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INTRODUCTORY REMARKS

The material given in Technical Report No. 15(61) represented a "Long
Abstract" as required by ACS regulation of papers to be presented at a
national meeting. Following suggestions made after the meeting at Miami
Beach where Dr. Yajnix presented the material, it wss decided to make the
material available to the general public by publication. This decision,
on the other hand, entailed a rewriting of the paper, an appreciable increase
in documentary material beyond that originally available and additional
checks of the computations made. The resulting considerably revised and L
enlarged edition whict 48 now being submitted for publication in the J, !
Polymer Sci.,differed sufficiently from Technical Report No. 15(61) that
its re-issuance as Technical Report No. 15A(61A) secr.d to be warranted.
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ELECTRONIC CQMPUTATIONS OF LIGHT SCATTERING FUNCTIONS
FOR HETERODISPERSE SYSTEMS OF ISOTROPIC SPHERES

M. Yajnik, J. Witeczek and W, Heller
Chemistry Department
Wayae State University
Detroit, Mich. 48202

I. INTRODUCTION
' An important problem in the characterization of disperse systexs, such

8s polymer latices, emilsioas, eic., is the determination of theis particle
size distribution. Vuriocus experimental techriques have been used for this
purpose. Light scattering methods are among the most pramising ones. They
have the advantage over other methods (e.g. centrifugation, electron microscopy)
in that they ars relatively simple experimentally,do not ..lfect the state of the
systems and are very sensitive to rapid changes in particle size. It is therefore
possible, in principle, to obtain "inctantaneous" size distributiorsend to
lmdy' their variation with time. The advent of camputers has greatly enhanced
the attractiveness of light scuttering methods for the determination of size
distribution curves since thereby the formerly very appreciable amount of time
required for calculations has been reduced drastically.

The purpose of this paper is to show how the use of a camputer can allow
one to obtain the size distribution of relatively large spherical particles
- from light scattering data. We will be concerned specifically with the
application of the Mie theory because tbe systems investigated contained isotropic
spherical particles whose refractive index differs appreciably from that of
the medium. The computer was used for the solution of two problems: firstly,
esfensive tables of light scattering functions were prepared for a given type of
distribution to be discussed below. Secondly, after the experimental light
scattering data bad been obtained, the computer was used in order to find the
best fit between the experimental data and the tabulated theor tical wvalues.
Only the first part of the computer application will be considered here.
II. DEFINITIONS AND HISTORICAL REMARKS

While it is, in principle, possible to compute particle size distributions
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without ilmtroducing any assumption as to the type of distribution function,
this approach is at present not practical., Therefore, it has been assumadl
that the distribdution is, in agreement with most distributions in latices

and emulsions, unimodal and positively skewed. The function is

{(f) = (T ‘T‘) e”‘f{_[(r'r')/sjz} ™% o)
= 0 rsr

Here cf(r)dr is the number of particles per unit volume with radii between r
and r + dr, ¢ is a nommalization factor; and s and r, are the distribution
parameters: s is proportional to the distribution width and T, is the radius
of the smallest particles oreseat in statistically significant mumbers. It 1s
advantageous to introduce . . dimensionless parameters

_ 2Tt _ 2wS _ 2mr
P= ™ =" x == (2)

where ); is the wavelength of the incident light in the medium.

There are several light scattering functions which can be used in the
evaluation of particle size distributions.

The two methods developed previocusly in this laboratory involved the
determination of the spectra of turbidity and of the spectra of the
scattering ratio at an angle of observation of 90°. The scattering ratio

6= I"/I L ¢ vaxre 1y and I, ere the total intensities of light scattered fram
an incident lipearly polarized beam of unit intensity with the electric
vector vibrating in the plane of observation and perpendicularly to the
plane of observation respectively. We shall consider here the scattering

ratio for a series of angles of observatio: in:ludlu: )JC. Consequently,
the variation of § with the angle of observation can be used as the third
criterion in the determination of particle size distributiona?.

Finally, as a fourth potentially useful arguwent, the angular variation
of I, and I, , themselves, shall be considered,

*Closely related to this 1s the use of the angular variation of the
polarization ratio evaluated by Kerker et al® for certain relatively

large refractive index ratios applicable to aerosols.




Considering a system containing optically homogenecus, non-absorbing
spheres with a distribution in size £(r), tbe quantities enumersated are,

on using the Mie-equations3, defined as follows:

I, = %:T-rc.‘ ,(1"(“' yom): f(r)dr' (38)

L= %I‘*(“Jﬂ"&)'f(f)df (3

f~‘¢:,(°"3':m)'f(f) dr

5 = 3 ’ (3c)
_(;_. o (O(X m) ' f(-r) dr

Making use of equations (2) we get the following expression for
the scattering ratio:

[ it mpep epf{-L(x-paT } dox )
f: i, (<dom) (x-p) ep{ (= 'F)/ﬁa} d

The quantities i, (@ ,7, m) and 1, (@, 7, m) in ecuations (3)

and (4) are the basic Mie functions for angular scattering. They depend
on G, on the refractive index of tbe spheres relative to that of the

6 =

medium, m, and on the angle of observation 7, measured with respect to
the reverse direction of the incident beam. They are defined as follows

A'J” = Z’;[Anm(usg)ﬁ- B, T, (wsg)] (5e)
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Sn are the Riccati-Bessel functions, ¢n are complex functions related
to the Hankel functions, ‘Tr’xl and T are related to the associated lLegeudre
polynomials. Fuller desc:iptiorn of the quantities which enter in the Mie
equations has been given elsewhereh.

The first systematic attempt to compute solutions of the Mie equations
(5a) and (5b) for specific values of the parameters @, y and m and for
' oonodisperse systems by Blumer, in 1925 had to make use of mamal camputations.

The most recent results obtained by manual computations dealing ccain with
monodisperse systems, were those by Pangonis.6 They were calculated with a
conventional desk calculator. Since 1t is necessary to take at least O terms
and, preferably, (1.43 @ + 5) terms into the summntions defined in equations
(5) the practically possible scope of computations was severe.y limited )
however,unless a. wir. . ).uL1ly large amount of time was to be devoted to the
task. Thus, the computations by Pangonis referred to above, required the
better part of one year. Only since the advent and more genaral avallability
of electronic comp;uters bhas it become possible to eva.luat'e the Mie scattering
functions without mejor restrictions in paramete: va.lues.""s’7 The nced ror
computations by an electronic computer became even more imperntive on using
the Mie theory for the determination of distribution functions. Here manual
camputations are virtuslly impossible because of the prohibitive time
required., Stevenson and HelJ.er8 in a first attempt in this direction have
published electronically obtained scattering functions for heterodisperse
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syctems for 6 -values at the single angle 7 = §G°,
III. THE PROGRAMMING TECHNIQUE AND PERFORMANCE CHECKS

The program as developed for the present purpose was written mostly
in Fortran for the IBM TOTL computer end consists of several parts. They
are concerned with (1) the generation of Bessel functions and legendre
polynomials (2) the evaluation of Mie functions defined by equations (5), and
(3) wii! “‘u2ir integration for specific p and q values. The generation of the

Riccati-Bessel functions was carried out by downward recursion since this
has been found to be more accurate for higher orders.9 In this conrection the
method based on the expression of ratios of 'kssel functions in terms of
ceontinued fractions has been used.lo

On carrying out the integration for a given pair of p and g values, it
was of course, necessary tc cut off the process of integration &t that &
value above which the asymptotically decreasing contributioa of higher CG-values
to the total scattering is negligible. It was found that the desired accuracy
of the scattering functior .lh..¢ Jijuwsc:) was not affected if the cut-off
was made at that Q-value at which the value of the distribution function [ )
has decreased to less than 107°.

One of the wmajor problems to be resolved waus the choice of the best
method of integration. For this purpose extenslve experimentation was

undertaken by means of the computer, the objective »eing to obtain a sufficicntly

accurate result without bhaving to use an inordinate amount of machine time. Two
classes of methods were used: (1) The Newton-Cotes formulse, and (2) The
Gaussian Quadrature. GSince the former are equsl-interval formmlse they are
simpler to use, particularly if the values of tke integrand are already
available, This is due to the fact that one set of data can be used for all
integrations (for any p and q values), For preliminary checks, some mamal
computations were performed using both the trapezoidal and Simpson's rule.
Both performed satisfactorily. Simpson's rule was considered as preferable
however, and adopted because of the oscillatory character of the functions
at large a-va..‘lnea.ll

It 18 true that, in principle, the Gaussian Quadrature should give more
reliable results if the number of intervals between the integration limits of




the independent variable is made sufficiently large. Therefore, this
alternate method, vas investigated also more closely. 'The process ot
integration was allowed to continue automatically for smaller and smaller

vl ' tsions until the difference between two successive results was less

than 1073, The general procedure is schematically shown in Figure 1, which
was prepared with a program using the autochart programming system.f
Unfortunately, the iterations am. the necessity of evaluating the Mie functions
in each instance took up a major amount of cosputer time. Therefore, this
wethod 1s used at the present time for spot-checks only.

A comparison of the results obtained with Lhe two methods of integration
is given in Table I, where the bracketed data are taken fram Reference 8; in
view of the fact that the computing techniques improved in the meantime, the
T "h “he precent values is satisfactory. It is apparent that a
decrsace In the SY-iaterval tra: 0.2 to 0.1 does not materially change the
result obtained with Simpson's rule, while a decrease is observed in the
results obtained with the Caussian metbhod on changing from 5-node te 9-node
computations.f*

A comprikensive survey of the performance of the Gaussian Cnadrature is
given in Figure Z where the number of nodes is the independent variable and
the number of panels is the paraneter.

* The flovw chart given in Figure 1 illustrates in principle also the computing
procedure on using Simpson's method except that the absence of nodes
eliminates the respective part of the process. In addition, changing intervals
betweer. successive & values is here much simpler.

##* The mumber of nodes define. the fixed mmber of intervals inmto which each
panel is subdivided. A panel, on the other hand, defines onr of the N parts
into which the total interval of integration is originally dlvided. After
the first computations the number of penels is increased automatically
to 2N, LN, etc., the number of nodes being in each instance constant. The
machine was programmed to increase the number of nodes systematically after
each such operation.




It is apparent that it is necessary at a given p ani g-value, to have a
product of at least 60 for the number of panels and number of nodes in order
to obtain & result which does not change furtbher on increase of panels or
ndes. It is nc' interesting to note that the nearly asymptotic value
obtained on using a sufficiently large number for the product of nodes and
parels is close to the rzsult obtained on using Simpson's rule provided the
mmber of intervals in the latter instance is close to 100. The resrpective
asymptatic values differ by somewhat lesc than 1.5%.

The satisfactory convergence of the results obtained by the two methods
(Simpson's rule and Gaussian Quadrature)on meeting the proper requirements
with regard to the mumber of intervals, -i rroduects of panels and nodes,
respectively, representad, in principle, sufficient pronf for the reliability
of the results obtained. Nevertheless still ancther proof was carried out.

It was based on the fact that the scattering ratios considered as a function

of q should extrapolate cgnvincing_ly, at q = O’ t0 the data reported previously
for monodisperse systems. That this applies in fact, is illustrated in

mg 3~5. In order to make the extrapolations to q = 0 as secure as possible
the interval of integration had to be reduced from AX = 0.1 to 0.0l1.

The computation of the € values 1s the sezor . step in the overall
computation procedure, the first step being the evualuation of the quantities.
I, and I, given In Equations (3a) and (3b). Essentially, all statements made
with regard to the computation of ¢ apply also to the computation of these
quantities. Figure 5 -hows on the example of I" that it also extrapolates very
well to g = 0. The values pertinent to q = O. »: taken from the book by
Derman, .eller, Pa.ngonish.

IV. PRELIMINARY DISCU3SINN OF THE RESULTS OBTAINED,

It is not intended here to discuss the results proper, their
characteristic features and practical application. This will be done in a
separate article to be published elsewhere, However, a few salient features
may be referred to here. First of ali, it is of interest to consider briefly
the charac’er of the § vs. q curves given in Figures 3-5. The curves . .inent
to large 7 -valuee { 7 = 90° and 150°) in Figure 3 are quite simple; this is
easy to understand since minim: and maxima of § enter the forward direction
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(>90°) only at rather high @ values. 2 Therefore, an increase in
beterodispersity simply increases the 6 -values monotonically at these
large argles of observation. Similarly, the curves are bound to be
monotonic at low p values if 7<90° as long as ¢ 1s reasouably small, the
regson being again the absence of minima and maxima. This is apparent from
Figure L v h appliss to y = 300. However, at larger p-values for the
came 7, 6 passes through a minimum or a maximum within the same range of
relatively small q-values. This follows from Figure 5. It is finally, of
interest to point ocut the most characteristic feature of the angular
scattering functions derived for heierodiasperse systems: Figure 7 shows
for p = 1.0 that even a very modest degree of heter: ':persion characterized
by g = 0.1 increases the mumerical value of 6 at 90° by more than 50%. The
increase is sbout 100-fold at @ = 1.0. In addition, there 1s an 8° shift in the
location of the minimum value of 6 in the letter instance, It follcws frcm this
camparison that the analysis of the size distribution curves will be particulerly
attractive at those angles where 6 -minima or maxima occur, because even slight
degrees of heterodispersion manifest themselves very clearly.
SUMMARY

Fortran programe were do. .1 to compute light scattering functions for
heterodisperse systems which can be described by a bi-parametric, unimodal,
exponential distribution function. The programs had to include the eveluation
of the Mie functions for angular scatterinz for any arbitrary values of the size
perameter ¢ . ithin the range 0 < @¢{25. This involved the generation of the
Riccati-Bessel functions and Legendre polynomials., Two methods of mmerical
integration (viz. Ganssian Quadrature and Simpson's rule) of the expressions
containing the products of the Mie functions and the distribution function were
investigated, and the results were compared. The theoretical results were aiso
checked by extrapolation to the condition of monodispersity characterized by

q—s0.
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LEGENDS

Figure 1
SCHEMATIC DIAGRAM OF THE PROCEDURE OF COMPUTATIONS
The symbols m, 7 and Q@ of the text are replaced here by M, G and
A due to technical requirements of the IBM 1403 printer used. Block 08,

labelled GROUP, stands for a group of subprograms for the functions indicated.

Flgure 2 ,
VARIATION OF COMPUTED §-VALUES WITH THE NUMBER OF NODES ON
USING THE GAUSSIAN QUADRATURE MITHOD .

The number of panels is indicated as the parameter,
m=1.20, 7 =90°, p=gq = 4.0, The curve was traced from an original plotted
by the Calcomp digital curve~-plotter with a separate program written for the

purpose.

Figure 3
VARIATION OF 6§ WITH q

y = 90° and 150°
m = 1.7, Parameter p

Figure 4
VARIATION OF 6 WITH q. I. LOW p~-VAILUES
7 = 30°
m = 1,20 .Parameter p
Figure 5

VARIATION OF6 WITH q. II. INTERMEDIATE p-VALUES
Same details as in Figure &4,

Figure 6
VARIATION OF I, WITH g
7 = 30°
m = 1.20. Parameter p
Figure T

VARIATION OF ¢ WITH y FOR SMALL DEGREES OF EETERQDISPERSION
{.<1.0) ANDp = 1.0

m=1,20 Page 10




TAELE X

VALUES COMPUTED BY (A) GAUSSIAN QUADRATURE AND (B) SIMPSON'S RULE
L. m = l 20, 7 = m - - X

g P “; A B B By
0.h ) ©.00003 .00003 .0000
0.4 b .3161h .31613 .3028
2.0 0 .10061 10107 .10013 ,10013 0997
2.0 b 41845 5187 41843 L1846 4182
k.0 0 .30938 .31223 .30720 .30720 .3049
4.0 L4 . 56547 .55547 57309 .57309 .5710

9 nodes
5 nodes
& = 0.2
&2 = 0.1

Data from Ref. 8 (computed with
Simpson's rule,

RN
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