
nu. document has been approvea 
for public release a•d sale; 1:.. 
distribution is ualimlted. 



FUNCTIONAL EQUATIONr IN THE THEORY OP 
DYNAMIC PROGRAMMING--XII: COMPLEX 

OPERATORS AND MIN-MAX VARIATION 

Richard Bellman 
Mathematics Division 
The RAND Corporation 

R. Sherman Lehman* 
University of California 

P-2083 

l September 1960 

•consul tant to .• e Matheatics 
Division, The RAND Corporation. 

Reproduced by 

T he RAND C o rporat i on • Santo Mon ic o • C a li fo rn i a 

The vtews xpressed in this paper are not necessarily those of the Corpora tion 



P-2083 
11 

SUMMARY 

/ 
In previous papers,^We have applied the functional equation 

approach of dynamic programming to  the study of varlatlonal 

problems associated with the Sturm—Llouvllle equation of second 

order with real coefficients.    In this way,  we were able to 

obtain the dependence of the Oreen's function upon the  Interval 

lengtn.    Prom this ^we obtained the corresponding dependence of 

the characteristic values and the characteristic functions,  and 

similar results for vector-matrix systems. 

To apply the same general techniques to the study of 

equations with complex coefficients,  ww-twB mln-raax variation. 

It Is shown that this method cam be  applied rigorously. 

\ 

    —-• - 
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FUNCTIONAL EQUATIONS IN THE THEORY OP 
DYNAMIC FROORAMMINCJ—XII:  COMPLEX 
OPERATORS AND MIN-MAX VARIATION 

Richard Bellman 
R. Sherman Lehman 

1. Introduction 
r   1 

In   ill, we applied the functional equation approach of 

dynamic programming    2\  to the study of the variatlonal problem 

associated with the Sturm-Liouvilie equation 

(1) MxW')'  + (r(x) + Ag(x))u « 0,    u(a) - u(l) - 0, 

where    p, q,    and    r   are real.    In this way, we were able to 

obtain the dependence of the Green's function upon the end- 

point    a.    From this result, we obtained the dependence of the 

characteristic values and characteristic functions upon   a. 

Corresponding results, the Hadamard variatlonal  formulas, were 

presented for partial differential equations in    3j. 

In order to apply the functional equation technique, we 

were required to assume that    p, q,    and    r   were real.    In 

141, we indicated briefly how min-max techniques could be used 

to study the corresponding problems for complex functions.    In 

this paper, we wish to present the full argument for a parti- 

cular class of equations of the foregoing form. 

2.    Boundary Value Problem 

Let us consider the  following boundary value problem: 

(1) U"(x) + q(x)U(x)  - v(x),     (a < x < b), 

U(a)  - 0,    U(b)  - 0, 
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where    q(x)    and    v(x)    are complex-»valued functions continuous 

on the closed Interval    i *>*>]•     I? the Sturm-Llouvllle problem 

obtained by replacing    q     by    ^q    does not have   7\ » 1    as a 

characteristic value, then the boundary value problem has a 

unique solution given by the equation 

(2) ü(x)  -/?b K(x,y,a)v(y)dy 

where    K(x,y,a)    is the Green's function of the problem.    We 

shall regard    b    as fixed and study the dependence of the 

Green's function upon   a. 

In order to use an approach suggested by dynamic program- 

ming, we shall find it convenient to study the system 

(3) u"(x) + q(x)u(x)  - v(x),     (a < x < b), 

u(a) - c,    u(b) ■ 0. 

A solution of this system can, under the above assumption», be 

expressed in the form 

(4) u(x) - U(x) + c^(x) 

where 

(5) ^"(x) + q(xWx) - 0,  (a < x < b), 

^(a) - i, /^(b) « 0. 

Since the problem (3) is associated with a complex linear 

differential operator which is symmetric, we can obtain a 
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corrtipcmdlng varlatlonal problem.    Let    u(x) - u^Cx) + lu2(z), 

q(x) - q^x) + lq2(x),    v(x) - v1(x) + lv2(x),    with    u1,u2,q1, 
(12'vl'v2      r'eal-valued function», and let    o - c,  + Ic.    with 

e^    and    o»    real nunbers.    The syatem (3)1« then equivalent 

to the real system 

(6) u^'U) + q^x^x) - q2(x)u2(x)  - v1(x), 

u2"(x) + q1(x)u2(x) + q2(x)u;L(x)  - v2(x), 

u^a) - clt    u2(a) - c2,    ^(b) - u2(b) - 0. 

We consider the Integral 

J{ult\x2)  -y)b j^- xx^2 + Ug'2 + q^2 - 2q2u1\x2 - q^g2 

a 

- 2u1v1 + 2u2v2jCiX 

and consider the varlatlonal problem of determlitig 

(7)     fCa^,^ ) - max mln J(u1,up), 
ul u2 

where the maximum Is taken over plecewlse continuously dlfferen- 

tlable functions    u,     for which   ^(a) » c.,    u.Cb) - 0,    and 

the minimum Is taken over plecewlse continuously dlfferentlable 

functions    u2    for which    u2(a) » c2,    u2(b) « 0. 

The equations (6) are the Euler equations for the varla- 

tlonal problem (7) and the functions    u,     and   u«   yielding the 

max mln.  If they exist,  provide a solution of the system (6). 

To see this, we let   ^(x)    and   ??2(x)    be arbitrary plecewlse 
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continuously dlffcrentlable functions for which   ^(a) - 772(a) 

- ^(b)  •» Vpi*) m 0    and let    ei    ^d   G2    be Pooltive real 

number».    Then 

J^U1  + ei?;i'U2 + £2^   " J^ul»u2^  + 2eiAl +  2e2A2 + 61  All 

2 + 2&1e2A12 + 62 A22, 

where 

Ai -/b (-" W + ^iVi - q2Vi - vA)dx' a 

A2 V'" (u2'92' - ,2u^2 - qiu27>2 + v292)<U, 
a 

Aii -/b (-^i'2 + q^2)^ a 

a 

A22 -^ (V2-^2)**" 

Integrating by parts we obtain 

Al "/'b^i(x)[ui"(x) + q^xW^x) - q2(x)u2(x) - v^x^dx, 

A2 " -"/b^2(x)[U2"(x) + q1U)Vx) + <12(X)U1(X) " v2(x)Jdx< 

Consequently    (u^u-)    la a stationary point for    J    if and 

only If    u,    and    u2    yield a solution of the boundary value 

problem (6). 
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In order to assure the exlstsnos of the max mln appeaxtig 

In (7)#  It is sufficient to assume that    q-^x) < 0    for 

a < x < b.    It then follows that If   ^(x) / 0    and   T^t*) ^ 0» 

then   A,,  < 0    and    A22 > 0.    Consequently, the max mln In (7) 

will exist and also 

(8) fUfC^c   ) - mln max J(\xlt\xp) 
u2    ul 

where the minimum and maxlnaua are taken over the same classes 

of functions as for (7). 

We remark that If   q1(x)    is not negative on the entire 

Interval      a,b      then one can employ analytic continuation as 

in to reduce the problem to one for which the variational 

argument is applicable. 

3.    InterchanglnL mln and max Operators 

Let    X-^, X2, Y1,    and   Y-    be sets; and let    x,, JL, y^ 

and   y«    be variables ranging over these sets.    Let    ^(x1,x2,y1,y2) 

be a real-valued function defined for all values of the 

variables.    Assuming that all of the maxima and minima mentioned 

exist, we shall prove the following lemma. 

LEMMA 1.     If 

(1) f? » max max mln mln J(x1,x2,yi,y2) 
xl    x2   yl    y2 

- mln mln max max <'(x1,x2,y1,y2), 
y1    y2   x1    x2 

then 



(2) 

and 

(3) 

max min max min iU, »x^y, ,7^) - ^ 
xl ^1 x2 ^2 

■In aax nln max {(x^Xp,/, ,y9) - p, 

Yl    xl    ^2    x2 

W 

Proof.    We use repeatedly the fact that 

■ax «In ^(x,y) ^ mln max ^(x,y) 
x     y "   y      x 
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for any function    f   of variables    x    and   y    ranging over sets 

X    and   Y,    provided the maxima and minima exist.    (See   5,p.lo].) 

We have 

(5) ■ax max mln mln <j> ^ max mln max mln<j> 
xl    yl    x2    y2 

^ mln max max mln<|> 
y1    xl    x2   y2 

<; mln max mln maxi 
yi     x^    y^    Xp 

£ mln mln max max 4>. 

By  assoaptlon the t^o expressions at the ends of this string 

of Inequalities are equal. Hence we can replace "<£" 

throughout by "•" and the lemma follows. 

We remark that the proof shows that the lemma holds even 

If the set Xp depends upon the variable x, and the set Yp 

depends upon the variable y,. 

Mtaaaftt ribfta 
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Lftnma 1 can be regarded as a stattmant of "the principle 

of optlmallty" for r particular type of two-stage game.    In 

this Interpretation   /=>   Is the value of the two person game. 

The first player chooses the strategy   x,    for the first stage 

and the strategy    x2    for the second stage.    The other player 

chooses    y,     for the first stage and   y^    for the second.    For 

a further discussion of the principle of optlmallty for multi- 

stage games we refer to   [2;p.29--]* 

4.    Application of Dynamic  Programming 

Using an approach suggested by the theory of dynamic 

programming, we shall discuss a ^?arlatlonal problem of which 

the problem of ^2 Is a speolal case.    Let   P   be a continuous 

function of five variables.     Let 

(1) f(a,c1#c2) = max mln   /b P(x(t),x1(t),y(t),y1(t),t)dt 
Xj^    y1    a 

- mln max 6/
?b x^(x(t),x1(t)>y(t),y1(t),t    u 

y1    x1    a 

where 

(2) x(t) - c1 +/t x1(s)ds, 
a 

y(t) - c2 +/
t y1(s)ds, 

a 

and the maxima are taken over functions    x,(t)    which are piece- 

wise continuous on the Interval a,b and the minima are 

taken over functions   y1(^)    which are piecewise continuous on 
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the interval a,bl.    The assumption that the max mln Is equal 

to the mln max will be Important In the following discussion. 

In addition we shall assume that the function    f   Is continuously 

differentlable and that the functions    x,    and   y.    yielding 

the mln max are continuous. 

Let    A    be a small positive number.    We let   max-,    denote 

the maximum taken over piecewlse continuous functions    x, 

a,a + A restricted to the interval maju-j denote the 

maximum over piecewlse continuous functions x, restricted to 

the interval  a + A,b , and similarly mLtij    denote the 

minimum over piecewlse continuous y, on |a,a + A , and 

minjy the minimum over piecewlse continuous y. on ja + A>b 

We have by Lemma 1 

(3)     f(a,c,,c0) = max max mln mln V-
7 Fdt 

1    * I  II I  II ^a 

= max mln max mln h/^^ Fdt + /?b Pdt ( 
I      I      II    II K ^a+A        3 

« max mln {,/a+A Fdt + max mln /^ Fdt { 
I      I    '  a II    II a+A J 

- max mln  i./a+A Fdt + f(a + A,x(a + A),y(a + A))j . 
I      I     '^a 

This states algebraically the principle of optlmallty for 

multistage games—at  each stage am optimal policy Is one leading 

to an ortlmal continuation. 

Using the assumed continuity of    P    and continuous 

differentiability of    f,    we obtain for    A -*• 0 

^taM^M 
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CO f(a,o1,c2) - max mln  ^AP(c1,x1(a),c2,x2(a),a) + f(a,c1,c2) 

9f 9f 
+ ä ^U.cltc2) + ^(a^Ca.c^Cg) 

Pf + Ay1(a>||-(a,c1,c2) + O(A)] 

and hence for   A 

(5) max ax mln ^P(c1,x1(a),c2,x2(a),a) + |j + xi(a)|f- 

^y^^' + od)] 

Here It Is tempting to Ignore the    o(l)    tern and say that In 

the limit a choice of    x,    and    y,    over the Interval      a,a + A 

amounts to a choice of   x.fa)    and   y1(a).    Let us Justify this 

argument.    Let    ß(t)    be an arbitrary continuous function on 

the Interval   [a,b      such that    ß(a) ■ 0.    Since we are assuming 

the existence of a continuous solution, let us take the maximum 

and minimum not over all plecewlse continuous functions, but 

over all continuous functions of the form 

(6) x^t) - x^a) + x^t),    Ix^t)! ^ ß(t), 

y^t) - y^a) + y^t),    ly^t)! ^ ß(t). 

Clearly, by choosing ß appropriately we can have the solution 

of our original problem in the admissible class. 

Abbreviating by setting c, ' » x1(a), c*  - 7^*)    and 

interchanging minimum and maxiBum operators according to 

Lemma 1, we have for A —» 0 
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(7) max 
o 

Pf 

"M»)v^F<Cl'Cl''C2'v'a>+51 

+ max      mln      o(l)?. 

Because of the aasumed properties of the solution, we can re- 

strict the point    (c,'»Cg')    to a bounded region.    Then,  If we 

Investigate the    o(l)    term more closely, we see that the 

restrictions (6) guarantee that the term    o(l)    Is uniformly 

small for all  functions    x,    and   y^^    for which    Ix^t)]  £ ß(t), 

j:jL(t)|   ^ ß(t).     Consequently, we obtain 

(8) 9tt 0 - max mln  JP(C1,O:L ' ,c2,c2',a) + ^(a,o1,c2) 
c^  c2 

Pf 3f 
+ cl, ^a'0i'c2) + V TT^i***^' 

Specializing this result to the variatlonal problem of b2, 

we have 

(9) max 
Cl'   C2 

p ? ? 
c mln j- Cj^'    + Cg1     + c;L q-j^Ca) - 2c1c2q2(a) 

- c2
2q1(a) - 2c1v1(a) + 2c2v2(a) 

+ ^a'cl'c2) + cl, ^a'cl'c2) 

+ c2, ^a'Cl'C2^- 

It is easily seen that the max mln of this quadratic function 

is attained for 

mMtfteMM ■MMH 
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(10) ci   -"5^'   02   --?^- 

Substituting these values into (9) we obtain the partial 

differential equation 

(11) - |£(a.Vo.,) - i(|^(.,o1.c2))iä - ^(..opo^)2 

- Zc^Ca) + 2o2v2(a) 

+ (e^    - c2 )q1(a) - 20^2<i2{&), 

5.    Alternate Approach 

Another way of formulating the varlatlonal problem of S2 

Is gotten by observing that 

(1) J{yxvM2)  - Re/0 [- (u'Cx))^ + q(x)(u(x))2 

- 2u(x)v(x)?dx. 

Similarly the partial differential equation (4.11) oan be 

written 

(2) - H^.O^s)  - &£-/ - Ülr/ + ««I- ^M  + o2q(a)^ , 

where    c ■ c,  + lOg. 

The following lemma will be used In the next section. 

LEMMA 2.    If    P(x,y)    la continuous for    a<x<b,    a<y<b. 

If    P(x,y) » P(y,x),    and If 

(3) Re/by?b F(x,y)v(x)v(y)dxdy - 0 
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for every contlnuoua function    v,    then   P(x,y)    vanlsheu 

Identically. 

If    P(x)    1» contlnuou» for    a < x < b,    and If 

Re^0 F(x)v(x)(ir - 0 

for every continuous function    v,    then   P(x)    vanishes 

Identically. 

Proof.     In case    P    Is a real-valued function and (3) 

holds for ever/ real-valued continuous    v,    the first assertion 

of the lenuna was proved In    1 .     Let    P(x,y) = ^Ax,y) + lF_(x,y), 

v(x)  - ^(x)  + lv2(x)    with    Fi,  P2,  v1,  v2    real-valued 

functions.    We have 

(4) 0 - R«c/
}Vb P(*,y)v(x)v(y)dxdy 

y^V lP1(^y)[vi(»)vi(y) - v2(x)v2(y) 
a      a     '• 

- P2(x,y)[v1(x)v2(y) + v2(x)v1(y)jjdxdy, 

Taking    v2(x)  so,    we obtain 

/b/?b F1U,y)v1(x)v1(y)dxdy - 0 

for all continuous real-valued functions v, . Hence by the 

,  Fj^x^y) a 0. Next, taking v2(x) = v;L(x), we lemaa of 

obtain 

(5) - 26/
?b/b P2(x'y)vl(x)vl(y )dXdy " 0' a      a 
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and thus F2(xfy) s 0. Thlb completes the proof of the first 

assertion of the lemma. The second assertion can be obtained 

as a corollair by taking   F(x,y)  - lP(x)F(y). 

6.    Variation of the Qreen's Function 

Now let us use the partial differential equation (3.2) to 

study the variation of the Green's function    K(x,y,a)    with    a. 

Let    u(x) ■ uAx) + lu2(x)    be the function which yields the 

max min In (2.7)  for given   a   and    o.    Writing   u ■ U + o^ 

and Integrating by parts, we find 

(1) -/>* u'2{ix ./l* [ü(j" + 2c^") + o2^"]dx + cV'(a). 
a a 

Hencej using the differential equations    U" + qU - v    and 

ft" + ctf m o,    we obtain 

(2) f(a,c1,c2)  - Rey75 (- u'2 + qu2 - 2uv)dx 

- Re[-/D U(x)v(x)dx- 2c/D ^x)v(x)dx 
et A 

+ o2^'(a)^ 

and hencie by (2.2) 

(3) fU^Og)  - Rej -c/
b

6/
;b K(x,y,a)v(x)v(y)dxdy 

a     a 

- 2cy^5 ^(x)v(x)dx + c2^'(a)|. 

Using the differential equation (3*2),  we obtain upon 

equating terms Independent of    o,     and    c2. 
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R*/Vb li(x'y'a)v(x)v(y) " (R0/b ^U)v(x)(ix): 
a     a a 

- (Im/b ^(x)v(x)dx): 

- Re/V1* ^(x)^(y)v(x)v(y)dJcdy 

for every continuous function    v.    Because of the synunetry of 

the Qreen's function, we can apply Leuna 2 to obtain 

||(x,y,a) -^(x)^(y). 

Also 

9 b P* ^vdx -^b ^(U" + qU)dx -/^ U(^" + q^)dx - U'(a)^(a) 
^a ^a ca 

- ü'(a). 

* and hence 

(M y^ ^(y)v(y)dy - -(/
b |^(a,y,a)v(y)dy, 

ft ft 

for every continuous function    v.    Hence, by Lemma 2, 

(5) ^(y) --|j(a,y,a). 

Thus 

(6) |£(x,y,a) .||(a,y,a)^(x,a,a). 

^UMMMtMAl 
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7. Further Reaults 

Having obtained the bade varlatlonal formula of (6.6), 

we can apply It to the equation 

(1)      u"(x) + (p(x) + ?lq(x))u(x) - v(x), u(a) » c,  u(l) - 0, 

to obtain an equation for the resolvent as a function of    a. 

Specializing the values of   7l    as In    1  , we obtain In this 

way varlatlonal  formulas for the characteristic values and 

characteristic  functions. 

Finally,   let us mention that as In    1    It Is easy to 

obtain analogous  results for the vector-matrix version of (l). 



2. 

P-2083 
16 

REFERENCES 

1. R. Bellman and R. S. Lehman, "Functional equations In the 
theory of dynamic programming—X: resolvents, 
characteristic functions and values," Duke Math. J., 
vol. 27, I960, pp. 55-70. 

R. Bellman, Dynamic Programming, Princeton Univ. Press, 
Princeton, N. J., 1957. 

3. R. Bellman and H. Osborn, "Dynamic programming and the 
variation of Oreen's functions," J. Math, and Meoh., 
vol. 7, 1958, pp. 81-86. "  "" 

4. R. Bellman and R. S. Lehman, "Functional equations In the 
theory of dynamic programming—IX: varlatlonal analysis, 
analytic continuation, and Imbedding of operators," 
Proc. Hat. Acad. Sei. USA, vol. 44, 1958, pp. 905-907. 

5. J. C. C, NcKlnsey, Introduction to the Theory of Qames. 
Mcdraw-HI 11 Book Co., Inc., Mew York, 1952.  


