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SUMMARY

/
In previous papers,!we have

approach of dynamic programming to the study of variational

problems associlated with the Sturm—Liouville equation of second

order with real coefficients. In this way, We were able to

obtain the dependence of the Green' 8 function upon the interval

lengtn. Prom this\we obtained the corresponding dependence of

the characteristic values and the characteristic functions, and

similar results for vector-matrix systems.

To apply the same general techniques to the study of

equations with complex coefficients, weus®e min-max variation.

It 1s shown that this method can be applied rigorously. i
N

applied the functional equation
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FUNC'TIONAL EQUATIONS IN THE THEORY OF
DYNAMIC PROGRAMMIN(~-XII: COMPLEX
OPERATORS AND MIN-MAX VARIATION

Richard Bellman
R. Sherman Lehman

1. Introduction

In {1], we avplied the functional equation approach of
dynamic programming [2} to the study of the variational problem

assoclated with the Sturm-Liouville equation
(1) (p(x)u')' + (r(x) + 7g(x))u = 0, u(a) = u(1l) =0,

where p, q, and r are real. In this way, we were able to
obtain the dependence of the Green's function upon the end-
point a. From this result, we obtained the dependence of the
characteristic values and characteristic functions upon a.
Corresponding results, the Hadamard variational formulas, were
presented for partial differential equations in [3].

In order to apply the functional equation technique, we
were required to assume that p, q, and r were real., In
{u], we indicated briefly how min-max techniques could be used
to study the corresponding problems for complex functions. In
this paper, we wish to present the full argument for a parti-

cular class of equations of the foregoing form.

2. Boundary Value Problem

Let us consider the following boundary value problem:

(1) U"(x) + a(x)u(x) = v(x), (a< x<Dbj,

U(a) = 0, U(p) =0,
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where q(x) and v(x) are.complex-valued functions continuous

on the closed interval fa,b]. If the Sturm-Liouville problem
obtained by replacing q by ‘Aq does not have A =1 as a
characteristic value, then the boundary value problem has a

unique solution given by the equation

(2) u(x) -Oé7b K(x,y,a)v(y)dy

where K(x,y,a) 1s the Green's function of the problem. We
shall regard b as fixed and study the dependence of the
Green's function upon a.

In order to use an approach suggested by dynamic program-
ming, we shall find it convenient to study the system

(3) u'(x) + q(x)u(x) = v(x), (a < x<b),
u(a) =c, u(b) =0.

A solution of this system can, under the above assumptions, be

expressed in the form

(4) u(x) = U(x) + cg(x)
where
(5) g'(x) + q(x)g(x) =0, (a < x<Db),

gla) =1, #(b) =o0.

Since the problem (3) is assoclated with a complex linear

differential operator which is symmetric, we can obtain a
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corresponding variational problem. Let u(x) = ul(x) + 1u2(x),
4
a{x) = q (x) + 1q,(x), v(x) = v (x) + 1v,(x), with wu ,u,,q),
qe,vl,v2 real-valued functions, and let ¢ =c, + 102 with
¢, and c, real numbers. The system (3) 1s then equivalent

2
to the real system

(6) uy "(x) + q(x)uy(x) = qy(x)ay(x) = v, (x),
uy"(x) + qp(x)uy(x) + ay(x)u; (x) = v (x),
ul(a) =c, uz(a) =0, ul(b) - u2(b) =0,

We consider the integral

2 2 2

2} O W2 - -
J(“l'“e) -%: { w4+ w4 gy 2q5u,u, — q U,

- 2uv; + 2u2v2§dx

and consider the variational problem of determinng

(7) f(a,cl,ca) = max min J(“l’“z)'
u, u
1 "2
where the maximum 1s taken over piecewise oontinuously differen-
tiable functions u, for which ul(a) =0, ul(b) = 0, and
the minimum is taken over piecewise continuously differentiable
\lz(b) = 00

functions u, for which ua(a) = ¢

2 2’
The equations (6) are the Euler equations for the varia-

tional problem (7) and the functions u; and u, ylelding the

max min, if they exist, provide a solution of the system (6).

To see this, we let TCh(x) and 772(x) be arbitrary piecewise
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continuously differentiable functions for which ’Zﬁ(a) = zé(a)
- ?l(b) = 7)2(b) =0 and let €, and €, be positive real
numbers. Then

2

Juy + €100y + €570 = J(uj,uy) + 26)A) + 2¢,R, + € %Ay
+ 2.6 A - + E.°A
180810 + €0 Ay
where
b
A -f{ (= uy'D) '+ qu7) = au)y — vy7))dx,

A, "(4717 (W'D, = a7, = qyu,7, + v,7,)dx,
¥l '({)b (- 7)1-'2 + a,%)ax,
A2 = ‘({) ® 4,775,
A2z '([b (7,'% = a,7,°)ax.

Integrating by parts we obtain

Ay 7[" 7y (x)[u"(x) + ay(x)uy(x) = ap(x)uy(x) - vy (x)]ax,

A = _zéob,zg(x)[u2n(x) i ql(x)ue(x) + q2(x)ul(x) - ve(x)de.

Consequently (“1’u2) 18 a stationary point for J 1if and
only 1if v, and U, yield a solution of the boundary value
problem (6).
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In order to assure the ex.:latcnco of the max min appeanng
in (7), 1t 1s sufficient to assume that ql(x) < 0 for
a<x<b. It then follows that if 7)1(::) £ 0 and 1//2(::) #0,
then A,, < 0 and A,, > 0. Consequentiy, the max min in (7)
will exist and also
(8) r(a,cl,cQ) = min max J(ul,uz)
Y2 YN
where the mininum and maximum are taken over the same classes
of functions as for (7).
We remark that if ql(x) is not negative on the entire
interval [a,b] then one can employ analytic continuation as
in [&] to reduce the problem to one for which the variational

argument is applicable.

3. Interchangini min and max Operators

Let xl, x2, Yl, and Y2 be sets; and let xl,xe, Yyi»
and Vo be variables ranging over these sets. Let %(xl,xa,yl,ya)
be a real-valued functicn defined for all values of the
variables. Assuming that all of the maxima and minima mentioned
exist, we shall prove the following lemma.

LEMMA 1. If

(1) = max max min min %(xl,xg,yl,ya)
X1 %2 Ny Y2

= min min max max %(xl,xz.yl.yz).
¥, Yo {1 X%

then




P-2083

6

(2) max min max min j£(xl,x,‘,,,v,rl,y2) = o

X Y1 X Y
and
(3) min max min max §(x1’12’y1'y2) - P,

13 % Yz %

Proof. We use repeatedly the fact that

(4) max min ¥(x,y) < min max ¥(x,y)

x y Yy x

for any function # of variables x and y ranging over sets
X and Y, provided the maxims and minima exist. (See [5 ,p.lOJ.)
We have

(5) max max min min$ ¢ max min max ming
X) X2 N1 Y3 BN X Y

Sninmxmaxntn%
1. %1 X2 Y2

Sninmaxminmax%
Y3 X1 Y2 %5

€ min min max max %
Y1 72 % %
By assumption the t:d expressions at the ends of this string
of inequalities are equal. Hence we can replace '("
throughout by "=" and the lemma follows.
We remark that the proof shows that the lemma holds even

if the set X, depends upon the variable Xy and the set Y2

2
depends upon the variable Yy
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Lemma 1 can be regarded as a statement of '"the principle
of optimality" for ~ particular type of two-stage game. In
this interpretation © 1s ths value of the two parson game.
The first player chooses the strategy Xy for the first stage
and the strategy X, for the second stage. The other player
chooses Y, for the first stage and Vo for the second. For
a further discussion of the principle of optimality for multi- i

stage games we refer to [2;p.29i].

4, Application of Dynamic Programming

Using an approach suggested by the theory of dynamic t
programming, we shall discuss a variational problem of which
the problem of §2 is a special case. Let F be a continuous

function of five variables. Let

(1) £(a,0;,0,) = max min /7° B(x(t),x,(t),¥(t),¥,(t),t)at
xl yl a

gl (4”’ P(x(t),x,(£),5(t),5,(t),t "

where

(2) x(t) = ¢y +0/7t xl(s)ds,
a
t P
y(t) = o, +{) yyis)ds,
and the maxima are taken over functions xl(t) which are pilece-

wise continuous on the interval [a,b] and the minima are

taken over functions yl(u) which are pilecewise continuous on
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the interval [a,b]. The assumption that the max min is equal
to the min max will be important in the following discussion.
In addition we shall assume that the function f 18 continuously
differentiable and that the functions 3 and ¥y, yielding
the min max are continuweus,

Let A be a small positive number., We let max., dencte
the maxioum taken over piecewise continuous functions x,
restricted to the interval [a,a + A], WAXyy denote the
maxipum over plecewise continuous functions X restricted to
the interval [a + A,b], and similarly min; denote the
minimum over piecewise continuous y, on [a,a + A], and
minII the minimum over plecewise continuous y, on [a + A,b].
We have by Lemma 1

(3) f(a,cl,ca) = max max min min /)b Pdt
I ITI I I1

= max min max min (/)a+A Fat +/7b th§
I I

II 1I a+h
= max ntn { /% Fdt + max min /° Fat]
I II II‘G+a

= max min % /)a+A Fat + f(a + a,x(a + 4),y(a + A))j.
¢
I I a
This states algebraically the principle of optimality for
multistage games--at each stage an optimal policy is one leading
to an optimal continuation,
Using the assumed continuity of F and continuous

differentiability of f, we obtain for A4 — O
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(%) f(a,cl,cz) - m§x min {AF(cl,xl(a),ca,xa(a),a) + f(a,cg,c,)

or : of
+ 8 5:(a,c),c,) + .xl(a)ggi(a.cl.ca)

+ Ayl(a)ggg(a.cl.cz) + o(a)},
and hence for A —> O

(5) 0O = m?x min {F(cl,xl(a),ca,xa(a),a) +~§§ + xl(a)§§I

& yl(a)-g-g-é + o(l)g .

Here it is tempting to ignore the o(l1) term and say that in
the 1limit a choice of X, and y, over the interval [a,a + A]
amounts to a choice of xl(a) and yl(a). Let us justify this
argument. Let g(t) be an arbitrary continuous function on
the interval [a,b] such that pB(a) = 0. Since we are assuming
the existence of a continuous solution, let us take the maximum
and minimum not over all pilecewise continuous functions, but

over all continuous functions of the form
(6) x,(t) = x (a) + X, (t), Ix(t)] < 8(¢),
y,(t) =y, (a) + ¥,(t), Iy, (¢)] < B(L).

Clearly, by choosing £ appropriately we can have the solution
of our original problem in the admissible class.

Abbreviating by setting ec,' = xl(a), c,' = yl(a) and
interchanging minimum and maximum operators according to

Lemma 1, we have for A —» 0
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4

(7) 0 = max max min min $F(c,,c,',c,,c,',8) + n
o ' 2, (t) ¢t 3,(t) s Lo RE S °a
of . or

+Cl' gc—1+02 5-0—2-+O(1)}

f f af
= max min iF(c,ol',cz,ce',a) + gZ + cl' gEI + c2 o

01' 02' 2
1(t) yl(t) i

Because of the assumed properties of the solution, we can re-
strict the point (cl',cz') to a bounded region. Then, 1if we
investigate the o(1l) term more closely, we see that the
restrictions(6) guarantee that the term o(l) is uniformly
small for all functions x, and y, for which |§l(t)| < B(t),
lie(t)| < B(t). Consequently, we obtain

(8) 0 = max min iF(cl,el',ce,ca',a) + ;%(a,cl,cz)

] 1
€1 %2

af
+ o, 5—-(& 6y,C, ) + c,’' c2(a’°l'°2)§'

Specializing this result to the variational problem of §2,

we have

2 2 2
(9) 0 = :af 21? %— ¢;' + ¢, + ¢,%,(a) = 2¢,c,q,(a)
1 2
2 <
- ¢, ql(a)~— “clvl(a) + 202v2(a)
2f of
+ 3;(a,cl,c2) +c,! §Ez(a’°1’°2)
Jf
+ c2' 5-6—2'(8.,01,02)%.

It is easily seen that the max min of this quadratic function

is attained for




- 2c1v1(a) + 2c2v2(a)
2 2
+ (cl - ¢, )ql(a)~— 2clczq2(a).

5. Alternate Approach

is gotten by observing that
(1) J(up,uy) = Ra([b { = (u(x))? + a(x)(u(x))?
- 2u(x)v(x)§dx.

Similarly the partial differential equation (4.11) can be

written
2 2
) -%(22—) + Rni— 2cv(a)

ar 1:0f
(2) - 25(a,0,,¢,) = 7\e; 5c,

where ¢ = c1 + 102.

The following lemma will be used in the next section.
LEMMA 2, If P(x,y) is continueus for a < x ¢ b,

ir F(x,y) = F(y,x), and if

(3) Re /’°,/?° F(x,y)v(x)v(y)axdy = 0
a a

P-2083
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1 2f 1 2f
(10) ey’ =33 C2' " E5e,
Substituting these values into (9) we obtain the partial
differential equation
(11) - 2Ma,0,,0,) = 2(Z(a,0,,c,))2 - H(5E(a,0,,c,))?
Fa 11272 Kﬁ'c"l" A L] Erca P 050

Another way of formulating the variational problem of §2

+ 02Q(a)gr

ady«<hbp,
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for every continuous function v, thean F(x,y) vanisheu

identically.

If P(x) 4is continuous for a < x < b, and if

Roo/Qb F(x)v(x)dr = 0
a

for every continuous function v, then F{x) vanishes

identically.
Proof. In case F 18 a real-valued function and (3)

holds for every real-valued continuous v, the first assertion
of the lemma was proved in [i]. Let P(x,y) = Fl(x,y) + 1F2(x,y),

v(x) = vl(x) + 1v2(x) with F,, F,, v;, v, real-valued

functions. We have

(4) 0 = Re,/% /7" B(x,y)v(x)v(y)exay
a

= /7% /% §F (2,9) [v (x)v (¥) = v (x)v, (¥)
4o 1N 14XV, 2\ XV,
~ P(x,3) [v (x)v,(y) + v,(x)v, (y) |} axay.

Taking v2(x) = 0, we obtain

b
[b({ P, (x,¥)v,(x)v,(y)dxdy = 0
for all continuous real-valued functions vy Hence by the
lemma of [l], Fl(x,y) = 0. Next, taking va(x) = vl(x), we
obtain

(5) -2,/ /% Py(x,3)v,(x)v (y)axdy = O,

a a
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and thus Fz(x,y) &= 0., This completes the proof of the first
assertion of the lemma. The second assertion can be obtained

as a corollary by taking F(x,y) = 1F(x)F(y).

6. Variation cf the Green's Function

Now let us use the partial differential equation (5.2) to
study the variation of the Green's function K(x,y,a) with a.
Let u(x) = ul(x) + 1u2(x) be the function which ylelds the

max min in (2.7) for given a and c. Writing u = U + of

and integrating by parts, we find

(1) =/ % urfax = /1 {U(0" + 208") + cPgpt)ax + oPg(a).
a a

Hence, using the differential equations U" + qU = v and

#" + q¢f = 0, we obtain

(2) f(a,cl,ca) Re/b (- u?y qu2 — 2uv)dx
a

- Rei —[b U(x)v(x)ax — 2c({)b #(x)v(x)ax

+ o%g(a)},

and hence by (2.2)

(3) la,0),05) = Ref =",/ 7" Kix,y,a)v(x)v(y)axy

2c/)b g(x)v(x)ax + ¢34 (a)].
a ]

Using the differential equation (5.2), we obtain upon

equating terms independent of ¢y and c2,




P-2083
14

Re /" /" 2K(x,y,8)v(x)v(y) = (Re,/7® #ix)v(x)ax)?
= (1m,/”° g(x)v(x)ax)®
a
Re/’ > g(x)g(y)vix)v(y)axay

for every continuous function v. Because of the symmetry of

the Green's function, we can apply Lemma 2 to obtain

7 . -

K(x,y,2) = g(x)d(y).
Also

[b gvax -({”’ #U" + qU)ax =,/ U(g" + af)ax - ' (a)sla)

== U'(a)’

i,

and hence

() / #(y)v(y)ay = —/7 Z(a,y,a)v(y)dy,

for every continuous function v. Hence, by Lemma 2,

(5) #(Y) == éaf-(a,y,a).
Thus
(6) g{’(xny:a) = g‘%(ay,ya)‘g_ly((x:apa)-
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T. Further Results

Having obtained the bacic variational formula of (6.6),

we can apply 1t to the equation

(1) u"(x) + (p(x) + 2a(x))u(x) = v(x), wu(a) =c¢, wu(1l) =o0,

to obtain an equation for the resolvent as a function of a.
Specializing the values of A as in [1], we obtain in this
way variational formulas for the characteristic values and
characteristic functions,

Finally, let us mention that as in [1] 1t 18 easy to

obtain analogous results for the vector-matrix version of (1).
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