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PREFACE 

This series of lectures on optimization techniques 
was originally prepared for presentation to the partici- 
pants of the 1959 Associate Staff Training Program.  Its 
objectives were two-fold: (a) to Introduce engineers to 
the usefulness of mathematical techniques and mathema- 
ticians to the applicability of their techniques to con- 
crete engineering problems and (b) to Introduce all the 
trainees to the very Important concept of optimization— 
a concept that currently pervades virtually every area of 
advanced missile engineering. 

Because these lectures do form a sound, basic Intro- 
duction to the Important field of optimization techniques, 
they are being Issued as a CF report to provide wider dis- 
tribution of this material as a reference work for Labora- 
tory personnel. 

V.   M.  Root 
Training Program Supervisor- 
August  1960 
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ON THE  CONCEPT OF OPTIMIZATION 

"Fulsomely dedicated to Winnie-the-Pooh, 
who didn't know a minimum from a Heffalump's trap." 

by 

A.   G.   Rawling 
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INTRODUCTION 

A somewhat negative approach to the principle of opti- 
mization was first scribbled centuries ago,among other 
phrases, on the walls of an ancient Roman bath house.  Re- 
ferring to a choice between two Roman aspirants for emperor, 
:,t read -  "De duobus mails, minus est semper aligendum" 
Of two evils, always choose the lesser]. 

Since that time optimization has been carried on under 
many guises.  In physics, many different minimal principles 
have been enunciated, describing natural phenomena in the 
fields of optics and classical mechanics.  The field of sta- 
tistics contains various principles termed "maximum likeli- 
hood," "minimum loss," and "least squares," while economics 
contributes "maximum profit, minimum cost, maximum use of 
resources, minimum effort," in a coherent effort to increase 
the long run capital gain in some manner. 

Enlarging our viev.^oint to include the most general 
aspects, we note that many operational problems are of this 
sort. 

1. They have a variety of acceptable solutions (by 
some specific criteria of acceptability). 

2. Among these solutions one wishes to select the 
best or optimal solution (by some specific 
criteria of being best or optimal). 

Thus, one formulates the problem mathematically with 
the twin objectives of providing an accurate description and 
also manipulating the mathematical model to obtain an ex- 
tremum. 

An extremum, or extreme value, is a value of a function 
which is either a maximum or a minimum.  Optimum is that 
particular type of extremum desired for the problem. 

- 2 - 
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II.     FULL,   INCOMPLETE,   AND SUBOPTIMIZATION 

Full optimization of a given problem can be quite an 
extensive  undertaking.     It  requires 

1. simultaneous consideration of  all  possible 
alternatives at  all  levels; 

2. consideration of  the  probable   impacts of  all 
events  not  under the  optimizer's control;   and 

3. maximization,  subject to possible constraints, 
of  some utility function or measure of effective- 
ness . 

Failure  to achieve  full optimization results   In  "incom- 
plete optimization," of which a special variety is termed 
"suboptimizatlon." 

Suboptimlzatlon    is a case of optimization for one 
phase of  an operation or a  problem,   without  including every 
factor which has an effect,   either obvious or  indirect. 
Frequently,   it consists of merely reducing the number of  ob- 
jectives. 

The suboptimlzatlon approach  is useful when neither the 
problem formulation nor the available  techniques permit  one 
to obtain a  reasonable answer.     In most  practical cases, 
suboptimlzatlon is  the only resort   in solving the problem. 
Although a  full  optimization  is  not  obtained,   it at   least  pro- 
vides a rational  technique  for approaching the optimum. 

Suboptimizatlon  is often necessary because of economic 
and practical  considerations,   the  finlteness of time,   and the 
difficulty of  obtaining sensible  answers  in a hurry. 

However, there is a major fallacy to be guarded against. 
Suboptimizatlon of all elements does not necessarily ensure 
attainment of full optimization, i.e., an over-all optimum. 
For example, in a large business, the sales force endeavors 
to increase sales of all items, although the profit on each 
item may differ. 

The production group resists changes to new products. 
The comptroller wishes to reduce  inventory level so as to 
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free capital and decrease storage costs, etc.  It Is not 
difficult to suboptlmlze all these divisions separately, so 
that each Is running smoothly and effectively, but a more 
painstaking effort Is necessary to balance the tendencies of 
different parts of a large organization and ensure they all 
mesh together. 

System design* Is sometimes described as the process 
of attaining a full optimization.  The need for system design 
arises from this very fact that suboptlmlzatlon of all com- 
ponents dees not necessarily improve system performance. 

An excellent example of this has actually appeared In 
the following concrete situation involving target tracking 
by a homing missile. 

The use of doppler information to aid range gate track- 
ing has long been known.  In obtaining the optimum over-all 
system, usually the range and speed tracking loops are 
separately optimized according to some criterion and then the 
speed gate is connected to the range gate to further reduce 
the range error. 

The resulting system may approach the optimum over-all 
system; however, the best use of the additional Information 
consisting of the correlation between speed and range has not 
been made. 

The optimum circuit consists of two optimum loops for 
range and doppler Information tied together in an optimum 
fashion.  Consequently, we require optimum gaTns connecting 
one circuit to the other as well as gains in the individual 
circuit loops. 

■ 

III.      OPTIMIZATION TECHNIQUES  AND CONSTRAINTS    

Me  are all familiar with the optimization problem of 
finding, among all the paths between two points in the plane, 
the shortest path.  It can be shown that it is a straight line. 

Consider the extension, where the two points lie on 
the same side ol a given straight line, and the problem is to 

  

^'A  system  is  an  integrated assembly of  interacting elements, 
designed  to carry out  cooperatively a  predetermined  function." - 
Dr.   R.   E.   Gibson. 
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determine the shortest path between the two points that 
touches the given line. This added condition is a constraint 
on the problem. ■" ~~ 

(The solution is not difficult in this case.  Reflect 
one of the two points across the line, and connect the other 
original point and the reflected point with a straight line, 
as shown.  Then ACB is the shortest path satisfying the con- 
straint.) 

Reflected Point 
Given Line 

Optimization of some function of a number of variables 
subject to boundary conditions whici limit the variables' range 
is of greater importance and frequency of occurrence than opti- 
mization without constraints.  We usually are not Interested 
in relative maxima or minima, but rather maxima or minima over 
a prescribed range.  This entails additional restrictions. 

For example, in the range a< x < b. 

- 5 - 



y 
«r    ■, — i   . < *»*—rr»'ÄM*fc 

Amito rMTUci uiotATMr 

there is a maximum at x - b, but not at x. or x« which lie 

outside the range of interest.  (This so called end point 
maximum will be discussed more fully later.) There is a mini- 
mum at x» within the range. 

The difficulties In the more interesting problem of opti- 
mization subject to constraints occur in many cases where the 
maximum or minimum cannot be obtained by ordinary differentia- 
tion because either it does not lie within the region defined 
by the constraint set or else the derivative is discontinuous 
inside the region. 

If the function to be optimized is continuous, then the 
extremum lies either in the region or on the boundary.  If it 
lies within the range, regular methods of finding maxima and 
minima apply as if the inequalities were not present. 

Mathematical constraints are of two types: equations and 
inequalities.  In a typical problem, the constraints may be 
all one or the other, or a mixture.  Considerable difference 
exists in the techniques applied to problems In which all con- 
straints are equations or else all Inequalities. 

If all constraints are equations, then in principle each 
constraint equation can be solved for one of the variables and 
this substituted to reduce the dimension of the problem by one. 
For example, to find the extrema of f(x, y) subject to the con- 
straint cKx,y) - 0, we solve for y from (^(x, y) - 0 to obtain 
y - V(x).  Then substitute into Z - f(x,y) and extremalize 

[x, TK*)] 

as  a  one-dimensional  problem. 

An  inequality constraint  does not  make   it  possible  to 
"eliminate" any variables;   it merely restricts the range of 
variability  in one dimension.     Thus,   if  the  extreme should be 
on  the  boundary or end point  of  the range,   a  different method 
for  extremalization  is  necessary. 

An end-point  technique   is  as follows:     Given a  function 
f(x)   defined for a£   x   ^b,   and  let  f(x)   have  a  derivative. 
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Then f(x) has a maximum at x 
maximum at x - b if f(b) > 0. 

It will have a minimum at x ■ 
minimum at x - b if f' (b;< 0. 

- a if f' (a) < O, and a 

a if f'(a) > 0, and a 

It will occasionally happen that f'Cx) becomes dis 
continuous for some isolated value of x, and if the discon- 
tinuity is accompanied by a change of sign as x increases 
thru the value in question, we shall have a maximum or mini- 
mum, as shown. 

Minimum Maximum Maximum 

These remarks pertaining to one variable are generaliz- 
able to two or more variables, where the boundaries become 
curves and surfaces and their intersections.  The difficulties 
of testing increase also. 

Actual constraints, which will be discussed elsewhere 
under several examples, are many and varied.  They can include: 
negative production not allowable, maximum limits on storage 
capacity, and production capacity in economic problems.  Non- 
linearities in physical systems, such as saturation and 
limiting, can be described mathematically in the form of ine- 
qualities.  Noise or uncertainty is often describable in terms 
of a probability distribution or power spectra.  Competitive 
or game theory aspects, such as opponents' strategies, must be 
considered in many cases. 

Physical constraints, involving weight and size are by 
no means minor. For example, an optimum cargo ship hull de- 
sign problem separates into two classes; 

1. Designs in which size (displacement) is fixed, as 
determined by available power. 

2. Designs in which dimensions (particularly length) 
are dixed, as determined by practical considerations 
of port facilities, such as dock size. 

- 7 - 
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case 
Different optimum solutions are to be expected In each 

IV.  THE CRITERIA OF OPTIMALITY 

A major difficulty in any optimizing problem is that of 
selecting a criterion.  What is the criterion in terms of 
which the outcome Is to be judged? 

In game theory, the sensible object of a player is to 
gain as much from the game as he can, safely, in the face of 
a skillful opponent who is pursuing an antithetical goal. 
The classical criterion for optimizing the design of a mechani- 
cal device has been to maximize the output energy for a given 
input energy.  In the case of vibration of a continuous system, 
the optimum damping value gives the least resonant amplitude. 

In choosing an optimization criterion, several aspects 
must be considered. 

First, viewpoint Is important.  For example, consider a 
nonproduction line type of manufacture, i.e., the product is 
generated in discrete batches.  From the viewpoint of reducing 
storage costs, we might ask "How can inventory level be re- 
duced?" But a wider viewpoint is represented by the question 
"What is the optimum size of inventory with respect to making 
a profit?" From the savings resulting from larger batch size 
with less frequent production, it might be that the inventory 
size should be increased. 

Constraints are also important in criteria selection. 
For an airborne digital computer, weight and size are fixed, so 
that any criterion for optimal choice among several computers 
must include the question "Does it fit?" 

There may well be a multiplicity of criteria to plague 
the optimizer.  They must be reduced in some way to manageable 
proportions by grouping them, inter-relating them, or just 
discarding them.  Conversely, one of the main reasons that 
criteria selection is difficult is the fact that one usually 
deals with either incomplete or suboptimization.  In most 
cases, however, the performance criterion is the first to be 
examined. 

Consider the application of optimalizing principles to 
the field of automatic controls for an aircraft jet propulsion 
system. 

- 8 - 
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One such optimalizing control meters the input fuel flow 
to an engine in such a manner as to produce the maximum com- 
pressor output pressure over a range of flight conditions. 

Pressure 
Ratio 

Fuel Flow, lbs/hr 

This indicates the goal is to maintain delivery of thrust 
without consideration of fuel consumption. 

Clearly, if the economical use of fuel is the primary 
purpose, then the output might have been the ratio of pressure 
divided by the fuel rate. „     n ^. 

Former Optimum 

Pressure 
Ratio 

Fuel Rate 

Fuel Flow, Ibs/br 

Here the optimum point (a maximum) has shifted to a 
lesser fuel flow.  Which optimum is better?  No statement is 
possible.  Each is an optimum for its chosen criterion. 

To sum up the essence of this section, the optimal ox 
consists of 

all meat to the gourmand, 

all hide to the shoe seller, 

and  all hoof to the glue maker. 

- 9 - 
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Therefore, always define in advance your chosen criterion of 
optimality and the constraints. 

VARIOUS EXAMPLES 

Optimum Coding of Information   Communication and 
information theory abound with the word "optimum." Having 
determined a cost in energy, time, or money of transmitting 
each one of a set of symbols (e.g., Morse code), what is the 
optimal code using these symbols which will transmit a given 
amount of information at the least cost, or will transmit 
information at a given rate for the least cost per unit time? 
(If noise is present, the cost of each symbol is effectively 
increased.) 

Thus, in an optimum coding process, we try to produce a 
set of symbols (each which may take different times to trans- 
mit) to be sent over the communication channel so that they 
will all occur independently and with equal frequency.  This 
will permit a message Lo be encoaed in such a way as to utilize 
the fixed channel capacity in an efficient manner. 

Sometimes optimum code means a minimum-redundancy code. 
This is a code which, for a message ensemble consisting of a 
finite number of members and for a given number of coding 
symbols, yields the lowest possible average message length. 

In general, the optimum code alone may not be identical 
with the optimum code when channel characteristics enter as 
constraints. 

Optimum Programming of Computers - -The speed of a 
storage device" such as a computer memory, is measured by its 
access tine, the time required for either reading or writing 
access to the first location required.  Access can be random 
(each bit available within the fixed access time) in the case 
of magnetic cores, or it can be cyclic (in which the access 
time depends on where the bit is in the cycle) as in the case 
of a magnetic drum rotating past a group of magnetic reading/ 
writing heads. 

If a computer program is stored wordwise in a sequential 
manner around the rotating drum, the time delays involved in 
reading or writing in one memory location prevent the next lo- 
cation from being processed immediately, and the drum must 

- 10 - 
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spin around again before the next word location can be utilized, 
and the time to run the computer program is considerably ex- 
tended by this waste of time. 

Optimal programming consists of interweaving the locations, 
i.e., arranging the program to permit space between consecutive 
storage locations.  This will permit consecutive reading despite 
the control time lags.  In this way the time of running is re- 
duced.  Computers with cyclic memories (drum, discs or delay 
lines) require such optimal (or minimal latency, as it is also 
known) programming so as to minimize the computer time required 
for a given program.  (A disadvantage is the widescattering 
of orders through the drum memory.  This may cause considerable 
difficulty when several programs have to be fitted together.) 

A first approach consists of spacing the words a fixed 
distance apart, regardless of the unequal length of time differ- 
ent commands require for execution.  A distinct improvement re- 
sults when the orders are spaced a variable distance apart, so 
that a location on the drum tends to be passing the magnetic 
reading head when it is needed for access. 

Optimum programming usually does pay, but not always.  In 
order to pay, the computer time saved must exceed the additional 
programming time required for optimizing  (subject to the quali- 
fying discussion at the end of this paragraph),  It will always 
pay if (1) the program is to be used repeatedly in processing 
large volumes of data and if (2) the programming can be done 
before the numerical data for the problem is available.  It may 
pay if the problem is a long, nonrepeatable one, with a large 
amount of data. 

(Qualifying discussion: From a cost accounting viewpoint, 
it is natural to minimize the large expense of using digital 
computers by emphasizing the importance of "minimum machine time" 
concept as a programming philosophy.  Since the cost of one hour 
machine time is approximately equal to one week of programmer's 
salary, it might seem reasonable for a programmer to spend one 
week's effort "optimizing" the program to save more than one 
hour running time.  However, more often than not, several 
scientists or engineers are held up for a week awaiting an answer 
before they can take action on it.  In the broad view, it may be 
less expensive to get answers to the sponsor before he forgets 
the problem, even if it costs more in machine running time.) 

Optimizing the computer program can be both tedious and 

- 11 
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valuable.  Can a machine be programmed to optimize Its own 
programs? Yes — but certain compromises are necessary, princi- 
pally the problem program and the optimizing program must both 
fit in the memory at the same time.  This limits the size of 
the problem that can be optimized. 

Optimum Interval Tables Instead of storing tables of 
function values in a digital computer, or printing subtables of 
differences on each page, polynomial approximations of the 
tabled function can be made, valid throughout the tabular region, 
with a given allowable error.  These polynomial representations 
can then be evaluated to reconstruct the function for any argu- 
ment in the region, and thus include interpolation as well as 
tabulation. 

Thus, we can assign in advance both the degree n of the 
approximating polynomial and the maximum allowable errort . 
For example, in the sketch shown below, the curve y » f(x) would 
be replaced by straight lines (n " 1) such that the error every- 
where is less than a prescribed e  (this fact deteriuines the 
length of each subinterval). 

/y = f(x) 

^TL^ ~ ~^JZ>- 
> 

/ 
/ 

r^y   = m    x + b1 
r^^y ^ m2  x + b^ * 

<; / "-A^-"' 
/ 

/ 
/ 

/ 

X 2 

Now for an interpolation polynomial of degree n_ and allowed 
error e. the computer merely stores the coefficients m., b, of 
each Interval and evaluates the linear polynomial corresponding 
to the argument x lying within the interval. 

This process, termed optimum interval interpolation mini- 
mizes the number of subintervals needed over the entire range. 
Function tables so constructed are called optimum interval 
tables.         ' 

- 12 - 
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VI.  CALCULUS OF VARIATIONS 

How does an optimization problem in the calculus of 
variations differ from an extremal problem of ordinary calcu- 
lus? 

In the latter case, we are given the function y - y(x). 
A simple problem in ordinary calculus is to find a value x 
which yields a minimum or maximum value of y - y(x) . 

One step removed from finding the extremum of a differ- 
ential function is the basic problem of the calculus of varia- 
tions;  to find a function y - y(x), instead of a value of the 
variable x, which makes a certain definite integral 

I - J    f(x, y, y«) dx 
a 

take  on a maximum or  a minimum.     Note we  cannot  integrate 
directly,   because  y  is  not known as  a  function of x,   hence 
f(x,   y,   y')   is  not known as a  function of  x.     Thus,   the  ordi- 
nary methods  of  solving maxima  and minima  problems  do not 
apply. 

Geometrically,   the calculus of  variations deals with  the 
problem of  finding paths of  integration  for which  integrals  uu- 
mit maximum or minimum values.     Solutions may be either con- 
tinuous or discontinuous  in the  first  derivative,   or both,   i.e., 
"corners" may exist   in the path,   occurring at the junction of 
different  continuous  arcs. 

Extensions  to  the basic problem  include the  presence  of 
higher order derivatives  in the  integrand,   multiple  integrals 
involving partial  derivatives  in the   integrand,  variable 
limits of   integration,   and constraints  represented by  the  re- 
quirement  that  another  Integra],   involving the same variables, 
has  a constant value.     Classical  applications of the calculus 
of variations  include  the problems  of  finding the minimum sur- 
face  of revolution,   the maximum solid  of  revolution,   least 
action,   solids of minimum resistance  with  and without  the  con- 
straint of given volume,     (A recent  technique,   called  "Dynamic 
Programming"   is  a  powerful computational  approach  to both 

■ 
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classical and nonclassical problems in the calculus of varia- 
tions .) 

OPTIMIZATION AND ROCKETS 

The field of rocketry provides an exceedingly ripe area 
for both optimization criteria and mathematical techniques 
involving the calculus of variations. 

For example, consider the problem of specifying the 
rocket trajectory.  Different methods of control exist in flight. 
The thrust may be varied in magnitude, and often the thrust 
direction is variable.  These changes affect the flight trajec- 
tory, there may exist some single goal, such as attainment of 
long range with minimum expenditure of propellent and struc- 
tural weight, or attainment of some altitude in a reasonable 
time.  It is of interest to find out how to adjust the avail- 
able control so as to optimize the trajectory In the sense of 
maximizing or minimizing some function such as range or time 
subject to constraints such as fuel consumed or altitude 
achieved.  Since the controls can usually be varied at will 
over a continuous range of values, such trajectory problems be- 
long to the calculus of variations. 

Over the past years, there have been numerous applica 
tions of the calculus of variations (as well as other techniques) 
to optimization of rocket problems.  Some of the many topics 
published include the following: 

1. Either maximize the range, altitude or some other 
property for a given fuel consumption, or specify 
such a property and seek to minimize the fuel 
consumed. 

2. Program the exhaust velocity in an optimal manner so 
as to provide the most efficient utilization of the 
fuel. 

3. Determine the optimum thrust direction of a rocket 
fired from a fighter plane pursuing a constant 
velocity target in order to maximize the initial 
missile-target range. 

4. Determine what value of payload that will give maxi- 
mum kinetic energy for a rocket of fixed structural 
and propellent weights.  An optimum ratio of payload 
to structure exists for every value of the propellent 
ratio. 

- 14 - 
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Obtain optimum staging techniques for a multi-stage 
rocket with different construction parameters and 
propellent specific impulses in each stage.  We 
wish to optimize the configuration insofar as perform- 
ance is affected by changes in the number of stages, 
and redistribution of the fuel and structure weight 
among the stages.  An optimization criterion might 
be maximum burnout velocity for given take-off weight. 

Seek an optimum nozzle area ratio for rockets opera- 
ting in a vacuum which will provide maximum perform- 
ance for the stage in question.  (Here the specific 
impulse of the propellent increases monotonically 
with increasing ratio of exit area to throat area, but 
the increased weight of larger nozzles degrades the 
performance.) 

VIII.  OPTIMUM EFFORT OR SEARCH 

Suppose that an object is somewhere in a given area, and 
that its probabilities of being in the various possible posi- 
tions are known. 

Suppose, further, that a limited total amount of search- 
ing effort (or time) is available. 

Finally, assuming that the law of detection is known, 
the chance of finding the object when a given amount of search 
is carried out in its vicinity is determined. 

The major problem is to find the optimum manner of distri- 
buting the available searching effort: the one which maximizes 
the chance of finding the object (i.e., remember detection is 
not certain.  Rather, detection is an event which may have any 
probability between zero and one associated with it). 

If the object is equally likely to be anywhere within a 
certain area, the problem is straightforward.  The search 
effort is evenly laid out over as much of the area as we can 
search. 

But if the chance that the "enemy" is present varies from 
area to area, the problem can become quite difficult.  As an 
example, if the enemy is twice as likely to be in one area than 
another, and only a small amount of search area is available, 
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all this effoi't should be spent in searching the more likely 
area. 

Additional by-products are such questions as "What would 
be a good course of action? Or several courses, possibly?" 
"What is the best way for the opponent to hide?" 

A more specialized problem is as follows.  A target is 
known to be in a large volume.  Using a pulse radar, the volume 
is searched by scanning systematically over the entire space. 
Assume further that the search situation can be described by 

1. the size of the volume the target is known to 
be located In; 

2. the strength of the return signal. 

The parameters to be optimized are: 

1. the return threshold; 

2. the size of the unit search interval; 

3. The time spent examining each interval. 

A related problem is the optimum acquisition procedure, 
i.e., to minimize the average time to acquire a target with a 
radar while constraining the cumulative probability of a false 
alarm. 

IX.  SETTING THE OPTIMIZATION PROBLEM 

If we now consider systems primarily, henceforth, we can 
list five conditions which largely determine any problem in 
system optimization: 

1. Purpose of the system; 

2. Nature of the inputs; 

3. Criterion of goodness of performance to be used; 
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4. Freedom of choice to be allowed in design; 

5. In practical problems, cost of the system in a 
generalized sense must be included. 

Whenever these five conditions are specified, some kind 
of optimization problem is defined, although it may be such 
that the problem has no solution at all, or no best solution, 
or no unique best soliTfion. —— 

The question as to whether an optimum exists or not is 
dependent in general on the existence of at least two opposing 
functions in the system.  For example, in the determination 
of economic lot size, the total variable costs are the sum of 
carrying charges plus preparation costs, as shown below: 

A /Total 

Cost 
per Unit 

Most Economical 
Lot Size 

Quantity 
^ Ordered 

(units) 

The most economic lot size occurs where the total 
variable cost is a minimum. 

Another example;  The velocity required to leave a satel- 
lite orbit about one planet and proceed to another planet de- 
pends upon the radius of the satellite orbit.  The larger the 
satellite orbit, the weaker is the gravitational attraction 
of the home planet.  This has a tendency to reduce the velocity 
required to go to another planet. 

But the larger the satellite orbit, the lower is the cir- 
cular velocity of an object in tnat orbit. This has a tendency 
to increase the additional velocity required.  Therefore, there 
is an optimum satellite orbit of departure of arrival to go 
from each planet to each other planet. 
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On  the  other hand, 
may be  no optimum. 

if  no opposing  functions exist,   there 

A 

However, the presence of bounds on the variables as constraints 
may serve to Introduce the so-called end-point or boundary 
optimum, as mentioned earlier. 

Constraint 
x< a 

In the above case, we see a minimum occurs on the boundary at 
x - a , 

Other nonmathematical difficulties may beset us.  Suppose 
we have two given functions u(x, y, z ...) and v(x, y, z ...) 
to make as large as possible (e.g., quality and profit), but we 
are thwarted by the fact that increasing one of them decreases 
the other. 
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Two traditional methods are available; 

1. Fix one variable, say u, at that particular value 
u the least that will be tolerated, and maximize o ' 
v subject to this constraint. 

2. Take a weighted average of the two variables 

au + bv 

where a and b are non-negative and sum to unity, and minimize 
this mean, to give an optimum u,, v,. 

In general, the two optima at u and u, will not 
coincide. 

>^ 

The  point   is,   the choice  of either u   ,   (the   least 
tolerable u)   or  the weights a,   b   (the balance between u  and v) 
is not a mathematical but  an executive decision. 

-  19  - 



'»^."'•k 

TMt   lOHMl  HOMMI   UNIVflllTT 

AMUIO PHYSICS lAftOIATORY 
IMVfl   WHO MAfTUNO 

OPTIMIZATION OF LINEAR CLOSED LOOP SYSTEMS 

A fundamental function of feedback controlled systems 
is to maintain certain variables (called errors) at constant 
or minimum values, under a particular set of conditions which 
include: 

1. dynamical nature of the process to be controlled; 

2. difficulties in accurate measurements; 

3. servo limitations as to power and saturation; 

4. random disturbances and inputs; 

5. noise. 

Any effort to establish a routine design procedure of 
such a system requires specific criteria defining the optimum 
system. 

We are fortunate.  There is no dearth of criteria.  Among 
the multitude are such ones as zero error, response specified 
by a model, variable damping dependent on error size, minimum 
lead and bandwidth, transient response characteristics, optimum 
impulse response, minimization of the effects of disturbances, 
maximization of system output, minimization of the square of 
weighted noise and dynamic error, maximization of load torque 
at constant speed, stable equilibrium, any of a host of integral- 
of-the-error type of criteria, including minimum mean square 
error. 

This great number of various criteria can be reduced in 
general to three basic sets of performance criteria, existing 
at present in problems of servo mechanism design.  They are: 

1. Stability; 

2. Steady-state conditions; 

3. Transient response characteristics. 
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In general, a device which is not stable will not be 
used.  (In some multiple loop feedback systems, sometimes an 
inner loop by itself might be deliberately designed to be un- 
stable in order to achieve some desired benefit, but when the 
subloop is embedded properly, the over-all multiple loop sys- 
tem must be stable.) 

Transient response refers to the manner in which the de- 
vice arrives at a steady state.  Investigation of the system 
lor the case of transient (or nonsteady-state) phenomena 
usually, but not always, requires approaching the problem in 
the time domain. 

Optimum transient response may be defined as that response 
to a step input which regains position correspondence in minimum 
time and with prescribed limitations on overshoot [e.g., for a 
nonlinear relay servo we might prescribe no overshoot at all]. 
Other definitions also exist. 

The phrase "optimum adjustment" signifies the problem of 
setting the adjustable parameters of a control loop so that 
the control action resulting after a disturbance will take 
place in the best possible manner. 

Of course, no such optimum adjustment will be universally 
applicable, because it is always based upon the criterion used 
to define optimum control action.  The choice of such a cri- 
terion is rather subjective and depends upon each application. 

Steady-state conditions refer to the error (between input 
and response) which remains after all transients die out. 

Determination of the optimum transfer function in the 
steady state requires working in the frequency domain. 

There are two distinct methods of design which we will 
encounter now in automatic feedback control and later in optimal 
filtering.  They are: 

1. Parameter-optimized, or fixed configuration, or 
relative optimum. 

2. Variation-optimized, or free-configuration, or 
absolute optimum. 
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Parameter-Optimized This is a simplified method in 
which it is necessary at the outset to decide the interconnec- 
tion of the elements or blocks to be employed.  The procedure 
to optimize parameters in the proposed (or existing) system 
consists in varying the parameter values that are not speci- 
fied previous until the system gives minimum mean-square 
error, i.e., after first obtaining an expression for the mean- 
squared error in terms of the parameters of the system, the 
optimum parameter values may be determined, using ordinary 
minimizing techniques of calculus. 

The success depends to some extent on the wisdom of the 
initial choice of interconnections and elements. There must 
always remain some doubt as to whether some other intercon 
nection might not lead to a better result. 

Variation-Optimized-- This method relieves the designer 
completely of the onus of an initial choice of elements.  It 
is based upon the calculus of variations and when the other 
fixed elements in the system have been specified, it allows 
no choice in the remaining elements, but gives directly an ab- 
solute optimum which cannot by any linear means be improved 
upon. 

Such systems may be difficult to realize in a practical 
form since the method takes no account of practical convenience 
but the existence is of great value as a standard for compari- 
son with the more conventional type. 

A criterion for use in the optimization of a closed loop 
system may be formulated as follows: 

Let z(t) be the desired system output, and let c(t) be 
the actual system output.  Then any functional of c(t) and 
z(t) is some kind of measure of how well the system operates. 
Usually, a measure of system performance is some quantity 
which depends on the error 

z(t) - c(t) 

and which   is  a  minimum when  the  error   is zero,   and becomes 
larger when error   is   increased. 
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The most important criterion in use is the mean square 
error criterion 

/[z(t) - c(t)]2 dt 

which is used mainly because it permits the development of 
analytic methods for synthesizing systems with random inputs. 
For many situations, other criteria are more suitable but 

suffer from lack of mathematical development.   This criterion 
also has a physical interpretation of discriminating against 
the occurrence of large errors, i.e., the optimization 
criterion of minimum mean square ensemble system error weights 
large errors more heavily than small errors.  It reduces the 
likelihood of large errors but leaves the system relatively 
sensitive to small errors. 

However, other criterion might be more important in 
some cases. For example, it might be more appropriate to maxi- 
mize the probability that the error be less than some pre- 
scribed tolerance. 

Prob  {| Z(t) - c(t)| < K)} 

i.e., we require a system which minimizes the specified proba. 
bility.  All errors greater than a certain threshold are 
equally bad, while small errors are tolerated. 

Prob   {|z(t) =c(t)| S(T), T ^t) 

i.e. we require the system whose output has the largest con- 
ditional probability, using all the past history of the sig- 
nal, of being the correct value. But this requires continuous 
conditional probabilities; assumes all errors larger than a 
certain value are equally bad; and requires a complete sta- 
tistical knowledge of inputs, often not available. 

XI.  OPTIMAL FILTERING AND PREDICTION 

Conventional frequency filters are intended to separate 
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two classes of signals whose spectra do not overlap.  Specifi- 
cation of these filters does not depend on the statistical 
properties of the signals. 

However, communication and control systems often must 
perform the task of separating as well as possible a desired 
signal input from an extraneous signal input such as random 
noise, whose spectrum greatly overlaps that of the desired 
signal.  Optimum filters (relative to the way they are speci- 
fied) are a class of filters designed to perform this separa- 
tion. 

Assume we have a corrupted signal y(t) which is the sum 
of a desired signal s(t) and unwanted noise n(t) 

y(t) - s(t) + n(t) 

Smoothing is the removal of the unwanted random roughness 
in the data,  Tn some cases n(t) has higher frequency com- 
ponents than s(t), and removal of n(t) actually amounts to 
smoothing the graph of the signal. 

Predicting is the forecasting of a future value of the 
desired input signal. 

Smoothing and predicting can be combined together, as 
well as with and without differentiation. 

are: 
Two fundamental principles of smoothing and predicting 

No separation ol signal s(t) from s(t) + n(t) is 
possible unless s(t) and n(t) have distinguishing 
properties. 

No prediction of s(t) into the future can be made 
unless it has known property which relates its past 
and future, ut   least in some statistical sense. 

The term "filter" or "memory function" used hereafter 
la to be taken in a very broad context.  Although mathema- 
tically it may be termed an "operator," physically in this 
sense it may be a suitable electric circuit or a more compli 
cated piece of equipment, such as an automatic feedback con- 
trol loop; or a memory store containing a given set of 
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transmitted messages for comparison with a garbled message 
received; or various electronic circuits, or even a missile 
itself. 

Consider the general system 

y(t) = s(t) + n(t) 
Input "> FILTER 

c(t) - s(t + T 
Output V 

A smoothing filter is designed to extract as well as 
possible a desired signal s(t) from the mixture y(t) of 
signal and noise.  Here T » 0, and the system is also called 
a "duplicator." 

A predicting filter is designed to yield a future value 
s(t + T) , T>0 of the signal, where the signal s(t) may or 
may not (n(t) / 0) be mixed with noise in the present. 

The over-all problem of designing systems to perform 
smoothing and predicting can be considered in two parts: 

1. Determine by some criterion what the best smoothing 
and predicting is, and what the optimum performance 
operator is. 

2. Realization of the desired performance operator in 
a workable device. 

Until the work of Wiener became known, the design of 
linear systems depended on a combinition of cut-and-try pro- 
cedures and analytical methods for choosing, in some optimum 
fashion the free parameters of a system of given form. 
Norbert Wiener (1942) solved the problem of optimum prediction 
and filter under these four assumptions: 

The system is a fixed parameter-linear device (since 
extended to a time-varying parameter linear device) . 

The system has infinite memory, i.e., operates on 
all past history of the signal and noise (since ex- 
tended to include the cases of finite duration 
sampling time). 
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The   input  time  series   (both signal  and noise)   are 
ergodic stationary random processes   (since extended 
to the case  of  nonstationary nonergodic  random 
process  input). 

The system is optimum in the sense of minimization 
of least squares (this has not been generalized in 
a  practical manner) . 

The  Wiener method  of  system optimization  specifies 
mathematically that memory  function which makes   output,   c(t), 
the  "best"  approximation to a  translation of  the message 
input   s(t  + T )  where   T is  some  real number. 

y(t)   - s(t)  + n(t) 

Input 
7> 

W(t) 
System 
Memory 

Function 

c(t) 
Output > 

The error   in  the approximation,   t^)»   is  defined as 

€(t)   = s(t)   - c(t) 

and the approximations will be assumed "best" when the mean 
square of € (t)   is minimum, i.e.. 

Lim e        2T 
T-^oo     -T ^ 1 [e(t)]  dt 

The mathematical application of the Wiener method is as 
follows: 

Express the mean squared error in terms of 
statistical properties of the message and noise 
signals. 

Minimize the mean squared error by use of the cal- 
culus of variations.  In the process of minimization, 
it will be found that the optimum memory function 
must satisfy a Wiener-Hopf type integral equation. 
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3.     The  desired optimum memory  function will  be  expressed 
in  terms  of  the  solution  to the   integral  equation 
and characterized by  transfer  function relating  the 
output  to the  input. 

(Memory  function is  to be  regarded  in the broad context 
as  a  component,   subsystem,   or even a system,   depending 
on  the   problem.) 

Some   important   limitations  on  the  Wiener method which 
must  be  kept   in mind are: 

All   physical systems  to which  this method  is  applied 
are   linear. 

In many cases,   it   is  impossible  to realize  practi 
cally  the memory  function derived analytically by 
the  Wiener method.     The  design  is feasible  provided 
the  optimum process does  not  require  a circuit   to 
distinguish between positive  and negative  frequen- 
cies,   and does  not  require   it  to have  a  negative 
memory.      (A negative memory would imply that  a  sig- 
nal  could be processed before   it had been received. 

The  auto    and cross-correlation  functions  and 
spectral  densities  functions   for the noise must 
exist. 

A relevant question is "Why bother with optimum theory, 
when the devices may turn out to be physically unrealizable?" 
Two reasons  exist. 

It   is  desirable  to have  a  standard of  reference  re- 
presenting the maximum attainable performance  that 
can be  expected for an  optimum system.     By consider- 
ing  the   theoretical  performance  capabilities  of 
optimum  systems,   one  can  often show that  a  simple, 
practical  system under  study may differ so  little 
from optimum as  to make   further refinement  unneces- 
sary. 

Even  though  optimum  filters  may  not  of  themselves be 
easily   instrumented,   they  can  often be  approximated 
by  practical devices. 

-  27   - 



AMllfO PHYSICS LAtOfATORY 
tavii mMO «ufnANO 

The Wiener method yields an "absolute" optimum system 
memory function, whereas the so-called Phillip's method de- 
rives a "relative" optimum system memory function. 

This relative optimum is found by assuming a basic 
structure for a system and optimizing with respect to its 
controllable parameter. 

Note that the matter of physical reality, a severe limi- 
tation of the Wiener method, does not enter and no consider- 
ation is given whether or not the opt imum system could be 
practically realized.  Since the basic structure is fixed prior 
to optimization, the question does not arise.  An optimum 
memory function is then derived as follows: 

1. Establish an expression for the mean-squared error 
of the system; 

2. Minimize this error with respect to controllable 
parameters. 

For example, the realizable linear-over-quadratic trans- 
fer function 

as + b 
—2 Z  cs + ds + e 

as  a  beam riding computer  filter for a  guided missile can be 
shown  to approximate  the  results  of  the  theoretical  optimum 
filter  for  the case  of   "white" noise   (all   frequencies repre- 
sented)   and game  theory  acceleration spectra   (discussed  later). 

It   is unfortunate   that  guidance  filtering which  is 
optimal   from the standpoint   of minimizing  the maximum mean 
square  miss distance   (or beam riding error)   demands  infinite 
mean square missile  acceleration.     It seems   feasible to take 
into account  the  actual   physical   limiting of missile  accelera- 
tion by  seeking  the  filter which minimizes  the mean square 
miss   (or  beam riding error)   subject  to a  constraint  on the 
allowed mean square  missile  acceleration. 

However,   by  separating  the  guidance  and control  functions 
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in the missile, we can include the effects of target maneuver 
in the optimization of the beam riding computer with drag-in- 
duced slowdown as a constraint, and include the effects of 
noise in the optimization of the autopilot with acceleration 
limiting as the constraint occurring there. 

Eventually, we define the optimum beam riding computer 
to be that one which minimizes total beam riding errors due 
to both noise and target maneuvers while restricting the in- 
duced drag due to noise to some acceptable value, i.e., an 
acceptable value of induced drag is that value which does not 
cause the missile to slow down in level flight at the maximum 
intended range. 

The near-optimum transfer function is no longer linear- 
over-quadratic, but becomes linear over-quartic, due to the 
constraints. 

As a side note, we should mention that while optimization 
of filters concerned with smoothing and predicting data has, 
on the whole, been done with respect to the mean square error 
criterion, the filters are sometimes complicated to compute, 
making them quite often unsuited for real time solutions.  For 
such applications, it may be necessary to optimize the filters 
from the primary viewpoint of ease of computation, with which 
the final estimates of the output are obtained, and optimiza- 
tion in the mean square value sense is obtained as a secondary 
consideration in order to provide some control of the mean 
square output error.  This approach would have the greatest 
appeal for problems involving real time filtering where com- 
puting time and complexity are primary considerations, and 
noise reduction is a secondary consideration. 

A remark on the use of nonlinear filters can be made 
here.  If the noise and signal at the input both possess 
Gaussian distributions in amplitude, the linear filter is the 
optimum filter, and no improvement in filtering can be realized 
by going to a nonlinear device.  But with more general input        i 
signals, the same situation does not hold.  In many cases the 
mean square error can be further reduced by the addition of 
nonlinear filters. 

In concluding this section, we can state a few facts 
about detection of signals in noise.  Detection is the process 
of determining whether a signal ii, present or not.  When de- 
tecting a signal, the detector is either right or wrong, but 
in the theory of prediction, it is unlikely that one is ever 

t 
r 
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exactly right, but there are all degrees of wrongness. In de 
tection, alternative optimization criteria to minimization in 
a least squares sense has been used.  For example; 

1. Maximization of signal-to-noise ratio at a speci- 
fied instant of time; 

2. Maximization of the absolute magnitude of the differ- 
ences between signal and noise over all time; 

3. In one optimum threshold (i.e., weak signal) detec- 
tion system, optimality is achieved by minimizing 
the average cost of decision*, 

4. Another detection system is "best" which in the long 
run will hold fixed the false alarm probability and 
will minimize the probability of missing the signal. 

XII.  WIENER THEORY APPLIED TO AUTOPILOT DESIGN 

The Wiener optimum linear filter formulation is applied 
to the autopilot closed loop transfer function with the dis- 
turbance spectrum entering at the wing.  [Actually the noise 
in the autopilot enters the loop at various places. ] 

A statistically optimum autopilot may be defined as that 
autopilot which minimizes the mean-square error between accelera- 
tion command and the missile acceleration response attained. 

For a realistic approach, saturation of various elements 
in the system must be included. Because of the nonlinear 
nature of these saturating elements, general procedures for 
the optimization of filters involving them have not been de- 
veloped.  Usually the nonlinear limits are replaced by a linear 
system by constraining the saturating quantities to their mean 
square values. 

It is desired to^find the transfer function G which mini- 
mizes the mean square £  , subject to a constraint of limited 

mean square wing rate ö . 
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XIII. GAME THEORY AND OPTIMAL FILTERING 

The theory of games, or game theory, is the particular 
branch of applied mathematics which deals with the rational 
analysis of competitive and cooperative systems, and the de- 
termination of optimal courses of action for the participants. 
Situations to which game theory can be applied occur in opera- 
tions analysis, strategic and tactical planning, whenever 
there is conflict of interest arising from the actions of an 
opponent.  ("Opponent" can include even Nature, a fictitious 
player, having no known objective nor strategy in some general 
cases,) 

The elementary concepts for the simplest, two-person 
game are that which one side gains the other side loses, that 
the opponents simultaneously choose a course of action (called 
a strategy)} and that the outcome of the game (the payment of 
one side to the other) is determined by this dual choice of 
strategies.  The outcome is not completely determined by either 
side alone, it is determined by the combined decisions of the 
two opposed players. 

One of several possible criteria is the minimax principle 
— eich player should employ only optimal strategies which 
minimize his maximum loss, no matter what the other player may 
do. 
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In Wiener's  work,   the  statistical   properties  of  the 
noise  and signal   are  assumed  fixed,   and  given  in advance  of 
the  problem.     A  guidance  filter  can be   optimized  then to   in- 
clude  the  effects  of   target  random maneuvers,   presumably 
typified by maneuvers   over which  the  enemy himself has 
little  or  no control   [e.g.,   wind gusts,   noise  in his  system, 
etc.].     Such  a  guidance  filter  or beam  riding computer may  or 
may  not be  near  optimum  if  the  target  maneuvers  in a  deliber- 
ate manner.     Essentially,   the  game   theory  approach  assumes  an 
intelligent  target,   one able  to assume   the most evasive 
maneuvers  within   its  capabilities.     The  goal   is  to design the 
best  possible  system against  this  crafty  target,   within  cer- 
tain boundary  conditions  and constraints. 

In game  theory  optimization,   allowance  is made  for  the 
fact  that   the enemy who is producing  the  signal may  prefer 
not  to be   followed,   and may attempt  to keep the mean-square 
error as  large  as  possible.     The  spectral  density  of his 
signal   is   thus  no  longer  fixed,   but   is   the  strategy  of  one  of 
the  participants   of  the game. 

The  strategy  of   the  other  participant,   the  filter  de- 
signer,   is specified by the  transfer  function of  the  filter. 
The  game  payoff   is  considered  to be   the  mean-square  error  or 
miss. 

The   filter  designer must   design  the  best  filter   in view 
of   the worst  choice  of  signal  spectral   density by  the enemy 
(as  caused by his  maneuver). 

The  enemy,   who   is  the  signal   producer,  must  generate  a 
signal which  has  statistical  characteristics that  result   in 
the  greatest,  possible  miss despite   the  best  efforts  of  the 
filter designer. 

If   these  two considerations  are mutually compatible, 
there  is  a  game   theory  solution,   i.e,,   there  is a   filter 
transfer  function which gives  the  smallest mean-square  error 
for  the worst   possible  signal. 

The game theory solution is essentially the intersection 
of two functional equations: one giving tne optimum filter 
transfer function for fixed signal spectral density; the other 
the optimum signal spectral density for fixed filter function. 
This solution has the property that the error obtained with it 
when  the  target  signal  strategy   is  optimum   (in the  sense  of 
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maximizing the miss) is smaller than the error obtained for 
any other filter transfer function when the signal strategy 
is  optimum for that  transfer   function. 

XIV.     WHY OPTIMIZATION TECHNIQUES HAVE  NOT BEEN USED 
  MORE PREQUENTEY  

Three conditions have  conspired to keep optimization 
methods  from widespread application  in the  past. 

1. Complicated mathematics,   for example,   in optimizing 
a  filter by Wiener's method,   and actual  nonlinear 
constraints. 

2. Equipment  required  is prohibitive  in cost  and/or 
bulk. 

3. Advantages accruing  from successive refinements be- 
come progressively  smaller.     Quite  often a  com- 
paratively simple  filter,   say roughly approximating 
the Wiener design,   in practice gives most  of the 
advantage  to be  expected from the  true  Wiener design, 

XV.     RELATION TO  ADAPTIVE  SYSTEMS 

Designing control  systems where   (a)   little  significant 
information is known about  the  process  to be controlled,   (b) 
the  properties of  the  process  vary over an extraordinarily 
large  range,   and  (c)   the  characteristics of  the  system input 
signals  change markedly with  time, may require  systems  in 
which  the  compensation  is  automatically adjusted  to offset 
these  adverse effects.     Such  systems are called  "adaptive 
systems." 

Optimum performance  from operating systems   is  of  in- 
creasing  importance  as  competition  in the real world becomes 
more  severe.     Adaptive  control   is a method of  automatic con- 
trol  aimed at obtaining optimum system performance even when 
there exists  incomplete  or  inexact  analytical  or  analog models 
of  the  process that   is being  controlled. 

Adaptive or self-optimizing systems  optimize  control by 
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the  uso   of  .in  automatic  unit  which  searches  out  and holds  the 
best   performance   from a  controlled  system,   in spite  of  any 
reasonable   change of  the  output   level  or environmental  opera- 
ting  conditions.     In this  sense,   the  adaptive  system  "learns" 
to   improve   its  performance,   based upon experience,   thereby 
adapting   itself  to the  circumstances  it  finds. 

In  order   for  an optimizing  action to be  possible,   the 
system  to be  controlled must  have  a  performance  characteris- 
tic  which  shows  an optimum point   as  one  or more  of   the   inputs 
vary.     A  suitable  deviation  signal   that  represents   the  depar- 
ture  of   the   operation  from the  optimum condition   is  generated 
and utilized   as  a basis  for making  corrections  to  the   input 
(if  controllable)   or  to  the  adaptive  system parameters   (e.g., 
variable  damping  if  noise   is   the   input),   so  that   the  devia- 
tion diminishes  and  the  operating  point  approaches   the  optimum 
point  again. 

An  application of  adaptive  systems  is made   in  target 
tracking  radars,   which  adjust   the  over-all   transfer   function 
of   the  tracking  loop according  to  target  behavior  and  system 
noise.     Target  acceleration  or maneuver  is   "recognized"  and 
the  system  parameters  vary  to  convert  the  function  of  the 
loop  from data  smoothing  to  tight   and  fast   follow-up.     When 
target  maneuver  ceases,   system returns to  its  filtering mode. 
Thus,   the  parameters  are  adjusted  to balance  the   low  frequency 
error   (lag  due   to maneuver)   and  the  high  frequency  error   (re- 
sponse   due   to  noise). 

XVI.      MATHEMATICAL   PROGRAMMING 

Linear  programming,   nonlinear  programming  and  dynamic 
programming  are   three  of  a  set   of  techniques called   "Mathe- 
matical   Programming" which  involve  the  programming  of   inter- 
depender.t   activities.     These   techniques  are  referred  to as 
'programming"   in order  to emphasize  that  planning,   as  dis- 
tinguished   from operations  or  execution of  plans,   is  the  area 
of  primary   interest.     In brief,   programming  is  concerned with 
the  problem  of  planning a  complex  of   interdependent   activities 
in  the best   possible way. 

The  general  programming  problem is  to maximize  or mini- 
mize  an  objective   function 0 (x) ,   which  is  some  over-all 
measure   such   as  cost,   or  profit,   or  value,   or quality,   or 
efficiency,   etc.   subject   to constraints  g, (x) >   0,   goC34) >   0» 

...,   and  x    >   0.   x    >   0,    ... 
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The usual analytic methods of solving extremization prob- 
lems   in the presence  of  constraint  equations   (solving the  con- 
straint equations,   substituting in the  objective  function, 
and  differentiating,   or else by Lagrange multiplier techniques) 
do not  take  into account   the   inequality  constraints which 
characterize mathematical  programming. 

XVII.      LINEAR  PROGRAMMING 

Linear programming  is a relatively  new mathematical  tech- 
nique  to handle  problems with the  following characteristics. 

1. There  is usually a  large but   finite   number of  non- 
negative  variables. 

2. The  variables  are  subject  to a  finite  number of con- 
straints or boundary conditions usually in the  form 
of  linear  inequalities and/or  equations which  limit 
the variables  range,   and are  accurately known. 

3. Under these  constraints,   some  objective  function  is 
to be maximized or minimized. 

Both the  objective   function to be maximized and the  re- 
strictions on each variable   (equalities  or  inequalities)   are 
linear  in the variables. 

We say a  solution  is  feasible  if   it  satisfies the  con- 
straints,   and optimal   if   it also achieves  a maximum.    The 
problem consists  in determining,   out  of  the  infinite number  of 
feasible solutions,   a  unique   (if possible)   solution which  is 
optimal. 

i 
The resulting solution will  then provide  the best  possible 

planning of operations  under the specified restrictions. 

Problems with  these  characteristics  crop up in transporta- 
tion  fields   (relating sources and destinations  of supplies), 
production bottlenecks   (efficient  allocation  of   limited re- i 
sources)   problems of scheduling and timing,   contract awards, j 
personnel assignment,   etc. 

I 
Linear programming problems have been attacked  in several 

ways,   the most  prominent  method being the  Simplex Algorithm, 
which   is a very powerful  computational  technique which can 
efficiently solve  large  systems containing hundreds of equations. 

I 
-  35  - 



THt   lOHNI   MOftlMt   UMVUtTTT 

AMUfD PHVSICS  LAIOCATOIY 
luv« IMMO MAtnAMO 

However,   limitations   and  disadvantages  to  linear pro- 
gramming exist.     Among  them are: 

1. The   linearity  restriction.     For example,   linear 
costs do not  penalize   large values of  the 
variable.     [This  has  been alleviated to some ex 
tent by the  generalization to  "Quadratic  Program- 
ming,"  in which  the   linear objective  function to 
be  extremized can be  replaced by a quadratic  form, 
with  linear constraints.] 

2. Optimal solutions are not obtained in analytic form. 
Changes in the mathematical model require recalcula- 
tion. 

3. Error analysis  is  difficult. 

4. No provision is made for relationships involving 
uncertainty due to random fluctuations or errors 
in determination, for example, sales forecast in 
the form of a probability distribution cannot be 
handled. 

5. The expression of  realistic  objectives  and  constraints 
in measurable  terms. 

6. The  determination  of  suitable  numerical  values  for 
coefficients. 

7. The  computational   labor required  to execute  numeri- 
cally  large-scale   linear programming problems. 

XVIII.      DYNAMIC  PROGRAMMING 

Among  programming  problems,   there  are  some   in which  time 
plays  an essential  role  and   in which  the  sequence  of  decisions 
is  vital.     These are  termed   "Dynamic  Programming"  problems,   and 
Dynamic   Programming,   the   functional equation  technique of  a 
new mathematical discipline,   can be used  in the  formulation and 
solution  of  optimization  problems,   including those   in which  the 
process   need  not  necessarily change with  time.     Furthermore, 
the  process  may be  stochastic,   i.e.,   the  outcome   is  not  de- 
termined but   is  predictable  by means  of  a  probability  distribu- 
tion. 
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In a typical application, a sequence of decisions is 
sought which in some sense optimizes the behavior of a sytem. 
In these sequences of operations the outcomes of the preceding 
operations may be used to guide the course of future operations, 
As the number of decisions increases, and the discrete length 
of the decision interval decreases without limit, continuous 
solutions are produced which are equivalent to those furnished 
by the classical calculus of variations.  Thus, Dynamic Program- 
ming is properly an extension of the calculus of variations, 
but of much wider scope and versatility. 

XIX.  QUEUEING THEORY 

In many operations there is a lack of timing between 
arrival, at some point in the operation, of a sequence of units, 
and the subsequent disposal of these units, so that a waiting 
line or queue is formed of newly arrived units awaiting disposal 
For example, the units might be aircraft "stacked" over an air- 
port, traffic tie-up, ships in a harbor awaiting docking, 
customers in a cafeteria, etc.  Queueing Theory or Waiting Line 
Theory is the specialized method for analysis of these situa- 
tions . 

A central problem of waiting line theory is the relation- 
ship between the mean length of the waiting line and the degree 
of randomness of arrival and disposal, such a line arising 
whenever the mean arrival rate exceeds the mean service rate. 
On this problem can be based estimates of the optimum capacity 
of the service facilities when one balances the cost of letting 
the unit wait in line against the cost of increasing the service 
rate, 

XX.  THE CONVERSE OF OPTIMAL 

The converse of "optimal" i.e., the worst of the worst 
has been dubbed "pessimal" by J L. Vanderslice (APL).  However, 
this tern, is not in common usage in the technical journals. 
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LINEAR FILTERS, THEIR TRANSFER FUNCTIONS 
AND WEIGHTING FUNCTIONS* 

Let x(t) and y(t) be the input and output, respec- 
tively, of a filter.  By this we understand 
that there exists a linear differential equa- 
tion with constant coefficients connecting x(t) ^FILTER 
x(t) and y(t).  We shall temporarily assume      '  
this equation to have the form 

/-,   TX    i-   (n)   .     (n-1)      .     . (n-1) 
(1.1)    bn y   + Vl y     +-+ biy + V = an-l x 

where 

+...+ a.x + a x 1    o 

(1.2)    b / 0. n 

Tr& 

Replacing the operator -rr by the letter S, (some 

people use D, others P), we can formally solve for y, thus: 

c^n-!        „ a  , S   +. . .+ a^ + a 
(1.3)    y = -—; ^rr 2   x = F(S) x, 

b S" + b  , S   + ..+ bnS + b n      n-1 1     o 

The rational function of S, F(S), is called the 
transfer function of the filter.  In elementary differential 

Some of the discussion of this and subsequent sections is 
simplified, and not completely rigorous mathematically.  The 
purpose of this paper is to acquaint the reader with useful 
concepts and techniques, which is oftentimes at odds with the 
objectives of completeness and rigor. 
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equations it is shown that if one solves for the roots of 
b Sn + b  , Sn~l +...+ b^ + b  =0, and if the roots all n      n-1 1    o 
have negative real parts, then the equation (1.1) Is stable, 
i.e., if x(t) = 0, then y(t) will approach zero no matter 
what the initial values of y, y ..., y^n  ^.  Accordingly, 
if the denominator of F(S) (extreme caution must be exercised 
in cancelling common factors of numerator and denominator) 
has the ascribed property, we shall say the filter is stable 
or realizable.  (The term "realizable" is found in the 
literature but its use in this connection is objectionable.) 

Let the filter be stable, and be of the form given 
by (1.1).  The following statements are then valid: 

A.  There exists a unique function W(T), called the 
weighting function of the filter, defined for x ■> 0 such that, 
for any sufficiently well behaved input, we have in steady 
state 

oo 

(t) =1  W(T) x (t-x) dx, assuming x(U) 

defined for - OD < U < t. 

B .  F(S) =J  e~ T W(x) dx, for complex S with suf- 
o 

ficiently large real parts.  (ReS = 0 is large enough in all 
cases). 

C.  F(S) = F(S), F(S) real for real S 

D.  If x(t) = A cos ut   ,   then in steady state 

y(t) = A F(iu) cos (ut + 0), where 

+ o„ A   Im F(i(j) tan 0 = rr—=r7-T—r^- r   ReF(i(j) 

Justifications Me  shall conclude this section 
with justifications of A, B, C, D and a short discussion of 
the significance of them. 

A is a constant 
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> 

Proof cf A 

For any sufficiently well behaved function W(T) , we 

dT . have, setting y(t) = C   W(T) X (t-r) 

o 

CD 
(1.4)    boy - f   bo W(T) x (t-x) dx 

o 

ÜO 

(1.5)    b1y - f b1 W(T) k   (t-j) d-v     =  b1 W(0) x (t) 

o 

CO 

+ j     bj^ W(T) x (t-x) dT 
o 

using integration by parts.  Using successive integration by 
parts, for k < n we have 

OD 

(1.6)    bk y
(k) =f     bk W(T) x(k) (t-r) dT = bk W(0) x(k"1)(t) 

o 

+ bk W(0) x(k'2) (t) +...+ bkW
(k":L)(0) x(t) 

+ r  bk W^
K;(T) X (t-T) dT . 

Adding up the above n+1 equations, there results 

(1.7)    bn y(n) + bn_i y(n-i) +   + bi y + ^y 
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OD 
,(11) 

/ [bo W(T) + b1W(T) +...+ bnW
(n) (T)J x (t-r) d- 

+ b W(0) x^"^ + [b W(0) + b  , W(0)] x(n"2) n n        n-l 

+...+ [bn W
(n"2)(0) +...+ b3 W(0) + b W(0)] i 

+ [bn w
(n"1) (0) +...+ b2W(0) + b1 W(0)] x 

Note that if we can satisfy 

(1.8)     bn W
(n) (T) +...+ bj^ W(T) + bo W(T) = 0, for T > 0, 

and 

(1.9)    bn W(0) = SLn  , n       n~i 

b,, W(0) + bn , W(0) = an 9 n        n-l        n-^s 

bn W
(n"2)(0) +...+ b3 W(0) + b2 W(0) = a1 

bn W
(n ^(0) +...+ b2 W(0) + b1 W(0) = ao 

all simultaneously, then the integral in (1.7) vanishes 
identically, and y(t) is then a particular solution to (1.1) 
The general solution, from elementary differential equations 
can then be expressed as the sum of y(t) and the general 
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solution to the reduced differential equation, the latter 
approaching zero as t—>co .  Thus, if we wait long enough 
after the initial instant, the output will be approximated 
as closely as we please by y(t).  This is what is meant by 
the s' eady state solution.  If we have not waited very long, 
the , ifference between the output and the steady state solu- 
tion is called a transient. 

The equations (19) can be solved for W(0), .,., 
yy(n-l)(o) uniquely since bn / 0.  Thus W(T) is a solution 
to our problem if it is a solution of the reduced differential 
equation vith specified initial conditions.  That such a 
solution exists and is unique follows from differential equa- 
tion theory.  We have now found a function W(T) such that 

CD 

(1.1J)    y(t)  J W(T) x (t-T) dT 

is the steady state output of the filter.  It can also be 
shown that there is only one such function W(T) with this 
property.  (The proof depends on complex variable theory, and 
is omitted) . 

^> CD 
Note that WO) will decay exponentially to zero as 

If we allow the numerator of F(S) to have degree 
equal to or larger than that of the denominator, the previous 
analysis breaks down.  The concept of weighting function can 
be extended even so, however, but not without introducing the 
Dirac delta function.  The W(T)'S are no longer nice func- 
tions in the usual sense, and their manipulations are fraught 
with hazards.  Even a competent person in filter theory must 
occasionally exercise caution, although he is generally quite 
familiar with delta functions and their admissable manipula- 
tions 

Transfer functions whose denominators have roots 
with positive real parts are seldom purposely used in missile 
work as they represent unstable filters.  However, quite 
often it is useful to consider roots with real parts equal to 
zero.  (For example, 1 would formally represent a pure in- 

tegrator.)  If one pushes the root slightly to the left in the 
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complex plane (say e-r") . proceeds with the analysis, and then 

finally lets e->0, one can justify many of the manipulations 
executed by a competent servo man, who generally neglects 
this necessary logical step.  He knows by experience what he 
can and cannot do with these transfer functions. 

One can also justify the delta function manipula- 
tions for the case mentioned previously by adding a few small 
higher order terms to the denominator to reduce the transfer 
function to the case we have considered, and then at the end 
letting these terms approach zero. 

In general, we shall try to avoid these somewhat 
pathological transfer functions, leaving the pursuit of them 
to the interested reader. 

Proof of B 

write 
Applying integration by parts liberally, we can 

-ST   r00 -ST 
(1.11)  f  ^0  G W(T) dx = bf e~aT W(T) d- 

o 

OD 00 

j        bj^ e"ST W(T) dT = b1 Sj  e 
ST
 W(T) di   -  h1  W(0) 

oo 

f b2 e~
ST W(T) dT = h2 S2 J    e"STW(T) dT  - b2 W(0) 

o 

-b2 S W(0) 

P0    _<3T (n\ _nr  -ST 
r bn e"

ST W(n)(T) dr = bn S
nr e",>rw(T) dT - bn 

6  n 0 

w(n-l)(0) _ b sw(n-2)(0) _   _ b s
n-1W(o)  . 

n n 
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Adding all  of   the  above,   using   (1.8)   and   (1.9),   we 
CD „ 

have 0  =  (b     +   b,   S  +...+  b    S   f    e     0  W( r)   dr o 1 n      J 
o 

(1.12) 

"  (an-l  Sn'1  +•••+ a1 S +  ao). 

Solving   for   the  integral   yields  the  desired  result.     The 
above  operations are   legitimate as   lung  as   the  real  part  of 
S   is  greater  than  the  real  part  of  every  root  of   the denomi- 
nator   of   F(S). 

Proof   of  C 

This is obvious, and the proof is omitted. 

Proof of D 

Since 

/ . , ~ -.    . A  , iut)   -i(JtN (1.13)    A cos ut = £  (e     + e   ), 

we have, from (1.10) and statements B and C, 

CD 

(1.14)   y(t) =|/ W(T) [eltj(t-T) + e-
iw(t-T)] dx 

.  A  eiut/ V,'(T) e"i(Jr 

,   -iut r „,/ \  icJt di A  e    /  W(T) e 
2      Jo 

| lei(Jt F(iu) + e"
i,Jt F(-iu)l 

| [cos ut + i sin ut]    [ ReF( iu) + i Im F(i(j) 
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2 I cos ut - i sin wt] [ReF(i(j) - i Im F(i(j)] 

A [Re F(i(j) cos ut - Im F(i(j) sin ut ] 

The result follows by setting 

(1.15)   cos d 
Re F(i(j) 
TTi^" 

and 

(1.16)   sin ü 
Im F(i(j) 
| F(itj) 

Discussion Statement D is a key to the usefulness 
of the concept of a transfer function, and to why the word 
"filter" is used.  It tells us what happens to the output of 
a filter in steady state when the input is a sine wave. 
|F(i(j)  may be large for some u's and small for others.  Since 
the ratio of the amplitude of output to input is just JF(iu)j , 
we see that when j^du)! is small, the filter "filters out" 
that frequency, i.e., it greatly attenuates its amplitude. 

When or.e uses transfer functions, one is commonly 
said to be "working in the frequency domain", mainly because 
of the above paragraph, i.e., because of the natural con- 
nection between behavior of filters in the presence of sine 
wave inputs and pure imaginary values of S.  When one analyzes 
filters by use of their weighting functions alone, one is 
said to be "working in the time domain".  The conversion from 
one domain to the other is seen by statement B to be accomp- 
lished by a Laplace (or Fourier) Transform.  (The conversion 
from frequency to time depends on the theory of inverse trans- 
forms, which we shall not touch upon specifically in this 
paper). 

Exercise (a)  Consider the transfer function F(S) = __±  . 
1+S 

T m    T^ ^ 1 / 1 ^ 

Graph     F(icj)     and  arctan FTIU)     
versus  ^ • 
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Exercise (b)  Let F,(S) and ^„(S) be two stable transfer func- 

tions whose numerators are of lower degree than 
the denominators  Let x(t) be the input to the 
first, y(t) its output.  Let. y(t) be the input 
to the second, z(t) its output.  Prove that there 
exists a filter with transfer function F„(S) 
whose input is x(t) and whose output is  z(t), 
and that F (S) = F^S).  Prove also that, for the 

steady state results developed in this section, 
it is legitimate to cancel common factors of the 
numerator and denominator of Fo(S). 

Exercise (c)  If either F-CS) or F2(S) are unstable, and cancel- 

lation of factors in F„(S) reduce F„(S) to a 

formally stable transfer function, show that it 
is generally not possible to carry over the steady 
state results of this section to Fo(S). 

II.  TIME SERIES, STATIONARY TIME SERIES, ERGODIC STATIONARY 
TIME SERIES, AUTOCOKRELATION FUNCTIONS, POWER SPECTRAL 
DENSITIES, NOISE 

By a time series we mean an ensemble (or collection, 
aggregate, population, class, set, etc.) of functions xa(t), 
(a is the index which varies over the ensemble) defined for 
-oo < t < co , where a probability distribution exists over the 
a's.  Signals about which we have only statistical knowledge 
(such as noise, target maneuvers) are treated as being time 
series, since the theory of time series seems to be the only 
known mathematical theory whose results agree with observation, 
and by which one can design intelligent filters to operate with 
such things as inputs.  A noise trace, say from missile tele- 
metering signals of off-beam error, for example, defined for 
t  < t < t,, is then regarded as a section of a particular 

sample function of a time series. 

By the autocorrelation function of a time series we 
mean the function Ea[x (t) x (t+T)J, which is a function of 

t and T.  Thus, to determine the value of the function for 
given fixed t and T, we compute the mathematical expectation 
(or mean, or average) over all ot of x (t) x (t+x). 

If a time series is stationary, we think of the time 
series as having the same statistical properties if all func- 
tions of the ensemble are shifted to the right or left by the 
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same amount on the tiire axis.  For a stationary time series, 
the autocorrelation function is a function of xalone, and 
not of t.  This simplication simplifies the mathematical 
theory tremendously, and fortunately, many statistical sig- 
nals found in missile work can be regarded as stationary. 
Unless explicitly stated otherwise in the sequel, it is as- 
sumed that all time series are stationary. 

The knowledge of the autocorrelation function (or 
equivalent functions from which it can be derived) or some 
approximation to it is required to do intelligent design 
work in many instances.  With no a priori knowledge, one must 
resort to measurements.  It is not hard to visualize the 
problems connected witli trying to look at a lot of different 
samples simultaneously, being sure they are samples of the 
same time series, and then taking ensemble averages.  Fortu- 
nately, there is a convenient crutch called ergodicity which 
enables one to avoid this.  When looking at a sample trace 
of noise, one is sorely tempted to believe that one can aver- 
age over time instead of over space (ensemble).  So one postu- 
lates that the time series is ergodic (this term is applied 
only to stationary time series) and writes 

T 
1    r 

lim jjTp /       xa^t^   x   ^t+r)   dt   (for  any   fixed  a) 

T -> oo 
-T = E     [x   (t)   x   (t+r)]   (for any   fixed  t) 

a       a a J 

The autocorrelation  function   is  then computed  by   the   left   hand 
side  using a  single  noise  trace.     Suffice  it   to  say  that   ex- 
cept   in   cases   where   the   time   series   is   obviously   not   ergodic, 
one rarely  gets   into  trouble  by assuming  that   it   is.     Wiener, 
in  his   classic  work on  stationary   time  series   (very  difficult 
to read)   assumes  ergodicity,   but   for  most  of  his  work,   this 
was  an   unnecessary  assumption.      The  only  practical   reason 
for assuming   it   is  when  one  wishes   to  measure an  autocorrela- 
tion  function   (or   its  equivalent).     Since we will   not   be con- 
cerned  with measurement   in   the  sequel,   we will  not   assume 
ergodicity.     Henceforth,   unless  stated  otherwise,   all   time 
series  are assumed  to be stationary,   not  necessarily  ergodic, 
and  all   averages   are  ensemble   averages. 

Stationary Time Series Let   x(t)   be a  stationary 
time  series,    (the  subscript a omit ted   for  brevity)   and   let 
A   (')   denote   its  autocorrelation  function.     The A   (r)   has   the 

A A 

following   properties: 
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E.  A (0) ■' a   ,   the expected value of the square of 

x(t) and hence A (0) > 0.  (Why?) 

F.  A (T) - A (-T) for all x.  (Replace t by t-r 
X X 

in the definition of AX(T) ). 

IVT) < A (0) for all T.  This can be proved 
X 

by the Schwarz Inequality. 

We omit the proof. 

The power spectral density (abbreviated by P.S.D. 
henceforth) denoted by dL(S), is defined to be 

X 

CD 

(2.1)     0 (S) = / e"ST A (T) dt . (Laplace transform of x     J      x 
-CD 

OO 
the autocorrelation function) • 

For a wide class of  time series,   /      jAv^) dx con- 

-oo 
verges, and when this happens, ^(S) exists when S is a pure 

imaginary number, which, as one might suspect, is the case of 
main interest.  In many cases 0V(S) is a rational function, 

and can be defined over the whole complex plane (not in general 
by the integral, but by analytic extension).  As before, we 
shall assume that our future manipulations are legitimate, and 
not be too concerned about rigor. 

)z* (S) has the following properties, which we will 
X 

discuss in turn: 

H. 6   (S) is real for real and pure imaginary S 
X 

i. ^x(s) = ^TsT 
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~.   ..■*. '.. 

1 
J.   0x(s) - ^x(-s) 

.00 

K.     —  /    ^x   (iu)  du  - o: 

-oo 

L.  If the time series x(t) is passed through a 
stable filter with transfer function F(S), the output y(t) in 
steady state is a time series whose P.S.D. is given by 0V(S) 

F(S) F(-S) ^V(S).  In particular, f6(iu)   - F(lw)  2 

x y 

y 
^x(iw) 

M.  ^V(S) > 0 for pure imaginary S. 

Proof of H 

That d  (S) is real for real S follows directly frow 
X -ST (2.1).     If S = iw,   e = cos (JT - 1 sin UT   .     Since sin UT 

is an odd function,   it  follows from F that  the  imaginary part 
of   (2.1)   integrates  to zero. 

Proof of   I CD 

Let S  = U +   IV.     Then 0  (S)   =    / 
x -co 

sin VT>  A  (T)   dT . 
A 

From here,   I   is  obvious . 

Proof of  J 

e       (cos VT -  1 

By making a  change of variables,   and  using F, 

oo -oo 

«y-S)   =/   eSTAx   (T)   dx  —J  e'SU Ax(-U)   dU 
-oo 'CD 

00 00 

iSU A   (-U)dU =/    e"SUAx(U)   dU = 0AS) 
-co -oo 

Proof  of  K 

oo 

^ J    0(i(j)du  = i lim   j 
2ir -oo 2ir W-J.oo-I 

wroo 

W-*oo'-W 
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CD 

±-  lim     f   A  (T) 
217   W->CD^ X 

-00 

oo 

w 

/ 
hW 

e -iur dwx dt 

1   14           C     A   / ~\  sin WT     . - lim       /      A  (T)  —     dt 

00 

' ÜL, / *=■ (^ 2^J! dU <letting"" TW, 
-00 

00 

1     f    A     /n«    u\  si"  U dU 
-oo 

00 

W->oo 

00 

i J    ,x(0)  sinj    du - *,<0) 7 /   ^^F   <"' = 
-00 -00 

Ax(0)   = o2, 

Proof  of L 

In steady state,  we can write,   from A, 

oo 

(2.2) y(t)   =  j     W(U)  x(t-U)dU and 

oo 

y(t+T)   = J     W(V)   x(t+T-V)   dV, 

Multiplying the above  equations  together, 

oo     oo 

(2.3) y(t)   y(t+T)  = J     /      W(U)  W(V)  x   (t-U)x   (t+T-V)   dU dV 

o       o 

Taking expectations, t disappears from the right 
hand side (as will be seen from the following equalities) and 
we write: 
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(2.4) A   (T) 
y 

(Integrate  average rather than 
oo   QO average   Integrals.) 

E   f     f   W(U)W(V)   x   (t-U)x   (t+T-V)dU dV 

o     o 

GO     CD 

f    f    W(U)   W(V)     E[x(t-U)   x   (t+x-V)]   dU  dV 

o     o 

GO     OO 

f    f      W(U)  W(V)   AX(T+U-V)   du dV. 

o    o 

y(t)   is also stationary,   and  the  fact  that   t  disappeared   is 
in agreement  with  this,   although  it   is  not  a  proof.     The  care- 
ful  reader will  note   that we have not  rigorously defined 
stationarity,   and  for  obvious reasons  we  have  therefore 
omitted the  proof   that  y(t)   is  stationary. 

I 

i 

(2.5) 

Finally, 

GO 

Vs> - / 
-oo 

e~ST Ay(T)   dx 

oo 

-GO 

GO     OO 

"OO    CD 

=   f    e~ST/   f      w(u)   w(v)   AX(T+U-V)   dU dV 
O      O 

dT 

= f    f    W(U)   W(V)   e"S( -S(V-U) 

O       O 

A   (T+U-V)   dx x 

oo   oo 

oo 

/ 

-S(T+U-V) 

dU dV 

=  /   /    W(U)  W(V)   e"SV eSU   [^X(S)]   dU dV 

o     o 

= 0X(S) 
00 n r  oo 

f   W(U)   esu  dU 

L o 

F(S)   F(-S)   ^(S) 
A 

f     W(V)   e"SV dV | 

o _J 
(Laplace  transform of 

weighting  function.) 
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The result for S - i follows from C 

Proof of M (Intuitive) 

If ^v(iu ) were negative, we choose a stable transfer 
X O n 

is minutely small  everywhere function F(S) such  that 

except  near u     (and  -u   ) 

F(iw) 

The ■^r F(i«j) 16(iu) dw <   0. 

If we send x(t) through the filter, the expected value of the 
square of the output, is, by K and L, just the above integral 
On the other hand, the expected value of a square is never nega- 
tive, a contradiction. 

Discussion Statements K and L are a key to the 
utility of the concept of P.S.D.  If we know the P.S.D. of an 
input to a filter (which can be computed from the autocorrela- 
tion function by (2.1)) we know the P.S.D. and mean square of 
the output.  Since missile motion can be considered as the out- 
put of a filter, one sees that we have a powerful tool for com- 
puting mean square miss distances when the P.S.D. or auto- 
correlation function of the input is known.  Accuracy of track- 
ing radars as well as the performance of other devices can be 
analyzed using these concepts. 

In many practical cases, the integrals can be 
evaluated in closed form using residue theory, and tables exist 
from which they can be quickly computed. 

Two examples of time series are target acceleration 
(say in one coordinate) and noise. Clearly target acceleration 
must generally be regarded as statistical, since the pilot is 
not going to tell us what he is going to do.  Noise comes from 
many sources, and is always present to some degree in trans- 
mission and reception of radar energy.  There is glint noise, 
fading noise, receiver noise, and others. 

There are two types of P.S.D.'s which have been given 
names, and are worth mentioning.  The first is ^(S) = ^, a con- 
stant, and the time series is said to be "white." One some- 
times uses the phrase "white P.S.D." or "white noise." Such 

time series cannot exist in nature, because a^ 
(from K).  It is nonetheless a useful artifice. 

2 

is  infinite 
If izKS)  takes 

the form 0(S) = —* rj", 
b  - S 

one substitutes the work 

a, b real and different from zero, 

'Markovian" for "white Note that 
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(zKS) is the P.S.D. of the output of the filter F(S) - . ' , ' g | b f + S 
when the  input   has P.S.D.   3 1.     Although  "white noise" cannot 
exist   in nature,   "Markovian noise" can. 

The words  "power spectral  density" are well chosen. 
If a filter F(S)   "filters out"  all   frequencies except   those   in 
a small  interval,  K    and    L    show  that  the output  power   (o *) 
is proportional   to ^(iu)  for  u  in  the  interval  and proportional 
to the   "bandwidth," or the  length of  the  interval.     Thus,   P.S.D. 
is power per unit bandwidth.     It can  be seen that  a white  time 
series  has  the  same  power  per unit  bandwidth  for  all  fiequencies 
A Markovian time series has a P.S.D.   which  looks  like  a white 
P.S.D.   for small  frequencies and decays away for  large  fre- 
quencies . 

a2 
Exercise   (d)     If  ^(S)   = -* *  ,   a,   b real and different   from 

2 
zero,   find o 

b"  - S* 

III.  OPTIMUM FILTERS AND THE WIENER HOPF EQUATION 

Suppose the input to a filter is composed of the sum 
of two time series, x(t) + N(t), where x(t) is regarded as the 
"signal," or desirable part of the input, and N(t) is the 
"noise," or undesirable part of the input.  Suppose that the 
P.S.D.'s or the autocorrelation functions of x(t) and N(t) are 
not known, and that x(t) and N(t) are statistically independent 
and have mean zero.  This implies that 

(3.1)    E [xCt^ N(t2)] = 0 for all ^ and t2. 

We now wish to design the filter (with weighting 
function W(T) and transfer function F(S)) which makes the out- 
put y(t) resemble the "signal" portion of the input, x(t), 
as closely as possible.  The criterion used by Wiener is that 
the steady state value of E  (y(t) - x(t))2 should be a mini- 
mum.  As we shall see, this leads us to a problem in calculus 
of variations.  Let us denote the above expression by o . 

Then, since 

oo 

(3.2)     y(t) = J      W(T) [ x(t - x) + N(t - T) ] dx ,- 
i 
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we  have,  by subtracting x(t)   from both  jldes  and squaring, 

oo     oo 

(3.3) [y(t)   - x(t)]2   - j      J     W(T)  W(U)   (x(t  -  x) 
o      o 

+ N(t  -  T)]   [x(t  -  U)   + N(t  - U)]dT dU 

QD 

- 2   T     x(t)  W(T)   [ x(t  -  x)     d- 

+    x(t)]^   . 

Let us denote the autocorrelation functions of x(t) 
and N(t) by A (T) and A-JCT) respectively, and the P.S.D.'s of 

x(t) and N(t) by ^X(S) and (Z$N(S), respectively.  Averaging 

both sides of (3.3), we have 

oo  oo 

(3.4)    o2 = /  /  W(T) W(U) I AX(T " U) + AN(T - U) ] dr dU 
o  o 

oo 

- 2 f  W(T) AX(T) dx + Ax(0) 

Exercise (e) Prove that   (Hint : Similar to Proof of K.) 

2   i  r 0 =^ J 1 - F(iu)) 

-QD 

OO 

+ 2¥ /  I F(i(j) 
-oo 

«* (iw) dw 

^N(iw) du 

Our problem mathematically is to choose W(T) or F(S) 
so that (3,4) or the expression in exercise (e) is minimum. 
The classical approach is to work with (3.4), although the 
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problem can be  solved by working with the expression   in 
exercise   (e)  directly.     The  latter  approach  is somewhat  tricky, 

2 however,   as care must be taken to optimize a    over stable 
transfer  functions.     This  is  automatically taken   ;are of  in 
the first  approach by virtue of   the  definition of weighting 
functions.     We  shall here use   the  first approach. 

Suppose that W(T) is such that (3.4) is a minimum. 
If T] (T) is an arbitrary fixed well behaved function of time, 
ande    an arbitrary number,   we cannot  then get  a smaller value 

for o2   if we replace W(T)  by W(T)   + CT(T)   in   (3.4). 

That   is,   if we write 

oo     oo 

(3.5) a2(c)   m J    J    [WCT)   +   €T1(T)][W(U)+ eT)(U)][Ax(T - U) 

o      o 

+ AJ^T - U)]   dT dU 

OD 

- 2 J   [W(T)   + €TI(T)]   AX(T)  dx  + Ax   (0) 

2 Then o   (e)   must  be a minimum forvfi   = 0.     So we  differentiate 
(3.5) with  respect to ,c ,  and set   €   = 0,   obtaining 

oo      OD 

(3.6) 0  = /     /   W(T)
 

T?(U)   tAx(T  - U)   + AN(T  - U)]   dr dU 
o       o 

00      oo 

+ /     /     W(U) T,(T)   [AX
(T
 - U)   + AN<T  " U)]dT dU 

o      o 

00 

- 2   f     T](T)  AV(T)   dT   . 
J * 
o 
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Now  the  second  integral   is   the same as  the  first, 
since  AX(T  - U)   +  A^x  - U)   - Ax(U  -   T)   + fi^iV -  T),     SO we 

put  a 2  in  front  of  the second integral  and throw the  first 
one  away.     Dividing by  2,  we have 

oo /-    oo 

(3.7) J   J  J       W(U)  [AX(T  - U)   + AN(T  - U)]   dU 

o     I   o 

- A   (T)1   TI(T)   dx = 0 

The expression within the braces must vanish identi- 
cally for all positive values of  x, for if it did not vanish 
for x ^ x say, one could choose a function T)(X) which was 

positive in the neighborhood of x = x and zero elsewhere, 

and (3.7) would not then vanish.  Since (3.7) must hold for 
arbitrary ri(x), we conclude that 

oo 

(3.8)     f  W(U) [Ax(x - U) + AN(x - U)] dU = Ax(x) for x > 0, 

o 

This is one form of the Wiener-Hopf Equation.  Its 
significance is that the optimum weighting function must obey 
it. 

Solving for W(x) or F(S) explicitly is somewhat tricky 
We proceed as follows:  Let W(U) be 0 for negative U, and the 
lower limit 0 in the integral of (3.8) can then be replaced 
by -co . 

Since (3.8) does not tell us what the integral is 
equal to for negative x, we write 

oo 

(3.9)     j      W(U) [Ax(x - U)]+ AN(x - U)] dU = Ax(x) 4- r(x) 

-oo 

where  rCr)  vanishes  for  positive     x,   and  is otherwise  unknown. 
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t 

-ST Next,  we multiply   (3.9)  by e-DT and  integrate  from 
-CO     tO   CD   . 

If we  set 

(3.10) R(S)   -     J e-ST  r(T)  dx,   we  have 

-CD 
00 CD 

(3.11) d   (S)   + R(S)   -    J     e-ST   J / 
X J '-oo     W(U)   [AX(T - U) -oo 

+ ^(x -  U)]   dU V   dT 

f   W(ü)  e-SU I /     e-S^ " ü)[Ax(x - 
-OD L"00 

y) 

+ ^(T - U)l   dx S   dU 

f   W(U)e-SU|   j"   e-SV  [AX(V) 
-oo -CD 

V'»1 

-     CD 

dV >   dU 

(U)  e"SU dU 

A.CV)] dV 

oo 

/ 
-CD 

e-SV[Ax(V) 

F(S)     [0X(S)   + 0N(S)]     . 
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So  the optimum transfer  function satisfies 

(3.12) F(S) l^x(S) + ^M(S)1    - fiCS)   + R(S) N 

At first sight this looks like a useless expression 
since R(S) Is unknown.  It Is not completely unknown however. 
Let us assume that r(T) decays to zero as x —>ao sufficiently 
rapidly that the Integral In (3.10) exists for S - 1 .  From 
(3.9), this Is reasonable If A and AN are sufficiently well 
behaved.  Inspection of (3.10) then shows that R(S) exists 
whenever the real part of S Is negative.  In practice, R(S) 
turns out to be a rational function.  If It becomes Infinite 
at all, It can only become infinite when the real part of S 
is positive.  (Note that this is just the reverse for F(S).) 

It turns out that this property of R(S) is sufficient 
to determine F(S) uniquely, using (3.12).  The actual explicit 
expression for F(S) would take us far afield into notations 
for factors of ^„(S) + ^(S), removal of singular parts, and 

We shall not 
F(S) here. 

x 
Llouville's theorem in analytic function theory 
attempt to derive the general explicit form for 

However, it will be seen in the next section how, in 
a given case, F(S) can be found. 

IV.  AN OPTIMIZATION EXAMPLE 
LOOP 

DESIGN OF A TRACKING RADAR ANGLE 

Suppose an aircraft is at an elevation angle 0T. 

When we attempt to measure 0-,, however, we measure instead 0T 
+ 0„, where 0XT is noise.  We now wish the radar direction, N N 
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0D, to be as close to 0_ as possible.  Using the least squares R T 
criterion, the results of the last section can be seen to be 
applicable. 

We shall assume that 0N has a white P.S.D. equal to 
fi,   and 0T has a white P.S.D. equal to 0.  These are sometimes 

reasonable assumptions. 

It is possible to get into trouble with these assump- 
tions because 0-, itself has a P.S.D. which is infinite for 

8=0.  Also A-TCT) is infinite for T - 0.  This means that 

some of the manipulations of the previous section which all 
assumed well-behaved functions, are not strictly legitimate. 

We get around this by saying that eL has a P.S.D. 

d         ,                                                                               Q 
 rj—rr (instead of tf) and Ö-, has a P.S.D. -^ «—^Cinstead 
1 -* ^ (S* - ö'V 
of £—)  and eventually letting e and ö-»zero (assume e > 0, 

S^ 
ö > 0) .. 

From (3.12)  then, 

(4.1)    F(S) T 9il  -  ^S *(l2  - ffl-       2 
Q
22 + R(S). L   (i - eV) (S2 - ö2)2 J  (S2 - ö ) 

If we Imagine both sides of (4.1) expressed as the 
sum of partial fractions, we see that R(S) must take the form 

(4.2)    R(S) = «-^-r + 7  i ^—£-*  + polynomial 
S " <5        (S  - <5)2       !  - es 

Let €,   ö->0,  we  have 

4 
(4.3) F(S)  0 +/S     = -| + | + -| + polynomial 

S S S 
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or 
2 3 4 

(4  4) F(S)   = e + BS    + AS    "*•  s     (polynomial) 
e + ^s4 

From exercise (e) we see that the polynomial must be 
zero, for otherwise the second integral there would be infinite 

So, since the denominator factors, 

lA   -v   WQx    e + BS2 + AS3  

(Ve + /2 9y40^s -f^s2) (/e- V2 o   +/^ s2) 

Since F(S) can become infinite only for values of S 
which have negative real parts, the second factor of the de- 
nominator must be an exact divisor of the numerator. If one 
attempts this division, one will discover that this can only 
happen if 

(4.6)  e + es2 + AS3 = (Ve + V2 e14**17^) (Ve - V2 e^V^s 

+ Jt  s2) 

Hence 

(4.7)    F(S) ■ T ry rn j 

This is commonly written in the form 

(4.8)    F(S) =  1 + 2yT2
S 2 

1 + 2£rS + j     S^ 

where 

(4.9)   C = ^  ,  T=^ 
1/4 

/2        ^  " 
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8 

value of o' 
From exercise (e) and the use of tables, the minimum 
2 can be computed to be 

(4.10)   a2./2 ^V/4 

The problem is not completely finished, however, as 
the radar does not actually measure eT + ew, but 6™ + ew  Q-. 
By the action of the electromagnetic propagation, the measure- 
ment is in the form of boresight angular error.  This measured 
error must then be used to physically drive the radar as a 
servomechanism until the error is nulled. 

The operation of the radar might then be as indicated 
in the following diagram 

VeN 8T+V9
R 

^ 
measured error 

L 
-e. 

Integrate 

multiply by 
2^T 

a 

action of 
radar drive 

multiply by 

^-2 

Drive radar at 
rate equal to 
this signal 

or 

Hence 

(4.ii)  eR = ^ [2 T (eT + eN - eR) + / (eT + eN - eR) dt] 

(4.12)  T öR + 2 T eR + eR = 2 T (eT + eN) + (eT + eN) 
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Hence, we have the equivalent diagram: 

e,r + e N FILTER ^ 

where the transfer function of the filter Is given by (4.7) or 
(4.8).  A tracking radar behaving as Just described will, In 
the least squares sense, then track the target as closely as 
possible, whenever the statistical assumptions are Justified. 
Other statistical assumptions will, of course, lead to different 
answers. 

Exercise (f)  If x(t) Is a stationary time series, show that 

oo 

AX(T) 2ir J 
-00 

.lWT d (lu) du.  (Hint:  see proof of K.) 

Exercise (g)  In the example of section IV, assume instead that 
9T is white.  Find the optimum transfer function, the optimum 

mean square tracking error, and draw the radar block diagram. 

erclse (h)  What is the weighting 
ansfer function is rr=r=-  ? 

Ex 
transf 

function of a filter whose 

1+TS 

Exercise (1)  Let x(t) be a time series such that A (T) = ke H | 

Show that x(t) is Markovlan. JJse this result and exercise (f) 

to evaluate the Integral —-   ( —COSJJT^  d(J 
2ir J  1 + 

-00 

:os CJT 

T2 w2 

SUMMARY AND DISCUSSION 

We have here attempted to introduce the 
filter, transfer function, weighting function, t 
stationarlty, ergodlcity, autocorrelation functi 
tral density and noise. We have also introduced 
theory of optimization, derived the Wiener-Hopf 
have shown how it can be solved. A particular a 
been discussed in detail, and a tracking radar a 
been optimized in the presence of an input which 
rupted with noise. 

concepts of 
ime series, 
on, power spec- 
the Wiener 

equation, and 
ppllcatlon has 
ngle loop has 
has been cor- 
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The Wiener theory can be applied to other cases, al- 
though the derivations in this paper must be somewhat altered 
to achieve greater generality.  An example is the design of 
an optimum loop «hen some parts of the loop have already speci- 
fied transfer functions.  This could occur in the design of a 
beam riding guidance computer where the aerodynamic equations 
have already been determined by the airframe design.  Wiener 
theory can also be applied (by the use of Lagrange multipliers) 
to problems with constraints.  A typical problem of this type 
is the design of a beam riding guidance computer to minimize 
deviation from the line of sight subject to the constraint 
that the mean square acceleration is not too large.  (Or else 
the missile might slow down too much or fall apart.) 

In general, Wiener theory is applicable only to steady 
state problems where the time series may be considered as 
stationary.  Because of the mathematical simplifications which 
occur for this case, the theory is quite well developed.  Al- 
though a considerable amount of work has been done on practical 
cases for which Wiener theory does not apply, the general case 
is nowhere near as well understood.  For example, transient 
statistical problems, non-stationary problems, final value 
problems ( in which one is interested in the output only at a 
specified time) all occur in missile work, and seem to require 
special handling. 

Wiener theory is directly applicable to a large frac- 
tion of statistical design problems in missile work, nonethe- 
less.  Some people prefer to take a different approach to some 
of these problems.  One such approach is the game theory ap- 
proach, where it is assumed that the target maneuvers in such 
a way as to maximize the tracking error (or miss distance), 
and the filter is designed to minimize this maximum. 

Another different class of problems occurs when the 
time series under consideration are defined discretely, i.e., 
say at multiples of At.  This type of problem occurs with 
search radars, which only "look" at a target every so often. 
One is then concerned with maintaining track on this target 
and minimizing the tracking error.  A system which tracks in 
this manner is referred to by some as a "track while scan" 
system. 

Finally, it should be stated that although the results 
of section I are prerequisites to the subsequent sections, they 
are extremely important in their own right.  Because the em- 
phasis of this paper has been on time series and optimization 
in the presence of noise, it might appear that section I was 
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just the means to an end.  Such is not the case.  The concept 
and properties of a transfer function are to most missile en- 
gineers as the ABC's are to a school child.  They use them al- 
most every working day in a practical sense, even though some 
of them may know nothing of time series or Wiener theory. 

It is safe to say that the science of guided missiles 
would be far behind its present state of development if it 
«ere not for the concept of a transfer function. It is there- 
fore strongly suggested that the reader absorb section I thor- 
oughly, whether or not he has the time or patience to absorb 
the rest of the paper. Section II is of secondary importance, 
sections III and IV of less importance still. 
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PERTURBATION  METHODS 

by 

S.  T.   Haywood 
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I.  A WORD ON TAYLOR'S SERIES 

If y - f(x) Is a twice differentiable function defined 
on an interval a <_ x < b containing a point x , then 

(1)    y - f(x) - fCxJ + f'(xft) (x-xrt) + J f" (O (x-xrt)
2 , 

where ^ is a point between x and x .  This is a form of 
Taylor's series with remainder.  The remainder term, namely 

(2) z f" (O (x-xo)
2 . 

represents the error committed when the first two terms alone 
are^used as an approximation to f(x). 

(3)   Error - |f(x) - f(xo) - f' (xo) (x-xo) | - y U" (O |(x-xo)
: 

The number ^ usually is itself a complicated function of 
x.  Normally, the only thing which can be said with assurance 
about  £  is that it lies between x and x , and hence lies ^   o' 
in the interval [a, bJ.  If we let M be the maximum of 
|f" (x)|  for a < x < b, then |f" (^)| < M and we may write 

(4)   Error - |f(x) - f(xo) - f'(xo) ( x-xo) |  < JJ (x-xo)
; 

Thus,   although  it   is  usually very difficult  to  find the exact 
error,   it  is  fairly easy  to establish  a  bound  for the error. 
Usually  this  is quite  sufficient. 

-  72 - 



rm JOHM mmtMt UMVIUITT 

AfPlllO PHYSKS lAKMATMY 
KVM IMNa 

The form of Eq. (4) shows that the error will be small 
if  x  is "close enough" to x .  Just how close is "close 
enough" depends on how much error is permissible and on the 
magnitude of  M. 

II.  LINEAR APPROXIMATIONS 

(5) f(x) ^ f(xo) + f(xo) (x-xo) 

is called the "linear approximation to f(x) at x - x " inasmuch 

as the right hand side is linear.  Geometrically, the approxi- 
mating function is the tangent to y - f(x) at x - x .  From 
the preceding discussion, it is evident that there is  a range 
of values of  x "close" to x  for which the linear approxima- 
tion is adequate, i.e., the e?ror committed by using the 
approximation lies within acceptable bounds.  The length of 
the range depends on the behavior of f(x) in the neighborhood 
of x - x .  More specifically, if  f" (x) is large near x - xo 
(which means that the curvature is large), then M will be 
large rnd the length of the range will small (for a given per- 
missible error).  On the other hand if  f" (x) is small near 
x = x0 (small curvature), then the range will be correspondingly 
large. 

y, 
M large 

o 
rnnge 

permissible 
error 
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For functions  of more than one variable the results  are 
quite similar.     For example,   the  linear approximation to 
w - w(x,   y,  z)   at   (x,   y,   z)  -  (xo,   yo,   z0)   is 

(6)       w(x,y,z)   * w(x0.y0»z0)  + A(x-xo)   + B(y-yo)  + C(z-zo) 

where 

(7) 

(8) 

(9) 

A  - £=• 

B 

3w ^ 
öx 

—  > 
C»X     ^ 

C  - ~ 
aw 

evaluated at x-x   ,  y-y  ,  z«z„ o o o 

As before,   there  is  a  set of points   (x,   y,   z)   around  (x   ,   y   ,   z  ) 

for which the error in the approximation  is small enough  to be 
acceptable.     Once again,   the actual extent of the point set de- 
pends on the values of  the second partial  derivatives  in the 
vicinity of   (xo,   yo,   zo). 

In the  case  of  a  function of  two variables,   the geometri- 
cal   interpretation of  the  linear approximation  is readily 
available.     The  approximating function  is merely the tangent 
plane  to the surface w " f(x,y)   at   (x   ,   yo)• 

III.     FORMULATION OF  PROBLEMS 

The mathematical   form of an engineering problem is  an 
equation or a  set  of equations whose  solution gives the  desired 
answers.     Consider,   for example,   the  following simple problem 
which could arise   in connection with  surveying.     Find the 
angles of  a  triangle whose three sides  are known. 
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The mathematical form of  this particular problem can be written 
as  the  following three equations. 

2   2   2 (10)   a - b + c - 2bc cos a (law of cosines) f 

(11)   sin ß    m  sin a 
5   "  a (law of sines) , 

(12)   a  +   ß +   y - IT 

It should be noted that the mathematical form of the problem 
is not unique.  Equation (11), for instance, could be replaced 
by 

2    2    2 (13)   b  - a + c - 2ac cos ß        (law of cosines). 

IV.      EQUATIONS  CONTAINING  PARAMETERS 

The solution of an equation or a set of equations usually 
will  depend on one or more   parameters.     In the  surveying problem 
just  considered,  the solution depends on three parameters,   namely 
the sides of the traingle  a,  b.  c.    Other examples of this are 
given  in  the  following equations. 
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(14) x    -  ax +  6  - 0 

(15) rax2 +  y2  - 25 

x + by  - 5 

1  parameter   a   , 

2  parameters  — a,   b , 

(16) 
1-x e - ax 1  parameter   a   , 

(17)       ry +   (3  +  ay')   y +  2y - 0 

.y - 1,  y - -1 when t - 0 
1  parameter   a   , 

(18)       fxy  - 1 

yx • ax -  1 

t-o,   x-1,   y-1 

1  parameter   a   . 

The  first  three  examples   (Eqs.   14,   15,   and  16)   are 
ordinary equations   for which the solutions  are  numbers.     The 
last  two examples   (Eqs.   17 and  18)   are  differential  equations 
for which  the  solutions  are  functions  satisfying certain 
initial conditions. 

METHOD OF LINEAR   PERTURBATIONS 

The 
solution t 
parameters 
the soluti 
slightly f 
There is a 
of affairs 
parameters 
parameters 

following  situation very  frequently occurs.     The 
o an equation  is known  for  certain values  of  the 

appearing  in the  equation.     It   is desired  to  find 
on when  the  parameters have values differing 
rom the  values  for which  the  solution  is known. 
fairly  standard  terminology  to describe  this  state 

"Knowing  the  solution  for given values  of  the 
,   find  the  behavior of  the  solution when  the 
are  perturbed."    The  word perturbed carries  the 
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connotation  of differing  slightly. 

One method for handling  the  problem Just  described  is 
the method of  linear perturbations,   for which  the  groundwork 
has  been  laid  in the  preceding paragraphs.     The   idea   is quite 
simple.     The solution to  the  equation  is  a   function of  the 
parameters  appearing  in  the  equation.     The  value  of  this 
function   is known  for certain given values  of  the  parameters. 
The method of  linear perturbations consists  of  replacing the 
function by  its  linear approximation at  the known point. 
Consider  the  following example,   which  illustrates  the method. 

VI,     EXAMPLES 

Let the equation to be solved be 

(19) x + a - 8x 

This equation has one parameter, a.  When a - 12, the equation 
has the solutions x - 2 and x - 6.  What will be the solutions 
for values of a close to a - 12? The solutions are functions 
of a.  Indeed, since the equation is a quadratic, we can 
easTly find 

(20) iVTeT 

We shall consider only one of these solutions, namely 

(21) x(a) - 4 +"\/l6 - 

For this case we have 

(22) x(12) - 6 
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Furthermore, 

(23) SJ 1    . so that 

(24) (dx\ 1 

^a.12 " " ? 

The linear approximation to x(a) at a - 12 Is 

(25)  x(a) = x(12) + (g)     (a-12) - 6 - ^ a-12  Q  a ^ 9 — — 

a-12 

Equation (25) now can be used to estimate the solution for 

values of a near a * 12.  Thus, when a - 12.04, we obtain 

x « 5.99. The exact result, of course, can be obtained 

from Eq. (21) which gives x - 4 + if3.96 - 5.989975 (making 

use of a table of square roots).  We now see that the error 

In the linear approximation is about 5.99 - 5.989975 - 0.000025, 

The preceding example Is so simple that it is apt to give 

rise to certain misconceptions which it would be well to dispel 

immediately.  Simple as Eq. (21) is, Eq. (25) is even more 

simple, so that there is a clear advantage in using Eq. (25) 

rather Eq  (21).  Nevertheless, Eq. (21) is simple enough so 

that there can be no real objection to its use.  Besides, 

apparently we need Eq. (21) anyway in order to get the deriva- 

tive which we used in Eq. (25).  As a matter of fact, this 

last statement is false.  We do not need an explicit representa- 

tive of x(a), as in Eq. (21), in order to find the derivative 
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dx -7—  .     This  is very fortunate,   since usually  it   is  impossible 
to find such a representation.     In such a case we use  implicit 
differentiation to find the required derivatives. 

This technique would be applied to our problem in the 
following manner.     Equation   (19),   namely 

(19) x2  + a = 8x 

is differentiated implicitly with respect  to    a,  observing 
that x = x(a),   to give 

(26) 2x |£ + 1 - 8 g| ,       whence 

(27> af " - JüTüT 

Setting a = 12 and x = 6 (remember that it is known that 

x = 6 when a = 12) gives 

(24) g-     = " T  • aa a=12    4 

Observe  that Eq.   (21)  did not appear  at all  in  this method. 

Next,  we consider a case  involving two parameters.     The 
equations are 

(15) ax2  + y2  = 25 

x  + by  =    5 
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and it is desired to find the behavior of the solutions in 
the vicinity of a - 1, b - 3.  As in our previous example  it 
is possible to express both  x  and y explicitly as functions 
of  a  and  b, since nothing worse than a quadratic equation 
is involved;"however, we shall avoid this approach.  First of 
all, the solutions when a - 1, b - 3 are x - -4, y - 3 and 
x - 5, y - O.  We shall treat the case x - -4, y - 3. 

(28)  fx - x(a,b) - x(l,3) + A(a-l) + B(b-3) 

y - y(a,b) - yd,3) + C(a-l) + D(b-3) where 

(29) A - — B - —   C da' 9b da , D 9b 

and the derivatives are to be evaluated at a - 1, b - 3.  The 
problem now consists of computing A, B, C, D.  Differentiating 
Eq. (15) partially with respect to a and b yields 

(30) r 2 ax ÖX   x2 4- 2v Öy 2 ax ^ + x +  dy ^ 

< 

d4* bQ-0 oa    da 

2 ax ^ + 2y ^ 
^x 0 

m+*U*y-° 
When these are evaluated ata*l,b*-3, x 
the result is 

(31) -8A + 16 4 6C - 0 

A + 3C - 0 

< 
-SB + 6D - O 

B + 3D + 3 - O, 

-4. y - 3, 
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These equations are easily solved to give 

(32)       A-I.B-^C-^.D--* 

Hence 

(33)      rx = - 4 + § (a - 1) • | (b - 3) 

- 3 - ^ (a - 1) - | (b - 3) 

VIT.     PERTURBATIONS  APPLIED TO DIFFERENTIAL EQUATIONS 

One of the main applications of  perturbation theory  is  to 
systems  of equations  consisting partly  or wholly of  differen- 
tial equations.     As  an example,  we consider 

(18) xy - 1 
yi - ax  -   1 x - 7 - 1 when t 

We assume the parameter a  Is small In absolute value.  rfhen 
a - 0, the solution to the above equations Is 

(34) 

How should this be modified when a » 0?  We acknowledge that 
x and y, as well as being functions of  t, will also depend 
on the parameter  a.  Hence, we write x • x(t,a), y - y(t,a). 
The linear approximations to these functions in the neighbor- 
hood of a = 0 are 
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(35) rx(t,   a)  » x(t,   o)  + Aa 

[y(t,   a)   - y(t,   o)   + Ba 
where 

(36) x(t,   o) 

y(t,   o)   - e1 

-t 

(see Eq.   34)   and 

(37) I 
B - 

dX 

dy 
JIT 

evaluated at  a - 0 

It  should be  observed  that    A    and    B    ordinarily will  be 
functions of t.     Our  problem now is to compute  these deriva- 
tives . 

The  technique we  use   is  to observe  that  x(t,   a),   y(t,   a) 
must  satisfy Eq.   (18)   identically,   that   is 

(38) By 

dx 
y 5T ax -  1 

Differentiating these  equations  partially with  respect  to 
a   yields 

(39) 
ö    y r* X     3 y 

x c^a n     + 3T   3T 0 

32x d y ö x öx 
y da 5t     +?t5T"a5ir+x 
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We now set  a = O, x = e"*, y = e1, 4j- = - e"1, and SÜL = e1 3t " " e  ' 'inu dt 

to obtain 

(40) 

r 

S 

-t dB  ötA . n e  Ht "*" e A " 0 

t dA  Q-tn _ -t 
e ■xr ~ e  B = e dt 

which are the equations we must solve in order to find A and B, 
It is evident that our procedure so far is the same as it was 
in our previous examples.  Here wc must contend with differen- 
tial equations, and the equations we must finally solve, i.e., 
Eq. (40), are themselves differential equations, whereas our 
final equations were algebraic in the other examples.  Never- 
theless, the technique for finding those equations is the same 
in both cases. 

Since Eq. (40) is a differential equation, it may seem 
that no great advantage has been derived by use of the pertur- 
bation analysis, but this would indeed be a false evaluation. 
Equation (40) is linear, whereas the original Eq. (18) is non- 
linear.  This conversion from nonlinear to linear (quite 
naturally called linearization) is the direct result of using 
the linear approximations.  It is a decided advantage for the 
home team to have linear equations to solve. 

VIII.  INITIAL CONDITIONS 

In order to solve Eq. (40), we require initial conditions 
for A and B.  These are obtained by using the initial condi- 
tions appearing with the original Eq. (18).  There we see that 
x = y = 1 when t = 0, no matter what the value of  a  is. 
Hence, setting t = 0 in Eq. (35) gives"? = 0, B = 0.  These 
are the initial conditions to be used in conjunction with Eq. 
(40).  The solutions are 

(41) fA = t e"1 

B=(l-t)e  -1,  whence 
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(42) -t    ^  -t x - e  + at e 

y - e1 + a [(1 - t)et - 1] 

These, then, are the answers we set out to obtain. 

Now it happens that Eq. (18) can be solved explicitly for 
x  and y  in terms of  t  and a.  The results are 

(43) -(l-a)t 

e(1-a>t - a 

1 - a 

which, for a - 0, reduce to Eq. (36).  It should be kept in 
mind, however, that it is very seldom possible to get such 
explicit analytic solutions.  We introduce Eq. (43) merely to 
illustrate another point.  First, we consider two infinite 
series. 

(44) 1 + z + 
2   3 

2T + 3T + valid for all z 
l 

(45) 1 
-z 

2   3 
1 + z + z +z + valid for |z < 1 

Thus, by applying Eq. (44) to Eq. (43), we obtain 

2 
,AC. -(l-a)t    -t  at   -t .,        (at)       , (46)  x=ev   '  -e  e  -e   [l + at+ v n, - + . . .] 

Similarly, we obtain 

(47)  y » [1 + a + a2 + . . .1  je1 [1 - at + (at)' . 1- a } 
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(at) First  consider Eq.   (46).     The  series  1 +   yni +   ...   con- 
verges  for all values of    a     and     t.     In addition,   whenever 
the  product at  is small enough,   the  first two terms of  the 
series,   i.e.~the  linear approximation 1 + at,   can be used 
without excessive error.     Hence,  £q.   ^46)  yields 

(48) x « e"*   (1 + at)   - e"1 + at e"1 

if jrt is sufficiently small.  This is precisely the result ob- 
tained by the perturbation analysis.  (Compare with Eq. (42).) 
The present approach should make it clear that, not only must 
a be close to zero, but t must be sufficiently small also in 
order for the perturbation analysis to remain valid  In short, 
the point we wish to make is that, when applying perturbation 
methods to differential equations, it must be kept in mind 
that the results are apt to be valid only for a restricted 
range of the independent variable, not to mention the restricted 
ranges-of the parameters.  This does not prevent the method from 
being a very useful one. 

Equation (47) also can be simplified under the assumption 
that   at  and  a   are small. 

(49)     y sr (i + a)  [et(l - at) - a] - (1 + a) [ e1 - a(tet + 1)] 

= e* + a [e*   (te* + 1)1  - e1 + a [ (1 - t) e1 - U . 

Once again this is the result given previously in Eq. (42). 
Clearly the procedure employed is to discard all powers higher 
than the first power of the small quantity.  This automatically 
leads one to the linear approximation. 
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IX A TRAJECTORY   PROBLEM 

As another example,   we consider  a  simplified version  of 
a   fairly complicated  problem.     A missile of mass    m    Is  fired 
at  an angle of elevation   y   with a muzzle velocity    b.     There- 
after,   it  travels   In  free  flight  subject  only to gravity and 
to  air  resistance  which   is proportional  to the square  of  the 
velocity. 

x « v  cos  0 
y - v sin 9 
v -~Vx2  + y 

Air resistance 
force diagram 

The equations of motion (obtained from Newton's Law) are 

ax 

ay 

-J -2    2 
V x  + y 

/  -\^ 
2   -2 x  + y  - g 0 

< 

m 

x = y - 0 

x - b cos y, 

y - b sin y- 

- 86 - 



I 
IH|   KM«« HOMMt  UMVlfUTT 

AMUED WV&tCS LAftOftATOtY 
blvH VtMC MAtnAMO 

One of our simplifications will be to assume that the earth 
is flat over the distance travelled by the missile.  The main 
simplification will be to assume that  a  is small, i.e., 
a - 0.  The solution of Eq. (50) depends on three parameters, 
a, b, y,   and may be written as 

(51) fx - x (t, a, b, y ) 

r) 
rx - x (t, a, b, 

|y - y (t, a, b, 

The time of flight,  T,  of the missile is the time re- 
quired for y, which started at zero, to reach zero once again 
Hence T  is defined by 

(52) y(T, a, b,y ) 

When solved for T, this yields 

(53) T - T (a, b, y) 

The range,  R,  of the missile is the value of  x when 
t - T.  Hence R  is defined by 

(54) R - x (T, a, b, y) 

whence, in view of Eq. (53), 

(55) R = R (a, b, y) 
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Thus, T and R are functions of the three parameters, a, b, y 
When a ■ 0, b - b , y ■ y0. it is very easy to solve all the 

equations involved and find the values of  T and R.  We want 
to find out how T  and R behave when the parameters are 
perturbed. 

The linear approximations to Eqs. (53) and (55) are 

(56) fT  « T(0, bo, y0) + Aa + B(b - bo) + C( y- yo) 

R - R(0, bo, y0) + Ea + F(b - bo) + G( y- y0)  where 

(57) 

A 

r 
c 

9T 

^T 

E - 

F - 

G - 

9R 
(Ta 

OR 

9R 
d y 

evaluated at 

a " 0 

b - b. 

We must compute the derivatives A, B, C, E, F, 0.  For this we 
must turn to Eqs. (53) and (54) which define T and R 
implicitly.  Differentiating Eqs. (52) and (54) partially with 
respect to a, b, y, we obtain 

(58) öy  9T 

ay dT 3y . y  dy  or    oy 

Oy  ÖT  j öy 
9T  ay  + STy 

0 

o 

0 

ÖX dT 
3¥ 

ax 
+ ?ä 

aR 
" Sä" 

3x 
3T 

aT 3x aR 

dx 
5T 

aT 
5y 

ax aR 
- JTy 
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X.     THE KNOWN  SOLUTION 

We digress momentarily to consider th* case a - 0, b - b . 
y - y , and to compute some quantities which we shall presently 
need.0 We   let 

(59) 

{ 
X - x(t,   O,   bo,   yo) 

Y - y(t,   O,   bo,   y0) 

and observe that these functions satisfy 

(60)  fX - 0 

{ V - - g t-o /x -Y-0 

lx - b^ cos y«» Y " b« sln y^ ' o       o     r o 

These equations are particularly easy to solve.  The results are 

(61)  r X ~ b  t cos y 

Y - bo t sin yo - ^ gt 

X - b cos y_ o     o 

Y - bo sin yo - gt 

From these we easily obtain 

(62) 

< 

To " T<0' bo' >'o) 

R0 - R(o, bo, yo) 

2bo sin ^o 
g 

b2 

o sin ^o 
g 
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Hence,   when  t   - T   ,   we  find o' 

(63) X  - b     cos   y 

Y  - - b    sin   y o 'o 

Return  now  to Eq 
y o. b .bo) yo' 

These  must  be evaluated at 
Under 

(58) 
and therefore at T ■ T also o 

these  conditions,   the  derivatives  dyAlT and öx/öT become   the 
expressions given  in Eq.   (63).     However,   there still  remain 
the derivatives  cy/da,   'cy/zb,   etc.,   about  which,   as  yet,   we 
have  no  information.     Hence,   we   let 

(64) 
H  -  e*  - H(t) oa 

M -^-M(t) 

p   .   |I   .   p(t) 

Q -^-Q(t) 
evaluate 

a   - 0 

N  - J*  - N(t) oy w - ^y - W(t) 
a y b  - b 

<M - 

V 

The evaluation of Eq. (58) now gives 

" bo sin >o A + P(To) " 0 

(65)   ^ - bo sin Vo B + n(To) " 0 

" bo sin Vo C + yV(To) " 0 

b  cos y A + H(T ) o    ro v o 

b^ COS y B + M(T ) o    'o       o 

bo cos yo C + N(To) 

E 

F 

G 

It is a very simple matter now to solve this set of simultaneous 
linear equations for A, B, C, E, F, G.  Unfortunately, our 
troubles have merely been transferred to another place.  We now 
find it necessary to evaluate P(T ), Q(T ), etc.  These quanti- 
ties are partial derivatives of tne trajectory variables  x and 
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y with respect to the parameters a, b, y,   and presumably can 
be obtained by differentiation of Eq. (51).  However, we do 
not actually have the explicit representation, Eq. (51).  All 
we have is the original set of differential equations (50) 
which define x  and y.  By differentiating Eq. (50) par- 
tially with respect to  a, b,y , and then evaluating at a - O, 
b - b , o' 

- YV 

(66) 

(67) 

- y , we obtain 

fa2.. XV d2P 

dt2 

| dt^ 

d2Q 

dt2 

A  0 d2W 
,^"0 dt2 

v dx2. •2 • Y   . 

0 

o , where 

This   is  a set  of   linear  differential  equations,   in contrast 
to Eq.   (50)  which    Is   nonlinear.     We  now require  initial  con 
ditions  for Eq.   (66)   in  order to solve  them. 

XI.      INITIAL  CONDITIONS 

The  linear  approximations to x  and y  are 

(68) 
x - X +  Ha  +  M(b  - bo)  +  N(y       yj 

y  - Y  +   Pa  +  Q(B   -  bo)   +  W(y  -   ^    . 

Since we want x » y - O when t 
y  have, we conclude that H = M 

0, no matter what values a, b, 
N-P-O-W-0 when t - O. 
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These are half of the initial conditions for Eq. (66).  From 
Eq. (68) we obtain 

x - X + Ha + M(b - b ) + N(V - y) 
(69) ' 0 0 

{A — A + na   t-   myu   -   u   i   f n\ 

y - Y + Pa + 6(b - b^) + W( Y - y0) 

Once  again we   let  t   - 0 and  find 

b cos   y- b^ cos   y   + H    a + M  (b   - b^)   + N   f y -   V) 
,-QV o oo o^ o o o 

b sin   ys bo sin Yo + P0 a + Qo(b - bo)   + Wo( y - YO) 

from which we hope  to get  the   initial values  of H,   M,   etc.     We 
may  write 

(7i)        b cos y - b cos  [ y0 + (y - y0)l 

b [ cos yo cos (y - yo) - sin Y    sin (y - yo)] 

Now we are interested only in the case when y  y  is a small 

angle.  Hence, we may say 

(72) r   cos (y  yo) » 1 

sin (y - yo) s? y - yo . 

(These are the usual "small angle approximations.")  Equation 
(71) now becomes 
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(73)      b cos y» b [cos o - (y - y ) sin y ] 

Next we write b as b + (b - b ) —    o   v    o 

(74)  b cos y ^ [b + (b - h)]   [ cos V^ - (Y - 7 )   sin y     ] 
o       o        o       o      o 

bo cos ^o + (b " bo) cos ^o " (y yo)  bo Sin yo 

wherein we have discarded the term involving the product of the 
two small quantities (b - b ) and (y - y ).  The result in 

Eq. (74), of course, is merely the linear approximation to b 
cos y at (b , y ), and could have been obtained more easily 

perhaps by the methods discussed earlier.  However, the 
technique used here is seen quite often, and is itself worthy 
of attention.  A comparison now of Eq. (74) and Eq. (70) shows 
that H - 0, M - cos y , N - - b sin y when t - 0. ' o        o     o 

A similar treatment of b sin y leads to 

(75)   b sin y - b sin y + (b - b ) sin y + ( y- y ) b cos v 

so that P =•= 0, 0 " sin y   ,  VI ~ h    cos y when t - 0.  We now ' ' o o o 
have all the initial conditions for Eq. (66). 

It is a relatively routine matter to solve Eq. (66) and to 
evaluate the solutions at t - T .  The results are o 
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.T /2 

H(To)   " " bo    Sin 2  ^o 
~Vt2 +  f      dt 

M(To) 
b    sin 2y                               2b  2 sin2  v 

 g   '   N(To) g  

(76)    \ 
~T/2 

P(T0) 

Q(T0) 

2gi V77 dt 

2b    sin     y b       sin 2  v 
_2_^ 12 ;   w(T )   - -2   2  ,     where g o g 

(77) 
b    cos y o o 

g 

After  some  tedious computations,   the   integrals   in H(T0)   and 

P(To )   can be evaluated,   all   the  results can be  substituted 
in Eq.   (65),   after which  Eq.   (65)   can be  solved  for  A,  B,   C, 
E,   F,   G,   which  in turn can be  substituted  in Eq,   (56)   to 
yield 

(78) 

T   - T 
b3* o 

< 

0       4g2  sin  Y 
(cos    y )   in 

o     i- 

- sin  y     (2-cos     y ) ' o ' o 

2 b    cos   Y 
M-^ 2)(r.  y0) 

1 +  sin  y 

cos  Yr 

2 sin  Yc 
(b  - b   ) v o' 
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4 
b     a  cot   y 9 9 1  +  sin  v 

R  - Ro       -1—^ 2 [(cos'2   yo)(l  + 3  sin2  yo)   in     cos 
4g 'o 

„                   /2b    sin  2   y 
- sin  yo(l   - 3  sin2  y^) J   + ( -^ 2j(b       bo) 

If  b    - 305  ft/sec,     y    - Tr/6 radians,   and g  - 32.2  ft/sec2, 
then Eq.      (78)   becomes 

(79) 
T - 9.48 + 4320 a + 0.0311 (b - b ) + 16.4 (y - y ) 

R - 2500 • 2160000 a + 16.4 (b - b ) + 2890 (y - y ) 
o o 

Thus a missile fired with a muzzle velocity of 305 ft/sec  at 
an angle of elevation of 30° in a vacuum (a - o) would travel 
2500 feet in 9,48 seconds.  A missile fired in exactly the 
same way in an atomosphere for which a - 0.002 would travel 
minus 1820 feet in 18.12 seconds.  This obviously ridiculous 
result should serve as a warning against the incautious use of 
results obtained by a perturbation analysis. "The trouble here 
is that a = 0.002, while seemingly quite small, is not small 
enough.  It is apparent that whether or not a quantity is small 
is a relative matter.  The same quantity may be either small 
or large, depending on the use to which it is put. 

A rough rule which can be used (though not always safely.') 
in situations like this is that the perturbation terms should 
amount to no more than a few per cent of the quantity being 
computed.  Thus, in our problem, a should be restricted to 
about 5 x 10" , while b  b  coulcT have an order of magnitude 

of about 10 ft/sec,  and y - y    about 0.05 radians (about 3°). 

So long as a, b, y  have values consistent with these restric- 
tions, Eq. (79) may be used to coirnute time of flight and range 
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The problem Just completed Is a typical example of the 
troubles encountered in a perturbation analysis.  Practically 
all of these troubles stem from the fact that the various 
functions are defined implicitly and cannot be obtained in 
an explicit analytic form.  Consequently, it is necessary to 
employ implicit differentiation, which usually leads to rather 
formidable looking expressions.  On the other hand, any equa- 
tions which must be solved are linear.  The perturbation 
method is well adapted to finding quick-but not-too-dirty 
answers to a wide variety of practical and theoretical prob 
lems. 

XII.  AVERAGE OR MEAN 

Whenever a series of measurements of a certain quantity 
(say the length of a stick, for example) is made, a collection 
of numbers x , r - 1, 2, ..., N, is obtained.  Because of 
errors in thi measuring instrument, and perhaps other factors 
beyond the control of the person making the measurements, the 
numbers x normally will not all be the same, but instead 
will varyrto an extent depending on the factors affecting the 
measurement.  The question then arises as to what value should 
be assigned to the measured quantity.  Furthermore, it would 
be nice to have some estimate of whatever error is apt to be 
in the assigned value. 

Let x represent the value to be assigned.  Then x  x 
is the residual or the deviation of the r**1 measurement.  A 
standard way to choose x is to choose it so that the function 

N 

(80) E - E(x) - V (x - xr)
2 

r-1 

will take on its minimum value.  E  is merely the sum of the 
squares of the residuals (hence a positive quantity) and can 
be minimized by proper choice of x.  By differentiating 
Eq. (80), setting the derivative equal to zero, and solving for 
x, we find 

(81) x - x = ^  V  x 

N 
1 
If Zu     Ar 

r-1 
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Thus the average of the x  Is the value which minimizes the 
sum of the squares of therreslduals.  It also has the following 
easily verified property. 

N 

(82) V (x - xr) - 0  . 
r-1 

XIII.  VARIANCE 

Although the average certainly does not display all the 
information contained in the complete set  x  , still, in 
one number, it gives us an important fact about that set. 
Another important number associated with the collection of the 
x  is the variance which is defined by 

N 

(84) o2 " J 2 (X   Xr)2 
r-1 

and is merely the mean (or average) of the squares of the 
residuals, the residuals being taken with respect to the mean 
x of the x .  The variance is a measure of how the measured 
values are spread around the mean.  If the measurements are 
very accurate, so that the measured values are all close to 
the mean, then the residuals will all be small and the vari- 
ance will also be small.  However, if the measurements are not 
very accurate, so that the measured values sometimes depart 
widely from the mean, then the residuals will be large and 
the variance also will be large.  Thus, it appears that the 
variance is related to the precision of the measurements and 
can serve as a measure of that precision. 

These two statistical quantities, the mean and the 
variance, are the most important ones used in present day en • 
gineering design. 
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XIV   COMPUTATIONS BASED ON MEASURED VALUES 

Very frequently it is necessary to compute a quantity on 
the basis of experimental data.  For example, we may measure the 
side of a square and then compute the area of the square.  Since 
there is an error in the measured value, then there will also 
be an error in the computed value.  We may make a large number, 
N, of measurements of the side of the square and compute, for 
each one, the area of the square, obtaining thereby N  values 
for the area.  For each of these two sets of numbers, length 
of side and area, we may now compute the important statistical 
quantities, mean and variance.  Clearly, there should be a re- 
lationship among these numbers. 

More generally, consider the problem in which we measure 
x and compute y by y = f(xK A collection of measurements 
x  with mean x and variance a  *  leads to a collection of cora- 
r x    - 2 
puted values y  = f(x ) with mean y and variance o  .  The 

linear approximation to f(x) at x = x is 

(84) y = f(x) + f'CxXx - x).  Hence 

(85) yr * f(x) ± f,(x)(xr - x) 

It follows from this that the mean of  y  is given by 

N N 

(86) 
* = i* 2 yr = ^  2 tf(;) + f ,(*)(xr " ^ 

r = l 

f(x) 

r = l 

Thus the average value of  y can be obtained by computing it 
directly from the average of  x.  Equation (85) now may be 
written in the form 
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(87) yr   -   y =  f'(x)   (xr   - x) 

and  this can be used  in turn to compute  the variance of    y. 

(88) 
N 

*E< y^ - y) 

N 

[f (x)]   *  (x„ - -x2 
x) 

r-1 r-1 

N 

[f (x)]2 *     S^r"^2 [f (x)]2  ox
2 

r-l 

This  shows how the variances of  the measured and computed values 
are  related. 

It must be borne  in mind that  the results  just  derived are 
based on the use of a  linear approximation and hence are subject 
to all   the   limitations  implied by  that approximation.     Only  in 
the  case  of  fairly accurate measurements  can we expect  Eqs.   (86) 
and   (88)   to be valid. 

XV.      FUNCTIONS  OF MORE THAN ONE VARIABLE;   COVARIANCE 

More  often than not,   a  computed value  is  based on measured 
values  of  several different  quantities.     Thus,   let   x   ,   y   ,   z 

be^collections  of measurements  with means  x,   y,   z and variances 
o     ,   o     ,   a       respectively,   and  let  w = f(x,y,z).   The   linear x y z 
approximation at   (x,   y,   z)   is 

(89) w « f(x,   y,   i )   +   A(x 

A  - öf A       7x 

B-a* üy > 

ÖZ 

- x)  + B(y - y)   + C(z - z) 

evaluated at 

x »=  x 

y = y 

z »= z 
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It turns out, just as before, that w - f(x, y, z).  Thus 
Eq. (89) may be written as 

(90) wr  w a A(xr  x) + B(yr - y) + C(zr - z) 

which  leads  to 

(91) w 

N 

^ 1 
r-1 

lA(x„  - x)  + B(yr -y)  + C(zr - z)] 

2        2           2        2           2        2 
- A     o„     + B     o„    +  C     o       +  2AB  o + 2AC   o x 

+ 2BC o 
xy xz 

yz 

where o    ,   o     .   o       are  new quantities  defined by xy'     xz       yz n ' 

(92) 

N 

xy J    X<Xr      5)(yr  *   ^ 
r-1 

N 

^   0xz " i*    y (xr - *>   (zr  - £) 

0yz  - ff    ^.(yr - ^^r  " £) 

These new quantities  are called the  covariances of    x    and    y, 
x     and    z,   and    y    and    z respectively.     They give some  idea 
of  how the measurements  of x,   y,   z  are  related.     A very common 
situation  is  to have   independent measurements,   that   is  to say, 
the value  obtained by measuring one  quantity  is not  affected 
by,   nor does   it  affect,   the value  obtained by measuring 
another quantity.     Thus,   if x    and    y are   independent measure- 
ments,  we may expect  the  product   (x     -  x)   (y    - y)   to be 
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negative about as often as it is positive, and we may also 
expect its magnitude to be distributed fairly equally between 
the positive and negative values.  The net result is that 
o  should tend to zero as the number of measurements increase. xy 
In fact, we might take o  - 0 as an indication that  x and y xy 
are independent.  If all the measurements are independent, then 
all the covariances vanish, and (s)i) reduces merely to 

(93) aw
2 - A2 ox

2 + B
2 oy

2 + C2 oz
2 

XVI.  MATRIX FORM 

A very convenient way to handle the variances and covari- 
ances is to write them in matrix form. 

2 
o o x xy 

2 
(94)       i  axy ay 

o o xz yz 

This is called the covariance matrix of x, y, z.  Equation 
(91) now may be written as a matrix product. 

o o     o x xy    xz 

"w2 ■ <* B C' I o o 2   o xy y     yz 
(95)                   \ 2 

o o     o xz yz    z 
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There  remains one obvious  generalization.     We may make 
measurements  of     n    different  quantities    x,   y,   z,   ...,   and 
use  these measurements to compute    m    other quantities u,   v, 
w,   ...   .     Knowing  the covariance maFrix of x,   y,   z,   ...,   we 
would  like  to  find the covariance matrix of u,   v,   w,   ... 
Let 

(96)       M 

xy 

2 
j 
y 

yz 

xz 

J yz 

2 

n x n matrix 

be  the  covariance matrix of x,   y,   z,   ...,   and 

(97) 

uw 

uv 

2 
7v 

Vw 

uw 

7vw 

2 
m x m matrix 
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be   the covariance  matrix of ur   v,   w, Also  let 

OX 

du u 

(98) D  =    '     ^ 9V 
oX 

9w 
TJx 

dv r»V m rows 

n columns 

be  the matrix of  partial  derivatives  of u,   v,   w,   ...   with  re- 
spect   to x,   y,   z,   ...,   all  these  derivatives  being evaluated  at 
(x,   y,   z,   ...).     Then exactly the  same  sort  of  analysis  as   in 
the  simpler cases  shows  that 

(99) V  - D M D 

where D is the  transpose  of D 

XVII STANDARD DEVIATION AND PRECISION 

Suppose we have a large number of measurements x of a 
quantity x.  Then the mean x and the variance a    can be com- 
puted in the manner previously described.  The number o 
itself is called the standard deviation of the data.  It Is 
customary to express the precision of the measurements in 
terms of o  (rather than o^).  In ordinary circumstances we 
may expect about 50 per cent of the measurements to fall in 
the interval from x - 0.67o to x + 0.67a.      (The coefficient 
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0.67   is  determined on the basis  oi  probability  theory and 
certain quite reasonable  assumptions about  the  nature of the 
errors  to be expected  in measurements.     Different  coefficients 
correspond  to different  percentages.    Thus,   about  90 per cent 
of  the measurements  fall   in  the  interval  from x  -  1.65o to 
x +   1.65o.     It  is  in this  sense  that    o    determines  the pre- 
cision of  the set  of measurements.) 

XVIII.      APPLICATION OF  STATISTICS TO THE TRAJECTORY  PROBLEM 

To  illustrate  one  of  the  uses  to which  these   ideas  from 
statistics  may be put,   we  return to the  trajectory  problem and, 
in  particular,   to one  of   the  results  in Eq.   (79). 

(100)        R « 2500 -  2160000 a  +   16,4   (b  - b  )   +   2890   (7-   Y0) 

where b     - 305 ft/sec    and   y    - ir/6 radians.     To simplify the 

present   discussion,   we  assume  a  - 0  (vacuum trajectory).     Thus, 

(101)        R  -  2500 » 16.4   (b  - bo)   +  2890   (y -     v ) 

This expresses the range error due to errors in muzzle velocity 
and angle of elevation.  These errors are unavoidable.  Conse- 
quently, we cannot expect to get a range of exactly 2500 feet 
on any given shot.  A much more reasonable demand is to require, 
say, that 50 per cent of the shots should fall within 67 feet 
of the target, i.e., from 2433 to 2567 feet.  In terms of 
standard deviation, this means that we want 0.67oR =67, or 
oR
2 - 104.  But K 

(102) oR
2 - (16.4)2 ob

2 + (2890)2 ay
2 

i 
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(See Eq. (93).  We assume, of course, that muzzle velocity and 
angle of elevation are independent.)  This equation now consti- 
tutes a restriction on the values of o.  and o  , which are 

determined by the precision of manufacture of the missile and 
its launcher.  Thus, if launchers are manufactured in such a 
way that o 2 - lO"4, then Eq. (102) gives o.2 - 34.1.  This 

means that the powder charge (or whatever controls the muzzle 
velocity) must be measured accurately enough so that o. 2 - 
34.1 (or less) in order that at least the required percentage 
of hits will be made in the target area. 

XIX.  SOME APPLICATIONS OF PERTURBATION ANALYSIS TO 
SATELLITE PROBLEMS 

Now that artificial earth satellites have become fact 
rather than fiction, there are many problems wh'ch no longer 
are of merely theoretical interest but are also of great practi- 
cal importance.  Information about the environment of the satel- 
lite can be collected and transmitted back to earth by instru- 
ments carried in the satellite.  Besides this, a great deal 
more information can be derived from observations of the path 
type of information and ways of obtaining it. 

The complexity of the problems precludes a detailed analy- 
sis in this brief report. Our intent here is to describe some 
problems, indicate how perturbation analysis is applied, and 
exhibit some of the resulting equations. 

XX.  GRAVITY 

One important purpose of artificial earth satellites is 
to obtain information about the fine structure of the gravita 
tional field of the earth.  This can be done by observing the 
motion of a satellite which is far enough from the center of 
the earth so as not to be affected appreciably by the atmos- 
phere, and yet close enough so that irregularities in the 
gravitational field are still large enough to cause observable 
variations in the satellite's trajectory. There is good 
reason to believe that the irregularities we are trying to de- 
tect will be "relatively small," so that perturbation techni- 
ques should provide a useful tool for finding the gross or 
"first order" effects to be expected. 
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XXI.  TWO BODY PROBLEM: 

We consider first a simplified problem (without the 
irregularities mentioned above) which we can solve analytically, 
This is the standard "two-body problem." We assume that the 
earth is a homogeneous sphere of mass m-.  As a result of this 

fi 

assumption,   the  force  of  attraction of  the earth  on an external 
body,   say  a  satellite  of mass m,,,   is 

(103) 
G mE ms 

 2  

where G is the 
from the center 
be small enough, 
point). Moreove 
the earth. We t 
whose origin is 
directions fixed 

gravitational constant and r  is the distance 
of the earth to the external body (assumed to 
relative to the earth, to be taken as a 

r, the force is directed toward the center of 
ake a rectangular coordinate system (x, y, z) 
at the earth's center and whose axes have their 
in inertial space. The components of the 

Fx Fv      Fz force  F in the x, y, and z directions are - —, - -f-, and - — 

ince -,£.,—    are the direction cosines for r ' r ' r respectively, sii 

the force direction.  Newton's Law, applied to the x-coordinate, 
gives 

(104) ms k 
Fx 
r 

G HL, m„ x 

There are similar equations for the y  and z  coordinates.  We 
divide by ms and let 

of the satellite. 

G m,;, to obtain the equations of motion 

(105) < y 

ax 

r3 

ay 

ax 
3 

"vTT 2   2 y + z 
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We let 

(106) h - y± - zy , z* - xz c - xy - y* 

Differentiation of these gives 

(107) dh yz - zy ayz  ayz 
~7 + ~1 r    r 

0, ^ - O - dc JT ar 

Hence h, b, c are constants.  Furthermore, 

(108) hx + by + cz - 0 , 

which  shows   that  the  satellite  always  lies   in  the   plane with 
this equation.     Inasmuch  as h,   b,   c are constants,   this plane 
does  not  alter  its orientation with  time. 

XXII.      POLAR  FORM 

Now  that  we know the  satellite moves  in a   fixed  plane, 
we move  our  coordinate  system so  that  the    x    and     y    axes 
lie  in  that   plane. 

(x,y) x  - r  cos 0 

y  - r  sin 0 
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The  equations  of  motion   then become 

(109) x  =  - ^   f     y = - 3f  .       z   =  0, 
r r 

It is convenient to introduce polar coordinates (r, 0) by 
means of the usual transformations.  Substitution in (109) 
leads to 

(110) r - r 02 = - ^ 
r 

r0 + 2r0 = 0 

The  second of  these equations can be written as 

(111) p-    ^  (r2 0)  = 0.     Hence 

2    ' (112) r     O  =  n  = constant. 

We  now can solve Eq,   (112)  for 0 and  substitute   in  the 
top of Eq.   (110)   to obtain  a differential  equation  for    r     in 
terms  of    t. 

2 
/1 -i o \ ••        n at (113) r   - 

r r 

Presumably this can be solved to obtain  r  as a function of 
t; however, it is much more informative to ignore the depend- 
ence of  r upon  t, and to find out how r  depends on 0. 
This will give us the trajectory of the satellite in the plane 
without specifying just wnere the satellite is in that trajec- 
tory at any given time.  Later we can return to answer the 
question of time dependence.  Hence, we differentiate r = r(0) 
twice with respect to  t, after which some routine maneuvering 
with Eqs. (112) and (113") leads to 
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2 /     \ 2 2 
(114) d  r        2    /drl     -  r   -  ar 

The   change of variable  r   - - now gives 
P 

(115) ^+p       a 
d92 n^ 

which   is  an easily solved   linear differential  equation, 
The   solution  is 

(116) p  - ^ + k cos  (0 - eo) 
n 

where  k and 9 are arbitrary constants which depend ulti- 
mately on the initial conditions. 

From Eq. (116) we obtain 

2 
(117) r -  iiizLJ         where 

1  +  C   cos   (6  - 8) 

(118) c     - —   .     a   =  n2 

a(l  - cZ) 

When  I € £ li Eq. (117) is the polar equation of an ellipse 
with one focus at the pole.  Thus, the trajectory of the 
satellite is an ellipse with the center of the earth at one 
focus.  The size and shape of the ellipse, i.e., the semi- 
major axis  a  and the eccentricity €  depend on the initial 
conditions. - _ 

< 
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The hitherto neglected time dependence now can be attacked 
by substituting Eq. (117) into Eq. (112) to obtain a differen- 
tial equation for 9 in terms of t.  We shall not do this since 
we do not need the results in what is to follow. 

XX111.  ORBIT PARAMETERS 

The general solution of Eq. (105) involves 6 arbitrary 
constants.  To specify any particular trajectory and the posi- 
tion of the satellite in that trajectory, then, 6 conditions 
are required.  A reasonable choice is the set of values x, y, 
z, x, y, z at some initial time  t  (usually taken to be 
t  - 0) --the so-called initial conaitions.  The initial posi- 
tion and velocity coordinates thus constitute a set of 6 
parameters which completely define the motion of the satellite. 
However, this is by no means the only set of 6 parameters which 
can be used.  Other commonly used parameters are the 6 Keplerian 
parameters.  T^vo of these specify the orientation of the orbital 
plane.  Three more specify the orientation, size, and shape 
of the ellipse in the orbital plane.  (These 3 are 6 , a, C .) 
The sixth parameter is the time at which the satellite passes 
through some particular point of its orbit, say the point 
closest to the focus (perigee).  The particular problem being 
studied determines which set of parameters should be used. 

XXIV.  OBLATE EARTH 

Unfortunately, instead of being a homogeneous sphere, the 
earth is a non-homogeneous, oblate spheroid.  It is somewhat 
like a sphere with a belt around the equator. 
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THt   KJMMi HOM»a  UNTVtlVTV 

AMUID PHYSICS  LAiOCATOIY 
blvH IMHMO MAtnA « 

The effect of the belt is to add a small component of force 
to the gravitational attraction of the sphere.  The new force 
of attraction now has a component parallel to the axis of the 
earth, and consequently no longer is always directed toward 
the center of the earth.  This brings with it all sorts oi 
complications in the motion of the satellite. 

The equations of motion of a satellite now become 

-»j- + A x f 
r 

(119)  Jy=-^+Xyf 
r 

az z = - T r 
+ X z   (f + ^ ) 

r 

where f 3(r2 - 5z2) =    i7 and A. is a parameter whose mangitude 

depends on the degree of oblateness of the earth.  (For these 
equations, the x and y-axes must lie in the earth's equa- 
torial plane while the z-axis points in the direction of the 
north pole.  The form of the function f and the derivation 
of the above equations of motion are important matters which 
we shall not cover here.) The solutions of Eq. (119) now will 
depend on X 

(120) x = x(t, X) y= y(t, x) z = z(t, X) 

The linear approximations to these at X = 0 are 

(121) x~X+MX,      y=Y+NX,     z=Z+PÄ 

(122) X  = X(t)   = x(t,   o) 

-( Y  = Y(t)   =  y(t,   o) 

Z  = Z(t)   = z(t,   o) and 

where 
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(123) 

p =^ 1     ax 

evaluated  at  X  = 0, 

V 

Differentiation of Eq. (119) partially with respect to X, 
followed by evaluation at X = 0, gives the following differen- 
tial equations for M, N, P. 

(124) < 

M 

N 

r  M    ? 4 (XM + YN + ZP) 
r 
3Y 

] 
. aT-N _ i*Y (XM + YN + ZP)1 

P = - 
v 

LR 

r p  3 

+ XF 

+ YF 

3Z (XM + YN + ZP 5 + Z (F + -i 
R5 

where R . lfx2 s   v2 ,   ^  _A  „ = 3(R* ^_5Z^ + Y  + Z and F = 
2R 

Now X, Y, Z 

presumably are known functions of  t  (although they may be 
rather complicated) since, when X = 0, the equations of motion 
reduce to the case which we previously managed to solve analyti- 
cally to obtain the Kepler ellipse.  Hence, the system of 
simultaneous linear differential equations in Eq. (124) can be 
solved and the results substituted in Eq. (121) to find the 
actual trajectory of the satellite.  This would indeed be a 
formidable undertaking on paper.  Fortunately, we shall be able 
to make use of the equations in Eq. (124) without actually 
solving them. 

XXV.  ROTATION OF ORBITAL PLANE 

We return to Eq. (106), namely 

(106)  h=yz-zy,   b=zx-xz,   c=xy-yx 
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Previously, when X = O, we found that h, b, c were constants, 
When A. / 0, however, there is no reason to suppose that they 
will still be constants.  Hence we write 

(125)  h = h(t, X),   b = b(t, \),  c = c(t, X) 

and introduce the linear approximations 

h = b(t, o) + H X 

026)  ^ b = b(t, o) + B X 

c » c(t, o) + C X 
v. 

r 

(127) ^ 

« = !! 

B  ax 

c = ^ c  ax 
v 

The equation 

where 

evaluated at  X 

(108) hx + by + cz = 0 

still holds, even if h, b, c are not constants.  When X = 0, 
Eq. (108) is the equation of the orbital plane, and h, b, c 
(which are constant) determine the orientation of that plane. 
When X / 0, Eq. (108) is still the equation of a plane, and h, 
b, c still determine the orientation; but, since h, b, c now 
vary with time, the plane is no longer fixed.  We may still 
refer to it as the orbital plane, since the satellite always 
lies in it, but we must permit it to move around.  Our present 
purpose is to find out how it moves. This we hope do to by 
studying the derivatives H, B, C. 

- 113 



rm lONN« HO*««« wnvn 
AnMD PMYSKS lAtOtATOIT 

By differentiating Eq. (106) partially with respect 
to X    and then setting X = 0, we find 

(128) 

H=YP+ZN-ZN-YP 

<B = ZM+XP-XP-ZM 

C=XN+YM-YM-XN 

which expresses H, B, C in terms of the known functions X, 
Y, Z and the solutions M, N, P of Eq. (124). Differentiation 
of Eq  (128) with respect to time yields 

(129) 

H = YP-YP+ZN-XN 

B = XM-ZM P-XP 

C = XN-XN+YM-YM. 
V. 

In these, the second derivatives of M, N, P can be replaced 
through use of Eq. (124), while the second derivatives of X, 
Y, Z are given by X = - a X R"3 etc.  Tl 
(129) to 

This simplifies Eq. 

(130) H 3YZ B = - 3XZ 

R 
C = 0 

It is a simple matter to verify that the point 
(b, -h, o) lies in the orbital plane as well as in the xy- 
plane.  Hence, the line segment joining this point to the 
origin lies in the intersection of these two planes.  Let & 
be the angle between the line segment and the x-axis.  Then 
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(b,  h) 

(131) ^ = - arctan T- 
D 

is one of the two keplerlan parameters determining the orien- 
tation of the orbital plane.  (The other is the angle of in- 
clination of the orbital plane to the equatorial plane.) 

(132) Ü   = ^(t, X)   = (^(t, o) +«I>X,   $ = (|^) 
X = 0 

From Eq. (131) we find 

(133)   |^ 

.öh  .ob b äT " h a! 
b  + h 

which,   upon setting  A.  = O,   gives 

(134) $ =  _ 
b H  - h B o o 

O O- 

Hence 

(135) 6= - 
b^H  -  h B o o 

o o 

„„ h X  + b Y 3Z o o 

o o 

3co * 
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since hoX + boY + coZ = O from Eq. (108).  Therefore, differen- 

tiation of Eq. (132) with respect to t gives 

3\ c     Z2 

(136)     0 =  5 ?-* -■  . 
(b ^ + hj)   R5 

This simple expression contains a large amount of 
information, only part of which we shall endeavor to extract. 
The variable part of ii     is Z^R~^,  which is never negative. 
Hence, tf  never changes sign.  This means that ^  is either 
always increasing or always decreasing, depending on the sign 
of c .  This, in turn, means that the line segment which de- 

fines &     rotates in the xy-plane (though not uniformly) and 
the orbital plane rotates with it.  The instantaneous rate of 
rotation is given by Eq. (136).  Although we shall not do it 
here, it is possible without much trouble to compute the 
average rate of rotation of the orbital plane from Eq. (136). 
This average rate is easily observable in actual satellites, 
and, since it is directly proportional to X, can be used to 
estimate the value of X.  This, of course, gives a measure 
of the earth's oblateness.  In this way, observation of the 
motion of artificial satellites gives us information about 
the shape of the earth. 

The preceding long-winded exposition was designed to 
show how perturbation techniques have been applied to find the 
effects of the earth's oblateness on the orbits of satellites. 
The particular effect which was studied was the rotation of 
the orbital plane. There are other effects also, all of which 
have been studied by the same method and are to be found dis- 
cussed in various published sources. 

XXVI.  SATELLITE TRACKING 

Although it is both interesting and important to 
have the type of information given by the above analysis, 
there are even more important factors to be considered in 
the practical problem of tracking a satellite.  To "track" a 
satellite means to determine its position (and perhaps velocity) 
in space, and also involves the ability to predict future 
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positions on the basis of present knowledge. The obvious way 
to do this is to integrate Eq. (119), namely 

x = - 

(119)  < y = 

ax 
"3" r 

+ X x f 

-2J + Xyf 
r 

az 
-^ r 

3 

.   3(r2 - 5z2) 
 7  2r/ 

+ X x (f + ^) 
r 

r " vx = y  + z 

A high-speed digital computer can handle  this task both easily 
and satisfactorily.     It  is only necessary to supply  the machine 
with  initial values  of position  and velocity,   i.e.,   x   ,   y 
• • • 
x 

o'   zo' 
, y , z , and with a time interval At, after which the machine 

produces values of x, y, z, x, y, z at the times t + n At, 

n=lf 2, 3, ... .  This all sounds very simple; unfortunately, 
the big problem still remains.  It is still necessary to make 
the machine computations apply to some particular satellite 
which we wish to track. This means that we must properly 
choose the six parameters (or initial conditions) x , y , z , 

'o' Mathematically, then, the tracking problem re- 

duces to the determination of 6 parameters. 

In order to determine the parameters we must, by 
observing the satellite, make measurements of some quantity 
which depends on the parameters.  Then we can compare the 
measured values with computed values of the quantity and 
attempt to juggle the parameters so as to bring the computed 
values into agreement with the measured ones.  Naturally there 
must be some mathematical technique for doing this Juggling. 
The one which is used is the method of least squares. 

XXVII.  DOPPLER SHIFT 

Several different things have been measured in 
various tracking schemes. The emphasis at APL is on the 
doppler shift. 
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Let the upper curve in the diagram be the trajectory of a 
satellite carrying a radio transmitter operating at a fre- 
quency of f-, cycles per second.  Let the lower curve be the 

path of an observer on the earth. The observer moves rela- 
tive to the satellite path because of the rotation of the 
earth on its axis. At time  t, the observer receiver a sig- 

nal from the satellite which was emitted at time t - —.  S c 
is  the  distance  from the  observer  to  the  position occupied by 
the satellite when the signal was emitted,   and    c     is  the 
speed of   light.     At  a time  -H  seconds  later,  when satellite 
and observer   have both moved  to new positions,   the situation 
is as  pictured  in the  diagram.     The  time  interval over which 
the  satellite  has been  transmitting  its signal   is   (t   + Zvt 

S f AS        S \S -  ) - (t -• -) = At - — seconds, so that the total num- c c c    „ 
ber of cycles emitted is fT(At - —)„  All of these cycles 

are received by the observer in time At.  Hence, the observer 
thinks the transmitter is operating at a frequency of f 

fT(At " -P 1 AS — ^   = fT (1 - ~ —■).  The amount of the doppler shift 

is the difference between the apparent frequency and the cct- 
f 
T AS ual frequency, i.e., f  - f™ = - —TT •  The instantaneous n    7 o    T      c At 

doppler shift D - D(t) now can be obtained by letting ät  0. 

(,37)     D.-^||  . 
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It   is fairly easy to make very  precise measurements  of   the 
function D.     To be  able  to compute D,   we must be  able  t ;> com- 

pute -rr  .     This  derivative  is  the  rate  of change  of  the  dis- 

tance between  satellite  and observer.     Presuming that we  know 
the  position of  the observer,  we will be able to compute S 

(and hence -TT-)   if we have a way  for computing the position of 

the  satellite.     But  this  is  just what   the   integration  of Eq. 
(119) gives us,   namely the  position of  the satellite  as  a 
function of  the 6  parameters.     Hence,   D    itself   is  a  function 
of  those  same 6  parameters.     The  route may be devious  and  the 
expressions  complicated   (fortunately not  too complicated), 
but  the   important  fact remains  that    D    depends on  the  parame- 
ters we wish to determine. 

XXVIII.     PERTURBATION OF THE  TRAJECTORY 

As  indicated previously,   the method of   least  squares 
is used to find the parameters.     All  the details  of  this  pro- 
cedure are  to be  found  in several APL reports.     Here   is  it 
merely our   intention to show how perturbation methods  become 
involved  in  the computations,   and to  indicate  the  nature of 
the resulting expressions.    Basically our problem is  to find 
out  how the  satellite trajectory   (which determines D)   depends 
on  the parameters.     The dependence,   of course,   is  given   im- 
plicitly  in  the  original differential equations of motion>Eq. 
(119)       What we  need for use with  the   least squares  procedure 
is  something more explicit.     The usual situation  is  that we 
have  a rough   idea of what the parameters should be,   and we  are 
trying to get more precise values.     This  is  the same  as saying 
that we  know approximately what   the  trajectory should be,   and 
that we  are  trying to find a better  trajectory which  presumably 
is   "close"  to the estimated  trajectory.     Hence,  we  attempt  to 
find the  new trajectory by perturbing the old. 

Each  of  the  trajectory variables x,   y,   z  is  a  function 
of  the 6  parameters x,y,z,x,y,z.     Each may be  differ- oooooo 
entiated partially with respect  to each parameter.     There  are 
18 such  derivatives.     We,   of course,   are  interested  in  these 
derivatives when  they have been evaluated at  x^  = x^^ ,   y^  = y^ , ... J o oo'   •'o       JCD 
etc.     Let 
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(138)       J   W 

U 

_dx 
dx o 

-in 
dx o 

dz 
dx 

evaluated at  x     =» x     ,  etc 
o CD ' 

o 

These are  three  of  the   18 derivatives.      (The  first zero sub- 
script on x      means  that   it  is an  initial condition;   the 

second subscript denotes a particular set of  initial condi- 
tions.)    The   linear  approximations  to x,   y,  z at  x     ,v     ,   z_ rr '    J ' oo     OD CD 

oo '   ■''oo ' oo 

(139)      J 

x  =  x    + Q   (xo - xoo)   +   , 

y  =  y*  + W   (xo  - xoo)   +   | 

z  = z     + U   (xo  - xoo)   + 
V 

terms   involving the  other 
15  partial derivatives 

*       *       * 
where x   ,   y   ,   z    are  the  trajectory coordinates computed  for 
the  special case  x x     ,  etc.     We  shall content outselves oo 
with  finding just  one  of  the  18 simulataneous equations which 
can be solved  to obtain  the  18 derivatives. 

Differentiate  the  first equation  in Eq.   (119)  par- 
tially with respect  to  x   . 

^     b Ok)- - 
\   f dx 

dx o 
+ ^ 

3x 
"3 [x 

ax 
öx^ + y M + dz 

öx. öx. 

öf _öx + öf. _öy + of.  
^x dx ciyöxo      azöx 

Now evaluate  at  x     = x      ,   etc o oo 
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(141) 

where f* = ?-Ll—" |(z ) J  and now r = V (x*)2 + (y*)2 + (zV 
2r' 

Also f  = (g-) evaluated atx=x,y=y,z=z.  There are 

17 more equations similar to this one which can be solved for 
Q, W, U, etc.  This sounds like a nearly impossible task, but 
fortunately, in terms of the capabilities of modern electronic 
digital computers, it is a rather simple one. 

Once Q, W, U, etc. are obtained, then Eq. (139) is 
the desired explicit representation of the trajectory in terms 
of the parameters. With this we conclude this illustration of 
some of the problems involved in satellite tracking. 

Each time a satellite passes near a receiving station, 
a measurement of the doppler shift can be made.  By using several 
receiving stations and making measurements over long periods of 
time (weeks, months, or even years), a large amount of doppler 
data can be accumulated.  It would be eminently reasonable to 
suppose that out of all this data we should be able to extract 
very precise estimates of the orbit parameters, the precision 
being limited only by the unavoidable "noise" in the data.  We 
would expect the orbit parameters to approach constant values; 
however, this is not at all the case.' The parameters computed 
from the data of one week will be different from those computed 
from the data of the preceding week.  From week to week the 
parameter values will change or drift.  This peculiar behavior 
is caused by errors in the values of a    and X used in the 
equations of motion, Eq. (119).  The number a,   for example, 
is proportional to the mass of the earth, which is known to 
an accuracy of only about 1 part in 10,000.  The number X    is 
known even less accurately.  On the other hand, doppler shift 
measurements can be made with accuracies up to 1 part in 10, 
which is several orders of magnitude better than our knowledge 
of a    and X.    Of course, the satellite is not afflicted by 
this lack of knowledge.  Its motion is governed by the exact 
values of a and X,  whereas we poor mortals are compelled 
to use more or less inaccurate estimates.  This means that 
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the computed  doppler  shift  will   inherit  the errors   in     a and 
,\    and  transmit   those errors  to   the computed values  of   the 
orbit  parameters. 

Since   the  drift  of  the   orbit  parameters  is   directly 
related  to     a     and     X,   then we  should be  able  to get   improved 
estimates  of     a     and    \    by measuring   the  amount  of   drift. 
This   is one  of   the  results  to be  expected from satellite  track- 
ing.     Here  again,   perturbation  analysis   is  an appropriate  tech- 
nique   tor  handling  this complex  problem. 

There   is one more set  of  parameters which we wish 
to consider.     This   is  the  set  of   3  parameters which  define 
the   location  of   the  receiving station,   e.g.,   longitude, 
latitude,   and  distance  from the  center  of  the earth.     Hereto- 
fore,   we  have considered these  to be  known.     By using  re- 
ceiving stations  of  known position,  we can eventually,   as   in- 
dicated above,   very accurately  track a satellite.     As  pointed 
out  previously,   this means  that  we can accurately predict   its 
future  positions.     If  now we make  doppler measurements  at  a 
receiving  station whose position   is  not  known very well,   then 
we can employ exactly  the  same   techniques used  in tracking  to 
determine   the  3  parameters of  the  receiving station.     Of course, 
this  problem  is  simpler since only 3  parameters are   involved. 
This   is  known  as  satellite  navigation.     It   is potentially  a 
very accurate  navigation scheme"     In  this  particular   applica- 
tion,   too,   perturbation analysis  eases  the   labor required  in 
the computations.     It   is  to be  especially noted that   an ade- 
quate  satellite   navigation scheme  depends  primarily  on  a good 
tracking  scheme. 

XXIX.     BRIEF  COMMENTS ON PERTURBATION  ANALYSIS 

In  common with many other useful  procedures,   the 
id< as  behind  perturbation  analysis  are quite  simple.     The 
application  of   these   ideas  to  particular  problems   leads  to 
work of  varying  degrees of  difficulty.     The  principal  problem, 
of course,   is   the  evaluation of   derivatives.     The  difficulties 
aiise  because   it   is  usually  necessary  to resort  to   implicit 
differentiation   to obtain  the  desired derivatives.     Further- 
more,   there  may be  several   intermediate  variables  to  be con- 
sidered;   that   is  to say,   the variables we  are  after  may be 
related   implicitly  to certain  other variables which,   in turn, 
art'  related   implicitly  to  the  basic  variables  appearing   in 
the  mathematical   formulation of   the  problem.     Most  of   the 
problems   in  satellite work are  of  this  type.     As partial com- 
pensation   for   these  troubles,   perturbation  analysis   leads  to 
linear  equations. 
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APPENDIX:     ELEMENTARY ASPECTS OF MATRIX ALGEBRA 

A matrix  is  a  rectangular array of  numbers 

3 0 -10 1 

-1 5 4 0 

7 2 -2 -5 

The  above example  is a  matrix with 3 rows  and 4 columns,, 
hence a  total of   12 elements.     Two matrices  are  equal  if and 
only  if   they have  the  same  shape,   i.e.,   same  number  of rows 
and same number of columns,   and have their  elements   in the 
same  order.     The  following  three matrices  are not equal. 

2       3\      f1       3 

4     sy    ya     4 

The purpose of a matrix is to permit a collection 
of numbers to be handled as an entity.  The ability to do so 
turns out to be extremely useful. 

Addition The sum of two matrices is defined if 
and only if the matrices have the same shape  In that case, 
the sum is obtained by adding corresponding elements together 

2   3 \ + / 5   2   l\=/6   4 

4   5 /    1-6   T;   -5 J    -3    6 

Multiplication If A and B are matrices, then 
the product AB is defined only under the following condition: 
The number of columns in the left hand factor A must be the 
same as the number of rows in the right hand factor B. When 
this condition is satisfied, then the elements of the product 
AB can be computed by a procedure which sounds complicated 
but is quite easy to carry out.  The element in the m*il row 
and nth column of AB is obtained by multiplying the elements 
of the mth row of A by the corresponding elements of the nlil 
column of B  (first with the first, second with the second, 
etc.) and adding the products thus obtained. 

2 
B 

4 
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AB - 
-2+3       -4+4      -6+5 

3+12      6+16      9+20 

( 

1 

IS 

ü 

22 

BA la not defined. It will be noted tbtt the pro- 
duct of two aatricee has the «mae nuaber of rows as the left 
factor and the aaao nuaber of coluana a« the right factor. 

Victora A aatrix with only one coluan ia uaually 
called a coluan vector.    A aatrix with only one row ia uaually 
called a row vector. 

car baa 
Linear Equationa-—Siaultaneoua   linear equationa 

ily be written  in a aatric  fora. 

3x  + 2y -  I 
7x   ♦ 5y - 3 

Let C - (_  5j be the aatrix conaiatinu of the coefficienta 

of the unknowna. 

Let X -  'x| be tho coluan vector whoae oleaenta are the un- 

known*.  U-t K - Lj be the coluan vector whoae eleaenta are 

the constant teratt in the equation.  Then 

';:) (;) ■ (;) 

or CX - K. 

Unit Matrix A square aatrix is one which has the 
same nuaber of rows as coluans. This nuaber is called the 
order of the square aatrix. A very special square aatrix is 
the unit aatrix 1^ whose eleaents are all zero except for those 
on the aair diagonal, all of which are one. 
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■•cond order 

0 

0 

I 
0 

fourth ordrr 

SoMtiMB • ■ubscript !• us«d to deHignat« th« order, o.g 
I If    A    la any Matrix and I   ia a unit aatrlx of the 
•ppropriata order,  than Al  • A and IA • A. 

0 
2 

4 

3 /UO      2*0      3*0 \ 
\0*3      0.4       0.5 y 

I 2 

4 

■( 

I.0.0 0*2+0       0.0.3 

3*0*0 0*4*0      0*0*5 

1         2 3 

3         4 5 

1 nverae of a Matrix Let C 

and  lot  B  -  (_*      '3). 
- (?   I) aa before. 

-r      (5      -2 \   /3       2\ /   15-14 10-10 \ 
n "^    ' 1-7 3 /   W       5/       "*    ^-21*21       -14*15 y 

■ (J    ?) ■   '• 
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Slmllurly, CB • I  It is apparent that the Matrix B baa a 
apecial relationship to the Matrix C. B ia naid to be the 

tnverae *t    C,  and it written B - C  . Of course, it would 

be equally proper to say that C is the inverse of B, i.e., 

C -B'1. This leads to the 

it C is the inverse o 

stateasnt (C1)  - C. 

In general, whenever two square satrices H and 
M (of the saae order) satisfy the condition NM • MH • I, 
then each is the inverse of the other. Thus, 

H -  | 7   a  2| mnä 

are inverses of each other since 

a -1 0 

i 1 -1 
-8 3 1 

HM - 

8.1-8 -4«10 0-1*1 

14«2-16 -7*2*6 0-2.2 

22*2-24 -11*2*9 o-y.3 

d     o 
0\ 0         1 0         «  I 

k 0        0 1   / 

and (siailarly) MH - I 

Not all (square) matrices have inveraes.  For ex- 

ample. A - („   .] baa no inverse.  To show this, let B - 

(w   xj be an arbitrary matrix of order two. Then 
y 

AB - 
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■(i t and it  !■ cUar that AB can navtr bo equal   to I  •   1 0        Jno 
•alter what valuea ar« given  to v,  i,   f,  m,     Matrlcba without 
invoraea art aaid to bo aingular; natriooa with invtraoa art 
nonaingular.    The deteratnant of a ttquare ■STrTa  la the deur- 
■tnant wnoat eleaenta are  the Mtrix eleaenta  in exactly  the 
aaM order.    The condition for a aatrix to bo nonoingular is 
that   ita detorainant  bo difforont  froa aero. 

The probloa of finding tbo invorao of a aatrix is a 
vory  iaportant ono;  however,   it will not bo diocuaaod here. 

The ioportanco of a oatrix invoroo porhapa can bo 
oatiaated by conaidering tbo following oxaaplo. Tbo aot of 
linear equaliona 

4x ♦  y  ♦ a • 5 
7x ♦ 2y ♦ 2a • -1 

llx ♦ 2y ♦ 3a • 3 

can bo written in tbo aatrix for« aa HX • K, wboro X 
/5\ /4       1       l\ 

K •    -1     . and H -        7      2      2      i« the aatrix conaidorod •©■""■ (,; 1 i) 
•(!)• 

ply both aldea of HX - K by M'1 to obtain 

H"1 HX - IX - X - H"1 K 

which saya that the solution of the satrix equation la 

X - H"1 K - I I    I 
-1 
1 
3 

Hence x - 11, y - 1, z - - 40 la the solution of the original 
set of equations. This is easily verified by substitution or 
even by solving the equations  in some other way. 
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Tr arm POMP.  8 v—«trie  ltotrlc«g-—Th»  trannpow» of A 
Mtrlx    A    n tn« Mtrlx ODt«in«a of itttorobanKing rows and 
coluans.     V« ah« 11 denote  the  tranepoMe of    A    by    A. 

A  - A - 
(•; :) 

\3        4        6/ \3        6/ 

The transpose of a ro» vector is a coluan vector, and con« 
versely. A aatrix which Is equal to it« own tranepooe la 
«aid to be ■vaaetric. 

8-1-4    5   I I  - ?  la ■yMaetric. 
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I. IWTRODUCTIOW 

In considering adaptive method! and devices, it would 
be convenient to know what la meant by the term adaptive. If 
one attempts to distinguish the adaptive from the non-adaptive, 
be may have great difficulty in determining the dividing line, 
and more trouble in getting agreement with his conclusions. 
We consider one method or device more adaptive than another, 
to the extent that it produces satisfactory results for a 
significantly greater variety of conditions. 

Some people refer to a device as adaptive if it in 
some way detects and compensates for inadequacies in its 
operation. Others consider such a device as demonstrating 
active adaptation and refer to devices without this feature, 
but operating satisfactorily over a wide range of conditions, 
as having passive adaptation. Some people seem to consider a 
device adaptive only if its operation cannot be understood; 
we see no merit in such views. 

Evolution has tended to produce living organisms which 
are much more adaptive than the products of human technology. 
Our understanding of the adaptive principles used In nature 
is far too meager to yield easy application to engineering de- 
signs. Many able people are attempting to discover the methods 
used by central nervous systems, but the problems are still 
very formidable. 

In discussing adaptive methods, we shall consider four 
topics:  10 adaptive features of standard techniques; 2) adap- 
tive filters, designed to handle a variety of Input signal and 
noise characteristics; 3) compensation for unknown transfer 
functions; 4) compensating for noise correlated, in an unknown 
way, with the remaining input. 

II. ADAPTIVE FEATURES OF STANDARD METHODS 

Before considering complex methods design ■    i increase 
adaptivlty,   it would be well to notice adaptive tu.'^s of 
some methods very widely used but not generally <1»\    ^d 
particularly adaptive.     These are the closed  lo tMe     v ^ar 
filter,  and the bang-bang servo. 

Closed Loop Methods These methods  are       »d to c   o.  - is 
variety and complexity  in living organisms,   in      j y  %syji    i 

-  132 - 

i 

«H      •   •— 



\ 
>~     r*^ 

»mm MVMCI UMUIMV 
M«M MM    MWniN* 

of activity. One of the achievements of cybernetics was its 
recognition of the powerful use of closed loop methods in 
life processes. Technology made little use of closed loop 
methods until nearly the present day, and even now the closed 
loop is foreign to the thought of most people, even scientists 
and engineers. 

The first clear cases I can find of closed loop methods 
are in computation - Newton's methods of successive approxi- 
mation for finding a square root of a number or a zero of a 
polynomial. 

These computation methods illustrate some interesting 
features of closed loop systems. Consider computing the 
square root of 2. There is a classical method of doing this, 
involving repeated processes similar to long division but 
more complex, and if one mistake is made the answer may be 
grossly wrong. Newton's simple method involves repeated long 
division, is easily remembered, and is virtually foolproof. 
The Idea is to guess a square root, divide it into the mvnber, 
and average the divisor and quotient for the next approxima- 
tion. Thus, I guess 1, divide it into 2, an^ g^t 2.  The next 

guess Is i(l + 2) - 1.5, giving 1.3.^5 a& quotient, 1.416 for 
the next guess. At the next s*:.,;** cne gets 1.41421. Repeating 
the process would give 12-fj.gui'e accuracy. An error at any 
step but a final unchecked one would not affe:t the final re- 
sult, only lengthening the computation. This tendency to cor- 
rect evzoTS  is characteristic of closed loop methods, as Is 
the precision obtainable with simple operations, and to some 
Gxcent the nulling of the difference between output and Input. 
Since the square root can be determined even by a man who for- 
gets the classical method, the technique also shows that lower 
quality components can be used than in the open loop method. 

A closed }.oop  uethod of finding the root of a polynomial. 
f(x) =0 i* to select a trial x , evaluate f(x )/f'(x0), and 

cbocifva Kb  the nevt approximation x, •= x^ - f (xÄ)/f' (x^). When 1    o     o      o 
this method workä, it is far easier to get precise results than 
with formal algebraic methods, particularly If the polynomial 
is of more than the fourth degree. Sometimes the method falls, 
either because f'(x ) is zero or because successive approxima- 
tions diverge.  The tendency of instability of the process can 
usually be alleviated by suitably taking account of f"(x), 
which la analogous to the use of lead or derivative terms for 
stabilising servo systems.  The classical servo system was 

steam engine governor, first analyzed mathematically 
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by Clark Maxwell about one hundred years ago, leading to 
Routh'o study of stability of servo systems. 

The simplest and most widely studied closed loop system 
is the servo or inverse feedback system, sketched in Fig. 1A. 

X, - X, 

-*%— 

Fig. iA 
i 

1 ► P+T  -&-¥■ 
X, 

Fig. IB 

The output is produced by the operator F, a linear 
transfer function, operating on the "error signal" X- - XQ. 
Solving the relation 

X0 - TiX1  - X0) 

for the transfer function X0/XT, v
3 obtain 

^ 
F + 1 

From this, it is bard to see \ny  advantage for the 
closed loop system.  if for some real frequency w, F(a)), the 
system is obviously unstable; and if the system is stable it 
is equivalent to an open loop system with transfer function 
F/(F + ■) as shown in Fi?. IB. 

The closed loop system can be made stable by proper 
design, hruv-iver, ar d may be very superior to the open loop 
eystem if wa  conbider departure from the ideal aa 
or Fig. ID. 

in ^ 1C 
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1 

^HZKD- 
Fig.   1C 

\ xo 
F 

PG_ + 1 

Fig.   ID 

Assuming G a linear transfer function not known and fixed 
in advance, ve find in the closed loop system 

X0 = Z  FGCXj - X0) 

X0  FG * Z/Xj 

lx FG + 

(closed loop) 

x -   FG  x +   Z xO   JTTTT XI + PÖ + 1 

FG xo "* l^ö"1"1 Xl ' Z 

(closed loop), while 

(open loop) 

Variations in G a.id Z affect the output dlrectl; 
in the open loop system, much less strongly in the closed loop 
(npgligibly for FG sufficient!' large).  When the operator G 
is non-linear, producing distcrtion, the results are similar. 
The possibility for instability of the closed loop is Increased 
by the variations we have consirsred, but in general with proper 
design the transfer functior xrom input to output can be made 
much less dependent on these variations than is that of an 
open loop system  Wc note also that the open loop is badly un- 
stable if Z  1- produced by a constant Z^O, whereas the 
closed Xor.|j .an be made stable against such disturbances.  For 
any r^s^onable definition of "satisfactory performance" the 
clo.üd loop system is satisfactory over a much wider range of 
permissible G and Z. 

A linear filter has an adaptive feature if satisfactory 
performance is defined in terms of mean square deviations, 
since such performance depends only on the first and second 
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moments of the signal and noise, and is thus unaffected by 
any further details of the probability distribution. 

A bang-bang servo system is one in which there is a so- 
called bistable element, sometTmes referred to as a switch 
cr relayT  This element produces the maximum possible numeri- 
cal output with the same sign as the input.  In a missile auto« 
pilot, the output might be control surface position or rate. 
In such a system the gain may be very large, but positive 
instability is prevented by the effective gain of the bistable 
element being reduced as the system nears instability.  Such 
systems have been studied extensively in recent years at APL 
and elsewhere.  A practical problem with these systems is the 
excessive dissipation of power. 

The super-regenerative detector has some points of 
similarity with the bang-bang servo, and demonstrates some 
vaguely similar features. 

III.  ADAPTIVE FILTERS 

You have learned something of the problem of filtering 
signal from noise, and have learned about Wiener's filtering 
theory, giving minimum mean square error in equilibrium, for 
stationary signal and noise with known spectral densities. 
We now consider the problem of devising a filter to give 
satisfactory performance for a variety of Input characteristics, 

Polynomial Signal Suppose that the signal is a poly- 
nomial in itiroe, of degree n, but is not otherwise restricted. 
Thon the filter must follow such a polynomial perfectly to 
avoid unbounded errors.  Writing the signal as 

cl    c c 
X(t) = Cn + TT t + ,4 t

2 + . . . + -^ tn  , :0 " TT ^ " 5T n 

we see that 

c.   c2       c 

P P       P 
n-1 .   _n c  +c  , p + .... 4- c-p   + c^p n   n-1 y ]r_ 0^ 

n 
P 
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The steady state error  in  following    x    is 

[x  -x F(p))   pm0  - [X[l  - F(pj]   pm0 

A necessary and sufficient condition for zero steady state 
error  is  that 

lim i zJLM  - o . 
p-*0 p 

Writing F in the form 

a0 + aj^p + a2p + . . . 

2        ' 
b0 + bj^p + b2p + . . . 

we must have a0 = b0, a^^ = b , ..., a
n " t)n, with 

1 " F ^  
b0 + bjP + b2p  +   

If the filtering is accomplished with a servo, the forward 
transfer function G of the servo is 

F ao + aip + a2p +   T:F"fbn+1"an+1)pn+1+(bn+2"a''+2)pn+:i + - 
The forward transfer function in a servo filter must Integrate 
once more than the degree of the polynomial. 
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If the noise is stationary with known spectral density 
O(^), one can select the coefficients of F subject to the 
restriction that (a0, a., ... a ) - (b0, b,, .. b ), which 

make the mean square error, J  \ F(oo)   0(u))du>, as small as 
desired, at the expense of large transient errors. 

The problem of designing a time-varying filter without 
transient or steady-state error In following a polynomial of 
given degree, and minimizing the mean square error due to 
stationary noise, has been solved theoretically.  The solution 
of this problem In practice appears to be unduly difficult, 
and perhaps of little value in view of the artificiality of 
the assumed signal characteristics. 

The theory can be easily extended to consider signals 
consisting of a stationary component of spectral density 
$(^) plus any polynomial of degree n.  The optimal constant- 
coefficient filter is that which minimizes 

/jF|2 Ö + ll - F|
2
 «j dcii 

by choice of  F among those transfer functions satisfying 
the restrictions (a0, a,, .. a ) = (bQ, b,, .. b ).  We note 

that the filter described by Hanson Is optimal not only for 
the noise and signal spectral densities assumed, but also 
for cases in which the signal has any linear function of time 
as an additional component. 

The Minimax Filter The minimax principle, acting to 
minimize the maximum expected loss, has many advantages, 
whether one is dealing with alert enemies or intractable 
nature.  The approach jvgt mentioned Is minimax for signals 
which may include any n™ degree polynomial, but have a re- 
mainder with known spectral density. 

A useful class of signals to consider is that in which 
the spectral density <t(u>) is not known, but subject to linear 
constraint of the form 

/ ̂ (cD)a(cü) da) < 1 
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For example, If the mean square signal acceleration Is limited, 
we would have a(cu) proportional to (#*; for limited mean square 
signal velocity, a(u)) Is proportional to 'xr. 

By use of Lagrange multipliers and calculus of varia- 
tions It Is found that the mlnlmax filter satisfies 

1 - *$* J2 - Xo(ü))        oo : «* > 0 

< Xo(a))        co : 4* - 0, 

with F_4 Q the optimal  filter for $    and 0, <F     the maximum 
signal spectral density, and    A,    chosen  to satisfy the constraint 

At this point it may appear difficult  to determine the 
mlnlmax filter,  as the solution given  is far  from explicit.     For 
simple forms of noise density O(CJü),  however,   the solution is 
easy.     For white  noise,   O(cü) constant,  one can show that 

l - F 
^*   + 0 

4     2 To illustrate the procedure, consider a = cu /a , indi- 
cating limited mean square target acceleration._ Equating our 
expressions  for   ll  - F  ,,, e|   ,  and setting a^/x = QJ*   f 

4 
0 oo* 

$* + 0        oo 
3—    , aj : #*(a>) > 0 

,4 
<   -^j-    1 ui : $*(cu)   = 0 

o 
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BlvinK 

<t>*   - fQl _4_ -   1 1 O)2 <   O) 2 

o 

2 2 
o 

a)    is determined by the constraint o ' 

i - /*(«.) .(»)<, = ro oft -! ^ - ?g f0fe - 

from which      ü) o 

The minimax F can only be approximated in practice.  A very 
good approximation is similar to the filter against accelerating 
targets, mentioned by Hanson, but with a damping factor of V3/8 
rather than Jl/2.     That is, 

1 + V372 p>tn 

1 + VäTi p/^  + p2/- 2 

Estimating Input Spectral Densities Perhaps the most 
obvious method for coping with a variety of input spectral den- 
sities is to process the input to estimate the spectral densi- 
ties and choose the filter on the basis of these estimates. 
There are considerable difficulties associated with this 
approach, beginning with the problem of estimating two spectral 
densities on the basis of one time series, and suitably chang- 
ing filter characteristics based on these estimates.  With 
this method there is no check on the correctness of the adjust- 
ment, which is open loop.  The final problem is that in radar 
tracking and missile guidance the input is typically not avail- 
able - geometry provides feedback and only the so-called error 
signal is measured. 
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Adjusting Error Spectral Densities A key to closed 
loop adjustment of  the   filter characteristics  is  the relation, 
stated above,   that  for white  noise, 

1  - F. <i>,e 

Since the transfer function between input and error 

X - X 
signal is -L   = 1 - F(a)), this implies that if the filter- 

AI   
ing is optimal, the spectral density of the error signal is 

(0 + *) 1 - F 
«,© 

0 . 

Closed loop adjustment of the filter is thus possible 
by changing filter characteristics in such a way as to main- 
tain the error signal spectrum approximately flat.  In prac- 
tical applications of this concept, the error signal energy 
in a low pass band has been compared with that in a higher 

1 + 2£ T p 
r2 2 pass band.  A filter of standard form F 

1 + 2^ Tp + T"p" 
has been used, with  T varied at a rate depending on the 
ratio of energies.  This simple scheme has resulted in ex- 
cellent adaptation to varying amounts of signal and noise, re- 
sulting in near optimal filtering. 

Optimal Filterin 
By exploiting the princ 
in many cases to design 
errors in the transient 
and which can cope with 
from filtering which is 
quires stationary Signa 
adaptivity. 

g in Transient and Non-Stationary Cases- 
Tples of least squares,-it is possible 
a filter which minimizes mean square 
response as well as in equilibrium, 
nonstationary inputs.  This extension 
optimal only in steady state and re- 

1 and noise certainly increases the 

One would like to apply to this type of filtering some 
of the adaptive methods mentioned above - minimax principles, 
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estimation of input spectra, and closed loop adjustment based 
on thu spectrum of error signals. Only the first two of these 
principles have been applied.  Minimax design is considerably 
more difficult than in the case of the Wiener optimal filter, 
but has been accomplished by Busey In at least one problem. 
The basic, method of adaptation is estimation, by sampling, of 
the spectra of the noise and of signal driving functions; in 
some applications the raw material has been available.  Sim- 
plified closed loop filter adjustment based on the error sig- 
nal spectrum does not appear possible. One could use meas- 
ured deviations of the error signal spectral density to ad- 
Just estimates of strength of noise and signal driving com- 
ponents, thus using closed loop adjustment, but it is by no 
means clear that this would be superior to direct estimation. 

Limiting RMS Output Acceleration The RMS output 
acceleration oi a missile must be limited.  A system designed 
by Follin to adapt the filtering to limit RMS acceleration due 
to noise and avoid the most harmful effects of hitting accel- 
eration limits is described in Reference (1), pp. 20-21. 

IV.  COMPENSATING FOR UNKNOWN TRANSFER FUNCTIONS 

It is frequently the case, particularly in autopilot 
design, that a variable, not completely known transfer function 
is a significant part of the servo loop.  In autopilot design, 
one may attempt to compensate by varying gains as functions of 
ram or static pressure, but there will often be large residual 
variations not properly compensated.  The bang-bang systems 
mentioned earlier have often been suggested for autopilots to 
cope with these variations.  In practice, however, the auto- 
pilot is typically compensated as well as feasible for pres- 
sure variations, and parameters selected to yield compromise 
performance over the region of possible variation.  We shall 
now consider some special techniques for cases in which such 
compromise is inadequate. 

Maxiir.izlng Stable Regulator Gain The first problem 
considered is to maximize regulator gain without instability. 
This problem arose in attempting to control roll precisely in 
a missile with enormous variation in aerodynamic gain.  With 
standard techniques, the roll autopilot gain had to be kept 
low to avoid instability with high aerodynamic gain; roll 
control was inadequate with low aerodynamic gain.  The solu- 
tion depended on the fact that the resonant frequency was 
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nearly unstable, the aerodynamic changes being primarily in 
gain. Energy in this frequency region was detected, and com- 
pared with energy calculated for neutral stability.  The 
difference was used to vary the autopilot gain.  The difference 
in performance of the system, according to whether the energy 
Is measured before or after the variable gain, is significant. 
Both can be made stable and are correct In steady state, but 
the closed loop system has zero velocity lag and transient 
response independent of the critical gain. 

Sensitivity Feedback One of the least desirable types 
of autopilot, from the theoretical standpoint, is a wing posi- 
tion control system, which attempts to make wing deflection 
proportional to demanded acceleration.  Such autopilots have 
been used, however, either because of their great simplicity or 

\ because the alternative accelerometer feedback system causes 
trouble due to amplification of a missile body vibration and 
bending.  Satisfactory operation of a wing position control 
system requires adequate knowledge of the ratio of acceleration 
to wing position.  A solution proposed by T. W. Sheppard was 
to compare average acceleration with average demanded accelera- 
tion, and use this comparison to adjust the gain of the auto- 
pilot.  This approach was found to be feasible even In some 
quite complicated cases.  It was also found, the hard way, 
that sufficiently shoddy components for changing the gain could 
Invalidate any performance analysis.  There is still a require- 
ment for compact, reliable, reasonably precise gain-changing 
devices for use in guided missiles. 

Tracer Signals In the laboratory, a common method for 
determining system response is to Insert signals at the Input 
and observe the output. The use of this method in flight 
with autopilots could furnish useful information on airframe 
and other responses.  Tracer signals of various sorts have 
been proposed for various purposes, but are usually rejected 
because of Interference with flight or strong dependence on 
details of dead space, friction, etc., when too small or too 
high frequency to disrupt normal missile operation. 

Tracer signals can be used effectively in many systems 
which function intermittently.  As an example, they can facili- 
tate adjustment of gains of pulse radar IF strips. 
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ABSTRACT 

Classical optimal filtering methods have been ex- 
tended to a large class of problems In which the Input has 
Incompletely specified characteristics. By mlnlmax princi- 
ples the optimal filter and the best Input are determined. 
Two problems of time-varying filters are considered, first 
the optimal settling of filters to steady state and second 
the design of adaptive filters which adjust to varying or 
unknown environment. 
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INTRODUCTION 

Linear filtering theory Is largely based on the 
fundamental work of Wiener, "Extrapolation, Interpolation, 
and Smoothing of Stationary Time Series," 1950, which in 
many respects paralleled the independent work of Kolmogorov. 

It may be well to review the problem considered by 
Wiener.  He assumed that there was available the entire past 
history of a time series consisting of signal plus noise pos- 
sibly correlated with the signal, that all processes involved 
were stationary and indeed ergodlc to the second order, with 
known auto-correlation and cross-correlation functions.  He 
wished to determine the realizable linear filter to apply to 
the signal in order to minimize the mean square difference be- 
tween the output and the message translated by an assigned 
positive or negative time interval.  Wiener solved this prob- 
lem by using variational analysis on the weighting function to 
obtain an integral equation, then by using subtle Fourier anal- 
ysis to solve the integral equation.  Multiple time series were 
handled by an extension of this technique. 

It will be noted that the problem solved by Wiener 
contains two restrictions beyond the assumptions:  first, op- 
timization is restricted to linear functions; second, the loss 
function whose expectation is minimized is the squared error. 

In attempting to extend filtering theory, it is 
appropriate to modify or eliminate various of these assumptions 
or restrictions. Various investigators have widened the field 
of permissible filters and dealt with alternative loss functions 
Nonstationary processes have been considered; some trivial ob- 
vious results have been obtained, and some adaptive filters 
appear suitable, but little has been done that is both signifi- 
cant and rigorous.  In this paper we shall remove the assump- 
tion of complete knowledge of the correlation functions and 
also indicate some minor extensions of the basic theory and 
techniques, consider the optimum filter with only portions of 
the signal history available and attempt to classify the types 
of adaptive filters, 

II.  THE FREQUENCY APPROACH 

The reader of Wiener's work will note that although 
his basic problem is formulated in terms of time series, 
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correlation  functions,   and weighting  functions,   his solutions 
are expressed in  terms of spectral  densities and transfer 
functions.     It appears reasonable,  consequently,   to set up 
the problem in the  frequency domain.     From the elementary 
properties of spectral densities,  we have 

(2.1) ■/{!■ 
ioxz 

- F M  + -] du) 

where o is the mean square error, F(a)) the filter transfer 
function, a    the time translation, and M and N the signal 
noise spectral densities, so normalized that the signal power 
is jM(a)) da).  All integrals are taken over the entire real 
frequency axis unless otherwise indicated, and the dependence 
of the variables on u> will usually not be indicated.  It is 
assumed here and henceforth that the signal and noise are in- 
dependent; this entails no loss in generality in the classi- 
cal developments, where M can be regarded as the sum of the 
signal and signal on noise spectral densities, N as the sum 
of the noise and noise on signal spectral densities. 

It is useful to consider the spectral densities as 
resolutions of the signal power into a continuum of frequency 
components.  From this standpoint it is clear that ergodic 
properties are not relevant to the problem of linear filtering, 
although the optimal filter may be nonlinear if the second- 
order characteristics are not ergodic. 

2 
Before applying variations to minimize o by choice 

of F, let us indicate some extensions of this relation to 
problems beyond the original one.  In the first place it will 
be noted that Eq. (2.1) is valid even though the power of sig- 
nal, noise, or both is unbounded; it is not necessary that the 
correlation function exist.  It will be seen that this may be 
of importance. 

A trivial generalization of Eq. (2.1) is to replace 

e   by the Fourier transform Y(CD) of any desired linear 
operator on the signal, e.g. by ia) for the derivative.  Thus, 

isa 

(2.2) ■/(i Y - F M +  F -] d'JO. 
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Another easy extension Is to the case in which it 
is desired to weight errors unequally for various frequency 
components.  A sjanmetric non-negative function W(ü)), so 
normalized that f W(a>) da) = 1, could be inserted to obtain Jw, 

(2.3) -/[I- M +  F ■) W da) 

which is of course formally equivalent to Eq. (2.2) with M 
and N  replaced by MW and NW. 

2 
The next extension is to minimize a    subject to a 

restriction on the mean power of the output or some other linear 
function of the output.  As an example, if o^ must be minimized 
subject to the restriction that the output acceleration power 
must be less than ß,   i.e., that 

(2.4) 
/ 

(M + N) 
2     4   *     to cu ax S ß , 

we  should minimize 

(2.5) + \ß /(I Y  -  F M  + N   +  X   (M   + N)     F, **} da), 

and select     \    to satisfy Eq.   (2.4).     In certain cases, 
especially with non-gaussian  processes,   restraints such as 
Eq.   (2.4)  may preferably be  applied only  to  the  noise.     In 
this case   the  integral   to be  minimized can be  reduced  to Eq. 
(2.2)  by suitable  definition  of    N.     This   type  of  side condi- 
tion can be   introduced  formally as  here,   or can  be  used  in 
the   definition of  the class  over which    F     is  optimized. 
Several  simultaneous  side conditions can be   introduced  in  the 
same way. 

The  final extension   to be considered   is  to replace 
the class  of relizable transfer  functions by other classes, 
say Jf   *   as  appropriate. 
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III.  MINIMIZATION OF o2 BY F C ^ 

We now consider the selection of F within the 

class 5p to minimize a   .     An increment J or F will produce 
2 

an incremental o of 

(3.1)    Oj + F - Op = Jl j|2(M + N) da) +   f J     UM + N) F - MYI do, 

a relation obtained by noting that every transfer function has 
an even real part and an odd imaginary part. 

The transfer function  F will be optimal in Sf* if 
the right-hand integral of Eq. (3.1) is non-negative for every 
J such that J + FC5rand f|J   ^M + N^ da> is finite- 

The absolutely optimal  F  is, from Eq. (3.1), evi- 
dently 

(3.2) F MY 

The optimal realizable  F  is given by 

(3.3) 
(M + N)+ 

MY 
(M + N) 

where   the  new symbols  denote   factorization  and decomposition 
of  a  meroraorphic   function  as 

(3.4) H ^ H+ H'   + H+   + H 
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H    being analytic and without poles or zeroes  In the lower half 
plane,  H" the conjugate  of H+;  H    and H_  have  no poles  in  the 
lower half plane and upper half plane,  respectively.    Polynomial 
terms of    H    appear  in  H+.     If II + N  is  not   factorable,   *R  - F0. 

To check the validity of Eq.   (3.3),   substitute  it  in 
Eq.   (3.1),   obtaining 

(3.5)    ^.^-"^ r|j|2  (M + N)  da> 

+ /l  (M  + N) MY 

(M + N)' 
da); 

the  latter integral  is zero, by contour  integration over the 
upper half plane,   for    J    sufficiently convergent,   i.e.,   for 

/I J       (M  + N)  do) finite. 

As an example let us consider the spectra 

(3.6)   M - O/tü N - ^  ,  with Y - 1  , 

the  absolute optimum   (realizable with  infinite delay)   is  then 

(3.7) F0(p)   - 
1   + 4  pVO 

and  the optimal  realizable    F    is 
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(3.8)    FR(p) -  1 t {1  VW»1" ™  . 
R     1 + /2 p (^/0)

1/4 + p
2 (0/0)1/2 

This transfer function is the zero velocity lag loop with 0,7 
critical damping which will be discussed below.  The corre- 
sponding errors are 

(3.9) 

a2  -   .3535 03/4 ©1/4 

4  -  1.414 03/4O1/4 

A very useful relation can be obtained by manipula- 
tion of  the second integral of Eq.   (3.1) as follows: 

(3.10)       Jj[iU+V)F- MY]     da)    "/^/T  [(M  + N) | F|
2
 - IIVF]  dCD 

-   fl/f  l(M ■»■ N)     F 2  - ReMYF -  Im MY?]     da) . 

This  integral   is zero  for sufficiently convergent 
realizable     J    if 

(3.11) (M + N)   = Re MYF + Re: Im MYF  , 

where Re:ImH represents the real complement to the given 
imaginary function such as to render H realizable. 

relation 
This can be more  formally expressed by  the Bode 

-  152  - 



APPIKD PHYSICS LAftOtATOtY 
Mvn IMMO «ATOM« 

(3.12) 
w   (MYF)     dw 

(M + N) = i^ /,   ^ : ^   ■ where i, indi- 

cates disregard of poles at w • ± a), provided MY docs not di- 
verge for large D. 

Solutions of Eq. (3.11) for simple forms of MY are 
readily obtained; for example, 

(3.13) Fj      (M  + N)   -   /   MY,   if MY  is constant 

MYF  (ia),   if MY - -^- a 

a    +ja 

MY + k, if MY = co + c2 au2 + c4 D
4 

[k determined by / log  FR  d  "01 • 

By symmetry under the interchange of MO N and F<-> 
(Y - F) we obtain 

(3.14) Y - F, (M + N) = NY, if NY is constant. 

For ordinary filtering, with Y = 1, these define the optimal 
spectral density of the error signal in a servo type filter, 
and can be used to construct an adaptive filter which will be- 
come optimal for any signal spectrum. 

I  12 Expressions for FD   , based on Eq. (3.71) are 
I *• I 

quite useful in optimizing filters with side conditions such 

as limited mean square output, since the expressions for  FR 

are frequently more convenient to use than those for FR in 
determining the Lagrange multipliers. 
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IV.  MINIMAX FILTEi>ING 

Let us consider now some typically statistical prob- 
lems, in which one has incomplete knowledge of the spectrum 
of noise, of signal, or both.  We discuss below adaptive quasi- 
linear filters which appear suitable for cases in which one 
ectrum is completely unknown, and which can cope with cases 
volving a spectral density of known form but unknown magni- 

ade. 

The problems considered by Wiener were essentially 
probabilistic, i.e., the system is completely described in 
terms of appropriate probability measures; the problems we are 
now considering are statistical, in that we are dealing with a 
system defined by probabilities, some of which are unknown. 
Our problem in this case is one of statistical estimation of 
a function of the signal.  Our estimating function should be 
optimal in some sense.  One of the most logical criteria for 
an estimate, developed by Abraham Wald, is that it minimizes 
the maximum expected loss; that is, each filter is assessed 
on the basis of the expected loss with the possible system 
which is least favorable for the given filter, and the optimal 
filter is that filter for which the maximum expected loss is 
minimum.  This formulation of statistical decision theory is 
very similar to two-person game theory, independently de- 
veloped by von Neuman.  We adopt this criterion and consider 
as optimal the minimax filter, with the loss function propor- 
tional to the squared error.  In a completely prescribed sys- 
tem, the minima?: linear filter is the Wiener optimal linear 
filter. 

Minimax theory offers a strong justification for the 
use of linear filters.  If the distribution functions of the 
processes are not known but the class of possible distributions 
includes Gaussian distributions, the minimax filter is linear, 
since with a linear filter the mean square error is independent 
of the form of the distribution function, and with a non-linear 
filter the mean square error exceeds that with a linear filter 
when the processes are Gaussian. 

Typical problems encountered in practice involve 
situations in which the noise process is known to be limited in 
power, in mean square velocity, etc.: 

(4.1)     j N d-J  = Co, TN ^2  d^ = C , etc 
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Such restrictions  can be  put   in the general   form 

(4.2) /N © duo =  l, 

where  0   is  a  prescribed symmetric   non-negative  function,  K a 
prescribed positive number.     It can be shown straightforwardly 
that   the variation  in o^  due  to variation    n     in    N     is a  non- 
negative   function of    n,   zero  if  and only  if  n  -  0,   plus 

(4.3) 
/" M.N -   X  0 doo, 

where FM N Is the optimal transfer function with 11 and N, 
and X is'a Lagrange multiplier to be selected to satisfy Eq. 
(4.2).  From Eq. (4.3) and the fact that n + N must be non- 
negative, it follows that the maximum N  is N given by 

(4.4) M.N - x e JJ:  N> O o 

< X 0 ja:  **- O o 

This result is easily generalized to the case of 
several inequality restrictions 

(4.5) :J /N0J 
djo - 1 (j - 1,2..., k) 

with the K  not specified but > 1. 

The maximin N  is N  satisfying o      ' " 
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(4.G) M,N 1 xi "J ej a):     N    >  0 o 

^ 2 'J KJ 0J JU:     N     = 0 o 

with  the  X   ,   K.   satisfying Eq.   (4.5)   and also 

(4.7) \     (K     -   I)   - O. (j   -  1.2....   k) 

Similar results are obtained for cases in which the 
signal spectral density is subject to one or more equalities 
or inequalities, and where both spectra are limited only by 
such restrictions. 

The results Just given have derived the maximin 
spectrum or spectra, but our object is to determine the mini- 
max filter.  For this purpose we now prove that 

lit»   Max 
F     N N.F Max  Min 

N    F N.F 

ant that the minlmax  F  is F 
that 

M.N To prove this, we observe 

2 2 Min   Max   n     F < Max   n„ „ 
F     N      ' 'M.N o 

Miixf )N|FM  M  I 2   +  M 
N j  |    I    M  No| 

Y  - F M,N o 
ox» 

■2>J */" Y  -   F M.N, 
2 2 d-u =  Max     Min     o„  _ 

N F N'F 
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W«; have thus shown that 

(4.8)     Min  Max  o? - < Mr:  Mln  oi? _, 
F    N     N'F   N    F     N-F 

But by the fundamental theorem of game theory, 

(4.9)     Min  Max   o«   v -   Max  Min  0
N V 

F    N    N.I
1
    N    F    N,r 

from which it follows at once that the "game" is determined, 
"vith the minimax filter being Fu „ and the maximin N being 

O 
the N  previously defined. 

The basic result of the minimax approach to optimum 
filtering is that the errors depend in the second order en the 
spectra and the form of the filter.  As a consequence if a 
suitable approximation to the optimal form is used and the 
parameters are adjusted properly the resulting system will be 
satisfactory. 

V.  TIME VARYING FILTERS 

Let us now consider the problem of filtering when 
only a finite and perhaps fragmentary history of the signals 
is available.  In this case the filter parameters are varia- 
ble, and we must assume a particular form of transfer func- 
tion.  In general the steady state optimal filter with varia- 
ble band-pass and damping is best.  We may attack this prob- 
lem in the time domain by considering the rate of change of 
the filtering errors and adjusting parameters to maximize 
the rate of decrease of the error. 

For a linear system the tracking accuracy may be 
described in terms of the variances of the tracking error 
and error rate.  As an example let us consider the simple 
zero velocity lag feedback system in Fig. 1.  The input 
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consisting of signal and noise x(t) + x (t) is at the left, n 
the output, x , at the right.  The equations of the system 
are 

dxc (5.1)     __£ = ^ + b (X . Xc) + b Xn 

dx- c a (x - x ) + a x dt c'     n 

Note,   in explanation  of   the  notation,   that  x-   ^ x 

Actually  the  principal   interest  centers  upon the 
errors e     = x - x   ,  € •   = x  - x.   .     In the second diagram is c c       c c 
shown   the error  loop equivalent  to the original signal  loop. 
The  signal     x    now appears  as  an acceleration   input  to  the 
first   integrator.     This   is  a significant  advantage when,   as 
is often the case,   the acceleration spectrum of  the signal  is 
known . 

So far a, b are unrestricted.  If x and x both have n 
flat spectral densities 0, ^ respectively then this filter is 
optimal with the values of a and b previously derived. 
The present purpose is to extend the optimization to the 
transient period.  The gains a, b in this case are time 
functions and the resulting system, while not necessarily 
optimum among all possible systems, is the best obtainable 
with a given structure.  The key to the solution lies in setting 
up the differential equations relating the variances and co- 
variances of the integrator outputs e , e- .  Write Eq. (5.1) 

in terms of the errors and express the solution in the neighbor- 
hood of  t  as a power aeries in At.  Terms beyond the first 
degree in \t  are not required.  The result is most easily ob- 
tained by direct use of the second figure 

t+'t 

(5.2)    cc = e   + c^   H - b c   .\t  + b  f xn dt + 0 (it2) 
o    o o 
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t+At t+At 

(5.3) c=€-ac       At+/       xdt+af      x    dt+O   (At2) 

t t 

Square Eq. (5.2) and average over the ensemble of 
inputs x, x .  Then denoting resulting variances and covari- 

ances by'? '£•    't    • respectively c       c       cc ' 

(5.4) ^c   ~ ^c      =  2 ^c6     ^   -  2  b ^c     At   + b2  «i  At   +  O   (At2) 
o o o 

where 0  is   the spectral  density   (assumed constant  of  x   ). n 
The term 0 is derived as follows:  4 (a) is the autocorrelation 
function of x . n 

t+At t+At t+At       t+At 

</     xn  dt   /     xn dt>    "   / /     <xn   (u)  xn   (v>>du dv 

At      At 

f      f       ei  (u - v)  du dv 

o      o 

At      At 

=  Ü    f C       6 (u   -  v)   du   dv 

o o 

4 At 

f 
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Dividing Eq.   (5.4)   by ^t  and  letting .it->0, 

.A 

(5.5) J^ .  2 ^   -  2 bfc   + b2 

is   flat 
Similarly,   assuming  the  spectral  density 0 of  x 

dt6 A 2 (5.6) _£ =  _2  a A a^  ^  _ ö 
dt cc 

(5.7) ^-?.   -arc  -b?c.   +abei 

These variance and covarlance equations may be used 
to adjust the gains to get optimum tracking.  This will surely 
result if functions a, b can be found making the right hand 
members of Eqs. (5.5), (5.6), and (5.7) simultaneously minimum 

for this will make 'e  and t*-   decrease at maximum rate.  This c c 
simultaneous minimum does occur and at 

t   • ^ 
(5.8) a   =  "S2"   -        b   " -^ 

as can be seen by setting the partial derivatives of all three 
ri^ht Members with respect to a  and b equal to zero.  The 
resulting system has optimum tracking and rate of settling and 
the variances facilitate evaluating performance of the system. 

This optimization of the transient behavior has a by- 
product-the known steady-state result.  For in this case the 
left hand members of Eqs. (5.5), (5.6), and (5.7) vanish when 
usint; Eq . (5.8) 
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(5.9)    a =(5    •   b = v'"2(5]    '    (steady-state) 

For simplicity the input acceleration spectrum has 
been assumed flat.  There are several ways to deal with non^ 
flat spectra.  For example it can be shown that for a general 
0 (x) with autocorrelation function d(t), O in Eq. (5.6) would 

t 

replaced by 2 j W (t, T) ci (t - T) dx.  Here W (t, T) is the he 

o 

impulsive response of t ; to x.  Or a flat spectrum could be 

be filtered by Ö (u))  iG(jo) = 0(x) 0(JL))~1 to give a signal 
of spectrum 0(ja) into the integrator.  This last is particu- 

larly simple in the Uarkoff case 0 - —«—^—K    whore 0+ •   
C*  + -JT C  + JJO 

The  original error  tracking   loop could be modified as shown  in 
the third figure thus  introducing one additional   integrator. 
Proceeding as before six variance  - covariance equations re-., 
suit.     In general with a system involving     n     integrators   (n 

order  differential  operation)   there will be  —^—n     variance 

equations although generally some are  trivial. 

The  transient  filtering problem has been discussed on 
the basis  that  the  noise  and signal spectra  are  known.     This 
leads  to a solution of   the  optimum settling  time  of  a  filter 
and to  the best combination  of  parameters even  if   the  transfer 
function   is  not optimal.     If   the  noise  and signal  spectra are 
not  known then  the  above   technique of  computing  variances 
fails  and other methods must  be used.     If  sufficient  time   is 
available   it   is possible  to measure the spectral  densities 
and use   the variance methods  but   less cumbersome  methods  are 
desirable. 

VI.      ADAPTIVE  FILTERS 

The discussion which  follows will concern adaptive 
systems,   i.e.,   those which  change parameters or  adapt  as  a 
function of   the environment.     In general   the  rate  of change 
of  parameters  is  slow compared  to  the  data  rate  of   the  input 
so  that   they may  be  treated  as  time varying  rather   than 
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non-liaear systems.  If the response of the adapting loop is 
fast, paper analysis is impossible and simulation techniques 
are needed.  In designing an adaptive system it is necessary 
to consider the response and stability of the loop as well 
as the source of intelligence to be employed in adjusting 
the system. 

Adaptive systems may be classified according to 
several distinct criteria as follows: 

I  Object of adaptive loop 

a.  Setting of gain or transfer function 

b  Adjusting output level or other parameter 

c. Adjusting stability margins of main loop 

2. Source of Information 

a. Measurements of normal input or output 

b. Injection of tracer signal outside band 

pass of normal input 

c .  Time sharing tracer signal 

d. Amplitude or phase of self excited oscilla- 

tions 

3. Type of system 

a. Open loop, l.e , system adjusted according 

to measurements on the input 

b. Closed loop, i.e., system measures signal 

or tracer output. 

In addition all adaptive systems may be classified 
according to standard servo practice as electrical or mechani- 
cal, digital or analogue, etc., but such distinctions are not 
desirable for the present purpose.  The class of adaptive 
servos ranges from standard AGC and AFC loops to servo driven 
autotransformers for voltage regulation to more sophisticated 
optimal filtering loops. 

Let us now look at examples of the three different 
adaptive systems listed under criterion 1.  These are the 
zero velocity lag tracking loop mentioned earlier, a similar 
filter with limited output acceleration, and a system for 
maintaining a servo loop as tight as possible without in- 
stability when the loop gain is slowly varying or not known 
accurately. 
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Figure 2 shows a simple servo where only the gain 
is varied and the loop gain is to be maximized (possibly to 
minimize the effects of a variable back torque from the load) 
The unknown gain is assumed to be in the servo.  The band- 
pass filter passes the frequency at which instability is ex- 
pected and this signal is detected and used to adjust the 
gain to damp the oscillations.  Let X  be the gain at which 

the loop is neutrally stable.  Then the rate of buildup or 
decay of oscillations is proportioned to i^/^0  -  !)•  The 
amplitude, z, of the oscillations satisfies tne equation 

(6.1)    z - k, z(X -   X   )/X    - k, zrt (X - X )/X„ 1       o  o   1 o      o  o 

If   the signal   is  picked off  at  point  A,   the  control  equation 
is 

(6.2) X  -  - g   (s)   (z   - z0), 

while  if  it  is picked off  at  point B,   we have 

(6.3) X  = g   (s)   X   (z   - zo) 

-  Xo g   (s)   (z  - zo) 

Combining these equations we find that in case A 

(6.4)      Ts2 + -V^ B (s)l   x " - ki zi xo ß (8) (r1] 
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while for case B 

(6.5)     is  + k, z, g (s)   X  = Ic, z, g (s) A, .  Äj B v»/   A - Aj Zj B v»> AO 

While both systems can be made stable, and both have 
A - X  as the steady state solution, the transient response of 

the adaptive loop depends on the required gain in case A. 
contrarily, in case B  the transient is fixed and the system 
has zero velocity lag with respect to variations of X   .     If  X 

o      o 
increases linearly with time then X  =  X    but z > z, with z - 0. ' o 1 
Thus a closed loop adaptive system is better here.  These state- 
ments arc subject to modification if there exists dead space or 
friction It. the main or adaptive loop; actually simulation is 
then required to determine the behavior. 

If the main loop shaping network f(s) is properly 
chosen then a very good servo response is obtainable but in- 
put signals at the loop resonance frequency must be avoided. 
This design is especially useful for a regulator, i.e., when 
x   0 and the servo is designed to counter the back i rque. 

Figure 3 is a diagram of an adaptive filter in which 
the RMS output acceleration due to noise is limited.  The 
adaptive loop is very simple and, with the gains as shown, 
has a response which is independent of input noise spectral 
density.  This can be seen from the fact that the error in RMS 
acceleration is proportional to >X/X  and hence the control 
equation is 

(6.6)     Ä ~ a. 

if the filter g(8) is unity.  If it is desired to have the 
adaptive lo 
constant th 
equation is 

adaptive loop time confe'tant proportional to the main loop time 
constant then the X  must be replaced by A2 and the control 

(6.7)     A ~ A   A . 
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If the noise is f 
is possible to measure its 
filter and compute the RMS 
function of the filter.  It 
loop method of adjusting \ 
loop stability problems it 
ing  A..  If the noise does 
filter f(s) will not be opt 
of the system will deviate 
but errors in X     may give 
formance due to violation o 

lat or of known spectral shape it 
amplitude at the input to the 
acceleration from the known transfer 
is then possible to use an open 
but. while this eliminates adaptive 

does not have the accuracy in adjust- 
not have the expected spectrum the 
imal in shape, however the performance 
in the second order if  X  is correct, 
first order effects on system per- 
f the constraints. 

While this loop is very simple we have discussed it 
because some simulator studies of the effects of non-linearites 
may be of interest.  The non-linearity concerned is that due to 
a fixed limiter inserted in the loop as shown at the bottom of 
Figure 3.  The analysis was carried out using various fixed 
values of  X and noise rather than closing the adaptive loop 
as above.  Figure 4 shows the results obtained.  The solid upper 

2 
curve shows a  vs  X  for an unlimited system.  If the limiter 
is inserted then the dashed curve is appropriate; the minimum 
is only a few percent above the optimum at the minimum.  The 
lower half of the figure shows the effect of the limiter on 
the output icceleration before and after the limit.  The result 
of the simulator study was that the minimum in o^ occurs almost 
exactly at a 1 L, hence the simple adaptive system just de- 

scribed forms a very sophisticated tracking loop. 

Figure 5 is a block diagram of the zero velocity lag 
tracking loop in which we do not know the signal or noise 
spectra although we assume the noise to He nearly flat.  In 
order to adjust band-pass we may use the result, Eq. (3.13) , so 
that the error signal spectrum is proportional to the noise 
spectrum when the loop is optimal.  While the transfer of the 
loop is not correct if the noise is not flat or if the signal 
is not that assumed, it is still true that adjusting the loop 
band-pass so that the error signal spectrum is flit is nearly 
optimum. 

fjU), 
loop, 

main 1 
shape 
runs s 

should 
quency 
of the 

The method of measurement is to use two 
a low pass filter covering the band-pass of 

and f0(s) covering an equal band-pr.ss just a 

oop and take the ratio of the outputs. The 
of such filters has not been determined but 
how suitable performance for simple filters. 

have a finite band-pass because the actual 
noise is unimportant; only the n ise in the 
main loop band-pass is important. 

filters 
the main 

bove the 

optimum 
simulator 

f2(s) 

high fre- 
vicinity 
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In the loop as shown the obvious scale factors have 
been inserted to make the response frequency - relative to 
the main loop - independent of the value of the spectra.  The 
filter ^oCs) determines the band-pass of the adaptive loop and. 

in order to have minimum RMS errors in A, f^(s) must be 
adjusted so that the lags in following changes in the spectra 
are balanced by the fluctuations in the noise out of the 
detectors.  From this criterion we can determine the adaptive 

loop band-pass as Jü ^Vf ' wliere l/T^^/b is the effective 

time constant relating to the change in input spectra.  How- 
ever, if step changes in the input signals are contemplated 
then the adaptive loop should be as tight as stability dictates 
and the gain settings in the figure are correct.  The ratio of 
the filter outputs minus one is proportional to ö\/\  so that 

(6.b) 

and the band-pass in the adaptive loop is proportional to that 
in the main loop. 

In all of the adaptive systems considered it is easy 
to specify the gain changes to keep the loop dynamically similar 
for different inputs, but it is harder to specify the exact band- 
pass or the shape of the filters in the adaptive loop.  It is 
always possible to maUe a linear stability analysis, if the in- 
puts are fixed, and the noise out of the squaring circuits can 
be computed for Markovian noise but no general theory of optimal 
design exists. 

There are many ways of instrumenting adaptive servos 
which give adequate performance and the effects of non-linearites 
and complexity must be considered carefully if a satisfactory 
design is to be obtained.  For example the use of smoothed 
absolute value instead of RMS leads to only a few per cent more 
noise in the adaptive loop.  As another example the division 
in the last example may be replaced by a subtraction if the 
dyiiamic range is not too .^reat.  At low input signals the loop 
11; then sluggish but the tracking error is small due to the 
small input. 

Underlying the design of adaptive servos is the 
assumption of relatively slow, or only occasional, changes 
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in environment.     I*   rapid changes occur a different main  loop, 
possibly non-linear,   is required.     Adaptive  loops may be called 
quasi-linear but because they are non-linear no general method 
of analysis has emerged to determine optimal performance as a 
standard of comparison with specific   loops,  or to check  in- 
strumentation approximations. 
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Fig.   1     ZERO VELOCITY LAG FEEDBACK SYSTEM 
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OPTIMAL FILTERING IN MISSILE GUIDANCE 
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I.  INTRODUCTION 

The guidance and control system of a guided missile 
consists of three basic elements:  a guidance intelligence 
system, a guidance computer, and an autopilot.  The guidance 
intelligence system measures in a suitable reference frame 
work the position of the missile relative to the target, the 
autopilot, causes the missile to execute maneuvers as com- 
manded, and the guidance computer commands maneuvers on the 
basis of inputs received from the guidance intelligence sys- 
tem.1 

The guidance computer cannot simply command an ac- 
cfleration proportional to the measured error in missile 
position, as the resulting change in missile position would 
affect the measured error so as to result in harmonic oscil- 
lation of the missilt.  This can be corrected by adding to 
the command a term proportional to the error derivative, damp- 
ing the oscillation.  With proper choice of the constants, such 
a guidance computer may cause the missile to respond very 
faithfully to the inputs from guidance intelligence.  This is 
net typically sufficient to result in the smallest possible 
misses, however, because the guidance intelligence is not 
perfect.  In addition to genuine information as to error of 
missile from target, called the signal, the guidance intelli- 
gence gives spurious information called noise.  There are 
many sources of noise, including internal noise in the sen 
ing device, atmospheric effects, and scintillations of the 
target.  The missile should respond to the signal but ignore 
the noise.  The problem of optimal filtering in missile 
guidance is the problem of achieving the best compromise be- 
tween these conflicting requirements. 

It is sometimes thought that the noise effects are 
of minor importance.  Consider a very simplified situation 
in which the only elements are acceleration capability of the 
target and the level of noise which is "white", i.e., uni- 
formly spread over all frequencies.  Simple dimensional an- 
alysis shows that the minimum mean square miss is proportional 
to the 4/5 power of the noise spectral density, and a little 
more effort shows that 80 per cent of the minimum mean 
square miss is due to following the noise. 

1) Presented at Indianapolis Meeting, AAAS,   28 December 1957. 
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The very similar  problem  in directing antiaircraft 
gunfire was one application considered  by  Wiener  in  "Extra- 
polation,   Interpolation,   and Smoothing of  Stationary Time 
Series"      Wiener  considered signal and  noise ensembles 
which were stationary stochastic  processes  and determined 
the realizable  linear   filter which minimized  the mean square 
miss.     If  the signal  and  noise are uncorrelated,   the char- 
acteristics of  interest  are the power  spectral  densities 
S(u)  and N((J)   representing the resolution of   the mean square 
signal and  the mean  square noise   into a.continuum of  fre- 
quency components.     Thus  E  [signal]2  - / S(u)   du.     The  linear 
filter  is defined by   the  transfer  function  F(u)  specifying 
the scale  factor and  phase shift  applied  to each  frequency. 
The mean square error o2  is given by 

(1) o2  =   f[ I 1   -  F | 2 S +    |F|   
2N ]   du 

since j 1 - F| is the erroneous factor applied to signal com- 
ponents and |FI the erroneous factor on noise components. 
To bo realizable, the filter must operate only on inputs 
from the past, not on future inputs.  The realizable F min- 
imizing o* was found by Wiener to be 

(2)      V") •- iS(u) r^7r f e'iut'it 

/ 
-OD 

S(u)   eiut  du 
(S(u)   +   N(u)]~ 

In this  expression,   S(u) +  N(u)   is   factored   into  (S  +  N) 
(S +  N)~,   (S  +  N)+  being analytic  and without  poles or  zeroes 
in the  lowei-  half-plane, with  (S  +   N)~   the complex conjugate 
of (S  +  N)+. 

These  results  lu.ve been applied  directly to missile 
guidance problems,   but  have some serious  shortcomings.     The 
most  obvious  defect   is   chat  the spectral  density of  the signal 
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is  assumed   1ixed  and  known       Since an  enemy   interested   in 
increasing  our error  may select   the signal  characteristics, 
it   is   reasonable  to assume  varied  techniques  chosen   to im- 
pair   the  performance  of  our   system 

II FILTERING  PROBLEM 

The problem of  filtering  is  essentially  one of 
statistical  decision.     Statistical decision  theory   in  this 
problem,   whether we are  fighting a conscious  enemy  or  im- 
placable  nature,   calls   for  selecting  the  filter   for  which 
the o2  maximized over  possible  signal  spectra   is  a  minimum. 

In  view of   the complexity of  Eq.   (2),   the  deter- 
mination of   this minima:;  filter  appears  difficult       The 
minimax   filter can  be determined without   too much   trouble, 
however,   by   the use of   indirect   approaches.     The  first  step 
in  solving   the problem  is   to   investigate  the maximin  S(u), 
that   is,   the S(u)   which  maximizes  the minimum achievable o2, 

linear 
of the 
bounds 
limits 
mean square 

2 

The possible signal  spectra will  be  limited by 
restrictions,   limits  on   the power  of   linear   functions 
signal.     An airplane,   for  example,   will  have  some 
on   its  position,   velocity,   and acceleration,   due  to 
on   its course,   propulsion,  and structure.^   If  the 

acceleration cannot   exceed a2,   thei 

du<  a" 
of   the 

In  general, 
form 

?n / S(u)  (j4 

there may  be n such  linear  restrictions 

(3) kj JsCu)   ÖjCu)   du   =   1   , 

with  k   >   0,   S(u)   >   0     9  (u)   >   0   . 
J - J - 

For  example,   with   limited mean square  velocity and 
acceleration,   we might   have   Q.   ■ u2,   9    = u4   . 

The  maximin  S(w)   is   that  S(u)   subject   to   these con- 
straints   which  maximizes 

(4) mFn<N-/[(FS.N|   'H'-'VNI28]    d" 
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Introducing the constraints by Lagrange's method, 
we wish to maximize 

(5) mi 
S.N F a.« J       J    J -' J 

)   du 

/{KNI2-[ 

^ke      sf   . 
J j jJ     J 

1   -   F S,N 
.1 

For any increment ._> on S  the resulting increment on I is 

(6) ÖI ■/j  FS + a  N|    N +  1 - Fg + a,N 

(S + A)|  du 

2 1 " FS.N|  (S
 
+
 ^} dw 

-/[|
F
S.N| ^ 

du 

For a maximin S 
for all permiss 

The f 
S + a and N, th 
tra and nonopti 
is nonpositive 
tegral. This i 
ficient of a is 
and nonpositive 
Since S(u) > O, 
> 0 but are non 

(u) it is required that o I be nonpositive 
ible A. 

irst integral is the min 
e second integral and o^ 
lal F, so the diffeience 
Thus 51 is not greater 

ntegral will be nonposit 
ze*o when a A of either 
when any permissible A 
permissible ^ are of ei 

-negative when S(u) - O. 

imum a given spectra 
given the same spec- 
of the two integrals 
chan the third in- 

ive if the coef- 
sign is permissable 

is non-negative. 
ther sign for S(u) 
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Thus   the  maximin  S(u)   is  S   (u)   such  that 

(7) 1  -  F So.N 
1 
J j,tjej 

Y 
^r1 ^ k .6 . 

<     J J  J   J 

w   :   S   (u)   >  0 o 

u   :   So(u)   -  0, 

with the ^j chosen to satisfy the given constraints.  The 
resuli just obtained is unsatisfactory in that the con- 
straints were applied strictly, rather than as inequalities 
By similar manipulation one can show that when the unique 
constraints are replaced by inequality constraints, kj > 1, 
the i-csult is the same as above, together with the condition 

(«) Xj (kj - 1)- 0, 

implying  that  each constraint   is  either  redundant  or  ap- 
plied strictly. 

To derive   the minimax  filter,   we  show  that   the 
game   is  determined since 

min max     2 <  max     2 
F       S       S,N,F S       S,N,F 

S
0^ 

(9) 
ma 

S ;«/{« FSo,N    " +   s | >  -  rSo,N du   = 

■/- S   ,N o' du .2 x ma:;  min     2 
j     Aj S        F    0S,N,F 
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2 2 Thus the minimax o  is equal to or less than the mlnimin o . 
Since the fundamental theorem of game theory states that the 
minimax is equal to or greater than the maximin, the game is 
determined with F0  „ the minimax filter 

So'N 

The second indirect approach is to deal with the 
12 which is much more tractable than Fe ., o ,n 

or the formally equivalent 1 - Fs w.  Applying variational 
2    rr i    2 procedures  to  o    -/ j   i' 

S.N i"^      12   I N +   il   - F    Si  du),   one  can obtain 

the result  derived by Wiener  for  the  optimal  realizable F-  „ 
and also the useful  result: 

(10) 1 - FS,N 

Im NF  , 

(S + N) - ReNF + Real complement to 

where the real complement is the real function which must 
supplement the imaginary function to yield a realizable trans- 
fer function.  For simple forms of N, Eq  (10) can be solved 
rather easily, for example 

1   FS>N 

(il) 

(S + N), - N N (a)) constant 

N Fl - F(ia)| , N(a)) 

N + K, 

(K determined by f  log 

ca 
1^ * a + a) 

N(a)) - C0 + C2(i>2  + C4 a)4 

S,N dco - 0) 

Divergent spectra play a useful role in some prob- 
lems and the general results on optimal filters are still 
valid. 

sible to detormine S (u)) and 

By using the results Eq. (7) and (11), it is pos- 
2 

1 - Fe  M  " for the minimax 
50,N 

filter, and one can then determine Fe  M by factorization in so,w 
special  cases  or  in general by  applying Wiener's result  to 
the determined S   (a)). 
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To illustrate the method, consider the case of 
white noise of spectral density N and mean square target 
acceleration equal to or less than a^.  Our constraint is 
then 

1 

1? f   s(a)) 

From Eq. (7) , 

ll - F 

(jo da» - 1. 

a 

0) 

From Ec. (11) , 

ll - F 

? 

2     N 

2       4 
Thus, setting a /A. - a) o 

^i 0) 

STTT 
0). 

The  solution  for  S   is 

S  - N -2- - i 

ü):   S(ü>) >  0 

a)  :   S(a))   - 0 

CD  :   S(a)) >   0 

a) :   S(u))   - 0   . 

2^      2 
CD    <    CO^ o 

2 s      2 
CD     ^    CD 

i   r 4 must satisfy  the  relation —-— /   S(CD)   CD    dCD - 1,  or 
a     "' 

Ü0 

-    f      N   (CDO
4   - CD4)   dcD - a2,   from which CDO -  [| |] 

2   1/5 

-   CD. 
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It is clear that 4,4   2.2 

, 03  -^ CD 

Some numerical calculation is required to obtain F itself. 

The minimax mean square miss is obtained from the 
relation, valid for white noise, 

- / N log 1 - F S,N 
2 2 

du), from which we find o 

o 
= 8 N a)  .  The portion of o due to failure to follow the 

2 
^iijnal   is       SI }' d03 - 8 N 03 /5. 

o 

From the fact that    1 - F   " is unity for all 
large  03, it follows that F(a3) is proportional to 1/ü3 for 
large frequencies.  From the practical standpoint of guided 
missile design, this is most unfortunate, as the mean square 
acceleration of the missile resulting from noise is 

/ N F 
2  4. 

03  d03 

which clearly does not converge for N constant and F of order 
1/03. 

It is therefore necessary to modify our problem so 
C     \    \   2    4 

as to select a minimax filter among those for whichJ N |F| " cu 
d03 is limited to a specified value.  To solve this problem 
we observe that the previous determination of the maximin S  ' 
is valid regardless of the class over which F is minimized, 
so we need merely find the optimal F among those filters for 

which 
quant i'ty ty to 

2 4 
03 jd03 does not exceed a specified value. 

be minimized becomes 
The 

0S,N,F + X 
/" 

2  4, 
03  d03 

/I s 1 - F + N (1 + X 03 ) J  d03. 
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with  \  chosen  to satisfy   the  mean square missile  acceleration 
requirement.     This   is exactly equivalent  to  the  former  lil- 
ter  optimization problem with  an effective  noise  spectral 
density  of N   (1  +  X ctf*) .     It   is to solve  problems of  this 
sort   that  one  considers   non-convergent  noise  spectra,   such 
as  N  - N    + Cg tu    + C4   u)  .     Calculations  of minimax  filter 
for  such  cases have been carried out.     The  optimal  filters 
and  the minimax mean square miss depend on  the  ratio of 
possible mean square  target  acceleration to allowable mean 
square missile  acceleration  due  to  noise.     This  ratio should 
be   noticeably   larger  than unity  to avoid significant  de- 
crease  in accuracy. 

A completely  different approach  to  the  problem  is_ 
hinted at  by some  of   the  results obtained  for  optimal |l  - Fp 
(S  +  N).     This quantity   is   the spectral  density of the 
difference between  the   inout  and the  output  of  the  filter,   a 
di   ference which  is  the  error signal   in a  servo type  filter. 
The  spectral  density of  this difference  is equal  to the 
noise  spectral  density   if  the  noise   is white  and the  filter 
is  optimum.    Useful but   less  simple relations can be de- 
rived  for other types  of  noise.    Thus we have  the  possibility 
of  checking the  correctness of the  filtering process by  in- 
vestigating the  spectrum of  this difference,   and adjusting 
the   filter accordingly.     An advantage of  this  type of  fil- 
tering  is that  it can  take advantage of a  situation  in 
which  the opponent's strategy  is poor.     With  suffi'iently 
slow adaptation,   such  a   filter will  closely approx   :ate  the 
minimax  filter  in  the most difficult  situation,   and can be 
considered a  sub-minimax  filter,  one  of  the  few practical 
examples  of  the existence of  sub-ninimax solutions to game 
theory  problems. 

Adaptive  filters based on these  considerations have 
been devised  and have  demonstrated excellent  performance, 
although  there   is at  present   no adequate  theory  in this  field. 
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I.      SUMMARY  OF USEFUL  FORMULAS   IN VECTOR  ANALYSIS 

Vector Representation Let x,   y,   z be  a   right-handed. 
three-dimensional  rectangular coordinate system.     A vector  VQ 
can be  represented as  an ordered  triple of  numbers correspond- 
ing to  the coordinates of   the  point   p.     Two concepts charac- 
terize  a  vector:   magnitude  and  direction.     A vector can be 
thought  of  as a  directed  line  segment,   i.e.,   with  a  head  on 
one end,   and a  tail  on  the  other.    Translations  of  the vector 
do not  alter  the  vector.     Thus,   if  the  tail   is   located at 
(x.,   y.,   z,),   the head  at   (x«,   y«,   z«),   the  vector  is repre- 
sented  by   the ordered  triple   (x^-x, ,   yo'Vi »   z2~zl) '   w'lic^  does 
not  depend on where  the  tail   is  located. 

^W^ 

A more  useful  representation of a   vector   is  based  on 
the concept of base vectors.     Let  i,   j,  k  denote  the  vectors 
whose  ordered  triple  representations  are   (1,   0,   0),(0,   1,   0), 
(0,   0,   1),   respectively.     Such a  triad  is  called a  right- 
handed  orthogonal   triad of  unit  vectors,   and  forms a  coordi- 
nate  system.     In  terms  oT~"these unit  vectors,   the vector  V0 
above   is  expressed   (0,   1,   0)   as 

(1.1)    V-xT+y    j+zk 
o o ->   (1,0,0) 

70,0.1) 

Length^of a Vector The length of the vector V , 
denoted by  |V i , is given by 0 

(1.2) I -I* 2 + o    ^ o 
2    2 

'o    o 
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Addition  of  Vectors If  V     -xi+yj+zk, 
^ =* ^ dt        ->0 0 0 

V,   = x.i   +  y.j   +  z.k.   then V     + V,   is  defined  to  be  a 1 1 '1 1   ' o 1 
vector given  by 

(1.3)     Vo   ♦ ^   -   (xo  + Xj) t   +   (yo   +  y^ t +   (zo   + z^k^. 

This   definition  is  in agreement  with  the  parallelogram 
law   found   in most  elementary  physics   texts. 

Multiplication of  a  Vector  by a  Scalar   (Number)  

aV     is  defined   to be  the  vector  given  by 

(1.4)      rw    - OPC  i  + ay .j  + asz k     . 

Exercises;     Prove 

,   * -►        it       "&       "* (a) Vo   + ^  - V1   + Vo 

(b) "vo  + (Vj +T2)  - (7   + V^)  +^ 

(c) a (^0 + V^)   - cW^ + o^ 

Do_t Pioduct (or Scalar Product) of Two Vectors The 
dot proHuct of two vectors is a scalar. 

It is denoted by V   ' V,, and is defined by o 1 

(1.5) V     .   V     =   |v  |     | vJ      cos    (6   ,   where    0     is   the  angle 

between   the   two  vectors. 

It  can  be  shown  that 

(1.6) V     .   V,   - x     x.   +  y     y.   +  z     z.    . v       '       o 1 o     1 o     1 o     1 
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Cross  Product   (or  Vector  Product)   of  Two Vectors  
The  cross product  of  two vectors  is  a  vector. 

It  is  denoted by V    x V   ,   and  Is  defined by 

(1.7) "^0 x Vj  -    |vo|      IvJ     sin 0 T, 

where 0 is as above, n is a unit vector normal to the pla 
formed by v and V^, its direction determined by the right- 

hand rule.  It can be shown that 

—►      -♦ -♦ -t 
(1.8) Vo x V^   -  (yo z1   -  zo  y^i   +  (zo x1   -   z1 xo)y     + 

(xo  yl  "  yo xl) ^ 

ne 

or, in the form of a determi na nt, 

t t 1? 
(1.9)  Vo x ^ - X 

o yo 
z 

Components The  component  of  a  vector   in a  direction 
is  a  vector  formed by  projecting  the vector  onto a  line point- 
ing   in  that   direction.     Thus,   the  component  of   V    in  the   i 
direction  is  x     i o 

Exercises:     prove 

(d)    v^ . v^-v^.  v^. 

(f) a(Vo   .  V^   -  i<*f0)   .  V1 - Vo 

(g) V>0 x  ^  . -(^  x7). 

• v 
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^   >      >    >   -►     > 
(h) a(Vo x V^ - (oVo) x Vj = V0 x (aVi). 

(i) Vo x (Vj x V2) - (Vo . V2)V1 - (V0^V1)V2 

(i') Vo x (V^ +"V2) = (Vo x V^) + (Vo x72) 

(J) 7   (Vj x V2) = (Wo  x^)   .72   = 

x    y    z o   'o    o 

x1   y1 

x2   y2   Z2 

(This expression is some- 

times called the box 

product of three vectors.) 

(k) The component of V  in the V, direction (if 

|V^| / 0) is given by 

(1) V, i :: , V  • j = y , V oo  J   Jo  o k z , so that one o 

can write Vo = (Vo . i)i + (Vo . j)j + (V0 . k)k 

(ra) Let V,, V- be non-collinear, and different from 
zero. 

Let V„ be the vector formed by projecting V  into the 
j   -+ -^ o 

plane formed by V, and V2.  Then 
->   -►   -^   ->       -^    i x  2 
V0 = n x (V x n), where n = —^ x— 

The following are in general impossible or incorrect 
statements.  Why? 

(n) Vo x (V1 x V2) = (Vo x Vj) x V2. 

(o) Vo . (Vj x V2) = (^o . fy x 

(P) vl (V1 • V2) = (Vo • V 

'?.- 

2- 
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II.     ROTATED COORDINATE  SYSTEMS 

Let  i   ,   j.,   k    denote a right-handed orthogonal  triad 

of unit vectors distinct  from T,   j,   k.     Expressing each  l., 

J.,   k.   as  the sum of   its components along  1,  j,   k,  we can 

write 

(2.1) "^ = «n^* a12T+ cfia"? 
-r -^ -r -► 
Jl   = a12  i   + a22 J   + a23  k 

1^  = a3l?+ «32?+ «33 k* 

Since ji^ = 1, |j1| = 1, i1 . j1 - 0, i! x j1 - k1, 

we have 

(2.2) a11
2 + a12

2 + a^2 = 1, 

(2.3) a21
2 + a22

2 + a^
2 = 1. 

(2.4) a11 a21 + ct12 a22 + a^ a^ = 0, 

(2.5) a31 = a12 a^ - a22 o^, 

(2.6) a32 = a13 a21 - a11 a^, 

(2.7) 033 = a11 a22 - a21 a12 . 

Conversely, it can be shown that any set of o's satis- 
fying Eqs. (2.2) - (2.7) will produce a right-handed ortho- 
gonal triad ^» 3\» »i when substituted into Eq. (2.1). 

If the cr's are_^is a^>ove, and one solves Eq. (2.1) for 
i, j, k in terms of i. , j., K,,   the solution, as can be 

shown, is expressible in the following simple form: 

(2.8) t= a11t1 + a21?1 + a31 ^ 

f = a12 ^ + a22 ^ + « 32 k, 

t~ a13  ^ + a^ j^ + ^3 ^ 
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Equations (2.1) and (2.8) make the problem of expressing 
in a second coordinate system a vector known in one coordinate 
system quite simple: 

Thus 

(2.9) Vo  xo ?+ yo j + zo ?= xo (a11 ij + a21 J1 + a31 k^ 

+ ^o (al2 4 + a22 Jl + a32 kl) 

+ zo (a13^1 + a23^ + a33^l) 

= (xo all + ^o a12 + zo «IS^l 

+ (xo a21 + yo a22 + Zo ^^l 

+ (xo a31 + yo a32 + Zo a33)1^' 

III.  DERIVATIVES OF VECTORS AND MOVING CQQRDTNATE RVSTV.MS 

Suppose the vector V is a function of time. Since a 
vector can be described by its components, it Is clear that 
a situation could arise where the components are constants 
in one coordinate system, yet varying in another coordinate 
system moving with respect to the first.  To talk about the 
derivative of a vector, we must then first specify the co- 
ordinate system.  In Newtonian Mechanics, most physical laws 
expressible in vectorial form achieve their simplest ex- 
pressions when the coordinate system is fixed relative to 
the fixed stars (or moving with a uniform velocity with 
respect to them).  (In a good many missile systems, the co- 
ordinate system may be fixed relative to the earth, as the 
motion of the earth has negligible effects).  We therefore 
define the derivative of a vector V (more properly the in- 
ertial derivative) as follows: 

= xi + yj + zk, where i, j, k, have fixed direc- 
tions in inertial space, then 

(3.1) xT = xf^ yT +  zi^- 

An alternative  definition,  equivalent  to  the  above,   is 

(3.2) ?(t)   =  lim    til   - ill  - thl  . 
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V,   being  a vector,  can be expressed in a second coor- 
dinate system bv the rules of Part  II.     Care must be  taken 
that  the T,   j ,   K  in  the above definition are  inertlalljr 
fixed,   for  if V = x,   i,   + y,   j,   + z,  let,   and Tl,  jt»   *!   are 

in motion,   it  is  not  true that  v  = x,  tT   + y-i   J^  + ^i ^1' 
(see exercises below) 

Exercises:     Prove 

(q)  ^f (a^)   = <iV^+ aV^ 

(r)  dl  ^1  + ^2)  = ^1  + ^ 

<s>  df (^   •    ^  ^1   ' ^2  + ^1   '  ^ 

(t)  _| (^ x v>2)  - ^ x ^ + ^ x t2 

(u)  If  i,,  j, ,  K,  form a right-handed orthogonal triad 
-f -t- -^ -► 

of unit vectors,   and *  = xi   ^i   + Vi   JT   
+ zi   ^i»   then 

^= ^i ^i + ^i Jt+ ^i ^i + xi ^i + yi J* 1 
+ z1  k1 

Let  i,,   j,,   k.  be a right-handei orthogonal triad of 

unit vectors^ in motion with respect to the inertially fixed 
triad i,   J, Y.     If  one differentiates Eq.   (2.2),   one  obtains 

(3.3) o11  li11  + a12 i^ + a^  i^  = 0 

which is equivalent  to 

(3.4) ^       ^   = 0. 

Since then i, is normal to i., it can be expressed as 

a linear combination of j, and k,.  There then exist functions 
a and b such that 

« 

(3.5) i, = aj, + bk,.  Similarly, there exist functions c, d, 

e, f, such that 

(3.6) ^ = ci^ + d^ . 
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•I 

(3.7) k1 - eij + fj1 . 

Differentiating Eq. (2.4), the following string of 
equalities can be seen to hold: 

(3.8) a - ^ . J^ - a11 a21  + «12 a22 + a^ a^ 

' " (all «21 + a12 ^22 + a13 i23) 

=
 ■ (il • Jl) = - c- 

Similarly, it can be shown that b = - e and d = - f. 

Setting a - ao3, e = '■»2,   d - u>l,   Eqs. (3.5) - (3,7) can 

be rewritten as 

(3.9) ^ =0)3 ^ - o)^ 

(3 10) ^ = " ^3 ^ + ^ ^ 

(3.11) ^ »^ tj -^ ?! • 

If we introduce the vector 

(3.12) n   = ^i tj + ^2 J. + ^3 ^1 

note that where Q is the angular velocity vector, Eqs. (3.9) - 
(3.11) are equivalent to 

(3.13) t1 ="$ x 1*^. 

(3.14) Ti = ^ x ^l. 

(3.15) "^ = ^ x 1c,. 

The vectorIT is called the angular velocity vector of 
the moving coordinate system.  Its physical interpretation is 
that its direction gives the direction about which the coor- 
dinate system is instantaneously rotating, its magnitude gives 
the rate of rotation, the sign of rotation determined by the 
right-hand rule. 
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The relationship between the (incorrect) derivative 
as computed by an individual fixed in a moving coordinate 
system and the  inertial derivative can now be expressed as 

(3.16)   V,        4.4   ,   - "^ w + Tf x "^. inertial        moving observer 

for 

(3-17> ^inertial  " *1  4  + *! ^1  + ^i ^i + «i   <? ^ ^ 

+ yj  (fi x Jj)  + Zj  (? x k1) 

= ^moving  observer  ^ x   (x1 ?1   + y1 J^  + z^^ 

= V + Q x V moving observer 

Exercise 

(v)  Prove 

v = v + 2n x v inertial moving observer moving observer 

+ ?x^ +  ^x   (fix 7). 

where 

Vmoving observer 3 xi 1i + yi Ji + zi Ki • 

IV.  MISSILE MOTION 

Let us consider the problem of computing the position 
of a missile of the cruciform type in space as a function of 
time.  Such a problem would be of importance in a trajectory 
simulation. 

Let 1, j, ^ be an Inertial orthogonal triad, j  pointing 
up.  (We assume that the earth Is flat, and we neglect earth 
motion) . 
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Let P denote the vector Joining some fixed point (say 
the launch site) to the center of gravity of the missile, and 
let 

(4.1) ? - xi + y*+ zk. 

P is called the missile position vector.  The motiva- 
tion of this section is to find P as a function of time. 

The missile velocity vector with respect to the launch 
site is given by 

(4.2) P - xi + yj + zk, and the missile acceleration vector 
by 

(4.3) ? - x?+ yj>+ zk^ 

If F is the force on the missile, m its mass, Newton's 
second law of motion tells 

(4.4) F - mP. 

Assuming we know F, we see that it is a simple matter • •   • • 
to find Xj^y, z, and integrating twice gives us our answer. 
However, F comes to us in missile-fixed coordinates. (For 
example, thrust is along the longitudinal axis, lift normal 
to it).  So a coordinate conversion will be called for. 

Let i,, J,, k, be determined by missile orientation, 

1. parallel to the longitudinal axis of the missile, J. par- 

allel to one control surface pair, k. parallel to the other. 

»ral, we will know F., F«, F» (more about 

Eq. (4.5) ? - F1 7^ + F2 j^ + Fg ^ - gmjT 
In general, we will know F1, F9, Fq (more about this 

later) where 
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F, will be thrust minus drag, F» and F„  aerodynamic 
lifts.  The last term is just gravity. 

From Eq. (2.1) we have 

(4.6)  x = ^(F1a11 + F2a21 + F3a31] 

y^ i [ Fla12 + F2cr22 + F3a32] - g 

Z = i [ Fla13 + F2a23 + F3a33] 

Integrating twice gives x, y, z. It is clear that a's 
must be known. That is, we must know the orientation of the 
missile in space. 

If we knew the angular velocity vector u  of the i,, j,, 
k, coordinate system, the a's could be easily found. 

For example, 

(4.7)  i11 = i1 i -  (fix i1) 

0 

n . (i1 x i) - n . 

all   a21   a31 

(co1i1 + ^ + a)3kl) . (. «3^ + «g^) 

" ^«31 + ^«21 
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Proceeding similarly, we have the equations 

(4.8) i11 = - cu^^ +co3 a2i 

"12 " " ^2 a32 + ^3 a22 

«13 = " ^2 a33 + ^3 a23 

«21 = ^1 a31 " ^3 all 

a22 1 a32   3 a12 

ä23 = ^1 «33 " ^3 «13 

«31 " " "l «21 + ^ «11 

«32 " - ^1 «22 + ^2 «12 

«33 = " ^1 «23 + X2  «13 

Integrating these equations then would yield the a's. 
The numbers u)  a)  a) can be found as follows if we know 

the applied moments M, , M0, Mo about the center of gravity 1       ^       j ♦      ^     ^ 
which would cause rotations about  i,,  J,,  k,  respectively: 

The angular momentum vector   Is given by 

(4.9) H  =  ^  a)^  + I2 a>2 ^  + l2 0)3^ 

where I , 10,   I0 are the moments of inertia of the missile 
-¥L       V5  -H? 

about i,, j,, k, respectively, taking the origin at the center 

of gravity.  (For a general rigid body, the expression for H 
is more complicated, involving the products of inertia.  In 
this case, however, because of symmetry, the products of iner- 
tia all vanish, and the moments of inertia about j, and 1?1 are 
equal.) 
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If we set 

(4.10) M = M, i, + M2 j, 4 M3 k,, the moment (or torque) vector, 

Mechanics tells us that 

(4.11) H = M! 

Differentiating Eq.(4.9), we have 

(4.12) H - ii '^ ij^ + i2 ü32 j1 + I2 ^S kl + n x H 

= la '\ "1 + Ih ,h2 +  (I1 " I2) "i^l   h 

+ [I2 0)3 + a)^ (^2 " Il)1 kl 

= M1 t1 + M2 ~j1  + M3 ^ = M. 

Hence 
M 

(4.13) '^ = -ji (why?) 

M2 - (^ - I2) ^ a.3 

2" l2 

M3 - (I2 - Il) ^1 ^2 

^        i~2 

Equation (4.13) is a special case of "Euler's equations". 

Integrating Eq. (4.13) produces the CD's, which produce 
the a's, which in turn produce x, y, z.  Our problem is now 
completely solved provided we know F^, Fg, Fg, M,, M,,, Mg, m, 

I-, I0.  The last three are trivial:  The first six are usually 

obtained from wind tunnel tests.  They are generally quite com- 
plicated functions of other variables.  It is not our purpose 
to exhibit these functions explicitly, but it will be worth- 
while to at least have a look at what these other variables 
are.  F of course depends on thrust.  None of the others do, 
unless there is thrust misalignment.  All six depend on 

(a) the magnitude and direction of the air stream 
velocity with respect to the missile, 

(b) speed of sound (which changes with temperature), 

(c) air pressure (depends on altitude and temperature). 
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(d) center of gravity position (which moves as fuel 
is spent) and 

(e) the angles ö-^, ö«, ö-, ö. at which the control 

surfaces are inclined. 

In addition J^, Mg, M., depend on (a,,  a)«, co3 (aero- 

dynamic damping). 
-v. 

A few words about (a) and (e) are in order.  If^W i^ 
^he velocity vector of the wind with respect to the i, j, 
IT coordinate system, the P - W is the (negative of the) 
velocity of. the^airstrean^ wi^i respect to the missile. 
Expressing P - W in the i,, j,, 1? coordinate system, we 
have ill 

(4.14) P - W - U i, + V j, + W k,, where U, V, W are some 
numbers. 

It is possible to find numbers a,  &  such that (why?) 

(4.15) "P - W = lp - W | (cos <* i-L + sin a sin ^ jj 

+ sin a cos ^ k". ) . 

—r -*. 
|P - W| is called air speed, a  is called angle of attack, 

and &  is called the aerodynamic roll angle.  Air speed divided 
by speed of sound is called mach number.  Data from wind tun- 
nel tests often comes in terms of mach number, angle of attack, 
and aerodynamic roll angle (other parameters different from 
these must also be given, such as pressure, for example). 

Exercise: 

(w) If W = W, i + W« j + W3 k, express air speed, angle 

of attack, aerodynamic roll angle as functions of W,, W«, W-, 

x, y, z, a^,  a12, a13, o21, a22, a23, a31, o32, a33. 

The object of a missile flight is generally to intercept 
a target.  Artistry in many fields is required to achieve 
this objective in the "best" (a highly subjective term, so we 
shall use it freely without attempting to define it) possible 
manner. 

The aerodynamic designer tries to make the functional 
dependencies of F., F2, F3, M, , M», lU on the aforementioned 
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parameters the best possible. 

Given the missile design, we have seen how the missile 
motion is determined once the missile's environment is known, 
and once öi» ö«» ^o» öA  are known,  ö  ö      ö      Ö    represent 

our control over the missile.  (Thrust can be controlled in 
some cases, also).  Thus, given the aerodynamic design and 
the thrust, the problem reduces to:  How best should 6, , ö2, 

<5o, (54 be varied in the presence of a varying environment, 

and how does one do it? This question opens a Pandora's box 
of problems which today are keeping thousands of people busy. 
It is not our purpose to continue much further along these 
lines, although we will subsequently discuss certain aspects 
which will have some bearing on the matter. 

V.  TWO DIMENSIONS 

We have seen how the equations for a portion of a three- 
dimensional simulation can be set up.  The loop is nowhere near 
complete, however.  The sensing instruments, autopilot, guid- 
ance computer, guidance intelligence, as well as other features 
must also be simulated.  These features are discussed elsewhere 
in the training program. 

Such a simulation (the 1103A digital computer at APL is 
currently engaged in such tasks) is most often used for per- 
formance analyses. An autopilot or guidance computer designer 
will, however, do most of his work in two dimensions, as the 
three dimensional equations are too complicated to gain in- 
sight.  Occasionally he will work in three dimensions, when 
his problems are basically three dimensional in nature.  Most 
of the time this is not necessary. 

Accordingly, let us reduce the equations that have been 
derived so far to two dimensions, where they are of a simpler, 
more suggestive, and perhaps a more familiar, form. 

We select the i, J plane, and assume everything happens 
in that plane.  For simplicity, assume W = 0. Then 

(5.1)  z - 0, F3 - 0, a^ - a)2 - 0 

a^  =  cos V. a12 
= sin *» ai3 " 0 

a21 = - sin y,  o22 = cos ^. «23 " 
0 
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a31  = 0'   a32  = 0' *33 
IT 

I       "2       "'   " 7'   wl       u3 
+ or  - depends on sign convention) 

M, = M2 = 0, (i = - 

= 1. 

0, ög = i ö4 = ö (where 

From the above and Eq.(4.7), 

(5.2) a)3 = |. 

Equation (4.6) becomes: 

(5.3) x » i [F1 cos ^ - F2 sin ^] 

y = - [ Fj^ sin T^ + F2 cos V] - g 

Equations (4.8) all reduce either to 0 = 0, or Eq. (5.2) 

Equations (4.13) reduce to 

(5.4) V = T^ 

Given the two forces and the moment, Eqs. (5.3) and 
(5.4) enable us to solve for x and y.  (Also, of course, for 

Sometimes it is desirable to write an equivalent set of 
equations in terms of y, where if v is missile speed. 

2 + y
2 (5.5) v =Yi 

(5.6) x = v cos y 
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(5.7) y = v sin y. 

From (4.15), 

(5.8) P - W = v cos y i + v sin y j = v cos a i, - v sin a j, 

= v cos a (cos "^ i + sin ^ j) 

- v sin a (- sin i/' i + cos V' j) 

= v cos (^ - a) i + v sin (V - a) J . 

Hence 

(5.9) -^ = a + y. 

(5.3) becomes 

(5.10) v cos y - vy  sin V = „ ^Fi cos ^ " F2 sin ^ 

v sin y + vy cos y = JT IF, sin V' + F2 cos VO - g . 

Multiplying the first equation by cos y, the second by 
sin y, adding, one has 

(5.11) v = | [F1']  - g sin y 

where 

(5.12) Y^.     = F. cos a - F2 sin a. 

Multiplying the first by - sin y, the second by cos y, 
and adding, one has 

(5.13) vy = i [F^] - g cos y, 

where 

(5.14) F«  = F, sin a + F« cos a. 

It is common for an autopilot designer to make further 
simplifications. He will commonly neglect Eq. (5.11) entirely, 
assuming that v " 0.  He will assume F, and a  are small, and 
replace Eq. (5.14) with F2  - F2 cos a.  He will neglect 
gravity, make first order assumptions on F2 cos a, divide 
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through by v, and come up with a replacement for Eq. (5.13), 
namely 

(5.15) y = Aa + Bö 

where A and B are functions of mach number, speed of sound, air 
pressure, center of gravity, mass. 

He will linearize Eq. (5.4), coming up with 

(5.16) i/ = -Diji - Ca + Eö,  where C, D, E are functions of the 
same things A and B are. 

Equations (5.9), (5.15), and (5.16) are then used to com- 
pute V> a. y as functions of 6• If, in addition, he wishes to 
know x and y, he uses Eqs. (5.6) and (5.7). 

Exercise 

(x)  Rewrite  section V under the  additional assumption 
that IT lies  in  the T,   j  plane,   but  is  different  from zero. 

VI.     MEASUREMENTS  MADE  BY MECHANICAL END  INSTRUMENTS 

In  the Bumblebee   family,   there   are  three basic  devices 
commonly used whose measurements can  be simply expressed  in 
vectorial   form   (when  the   instruments  are  perfect,  which of 
course  they  never  are).     These  are  the   free gyro,   the rate  gyro, 
and  the accelerometer.     There are other devices used  in these 
and other missiles,   such as stable platforms  and stapfus.     It 
is  beyond  the  scope  of  this paper  to  delve very far   into  this 
field.     Instead,   we  shall merely state  what  the above  three 
devices measure,   and discuss some of   their  applications.     We 
shall  not  describe   the  mechanical  details  of how they do this, 
leaving this subject   for  the reader  to  pursue. 

The  accelerometer  as used  in  the  Bumblebee missiles   is 
mounted in  the missile,   and is sensitive  to accelerations  along 
a chosen direction  fixed  in the  missile.     Specifically,   if     n 
is  a  unit  vector   in  this  direction,   the  accelerometer measures 

—* -f        -» 
(P  ■*■ g j)   •   n»   where  as  before,   j  points up,   and g  is  accelera- 
tion  due  to gravitv.     Usually,   there  are  two accelerometers, 
one   for which TT =  J1 ,   the other  for which if = k, .     They are 
used  in the missile  autopilot.     The  acceleration command  is 
compared to  the  accelerometer output,   and  the wings  are driven 
until   the  difference   is zero.     An autopilot which functions   in 
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this manner is called an accelerometer (or acceleration) 
feedback autopilot. 

The rate gyro is sometimes, but not invariably, mounted 
in the missile, and is sensitive to rotations about a chosen 
direction fixed in the missile.  Specifically, if n is a unit 
vector in this direction, the rate gyro measures!?, n*. 

Usually, there are three rate gyros, for n^= i,, j,, k,, 

respectively.  The latter two are used for damping in the auto- 
pilot, and the former in the roll control loop,  One will also 
find rate gyros mounted on homing seekers, whose purpose is to 
aid in space stabilization of these devices, as well as to 
furnish steering error signals to the guidance computer. 

The free gyro has two degrees of freedom, and two possible 
| outputs.  The free gyro is used for attitude stabilization dur- 
> ing boost, where both outputs are used, and in the roll control 
I loop during beam riding, where only one output is used.  There 
| are Jbhre^ definitive directions, denoted by the unit vectors 
i S, GQ,  G   ,  where S is the direction of the spin axis, fixed in 

I inertial space by virtue of the action of the gyro.  G.^is the r 
j ijiner gimbal axis, and is always perpendicular to both S^and GQ. 
I GQ is the outer gimbal axis, fixed in the missile.  Let n be 

some unit vector fixed in the missile which is perpendicular^ to 
Gn.     The two possible outouts can be expressed in terms of S, 

-> "*   fxG0 Gn, n since clearly G. = _^ __^ 
|SxG0 

-r       —• 
(6.1) cos  0.   = S   •   GQ. 

The second output   is  the  angle    Q0 between G.  and n. 

-*        SxG0 (6.2) cos  0o  = n.       sm -i 
2 I SxG O 

In  the roll^ control   loop,   S  is usually horizontal,  GQ 
coincident with  i,.     Only the angle Og  is  used. 

In  the attitude  stabilization  loop  for boost,  GQ is j-, 
n" is  k.,   S*is  in the  direction of  firing. 

Exercise 
n      S* (y)  Prove that sin  O«  = ± ■ ^—  ,   the sign depending on 

convention. Is x GQ| 

♦or  some   function of   it. 
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VII.     OTHER  USEFUL COORDINATE  SYSTEMS 

In this paper,   most of the useful  techniques  for manipu- 
lating coordinate systems have been presented.     Practically 
all  three dimensional work with missile  motion can be handled 
by a judicious use  of  the concepts and basic  formulae developed 
here.     (There  is,   of course,   nothing here  that  is new,   and 
everything can be  found  in one or more well known texts on 
Mechanics or Vector Analysis) 

Having developed the basic concepts and formulae, a few 
applications and practical manipulations have been presented. 
We c>"uld go on at considerable length discussing other appli- 
cations and special coordinate systems in detail. This will 
not be done here, however, as any reader will now have little 
difficulty in mastering such topics, should he come in direct 
contact with  them. 

We will,  however,   mention  in passing some other useful 
coordinate systems. 

Wind-Fixed Coordinate Systems It  sometimes simplifies 
calculations when a constant velocity wind  is being studied 
to  fasten the tail  of the vector P to a point moving with the 
wind.     This  is still  a Newtonian  frame  of  reference,   so that Eqs 
(4.4)  and  (4.11)  hold.     In this coordinate  system. Section V 
carries over  intact.     (Compare with the results of Exercise 
(x).) 

Radar-Fixed Coordinate Systems Here the  triad of unit 
vectors  is fixed in  the dish of a tracking radar or a guided 
missile guidance  transmitter.     This  is useful when studying 
tracking radar dynamics or certain beam riding problems,   in 
particular for developing expressions  for  beam riding error 
signals. 

Deck-Fixed Coordinate  Systems When missiles are being 
fired  from a ship,   the motion of  the ship presents new prob- 
lems  from the  land-based case.     Since radars are normally 
attached to  the deck,   their measurements  are most easily ob- 
tained  in a deck-fixed coordinate  system.     Stabilization of 
these radars   is then required.     This calls for coordinate 
conversions  from deck  to radar,  or deck  to  inertial,   of one 
type  or another.     These conversions are  accomplished physi- 
cally by the judicious use of gyroscopic  devices,  such as 
rate gyros or gyrocompasses.     (The  latter   is a  form of stable 
platform). 
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Homing Seeker-Fixed  Coordinate Systems A homing 
seeker   is  a  tracking radar  mounted in the missile,   and prop- 
erly choosing certain unit  vectors fixed  in the seeker aids 
in studying seeker  dynamics. 

Inertial Guidance Coordinate Systems In  inertially 
guided aircraft or   (long range)  missiles,   it  is sometimes 
convenient  to choose a moving coordinate system,   one of 
whose unit vectors points   in the direction of  the  normal to 
the earth's surface at  the position of the aircraft or mis- 
sile.     Sometimes people choose  Instead the direction of 
gravity,   and sometimes the  direction to the center of the 
earth.      (These three directions are slightly different). 

The initial distribution  list of  jhis document has 
been maue in accordance with a list on file in the 

Tec; nical imports CJroup of the Johns Hopkins University, 
A-pplied Physics Laboratory. 
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