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ABSTRACT 

It has been shown that a finite-difference numerical technique can 

be used to solve mixed initial-and boundary-value problems involving 

high-speed elastic-plastic flow with spherical symmetry. Numerical 

solutions for the dynamic expansion of a spherical cavity under a constant 

pressure are presented to demonstrate the nature and capability of the 

numerical scheme. The solution for an elastic material agrees closely 

with the exact solution. The solution for an elastic-perfectly-plastic 

material has confirmed Green's prediction concerning the motion of the 

elastic-plastic boundary. At large times, the asymptotic solution of 

the dynamic problem is different from the quasi-static solution. Tnis 

result indicates that the quasi-static approximation may not hold in 

dynamic plasticity. A non-linear dependence of the plastic solution 

on the boundary condition is also observed in the results. 
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1. INTRODUCTION 

The problem of high-speed elastic-plastic flow with spherical 

sy-mmetry is of interest for two reasons. First, it has practical 

application in underground explosions and in the detonation of high

explosives in solids; secondly, with little increase in the mathematical 

difficulties from the uniaxial flow, the simple geometry of this problem 

allows the study of an elastic-plastic flow involving the bi-axial state 

of stresses and inertia forces. Perhaps this second characteristic is 

equally interesting to both an applied mathematician and an experimentalist 

who is concerned with obtaining information of the dynamic yield pro

perties of a material under bi-axial state of stresses. In the past, 

many authors have investigated this problem; the reader may refer to a 

paper by Hopkins1* for a general review on the current status of research 

in this subject. Most of the published work is concerned with small 

deformations. The materials investigated include the idealized elastic

perfectly-plastic and elastic-linear-work-hardening materials. However, up 

to present, because of the mathematical difficulties involved in treating 

two-phase flows, there existed no analytical solution which describes 

satisfactorily all the phases of the impact process. As pointed out in Section 

2 below, only at the verJ beginning of an impact is the location of the 

elastic-plastic boundary known and a simple analytic description of the 

flow available. However, for the major duration of the impact process, 

the description of the flow seems to rely upon a numerical solution. 

The purpose of this report is to show that this problem can be solved 

for various initial and boundary conditions by using a finite difference 

tech_nique. The elastic-plastic solution obtained for the expansion of 

a spherical cavity under constant internal pressure has demonstrated 

some interesting facts concerning the impact phenomena. It has confirmed 

Green's~ 2 results regarding the motion of the elastic-plastic boundary 

and also has exhibited the inadequacy of the quasi-static approximation 

* Superscript numbers denote references which may be found on page 30. 
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in dynamic plasticity. Numerical solutions of spherical elastic

plastic flow have also been obtained by Davids et a1
3 

and by Friedman 
4 

et al. 

2. BASIC EQUATIONS 

Referring to a spherical coordinate system, r, 8 and ~, with the 

origin at the center of the cavity, only the equation of motion in the r 

direction will not vanish identically because of the spherical symmetry 

considered here; hence, 

ao 
___.!.. + 2 ar 

o -o 
r e 

r 
= av 

P at (1) 

In the equation, r is the Lagrangian position of a particle; p is the 

mass density of the material in the underformed state; v the radial 

velocity of the particle, and or and o8 are respectively the normal 

stress components in the radial and the circumferential directions. 

The stresses are engineering stresses calculated with reference to the 

undeformed state. This report considers only small deformations; hence, 

differences between the engineering and true values of stress and strain 

will be negligible. 

The material is considered to be elastic, perfectly plastic with a 

constant yield stress o in both simple compression and tension. Both 
0 5 

von Mises and Tresca yield conditions reduce to the form 

= + 0 
0 

The material will deform plastically when this equation is satisfied 

and when 

Otherwise, when 

(o - o ) (o 
r e r 

8 

<a 
0 

(2) 

(3) 

(4) 



or when 

but 

= + a 
0 

the material behaves as an elastic body. 

( 5) 

For the elastic regime, the material obeys Hooke's law. Expressing 

the radial and circumferential strains, £r and e
6 

respectively, in terms 

of the radial displacement u, 

Hooke's law in a differential form can be written as 

aa '::! ..... r uve 
at- 2v at 

a a 
v a tr - ( l 

E av 0 a-r= 

fC:\ 
\UJ 

(7) 

These two equations and the equation of motion, Equation (1), must be 

solved simultaneously to obtain the elastic solution. 

For most materials, under moderate pressures, no appreciable plastic 

volume change will occur. Hence, the elastic relation between the 

mean hydrostatic stress, (or + 2a
6

) /3 and the dilatation au;ar + 2u/r 

can be used for describing the plastic flow. Using Hooke's law and 

rela+;n~ ~ to o
6 

by the yield condition. the relation exoressed in a ~V..L.£..£.5 Vr I ..._ 

differential form is 

l 
dO 2v r ---

E at 
~~ v 

l/3 ar - 2/3 ; = 0 • (8) 

9 



This equation must be solved simultaneously with the yield condition, 

Equation (2), and the equation of motion, Equation (1), to provide 

results for the plastic flow. 

A convenient representation of the solutions of these equations 

can be obtained by introducing the following dimensionless variables, 

r 
X = 

r 
0 

a 
R 

r = a 
0 

e= 
ae 
a 

0 

a (9) - 0 a :::: 
E 

edt 
T = 

r 
0 

a.."1d 

v v 
= 

cdo 

where r is the radius of the cavitv and c_ = f(l- v)(E/o)/(1- v- 2v
2 )1 1

/
2 

0 ., d -. . . . . . . . . -

is the dilatational wave speed in an'. elastic solid. In terms of these 

dimensionless variables, the simultaneous partial differential equations 

for the dynamic problem are 

aR 1-v av + g_ ( R _ ® ) = 0 
dX - l 2 2 dT X 

-v- v 

aR _ 2v ae av 0 dT aT - dX = 

aR 
V7'-

dT 
( 1 - v) ae + !. v = o 

dT X 
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and 

aR 
ax 

1-v av 2 
------- -- + - = 0 2 aT - X 
l-v-2v 

@ = R + l 

Equation (10) will apply for elastic deformation; i.e., when 

IR - e I < 1 

or when 

R- 8= + l 

but 

(R -e) (R - e) < 1 • 

Equation (ll) will hold for the plastic flow, when 

R-8=+1 

and 

(R - 8) (R - @) = 0 • 

The ± signs are for the situations when R - 8 = ± l respectively. 

(11) 

(12) 

(13) 

(14) 

In Equations (10) and (11), only one parameter, the Poisson's ratio 

v appears in the coefficients. The equations written in this form 

provide a clearer picture of the dependence of the solution on various 

parameters of material properties. For a stress boundary condition, the 

stress distribution around a plastically deformed cavity at any instant 

depends only on the Poisson's ratio and the ratio between the applied 

pressure to the yield stress of.the material. 

Equations (10) and (11) are two sets of first order linear hyperbolic 

partial differential equations. Their solutions can be obtained by 

combining two waves associating with a displacement function as described 

ll 



by Hunter.
6 

However, this method requires a priori a knowledge of the 

position of the boundary of the elastic and plastic regions of the 
1 2 material which can be obtained only in few instances. Green, ' 

has proved that when there is a discontinuity in the magnitude 

of the radial strain E across the elastic-plastic boundary, the boundary 
r 

will travel with a constant velocity c = [E/3 p (1- 2v)]1 / 2 and the 
p 

position of the boundary is, therefore, fuiOwu. 

rapid attentuation of a diverging spherical wave, this discontinuity in 

radial 3train can be maintained only near the very beginning of an 

impact. Therefore, other techniques must be used to obtain the solution 

which holds for the major portion of the impact. 

3. NUMERICAL SCHEMES 

In this report, a finite difference scheme proposed by Lax~ will 

be used to obtain a solution of the equations derived above. The 

original scheme has been shown suitable for solving initial value problems 

of hyperbolic partial differential equations in hydrodynamics. The 

scheme is extended here for mixed boundary-and initial-value problems 

with regions of solutions governed by different sets of equations. 

The results obtained using this scheme are compared with known analytical 

solutions for the case of elastic waves. The accuracy of the numerical 

results appears to be satisfactory. An appendix to this report describes 

the computer program used to obtain the present results. 

The finite difference scheme is for any set of partial differential 

equations assuming the conservation form; i.e., 

aF aG 
-+-+H=O, 
dX dT 

(15) 

where F, G and Hare functions of the dependent and independent variables. 

The numerical scheme replaces aF/ax by a central difference quotient; i.e., 

F -F n + l,k n - l,k 
2~x 

(16) 
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where nx denotes an increment in x; F 
1 

k designates the value of F at 
n+ ' 

the grid point located at distances (n+l) nx and k6T from the origin in 

the x and T plane. The time derivative oG/oT is substituted by a forward 

difference ~uotient, 

G _n,_ 
1 ( ) 

k + 1 - 2 Gn+l,k + Gn-l,k 
6T 

(17) 

Finally, the function H is replaced by the average value at two neighbor

ing grid points at the time kn.T, 

The scheme is equivalent to adding into the original equation a term 

which is due to an artifical viscosity of the magnitude of (nx) 2 /2~T. 
7 The stability and convergence of this scheme has been discussed by Lax. 

The stability criterion is similar to the Courant-Friedrichs-Lewy 

condition, i.e., nT/nx<c where cis a ~uantity which may depend on the 

variables in the problem. 

The present equations, E~uations (10) and (11), are in the conservative 

form and, hence, can be solved numerically with this method. As an 

example, the finite difference e~uation for the first e~uation of (10) 

is obtained; i.e., 

R - R n+l,k n-l,k 
26x 

+ 

1 - \) 
2 

l-v-2v 

v -n,k+l 

R -@ R -@ 
n+l,k n+l,k + n-l,k n-l,k = 

xn+l,k xn-l,k 
0 . 

After being converted to finite difference e~uations, the three e~uations 

in (10) and in (11) will provide three algebraic equations sufficient 

for solving the values of the dependent variables at T = (k +1)6T; 
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namely, Rn,k+l' Vn,k+l and en,k+l from the known data at a previous 

time k~T; namely, R k' e 1 k' 8 1 k' v 1 k and v 1 k. n-1, n+ , n- , n+ , n- , 
At each 

point, the finite difference equations for elastic deformations, Equation 

(10), will be first used to obtain Rn,k+l and en,k+l' If the difference 

between them IR __ ,_,, - e_ l.i, I is greater than unity, then the calculations 
' ll 2 KT.l. Uz.l\.T...L. 

will be revised by using the finite difference equations for plastic 

flow which are derived from Equations (11). 

The above scheme can be applied very conveniently at points other 

than those on the boundary. However, when the central point x is on 
n 

the cavity surface, the point x 
1 

k will be outside the body, and 
n- ' 

fictitious values must be assigned for the dependent variables at this 

point in order to use the Lax numerical schemes. The present investi

gation shows that, for this situation, satisfactory results can be 

obtained by using a different numerical scheme. In the new scheme, the 

Lax method is applied in reverse to those dependent variables whose 

values are not specified on the boundary. Accordingly, a central differ-

ence formula is used for the time derivative and a forward difference 

formula for the space derivative. As an example, the space and time 

derivatives for the dependent variable V are 

= 

av 
ax = 

v - v n,k+l n,k+l 
2~T 

v -n+l,k ~ (vn,k+l + vn,k-1) 
~X 

( 19) 

However, for the derivatives of the dependent variables whose values are 

specified on the boundary, R in this case, the Lax scheme is kept. As 

a result, a fictitious value Rn-l,k must be assumed, which, together with 

the other two unknowns vn,k+l and en,k+l' can be obtained from the three 

finite-difference equations derived from Equations (10) or Equation (ll) 



using Equation (19). One of the unknowns in the calculation at an interior 

point, Rn k•l is now a known quantity which has the specified value 
... A., ... ~.~ 

of R on the boundary at T = (k + l)bT. 

4. RESULTS FOR EhASTIC CASE - ACClffiACY OF 
THE NUMERICAL SCHEME 

The case of a constant pressure applied suddenly on the surface of 

a spherical cavity within an infinite elastic solid is studied to 

demonstrate the capability of the numerical scheme. In Figures la and 

lb, the principal shear stress in the present numerical results is 

compared to those obtained analytically by Hunter
8 

and numerically by 

Chou. 9 Chou uses the method of characteristics in obtaining his solution. 

Considering the rather large grid size (twenty-five points per cavity 

radius) used to obtain the present solution, the agreement between this 

solution and the other solutions is satisfactory. 

However, near the elastic wave front where a jump in the values of 

the shear stress exists, a large discrepancy is observed between this 

solution and the exact one. The discrepancy is mainly due to the 

artificial viscosity which is associated with the numerical scheme and 

tends to smooth the sharp discontinuities of the solution. Since the 

artificial viscosity is equal to (l/2) (bx)
2

/bT, the effects can be greatly 

reduced by increasing the ratio of ~T/bx, as indicated by comparing the 

results obtained with ~T/bx = 1 and l/2. For this case, ~x/bT = l is 

the maximum value allowed by the stability criterion; at this bx/~T 

ratio some small oscillations in the solution which are not shown in 

the figures have already occurred near the wave front. The effects of 

the viscosity can also be reduced by diminishing the grid size as seen 

in the results for bx = 0.01 and 0.02. However, considering the increase 

of computing time, the second method of reducing viscosity is not as 
10 efficient as the first one. Roberts has proposed a much more effective 

method for improving the accuracy of this numerical scheme. The 

technique involves combining several solutions of first order accuracy 

obtained with a fixed bx/bT ratio. Solutions with accuracy of order 

greater than one can be obtained very easily. 
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Figure la. Comparison of numerical and exact solutions for the elastic expansion 
of a spherical cavity; the distributions of maximum shear stress along 
the radial axis for various times after the sudden application of a 
constant pres sure, R0 = 1 , on the cavity surface. 
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Figure lb. Comparison of numerical and exact solutions for the elastic expansion 
of a spherical cavity; the variation of maximum shear stress at the 
cavity surface after the sudden application a constant pressure, 
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5. RESL~TS FOR ELASTIC-PERFECTLY-PLASTIC MATERIAL 

The numerical scheme just discussed has also been used to obtain 

the elastic-perfectly-plastic solution for a spherical cavity expanded 

under a constant internal pressure which is suddenly applied at T = 0. 

Typical sets of results are shown in Figures 2a through 3b for the 

cases in which the magnitudes of the internal pressures are 2 and 20 

times of the constant yield stress of the material. In the results for 

the latter case, the evidence of two discontinuities can be seen in 

the profiles of stresses along the radial axis. The one which is farther 

away from the cavity surface is the elastic wave front while the one 

propagating behind is the plastic wave front which separates the regions 

of plastic and elastic deformation. The constant speed of propagation 

of agrees closely with the exact value of the 

dilatation wave speed, cd obtained here. The magnitude of the jump in 

the dependent variables across the elastic wave front also seems to 

agree with the exact solution which is represented by the dashed curves 

in Figures 2a to 2c. 

The elastic-plastic boundary moves at a constant speed when a dis-

continuity in the radial stress across the boundary is visible near 

beginning of the impact. The value of the speed agrees with the 
l l/2 

theoretical one predicted by Green, namely, c = [E/3p(l- 2v)] . 
p 

This result is showli in Figure 4 in which the position of the elastic-

plastic boundary at all times is plotted. Figure 4 also indicates that, 

for the present boundary condition, the movement of the elastic-plastic 

boundar; will slow down as the discontinuity across the boundary 

disappears because of the geometrical dispersion. As long as the pressure 

on the cavity surface remains unchanged, the motion of the elastic-

plastic boundary will come to a halt and then reverse its direction 

towards the cavity surface. This result is quite different from that 

observed in the static solution for the same elastic-plastic problem; 

when the constant pressure is applied quasi-statically at the boundary, 

a plastic zone next to the cavity surface is always maintained by the 
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Figure 2a. Numerical results for the elastic-plastic expansion of a spherical 
cavity; the distribut·ions of rad·ial stress along the radial axis for 
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applied pressure. 5 Differences between the static solutions and the 

asymptotic dynamic solution at large tDnes can also be observed in the 

distributions of the stresses and displacements along the radial axis 

(Figures 2a to 2d). A larger deformation and a higher radial stress 

occur in the dynamic case than do in the static case. These 

differences are not likely to be attributable to errors in the numerical 

solution, because the oemparison of the results obtained with two 

grid sizes does not suggest the possible existence of such large differences 

in the solution (Figure 2a). The maximum radius of the elastic-plastic 

boundary is also larger in the dynamic case than in the static case. 

These disagreements between the dynamic solution at a large time and 

the static solution are probably due to the residual stresses produced 

by the inertial force occurring in the dynamic deformation process. 

This result implies that, in some circumstances, the quasi-static approxi

mation may not be valid in dynamic plasticity. The quasi-static 

approximation in which the static solution of a problem is used to 

describe the long-time behavior of the dynamic solution holds in many 
. t t . . d . 1 t . . t 8 '11 ' 12 s1 ua 1ons 1n ynam1c e as 1c1 y. 

Figures 4 and 5 show, for all times, the dependence of the particle 

velocity and of the'position of the elastic-plastic boundary on the 

magnitude of the applied pressure. Although all of the results for 

various applied, pressure seem to be similar qualitatively, the magnitudes 

of various parameters in the solution seems to be quite sensitive to a 

change in the pressure. The dependence is rather nonlinear. It lS 

also interesting to note that the nonlinearity also appears in the 

result of the total duration of the dynamic deformation, namely, the 

duration during which the acceleration of the material is not vanishir~ly 

small. This duration for the elastic-plastic problem increases with 

increasing applied pressure, while, in the elastic case, the duration 

is a constant as shown in Figure 5. Accordingly, the initiation of 

slight plastic deformations tend to change considerably the nature of 

the flow. 
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6. CONCLUSIONS 

It has been shown that the governing equations for an elastic

perfectly-plastic flow with spherical symmetry can be solved through 

the use of a finite difference technique whose nature is rather well 

understood in comparison to other similar methods. With a slight 

modification of the original scheme proposed by Lax, the method can be 

applied to solve a wide variety of mixed initial-and boundary-value 

problems involving elastic and plastic flows. The comparison of the 

results for the dynamic deformation of an elastic cavity obtained using 

this method and an exact analytical method shows that the accuracy of 

the numerical solution is acceptable, except probably in the region 

where a discontinuity in the dependent variables appears. Large errors 

may occur in this region because of the artificial viscosity added 

into the equations by using the numerical scheme. Accordingly, for 

solutions containing discontinuities, an investigation of the error 

is necessary by varying the grid size and ~x/~T ratio. If high accuracy 

is required for the solution near the discontinuities, it is advisable 

to locate and obtain the discontinuities in the solution using an 

analytical method as shown by Friedman et a1.
4 

For the dynamic expansion of a spherical cavity in an elastic

perfectly-plastic solid, the numerical results for a suddenly applied 

internal pressure confirm Green's analytical prediction that an elastic

plastic boundary propagates with a constant speed, c = [E/3p(l- 2v)]
1 /

2
, 

p 
when discontinuities in stress and particle velocity occur across the 

boundary. Within the major duration of an impact the elastic-plastic 

boundary moves with a variable speed, of which the magnitude cannot be 

predicted analytically. Therefore, a numerical technique seems to 

be unavoidable in the investigation of spherical elastic=plastic flow. 

The same results have also shown that the quasi-static approximation 

which is often used in dynamic ela.sticity may not necessarily hold in 

dynamic plasticity. The solution for the dynamic problem investigated 
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does not approach the static solution as a limit when time elapses. 

This result is probably due to the residual stress produced by the 

inertia force of the impact. 

As far as magnitudes are concerned, the results show a rather 

nonlinear dependence of the elastic-plastic solution of the internal 

pressure. This nonlinearity seems to indicate that the nature of the 

flow would be changed considerably by the initiation of a slight 

amount of plastic deformation. 
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APPENDIX 

A COMPUTER PROGRAM FOR THE DYNAMIC EXPANSION OF 
A SPHERICAL CAVITY BY AN INT~NAL PRESSD~E 

(ELASTIC-PERFECTLY-PLASTIC SOLUTION) 

The computer program used for obtaining the present results is 

attached at the end of this Appendix. The program was written in the 

FORAST language by Mr. T. Addison of the Computing Laboratory. (The 

reader may consult one of the references at the end of the Appendix for 

a description of the computer language.) The program can be executed 

with the BRLESC Computer which is currently being used in the Ballistic 

Research Laboratories. 

The computer program is based on the finite difference schemes 

described in the main text of this report and will be able to provide 

information of stress, displacement, and velocity around a spherical 

cavity which is being expanded by an internal pressure specified with 

card numbers 157 and 171. The pressure at the boundary is shown as a 

constant, RR, but can be changed to a function of time, f(T); T is 

represented by Tin the program. The physical quantities R, 8, V, and U 

are represented by R, Q, V and U, respectively. 

The program can be used for problems with non-vanishing initial 

values, if the section between cards 13 and 39 is properly modified. 

This section is now written to represent the similarity solution near 

T = 0 for this problem. The similarity solution was put in the program 

as an alternate way of calculating the results but was omitted in 

obtaining the final results presented in this report. 

The numerical calculation proceeds in increments of time, ~1, while 

at a given time, T, it begins with the two data points nearest to the 

boundary, x = 1 and shifts in the positive x direction. Calculations 

at points other than the boundary point are shown in cards 60 to 79; in 

cards 60 to 65, the plastic equations are used, and ·in cards 72 to 79, 

the elastic equations are applied. Computations at the boundary point 

occur only once every other time step, as shown in cards 155 to 170 for 

an elastic case and in cards 171 to 182 for a plastic case. 
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The input data concerning material properties, specifications for 

outputs and the dimensions of the grid used for calculations are punched 

in the two cards at the end of the program which will be read by the 

machine upon the order written in cards 9 and 11. The input data include 

the following information: 

Program Notations 

DX: 

DT: 

DTT: 

DTI: 

TMAX: 

RR: 

NU 

RTO: 

A: 

TO: 

vs Physical Quanitites 

~t 

t of the first output 

interval of t for output 

t of terminating calcu-
lation 

Radial stress at the 
boundary, x = 1 

\) 

initial value of radial 
stress 

a 

initial time. 

The output of the calculation will be stored in a magnetic tape and 

can be tabulated in a numerical form (cards 112 to 126) as well as plotted 

in a graphical form (cards 134 to 14(). The format of printing is 

indicated in cards 16 and 1(. In plotting, the distributions of stresses, 

particle velocity and displacement along the radial axis will be presented 

by color curves in a single graph for ~ach time, t. The size and scaling of 

the graph is controlled with cards No. 128 and 129. The curves of R, 

@, V and U are all referred to the same scale which is chosen for R, and 

hence, it is sometimes necessary to adjust the values of V and U with 

proper numerical factors before plotting, as shown in cards 132 and 149. 
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80N01 r<O=fH< _________________ -~-2~~: ~ ~O~_·_?__~~l<l_l ~I_~< VK,Ll X_• <~DX_·l:~l _ _}_l_ .:J_~_~_l_l_-:_~-·-~-~L _________ _ 
Alj:~Ui•VK1•A••C£U?(2DX•RK2•2> 

-- ----~-- -- ----~---=-' ~_2_2__• ~-~~ •!' 1~. _p 2 ~2 (_( ~ 1 :l_!_~_t:_<- ~ ~1·~ l! ) -~- - - - --- - - - -- --
~o=RU-1 

U0=(VU+VK1JDI•UK1 
MOVE(N)NQS.~~OM(VU,N/-l)TL (Vl,N/-1) 

--------~-----M_Q_y_~i N_)_~()_§____.J_~_U_t-1 L~_O_, ~/~1_)_T l. _L~J__,_~_l-1 )__ _ ___________ --~ _______ _ 
MOV[(N)NQS.~~UM(UQ,N/•l)TL (Gl,N/-1) 
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lit 
l/ I 
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---~-~------ ------ -~-------------·---- -
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~F ~OHM (12•6>3-1>1•10) 
f~~ ~O~M(8•1U>~·10> 

---~W' ~ 0 ~ M~> ~ • 4 > -~b , .s.; 2Tl~·-1Tf2- iof3 -iTf~ 5f~-~6l
LI:.T 
END uOIO<SfART> 
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