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SUMMARY 

An analysis is performed to determine approximately 

the flow field and the normal forces acting for the two- 

dimensional, supersonic, zero angle-of-attack flow about a 

flat plate with super-critical heat addition (i.e., with 

thermal choking downstream) at a normal finite-height 

heater plane on one side of the flat plate. The results 

of the analysis have possible application to the design of 

an external thrust and/or lift producing device for air¬ 

borne supersonic vehicles. 

Charts for the determination of the pertinent flow- 

field parameters and the normal force coefficients as a 

function of the rate of heat addition and free-stream Mach 

number, are presented for Mach numbers ranging from 2.0 

to 7.0. 
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PRINCIPAL SYMBOLS 

a 

ã 

A 

A, 

b 

B 

C 

S 
ho 

h2’ 1 

»: 

i -1 

d - hoÎA 

% 

M 

M 

P 

P 

speed of sound 

mean speed of sound on the sonic line^Æ (See 
Fig. 1) 1 * 
cross-sectional area of a stream tube 

cross-sectional area of a stream tube at M 1.0 

parameter defined by Eq. (2) 

- (P0/P) (A/A,)0 

specific heat at constant pressure 

- /3 (yâtan ^ -^|/32 tan2 - l.'j 
'i * ' ; 

pressure coefficient, (p-po)/qo 

free-stream capture height (See Fig. 1) 

height of the heater (See Fig. 1) 

non-dimensional capture height, l^/hg 

spillage 

spillage corresponding to the case where the mass 
flow across the sonic line is equal to the mass 
flow through the heater 

shock standoff distance (See Fig. 1) 

L/h2 

moment 

local Mach number 

free stream Mach number 

mean Mach number just upstream of the second shock 
wave 

static pressure 

mean static pressure on the sonic line AiA) (See 
Fig. 1) _ 

static pressure corresponding to M and P 

iii 
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'10 

'll 

P 11 

r~> 
P oo 

p 

p 

‘H 

R 

T 

Uc 

Y 

Y 10 

11 

11. m 

11 

11 
oO 

Y. 

Y1 

X, y 

t 

local wall-static pressure along x x0 (See 
Fig. 1) '’02' 

local wall-static pressure downstream of x0 (See 
Fig. 1) 3 

local wall-static pressure downstream of X3 for a 
simply reflected Prandtl-Meyer expansion (See text) 

Pj^ at x - 00 

total pressure 

total pressure downstream of the first shock wave 
wave and along the mean streamline having the 
free-stream ordinate y 

total pressure downstream of the first shock wave 
wave and along the mean streamline having the 
free-stream ordinate y 

free-stream dynamic pressure, p U^/2 

heat flow per unit time per unit area 

gas constant 

static temperature 

free-stream velocity 

normal force per unit width, parallel to the y- 
axis, positive in the positive y-direction 

forward normal force per unit width acting on the 
surface \qx2 in Fig. 1 

aft normal force per unit width acting on the sur¬ 
face XgX in Fig, 1 

aft normal force per unit width acting on the sur¬ 
face x3xm in Fig. 1 

aft normal force per unit width acting on the 
face extending from x3 to x 

infinite-plate aft normal force per unit width 
i.e the normal force acting on the surface extend¬ 
ing from x3 to infinity 

normal force coefficient, Y/q h„ 
0 2 

rectangular coordinates (See Fig. 1) 

iv 
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* * 
x , y 

xi' 

m 

cp 

e 

e 

e 

Ü 
u 

V" 

^+0 

anS~d/îienSi0nal rectan8ular coordinates, x/hn 
and y/hg respectively 2 

coordinates of the intersection of the first and 
second shock waves 

K-intercept of the unrefracted last Prandtl-Mever 

heaterterÍStlC eraanatinS from the top of the 

pn,°r?lna^e aî which the cumulative aft normal forc< 
equals nine-tenths of infinite-plate aft normal 
force at zero spillage «urmai 

forceÍnate °f the center of Pressure of the normal 

free-stream ordinate of the mean streamline reore- 

line1^Ê2iall-theKflUl//fíOWÍng across the sonicP 
line V2' y = ho - ho) (See Fig. 1) 

- - 1 

ratio of specific heats, c /c 
’ p V 

Mach angle, cot"1^ - sin“1 (1/M) 

angle between sonic line and the normal to the 
free-stream directionV\- 0,, 

A1 

x-axisflOW directlon "»easured relative to the 

oníe'SsfshÓÍXvr81'6“" 0f the SOniC O01“* 

shockfíaíedÍreCtÍOn JUSt upstream of the second 

Value of i-e* that value of i 
for which second shock wave becomes a Mach wave 

forewhiíhÍtln? ValVe °f i'e* that value of ^ 
shSck -îaîe nlC VelOCity occurs behind the second 

son?í!tí;Mfyei\an?le (angle throußh which a super¬ 
sonic^ stream is turned in expanding from M - 1 to 

acteristicStlC COnstant for a right-running char- 

- V - 
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V“ - 0 

P 

P 

r 
Ar 

? 
I 

$ 

s=c 

5 
u 

\ 

0 

characteristic constant for a left-running char- 
ac+eristic 

mass density 

mean mass density on the sonic line /^,As, (See 
Fig. 1) 1 ¿ 

total temperature 

-r3 

local shock wave angle for the first shock wave 

local shock wave angle for the second shock wave 

the mean inclination of the second sho^k wave in 
the vicinity of the heater. Based on U and B, 
and measured relative to the x-axis 

mean inclination of the second shock wave corre¬ 
sponding to zero flow deflection, i.e. the Mach 
wave angle corresponding to m • 

mean inclination of the second shock wave for the 
occurrence of sonj.c velocity aft of the shock 

- (1 + * M2) M -1 ^2(1 + ) (1 ,- M2)] " 1/2 

Subscripts and Superscripts 

0¾ denotes conditions corresponding to critical heat 
addition, i.e., that amount of heat addition 
which just produces sonic velocity downstream of 
the heater 

o denotes free stream conditions when used as a sub¬ 
script 

m denotes conditions corresponding to the unrefrac¬ 
ted last Prandtl-Meyer characteristic 

R right-running characteristic 

L left-running characteristic 

A denotes conditions at the sonic line 

A. denotes conditions pertaining to the sonic point 
on the detached shock 

t denotes conditions corresponding to the aft normal 
force Y,, (See Y,, ) 

AAt iAt 

u , JL denotes conditions corresponding respectively to 
the upper and lower limiting values of B (See B) 

vi 
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1,2,3, 
etc. 

V" 

rJ 

denotes conditions at the corresponding stations 
shown in Fig. 1 

denotes conditions corresponding to a Prandtl- 
Meyer expansion from sonic velocity through the 
angle V" 

denotes mean conditions on the sonic line 
except when used with ÿ 1 * 

denotes mean conditions just upstream of the second 
shock, except when used with y and Ç 

denotes quantities associated with a simply reflec- 
tec Prandtl-Meyer expansion 

denotes a non-dimensional quantity when used as a 
superscript. Forces are made non-dimensional by 
dividing by qoh2. 
by dividing by h2 

denotes sonic conditions when used as a subscript 

Lengths are made non-dimensional 

vii 
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INTRODUCTION 

In the ever present effort to improve the over-all op¬ 

erational and performance capabilities of supersonic airborne 

vehicles, consideration has been given recently to the possi¬ 

bility of obtaining thrust and/or lift by the addition of heat 

to the external flow about a vehicle. Conceivably, the heat 

is added either by external combustion or by an external heat 

exchanger. A comprehensive, although not complete, list of 

unclassified publications dealing with various facets of the 

subject of heat addition to a flowing fluid is presented 

herein as Refs. 1 through 24)1. Most of these publications 

are concerned with the basic flow field problem, usually, ex¬ 

cept for Refs. 21 through 24, without detailed consideration 

of the mechanics of the heat addition process itself. Inves¬ 

tigations comparing the efficiency of lift or thrust produc¬ 

tion of a vehicle with external heat addition with a conven¬ 

tional ramjet—or turbojet—powered vehicle are reported by 

Pinkel, Seraiini, and Gregg in Ref. 17, Gazley in Ref. 18, 

Mager in Ref. 19, and Willmarth in Ref. 20. Briefly, these 

later investigations conclude that the efficiency of the 

external heat addition system is roughly of the same order 

as the more conventional arrangements for small amounts of 

heat addition. This, coupled with the difficulties of add¬ 

ing heat externally, presents a rather pessimistic picture 

for the external system. Although, on the basis of the fore¬ 

going investigations, the external arrangement appears to 

have no advantage or at the most only a marginal advantage 

over the internal system in its thrust and/or lift producing 
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efficency, it is felt that it should not be abandoned since 

other advantages possibly can be realized, such as, for 

example, a more compact vehicle or a reduction of cooling 

and structural requirements. 

Except for the treatments of one-dimensional flow (Refs. 

1» 2> 2> 4» and 5)» the explicit solutions obtained in Refs. 

1 through 19 for supersonic flow are for small amounts of 

heat addition. Willmarth (Ref. 20) treats the case of a 

large amount of heat addition on a flat plate wherein the 

heat addition region is the shape of a semi-infinite wedge 

and produces a semi-infinite oblique shock. 

The present paper is concerned with the approximate 

analysis of the flow field, and hence the determination of 

the normal forces, for two-dimensional, supersonic, zero 

angle-of-attack flow about a flat plate with super-oritical 

heat addition at a finite-height normal plane (the heater) 

on one side of the flat plate (see Fig. 1). Such a situation 

would occur, for example, for plane heat addition on the 

double wedge airfoils shown in Fig. 2. The detailed mechan¬ 

ism of the heat addition process is not considered. Nor is 

any consideration given to the determination of the forces 

acting on appendages, such as flame holders, or heat ex¬ 

changers which might be required in the heat addition pro¬ 

cess. Although the replacement of a combustion region or a 

heat exchanger by a heater plane greatly oversimplifies the 

real situation, it does serve to establish the order of magni¬ 

tude of the normal forces. The present analysis represents 

an advance over previous work in that it treats large amounts 

of heat added over a region of finite extent in the normal 

direction. 

2------—_____ 

heat addition ls defined as that amount of heat 
addition which just produces sonic velocity downstream of the 
region of heat addition. 

2 
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For the model analyzed, generalized charts showing the 

pertinent flow quantities and normal-force coefficients as a 

function of free stream Mach number and heat addition have 

been prepared for an ideal gas with a constant gamma of 7/5, 

and for Mach numbers ranging from 2.0 to 7.0. Generally, the 

gamma associated with heat addition will be different from 

7/5 due to the presence of combustion gases or to real-gas 

effects associated with high stagnation temperatures, or both. 

Refinements taking into account these effects have not been 

included in this paper, since the primary purpose is to de¬ 

termine gross effects, and because their inclusion seems un¬ 

warranted in view of the numerous approximations which have 

been made. 

DESCRIPTION OF THE MATHEMATICAL MODEL 

In this section a general description of the mathemati¬ 

cal model employed in the analysis is given for the purpose 

of orienting the reader with respect to the detailed discus¬ 

sions and analyses presented in subsequent sections. 

Figure 1 depicts approximately the flow pattern for 

super-critical heat addition. For sub-critical heat addition 

there is no spillage of the flow over the toj.* of the heater, 

and hence, for this regime the first shock wave shown in the 

figure does not exist. The gross flow characteristics for 

the flow between the x-axis and the streamline DAjJ2 are cal¬ 

culated on the basis of a one-dimensional stream tube whose 

3--- 
At critical heat addition we will continue to call the 
shock wave emanating from the top of heat addition region 
the "second shock wave" even though there no longer exists 
a first shock wave. 

3 
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area varies from hQ to h2 and for which heat addition has 

taken place at constant area, i.e. h2 * hg. The dimensions 

ho’ h2’ and L’ must of course be compatible with the conti¬ 

nuity requirements resulting from heat addition, and with 

the first shock wave configuration. 

The first shock wave configuration is determined by 

considering the heater to behave like a supersonic inlet and 

by utilizing the continuity method, developed by Moeckel in 

Ref. 25, for approximately predicting the form and location 

of a detached shock wave ahead of an inlet. 

In the Moeckel analysis,the shape of the detached 

shock along AH in Fig. 1 is assumed to be a hyperbola with 

a Mach line as an asymptote. The location xQ of the vertex 

A is dependent upon the inclination and length of the hypo¬ 

thetical sonic line ^^2. Moeckel assumes that the inclina¬ 

tion of the sonic line is equal to the flow inclination 

, downstream of the sonic point on the detached shock 

wave. For a specified spillage, 1 - ho*, the length of the 

sonic line is determined from the continuity relation through 

the use of a mean sonic velocity ã which is assumed to be 

normal to the sonic line. The magnitude of the mean sonic 

I velocity is that which would exist on a streamline repre¬ 

senting the mass centroid of the fluid flowing across the 

sonic line~33“3^ in Fig. 1. The ordinate of this streamline 

prior to its passage through the shock wave is given by ÿ - 

1/2(y^1 - h0> + ho* 

Downstream of the heater the flow executes a Prandtl- 

Meyer expansion with right-running characteristics centered 

at the point G in Fig. 1. The boundary conditions at the 

interface require that the pressure and flow directions on 

opposite sides of the interface be equal. There is, however, 

a discontinuity in velocity, total temperature, and total 

pressure across the interface. For any given set of conditions, 

4 
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there exists, as we progress downstream from the heater, a 

last curved right-running Prandtl-Meyer characteristic, y- + 

®m’ corresPonding to the boundary conditions at G. The 

curvature of this characteristics is due to refractions 

caused by its intersection with upstream wall-reflected 

Prandtl-Meyer characteristics (not shown in the figure). All 

right-running characteristics downstream of the last Prandtl- 

Meyer characteristic are characteristics which have been 

partially reflected from the interface. 

For reasons which will soon be apparent, the last right¬ 

running Prandtl-Meyer characteristic is shown in Fig. 1 as a 

straight line, that is. unrefracted. The intersection of the 

unrefractfed last Prandtl-Meyer characteristic with the x- 

axis is denoted by xm. This intersept is given by 

xm* - x3* - (¼ - V 

An approximate method of determining the wall pressure 

distribution downstream of the heater is developed on the 

basis of observations made from method of characteristics 

calculations for critical heat addition at M = 2.0 and M = 
o o 

6.0. The details are given in the section entitled "The Down¬ 

stream Pressure Distribution". It was observed, from these 

calculations, that the major portion of the pressure drop 

along the plate occurs in the region between x * and x * and 
•i m 9 

that the drop in pressure along the plate from x * to x* to 
* m 

x = occurs at a rather slow spacewise rate. This behavior 

of the downstream flow also manifests itself in a very gradual 

downstream attenuation of the second shock wave. It was 

further observed that the intersection of a wall-reflected 

Prandtl-Meyer characteristic with a right-running Prandtl- 

Meyer characteristic farther downstream refracted the down¬ 

stream characteristic only slightly. Consequently, to a 

very good approximation, the pressure distribution in the 

5 
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+ ft ^ 
region x3 — x ^ xm can be taken as that occurring for the 

reflection of unrefracted straight-line right-running Prandtl- 

Meyer characteristics at the wall. This will be referred to 

hereafter as a simply reflected Prandtl-Meyer expansion. In 

view of the rather gradual downstream interaction of the 

shock wave and the heated wake observed in the foregoing 

method of characteristics calculations, it appears appropriate 

to approximate the pressure distribution downstream of x * by 

a two-parameter descending exponential variation with x*. Some 

limitations on this approximation are discussed in the section 

dealing with the details of the downstream pressure distri¬ 

bution. 

In applying the approximate method to super-critical 

heat-addition flow, the mean inclination of the curved sec¬ 

ond shock wave in the vicinity of the heater top is approxi¬ 

mately represented by a straight shock wave whose strength 

and inclination are dependent upon a mean Mach number JÜ and 

a mean flow direction B just upstream, and upon the boundary 

conditions at the interface. The methods of determining 

these mean values are described in detail in a subsequent 

section. 

ONE-DIMENSIONAL HEAT ADDITION RELATIONS 

The governing relations for heat addition is one-dimen¬ 

sional flow have been reported upon and discussed many 

places in the literature and are now rather familiar to most 

engineers and scientists. (See, e.g., Refs. 1, 2, 3, 4, and 

5.) For this reason the presentation in this section is 

principally concerned with the final relations pertinent to 

the analysis. 

- 6 - 
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With reference to Fig. 3, consider a flow with heat 

addition in a variable area duct with a constant upstream 

supersonic Mach number, Mo. This situation is analogous to 

the flow between the streamline DRZ^ and the x-axis in Fig. 

1. In the arrangement shown in Fig" 3, heat is added at 

station II. The area at station II is held constant, while 

that at station I is adjustable to the flow-continuity re¬ 

quirement. The length is completely arbitrary. For flow 

with sub-critical heat addition, the area ratio h^hg is 

equal to unity, the Mach number Mg is less than M°, and there 

is no shock wave present. At critical heat addition, the 

area ratio ho/hg continues to remain at unity, the Mach num¬ 

ber Mg is unity (thermal choking), and a normal snock wave 

is on the verge of appearing. For flows with super-critical 

heat addition, the area ratio ho/hg is less than unity at 

values consistent with the continuity requirement, the Mach 

number Mg remains at a constant value of unity, and the nor¬ 

mal shock establishes itself in the upstream duct having the 

height h . 

In this paper we are concerned with flows having criti¬ 

cal and supercritical heat addition. For this regime, the 

applicable relations are presented below. These relations 

are available, in perhaps slightly different form, in a 

variety of places in the previously cited literature. 

For critical and super-critical heat addition: 

7 
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Oh - cp3 - cp2r 

* <£ ■ ^2’ ^ 

The quantities T/T? , A/A+, and p/P, which are functions of Mach 

number and gamma, arc tabulated many places in the literature 

(See, e.g., Refs. 26, 27, and 29). There are also some publi¬ 

cations which tabulate directly the relevant functions asso¬ 

ciated with one-dimensional heat addition (See, e.g., Refs. 3, 

28, and 29). 

The critical total temperature can 106 °ktained 

from the expression for (^3/2^) by replacing Mg with Mq. The 

critical value of (P«/P ) is then obtained by replacing (7l/?") 
«3 0 «3 0 

by in the exPressi°n for (p3/p0) • 

The functions which are of interest with regard to the 

application of the one-dimensional heat addition relations to 

the present problem are plotted in Figs. 4 through 8 for = 

= 7/5. For a constant gamma, and hence for a constant 

specific heat c across the heater, the heat-addition rate per 

unit area, q^, is proportional to A't . 

In the analysis and presentation of results which follow 

in later sections, one has the choice of using either (aT/A21dv 
♦ LIU 

or the spillage, 1 - hQ , as an independent variable. The 

spillage is selected for two reasons. First, the flow field 

is more easily visualized in terms of a specified spillage, 

particularly for the limiting cases of zero and unit spillage. 

Second, at a given Mach number, some of the pertinent properties 

of the flow ahead of the heater are a linear function of the 

9 
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spillage. The correspondence between the spillage and the 

total temperature increase (and hence the rate of heat addi¬ 

tion) is shown in Fig. 7. Although not shown in Fig. 7, it 

is of interest to note that the total temperature increase 

approaches infinity for spillages approaching unity. How¬ 

ever, physically attainable cases are, in all probability, 

limited to spillages considerably less than unity. For the 

external combustion of a hydrocarbon fuel, this limitation 

is governed by the enthalpy of the fuel. Orders of magnitude 

for this case will be presented shortly. If the heat is 

added by means of a heat exchanger using a nuclear energy 

source, the upper limit of spillage will depend upon the 

, temperature limitations imposed by the structural integrity 

of the heat exchanger. If the heat from a nuclear energy 

source could be added without consideration for structural 

limitations, higher spillages possibly could be achieved. 

Subsequently in the analysis, in the process of de¬ 

veloping analytical results for the complete spillage range 

from zero to unity the limiting case of unit spillage is 

utilized. In doing this, cognizance is taken of the fact 

that the extremely high temperatures involved when the spill¬ 

age approaches unity are not compatible with the use of a 

constant gamma through the beater, and of the fact that the 

expansion downstream of the heater will be somewhat different 

than that for the Prandtl-Meyer expansion for an ideal gas. 

Nevertheless, the use of a constant gamma is believed to be 

an acceptable procedure for ?stablishing the approximate 

flow field in the lower spillage range. 

It is of interest to estimate the spillage corre¬ 

sponding to the external combustion of a particular fuel. 

This has been done for the constant pressure combustion of a 

stoichiometric mixture of kerosene and air in quiescent air 

at initial temperatures cf 1?Q corresponding to M0. The 

10 
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resulting total temperature increase and the corresponding 

spillages are shown as a function of free-stream Mach number 
4 

in Fig. 9. These values serve only as a guide to orders of 

magnitude, since they are based on a constant pressure pro¬ 

cess, whereas the process used in this analysis involves 

heat addition to a constant area stream tube with an accom¬ 

panying spacewise discontinuity in pressure. Note that there 

is no spillage possible for free-stream Mach numbers greater 

than Mq » 5.5. Conceivably, spillage might be obtained at 

the higher Mach numbers through the combustion of a higher 

enthalpy fuel or from the use of a nuclear energy source. 

The effect of a variable gamma on conditions at sta¬ 

tion 3 just downstream of the heater can be estimated for the 

external combustion of a hydrocarbon fuel. For a given free- 

stream Mach number and a given spillage, the equations at 

the beginning of this section yield. 

(l + ^ 

I / 

i + t 
_o 

1 +*3 

Fig. 14 of Ref. 30 gives a minimum value of 1,25 for the 

gamma of the products of combustion of a stoichiometric mix¬ 

ture of n-octane and air. Taking - 1.25 and ^ - 1.40, 

we obtain P3, frg/Pg ^ » 1.015 and p3 # /p3 f * 1.067. 

^------ 
The flame temperatures upon which these data are based are 
from unpublished calculations kindly supplied to the author 
by Waldo T. Renich of Applied Physics Laboratory of The Johns 
Hopkins University. 

11 
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The error in P3, resulting from the assumption of a constant 

g.imma, is negligible, and, although the error in p« is slightly 

large, it is tolerable in view of the generally approximate 

nature of the analysis. 

GEOMETRY OF THE FIRST SHOCK WAVE 

The assumed shock wave shape used in Moeckel’s analysis 

(Ref. 25) is given by the expression 

The relations for the important parameters, using the 

continuity method of Moeckel and taking \ are found to 

be as follows, 1 

-ß 2 tan ^ - c 
1 - B cos 9„ 

.A, 

tan (/^1 

1 - B cos B & 
1 

(l-h0 ) B cos 

1 + 
1 - B cos 0 A/ 
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C + B sin 9. 

(1 ” h0) 1 - B cos 9p 

c - (ö^tan - U* tan2 ^ . J 

B - (P0/P) (A/A,)o 

P 
F~ 

(tn + 1)M? sin2 P, 

(^o - sin S9 + 2 
2 *oMo sinZ ^9 

M, K +1 

2 + (1^0 - DM2 

1 (*o,+ 

tan O, <4 + D “o 
^5 ,2 ^2 Mo sin - 2 

- 1 tan vf 
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For further details the interested reader may consult 
Ref. 25. 

The parameter L*/(l - h*), which is a function of 

free-stream Mach number only, is plotted on Fig. 10. 

ApPROXIMATE FLOW CONDITIONS AT THE INTERSECTION OF 
THE HEATER PLANE AND THE SECOND SHOCK WAVE 

Although the second shock wave is actually curved, in 

the approximate analysis of this paper that portion of it 

near to the top of the heater is assumed to be represented 

"on the average” by a straight shock and to be influenced by 

a mean flow just upstream of the shock. This mean flow is 

characterized by a mean total pressure P, and a mean Mach 

number B,and a mean flow direction $. The shock wave 

strength and inclination are dependent upon the mean upstream 

flow, and the boundary conditions, to be described subse¬ 

quently, at the intersection of the heater and the interface. 

In attempting to describe grossly the dynamics of the 

flow in the region of point G of Fig 1, it seems reasonable 

to consider an amount of spilled mass-flow equal in magni¬ 

tude to the mass flow through the heater. Such a mass flow 

is illustrated by the flow between the streamlines 5%¾ 

and JEF shown in Fig.^1. The mean streamline j¥Tg with 

free-stream ordinate ÿ - 3hQ/2, is representative of this 

mass flow and is therefore used in the determination of 

P, M, and 3. 

Downstream of the first shock wave the flow is isen- 

tropic along the streamline elgT therefore the mean total 

pressure P is the total pressure aft of the first shock at 

the ordinate ye - ÿ - 3h0/2 on the wave. The shock wave 

angle lf>e corresponding to ye, as determined from the geometric 
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relations given in the previous section, is 

tan 
-1 1 4X 

* 2 

1 + 

ß2^2 

The relation for xo is given in the previous section. 

Now, let us denote by (1 - h*)^ the spillage corre¬ 

sponding to the passage of the streamline JEF through the 

point -d/j shown in Fig. 1. The streamline JEF will pass above 

when the spillage is less than (1 - h*)^, , and below yA , 

as shown in the figure, when the spillage is'greater than 1 

(1 ' "okj- For spillage greater than (1 - h*)^ , we shall 

assume that the stream tube 3EF - ÏÏU^ is approximated by a 
Prandtl-Meyer expansion of the streamline TJ through the 

angle - S. Knowing 5, the mean Mach S is obtainable from 
the Prandtl-Meyer relations. The method for determining 5 

will be described subsequently. 

For spillages less than (1 - h*)A . this simple method 

for obtaining H is no longer applicable,^ince the upper 

streamline of the streamtube DXZÇ~ - jEE crosses the first 

shock above the sonic point ^, and hence the streamtube flow 

on the average" cannot be considered as having executed a 

Prandtl-Meyer expansion. The method for determining P is 

still applicable, however, regardless of the amount of spill¬ 

age. As a consequence of its restriction to a specific 

spillage range, the foregoing method for determining S is 
called the "restricted method" to avoid confusion with the 

"final method" which is developed later. The final method 

is valid for the complete spillage range, l.e., from zero 
to unity. 

15 
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As a prerequisite to the derivation of the final method 

it is first necessary to consider some consequences of the 

restricted method. In order to do this the boundary condi¬ 

tions at the point G in Fig. 1 are required. 

With reference to Fig. 1, the boundary conditions for 

a specified super-critical heat-addition rate require an 

oblique second shock wave angle for which p4 = p5 and e4 = 0 . 

Noting that (p4/Po) - (p/P)p,4 (P3/Po), and (p5/Po) - * 

(P5/p) (p/P0), these boundary conditions yield 

P3/Po P5/p 

(p/P) (P/P0) (p/P) >*4 

For a specified free stream Mach number and heat-addition 

rate (or spillage), and a known value if 6, the left hand 

side of the first equation is known. Solution for the shock 

wave angle § which simultaneously satisfies both of the 

above equations must be obtained by trial and error. Since 

the mechanics of this process can be performed many differ¬ 

ent ways, no specific procedure is described here. 

We now investigate, by means of the restricted method, 

the consequences of assigning upper and lower limiting 

values to Ç. The upper limit, 0^ , is that value of 0 for 

which the second shock wave becomes a Mach wave. In this 

case 0 = Oq. = 04. The lower limit, 0¿ , is that value of 

0 for which sonic velocity exists behind the second shock 

wave. 

16 
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Values of e4, corresponding to the upper and lower 

values of S, are shown by the solid lines in Fig. 11 for free- 

stream Mach numbers of 2, 3, 5, and 7, and for spillage 

values ranging from (1 - h*)^ to unity. Also shown, are 

the values of^04 for zero spillage. For a given free-stream 

Mach number, ^ varies slightly with spillage. A representa¬ 

tive value of B^along with its possible deviation in the re¬ 

stricted spillage range is given for each lower limit curve. 

It is observed in Fig. 11 that the value of 9. for a 

given free-stream Mach number is relatively insensitive to 3. 

Therefore, the flow in the region enclosed by the heater, the 

wall, and the last Prandtl-Meyer characteristic (i.e., the 

region within Gx3xm in Fig. 1) is also relatively unaffected 

by S. The flow downstream of the last Prandtl-Meyer char¬ 

acteristic, however, is affected by 1 via the mean inclina¬ 

tion, $ , of the second shock wave. The influence of 0 on 

the mean inclination of the second shock wave is illustrated 

in Fig. 12 for the upper and lower limiting values of 1. 

It will be shown in a subsequent section that the major 

portion of the aft normal force is obtained from the region 

between the heater and the last Prandtl-Meyer characteristic. 

Consequently, if the primary interest is in plate forces, 

and not flow-field details, the value of 15 which is used is 

not especially critical. With this in mind, the flow angle 

S will be taken as zero, on the basis of the assumption that 

the mean over-the-top stream behaves as if it were flowing 

parallel to the flat top of a heater of finite thickness. 

Values of 04 calculated by the restricted method us¬ 

ing a zero value for $ are shown by the appropriately labeled 

solid lines in Fig. 11. 

Since the values of for zero spillage are known, 

it seems reasonable to obtain values of ©4 in the region for 

17 
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which a theory has not yet been advanced, i.e., for 

0-(1- hQ) -(1- , by simply assuming the inter¬ 

polated curves shown by lhe dashed lines in Fig. 11. n 

is seen that the resulting curves, for the complete spillage 

range from zero to unity, yield almost constant values of 0 

for a fixed free-stream Mach number. In view of the generally 

approximate nature of the analysis it is appropriate, for a 

fixed free-stream Mach number, to consider 04 (and hence ^ ) 

as constant with respect to spillage. This constant value is 

taken as that corresponding to zero spillage rather than an 

average over the complete spillage range, since the zero 

spillage value may be determined exactly. Hence, in the 

"final method" ©4 is known "a priori" and is a function only 

of free-stream Mach number. 

The effect of an error in 04 on the aft normal force 

is analyzed in a later section dealing with the normal forces. 

The "final method" for approximately analyzing the flow 

over the top of the heater is summarized as follows. Referr¬ 

ing to Fig. 1, the flow is considered to be represented by 

the mean streamline JÏTg previously described. The mean total 

pressure P along iTg, downstream of the second shock wave, is 

that value of the total pressure aft of the first shock wave 

at the ordinate ye = 3ho/2 on the wave. The mean streamline 

Tg, in passing over the top of the heater, is considered to 

expand from a Mach number of unity at the point f through a 

Prandtl-Meyer expansion to a final flow direction S = 0. In 

the restricted method the Prandtl-Meyer angle for the mean 

flow was considered to be known and 04 was to be determined. 

In the final method 04 is known for a specified free-stream 

Mach number. The Prandtl-Meyer angle for the mean flow, 

and the corresponding M, is determined by the .hock-interface 

conditions which are governed by the known value of 04, in 

18 
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this approach, the inclination of the sonic line at the point 

f is considered to be slightly different than rj. 

The mean Mach number M and the mean second shock~wave 

angle | , calculated on the basis of the final method are 

shown as functions of spillage and free-stream Mach number in 

Fig. 13. These curves are not actually needed for the de¬ 

termination of the aft normal force, but are presented as a 

matter of interest. 

THE DOWNSTREAM PRESSURE DISTRIBUTION 

As mentioned in the section describing the mathemati¬ 

cal model, the approximate downstream pressure distribution 

from x3 to xm is calculated on the basis of a simply reflected 

Prandtl-Meyer expansion. For downstream distances greater 

than xm the pressure distribution is assumed to be given 

approximately by a two-parameter descending exponential vari¬ 

ation with X . 

In this section, the necessary relations for the use 

of these approximations are presented along with their limita¬ 

tions and a partial verification of their appropriateness. 

With reference to Fig, 1, consider any general right¬ 

running Prandtl-Meyer characteristic centered at the point G. 

The geometry shown in the figure for the last Prandtl-Meyer 

characteristic, denoted by the subscript "m", will serve 

for a general Prandtl-Meyer characteristic if tue subscript 

"m” is replaced by the subscript "R". The characteristic 

constant (Refs. 31 and 32ji for a. general right-running 

Prandtl-Meyer characteristic is (y-R + 0R ) or (2^), 

since Mg -= 1.0, This characteristic makes the angle (0R 

or (/"p with the plate (See Fig. 1). if we denote 

quantities at the intersection of a characteristic and the 

wall by symbols without a subscript, we obtain the relation 

19 
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( V-+ 9) 2 . Since O ~ 0, this becomes 

y« 2 V" 
R 

* 
The X -coordinate of the intersection is given by 

X - x3 - cot ÇUR - 0R )= cot (/JR - y-R) 

The pressure ratio p/p3 at x' is then obtained from 

where 

(P/P) + 

The pressure ratio p/P as a function of is available in 

numerous tables (See, e.g., Ref. 26). 

It is convenient to record some properties of a 

simply-reflected Prandt1-Meyer expansion for which the last 

characteristic intersects the x-axis at infinity. The down¬ 

stream distribution of wall pressure, denoted by p for this 

case, is plotted in Fig. 14. The value of p at infinity, 

P«, , is obtained by noting that /R *-/AR at infinity. From 

the Prandt1-Meyer relation (See Eq. 171, Ref. 26) we ob¬ 

tain 

(P/P) 
/- 2y- 

R 

(p/P) 

(*+ 1)/2 

t 
T^~T 

0.52283 (^ - 1.4) 
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cot 
1 

1 
tan 

For ^ * 1 -4, this yields tR =/UR = 28.63°, and hence 57.26°. 

The corresponding value of p/p3 is (p/pg^ = 0.0278. 

The pressure distribution downstream of x* is assumed 
m 

to be given approximately by the relation 

(b < 0) (1) 

where the parameter "b” is determined so that the first de¬ 

rivative of the pressure distribution matches that for the 

simply reflected Prandtl-Meyer expansion at the point x*. 
„ m 
Hence we obtain 

b 

d'"Pll/p3) 

d(x - x3) * 
x = 

(2) 

The analytical relation for the derivative in Eq. (2) is 

given in the Appendix. The derivative itself is plotted on 

Fig. 15. 

The foregoing approximation is limited to cases where 

¿11 — P0’ since for pjj < p it is no longer possible to 
m m 

approximate the pressure distribution downstream of x* by a 
m 
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simple monotonie variation such as given by Eq. (1). For 

Mq — 2.58, p is always greater than p , regardless of the 

amount of spillage. For free-stream Mach numbers less than 

2.58, there exists for each Mach number, a limiting spillage 

value above which p,. is less than p . At M - 2.0, for 
m *o o ’ 

example, this limiting spillage value is 1,35. The limiting 

spillage value becomes zero at M = 1.50. Hence, the 

approximation cannot be applied in any case for a free-stream 

Mach number less than 1.50. 

In order to partially verify the appropriateness of 

the approximate solution, method of characteristics calcula¬ 

tions have been made for the downstream flow for critical 

heat addition at free-stream Mach numbers of two and six. 

The characteristics calculations were performed assuming 

irrotational flow and using a lattice-point method with a 

numerical-graphical procedure (Refs. 31 and 32). The previ¬ 

ously described boundary conditions at the interface were 

satisfied by a trial and error process. The resulting char¬ 

acteristic nets are shown in Figs. 16 and 17. The fact 

that the shock curvature is very small in both cases sub¬ 

stantiates the assumption of irrotational flow used in the 

calculations. Although the wall-pressure distribution is of 

principal concern here, the characteristic constants for 

the flow are given in Table I as a matter of interest. 

Comparisons of the downstream wall-pressure distri¬ 

butions as calculated by the approximate method and the 

characteristics method are shown in Fig. 18. It is seen 

in these figures that the two methods are in excellent agree¬ 

ment for the Mq » 2.0 case, and in fair agreement for the 

M0 “ 6-0 case. Note that the agreement is excellent at both 

Mach numbers in the region where the simply reflected Prandtl- 

Meyer expansion is used. Considering the characteristics 
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solution to be an exact one, the ratio of the approximate 

normal force to the exact normal force at several x -sta- 

• tions is as follows. For a free-stream Mach number of two, 

the ratio is 0.98, 0.94, and 0.94 respectively at (x* - x^) 

- 2, 4, and 6, while for a free-stream Mach number of six 

it is 0.92, 0.85, and 0.79 respectively at (x* - x^) ■= 6, 8, 

and 10. 

A question arises with regard to the downstream exis¬ 

tence or non-existence of imbedded oblique-shock or Mach- 

shock reflections such as are known to occur in jets exhaust¬ 

ing into supersonic streams (See, e.g., Refs. 33 and 34). 

If such imbedded shocks actually do occur in the present case, 

the monotonie pressure distribution assumed herein does not 

properly represent the pressure discontinuities of shock 

waves. Because of the paucity of information dealing with 

both sonic and supersonic jets exhausting into supersonic 

streams (Ref. 33), it is not possible to use such information 

to make predictions regarding the appearance or non-appear¬ 

ance of imbedded shocks in the present problem. It is con¬ 

jectured by the writer that such shocks are more likely to 

occur when p^ p . This is, of course, outside the range 
m ° 

of applicability of the present approximation. If imbedded 

shocks do actually occur within the range of applicability 

of the approximate method, there is a reasonable possibility 

that the pressure jumps associated with these shocks are 

small compared with the pressure drop in the region up to the 

last Prandtl-Meyer characteristic (See Ref. 34 for an exam¬ 

ple of this situation). Briefly, since the greater part of 

the downstream force exists in the region up to the Prandtl- 
5 

Meyer expansion , it is reasoned that the force downstream 

5 '■  -—--—• 

This may be observed in Fig. 19 which is discussed in a 
later section. 
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tei^tVLTT:::0 :ote that the—2-° <=- », 
the conditions olL ' rreSP°nds rather closely to 

Rousso and Baughman (Refr":1** rep°rted bJr 

to a Mach 1.91 supersonic stream Th0” C e,Ihaustlng in 

that the Rousso-Baughman tests are ! TjJT^ " 
jet, whereas the nres*n+ i axially-symmetric 

How. Ref. 35 presents 1: : S ^ ^"-‘“““‘on, 

exhaust for values of P / 64611 photographs of the jet 

of these cases (bracketing^/^Vs.22^^10 0, ^ ^ 

waves are observed in the jet within a di t g* ^ 

radii downstream. The diagram of Fig ,6 °f fOUr Je* 
within this region am, i *' 16 reveals no shocks 
exact 1V Although these situations are not 
exactly comparable, the fact +ho+ * 

tative similarity between the fi ^ ^ ^ 3 qUali' 
y between the flows is somewhat puzzling. 

the normal forces 

* Jr f0rward n0rmal for« coefficient per unit width 
0> acting on the surface JTIT is ’ 

o 2 

Applying the momentum theorem to th^ fi ^ 
within the control region x x a a ” enclosed 

is normal to A^, we obtain 2 2^X°' aSSU,”lng that a 

(3) 
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(p + p a2 \ / * 
Po)(x2 

♦ 
kA ) 

1 

or 

Y10 “ <2/^Mo> 1)(P/P0 - 1) J (x* - x*A ) 

jft 

Writing (x2 - xA) in terms of the flow variables and taking 

we obtain 

(^+ 1) (p/p 

B sin 0, 

1 - B cos 
0A, 

(4) 

where B = (PQ/P) (A/A„)o. The quantity Y^/(1 - h*) , which 

is a function only of Mo, is plotted on Fig. 10. 

The forward moment coefficient per unit width,%) *, 

for the surface xox2, with moments taken about the point x 

is °’ 

It is assumed that the pressure distribution along x^xl is 

given approximately by Z 

"pj “i(It 
♦ 

X ) 4 
O (X* - *.2 

x) (6) 
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The coefficients a, and a0 are determined by the condition 

that C - C when (x - x ) = L and by the condition 
p10 p2 ° 

that YlO is stained when the Eq. (6) is substituted in Eq. 

(3). The condition that C =■ C at (x* - x*) - 0 is 
PlO Pi ° 

automatically satisfied by . (EqT (6). Evaluation of the 

coefficients and «2 and substitution of the resulting ex¬ 

pression for C in the moment relation yields 
p10 

* 
10 

*2 
(L /2) at’io/L ) + ¿ (c 

■ cp} P1 
(7) 

The aft normal force coefficient per unit width, 

acting on the downstream wall in the region from x^ to x* is 

r x 

ii - q. 
-i 

y 

(pll - po)dx (8) 

The particular expression which must be used for depends 

upon whether x* is greater than or less than x¿!. 
J- 

The aft normal force coefficient for x* x is 
m 

Y 
* 

11 + (P0/q0) (X* - 

where 

/p^) d (x - 11' 
Xg) 

(9) 
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The integral I has 
♦ o 

tion with (x - x_) 
«J 

been evaluated numerically, 

is presented in Fig. 15. 

The aft normal force coefficient for x*2i 

Its 

* 

varia¬ 

is 

n. - Ynm - (p3/q0) J0 (10) 

where Yl is the value of Y given by Eq. (9) when x* = x+ 
and m m’ 

rx 

•’o * 

i 
(p 11 dx (11) 

X* 
m 

Substituting E,. (1) in Eq. (11) and evaluating the integral 
yields 

Jo b ^m^p3 " " ^Pjj’b(x*- x*J^ (12) 

where "bM is given by Eq. (2). 

The aft moment coefficient per unit width,TM* acting 

on the downstream wall in the region from x* to x* is 

♦ 

^11 ~ <1/(lo>i ix - x3.> (P11 - P0)dx^ 
'V 

(13) 

In a manner analogous to that for the normal force, the 

particular expression which must be used fordepends upon 

- 27 



»mito NTSics iiiiitroiT 
IN( ISNNS NOMINS «RIVCItlTT 
tuv» tni«( ■áinm 

* $ 
whether x is greater than or less than x . 

m * 
The aft moment coefficient for x*^ x is 

m 

• 'W h - 2 (Po^oX** ' *3> 

where (14) 

-X - X, 

I, ?! (x+- X3)(p11/p3)d (x*- x*) 

rJ 
The integral I, has been evaluated numerically. Its varia- 

tion with (x - x„ ) is presented in Fig. 15. 

The aft moment coefficient for x x is 
m 

iP3/qo) J1 (15) 

where^^* is the value ofî)|*^ given by Eq. (14) when x* = x*, 
, m 

and 

(** - X*) ^(pn - p0)/p3 d(x - x3) (16) 

m 

Substituting Eq. (1) in Eq. (16) and evaluating the resulting 

integral yields 
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The cumulative aft. normal force coefficient as a func¬ 

tion of downstream position for zero spillage is plotted in 

Fig. 19 for free-stream Mach numbers of 2, 3, 5, and 7 respec¬ 

tively. Also shown on this figure is the x*-coordinate x* 
m 

of the last Prandtl-Meyer expansion. It can be seen, as was 

previously stated, that the major portion of the normal force 

is achieved in the region of the simply reflected Prandtl- 

Meyer expansion. 

The curves for other spillages are not greatly differ¬ 

ent from those shown in Fig. 19 due to the fact that is 

independent of spillage and to the fact that the variation of 

Cp^ with spillage is moderate (See Fig. 8). 

Also shown in Fig. 19 is the normal-force coefficient 

for an infinitely long plate. Since it is obviously im¬ 

practical to expand to infinity it is necessary to select 

some other suitable refei nee force and length at which to 

terminate the expansion. From examination of the figure it 

is apparent, that in general, there is little to be gained 

by expanding beyond the station where approximately nine- 

tenths of the infinite-plate aft normal force is reached. 

Consequently, for all spillages at a given free-stream Mach 

number, the reference length (i.e., the length at which it 

is practical to terminate the plate) will be taken as x*, 
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where x* is the station at which the normal force is nine- 

tenths the infinite-plate aft normal-force at zero spillage. 

Values of x* - x, are indicated on Fig. 19. The aft normal- 
t o * + 

force coefficient corresponding to x^. is denoted by , 
jfc 

while the corresponding total normal-force coefficient is 
* 

denoted by Y.. 
t * 

The total normal-force coefficient Yt, and the forward 
♦ ^ 

normal-force coefficient Yl0 as functions of free-stream Mach 

number are shown in Fig. 20, The limitation on Y^. for M0 * 

2.0 is due to the fact the analysis fails to provide a solu- 
$ 

tion when Is ^ p • It mav be observed, that Y., is almost 
m o 

♦ 1 * 
independent of spillage, since the curves of Yt and Yl0 are 

almost parallel for a given free-stream Mach number. It is 

also of interest to note that with increasing spillage the 

forward normal force becomes an increasingly larger fraction 

of the total force. 

In Fig. 21 there is shown the average normal force 

coefficient per unit length for a flat plate terminated at 

X* as a function of spillage and free-stream Mach number. It 

is seen here that the average force per unit length increases 

with spillage. A cross-plot of Fig. 21 at zero spillage re¬ 

veals a maximum average normal force per unit length at MQ “ 

2.5. This maximum either disappears or moves to a lower Mach 

number very rapidly with increased spillage. This point has 

not been explored further because the present method is 

inapplicable below Mc> - 1.5, and because the spillage range 

for which it is valid for Mach numbers less than 2.68 

diminishes very rapidly with decreasing Mach number. It is 

also probable that practical applications will tend towards 

the higher Mach numbers. 

The center of pressure of a flat plate terminated at 

X* as a function of spillage and free-stream Mach number as 
t 

shown in Fig. 22. 
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It will be recalled that the present analysis is 

based on the assumption that ô4 is independent of the spill¬ 

age for a given free-stream Mach number, whereas Fig. 11 

indicates there exists a range of possible values for & 
4 

for a given Mach number. With reference to Fig. 19, it may 

be observed that x. is less than x for the curves corre- 

sponding to Mach numbers of 2, 3, and 5. Therefore, since 

04 does not influence (except indirectly through the 

establishment of x ), thetprecise determination of 0,, is 

not important. This observation is also true for the com¬ 

plete spillage range. For Mq = 7.0, is influenced by 

04, since xt is greater than x*. The selection of x*, 

however, is somewhat arbitrary. If a slightly different 

criterion for its selection had been used, it is possible 

that xt could have been larger than for all Mach numbers 

within the range treated. 

Regardless of the specific criterion used for the 

selection of xt there is little to be gained by selecting 
* i ^ 

xt much larger than x^, since as we progress downstream 

most of the aft infinite-plate normal force is achieved 

when xm is reached. For example, for Fig. 19, the force 

ratio, Y11 /Yn , has values of 1.00, 0 98, 0.92, and 0.88 
m 

respectively for Mach numbers of 2, 3, 5, and 7. The 

corresponding values for other spillages are within about 

2 per cent of these. Since Yjj is a reasonably good 

measure of the downstream forcemwhich we desire, an esti¬ 

mate will be made of the effect of an error in 04 on the 

value of Yjj . From Eq. (9), we obtain 

d Yx* /d0( 
m 

r* 
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where 

d 

rJ 
d I 

o 

(x - X ) 
m o' * 

x 
m 

The derivative *s available in the Appendix. 

The other properties of a simply reflected Prandtl-Meyer ex¬ 

pansion are plotted on Figs. 14 and 15. The pressure ratio 

VQ/P3 may be obtained from Fig. 8. 

The consequence of applying the above relations are 

displayed in the table below. 

Since the purpose of this table is to indicate orders of 

magnitude, a representative value of P0/p3 for the complete 

spillage range at each Mach iiumber is used in lieu of show- 

ing the variation with spillage. The range of possible 
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deviations is given in parenthesis under each of the tabu¬ 

lated representative values. The value of (dY^ 

listed is the largest value for the given 04 range. The m 

smallest value for each Mach number is, on the average, 0.01 

less in absolute magnitude than the tabulated value. The 

possible error, À04, is the maximum and/or minimum deviation of 

the zero spillage value of ©4 from the curves shown In Fig. 11. 

The error in Yn corresponding toA©4 is recorded in the 

last column in tl?e table. It is seen here that the error 

decreases with increasing Mach number. Although the error 

in Yn at the lower Mach numbers is slightly larger than 
m 

one might desire, it is tolerable in view of the approxi¬ 

mate nature of the analysis. 

A final point of interest is the possible influence 

of the intersection of the first and second shock waves on 

the downstream pressure distribution, and hence on the aft 

normal force. For a straight second shock, with inclina¬ 

tion 5 , it is easy to calculate the intersection of the two 

shocks. The results of such a calculation are shown in 

Fig. 23. The coordinates of the point of intersection of 

these shocks are given by the solid-line curves on Fig, 23. 

Note that the trace of the intersection of the shock-waves 

is almost independent of Mach number for the Mach number 

range shown. The flow inclination, downstream of the 

first shock, and neglecting interaction with the second 

shock, is also shown in Fig. 23, along with lines of con¬ 

stant spillage corresponding to Sj. It can be seen from 

these curves that when the intersection is close to the 

heater 0J is large, the intersection is relatively far away, 

so that the strong interaction in all probability will be 

transmitted relatively far downstream. This favorable be¬ 

havior becomes less pronounced for increasing free-stream 

Mach numbers . 
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CONCLUDING REMARKS 

On the basis of a simplified model and an approximate 

theoretical analysis thereof, calculations have been made, 

and charts presented, for the pertinent flow-field parameters 

and the normal forces and moments for the super-critical 

addition of heat to the external flow about a supersonic air¬ 

borne vehicle. With due consideration for their limitations, 

these charts should serve to obtain approximate estimates of 

the performance of vehicles utilizing this mode of propulsion 

and/or lift production. 

Application of the method to the estimation of the 

performance of a specific vehicle configuration is consider¬ 

ed to be beyond the scope of this paper. 

For the model analyzed, the most salient character¬ 

istic is that the normal-force increase due to increased 

super-critical heat addition at a constant Mach number is 

obtained almost entirely from the region forward of the heater 

the aft normal force is almost constant with increasing heat 

addition. The percentage contribution of the forward normal 

force to the total normal force varies from zero at zero 

spillage to about sixty to eighty per cent, depending upon 

the Mach number, at unit spillage. 

34 



APPENDIX 

»Mül# »»(SICS lâlIIITMT 

TNI IINNS MMINS MIVIISIT! 

SIKH SHIM 

DERIVATIVE OF THE WALL-PRESSURE DISTRIBUTION FOR A SIMPLY 
REFLECTED PRANDTL-MEYER EXPANSION 

The detailed derivation of the derivative will not be 

given here since it is relatively easy to reproduce. Con¬ 

sider a Prandtl-Meyer expansion from M3 = 1.0 with the orien¬ 

tation shown in Fig. 1, except for a coordinate shift so 

that x3 = 0. Denote quantities associated with an unrefrac¬ 

ted right-running Prandtl-Meyer characteristic prior to its 

intersection with the wall by the subscript "R". Quantities 

at the wall are without a subscript. The relations used are 

the Bernoulli equation, the Prandtl-Meyer relation, the Mach 

angle relation, the geometry of the intersection, and the 

reflected characteristic relation, V- 2^. Using these we 

obtain the following result, 

where 

d(p/p3) 

dx* 

d(p/P3) 

"ar 
d0ß/dx* 

cTÖr/ dM 

d(p/PoJ 

®R W 
1 

.2 -1 
(1 + X ) 1 + 

Vr <dVdMR> 
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TABLE I 

CHARACTERISTIC CONSTANTS FOR THE DOWNSTREAM FLOW FIELD AT 
CRITICAL HEAT ADDITION FOR Mq = 2.0 AND 6.0* 

Characteristics in the region between the wall and the inter¬ 

face . 

Mo = 2'0: ^R + GR = ^ " 0L ~ 0-089. I-98?, 7.613, 18.001, 

18.1, 18.4, 18.5, 18.8, 18.9, 

18.9. 

Mo = 6-0: ^R + 0R * ^L ‘ °L ^ °’ 0-089> 1-937, 7.613, 18.001, 

36.401, 36.1, 36.5, 37.9, 41.3. 

Left-running characteristics emanating from the interface. 

Mo = 2-0: ^l ' °L = 8-2’ 9-8* 

Mo = 6.0: ^ - 0L = 4.2, 43.2, 47.7. 

"Running characteristics emanating from the shock wave. 

Mo = 2*0: ^ + 0L - 26.2, 26.2. 

Mq “ 6-0: \ + 9L = 77.8, 78.2, 79.5. 

Characteristic constants, in degrees, are given in the order 
in which the characteristics occur as one proceeds downstream 
from the plane of heat addition in Figs. 16 and 17. Constants 
for characteristics emanating from linearly interpolated 
points in the shock-wave-interface region are not presented. 
Constants for characteristics which are dependent upon the in¬ 
teraction with the shock wave are specified only to one-tenth 
degree since the available shock wave charts could be read 
only to this degree of accuracy. 
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