for the x component forward-velocity-derivative variations is smali
for streamlined hodies with a large enough length-to-diameter ratio. This
coefficient is called the virtual mass effect and represents force due to the
change in momentum of the displaced water mass.

The hydrodynamic coefficients can be estimated with reasonable
accuracy, and they can be used as the basis of the design of an underwater
towed body. Here, the nondimensional coefficients are given per radian angle,
also a nondimensional quantity. The longitudinal coefficients whose magnitudes
are large enough to affect the cynamics significantly are listed in table 1, along
with their definitions, simplified formulas for evaluating them, and typical
numerical values for aircraft:
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TABLE 1. LONGITUDINAL HYDRODYNAMIC COEFFICIENTS

Y

. L3

]

H

)

| {
H

{Contirued cc page 13)
Coeflicient; Definiticn Formuls Aircrait
Typica! Value
U oF, Cp
: = 57 | Wp-U7 -0.05
Cu 59 2w 2y du
dF
Om (12 g  Zo 0.1
5 dx da
U oF oC
¢ == ~2¢;, -¢ £ 5.5
U & au L b‘u
1 oF aC
¢ === |~-%p-= ~4.0
e Sq da D™ aq
C _].'-22.67}?& « f_x_ﬂ 292!:‘" s! 4 ., -20
&9 Sg ¢ 96 du, dw, c S g
P I P AT
e Sqg ¢ 33 doda do, ¢S q da
1 oM {dC,) ac, x
C Sy )= 2
me S¢¢  da \da da
_(1_15_) a__..CL' fi .S.£ k3 0.3
da/ da, ¢ S ¢
cp |LEH [ Ll L
me Sgc ¢ da da, da ¢
=2 w“(ﬂ)z Soa -3.0
da, \¢/ S q da
12 | e, t
e e TUF|XE T
2
2K i (.?_‘) E‘.&. -8.0
a, \e/ § q
co (LMo (o e b Sia
1 oF c
— 7 0.
C25e Sq as e Cmsc 3

t
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TABLE 1. (Coetinued}
Symbols are as follows:

is the 1ift surface ares

is & numerical factor that compensates for the remainder of the body,
usually neariy equal to 1

is the horizontal {ail area

is the distance between the body's center of gravity and the quarter-choed
of the tail area

is the tail surface angle of attack

is the downwash angle at the tail*

is the dynamic pressure of free flow

is a subscript indicsting the control surface

mo xRt

L

”~

AR " N

*The downwash effect can be computed {rom the equation

de _ 20C _
da  me da AR s
¥ 4
where e is an efficiency factor %@1
AR s the lifting-surface aspect ratio “is
The lateral hydrodynamic coefficients whose magnitudes are large enough '
to affect the dynamics significantly are listed in table 2, along with definitions,
approximate formulas, and typical numerical values for aircraft: N
TABLE 2. LATERAL HYDRODYNAMIC COEFFICIENTS .
{Continued on page 14) ¢t
. Aircraft
Coefficient| PDefinition Formule Typical Value
1 o t
Cp | = S iR ~0.05
Sqb B 57.3 6a b8 !
c 1 2U 4L . .
tp TS e function of AR and wing shape -0.5
I 204L |C,*
Co, | —— | 0.05
Sgb b or 4
o, | LA %y a S b o
B 1S 3 %, q 5 b
1 2UaN | -C, ¥ de
C — e L -— ~{).
np Sgb b adp 8 ! & ) 0.01

3




TABLE 2. (Continued)

Aizcraft
Coefficient | Definition Formula Typical Value
1 WaN | -¢p” S [t )2 éac
C e D__ o fhev) “MLo
mo ISE Do | T4 S b/ -0l

¢, | L [ as
B

S B  |d, a S
Cysr _lg 6:;: g c 5 .&.‘;:B.. 0.2
Cs, ?q% ?6‘,“ Cop -d—?r— -0.1
Cs, -53,-; z:r“ i" Cé’i’ 0.01
Cgsa gq!-l;' ZI;: function of AR, aileron location, 0.6

and chord ratio to wing chord
1 N, -C,, Cts,
a Sgb b B Cyp

-0.015

a

Symbols are as follows:

b is the lift surface span

r is the dihedral angle in degreces

y is the distance from body center along the wings to the center of pressure
of each wing

S is the area of a wing with a dihedral angle

is the area of the vertical tail surface

is the moment arm from the vertical tail quarter-chord to the body’s

center of gravity

Cy is the side force coefficient

| is an efficiency factor

F_ _ is the side force due to the control surfaces

N is the yawing moment due to the control surfaces

L

a
o s the rolling moment due to the control surfaces
8, is the rudder deflection; positive rudder causes positive yawing
8, 1is the aileron deflection; a positive aileron deflection causes a positive

rolling moment

Approximate equations for the lateral hydrodynamic coefficients can be
formed from the approximate formulas given in table 2 if the values of the nearly
constant quantities ar. taken as:
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JCc aC
...E.uos,q:l‘.g!. :1,_& :2'._.141»’ =2
q o, da
On the basis of these values, the lateral hydrodynamic coefficients become
(approximately):
-r .. c
Cep = 5 Cp, =-05 (AR =5, elliptic) Gy, = —f
- Slu Ew — CLw - Slu(etv ¢
w5y et Car= =475
c =2-§ﬂ’- Cr =-05C C,.=-05C
B S ¥5, VB nd,  Yap
c, ¢ -C, € |
0s =l "% Cp = 0to about 0.6 C,p=—k L ,
(2 4 C, a a 8 Cgp '

LONGITUDINAL EQUATIONS OF MOTION

The longitudinal equations are defined by the force equations in F, and F,, LT
and the moment equation about the y-axis in M. The force equations are:

ZAF m(t + wq)

X

ZAF

2

For the towed underwater body, force differentials with the body attitude
angle arise because of body weight and buoyancy and because of the tow cable.
Figure 3 illustrates the resolution of the weight and the buoyancy forces in the
body axes. The center of gravity (c.g.) and the center of buoyancy are assumed
to be coincident. The x and 2 force components are then given by

ng = ~(mg ~ B)sin 6

F“ = (mg - Bicos 8

where mg is the body weight
B is the body buoyancy
The changes in these forces with attitude angle are given by the derivatives:

16
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Figure 3. Weight and buaoyency resolution.

aF
3 G“‘ = ~(mg - B) cos 8
JF
-ae—"'f = —(mg - B) sin ©

The tow cable produces differential forces in the x and 2 axes:
AF p =Tcos g, + Tjsing 6

AF . =-Tsin 6, + Tycos § 8
where T, is the undisturbed cable tension
T is the differential cable tension
0, is the undisturbed cable angle
6 is the change in attitude angle

A differential moment is produced about the y-y axis due to the changes in
attitude angle and cable tension:

AM = =T cos ecdz + T sin ecdx - 7‘0 sin ecdze - ’I‘0 cos § dx ¢

where dx is the distance the tie point is ahead of the body's c.g.
dz is the distance the tie point is above the c.g.

The Laplace transformations of the small perturbation equations of motion
can be written in terms of hydrodynamic coefficients that are the force and
moment derivatives of changes in angle of attack, changes in attitude angle,
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&nd changes in forward velocity. Their first-order time derivatives become for a
cable-towed underwater body with elevator control:

x force equaiion "
Ta - i
mls =l W-B c To . i
. S Cxu)'“ +€2—ch&3-€“ 'cx+-s—5-(c059)6 + 5 Cxqs—--;s-q— sin§, )0 ,
1 anG :
=— cosf, +— ——F
e ¢ Sq ase ¢
g g
A
z force equation
miy ¢ -mU ¢ 1 :
~C, ut {{— -~—Cds-C, }'at||] =—~—C, |s— = Tyeosd
2u za 2a 2q 0 ¢ “y
Sq 2U S¢ 2U Sq Ty
F '
1 =T 1 25
+—W-Bsin 6)0 = —sinb + —— §,
Sq S S 95
y moment equatinn
- 1..s2 ¢ T T :
-C ‘ul— ¢ s~ ' y» o _ 20 o 0
Cou't 0 Cras Cm()od Sec 20 Crgs * Sac sin 8 dz +§; cos 6 dx) 6
! T cos 6 dz + Tsing dx)+ . -6—515-56
S anmmmn | = COS 2z sin X S—
Sc\ . 0 )" Sqcas, °

These complete longitudinal equations of motion can be simplified if the
variations with forward-velocity fluctuations are not significant, as may be the
case in constant-velocity towing. The motion can then be described by the R
z force and the y moment cquations, with 'o and 6 as the independent variables:

2 force equation

ml ¢ , -mU ¢ 1 1 .
E;-_éz’- Z& S-Cza(x + Sq -‘2—"Uczq 5'—'8—(1' TOCOSQC‘}'S—q'“LB Slllece
dF
-T 1 2
= — sing + — —F
ing, S¢ 55, ¢

17
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y moment equation

! T T
(:;U- Cp3s — Cm> u‘(—s%szn-z% Cpgs —s-‘-lg; sin@ dz + -éz% cosacdx)e

_1 ) 1 M,
--S;c —Tcosacdz+'1‘smecdx S;;'—(;g; 5,

LONGITUDINAL EQUATIONS FCR SPECIFIC TOWED BODIES

For this report, three specific underwater bodies were quantitatively
studied. A design parameter basic to all three bodies is & 30-inch maximum-
diameter croas section Below we detail the analysis of a body designated
Body A (fig. 4),using both the complete longitudinal equations and the short
equations (for insignificant forward-velocity fluctuations). For the analysis,
the body is assumed to be towed at 45 knots in a straight-line, level path. The
numerical parameters for Body A are:

U =76ft/sec S =62 m =60 slugs
l,, =400 slug-ft> T =14,000 ib £, =6ft

x' =6.8 inches dz = 1.167 ft dx =0.167 ft
S, =2ft? 8, = 81.85 degrees W-8 = 500 1b

g =5776 Ib/ft?

The hydrodynamic coefficients for longitudinal motion can be obtained
from the approximate formulas given in this report. Based on the body param-
eters, the coefficients become:

x' £ 8
C,,=~Cp =-0.12 C e =4—c- ~1.5:}-8-‘=-0.7333
- - - [’12 Sl -
Cz"--CL-O.S Cm& - - (——c- -§— =-36.0
- .I?E 2 Sl -
Cxu-cl =-04 Cmq = (—-; -§- = -72.0
i, |, S
s TSk =40 Coms --15-—CL§'- =-3.0
Cpm-3—2 2L =60 Cpg = C
i s, *f Cnp, =05
C :—6&-5-&:—120
2q c S
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Figure 4. Form of Bodies A, A", and A” (dimensions in inches),
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and x' is the distance by which the lift-surface quarter-chiord is ahead of
the c.g.

g, is the dynamic pressure at the tail

5, is the angle of deflection of the elevator {taken positive for downward
deflections)

SMis the static margin (or the chord ratic) by which the c.g. is ahead of
the neutral point

Approximate design equations can be derived by using values near the
following for some of the quantities that do not vary greatly from design to design:

aC
—-=05.K*10,-—-‘—=05,-9-'—=10.—'-‘ = 3.0, iC—-" =4.0
d e g aa, Jx

Based on the preceding approximations, the longitudinal hydrodynamic coeffi-
cients Lecome:

Cog =6 E‘- %_ Caa = —3%% Cru=-2Cp
Cnq =6 25)2_2_‘ Cni = _3(%)2 %‘— Ca=CL
Ces, " _fg7 Cs, Crs, = .»1.5{-' % c,,=-2C,

‘Ihus, most of the longitudinal hydrodynamic coefficients are functions of
the moment arm from the quarter-chord of the horizontal tail area to the body’s
center of, gravity and of the ratio of the size of the horizontal tail area to the
lifting-surface area. The magnitudes of the approximate coefficients agree fairly
well with measured values. The approximate design formulas are based on
assumed values such as 0.5 for the slope of the downwash angle with angle
of attack, d: /da. This value can be diminished by raising the tail.

Below are given the complete longitudinal equations of motion for Body A,
with numerical values of the coefficients inserted:

(0.131585 — 0.12) 'u + (0.4) 'a + (~0.29405)8
=4.0830x 1076 T
(~0.8) 'u +(0.17105s 1 4.000) '« +
=-2.8564%1075T —0.58,

(~0.05263s - 0.057162) ©

e e e e A Bl o .
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(0) 'u+ (0.23684s + 0.73333) 'a+ (0.01154252 + 0.47368s + 0.36943)%8
= -3

e

The solution of these equations of motion for the homogeneous case of no
right-hand applied terms gives transients of the same exponential form for ali of
the independent variables ', u, and 8:

P Sof Sat 8.l
u=Ae V +Be 2 $Ced + Deé

where A, B, C, D are constants.

The quantities sy, sy, 3, 54 are the roots of the characteristic equation,
which is the polynomial equation in s obtained from the determinant of the
coefficients of the independent variables of the homogeneous simultaneous i’
equations. The value of the determinant is zero if the transient solution is to
exist. The roots of the characteristic equation must be negative or have negative
real parts for the transient solution to be stable. Stability can be indicated by
the Routh Hurwitz method without solving for the roots. Solution for the roots )
directly indicates the stability of the solution. Graeffe’s method is an accurate b
and straightforward means of solving polynomial equations. It is based on raising -
the polynomial to higher powers so that the roots separate.

The characteristic equation for the complete longitudinal equations of
motion for Body A is a quartic:

s34 71.649 s° + 1096.8 s2 + 2496.2 s + 1821.1=0

The roots of this equation obtained by Graeffe's method are a pair of negative
real roots and a pair of complex roots with negative real parts:

$, = ~51.14
S = -17.56

sy = =1.28 — j0.63
s, =—1.28 + j0.63

The complex roots represent a damped sinusoid. The complex pair can be .
written as a quadratic equation in terms of the natural frequency, «,, and the
damping ratio, {:

32+2(m"s+r.o"2 =0

For Body A, the natural frequency, wy,, is 1.408 radians per second and the
damping ratio, {, is 0.9055. The complex terms damp to half-amplitude in the
time

0.693

{on

T= seconds
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The real root transient terms represent pure exponentisls and damp to half-
amplitude in the following time:

¢.693
root value

T= seconds

The time to damp to half-magnitude for the complete longitudinal equations for
Body 4 is delermined by the smallest of the two real root times {0.0136 and
0.0385 second) and the compiex root time (0.544 :  .nd).

The short solution of the loagitudinal equations ignores the u velocity
fluctuations and is determined by the z force eguation and the y moment equation.
The characteristic equation is a cubic and becomes, for Bedy A,

s3+70.738 s2 + 1018.12 s + TE9.7:65 =0

The roots of the cubic, obtained by Graeffe’s method, are
sy =~51.18
S, = ~18.82
553 = ~0.80

The transient solution is again stable but consists of three pure exponential
terms. The time to damp to half-amplitude for the three roots becemes 0.0135,
0.0368, and 0.865 second. The values of the first two are nearly those of the two
large 100ts of the complete solution. These two are related to the short period
times of aircraft. The third root, resulting from the cable, is the dominant one
and determines the body damping. A study of the characteristic equation of the
short solution shows that the dominant or smallest root is approximately given by

T
[_Qsme dz + --cosa dx]
ch‘ .)0'

70 Cno

The dominant cable root can be increased (damping time reduced) by increasing
the cable tension (depression force). The cable tie point should be in the same
direction as the depression force-drag ratio of the bedy. The tow point should
be ahead and above the center of gravity of the body. The pitch-damping hydro-
dynamic coefficient should not be too large. Increasing the tail length increases
the damping time of the dominant root.

For Body A, the time to damp to half-amplitude is larger with the short
solution than with the complete solution. Introducing the x equation of motion
makes a complex root of the dominant short-solution root. An approximate value
of the time to damp to half-amplitude can be obtained from




0.69x2xm8}C_C ¢

2" mq
Se U
mlU T, . Te c
-S_q-‘ cza(g}fsm e.dz + S_(;; cose:dx)‘!' Cz:;czc E Cmq + Cxaczu‘zsv‘ Cma

‘This formula agrees with the shori-solutien apcoximation in that it shows the
desirability of dacreasing the pitch-damping hydredymamic coefficient and
tncreasing the depression farce in oeder to decrease the fime to damp to half-
amptitude. The damping time is alsc decreased by increasing the drag and lift
cacfiicients of the body.

LAPLACE TRANSFORMS OF LONGITUDINAL EQUATIONS

The Laplace transiorm equations of motion under applied forces are
simultaneous linear algebraic eqeations that can he expressed in temms of the
indeperdent. variables by matrix inversion. They can be algebraically solved by

Cramer’s rule:
LT
= I

where {} is the column matrix of the independent variables (4, ', 8)
[C1T is the transpose of the matrix of cofactors of the hydrodynamic
coefficients
|} is the determinant of the hydrodynamic coefTicients
{r} is the column matrix of the applied forces

Transfer functions are the ratios between the independent variables and the
applied-force variables obtained from the simultaneous transform equaticns.
These s-plane variations of the independent varjables 'u, 'a, and 8 with
changes in the elevator angle and the cable tension are given for Body A by
the following equations:

90676 x 1072} —— +1|[— + 1}j— +1
'« 6748 jl1.00  }{0:84
—5-— - § ( s V S?
¢ +1 +1” +1.286s+1]

[51.14 ]b'l.% 19833

12639 x 1077 f——# 1f|——+ 1 || +1]
‘o 2025|080 Jj0o0s

T s 1o +1]
51.14 796 Hiesss ~ °°

Fed r:‘mm\wm“‘ "

-“\3(
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35055 % 105 | —— ¢ tfl— # Hl——+ 1
4795 j|38.49 - JjLi2

.u -
— = S r 32
T 54y +1 +1.2865+1
51.14 ][17.96 ]1.9&33 ° ]
~4.9980 |— +1 +1
8 [28 81 ][1 575 ]
S

s 1073 2 5 ]
2.5089 x 10~5 | +1 +1
[3.056 ~ J{o.043

e -

T S siljl=— 1 * +1286s+1
51.14 17.96 l1oasg o0

""38[ S| | M

oo 01430 ][25.69 - ]

-5-—- - S S 82

e +1 +1 +1.286s +1
51.14 17.96 1.9833

In the transfer functions above, the tension change T is in pounds, the
velocity fluctuation v is nondimensional, and the angles are in radians. The
Body A transfer functions for the complete longitudinal equations are shown in
Appendix A, and those for Body A* (with the opposite dihedral angle) are shown
in Appendix B.

The short-solution transfer functions for Body A are also shown in
Appendix A. The s-plune variations according to the short solutions are:

S S

023440} —— + 1} —— +1

‘a 344 [67.43 ][0.916 ]
-‘; - [ S s s

¢ + 1 +1 +1

{ 5118 18 82 0.80
0.60440 x 1( =5 | =S 41| —— #1
g o 10.24 0.796

T $ S s
+1 + i l— 43
[51.13 ][18.82 ][0.80 ]
7.6538] ~—— + 1
B BT

S S S
+1 | —+1
[5L18 ][18.82 ]o.so ]
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Examination of the complete-solution and the short-solution transfer
functions indicates that there are two basic types for each solution:

Complete Solution

2
S -i-alsi-a0

(s+y) (s 451 s +w? +p?

s34 ays + a,s + ag
(s +y) (s +8) f(s + )? +p?]

Shor: Solution

S+ﬂ0
(sty) (546 (s + N

s? +a;s +a,
(s+y) (s +8) (s +1)

The Laplace transform of the independent variables is equal to the product
of the transfer function and the transform of the applicd force. Since the trans-
forms of the impulse functions equal constants, the transforms of the independent
variables are of the same form as the transfer funct s for impulse-type applied
forces. For unit-step-function applied forces, the transforms of the independent
variables become the product of the transfer functions and the transform of the
unit step, 1 s.

The time solution of the independent variables can be obtained by using
Laplace transform pairs. For the short solution, the angle-of-attack and the
attitude-angle variations with either elevator angle or cable tension impulse force
are of the form

Ae Yt 4 Be8t 4 oM

where A, B, C are constants depending on the transfer function constants
y. &, A are constants (roots of the characteristic equation)

The solution consists of three transient terms that decay to zero at rates
determined by the roots of the charactenistic equation. The time-solution form

-

-
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depends primarily oa the denominator of the transforms, the numerator (which is
at least one order smaller than the denominator) only influencing the constants
A, B, and C. The time solution for a step-function applied force is still of the
same form but adds a constant term. The steady-state response is zero for
impulses and constant for step functicns as can also be seen from the equation
for the steady-state response:

fit) = sF{s}(s)

{~>0 g e 0

where F(s) is the transfer function
f{s) is the transform of the applied force

The above equation is zero for impulse functions and constant for step-function

appiied forces.
For the complete longitudinal equations, the time solutions for the
independent variables (u, 'a, and 8) for impulse applied forces are of the form

AeTt + Be ¥ +Ce ™ cos (pt+ ¢

where A, B, C are constants depending on transfer function constants
¢  is aconstant
« is the damping term in the complex root, (e,
p is the natural frequency term in the complex roots
vy, 8  areroots of the characteristic equation

The solution for impulse forces consists of damped exponentials and a damped
sinusoid. The solution for step-function forces is of the same form but adds a
constant term. The steady-state response is zero for impulses and constant for
step-function inputs. Thus, the towed body’s longitudinal response te impulses
consists of transients that decay to zero while the body follows step-function
amplitudes.

LATERAL EQUATIONS OF MOTION

The lateral small perturbation equations of motion can be written in terms
of the three independent angle variables of side slip, yaw, and roll:

Z0F = mlv'(,!fﬁ ¥ (y force equation)

AL =%, - :f"l“ (x moment equation)

SAN =¥ . -3l iz {v moment equation)

with - = By, and U=0,




. P
where v is the side-slip velocity
Uy 8 the undisturbed velocity )
U is the disturbed velocity along the x-x axis “1
8 is the angle of side slip :
I, is the moment of inertia about the x-x axis K
. 1,, is the moment of inertia ahout the 2-z axis :

I, is the product of inertia about the x and z axes

Control forces and moments caused by both ailerons and a rudder are assumed.

. The aileron control is assumed to be a differential system. the motion of the
aileron on the right wing opposing that on the left wing. The aileron deflection,
By is one-half the sum of the motion of the up and down ailerons. Positive
rudder and aileron deflections cause positive yawing and rolling moments. The e
significant hvdrodynamic forces and moments are functions of the independent
angle variables and their first derivatives. The body weight and buoyancy, and
the cable tension, produce differential forces and moments due to the changes
in angles of roll and yaw. These become hydrodynamic coefficients when they
are made nondimensional:

AF =(mg - Blg

Yw.g
AF-"T =(-T sind,) o
AF),T = (-Tycos 8 )Y

ALp  =(=T, sing dzlp

ANT = (»’I‘O cosf (,dx)‘i’

Figures 5 and 6 show the geometry.

With hydrodynamic coefficients Cyp, Cy,. and Cyq assumed zero, the
Laplace transforms of the equations of motion written in terms of the hydrodynamic
coefficients and the control forces and moments become:

o o+

y Force

-W~-B ’I‘ sin@ mU T cose ml'
5 S Ly ——s- ¥ B

b g R A T -

x Moment

I“ b T .sing dz | b
§2 o (p s+ C H X2s2 0 oY= P=Cop § +Cor 6
S 2 Sqb s o 0P = s Sa s 0
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BODY DIRECTION CHANGES DUE TO CHANGING THE
DIRECTION OF MOTION (TURNING) AND DUE TO SIDE
SLIPPING, SO THAT THE BODY AXIS IS NOT IN THE

DIRECTION OF MOTION

TURN ANGLE
- X g+ P
~

SIDE SLIPPING IN DIRECTION

OPPOSING TURNING " FINAL MOTION

\Y

TURN Vo f ANGLE MEASURES THE
ANGLE CHANGE IN BODY DIRECTION
v  DUE TO SLIP; POSITIVE
CLOCKWISE MEASURED FROM
~~ FINAL BODY DIRECTION TO
g DIRECTION OF MOTION

SIDE SLIPPING IN THE SAME
DIRECTION AS TURNING w ANGLE MEASURES CHANGE
OF BODY DIRECTION WITH
TURNING AND SIDE SLIPPING:
POSITIVE CLOCKWISE FROM
INITIAL TO FINAL POSITION

Vo

y
NO TURNING OCCURRING

ANGLE OF YAW IS NEGATIVE
OF ANGLE OF SIDE SLIP
po P

Figure 5. Motion in the x-y lateral plane
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[ ;qb 32_ Eib, cnpsl¢+[ quzbs?‘_-é—l-j Can +—-—S-q7i;s——]‘*’-cnpp"cnsasc+cn5r8r
i
i
; The numerical analysis of the lateral equations of motion is detailed below
; for Body A, assuming that the body is towed at 45 knots in a straight, level path.
‘ The numerical parameters of Body A are:
i
- U =76 ft/sec S =612 m =60 slugs
I,, = 400 slug-ft Ty = 14.000 b £, =61t
i I, =45 slug-ft? dz = 1167 ft dv  =0.167 ft
: I, = ~100 sug-i2 ¢ = 81.85 degrees W-B =500 Ib
1 ! S,, = 1.5 1t? g = 5776 lb/ft? b =61t
' Based on these parameters, the hydrodynamir: coefficients are:
j r S ) \2
: Cop =— = -0).0524 C,o=-q4 CL) =-1.0
) : B 53 > n s \b
4 Cpp = (AR, Shape) =-0.5 C(’r = &_ = -0.1
- S, ¢ C nd
- Cp=2-2t 2 =05 Cpg = == —1 =-0.025
. iy nﬁ S b f5r 4 (‘nr 20
L .
. 3 - Cl‘ - - - A )-
A C,,p *~1e =0.025 C, 57 0.5 C"ﬂ = -0.25
S -, Ces
Cp=2-2 =-0.5 Cpg =~k === ~0.06
.‘B s a 8 Ci’p
C),5r= 0.5 Cy‘3 =0.25 C‘15a= = 0.6

The lateral equations of motion for Body A with the numerical values of the
coefficients inserted are as follows:

y Force

0.29405¢ +(0.13158s + 0.0571620% + 10.13138s + 0.5)B = 0.255,
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X Momen!

(0.00021641s + 0.019737s + 0.077781)p + (0.0004809252 + 0.00394745) Y
: +0.0524p = —0.0256 + 0.65,

2 Moment

.E
4
3
K
%

(0.0004809252 + 0.00098684 ) + (0.0019237s2 + 0.039474 s + 0.0015910)¥— 0.5p

. = -0.255, -0.065
The solution of the homogeneous equations with no applied right-hand ’ ,
forces gives transient exponentials and a damped sinusoidal term for each of the P!

independent variables q ‘¥, and p. The roots of the characteristic equation

obtained from the nonzero determinant of the multipliers of the independent

variables determine the exponential constants of the transients. The towed-body

characteristic equation is a quintic. Typical airplane characteristic equations )
differ from those of the towed body in that they contain no constant term. The o
zero root indicates that the plane is in$ensitive to the choice of heading, there '
being no moment tending to return it to the original heading. The towed body’s

path is determined by the cable. The characteristic equation for Body A is

s5 +247.485% +6689.3 s3+ 85,111 52 + 246,333 s + 92,743 = 0

Solution of this quintic characteristic equation by Graeffe’s method
indicates stability, since there are three negative real reots and a pair of com-
plex conjugate roots with negative real parts. The roots for Body A are:

s, = ~0.442

§9 = ~3.34

$q = ~13.04 + 10.867 .
54 = —13.04 ~j 10.867

55 = ~217.63

The transient solution for lateral motion is given for each independent variable
by an equation of the form:

VDRSPS NR -

¢ = Ae 04420 4 pr3.34¢8 4 0p-217.631 4 p-13.04t o5 16,97

The times to damp to half-amplitude for each of the terms are 1.57, 0.2075,
0.0531, and 0.00318 seconds. The two small roots dominate the damping of the
transients. Exanunation of the equations of motion shows that the largest
damping time (smaliest root) is approximated by

v
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The time to damp to half-amplitude is decreased for the smallest root by
increasing the cable tension and decreasing the yaw damping coefficient,
Cpr- The time to damp to half-amplitude for the second smallest root is
approximated by

mU b b b ml’ b

'I‘
"S"'Tb" sing dZCm Sq 2U C.\ﬁCﬂBEE Cfp -‘.?I. +—§&- Cfp-éul?

Cnﬁ

1=0.693

Cy . b ., mlU T,
W Tosmecdzﬁ. Cm,+ C"B?q- -Sq—b sing (lz

This next-to-smallest root resembles the spiral divergence root for aircraft. The
cable tension replaces the rolling moment coefficients. The damping time is
decreased by increasing the depression force and decreasing the roll damping
coefficient, Cg,. The dihedral angle somewhat affects the size of the smallest
root, but generally does not affect the two smallest roots as much as in the case
of aircraft.

If straight-line, level motion is assumed with the side-slip angle equal to
the yaw angle, and the roll angle and its derivatives being zero, the yawing
moment equation becomes

B “tns,
6, 1,, , Ty .
ﬁ s ———C", +(C, p+-b-q-b— cos dx)

For Body A. the denominator is

0.0019237 s2 + 0.039474 s + 0.5015910 = 0

The roots of this quadratic are

s, =~10.26 +j12.47
= -10.26 - j12.47

The damping coeflicient { is 0.635, and the ratural frequency w, is 16.15. For
the complete equations of motion, the complex-pair roots give { = 0.768 and
w, = 16.97. The complex roots represent the “‘Duteh Roll.”

If the side-slip and the vaw angles are assumed to be zero with no apphied
rudder forces., the rolling moment eguation can also be directly solved:
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For Body A, the denominator of the transfer function is

0.00021641 s2 + 0.019737 s + 0.077781

The roots of this equation are —4,13 and —87.08. The transfer function equation
indicates that, for the towed body, the steady-state roll angle is zero with an
impulse-type aileron deflection. The steady-state roll angle becomes a constant
for a step-function aileron deflection. The ailerons act like elevators in that, for
a steady-state response, the deflections must be held.

LAPLACE TRANSFORMS OF LATERAL EQUATIONS

The Laplace transtorm lateral equations of motion can be solved in terms
of any of the independent variables ¢, ¥, or B, with either rudder or aileron
applied forces, by Cramer’s rule. The transfer functions which are transform

ratios between the output and the input variables are numerically evaluated for
Body A below:

s s s
~0.01561 Al - | —+1
? 0.186 0.357 7.61
5, - s S M s [ §2 1.536
+ 1 — +1 +1 + st+1
0.442 334 Jj217.63  J{288.01  16.97
s " s 1.782
7.0101 +1 + s+1
° 0.34 | 176.69 13.29
5. s s A s s2  1.53
% ! i +1 i +1 [ * +1 ° + s+ 1
1 0.442 334 {21763 Jpss.or 16.97
S0t —— S — el
Yo | 0.0623 1.27 0.0 ]
Sr - s [ 8 S [ (2 1.536
+1 +1 +1 + s+
0442 J[3.3¢  J}217.63 W01 16.97
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The solution of the transforms in iime can be represented by exponentials and a
damped sinusoid for impulse inputs. The solution adds a constant to these
transients for a step-function input. The steady-state response to an impulse-
type input is zero for all the above transfer functicns. The steady-state
response to a step-function input is a constant for all the transfer functions.

The latera! motion analysis above was basesd on Body A with a dihedral
coefficient of —0.0324. Consider another body, Body A*, with a dihedral
coefficient of + 0.0524 hut with the same values as for Bedy A for the other
coefficients. Based on this sign reversal, the roots of the quiniic characteristic
equation of lateral motion become

sy =-0.353

$o = —4.24
§5=-12.42 +j11.69
$,=~12.42 ~j11.69
s5 = ~218.05

For these roots. the times to damp to half-ampl:tude are 1.96, 0.1634, 0.05580,
and ().003178 seconds, compared to 1.57. 0.2075. 0.05314. and 0.203184 seconds
for Body A with the negative dihedral coefficient The dominant cable root is
slightly smaller in magnitude while the other two real roota are shightly larger.
The complex Dutch Roll mode has a siightly smaller real part but a shightly
larger absolute magnitude than for Body A  Based on the damping time of the
dominant cable mode. the body with a negative value of (rg appears more
desirable. (In the control-system analysis that follows, it 1s indicated that the
body with the positive dihedral coefficient may be preferable.)
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CONTROL SYSTEMS GENERAL

An automatic control system is desirable if it enhances the accuracy of an
action ani reduces the amount of needed human attention. The preceding
analysis of the towed body indicates stability for both longitudinal and lateral
motion. An impuise elevator deflection in longitudinal motion, and impulse
rudder or aileren deflections in lateral motion, all produce responses thet return
the body to its initial reference position with time in a stable manner. The
towed body follows step-function inputs in both longitudina! and lateral motion
with an emror in the steady state. Automatic contro! systems should be installed
if it is desired to tow the body in particular motion modes and if it is necessary
to improve the dynamic responses. Some advantages that can be obtained with
closed-lcop feedback control systems are listed below:

1. Less attention is required.

2. The transient response can be improved, so that the body returns to the
reference condition after a disturbance without excessive oscillations. Transient
characteristics, such as the time to rise to maximum response after a step input,
the overshoot above the steady-state value, and the time required to settie to the
steady-state value, can be adjusted. Optimizing procedures, such as minimizing
the integrail of the product of time and the absolute value of crror, can be used.

3. The response to specific inputs can be made to occur without error or
with only & smali error, in the steady state.

4. The design can be such as to afford good stability characteristics.

The stability should not be affected by small changes in amplifier gains. After
a disturbance, the system should return to the reference condition quickly.

5. The control ratio between the output and the input can be made less
susceptible to undesired disturbances. The control system can be designed to
adapt itself to changing conditions.

6. The control system can be designed such that the response to random
statistical-type dist'wbances is minimum. A wide frequency bandwidth in the
system increases the random disturbance power, but allows more accurate
following of rapidly vary. g input signals and can improve the system’s stability.
The bandwidth should be large enough to pass the desired input frequencies, but
should attenuate the higher frequencies. The system’s resonant frequencies
should not be near external resonant frequencies.

In a single-loop. feedback control system, part or all of the output is fed
back to the input. (It can be fed back in any phase relationship to the input;
negative feedback occurs when the feedback signal subtracts from the input;
positive feadback when the feedback signal adds to the input.) The system error
E(s) is the difference between the reference input and the signal fed back, in
negative feedback; and is the sum of these two in positive feedback. The control
ratio between the Laplace transforms of the output and the input is related in
the transfer functions:

Cis) _ Gl(s)
R(s) ~ 1+ Gisils)

where ((5) is the transfer function of the output
R(s) is the transfer function of the input

L e
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G{s) is the forward transfer function for the circuit connecting the output
to the system error, E(s)

H(s) is the feedback-circuit transfer function

For negative feedback, the algebraic sign of the G(s)H(s} term is positive for
real positive G(s) and H(s) values. In this case, the control ratio when H(s)
equals unity varies from 0 to 1 as the forward transfer function G(s) varies from
0 too. For positive feedback with G{s) and H(s) positive and real numbers, the
control ratio with #/(s) equal to unity varies from 0 to o as G(s) varies from .
0 to 1, and from —oto ~1 as G(s} varies from 1 too. The product G(s}H(s) E
is known as the open-loop transfer function. When this is large compared to

unity, the magnitude of the ratio between the output and the input becomes equal

to 1/H(s).

The system error, E(s), for negative feedback becomes equal to f’ ‘
E(s) _ 1
R(s) ~ 1+G(s)H(s) -
iy o
The algebraic signs of the transfer functions Gfs) and H(s) are assumed to be N

positive in the above equation.

The stability of closed-loop control systems is determined by the denomina-
tor, 1 + G(s)H(s), in these equations. Instability occurs when the open-loop
transfer function, G(s)H(s), is of unity magnitude and has an 180-degree phase.
The open-loop transfer function can usually be written for linear systems as a
ratio between factorable polynomials:

K(s + a)(s + b)(s + c)(s2 + 20, 03,,1 + %12).- .

G(s)H(s) =
s(s + kNs + ()(s + m)(s2+2§2con2+ m"zﬂ coe

where a,b,¢ are open-loop zeros
k,I,m are open-loop poles
K is the gain constant

©, is the natural frequency part of a complex pair .

{ is the damping ratio part of a complex pair

The form of the open-loop transfer function indicates the complexity of the control
system. The denominator must be at least one degree higher in s than the numer-
ator, for practical systems. When the denominator does not exceed the numerator
by more than two degrees in s, the phase does not generally equal 180 degrees for
finite frequencies unless there is an s2 factor in the denominator. A factor, s,
shifts the phase n times 90 degrees. Factors, s+a, approach 9-degree shifts as
s = jwincreases in value. Quadratic factors approach 180-degree phase shifts as
w increases. Open-loop transfer functions with the denominator exceeding the
numerator by one or two degrees in s usually indicate inherently stable control
systems unless there are two open-loop poles at s = 0. When the denominator
exceeds the numerator by more than two degrees in s, the centrol system still

is usually stable over wide ranges of gain values, K. As the gain setting is
increased from zero (the open-loop value), the closed-loop poles change (move
along the root loct) and, eventually, instability occurs. It is desirable that the
closed-leop poles (roots of the characteristic equation, 1 + G(s)H{(s/ = 0) be
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sufficiently far to the iefl in the complex plane to insure rapid transient decay
(large negative roots and large negative real parts of the complex roots of the
characteristic equation). Stated in another way, inherent stability occurs if the
magnitude of the open-loop wransfer function decreases at the most 20 dB per
decade in frequency or 40 dB per decade with the s” factor in the denominator
having n equal to either 0 or 1. Each degree in s in the numerator causes the
open-loop transfer function to increase by 20 dB per decade, while each degree
in s in the denominator causes it to decrease by 20 dB per decade. The phase
of the open-loop transfer function iz always less than 180 degrees for inherent
stability.

The steady-state error of {he closed-loop systems depends on the form of
the input functions in addition to the system’'s transfer functions. Control
systems are classified into types by the power of the s* factor of the denominator
of the open-loop transfer functions. Type O hasn =0, Type 1 has n = 1, and so
on. The final value Laplace theorem can be used to determine the steady-state
error. The theorem states that if the Laplace transform of f(t) is sF{s), and if
sF(s} is analytic on the imaginary axis and the right-half plane. then the final
value of the time function is given by

lim f() = lim sF(s)

{ = o00° s==(

On the basis of the final value theorem, the steady-state-system following
error hecomes

i sR(s)
eflt) =ell) = lim cm—m—m——
$s t~=w $—+0 1+G(s)H(s)

For a Type 0 control and & step function input, the steady-state following error
is a constant. For a Type 1 control and a step function input, the output follows
the input without error in the steady state.

Control systems are usually modified from a preliminary design to improve
the stability, the transient response, and the following error. Compensation
consists of changing the forward transfer function, the feedback transfer function,
or both by adding phase lead or phase lag networks. Networks added may
include 9%0-degree phase leads such as differentiation circuits, 90-degree phase
lags such as integration circuits, and RC filters which are integration and
differentiation circuits in themselves.

The effects on the control systems of various compensation methods are
examined below in a general manner. High damping usually indicates better
stabiiity characteristics. Transient damping is indicated by the time required
to damp to half-amplitude for either simple roots or complex root pairs. The
small roots (dominant roots) determine the least damped components. More
stability is indicated by larger negative real roots or larger negative real parts
of complex root pairs. The usual effects of compensation methods are:

1. Integration in feedback path. Adds a closed-loop pole and a 0.1 pole at
zero. The steady-state error is less since the system is one type higher.

The damping and the stability effects-are usually not large since the effects

on the dominant roots are generally small. The effects can be large for

large dominant roots of the characteristic equation,
2. Integration in forward transfer function Adds a closed-loop pole. The
system is one type hgher and follows o more complicated input function
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without error. Damping and stability effects are usually smah for
small roots.

3. Differentiation in the feedback path. Removes a closed-loop pole and adds
an open-loop zero at zero. The ystem is one type lower and has a poorer
steady-state condition. The damping and stability effects are usually
small for small roots.

4. Differentiation in forward trunsfer function. Removes a closed-loop pole.

The system is one type lower, and less complicated input functions can be

followed without error. The damping and stability effects are usually

small for small roots.

Tachometer feedback (1 + b s feedback loop). The steady-state-error

constant is higher, and thus the steady-state error is higher. The damping ¢

and stahility are both improved.

High-pass filter added in series with the differentiation in tachometer

feedback. The steudy-state error is improved over tachometer feedback. oy

The damping and stability are both improved. ;

.. . +sT
7. Lead compensation in forward transfer function. '
1+ sTgT 1

Ty> Ta. Adds a closed-loop pole and a closed-loop zero. The steady- .
state error is the same as without the lead compensation. The damping 4
and the stability are both improved.

‘;)I

=

8. Lag compensation in the forward transfer function [1 + T2s]
1+ T.s
1

T < T, Adds a closed-loop pole and a closed-loop zero. The steady-
state error is not changed by this compensation. The damping and the
stability are both improved.

The addition of unity feedback. This makes a Type 0 control ocut of any
control type. Differentiation added to the feedback or the forward transfer
function of a Type 0 control changes the clesed-loop pole positions. The
changed values of the poles usually improve the control-system stability
and damping. If the differentiation is in the forward transfer function, it
also adds a closed-loop zero.

The incorporation of a feedback control system into the towed body improves
the body’s dynamics and assists in the performance of the towing missions.

Body A has been shown to be dynamically stable. It follows the elevator and .
cable tension step input functions in longitudinal motion with a constant steady-
state error. In lateral motion, the body follows step input rudder or aileron
variations with constant error in steady state. The towed body in itself is a
Type () system in both longitudinal and lateral motion. For the complete longi-
tudinal equations of motion. the transient solution consists of {wo damped
exponentials with very short times to damp to half-amplitude and a damped
sinusoid with a damping coefficient of 0.906. The time to damp to half-amplitude
of the sinusoid is 0.544 second. For the short equations of longitudinal motion,
the transient solution consists of two of the exponentials of the complete
solution and another damped exponential with a longer damping time. The time
to damp to half-amplitude of this loager-time term is 0.866 second. The dominant
or long-time-to-damp transicent term is largely determined by the cable tension
and the pitch damping hydrodynamic coefficient, Cpq. for both the complete

and the short longitudinal equations. The time to damp can be decreased by
increasing tne depression force and decreasing the magnitude of the pitch

@©
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damping coefficient. In the lateral equations of motion, the transient solution
has a damped exponential with a very short time to damp to half-amplitude
{corresponding to the roll subsidence mode), a damped sinusoid with 0.0552
second to damp to half-amplitude (corresponding to the Dutch Roll mode), a
damped exponential with a time to damp to half-amplitude of 0.2075 second
(corresponding to the spiral divergence mode), and a damped exponential with a
damping time of 1.57 seconds {cable mode). The term with the largest damping
time is determined by the cable tension and the yaw damping coefTicient, C,,,.
The damping time can be decreased by increasing the depression force and the
body drag, and by decreasing the yaw damping coefficient. The critical long-
time damping terms for both longitudinal and lateral motion can be lowered by
increasing the depression force and decreasing the damping coefficients,

Cmq and Cnr- A longitudinal control system can improve the damping and
stability and provide a means of keeping the towed body at a constant commanded
depth. In addition, a lateral control system can provide coordination so that
turning can occur without skidding (side slipping). The lateral control system
can also be used to orient the direction of motion.

LONGITUDINAL CONTROL SYSTEMS

it has been previously shown that Body A is a Type 0 system in that it
follows a step input with an error. The longitudinal short solution indicates
that the dominant cable mode damps to half-amplitude in 0.866 second. Here
we shall describe a longitudinal control system designed to hold the towed body
at commanded depths, in addition to improving the stability and damping. The
control system parameters depend on the tow body with which the system operates,
here assumed to be Body A (which could be improved). The effects of the
elements in the control system are given by the transfer functions relating the
output to the input of the elements as functions of s, the Laplace transform of
time. The output/input conversion factors between angular and linear units in
the elements is included in the transfer function constants. The components of
the control system are assumed to be available. There are many commercial
small-sized, accurate, and sensitive pressure gauges. It is assumed that a depth
gauge converting depth to a proportional electrical signal is available. The
elevator servo can be an electromechanical or a hydraulic unit, and is represented
in the analysis by a simple time lag and a gain factor. Idealized gyroscopes
without time lags are assumed. Commercial gyroscopes have been developed
that are accurate and sensitive and are not much affected by vibrations, heat
variations, or pressure variations. They are available as small, light units,
weights being about 3 pounds, lengths about 5 inches, and diameters about 3
inches. The proposed control system should, of course, be a realistic design.

Figure 7 consists of three block diagrams of proposed depth control
systems. The top diagram shows a basic feedback system to control depth.
Basic controls can be adjusted by compensating networks such as minor loops
and filters; in the middle diagram @ damping minor loop is added to the basic
control, and in the bottom diagram a filter 1= added to the outer feedback path.
Three transfer functions indicated in the diagrams are related to the body dynam-
ics. The transfer function relating the attitude angle rate with the elevator
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angle deflection, 8/5 ,, is directiy obtained from the longitudinai equations of
motion. The transfer function relating the depth with the attitude angle rate,
4/8, is obtained uring the vertical acceieration, a,:

Ah_a S 1
d 5. @ 3

The vertical acceleration itself is calculated from the solution of the longitudinal
equations of motion:

where U is the undisturbed forward velocity.

The transfer function relating the depth with the elevator angle deflection,
h/8,, is given by the relationship

LA
;

O‘!I}
ml@o

The body dynamics transfer functions for Body A, based on the short-solution
longitudinal equations of moticn, are given by the equations:

76558 | —— +1]
6 058 2947 ] ’
Se LB | Sy} | N
51.18 1882 " {080 )
asenl—— +[E— ]
' 44.21 44.21 ~
h h - 3
. ol = 4
$71 2947
564.03 | | I 1
koo 44. 21 44.21
5,

s s s
s +1 +1 +1
[51.18 ] 18.82 ][0.80 ]

Feedback controls can be analyzed by many methods. The root locus
method is convenient for repetitive analysis. System design usually requires
several trial solutions that must be optimized. The root locus plots indicate
damping and stability in the location of the roots of the characteristic equation
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(closed-loop poles). They show, in graphical form, variations of the poles with
system gains. The zeros and the poles of the open-loop transfer function are
plotted on the complex plane, and root loci are obtained using the transfer
function of the feedback control system:

Cts) _ Gis)
R(s) 1+ G(s)H(s)

The roots of the denominator are the closed-loop poles. A plus sign in the
denominator indicates negative feedback, and a minus sign indicates positive
feedback. Positive feedback occurs when the algebraic sign of the open-loop
transfer function is a plus and addition occurs at the error detector, or when the
sign of G(s)H(s) is a minus and subtraction occurs at the error detector. Negative
feedback cccurs when the product of the sign of Gis)li(s) and the sign of the
error detector operation is a minus. The open-loop transfer function must be of
unit magnitude and of 0- or 180-degree phase at the closed-loop poles. The
root loci are plots of the O-degree phase requirement for positive feedback, and
the 180-degree requirement for negative feedback. The magnitude requirement
produces closed-loop poles on the root loci. A point on the root locus is a
closed-loop pole when the open-loop transfer function is set equal in magnitude
to unity:

Kls =20 (s =250+ = * " *
(s =P (s=Pg)> = "

G(siH(s) = 1=

The product of the distances to the open-loop poles from the point, divided by
the product of the distances to the open-loop zeros from the point, is equal to the
loop gain, K. corresponding to the closed-loop pole. Figure 8A shows the zero
root locus for the basic depth control system corresponding to the upper block
diagram of figure 7. Most of the right-hand locus is in the right half of the plane
and corresponds to instability. The dominant closed-loop pole for the small
stable part of the root locus has a negative real part less than 0.4. When a
high-pass filter is added (fig. 8B), the root loci are shified to the left increasing
both the stability and the damping. The dominant root now has a negative real
part of about 4. The time to damp to half-amplitude decreases from about 2
seconds for the basic control alone, to about 0.2 second for the basic controi
plus the high-pass filter, The electrical filter can be designed using common
networks, for example;

| |
o~ 9
| ] _
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El ) 1+ RCs E?
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Figure § (Continued).

Figure 8C shows the root locus plot of the mnor leop. The dominant root is
determined by the locus on the real axis from —0.8 to (0. The value of gain
constant of 320 produced a ciosed-loop pole at —14.21 and complex poles with a
damping constant of 0.9. Figure 8D shows the zero angle root locus of the closed
minor loop incorporated into the basic denth centrol system. The right-hand
locus has a very small section in the stable left half of the complex plane.
Figure 88 shows the effect of the addition of the same igh-pass fiiter; the root
loci are shifted to the i2ft. The dominant pole can have a negative real pari of
about 7. The time to damp to half-amplitude can be about (0.1 second with the
minor loop and the high-pass filter. Thus. compensation can change the control
system considerably. The transient response to an input such as a step function
depends on the chosen compensation. The rise time to design output, the over-
shoot above the design value, and the time to damp are characteristics lLaving
different damping requirements. The control system can be optimized according
to several principles usually b~ ;2d on minimizing errors.

LATERAL CONTROL SYSTEMS

The towed body 15 inherently siable due to the stamlizing effect of the
towmng cable. Unlike an aircraft. it tends Lo return to its original heading after a
disturbance. The cable root is dominant in the dynamics. For Body A. 1t has




been shown to have 2 half-amplitude damping time of 1.57 seconds. A ccntrol
system can be used to reduce the damping times. It can be designed to coordinate
the rudder and the aileroa controls so that no side slip {skidding) occurs duwring a
tumn. Coordinatier can be cbtained by feeding back te the rudder input a voitage
peopcstional to the side-slip angle or the lateral acceleration. Here, a rudder
coordination cormputer is discussed. It may be desirable to provide a method of
orienting the yaw angle of the towed body by means other than the cable. A
vaw-rate bedy orientation contrel i5 also discussed.

The top block diagram of figure 9 shows the clesing cf the rudder circuit
thraugh a rate gyroscope to form a closed feedback loop. The root locus plots
of figures 10 (A through G) show that, for the feedback foop, the dominant
closed-loop pole is very near the origin in all cases for either positive or negative
values of the dihedral coefficient. When integration is added, for example, by
use of an integrating gyro instead of the rate gyre, the root locus plots indicate
that the clesed-loep poles can have negative real parts considerably larger than
the dominant cuble root particularly for the body with the positive dihedral
coefficient.

The middle block diagram of figure 9 shows connection of the aileron
circuit to the mdder circuit through a coupling network catled the rudder coordina-
tion computer. The method is based on keeping the side-slip angle at zero during
tums by feeding back a required rudder input for a given aileron input. The total
side-slip angle is related to the rudder and the aileron angles by the equation

By = TFp/B), ~TF (375 )

where TF(B/8 ) is the transfer function relating the side-slip angle with the
aileron angle

TF(B/8) is the transfer function relating the side-slip angle with the
rudder angle

When the total side-slip angle is zero, the ratio between the perfectly coordinated
rudder and aileron angles becomes

B Tesy
80

TFRs, e

The middle block diagram of figure 9 shows that the negative of the transfer
function ratios is equal to the transfer function of the rudder coordinatior com-
puter, TF,... Unlike an aircraft, positive rudder requires positive aileron, and
a phase reversal is not required in the rudder computer circuit. The rudder-
coordination-computer transfer functions forBodyA(Cw ~) and Body A' (Cgg ¥
are given by the equations

Body A
] R | S | S
o 0.0022  {{7.79  ]{20.66

fee - s | s TR s
+1 +1 +1 +1
042 " J]4.05 19.38 738.82
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Figure 9, Lateral control systems.
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Values of transfer functions that are a decade in frequency away from a reference
frequency are 20 dB apart for first-order functions. Thus, the rudder-coordination

transfer functions can be approximated for anguiar frequencies from about 1 to 10
radians ver second by the equations

Body A (CEB_)

23530 —— + 1
779

TFr('c = S
— +1
)
S
1.9213 [_—79 + 1]
i.
TFrcc = s
—— 1
3.75 ]

The transfer function between the total yaw rate and the input voltage of the
rudder-coordination-computer circuit, ex , is given by the equation
I 5,

TR, x TF§ 5 ) + TF, x TF, % TF(¥ §,)

where TF  is the transfer function of the aileron servo
TF,, is the transfer function of the rudder servo

As the equaticn above indicates, the two applied inputs of the aileron and rudder
angles add algebraically in the yaw-angle effects. The bottom block diagram of
figure 9 shows a yaw orientation system with rudder coordination. An integrating

vaw-rate gyroscope is included  The oper-loop transfer functions for Bodies A

and A’ are given by the approximate equations:

O i —arsama
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The open-loop transfer functions are based on the approximate rudder-coordination
tronsfer functions. The rudder produces the principal effects on yaw. The
orientation system can be checked on analog computers. The more complete

i rudder-coordination-computer transfer functions can be used if necessary. The
approximate transfer functions can be represented by the common network below:

P o—— AW ©

. Rl

R2 CS + 1
[R] + R2]CS < »

¢

—0

The root locus plots for the approximate transfer functions are shown in
figure 10 for the yaw orientation system. It can be seen, at least at lower gains,
that both Bodies A and A’ are stable. The dominant closed-loop-pole damping
time for the positive dihedral body is about 0.244 second. For the negative
dihedral body, the damping time is at the best about 0.7 second. Additional
networks can be added to improve the transient response if desired. Phase-lead
differentiating networks tead to narrow the system bandwidth while phase-lag
integrating networks tend to broaden the bandwidth.

’ The control systems help reduce possible coupling between the tongitudinal
and lateral equations of motion. The presence in the equations of the two terms
listed below causes intercoupiing:

[lu— I”] PR [I}.‘. - 1”] PG

where I is the body’s moment of inertia about the longitudinal axis

I, is the body's moment of ineda about the vertical axis

I, is the body’s moment of wnertia about the latersi axis

The roll rate P 1s not large in the tow bodies due te the cable. The addition of
control systems reduces the yaw rate R and the pitch rate Q.
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In summary. in reference to closed-loop feedback systems, it can be said
that a control system ouw'put follows the input better, and with less disturbance
effects, and with high forward-transfer-function gains. The output-input transfer
function becomes

GG,
1+GGH

If the gain G is large and the gains G, and H are not too small, the output-imput

transfer function becomes 1-H.
The disturbance output for the network shown below is given by

G,
1+GG,lI
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This becomes equal to the small value 1/GIH wien the gain G is large. An input
filter called a model can be added. For a high gain, G, the output follows the
model output. Adaptive control systems usually have high-variable-gain circuits
and still retain stability. They can have electronic counting devices which
measure the gain and adjust to a maximum stable value. In the case of Body A’
(Cpg +), the cable cf pole on the real uxis approaches the zero at very high
gains. The Dutch Roll closed-loop pole then becomes dominant at high gains and
approaches the imaginary axis; it must be limited for stability.

TOW BODY DESIGN

Preliminary design analysis has been performed mainly with three bodies,
designated Body A, Body I, and Body 1. Detailed analysis was made in both
longitudinal and lateral motion of Body A which has a negative dihedral coer-
ficient, of Body A* which has a positive dihedral coefficient of the same magni-
tude, and of Body A'* whicl: is = the same form but has a zero dihedral coefficient.
In addition to the depressor angle, the wing location and the tail-center-of-
pressure location in relation to the body axis affect the dibedral coefficient,
producing equivalent dihedral angles of about 3 degrees or more depending on the
lateral area.

All the bodies studied have the same 3G-inch maximum diameter, but they
differ in other respects. Some important design considerations are the drag; the
hydrodynamic coefficients, particularly the damping coefficients, Cp,p and C oy
and the depression force. All the bodies are axisymmetrical, streamlined forms
with depressor and control surface appendages. We designed the axisymmetrical
forms using the David Taylor Model Busin method originated by Landweber and
Gertler. The bodies have a length/diameter ratio of about 2.7 for mimmun drag.
Drag has an important effect on the required towing horsepower and the attainable
depths. 1t has a beneficial effect on the damping time of the dominant cable
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mode in lateral motion. A considerable portion of the required towing horsepower
is needed to counteract the body drag. For a 2000-pound drag, 276 horsepower is
required to tow the body at 45 knots, while for a 600-foot towing cable with a
drag of 15 pounds per foot 1530 horsepower is required. The attainable depth is
405 feet at 45 knots with a depression force of 14,000 pounds and a 2000 pound
drag.

The total body drag depends considerably on the depressor and tail
surfaces. Additional drsg arises from the interference between components and
from imperfections on the surfaces. Hoerner shows how to estimate the total
drag on such bodies as aircraft. by adding together ail the drags of the components
in drag areas. A drag area is the preduct of the drag coefficient and the area
that it is defined for:

=Cds

< | o

where g is the dynamic pressure
C S is the drag area

Here, the total drag is considered to be the sum of the depressor drag, the tail
drag, the depressor-induced drag, and the main body drag. The imperfection and
interference drags are neglected since they are small percentages of the others
and can be lessened by careful design. The drag area of the induced drag is
approximated by

2
¢, .

:rR'"‘T ill

where AR is the aspect ratio b2 'S
S is the wing area

The main-body drag coefficient can be based on wetted area. or cross-sectional
area as it is here. The drag coefficient for an axisymmetrical body is approxi-
mated by Hoerner as follows:

Wi . d\ "2 5 d\?
CI)O—(‘I ';7*’ 4-') '(7 + .-1 T

where C [ is the skin-friction drag coefficient of the body
Cc po s the drag cocfficient defined for the frontal area

The wing and tail drags are based on the plan arca. The profile drag is assumed
to be nearly zero. The sectional drag coefficient 1s based on the skin friction
for the upper and lower surfaces modified by factors that account for the section
thickness. The coefficient is given by the equation

1y [1\?
C!)s =2 C, 1 4(:)'{' <"(')
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where C Ds is the sectional drag coefficient ) ;:
t s the section thickness ! :

¢ is the section chord i 3

3

The wing and tail thickross-to-chord ratios were taken to be 0.2 in the calcula- : £
tions. The skin-friction coefficient was assumed to be 0.0025. The average 2
skin-friction coefficient is about 0.1025 for the body Reynolds number of : :
3.5 x 107 which corresponds to fully developed turbulence over an 81-inch body ; :
at 45 knots in 50°F water. The transition to neutral turbulence occurs on the ) ;
body at about 15 inches back of the nose. Transition to self-excited turbulence £
occurs at about 22 inches back of the nose. Based on these approximations. the . :
tow body drag areas are:
Drag Area - c

Main Body 13.72x C,x 4.90874 (11498 ' p

4’, -

Depressor 248 xC % 6 0.0372 f ;

Tail 2.48 % C x4 0.0248 :

Induced 0.1188 0.1188 ) y

Total Drag Area 0.3306 ¢

The frontal-area drag coefficient is obtained by dividing the drag area by the
frontal area, 4.90874 square feet. The frontal-area cocfficient for the values
listed above is 0.0673. The body drag at 45 knots equals 1910 pounds. The
skin-drag coefficient may be less than the chosen average value of 0.0025 under
ideal conditions. but the interference and imperfection drags and the drag at the X
tie point have been omitted. The body is in fully developed turbulence at points ‘
further back than about 25 inches from the nose at 45 knots. For fully developed
turbulence, the broadband pressure at the boundary is about 80 dB3 above

1 dvne em2. It 1s desirable 1o build the body surface of soft rubber from about
10 mches back of the nose, to dela_ turbulence to the self-excited value. The
outer portion of the body should be made of a low-clastic-modulus material (such
as urethane foam) of sufficient structural strength, in order to present a {iter to
the flow-noise pressure. Flow noise is present over bodies of the tow body size

at 45 knots. It can be minimized by delayving the points of transition and by
energy ahsorption.

R IR P

The depressor wing must be large enough to produce a large depression
load at fow lift coefficients. A depression force of nearly 14,000 pounds is
required to attain depths of about 100 feet with a body drag of 2000 pounds and
u H00-foot cable with a drag of 15 pounds per foot. Because of mduced drag,
the hit coefficient should be hmited to values of about 0.1, The aspect ratio
should be large for low induced drag. The wing and tail section should be thin
for small drag, but must also be structurally strong enough. Symmetrical wing
and tail sections with a thickness-to-chord ratio himited to about 0.2 should be
used. The NACA four digit numbering <vstem number for thys symmetric al
section s (0020,

The horizontal and vertical tail surfaces determine the damping coefficrents,
Cing and Cyp. These coefficrents affect all the roots for both longitudinal and
lateral motion fas orably . exeept the dominant cable roots for both longitudinal
and latecal motion  The values are proportional to the square of the distance from




the c.g. to the surface guarter-chord point, and proportional to the surface area
of either the horizontal or the vertical tail areas. The damping coefficients
should be large but not so large as to make the cable roots toc smalil.

The dihedral angle affects the roots of the characteristic equation and
hence the transient response. Positive dibedral coefficients adversely affect the
dominant cable root. The response in yaw control systems appears to be better
for positive dihedral coefficients. A negative dihedral coefficient is required to
puli up the low wing in lateral gusts if the tie point is connected at the c.g. of
the body. If the tie point occurs above the c.g., no dihedral is required due to
the.stabilizing effect of the towing cable. The diagrams below indicate the top
view and front view of a tow body with positive side slip and a negative
dihedral coefficient.
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The control surfaces are the standard aircraft type: an elevator, ailerons,
and a rudder. A down elevetor is assumed positive, and it produces a negative
moment. Figure 11 shows the effectiveness factors of the control surfaces. A
0.5 effectiveness factor,da,/d 5, is provided by an elevator area of about 0.35
for an aspect ratio of 7. The factor depe..ds somewhat on the gap and the type of
seal in addition to the aspect ratio. In general, the variations are not large. The
lateral controls are the ailerons and the rudder. Positive aileron, defined as
motion that lowers the right wing, corresponds to right aileron up. The ailerons
operate differentially in that when the right aileron is up, the left aileron is down.
Positive rudder, defined as rudder to the left, produces a force in the positive
Y direction. The ailerons extend over 0.7 of the depressor wing span, the ratio
of the chord of the aileron to the chord of the wing being 0.3. This produces
a value of 0.6 for {54, the aileron moment coefficient. The values of this
coefficient vary from zero to about 0.7. The ratio of ruuder chord to vertical-
tail-surface chord is chosen to be about 0.35 for a 0.5 effectiveness factor. The
tail surfaces should have aspect ratios of about 3.

For a left turn, the tow body with positive or left rudder requires positive
ailerons to balance the centrifugal force. Positive aileron lowers the right wing
and requires positive or left rudder. For Body A' (positive dihedral coefficient),
C¢sr. the rolling moment coefficient due to rudder, opposes the proper bank
angle; and C,,54. the yawing moment coefficient due to aileron angle, helps the
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_proper turn. For Body-A (negative dibedral coefficient), Cpj, helps the proper
‘Hank angle whit. €5, helps complete the tum. For a 300-foot turn radius of
Body A; the centrifugal force is about 1155 pounds and requires a bank angle of

about-4.73 degrees.
4n addition to Bodies A, A', and A", a light body designated Body I and

-a heavy body designated Body I were analyzed for a towing speed of 45 knots
 and a straight, level path. The numerical parameters of Body | are:

U 76 ft-sec S 3 ft2 m 10 slugs
L, 20ctugf? T,  84001b e, 6 ft
s, 1n? dz 1t dx oR
g 5776 1b/t2 c 81.85degrees W-B 01lb

The-hydrodynamic coefficients for longitudinal motion of Body I are:

C,o —4 C,q =2 C.p, ~0-125
Cpq —0.3 Cpg ~ 3 Crs, —0.5
C,q ~1 Cpy — 8

The transfer functions for Body I are shown in Appendix C. For Body 11,
the numerical parameters and the hydrodynamic coefficients are:

U 76 ft/sec S 6 ft2 m 60 slugs
I,y 1330 slug ft? To 14,0001 £, 6 ft
s, 3fn? dz  Oft dx 0ft
7 5776 1b/nt2 ¢ 81.85degrees W-B  O1lb
C,, —4 Ce — 54 C,p, — 0.375
Crog =2 C,o —9 Crs, =225
C,y —45 Cpg — 108

The short-solution longitudinal equations of motion indicate the times to damp
to half-amplitude for Body ! with the tie point at the c.g. to be 8.295, 0.01752,
and 0.007255 seconds. With the tie point 1 foot above the c.g., the damping
times of Body 1 become 0.05584, 0.02436, and 0.007342 seconds. For Body II
with the tie point at the c.g., the half-amplitude damping times are 18.15,
0.02128, and 0.04667 seconds. (The damping times for the short solution of
Body A were 0.866, 0.0368. and 0.0135 seconds,) These results show the
significant influence of the tie location on the dominant cable root. The light
Body 1 damps very rapidly for the dominant cable root because of the low value
of the coefficient Cpng, with the tie point above the c.g. The weight and the
inertia are (optimistically) too small. The moment of inertia of Body I was
chosen to be very large. This affects the values of the nondominant roots,
increasing their value to about double those of Body A. Figure 12 shows the
analog computer solution setup for the longitudinal equations of motion for

Body 11.
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Figure 1. Analog computer setup for the longitudinal equations of motion (Body I,
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DRAG COEFFICIENT

TOW CABLE

Tow cables have been investigated by many, particutarly M.C. Eames,
Figures 13 through 15, showing cable characteristics, are from a previous study
by the suthor. Figure 13 indicates that, at a ratio of thickness to chord of 0.25,

0.10
0.08 \ /4’
. / ,/
0.04 /
\__/4’

0.02

0

0 2 4 6 8 10 12 14 16 18

CHORD THICKNESS RATIO

Figure 13. Cable cross-section (frontal) area coefficient versus chord thickness
ratio, fully turbulent flow,
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the cable drag coefficient based on the frontal area is 0.633. Table 3
shows the cable drag per foot at 45 knots for three drag coefficients and three
cable thicknesses.

TABLE 3. FRONTAL AREA DKAG Or CABLES

Cable Drag for a
Cable Frontal Area Drag Coefficient of:
Thickness (inches)
0.033 0.035 0.040
0.375 5.51 5.84 6.68
0.600 9.53 10.11 11.56
0.700 11.12 12.79 13.48

The drag coefficients are based on a Reynolds number of 106 at normal incidence.
The drag under the varying conditions of actual motion will not attain the values
shown in the table. For a 0.6-inch thickness of optimum shape, the drag per
foot under operating conditions may be 11 pounds per foot or more. A 0.375-inch
thick, optimum-shape cable with dynamic stabilizers under operating conditions
probably produces a drag of 8 pounds per foot or more.

Figure 16 (A through H) shows the body depth plotted against depression
force for three depression force/drag ratios, for cable lengths from 500 to 900
feet, and for cable drags of 7 and 15 pounds per foot. For a cable drag of about
11 pounds per foot, a depth exceeding 400 feet is attainable with a 600-foot
cable length at 45 knots for a depression force of 14,000 pounds and a 2000-
pound body drag. The attainable deptn increases with the depression furce, but
the required horsepower to pull the body increases with the depression force
(fig. 17). About 1560 horsepower is required to pull a body with 2000-pound
drag at 45 knots if one uses a 600-foot cable with a drag of 11 pounds per foot.
Laminar flow cables are required for minimum drag and cavitation-free operation
at all depths at this speed.
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Figure 16. Depression force versus body depth. speed 45 knots.
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Figure 17. Required horsepower versus cable depression force; 600-foot cable,
2000-pound body drag. 45-knot speed.

NOISE CONSIDERATIONS

The tow body design must consider the random, statistical-type distur-
bances that are generated by surface activity and by the turbulent tow-body
boundary. The recommended tow cable design features small, streamlined cross
sections. The random energy generated in such a cable should be small, since
the boundary layer is laminar and no cavitation should occur.

Most of the tow body surface has a turbulent boundary at 45 knots. The
point of neutral transition to turbulence occurs at about 15 inches back of the
nose, while the self-excited transition point occurs at about 22 inches back of
the nose. The value of the broadband pressure for fully developed turbulence
at the surface can be estimated. The ratio of the broadband pressure to the
dynamic pressure of the flow is approximately constant at (.0035 in most flow
conditions in both air and water. The power spectrum of this flow-noise energy
peaks at a particular value of the Strouhal number for both air and water at
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7972 dB above 1 dyne per square centimeter. Figure 17 shows a flow-noise
power spectrum curve obtained from pipe flow. The nondimensional power spec-
-ttum is plotted against the nondimensional Strouhal number. The Strouhal number

used i3 given by

o8
u
where U is the flow velocity
& is the boundary layer thickness
w is the angular frequency in radians per second

The power spectrum peaks at an angular frequency of 5618 radians per second

or 894.12 cycles per second at 45 knots for a 0.5-inch boundary layer thickness.
The boundary layer thickness can be approximated by the nomograms of

figures 19 and 20. Figure 19 gives the boundary layer thickness for both laminar
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and turbulent fiow over a flat plate corresponding to the Reynolds number at the
point; the Reynolds number can be obtained from figure 18. As an example,
assume the distance is 10 inches at 45 knots for 50°F water. The Reynolds
number becomes 4.4 x 106. The boundary layer thickness is 0.17 inch. The
peak of the power spectrum should occur at 16,523 radians per second or 2629.8
cycles per second. A representative boundary layer thickness for Body A is
about 0.5 w: 0.7 inch.

Random energy generated at the surface by ship’s motion and wave motion
applies an input to the towing cable. The spectrum of this energy is probably
fairly wide-band. The to~ ing cable conducts some of this energy down the
cable in the form of compressional and transverse waves, the cable acting as a
filter. The average input power to the cable is given by

p. = f”(m
,--E-gm w

where ®(w) is the input power spectrum.
'L he power output from the cable is gi* -n by

1 ©w
- 2
Py = - j;chl olw) dw

where G, is the transfer function of the cable.
If the cable is represented by a simple low-pass filter with a transfer function of

1
1+ RCs

and the input power spectrum is white noise, the output power becomes

K

2RC

where K is the constant white-noise spectrum.
The towing cables probably filter out much of the input surface energy
even at frequencies below 1000 cycles per second.

RESULTS AND CONCLUSIONS

The following results and conclusions are based on a mathematical
analysis of the motion of underwater towed bodies:
1. A practical tow body, designated Body A, was designed. The maximum
diameter is 30 inches . and the main-body length/diameter ratio is 2.7.
2. The tie-point location was shown to be important to the body's stability.
It should be forward and ebove the body's center of gravity.
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3.  The hydrodynamic coefficients can be predetermined to a fair degree of
accaracy. A mathematical mode! can be set up which can be checked on analog
o digital computers.

4.  The most important parameters determining the dominant, characteristic
equation roots for hoth longitudinal and lateral motion are the cable tension and
the damping coefficients, C,,, and Cp,. The root values determine the body’s
stability and transient response.

5.  The body drag is an important parameter determining the required towing
horsepower and the attainable depth. The total body drag is the sum of the drags
due to the main body, the depressor wing, the tail surfaces, and induced drag.
Induced drag is a considerable portion of the total drag. The minimum attainable
drag under idealized conditions is probably about 1750 pounds at 45 knots,

6. Tow bodies can be easily designed to have longitudinal and lateral
dynamic stability. The hydrodynamic coefficients have the major influence on
the roots of the characteristic equations.

7.  The tow bodies without automatic controls are *““Type 0'* systems. They
follow step inputs of the control surfaces with a following error.

8.  The depressor wing area should be sufficient to produce high depression
forces at low value of lift coefficients. Low lift coefficients and high aspect
ratios reduce the induced drag.

9. A depressor-wing dihedral angle is required if the tie point is at the body's
center of gravity. A negative dihedral coefficient is more favorable then a
positive coefficient in its effect on the dominant cable root. A better lateral
control system can be obtained with a positive coefficient.

10. In choosing the tow body consttuction materials, one should consider the
pressure fluctuations of random flow noise.

il. The control surfaces can be designed with sufficient area to provide an
acceptable degree of control effectiveness.

12. Control systems greatly improve the transient characteristics. The stability
and damping can be favorably changed.

13. A longitudinal control system is presented. This system, in addition to
holding the tow body at a commanded depth, improves the damping and stability.
14. A lateral control system is presented. This system improves the stability
and damping, coordinates the rudder and ailerons so that no skidding occurs
during turns, and provides a yaw-rate directional control for the tow body.

15. Intercoupling of the longitudinal and lateral motion is very small even
without automatic controls. Roll damping of the tow body itself is excellent.
16. Turning is considerably aided by the introduction of turn coordination.
The required bank angle is less than 5 degrees for a J0{-foot-radius turn for
Body A at 45 knots.

17.  Flow noise study indicates a broadband pressure of 80 dB above 1 dyne
per cm2 in the turbitlent boundary layer of the tow body. A nondimensional power
spectrum curve is presented. The frequency at which the power spectrum peaks
depends on the speed and the boundary layer thickness. Nomograms are
presented which can be used to estimate the boundary layer thickness.

18. The streamlined towing cable attenuates much of the higher-frequency
random energy travelling down the cable, particularly for transverse modes.

19. The attainable depths and required horsepower depend primarily or. "2
towing cable. The tow body's depression force/drag ratio must be large.
Smatll-cross-section, laminar-flow streamlined cables are required for the low
drag per foot, and for the prevention of cavitation at all depths.
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