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PREFACE

This series of lectures on optimization techniques
was originally prepared for presentation to the partici-
pants of the 1959 Associate Staff Training Program. Its
objectives were two-fold: (a) to introduce engineers to
the usefulness of mathematical techniques and mathema-
ticians to the applicability of their techniques to con-
crete engineering problems and (b) to introduce all the
trainees to the very important concept of optimization--
a concept that currently pervades virtually every area of
advanced missile engineering.

Because these lectures do form a sound, basic intro-
duction to the important field of optimization techniques,
they are being issued as a CF report to provide wider dis-
tribution of this material as a reference work for Labora-
tory personnel.

V. M. Root
Training Program Supervisor
August 1960
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ON THE CONCEPT OF OPTIMIZATION

"Fulsomely dedicated to Winnie-the-Pooh,
who didn't know a minimum from a Heffalump's trap."

by

A. G. Rawling

v SN AT

A AP P b

———— e~



TG 0NN HOPEING UNIVIRNTY
APPLIRD PHYSICS LABORATORY
mvie v “mae

I. INTRODUCTION

A somewhat negative approach to the principle of opti-
mization was first scribbled centuries ago,among other
phrases, on the walls of an ancient Roman bath house. Re-
ferring to a choice between two Roman aspirants for emperor,
it read -.- "De duobus malis, minus est semper aligendum"

[Of two evils, always choose the lesser}.

Since that time optimization has been carried on under
many guises, In physics, many different minimal principles
have been enunciated, describing natural phenomena in the
fields of optics and classical mechanics. The field of sta-
tistics contains various principles termed "maximum likeli-
hood," "minimum loss,'" and '"least squares,'" while economics
contributes "maximum profit, minimum cost, maximum use of
resources, minimum effort,'" in a coherent effort to increase
the long run capital gain in some manner.

Enlarging our vievpcint (o include the most general
aspects, we note that many operational problems are of this
sort.

1. They have a variety of acceptable solutions (by
some specific criteria of acceptability).

2. Among these solutions one wishes to select the
best or optimal solution (by some specific
criteria of being best or optimal).

Thus, one formulates the problem mathematically with
the twin objectives of providing an accurate description and
also manipulating the mathematical model to obtain an ex-
tremum.

An extremum, or extreme value, is a value of a function
which is either a maximum or a minimum. Optimum is that
particular type of extremum desired for the problem.
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II1. FULL, INCOMPLETE, AND SUBOPTIMIZATION

Full optimization of a given problem can be quite an
extensive undertaking. It requires

1. simultaneous consideration of all possible
alternatives at all levels;

2. consideration of the probable impacts of all
events not under the optimizer's control; and

' 3. maximization, subject to possible constraints,
of some utility function or measure of effective-
ness.

Failure to achieve full optimization results in "incom-
i plete optimization,'" of which a special variety is termed
"suboptimization.”

Suboptimization 1is a case of optimization for one
phase of an operation or a problem, without including every
' factor which has an effect, either obvious or indirect.
Frequeatly, it consists of merely reducing the number of ob-
jectives.

The suboptimization approach is useful when neither the
problem formulation nor the available techniques permit one
to obtain a reasonable answer. In most practical cases,
suboptimization is the only resort in solving the problem.
Although a full optimization is not obtained, it at least pro-
vides a rational technique for approaching the optimum.

Suboptimization is often necessary because of economic
and practical considerations, the finiteness of time, and the
difficulty of obtaining sensible answers in a hurry.

However, there is a major fallacy to be guarded against.
Suboptimization of all elements does not necessarily ensure
attainment of full optimization, i.e., an over-all optimum.
For example, in a large business, the sales force endeavors
to increase sales of all items, although the profit on each
item may differ.

The production group resists changes to new products.
The comptroller wishes to reduce inventory level so as to

b
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free capital and decrease storage costs, etc. It is not
difficult to suboptimize all these divisions separately, so
that each 1is running smoothly and effectively, but a more
painstaking effort is necessary to balance the tendencies of
different parts of a large oirganization and ensure they all
mesh together.

System design* is sometimes described as the process
of attaining a full optimization. The need for system design
arises from this very fact that suboptimization of all com-
ponents dces not necessarily improve system performance.

An excellent example of this has actually appeared in
the following concrete situation involving target tracking
by a homing missile.

The use of doppler information to aid range gate track-
ing has long been known. In obtaining the optimum over-.all
system, usually the range and speed tracking loops are
separately optimized according to some criterion and then the
speed gate 1is connected to the range gate to further reduce
the range error.

The resulting system may approach the optimum over-all
system; however, the best use of the additional information
consisting of the correlation between speed and range has not
been made.

The optimum circuit consists of two optimum loops for
range and doppler information tied together in an optimum
fashion. Consequently, we require optimum galns connecting
one circuit to the other as well as gains in the individual
circuit loops.

ITI. OPTIMIZATION TECHNIQUES AND CONSTRAINTS

We are all familiar with the optimization problem of
finding, among all the paths between two points in the plane,
the shortest path. It can be shown that it is a straight line.

Consider the extension, where the two points lie on
the same side of a given straight line, and the problem is to

*ﬂ system is an integrated assembly of interacting elements,
designed to carry out cooperatively a predetermined function." -
Dr. R. E. Gibson.
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determine the shortest path between the two points that

touches the given line. This added condition is a constraint
on the problem.

(The solution is not difficult in this case. Reflect
one of the two points across the line, and connect the other
original point and the reflected point with a straight line,

as shown. Then ACB is the shortest path satisfying the con-
straint.)

—

C

el B' Reflected Point
Given Line

Optimization of some function of a number of variables
subject to boundary conditions whics 1limit the variables' range
is of greater importance and frequency of occurrence than opti-
mization without constraints. We usually are not interested
in relative maxima or minima, but rather maxima or minima over
a prescribed range. This entails additional restrictions.

For example, in the range a< x < b,

_\ /—-\ f(x)

X a Xg b Xa

- 5 -
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there is a maximum at x = b, but not at X, or X4 which 1lie

outside the range of interest. (This so. .called end point
maximum will be discussed more fully later.) There is a mini-
mum at Xq within the range.

The difficulties in the more interesting problem of opti-
mization subject to constraints occur in many cases where the
maximum or minimum cannot be obtained by ordinary differentia-
tion because either It does not lie within the region defined
by the constraint set or else the derivative 1is discontinuous
inside the region.

If the function to be optimized is continuous, then the
extremum lies either in the region or on the boundary. If it
lies within the range, regular methods of finding maxima and
minima apply as 1f the inequalities were not present.

Mathematical constraints are of two types: equations and
inequalities. In a typical problem, the constraints may be
all one or the other, or a mixture. Considerable difference
exists in the techniques applied to problems in which all con-
straints are equations or else all inequalities.

If all constraints are equations, then in principle each
constraint equation can be solved for one of the variahles and
this substituted to reduce the dimension of the problem by one.
For example, to find the extrema of f(x, y) subject to the con-
straint 4(x,y) = O, we solve for y from ¢(x, y) = O to obtain
y = ¥(x). Then substitute into Z = f(x,y) and extremalize

7 = f [x, w(x)]

as a one-~dimensional problem.

An inequality constraint does not make it possible to
"eliminate" any variables; it merely restricts the range of
variability in one dimension. Thus, if the extreme should be
on the boundary or end point of the range, a different method
for extremalization is necessary.

An end-point technique is as follows: Given a function
f(x) defined for as< x <b, and let f(x) have a derivative.
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Then f(x) has a maximum at x = a if f'(a)< O, and a
maximum at x = b if f'(b) = O.

It will have a minimum at x = a if f'(a) 20, and a
minimum at x = b if f7(b) < O.

It will occasionally happen that f'(x) becomes dis -
continuous for some isolated value of x, and if the discon-
tinuity is accompanied by a change of sign as X increases
thru the value in question, we shall have a maximum or mini-
mum, as shown.

a .
Maximum

Minimum Maximum
These remarks pertaining to one variable are generaliz-

able to two or more variables, where the boundaries become

curves and surfaces and their intersections. The difficulties

of testing increase also.

Actual constraints, which will be discussed elsewhere

under several examples, are many and varied. They can include:

negative production not allowable, maximum limits on storage
capacity, and production capacity in economic problems. Non-
linearities in physical systems, such as saturation and
limiting, can be described mathematically in the form of ine-
qualities. Noise or uncertainty is often describable in terms
of a probability distribution or power spectra. Competitive
or game theory aspects, such as opponents' strategies, must be
considered in many cases.

Physical constraints, involving weight and size are by
no means minor. For example, an optimum cargo ship hull de-
sign problem separates into two classes:

1. Designs in which size (displacement) is fixed, as
determined by available power.

2. Designs in which dimensions (particularly length)

are dixed, as determined by practical considerations
of port facilities, such as dock size.

-7 =
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Different optimum solutions are to be expected in each
case.

IV. THE CRITERIA OF OPTIMALITY

A major difficulty in any optimizing problem is that of
selecting a criterion. What is the criterion in terms of
which the outcome is to be judged?

In game theory, the sensible object of a player is to
gain as much from the game as he can, safely, in the face of
a skillful opponent who is pursuing an antithetical goal.
The classical criterion for optimizing the design of a mechani-
cal device has been to maximize the output energy for a given
input energy. 1In the case of vibration of a continuous system,
the optimum damping value gives the least resonant amplitude.

In choosing an optimization criterion, several aspects
must be considered.

First, viewpoint is important. For example, consider a
nonproduction line type of manufacture, i.e., the product is
generated in discrete batches. From the viewpoint of reducing
storage costs, we might ask "How can inventory level be re-
duced?" But a wider viewpoint is represented by the question
"What is the optimum size of inventory with respect to making
a profit?"” From the savings resulting from larger batch size
with less frequent production, it might be that the inventory
size should be increased.

Constraints are also important in criteria selection.
For an airborne digital computer, weight and size are fixed, so
that any criterion for optimal choice among several computers
must include the question "Does it fit?"

There may well be a multiplicity of criteria to plague
the optimizer. They must be reduced in some way to manageable
proportions by grouping them, inter-relating them, or just
discarding them. Conversely, one of the main reasons that
criteria selection is difficult is the fact that one usually
deals with either incomplete or suboptimization. In most
cases, however, the performance criterion is the first to be
examined.

Consider the application of optimalizing principles to
the field of automatic controls for an aircraft jet propulsion
system.
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One such optimalizing control meters the input fuel flow
to an engine in such a manner as to produce the maximum com-
pressor output pressure over a range of flight conditions.

ifﬁ;i:ﬁum
Pressure I
Ratio Mach |
|
|
|
|

Fuel Flow, 1lbs/hr

This indicates the goal is to maintain delivery of thrust
without consideration of fuel consumption.

Clearly, if the economical use of fuel is the primary
purpose, then the output might have been the ratio of pressure
divided by the fuel rate.

o e Former Optimum
~
Prassure N\
Ratio N
Fuel Rate

Fuel Flow, 1lbs/bhr

Here the optimum point (a maximum) has shifted to a
lesser fuel flow. Which optimum is better? No statement is
possible. Each is an optimum for its chosen criterion.

To sum up the essence of this section, the optimal ox
consists of

all meat to the gourmand,
all hide to the shoe seller,

and all hoof to the glue maker.

e S U
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Therefore, always Jdefine in advance your chosen criterion of
optimality and the constraints.

V. VARIOUS EXAMPLES

Ooptimum Coding of Information --- Communication and
information theory abound with the word "optimum." Having
determined a cost in energy, time, or money of transmitting
each one of a set of symbols (e.g., Morse code), what is the
optimal code using these symbols which will transmit a given
amount of information at the least cost, or will transmit
information at a given rate for the least cost per unit time?
(If noise is present, the cost of each symbol is effectively
increased.)

Thus, in an optimum coding process, we try to produce a
set of symbols (each which may take different times to trans-
mit) to be sent over the communication channel so that they
will all occur independently and with equal frequency. This
will permit a message io be encoaed in such a way as to utilize
the fixed channel capacity in an efficient manner.

Sometimes optimum code means a minimum-redundancy code.
This is a code which, for a message ensemble consisting of a
finite number of members and for a given number of coding
symbols, yields the lowest possible average message length,.

In general, the optimum code alone may not be identical
with the optimum code when channel characteristics enter as
constraints,

Optimum Programming of Computers - -The speed of a
storage device, such as a computer memory, is measured by its
access time, the time required for either reading or writing
access to the first location required. Access can be random
(each bit available within the fixed access time) in the case
of magaetic cores, or it can be cyclic (in which the access
time depends on where the bit is in the cycle) as in the case
of a magnetic drum rotating past a group of magnetic reading/
writing heads.

If a computer program is stored wordwise in a sequential
manner around the rotating drum, the time delays involved in
reading or writing in one memory location prevent the next lo-
cation from being processed immediately, and the drum must

- 10 -
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spin around again before the next word location can be utilized,
and the time to run the computer program is considerably ex-
tended by this waste of time.

Optimal programming consists of interweaving the locations,
i.e., arranging the program to permit space between consecutive
storage locations. This will permit consecutive reading despite
the control time lags. 1In this way the time of running is re-
duced. Computers with cyclic memories (drum, discs or delay
lines) require such optimal (or minimal latency, as it is also
known) programming so as to minimize the computer time required
for a given program. (A disadvantage is the widescattering
of orders through the drum memory. This may cause considerable
difficulty when several programs have to be fitted together.)

A first approach consists of spacing the words a fixed
distance apart, regardless of the unequal length of time differ-
ent commands require for execution. A distinct improvement re-
sults when the orders are spaced a variable distance apart, so
that a location on the drum tends to be passing the magnetic
reading head when it is needed for access.

Optimum programming usually does pay, but not always. In
order to pay, the computer time saved must exceed the additional
programming time required for optimizing (subject to the quali-
fying discussion at the end of this paragraph). It will always
pay if (1) the program is to be used repeatedly in processing
large volumes of data and if (2) the programming can be done
before the numerical data for the problem is available. It may

pay if the problem is a long, nonrepeatable one, with a large
amount of data.

(Qualifying discussion: From a cost accounting viewpoint,
it is natural to minimize the large expense of using digital
computers by emphasizing the importance of "minimum machine time"
concept as a programming philosophy. Since the cost of one hour
machine time is approximately equal to one week of programmer's
salary, it might seem reasonable for a programmer to spend one
week's effort "optimizing'" the program to save more than one
hour running time. However, more often than not, several
scientists or engineers are held up for a week awaiting an answer
before they can take action on it. In the broad view, it may be
less expensive to get answers to the sponsor before he forgets
the problem, even if it costs more in machine running time.)

Optimizing the computer program can be both tedious and

- 11 -
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valuable. Can a machine be programmed to optimize its own
programs? Yes -~ but certain compromises are necessary, princi-
pally the problem program and the optimizing program must both
fit in the memory at the same time. This limits the size of

the problem that can be optimized.

Optimum Interval Tables --- Instead of storing tables of
function values in a digital computer, or printing subtables of
differences on each page, polynomial approximations of the
tabled function can be made, valid throughout the tabular region,
with a given allowable error. These polynomial representations
can then be evaluated to reconstruct the function for any argu-

ment in the region, and thus include interpolation as well as
tabulation.

Thus, we can assign in advance both the degree n of the
approximating polynomial and the maximum allowable error ¢ .
For example, in the sketch shown below, the curve y = f(x) would
be replaced by straight lines (n = 1) such that the error every-
where is less than a prescribed ¢ (this fact deterr.ines the
length of each subinterval). "

7y = £(x)

/
-~ /
//16 ~ /
g " /
L S Tmp X by e
:’ = m PiS '-Lb ~ ”
e/ 1 1 \\Q_e//
/
/
/
/
“:1 .‘(2 :'(:;

Now for an interpolation polynomial of degree n and allowed
error €. the computer merely stores the coefficients m,, b, o
each interval and evaluates the linear polynomial corréspoﬁding
to the argument x lying within the interval.

f

This process, termed optimum interval interpolation mini-

mizes the number of subintervals needed over the entire range.
Function tables so constructed are called optimum interval
tables.

= 12 -
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VI. CALCULUS OF VARIATIONS

How does an optimization problem in the calculus of
variations differ from an extremal problem of ordinary calcu-
lus?

In the latter case, we are given the function y = y(x).
A simple problem in ordinary calculus is to find a value x
which yields a minimum or maximum value of y = y(x).

One step removed from finding the extremum of a differ-
ential function is the basic problem of the calculus of varia-
tions: to find a function y = y(x), instead of a value of the
variable x, which makes a certain definite integral

b

] = j f(x, y, y') dx
a

take on a maximum or a minimum. Note we cannoi integrate
directly, because y is not known as a function of x, hence
f(x, y, y') is not known as a function of x. Thus, the ordi-
nary methods of solving maxima and minima problems do not

apply.

Geometrically, the calculus of variations deals with the
problem of finding paths of integration for which integrals ud-
mit maximum or minimum values. Solutions may be either con-
tinuous or discontinuous in the first derivative, or both, i.e.,
"corners'" may exist in the path, occurring at the junction of
different continuous arcs.

Extensions to the basic problem include the presence of
higher order derivatives in the integrand, multiple integrals
involving partial derivatives in the integrand, variable
limits of integration, and constraints represented by the re-
quirement that another integral), involving the same variables,
has a constant value. Classical applications of the calculus
of variations include the problems of finding the minimum sur-
face of revolution, the maximum solid of revolution, least
action, solids of minimum resistance with and without the con-
straint of given volume. (A recent technique, called 'Dynamic
Programming" is a powerful computational approach to both

- 13 -
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classical and nonclassical problems in tle calculus of varia-
tions.)

Vi OPTIMIZATION AND ROCKETS

The field of rocketry provides an exceedingly ripe area
for both optimization criteria and mathematical techniques
involving the calculus of variations.

For example, consider the problem of specifying the
rocket trajectory. Different methods of control exist in flight.
The thrust may be varied in magnitude, and often the thrust
direction is variable. Thesc changes affect the flight trajec-
tory, there may exist some single goal, such as attainment of
long range with minimum expenditure of propellent and struc-
tural weight, or attainment of some altitude in a reasonable
time. It is of interest to find out how to adjust the avail-
able control so as to optimize the trajectory in the sense of
maximizing or minimizing some function such as range or time
subject to constraints such as fuel consumed or altitude
achieved. Since the controls can usually be varied at will
over a continuous range of values, such trajectory problems be-
long to the calculus of variations.

Over the past years, there have been numerous applica.
tions of the calculus of variations (as well as other techniques)
to optimization of rocket problems. Some of the many topics
published include the following:

1. Either maximize the range, altitude or some other
property for a given fuel consumption., or specity
such a property and seek to minimize the fuel
consumed.

2. Program the exhaust velocity in an optimal manner so
as to provide the most efficient utilization of the
fuel.

3. Determine the optimum thrust direction of a rocket
fired from a fighter plane pursuing a constant
velocity target in order to maximize the initial
missile-target range.

4. Determine what value of payload that will give maxi-
mum kinetic energy for a rocket of fixed structural
and propellent weights. An optimum ratio of payload
to structure exists for every value of the propellent
ratio.

- 14 -
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5. Obtain optimum staging techniques for a multi-stage
rocket with different construction parameters and
propellent specific impulses in each stage. We
wish to optimize the configuration insofar as perform-
ance 1s affected by changes in the number of stages,
and redistribution of the fuel and structure weight
among the stages. An optimization criterion might
be maximum burnout velocity for given take-off weight.

6. Seek an optimum nozzle area ratio for rockets opera-
ting in a vacuum which will provide maximum perform-
ance for the stage in question. (Here the specific
impulse of the propellent increases monotonically
with increasing ratio of exit area to throat area, but
the 1ncreased weight of larger nozzles degrades the
performance.)

VIII. OPTIMUM EFFORT OR SEARCH

Suppose that an object is somewhere in a given area, and
that its probabilities of being in the various possible posi-
tions are known.

Suppose, further, that a limited total amount of search-
ing effort (or time) is available.

Finally, assuming that the law of detection is known,
the chance of finding the object when a given amount of search
is carried out in its vicinity is determined.

The major problem is to find the optimum manner of distri-
buting the available searching effort: the one which maximizes
the chance of finding the object (i.e., remember detection is
not certain. Rather, detection is an event which may have any
probability between zero and one associated with it).

If the object is equally likely to be anywhere within a
certain area, the problem is straightforward. The search
effort is evenly laid out over as much of the area as we can
search.

But if the chance that the '"enemy'" is present varies from
area to area, the problem can become quite difficult. As an
example, if the enemy is twice as likely to be in one area than
another, and only a small amount of search area is available,

= 15I=
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all this effort should be spent in searching the more likely
area.

Additional by-products are such questions as '"What would
be a good course of action? Or several courses, possibly?"
"What is the best way for the opponent to hide?"

A more specialized problem is as follows. A target is
known to be in a large volume. Using a pulse radar, the volume

is searched by scanning systematically over the entire space.
Assume further that the search situation can be described by

1. the size of the volume the target is known to
be located in;

2. the strength of the return signal.

The parameters to be optimized are:

1. the return threshold;

2. the size of the unit search interval;

3. The time spent examining each interval,.

A related problem is the optimum acquisition procedure,
i.e., to minimize the average time to acquire a target with a

radar while constraining the cumulative probability of a false
alarm.

IX. SETTING THE OPTIMIZATION PROBLEM

If we now consider systems primarily, henceforth, we can
list five conditions which largely determine any problem in
system optimization:

1. Purpouse of the system;

2. Nature of the inputs;

3. Criterion of goodness of performance to be used;

- 16 -
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4. Freedom of choice to be allowed in design;

5. In practical problems, cost of the system in a
generalized sense must be included.

Whenever these five conditions are specified, some kind
of optimization problem is defined, although it may be such
that the problem has no solution at all, or no best solution,
or no unique best solution.

The question as to whether an optimum exists or not is
dependent in general on the existence of at least two opposing
functions in the system. For example, in the determination
oi economic lot size, the total variable costs are the sum of
carrying charges plus preparation costs, as shown below:

ﬁ Y /Total
\ ANariable
. “Costs n
'\\1___,/ Ciﬂ:t 3
Cost |
per Unit |

Preparati
| 2h Coats Quantity
0 .l. > Ordered
Most Economical (units)
Lot Size

The most economic lot size occurs where the total
variable cost is a minimum.

Another example: The velocity required to leave a satel-
lite crbit about one planet and proceed to another planet de-
pends upon the radius of the satellite orbit. The larger the
satellite orbit, the weaker is the gravitational atiraction
of the home planet. This has a tendency to reduce the velocity
required to go to another planet.

But the larger the satellite orbit, the lower 1is the cir-
cular velocity of an object in that orbit. This has a tendency
to increase the additional velocity required. Therefore, there
is an optimum satellite orbit of departure of arrival to go
from each planet to each other planet.

EEN
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On the other hand, if no opposing functions exist, there
may be no optimum,

A

0 >

However, the presence of bounds on the variables as constraints
may serve to introduce the so-called end-point or boundary
optimum, as mentioned earlier.

YA
ﬁr Constraint
+) x<a
0 a ‘)..:l{

In the above case, we see a minimum occurs on the boundary at
X = a,

Other nonmathematical difficulties may beset us. Suppose
we have two given functions u(x, y, z ...) and v(x, y, z ...)
to make as large as possible (e.g., quality and profit), but we
are thwarted by the fact that increasing one of them decreases
the other.

- 18 -




THE JOMNS MOPRING UNIVERBTY
APPLIED PHYSICS LABORATORY
SLVER SPIING MARYLANG

\ >

Two traditional methods are available:

1.

where a and b are non-negative and sum to unity, and minimize
this mean,

Fix one variable, say u, at that particular value
u, the least that will be tolerated, and maximize

v subject to this constraint.

Take a weighted average of the two variables

au + bv

v

to give an optimum up, Vq-

In general, the two optima at u, and u, will not

coincide.

1

vhxaﬂ‘

——

> u

The point is, the choice of either u_, (the least

tolerable u) or the weights a,

is not a mathematical but an executive decision.

- 19 -
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X. OPTIMIZATION OF LINEAR CLOSED LOOP SYSTEMS

A fundamental function of feedback controlled systems
is to maintain certain variables (called errors) at constant
or minimum values, under a particular set of conditions which
include:

1. dynamical nature of the process to be controlled;

[ &)

difficulties in accurate measurements;

w

servo limitations as to power and saturation;
4. random disturbances and inputs;

5. noise.

Any effort to establish a routine design procedure of
such a system requires specific criteria defining the optimum
system,

We are fortunate. There is no dearth of criteria. Among
the multitude are such ones as zero error, response specified
by a model, variable damping dependent on error size, minimum
lead and bandwidth, transient response characteristics, optimum
impulse response, minimization of the effects of disturbances,
maximization of system output, minimization of the square of
weighted noise and dynamic error, maximization of load torque
at constant speed, stable equilibrium, any of a host of integral-
of-the-error type of criteria, including minimum mean square
error.

This great number of various criteria can be reduced in

general to three basic sets of performance criteria, existing
at present in problems of servo mechanism design. They are:

1. Stability;
2. Steady-state conditions;

3. Transient response characteristics.

- 20 -
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In general, a device which is not stable will not be
used. (In some multiple loop feedback systems, sometimes an
inner loop by itself might be deliberately designed to be un-
stable in order to achieve some desired benefit, but when the
subloop is embedded properly, the over-all multiple loop sys-
tem must be stable.)

Transient response refers to the manner in which the de-
vice arrives at a steady state. Investigation of the system
for the case of transient (or nonsteady-state) phenomena
usually, but not always, requires approaching the problem in
the time domain.

Optimum transient response may be defined as that response
to a step input which regains position correspondence in minimum
time and with prescribed limitations on overshoot [e.g., for a
nonlinear relay servo we might prescribe no overshoot at all]}.
Other definitions also exist. __

The phrase "optimum adjustment'" signifies the problem of
setting the adjustable parameters of a control loop so that
the control action resulting after a disturbance will take
place in the best possible manner.

0f course, no such optimum adjustment will be universally
applicable, because it is always based upon the criterion used
to define optimum control action. The choice of such a cri-
terion is rather subjective and depends upon each application.

Steady-state conditions refer to the error (between input
and response) which remains after all transients die out.

Determination of the optimum transfer function in the
steady state requires working in the frequency domain.

There are two distinct methods of design which we will

encounter now in automatic feedback control and later in optimal
filtering. They are:

1. Parameter-optimized, or fixed configuration, or
relative optimum.

2. Variation-optimized, or free-configuration, or
absolute optimum.

- 21 -
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Parameter-Optimized---This is a simplified method in
which it 1s necessary at the outset to decide the interconnec-
tion of the elements or blocks to be employed. The procedure
to optimize parameters in the proposed (or existing) system
consisis in varying the parameter values that are not speci-
fied previous until the system gives minimum mean-square
error, i.e., after first obtaining an expression fcr the mean-
squared error in terms of the parameters of the system, the
optimum parameter values may be determined, using ordinary
minimizing techniques of calculus.

The success depenids to some extent on the wisdom of the
initial choice of interconnections and elements. There must
always remain some doubt as to whether some other intercon
nection might not lead to a better result.

Variation-Optimized.-- This method relieves the designer
completely of the onus of an initial choice of elements. It
is based upon the calculus of variations and when the other
fixed elements in the system have been specified, it allows
no choice in the remaining elements, but gives directly an ab-
solute optimum which cannot by any linear means be improved
upon.

Such systems may be difficult to realize in a practical
form since the method takes no account of practical convenience,
but the existence is of great value as a standard for compari-
son with the more conventional type.

A criterion for use in the optimization of a closed loop
system may be formulated as follows:

Let z(t) be the desired system output, and let c(t) be
the actual system output. Then any functional of c(t) and
z(t) is some kind of measure of how well the system operates.
Usually, a measure of system performance is some quantity
which depends on the error

z(t) - c(t)

and which is & minimum when the error is zero, and becomes
larger when errcor is increased.

- 22 <
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The most important criterion in use is the mean square
error criterion

f[z(t) - c(t)]2 dt

which is used mainly because it permits the development of
analytic methods for synthesizing systems with random inputs.

For many situations, other criteria are more suitable but
suffer from lack of mathematical development. This criterion
also has a physical interpretation of discriminating against
the occurrence of large errors, i.e., the optimization
criterion of minimum mean square ensemble system error weights
large errors more heavily than small errors. It reduces the
likelihood of large errors but leaves the system relatively
sensitive to small errors.

However, other criterion might be more important in
some cases. For example, it might be more appropriate to maxi-
mize the probability that the error be less than some pre-
scribed tolerance,

prob  {| Z(t) - c(t)} < K)}

i.e., we require a system which minimizes the specified proba-
bility. All errors greater than a certain threshold are
equally bad, while small errors are tolerated.

Prob {'Z(t) = c(t)l s(D, T St}

i.e. we require the system whose output has the largest con-
ditional probability, using all the past history of the sig-
nal, of being the correct value. But this requires continuous
conditional probabilities; assumes all errors larger than a
certain value are equally bad; and requires a complete sta-
tistical knowledge of inputs, often not available.

XI. OPTIMAL FILTERING AND PREDICTION

Conventional frequency filters are intended to separate
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two classes of signals whose spectra do not overlap. Specifi-
cation of these filters does not depend on the statistical
properties of the signals.

However, communication and control systems often must
perform the task of separating as well as possible a desired
signal input from an extraneous signal input such as random
noise, whose spectrum greatly overlaps that of the desired
signal. Optimum filters (relative to the way they are speci-
fied) are a class of filters designed to perform this separa-
tion.

Assume we have a corrupted signal y(t) which is the sum
of a desired signal s(t) and unwanted noise n(t)

y(t) = s(t) + n(t)

Smoothing is the removal of the unwanted random roughness
in the data. In some cases n(t) has higher frequency com-
ponents than s(t), and removal of n(t) actually amounts to
smoothing the graph of the signal.

Predicting is the forecasting of a future value of the
desired 1input signal.

Smoothing and predicting can be combined together, as
well as with and without differentiation.

Two fundamental principles of smoothing and predicting
are:

1. No separation of signal s(t) from s(t) + n(t) is
possible unless s(t) and n(t) have distinguishing
properties.

2. No prediction of s(t) into the future can be made
unless it has known property which relates its past
and future, &t least in some statistical sense.

The term "filter" or '"memory function'" used hereafter
is to be taken in a very broad context. Although mathema-
tically it may be termed an "operator,'" physically in this
sense it may be a suitable electric circuit or a more compli. -
cated piece of equipment, such as an automatic feedback con-
trol loop; or a memory store containing a given set of
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transmitted messages for comparison with a garbled message

received; or various electronic circuits, or even a missile
itself.

Consider the general system

Y(t) = s(t) + n(t) S FILTER c(t) = s(t + T
Input Output &

A smoothing filter is designed to extract as well as
possible a desired signal s(t) from the mixture y(t) of

signal and noise. Here T = 0, and the system is also called
a "'duplicator."

A predicting filter is designed to yield a future value
s(t + T), T20 of the signal, where the signal s(t) may or
may not (n(t) # O) be mixed with noise in the present.

The over-all problem of designing systems to perform
smoothing and predicting can be considered in two parts:

1. Determine by some criterion what the best smoothing

and predicting is, and what the optimum performance
operator is.

2. Realization of the desired performance operator in
a workable device.

Until the work of Wiener became known, the design of
linear systems depended on a combinition of cut-and-try pro-
cedures and analytical methods for choosing, in some optimum
fashion. the free parameters of a system of given form.
Norbert Wiener (1942) solved the problem of optimum prediction
and filter under these four assumptions:

1. The system is a fixed parameter-linear device (since
extended to a time-varying parameter linear device).

2. The system has infinite memory, i.e., operates on
all past history of the signal and noise (since ex-
tended to include the cases of finite duration
sampling time).
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3. The input time series (both signal and noise) are
ergodic stationary random processes (since extended
to the case of nonstationary nonergodic random
process 1input).

4. The system is optimum in the sense of minimization
of least squares (this has not been generalized in
a practical manner).

The Wiener metnod of system optimization specifies
mathematically that memory function which makes output, c(t),
the "best'" approximation to a translation of the message
input s(t + T) where T is some real number.

w(t)
System
y(t) = s(t) + n(t) o yemory c(t) S
Input Function Output

The error in the approximation, (t), is defined as

e(t) =s(t) - c(t)

and the approximations will be assumed "best'" when the mean
square of €(t) is minimum, i.e.,

T
2 1 2
T -»00 =T

The mathematical application of the Wiener method is as
follows:

1. Express the mean squared error in terms of
statistical properties of the message and noise
signals.

2. Minimize the mean squared error by use of the cal-
culus of variations. 1In the process of minimization,
it will be found that the optimum memory function
must satisfy a Wiener-Hopf type integral equation.
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3. The desired optimum memory function will be expressed
in terms of the solution to the integral equation
and characterized by transfer function relating the
output to the input.

(Memory function is to be regarded in the broad context
as a component, subsystem, or even a system, depending
on the problemn.)

Some important limitations on the Wiener method which
must be kept in mind are:

1. All physical systems to which this method is applied
are linear.

2. In many cases, it is impossible to realize practi..
cally the memory function derived analytically by
the Wiener method. The design is feasible provided
the optimum process does not require a circuit to
distinguish between positive and negative frequen-
cies, and does not require it to have a negative
memory. (A negative memory would imply that a sig-
nal could be processed before it had been received.

3. The auto..- and cross-correlation functions and
spectral densities functions for the noise must
exist.

A relevant question is "Why bother with optimum theory,
when the devices may turn out to be physically unrealizable?"
Two rzasons exist.

1. It is desirable to have a standard of reference re-
presenting the maximum attainable performance thai
can be expected for an optimum system. By consider-
ing the theoretical performance capabilities of
optimum systems, one can often show that a simple,
practical system under study may differ so little
from optimum as to make further refinement unneces-
sary.

2. Even though optimum filters may not of themselves be

easily instrumented, they can often be approximated
by practical devices.

- 27 -

PO, 8 e 2



THE IONML HMOPEIGE NEVERNTY
APPLIED PHYSICS LABORATORY

LA N ]

MARYLAND

The Wiener method yields an "absolute" optimum system
memory function, whereas the so-called Phillip's method de-
rives a 'relative'" optimum system memory function.

This relative optimum is found by assuming a basic
structure for a system and optimizing with respect to its
controllable parameter.

Note that the matter of physical reality, a severe limi-
tation of the Wiener method, does not enter and no consider-
ation is given whether or not the optimum system could be
practically realized. Since the basic structure is fixed prior
to optimization, the question does not arise. An optimum
memory function is then derived as follows:

1. Establish an expression for the mean-squared error
of the system;
2. Minimize this error with respect to controllable

parameters.,

For example, the realizable linear-~over-quadratic trans-
fer function

|
as + b !
|

2
csS + ds + e

as a beam riding computer filter for a guided missile can be
shown to approximate the results of the theoretical optimum
filter for the case of "white" noise (all frequencies repre-
sented) and game theory acceleration spectra (discussed later).

It is unfortunate that guidance filtering which is
optimal from the standpoint of minimizing the maximum mean
square miss distance (or beam riding error) demands infinite
mean square missile acceleration. It seems feasible to take
into account the actual physical limiting of missile accelera-
tion by seeking the filter which minimizes the mean square
miss (or beam riding error) subject to a constraint on the
allowed mean square missile acceleration.

However, by separating the guidance and control functions

=~ (28N [=
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in the missile, we can include the effects of target maneuver
in the optimization of the beam riding computer with drag-in-
duced slowdown as a constraint, and include the effects of
noise in the optimization of the autopilot with acceleration
limiting as the constraint occurring there.

Eventually, we define the optimum beam riding computer
to be that one which minimizes total beam riding errors due
to both noise and target maneuvers while restricting the in-
duced drag due to noise to some acceptable value,i.e., an
acceptable value of induced drag is that value which does not
cause the missile to slow down in level flight at the maximum
intended range.

The near-optimum transfer function is no longer linear-
over-quadratic, but becomes linear. over-quartic, due to the
constraints.

As a side note, we should mention that while optimization
of filters concerned with smoothing and predicting data has,
on the whole, been done with respect to the mean square error
criterion, the filters azre sometimes complicated to compute,
making them quite often unsuited for real time solutions. ¥or
such applications, it may be necessary to optimize the filters
from the primary viewpoint of ease of computation, with which
the final estimates of the output are obtained, and optimiza-
tion in the mean square value sense is obtained as a secondary
consideration in order to provide some control of the mean
square output error. This approach would have the greatest
appeal for problems involving real time filtering where com-
puting time and complexity are primary considerations, and
noise reduction is a secondary consideration,

A remark on the use of nonlinear filters can be made
here. If the noise and signal at the input both possess
Gaussian distributions in amplitude, the linear filter is the
optimum filter, and no improvement in filtering can be realized
by going to a nonlinear device. But with more general input i
signals, the same situation does not hold. In many cases the
mean square error can be further reduced by the addition of
nonlinear filters.

In concluding this section, we can state a few facts
about detection of signals in noise. Detection is the process
of determining whether a signal i:.. present or not. When de-
tecting a signal, the detector is either right or wrong, but
in the theory of prediction, it is unlikely that one is ever
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exactly right, but there are all degrees of wrorgness. In de.
tection, alternative optimization criteria to minimization in
a least squares sense has been used. For example:

1. Maximization of signal-to-noise ratio at a speci-
fied instant of time;

2. Maximization of the absolute magnitude of the differ-
ences hetween signal and noise over all time;

3. In one optimum threshold (i.e., weak signal) detec-
tion system, optimality is achieved by minimizing
the average cost of decision;

4. Another detection system is "best'" which in the long

run will hold fixed the false alarm probability and
will minimize the probability of missing the signal.

XII. WIENER THEQRY APPLIED TO AUTOPILOT DESIGN

The Wiener optimum linear filter formulation is applied
to the autopilot closed loop transfer function with the dis-
turbance spectrum entering at the wing. [Actually the noise
in the autopilot enters the loop at various places. ]

A statistically optimum autopilot may be defined as that
autopilot which minimizes the mean-square error between accelera-
tion command and the missile acceleration response attained.

For a realistic approach, saturation of various elements
in the system must be included. Because of the nonlinear
nature of these saturating elements, general procedures for
the optimization of filters involving them have not been de-
veloped. Usually the nonlinear limits are replaced by a linear
system by constraining the saturating quantities to their mean
square values.

It is desired to fjind the transfer function G which mini-
mizes the mean square € ¢, subject to a constraint of limited

.

mean square wing rate 6<.
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XIII. GAME THEORY AND OPTIMAL FILTERING

The theory of games, or game theory, is the particular
branch of applied mathematics which deals with the rational
analysis of competitive and cooperative systems, and the de-
termination of optimal courses of action for the participaats.
Situations to which game theory can be applied occur in opera-
tions analysis, strategic and tactical planning, whenever
there is conflict of interest arising from the actions of an
opponent. ("Opponent'" can include even Nature, a fictitious

player, having no known objective nor strategy in some general
cases.)

The elementary concepts for the simplest, two--person
game are that which one side gains the other side loses, that
the opponents simultaneously choose a course of action (called
a strategy), and that the outcome of the game (the payment of
one side to the other) is determined by this dual choice of
strategies. The outcome is not completely determined by either
side alone, it is determined by the combined decisions of the
two opposed players.

One of several possible criteria is the minimax principle
-~ each player should employ only optimal strategies which
minimize his maximum loss, no matter what the other player may
do.

=3 =
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In Wiener's work, the statistical properties of the
noise and signal are assumed fixed, and given in advance of
the problem. A guidance f{ilter can be optimized then to in-
clude the effects of target random maneuvers, presumably
typified by maneuvers over which the enemy himself has
little or no control [e.g., wind gusts, noise in his systen,
etc.]. Such a guidance filter or beam riding computer may or
may not be near optimum if the target maneuvers in a deliber-
ate manner. Essentially, the game theory approach assumes an
IntelTigent target, one able to assume the most evasive
maneuvers within its capabilities. The goal is to design the
best possible system against this crafty target, within cer-
tain boundary conditions and constraints.

In game theory optimization, allowance is made for the
fact that the enemy who is producing the signal may prefer
not to be followed, and may attempt to keep the mean-square
error as large as possible. The spectral density of his
signal is thus no longer fixed, but is the strategy of one of
the participants of the game.

The strategy of the other participant, the filter de-
signer, is specified by the transfer function of the filter.
The game payoff is considered to be the mean-square error or
miss.

The filter designer must design the best filter in view
of the worst choice of signal spectral density by the enemy
{as caused by his maneuver).

The enemy, who is the signal producer, must generate a
signal which has statistical characteristics that result in
the greatest possible miss despite the best efforts of the
filter designer.

If these two considerations are mutually compatible,
there is a game theory solution, i.e.,, there is a filter
transfer function which gives the smallest mean-square error
for the worst possible signal.

The game theory solution is essentially the intersection
of two functional equations: one giving the optimum filter
transfer function for fixed signal spectral density; the other
the optimum signal spectral density for fixed filter function.
This solution has the property that the error obtained with it
when the target signal strategy is optimum (in the sense of
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maximizing the miss) is smaller than the error obtained for
any other filter transfer function when the signal strategy
is optimum for that transfer function.

XIV. WHY OPTIMIZATION TECHNIQUES HAVE NOT BEEN USED
MORE FREQUENTLY

Three conditions have conspired to keep optimization
methods from widespread application in the past.

1. Complicated mathematics, for example, in optimizing
a filter by Wiener's method, and actual nonlinear
constraints.

2. Equipment required is prohibitive in cost and/or
bulk.

3. Advantages accruing from successive refinements be-
come progressively smaller. Quite often a com-
paratively simple filter, say roughly approximating
the Wiener design, in practice gives most of the
advantage to be expected from the true Wiener design.

XV. RELATION TO ADAPTIVE SYSTEMS

Designing control systems where (a) little significant
information is known about the process to be controlled, (b)
the properties of the process vary over an extraordinarily
large range, and (c) the characteristics of the system input
signals change markedly with time, may require systems in
which the compensation is automatically adjusted to offset
these adverse effects. Such systems are called 'adaptive
systems."

Optimum performance from operating systems is of in-
creasing importance as competition in the real world becomes
more severe, Adaptive control is a method of automatic con-
trol aimed at obtaining optimum system performance even when
there exists incomplete or inexact analytical or analog models
of the process that is being controlled.

Adaptive or self-optimizing systems optimize control by

=183 -
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the use of ar automatic unit which searches out and holds the
best performance from a controlled system, in spite of any
reasonable change of the output level or environmental opera-
ting conditions. 1In this sense, the adaptive system ''learns"
to improve its performance, based upon experience, thereby
adapting itself to the circumstances it finds.

In order for an optimizing action to be possible, the
system to be controlled must have a performance characteris-
tic which shows an optimum point as one or more of the inputs
vary. A suitable deviation signal that represents the depar-
ture of the operation from the optimum conditiun is gencrated
and utilized as a basis for making corrections to the input
(if controllable) or to the adaptive system parameters (e.g.,
variable damping if noise is the input), so that the devia-
tion dimirishes and the operating point approaches the optimum
poirt again.

Ar application of adaptive systems is made in target
tracking radars, which adjust the over-all transfer function
of the tracking loop according to target behavior and system
noise. To»rget acceleration or maneuver is ''recognized" and
the system parameters vary to convert the function of the
loop from data smoothing to tight and fast follow-up. When
target marneuver ceases, system returns to its filtering mode.
Thus, the parameters are adjusted to balance the low frequency
error (1ag due to maneuver) and the high frequency error (re-
spor.se due to noise).

XVI. MATHEMATICAL PROGRAMMING

Lirear programming, nonlinear programming and dynamic
programming are three of a set of techniques called "Mathe-
matical Preogramming'" which involve the programming of inter-
depende:t activities. These techniques are referred to as
"programming' in order to emphasize that planning, as dis-
tinguishked from operations or execution of plans, is the area
of primary interest. 1In brief, programming is concerned with
the problem of planning a complex of interdependent activities
in the best possible way.

The general programming problem is to maximize or mini-
mize an objective function ¢ (x), which is some over-all
measure such as cost, or profit, or value, or quality, or
efficiency, etc. subject to constraints gl(x) O], gz(x) > 0,

.. and x, > 0, x,2 O,

1 = AN
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The usual analytic methods of solving extremization prob-
lems in the presence of constraint equations (solving the con-
straint equations, substituting in the objective function,
and differentiating, or else by Lagrange multiplier techniques)
do not take into account the inequality constraints which
characterize mathematical programming.

XVII. LINEAR PROGRAMMING

Linear programming is a relatively new mathematical tech-
nique to handle problems with the following characteristics,

1. There is usually a large but finite number of non-
negative variables.

2. The variables are subject to a finite number of con-
straints or boundary conditions usually in the form
of linear inequalities and/or equations which limit
the variables range, and are accurately known.

3. Under these constraints, some objective function is
to be maximized or minimized.

Both the objective function to be maximized and the re-
strictions on each variable (equalities or inequalities) are
linear in the variables.

We say a solution is feasible if it satisfies the con-
straints, and optimal if it also achieves a maximum. The
problem ronsists In determining, out of the infinite number of
feasible solutions, a unique (if possible) solution which is
optimal.

The resulting solution will then provide the best possible
planning of operations under the specified restrictions.

Problems with these characteristics crop up in transporta-
tion fields (relating sources and destinations of supplies),
production bottlenecks (efficient allocation of limited re-
sources) problems of scheduling and timing, contract awards,
personnel assignment, etc.

Linear programming problems have been attacked in several
ways, the most prominent method being the Simplex Algorithm,
which is a very powerful computational technique which can

efficiently solve large systems containing hundreds of equations.
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However, limitations and disadvantages to linear pro-
gramming exist. Among them are:

1. The linearity restriction. For example, linear
costs do not penalize large values of the
variable. [This has been alleviated to some ex
tent by the generalization to "Quadratic Program-
ming," in which the linear objective function to
be extremized can be replaced by a quadratic form,
with linear constraints.]

2. Optimal solutions are not obtained in analytic form.
Changes in the mathematical model require recalcula-
tion.

3. Error analysis is difficult.

4. No provision is made for relationships involvi.g
uncertainty due to random fluctuations or errors
in determination, for example, sales forecast in
the form of a probability distribution cannot be
handled.

9. The cxpression of realistic objectives and constraints
in measurable terms.

6. The determination of suitable numerical values for
coefficients.

7. The computational labor required to execute numeri-
cally large-scale linear programming problems.

XVIII. DYNAMIC PROGRAMMING

Among programming problems, there are some in which time
plays an essential role and in which the sequence of decisions
is vital. These are termed "Dynamic Programming" problems, and
Dynamic Programming, the functional equation technique of a
new mathematical discipline, can be used in the formulation and
solution of optimization problems, including those in which the
process need not necessarily change with time. Furthermore,
the process may be stochastic, i.e., the outcome is not de-
termined but is predictable by means of a probability distribu-
tion.
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In a typical application, a sequence of decisions is
sought which in some sense optimizes the behavior of a sytem.
In these sequences of operations the outcomes of the preceding
operations may be used to guide the course of future operations.
As the number of decisions increases, and the discrete length
of the decision interval decreases without 1limit, continuous
solutions are produced which are equivalent to those furnished
by the classical calculus of variations. Thus, Dynamic Program-
ming is properly an extension of the calculus of variations,
but of much wider scope and versatility.

XIX. OQUEUEING THEORY

In many operations there is a lack of timing between
arrival, at some point in the operation, of a sequence of units,
and the subsequent disposal of these units, so that a waiting
line or queue is formed of newly arrived units awaiting disposal.
For example, the units might be aircraft ''stacked" over an air-
port, traffic tie-up, ships in a harbor awaiting docking,
customers in a cafeteria, etc. Queueing Theory or Waiting Line
Theory is the specialized method for analysis of these situa-
tions.

A central problem of waiting line theory is the relation-
ship between the mean length of the waiting line and the degree
of randomness of arrival and disposal, such a line arising
whenever the mean arrival rate exceeds the mean service rate.

On this problem can be based estimates of the optimum capacity
of the service facilities when one balances the cost of letting
the unit wait in line against the cost of increasing the service
rate.

XX. THE CONVERSE OF OPTIMAL

The converse of '"optimal" i.e., the worst of the worst
has been dubbed '"pessimal” by J L. Vanderslice (APL). However,
this tern is not in common usage in the technical journals.

= 37 | -

!

~



PR KON HOPEW SEVIRUTY
APPLIED PHYSICS LABORATORY
wve wewo MARTLAND

BIBLIOGRAPHY

(Items are listed in their approximate occurrence in the text.)

1. Saaty, T., Mathematical Methods of Operations Research,
McGraw-Hill, 1958, see Chapter 5, "Optimization,™ in
particular.

2. Modern Mathematical Methods and Models, Volume I:
MuIticomponent Methods, by th¢ Dartmouth College Writing
Group, see Chapter 4, '"Optimization Problems."

3. Hitch, C., "Suboptimization in Operations Research,"
Journ. Op. Res. Soc. Am., Vol. 1, No. 3, May 1953, pp.87.

4. Oakley, C. 0., "End-Point Maxima and Minima," Am. Math.
Monthly, Vol. 54, p. 407, T

5. Monall, J. D., "One-Sided Maxima and Minima,' Am. Math.
Monthly, Vol. 55, p. 311.

6. Fox, Charles, An Introduction to the Calculus of Variations,
Oxford University Press, 1950.

7. Forsythe, G. E., "Computing Constrained Minima with Lagrange
Multipliers,”" Journ. Soc. Ind. Appl. Math., Vol. 3, No. 4,
December 1955.

8. '"Report of a Symposium on Modern Techniques for Extremum
Problems,'" Operations Research, Vol. 5, No. 2, April 1957,
p. 244.

9. Lewis, E. V., "Optimum Fullness for Dead Weight Cargo Ships
in Moderate Weather Service," Journ. Ship Research,
November 1957, p. 7.

10. Plunkett, R., "The Calculation of Optimum Concentrated
Damping for Continuous Systems," Journ. Applied Mechanics,
Vol. 25, No. 2, June 1958, p. 219.

11. Brooks, S., "A Discussion of Random Methods for Seeking
Maxima," Op. Res., Vol. 6, No. 2, March-April 1958, p. 244.

12, Best, G. C., "A Minimum Problem Solved by Mesh Methods,"
MTAC, Vol, 8, 1954, p. 11.

- 38 -



THE HOMNS HOPEING UMIVIRMTY

APPLIED PHYSICS LABORATORY

YR SPRING

MARVLAND

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

Vasu,

G.

’

"Experiments with Optimalization Controls

Applied to Rapid Control of Engine Pressures with High-
Amplitude Noise Signals,'" Trans. ASME, Vol. 79, No. 3,
April 1957, p. 481.

Herget,

P. and Clemence, G.
Card Tables," MTAC, Vol. 1,
note by J C. P. Miller on p. 334.

’

"Optimum Interval Punched
1944, p. 173. See also a

Saddler, D H., "Maximum Interval Tables," MTAC, Vol. 4,
19506, p. 129.

Blackman, N.,

Huffman, D.,

Wilkinson, J. H.,

"Minimum-Cost Encoding of Information,"
IRE Trans. Inform. Theory, PGIT-3, March 1954.

"A Method for the Construction of Minimum-
Redundancy Codes,'" Proc. IRE, September 1952.

""An Assessment of the System of

Optimum Coding used on the ACE at the National Physical

Laboratory," Phil. Trans.

p. 253.

Roy. Soc. (A), 20 October 1955,

Gordon, B., "An Optimizing Program for the IBM 650,"
Comp. Mach, Vol. 3, No. 1, January 1956,

Journ.

Assoc.

p. 3.

Breakwell, J. V.

Journ.

"The Optimization of Trajectories,"

Soc. Ind. Appl. Math., Vol. 7, No. 2, June 1959,

p. 215.

Newton, R., '"On the Optimum Trajectory of a Rocket,"
Franklin Institute, Vol. 266, No. 3, September

Journ.

1958

Koopman, B. O.,

"The Optimum Distribution of Effort,K"

Journ. Op. Res. Soc. Am., Vol. 1, 19533, p. 52.

Miehle,

Vol.

3

?

W., "Numerical Solution of the Problem of
Optimum Distribution of Effort," Journ. Op. Res. Soc.
Am., Vol. 2, 1954, p. 433.

1955.

- 39 -

Also correction, p. 219,

»
v &

L4



KON OIS LUVIRNTY
APPLIED PHYSICS LABORATORY
"uvee weno mAITAND

24, Koopman, B. 0., '"The Theory of Search,' published in
Operations Research Journal in three parts.

Part I. 'Kinematic Bases,'" Vol. 4, No. 3, June 1956.
II. "Target Detection," Vol. 4, No. 5, October 1956.

III. "The Optimum Distribution of Searching Effort,"
Vol. 5, No. 5, October 1957.

25. Graham, D. and Lathrop, R., "The Synthesis of Optimum
Transient Response: Criteria and Standard Forms," Trans.
AIEE, Vol. 72, Part II, November 1953, p. 272.

26. Schultz, W and Rideout, V., "A General Criterion for
Servo Performance,'" Proc. Nat. Elect. Conf., Vol. 13,
1957, p. 459.

27. Oldenburger, R., '"Optimum Nonlinear Control," Trans. ASME

Vol. 79, No. 3, April 1957, p. 527.

28. Davenport, W. and Root, W., An Introduction to the Theory
of Random Signals and Noise, McGraw-HilI, T958.

29. Bendat, J., Principles and Applications of Random Noise
Theory, J. Wiley, 1958. -

30. Newton, G., Gould, L., and Kaiser, J., Analytical Design
of Linear Feedback Controls, J. Wiley, 1957.

31. James, H., Nichols, N., and Phillips, R., Theory of
Servomechanism, Vol. 25, MIT Radiation Lab Series,
McGraw-HilTl, 1947.

32. Ragazzini, J., and Zadeh, L., "Probability Criterion for
the Design of Servomechanisms,' Journ. Appl. Physics,
Vol. 20, February 1949, p. 141

33. Shinbrot, M., and Carpenter, G., An Analysis of the
Optimization of a Beam-Rider Missile System, NACA, Tech.
Note 4145, 1958.

34. Bode, H. and Shannon, C., "A Simplified Derivation of
Linear Least-Squares Smoothing and Prediction Theory,"
Proc. IRE, Vol. 38, April 1950, p. 417.

- 40 -




TME JOMMY HOPEINS UNIVERDITY
APPLIED PHYSICS LABORATORY
Ve VIno MARYLAND

35. Darlington, S., "Linear Least Squares Smoothing and Pre-
dicting, with Applications," Bell System Technical Journal,
September 1958, Vol. 37, pp. 1221-1299.

36. Stromer, P. R., "Adaptive or Self-Optimizing Control
Systems - A Bibliography,'" IRE Trans. on Automatic Control,,
Vol. AC-4, No. 1, May 1959, p. 65 —

37. Aseltine, J., Mancini, A., and Sarture, C., '"A Survey of
Adaptive Control Systems,'" IRE Trans. on Automatic Control,
PGAC-6, December 1958, p. 102 ——

38. Munson, J., and Rubin, A., "Optimization by Random Search
on the Aualog Computer,'" IRE Trans. on Electronic Computer,
Vol. EC-8, No. 2, June 1959, T

39, Vajda, S., The Theory of Games and Linear Programming,
Methuen, 19356. ——

40. Bellman, R., Dynamic Programming, Princeton U. Press, 1957.

41. Morse, P. M., Queues, Inventories, and Maintenance, ORSA
Publications No. 1, J. Wiley, 1958.

42. Saaty, T., "Resume’ of Useful Formulas in Queueing Theory,"
Operations Research, Vol. S5, No. 2, April 1957, p. 161.

- 41 -



Y 100G HOMIG SEVIINTT
APPLIZD PHYSICS LABORATORY
“vi wese Mo

~ 42



THE JOMNS HOPKING UNIVIRYTY
APPLIED PHYSICS LABORATORY
uve a0 MATTLANO

OPTIMIZATION IN NOISE

by

J. E. Hanson

- L8ih=



T JXON0E HOPEING UMIVIBIITY
APPLIED PHYSICS LABORATORY
mver sraw0 “ATNAND

I. LINEAR FILTERS, THEIR TRANSFER FUNCTIONS
AND WEIGHTING FUNCTIONS*

Let x(t) and y(t) be the input and output, respec-
tively, of a filter. By this we understand
that there exists a linear differential equa-
tion with constant coefficients connecting x(t) FILTER ylt?
x(t) and y(t). We shall temporarily assume
this equation to have the form

(n) (n-1) : _ (n-1)
(1.1) by + b Y +.. .04+ bly + boy a _, X
oot X +oa X
where
(1.2) b # 0.

Replacing the operator %Y by the letter S, (some

people use D, others P), we can formally solve for y, thus:

a . S +...+ a,S + a
(1.3) y - -t n—ll O x = F(S) x.

bn ST+ bn—l S S bIS + bo

The rational function of S, F(S), is called the
transfer function of the filter. 1In elementary differential

*Some of the discussion of this and subsequent sections is
simplified, and not completely rigorous mathematically. The
purpose of this paper is to acquaint the reader with useful
concepts and techniques, which is oftentimes at odds with the
objectives of completeness and rigor,
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equations it is shown that if one solves for the roots of
b S"+ b _, s?"1 +...+ byS + b, = 0, and if the roots all

have negative real parts, then the equation (1.1) is stable,

i.e., if x(t) = O, then y(t) will approach zero no matter

what the initial values of y, ¥ ..., y*"" %) Accordingly,

if the denominator of F(S) (extreme caution must be exercised
in cancelling common factors of numerator and denominator)
has the ascribed pronperty, we shall say the filter is stable
or realizable. (The term 'realizable" is found in the
literature but its use in this connection is objectionable.)

Let the filter be stable, and be of the form given
by (1.1). The following statements are then valid:

A. There exists a unique function W(r), called the
weighting function of the filter, defined for 7 & O such that,
for any sufficiently well behaved input, we have in steady
state

(o)
y(t) = /‘ W(t) x (t-T1) d1, assuming x(U)
()

defined for - < U < t.
@

-ST
B. F(S) f[ e 2 W(t) dt, for complex S with suf-
o)

ficiently large real parts. (ReS = O is large enough in all
cases) .

C. F(S) = F(S), F(S) real for real S.
k
D. If x(t) = A cos wt , then in steady state

y(t) = AlF(iu)I cos (wt + ¢), where

Im F(iw)

tan ¢ = pFGD)

Justifications---\WVe shall conclude this section
with justifications of A, B, C, D and a short discussion of
the significaunce of them,

*
A is a constant.
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Proof c¢f A

For any sufficiently well behaved function W(r), we
e}
have, setting y(t) =j” W(T) x (t-T1) drt
o

a

(1.4) by = [ By WD) x (t-7) dr
o
. (D .
(1.5) byy =-[ b, W(1) x (t-1) dv = b, W(0) x (t)
o

[60)
+f bl W(T) x (t=-T1) dT
o

using integration by parts., Using successive integration by
parts, for k < n we have

a

(1.6) by y () =/' b, W(T) x(E) (t-1) dr = b, W(0) x (B (4

o

w&1) 0y x(t)

+ by W0 x5 (1) 4 by

@
[ oy W (1) x (t-1) dr .
o)
Adding up the above n+l equations, there results

(1.7) b, y(m |y y(“'l) +...+ by ¥ + by

n-1
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=j; lbo W(T) + bIW(T) " bnw(“) ()] x (t-1) de
+ b W) x(P7L) (b, W(0) + b__. W(0)] x{772)
+...04 [bn W(n-z)(O) +...+ bg W(o) + b, W(0)] x
+ (b, w1 0y 4.4 bW + b, W(O)] x
n T 2 1
Note that if we can satisfy
(1.8) bn W(n) (1) +...+ b1 W(T) + bo W(t) = 0, for v > O,
and
(1.9) b, W(0) =a__;

b, W(0) + b _, W(0) =a__,

1
-]

(E=2) 2
b W (0) +...+ by W(0) + b, W(O)

[
0

b, w1 oy 4. 4 b, W(0) + b, W(O)

all simultaneously, then the integral in (1.7) vanishes
identically, and y(t) is then a particular solution to (1.1).
The general solution, from elementary differential equations
can then be expressed as the sum of y(t) and the general
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solution to the reduced differential equation, the latter
approaching zero as t —2m . Thus, if we wait long enough
after the initial instant, the output will be approximated
as closely as we please by y(t). This is what is meant by
the s‘eady state solution. If we have not waited very long,
the ..ifference between the output and the steady state solu-
tion is called a transient.

The equations (19) can be solved for W(0O), ...,
w(n-1) (o) uniquely since by # O. Thus W(7) is a solution
to our problem if it is a solution of the reduced differential
equation vith specified initial conditions. That such a
solution exists and is unique follows from differential equa-
tion theory. We have now found a function W(7T) such that

w

(1.19) y(t) f W(T) x (t-71) dT

(o]

is the steady state output of the filter. It can also be
shown that there is only one such function W(7T) with this
property. (The proof depends on complex variable theory, and
is omitted).

Note that W(7) will decay exponentially to zero as
T —> W .

If we allow the numerator of F(S) to have degree
equal to or larger than that of the denominator, the previous
analysis breaks down. The concept of weighting function can
be extended even so, however, but not without introducing the
Dirac delta function. The W(1)'s are no longer nice func-
tions in the usual sense, and their manipulations are fraught
with hazards. Even a competent person in filter theory must
occasionally excrcise caution, although he is generally quite
familiar with delta functions and their admissable manipula-
tions.

Transfer functions whose denominators have roots
with positive real parts are seldom purposely used in missile
work as they represent unstable filters. However, quite
often it is useful to consider roots with real parts equal to
zero. (For example, 1 would formally represent a pure in-

tegrator.) If one pushes the root slightly to the left in the
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complex plane (say 5%?), proceeds with the analysis, and then

finally lets €—=>0, one can justify many of the manipulations
executed by a competent servo man, who generally neglects
this necessary logical step. He knows by experience what he
can and cannot do with these transfer functions.

One can also justify the delta function manipula-
tions for the case mentioned previously by adding a few small
higher order terms to the denominator to reduce the transfer
function to the case we have considered, and then at the end
letting these terms approach zero,

In general, we shall try Lo avoid these somewhat
pathological transfer functions, leaving the pursuit of them
to the interested reader,

Proof of B
Applying integration by parts liberally, we can
write
00 @
(1.11) f b, e 5T W(r) dr = bof e ST W(r) a-
o] o

(e 0]
f by e ST W(t) dr by sf e ST w(r) dr - by W(O0)
(o] (o]

@

w B - i .

/‘ b2 e S w(t) dt = b2 82 j. e STW(T) dr - b2 wW(0)
o)

o

-b2 S W(0)

Q0 -ST (n) n S =St
f b e W (1) dT = by Sf e Ww(t) dt - b
o) (o]

w1 gy - b sw(n=2) (o) - .- bns"'IW(O)
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Adding all of the above, using (1.8) and (1.9), we

g0 -ST
have O=(b + b, S +...+b Sn/’ e W(t) dT
o 1 n
o)
(1.12)
- (an_1 sl to.o.+ 2 S+ ao).

Solving for the integral yields the desired result. The
above operations are legitimate as long as the real part of
S is greater than the real part of every root of the denomi-
nator of F(S).

Proof of C

This is obvious, and the proof is omitted,.

Proof of D

Since

(1.13) A cos wt = % (e

we have, from (1.10) and statements B and C,

Y

(1.14) y(t) = %f W(T) [eiu(t-T) .\ e'iu(t"r)] .
(o}

(0's)
eiutj‘ W(T) g s dt
o

:é

2

00

‘A e—1utj’ W(q) eivt dT

2 (o}

-iwt .

= % [eiUt F(iw) + e W F(-iw) ]
= % [cos wt + i sin wt] [ReF(iw)+1iIm F(iw)]|
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+ % [cos wt - i sin wt] [ReF(iw) - i Im F(iw)]

- A [Re F(iw) cos wt - Im F(iw) sin wt].

The result follows by setting

_ _ Re F(iw)
(1.15) cos @ = (1o

and

, _ Im F(iw)
(1.16) sin ¢ —m—

Discussion---Statement D is a key to the usefulness
of the concept of a trausfer function, and to why the word
"filter" is used, It tells us what happens to the output of

filter in steady state when the input is a sine wave.

F(iw)| may be large for some w's and small for others. Since
the ratio of the amplitude of output to input is just |F(iu)|,
we see that when W(iu)l is small, the filter "filters out"
that frequency, i.e., it greatly attenuates its amplitude.

When or.e uses transfer functions, one is commonly
said to be "working in the frequency domain'", mainly because
of the above paragraph, i.e., because of the natural con-
nection between behavior of filters in the presence of sine
wave inputs and pure imaginary values of S. When one analyzes
filters by use of their weighting functions alone, one is
said to be "working in the time domain''. The conversion from
one domain to the other is seen by statement B to be accomp-
lished by a Laplace (or Fourier) Transform. (The conversion
from frequency to time depends on the theory of inverse trans-
forms, which we shall not touch upon specifically in this

paper) .

Exercise (a) Consider the transfer function F(S) = lls
+
Graph F(iw) and arctan %%—%%%%% versus u,
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Exercise (b) Let FI(S) and F2(S) be two stable transfer func-

tions whose numerators are of lower degree than
the denominators LLet x(t) be the input to the
first, y(t) its output. Let y(t) be the input

to the second, z(t) its output. Prove that there
exists a filter with transier function F_(S)
whose input is x(t) and who>se output is “z(t),
and that F3(S) = FI(S). Prove also that, for the

steady state results developed in this section,
it is legitimate to cancel common factors of the
numerator and denominator of F3(S).

Exercise (c¢) It either Fl(S) or F2(S) are unstable, and cancel-

lation of factors in F3(S) reduce F3(S) to a

formally stable transfer function, show that it
is generally not pnssible to carry over the steady
state results of this section to F3(S).

IT. TIME SEKIES, STATIONARY TIME SERIES, ERGODIC STATIONARY
TIME SERIES, AUTOCOKRRELATION FUNCTIONS, POWER SPECTRAL
DENSITIES, NOISE

By a time series we mean an ensemble (or collection,
aggregate, population, class, set, etc.) of functions x,(t),
(a is the index which varies over the ensemble) defined for
-w< t < o, where a probability distribution exists over the
a's. Signals about which we have only statistical knowledge
(such as noise, target maneuvers) are treated as being time
series, since the theory of time series seems to be the only
known mathematical theory whose results agree with observation,
and by which one can design intelligent filters to operate with
such things as inputs. A noise trace, say from missile tele-
metering signals of off-beam error, for example, defined for
t, < t < t,, is then regarded as a section of a particular

sample function of a time series,.

By the autocorrelation function of a time series we
mean the function Ea[xa(t) xa(t+r)], which is a function of

t and 7. Thus, to determine the value of the function for
given fixed t and 17, we compute the mathematical expectation
(or mean, or average) over alla of xa(t) xa(t+r),

If a time scries is stationary, we think of the time
series as having the same statistical properties if all func-
tions of the ensemble are shifted to the right or left by the
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same amount on the tire axis. For a stationary time serices,
the autocorrelation function is a function of ralone, and
not of t. This simplication simplifies the mathematical
theory tremendously, and fortunately, many statistical sig-
nals found in missile work can be regarded as stationary.
Unless explicitly stated otherwise in the sequel, it is as-
sumed that all time series are stationary.

The knowledge of the autocorrelation function (or
equivalent functions from which it can be derived) or some
approximation to it is required to do intelligent design
work in many instances. With no a priori knowledge, one must
resort to measurements. It is not hard to visualize the
problems connected with trying to look at a lot of different
samples simultaneously, being sure they are samples of the
same time series, and then taking ensemble averages. Fortu-
nately, there is a convenient crutch called ergodicity which
enables one to avoid this. When looking at a sample trace
of noise, one is sorely tempted to believe that one can aver-
age over time instead of over space (ensemble). So one postu-
lates that the time series is ergodic (this term is applied
only to stationary time series) and writes

n
.1 ce ] .
lim TT/h xa(t) xa\t+r) dt (for any fixed a)

=T = E [x (t) x (t+7)] (for any fixed t).
T—> o o a g

The autocorrelation function is then computed by the left hand
side using a single noise trace. Suffice it to say that ex-
cept in cases where the time series is obviously not ergodic,
one rarely gets into trouble by assuming that it is. Wiener,
in his classic work on stationary time series (very difficult
to read) assumes ergodicity, but for most of his work, this

was an unnecessary assumption. The only practical reason
for assuming it is when one wishes to measure an autocorrela-
tion function (or its equivalent). Since we will not be con-

cerned with measurement in the sequel, we will not assume
ergodicity. Henceforth, unless stated otherwise, all time
series are assumed to be stationary, not necessarily ergodic,
and all averages are ensemble averages,

Stationary Time Series---Let x(t) be a stationary
time series, (the subscript a omitted for brevity) and let
A‘([) denote its autocorrelation function. The Ax(r) has the

following properties:

i
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E. Ax(O) - 02, the expected value of the square of

x(t) and hence Ax(O) > 0. (Why?)

F. Ax(T) = Ax(-r) for all 1. (Replace t by t-t

in the definition of Ax(T) b

G. le(T)l < A (0) for all T. This can be proved

by the Schwarz Inequality.
We omit the proof.
The power spectral density (abbreviated by P.S.D.
henceforth) denoted by dx(s'T, is defined to be

a

(2.1) ¢x(S) = j~ e ST Ax(T) dt . (Laplace transform of
~m®

the autocorrelation function) - s

For a wide class of time series,y[ le(T)l dT con-

-m
verges. and when this happens, d_(S) exists when S is a pure
p

imaginary number, which, as one might suspect, is the case of
main interest. In many cases éx(S) is a rational function,

and can be defined over the whole complex plane (not in general
by the integral, but by analytic extension). As before, we
shall assume that our future manipulations are legitimate, and
not be too concerned about rigor.

¢x(S) has the following properties, which we will

discuss in turn:

H. 6x(S) is real for real and pure imaginary S.

1. 6.(5) - IS,
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J. #,(8) = 8,(-8).

K. 51—_/;),5 (iw) du = 02

L. If the time series x(t) is passed through a
stable filter with transfer function F(S), the output y(t) in
steady state is a time series whose P.S.D. is given by ¢y(S) =

F(S) F(-S) 4,(S). In particular, g (iw) = ’F(iu), 2 g, (1v).

M. ¢x(S) > O for pure imaginary S.

Proof of H

That 9 4(S) is real for real S follows directly from
(2.1). 1f S = iu, e ST - cos WT - 1 sin wt . Since sin w7
is an odd function, it follows from F that the imaginary part

of (2.1) integrates to zero.

Proof of 1 @
Let S = U + iV. Then ¢x(S) = Jr e-UT(cos vVt - i
~-m

sin VT) AX(T) dt .
From here, I is obvious .
Proof of J

By making a change of variables, and using F,

(e 0] -
ST -SU
g (-5) -] e A, (1) dr =-fme A (-U) dU
Q [0 0)
=_foo eSU A, (-U)du =[w e'SUAx(U) U = 8 (S).

Proof of K

_1_f _L.[f—iu*r
o g(iw)dw = 5 lim e Ax(T) dt | dw

- W—=>o -W |-
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=—11m f A (T)f -jwrt dwuT|drT

W~>m:
00
- % lim .[ Ax(T) El%,EI dt
W=

1 sin U
- = lim f A, (% =g— 49U (letting U = W)
(o o]
_Lf A, [11m 3| 812U gy
i -00 W—>00
00 a
-1 sin U = 1 sin U =
-1 f a0 52 Y au - a0 1 [ RS av
=
Ax(O) = 0,.
Proof of L

In steady state, we can write, from A,
®
(2.2) y(t) = f W(U) x(t-U)dU and
o
(o4)
y(t+71) = j' W(V) x(t+T-V) dV.
o

Multiplying the above equations together,
@™ 00
(2.3) y(t) y(t+r) = f f W(U) W(V) x (t-Uyx (t+T-V) dU dv.
o o

Taking expectations, t disappears from the right
hand side (as will be seen from the following equalities) and
we write:
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(Integrate average rather than
average integrals.)
(2.4) A(T) - Ef f W(U)W(V) x (t-U)x (t+7-V)dU dv
o o

W(U) W(V) E[x(t-U) x (t+7-V)] dU dV

O%

oo
W(U) w(v) Ax(T+U~V) du dv.

0\8 0%8
0%y

y(t) is also stationary, and the fact that t disappeared is

in agreement with this, although it is not a proof. The care-
ful reader will note that we have not rigorously defined
stationarity, and for obvious reasons we have therefore
omitted the proof that y(t) is stationary.

Finally,
Q
(2.5) 8,(5) =f e St AT ar
=00
(0 0] o0 @
j ¢S ff W(U) W(V) A_(T+U-V) dU dV | dr
=00
aO OO 00
f f W(U) W(V) e -S(v-U) j‘ "S(T+U V)
(o] O (o}

Ax(T+U-V) dat| dU dVv

o0 00

f f W) W(v) e SV SU (#,(5)] du av

o

-

% SU (
dx(S){f W(U) e % f W(V) e Vv
(o]

(Laplace transform of
weighting function.)

= F(S8) F(-8) 4, (8)
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The result for S = 1 follows from C.
Proof of M (Intuitive)

If ¢x(iuo) were negative, we choose a stable transfer
function F(S) such that |[F(iw) = is g&nutely small everywhere
except near W, (and -uo). Then 2%‘/ ‘F(iu)l2 g(iw) dw < O.

00

If we send x(t) through the filter, the expected value of the
square of the output, is, by K and L, just the above integral.
On the other hand, the expected value of a square is never nega-
tive, a contradiction.

Discussion---Statements K and L are a key to the
utility of the concept of P.S.D. If we know the P.S.D. of an
input to a filter (which can be computed from the autocorrela-
tion function by (2.1)) we know the P.S.D. and mean square of
the output. Since missile motion can be considered as the out-
put of a filter, one sees that we have a powerful tool for com-
puting mean square miss distances when the P.S.D. or auto-
correlation function of the input is known. Accuracy of track-
ing radars as well as the performance of other devices can be
analyzed using these concepts.

In many practical cases, the integrals can be
evaluated in closed form using residue theory, and tables exist
from which they can be quickly computed.

Two examples of time series are target acceleration
(say in one coordinate) and noise. Clearly target acceleration
must generally be regarded as statistical, since the pilot is
not going to tell us what he is going to do. Noise comes from
many sources, and is always present to some degree in trans-
mission and reception of radar energy. There is glint noise,
fading noise, receiver noise, and others.

There are two types of P.S.D.'s which have been given
names, and are worth mentioning. The first is 4(S) = 4, a con-
stant, and the time series is said to be '"white.'" One some-
times uses the phrase '"white P.S.D." or 'white noise." Such
a time series cannot exist in nature, because 62 is infinite
(from K). It is nonetheless a useful artifice. If @g(S) takes

2
the form g(S) = —2—3——5, a, b real and different from zero,
b~ - S

one substitutes the work '"Markovian'" for '"white.'" Note that

- 58 -




VI JOO0 HOPEBS NVERTY
APPLIEO PHYSICS LAJORATORY
WV 0 e

g(8) is the P.S.D. of the output of the filter F(S) = rBLFJ_S

when the input has P.S.D. = 1. Although "white noise' cannot
exist in nature, 'Markovian noise' can.

The words ''power spectral density" are well chosen.
If a filter F(S) "filters out'" all frequencies except those_in
a small interval, K and L show that the output power (oyz)

is proportional to g(iw) for w in the interval and proportional
to the '"bandwidth," or the length of the interval. Thus, P.S.D.
is power per unit bandwidth. It can be seen that a white time
series has the same power per unit bandwidth for all fiequencies.
A Markovian time series has a P.S.D. which looks like a white
P.S.D. for small frequencies and decays away for large fre-

quencies.

2
Exercise (d) If &(S) = —2—5——2 , a, b real and different from

2 b -S
zero, find o

III. OPTIMUM FILTERS AND THE WIENER HOPF EQUATION

Suppose the input to a filter is composed of the sum
of two time series, x(t) + N(t), where x(t) is regarded as the
"signal,'" or desirable part of the input, and N(t) is the
"noise," or undesirable part of the input. Suppose that the
P.S.D.'s or the autocorrelation functions of x(t) and N(t) are
not known, and that x(t) and N(t) are statistically independent
and have mean zero. This implies that

(3.1) E [x(tl) N(tz)] = 0 for all t, and t,.

1

We now wish to design the filter (with weighting
function W(1) and trensfer function F(S)) which makes the out-
put y(t) resemble the "signal'" portion of the input, x(t),
as closely as possible. The criterion useg by Wiener is that
the steady state value of E (y(t) - x(t))¢ should be a mini-
mum. As we shall see, this leads us to a problem in calculus
of variations. Let us denote the above expression by o“.

Then, since

[0 0]
(3.2) y(t) =f WCT) [ x(t - 7) + NGt - 7)) dr.

o
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we have, by subtracting x(t) from both sides and squaring,

(0 0] a
(3.3) ) - x 2= [ [ W v lx - 0
(o]

(o]
+N(t - 1)] [x(t - U) +N(t - U)]dr du

@

zf x(t) W(T) [ x(t - ©) drt
(o]

x(t)12 .

+

Let us denote the autocorrelation functions of x(t)
and N(t) by AX(T) and AN(T) respectively, and the P.S.D.'s of

x(t) and N(t) by ¢x(S) and éN(S), respectively. Averaging
both sides of (3.3), we have

(0 o] (0 0]
(3.4) o2 =f f W(T) W(U) [A (1 - U) + Ag(t - U) ] dt U
o] (o]
an

-2 f W(t) A (1) dt + A _(0)
(o]

Exercise (e) Prove &9at (Hint : Similar to Proof of K.)

o2 e 2.11? f '1 . F(m)l2 8, (iw) dw
-

(0 0]

+ 2% ‘/‘ I F(iu)'2 ¢N(iu) dw.
-00

Our problem mathematically is to choose W(t) or F(S)
so that (3.4) or the expression in exercisc (e) is minimum.
The classical approach is to work with (3.4), although the
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problem can be solved by working with the expression in
exercise (e) directly. The latter approach is somewhat tricky,

however, as care must be taken to optimize 02 over stable
transfer functions. This is automatically taken :are of in
the first approach by virtue of the definition of weighting
functions. We shall here use the first approach.

Suppose that W(t) is such that (3.4) is a minimum.
If 7 (1) is an arbitrary fixed well behaved function of time,
and € an arbitrary number, we cannot then get a smaller value

for o2 if we replace W(t) by W{t) + €1(1) in (3.4).

That is, 1if we write

o @

(3.5) 02(6) =f f (W(T) + en(T)][W(U)+ en(U)]-[Ax('r - U)
(o] (o]

+ AN(T - U)] dt duU

a
- 2_[ [W(T) + en(1)] A (1) dT + A_ (0).
o

So we differentiate

Then 02(6) must be a minimum for € = O.
= 0, obtaining

(3.5) with respect to €, and set €
oo ®

(3.6) 0 =f f W(T) M(U) [A (1 - U) + A (T - U)] dt dU
(o] o

o0 00

+ [ [ @ 10 (Al - U) + Ay(r - D]dT AU
o o]

(0 0)
-2 Jf n(1) A (1) dt .
(o]
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Now the second integral is the same as the first,
since Ax(T -U) + AN(T -U) = Ax(U - 1) + AN(U - T), SO we

put a 2 in front of the second integral and throw the first
one away. Dividing by 2, we have

o0 ~ 00

(3.7) f f W) [A (T - U) + Ac(r - )] dU

(0] o

- Ax(T) n(t) dt = 0 .

The expression within the braces must vanish identi-
cally for all positive values of 1, for if it did not vanish
for v = 1  say, one could choose a function n (1) which was

positive in the neighborhood of T = To and zero elsewhere,

and (3.7) would not then vanish. Since (3.7) must hold for
arbitrary n(t), we conclude that

00
(3.8) f W(U) (A (1 - U) + Ag(t - U)] dU = A (1) for 7 > O.
(o]

This is one form of the Wiener-Hopf Equation. 1Its
significance is that the optimum weighting function must obey
it.

Solving for W(t) or F(S) explicitly is somewhat tricky.

We proceed as follows: Let W(U) be O for negative U, and the
lower 1limit O 1in the integral of (3.8) can then be replaced
by -00.

Since (3.8) does not tell us what the integral is
equal to for negative T, we write

00
(3.9) j W(U) [A (1 - W]+ Ag(t - U U = A (1) + r(7)

=00

where r(1) vanishes for positive 71, and is otherwise unknown.
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Next, we multiply (3.9) by e~ST and integrate from
-co to .

If we set

(3.10)  R(S) = f e~ST y(1) dr, we have
-00

Q0 a
(3.11)  8,(S) + R(S) f e 57 f
o W) [A (T - V)

=00

+ Ag(t - U)] dé} dT

0o @®
- j‘ w(u) e SV j‘ e-s(T - U)[Ax('r - U)
-® -

+ A.N(T - U] d"l’}

= wW(U) e g== (A, (V)

-oo

+ AN(V)] dv} du

aD aD
{f w) eSY du}{ f e SV (a4 (M)
- -

@

+ A.N(V)] dv}

F(S) [8,(5) + By(8)]
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So the optimum transfer function satisfies
(3.12)  F(8) [8,(S) + By(S) = & (S) + R(S)

At first sight this looks like a useless expression
since R(S) is unknown. It is not completely unknown however.
Let us assume that r(r) decays to zero as 7T — ® sufficiently
rapidly that the integral in (3.10) exists for S =i . From
(3.9), this is reasonable if A_ and are sufficiently well
behaved. Inspection of (3.10)*then sNows that R(S) exists
whenever the real part of S 1is negative. In practice, R(S)
turns out to be a rational function. If it becomes infinite
at all, it can only become infinite when the real part of S
is positive. (Note that this is just the reverse for F(S).)

It turns out that this property of R(S) is sufficient
to determine F(S) uniquely, using (3.12). The actual explicit
expression for F(S) would take us far afield into notations
for factors of dx(S) + dN(S), removal of singular parts, and

Liouville's theorem in analytic function theory. We shall not
attempt to derive the general explicit form for F(S) here.

However, it will be seen in the next section how, in
a given case, F(S) can be found.

IV. AN OPTIMIZATION EXAMPLE: DESIGN OF A TRACKING RADAR ANGLE

LOOP

target
X

radar 8 8
\ R

reference

Suppose an aircraft is at an elevation angle OT.
When we attempt to measure OT, however, we measure instead OT

+ ON, where ON is noise. We now wish the radar direction,
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OR’ to be as close to OT as possible. Using the least squares
criterion, the results of the last section can be seen to be
applicable.

We shall assume that O, has a white P.S.D. equal to

%, and 6T has a white P.S.D. equgl to ©. These are sometimes

reasonable assumptions.

It is possible to get into trouble with these assump-
tions because OT itself has a P.S.D. which is infinite for
S = 0. Also AN(T) is infinite for 7 = 0. This means that
some of the manipulations of the previous section which all
assumed well-behaved functions, are not strictly legitimate.

We get around this by saying that ¢N has a P.S.D.
———— (instead of g) and O, has a P.S$.D. == e ~(instead
of _?) and eventually letting € and 6 -»zero (assume ¢ > O,

S

)

3 > 0)
From (3.12) then,

o1 - €2s2) + g(s?

+ R(S).
(1 - €8%) (s8° -

2.2
- &) o
4.1) F(S)[ ]-
%)% (s% - °)°

If we imagine both sides of (4.1) expressed as the
sum of partial fractions, we see that R(S) must take the form

A B C
— + + — + polynomial.
S -6 (s - 6)2 1 -€S

(4.2) R(S) =
Let €, 6 —2>0, we have

4
(4.3) F(S) Qﬁf"‘i

= _g + % + —g + polynomial,
S S S

- 65 -

A e it bt - .

.I

rde Wk e MR

o




T JOKBes MOPLE BUVIBNTY
APPLIED PHYSICS LABORATORY

or
2 3 g4
(4.4) F(s) = &+ BS + AS + (polynomial)
1
6 + 88

From exercise (e) we see that the polynomial must be

zero, for otherwise the second integral there would be infinite.

So, since the denominator factors,

2 3

8 + BS®™ + AS

(4.5) F(S) =

73174

Since F(S) can become infinite only for values of S
which have negative real parts, the second factor of the de-
nominator must be an exact divisor of the numerator. If one
attempts this division, one will discover that this can only
happen if

4.6 6+ 852 4+ asd = (Vo + v2 &2 ) (Vo - v2 V4% %s
+ B Sz)
Hence

a7 BCs) - YOt V2 4 Y45
0 + V2 e}ég}@ S + J%Sz

This is commonly written in the form

1 + 2818

TR 2;%8 + 12 S2

(4.8) F(S)

where
1/4
1 ]
(4.9) ==, T=
V2 ol 4
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grom exercise (e) and the use of tables, the minimum
value of 0 can be computed to be

(4.10) o2 =2 #7414

The problem is not completely finished, however, as
the radar does not actually measure OT + GN, but OT + GN _ OR.
By the action of the electromagnetic propagation, the measure-
ment is in the form of boresight angular error. This measured
error must then be used to physically drive the radar as a
servomechanism until the error is nulled.

The operation of the radar might then be as indicated
in the following diagram

Drive radar at
6. +6 o-i6-T6 Integrate rate equal to
+ +0, -
T N T N R multiply by this signal
s > s
\T/ h v
| measured error ultiply by
I 2Z'T
I
!
: 6
| VR action of
——————————— radar drive
Hence

_— ) )
(4.11)  6g =3 (27 (B + 8y -~ 8p) + f(eT + @y - 8) dt]

or

2 . . - . .
(4.12) 5 OR + 21 GR + OR =2 7 (6T + GN) + (OT + ON).

- 687 -
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Hence, we have the equivalent diagram:

N ! FILTER r

where the transfer function of the filter is given by (4.7) or
(4.8). A tracking radar behaving as just described will, in

the least squares sense, then track the target as closely as
possible, whenever the statistical assumptions are justified.
Other statistical assumptions will, of course, lead to different

answvers.

Exercise (f) If x(t) is a stationary time series, show that

®
1 iut .
Ax(T) = 5= j.e ¢x(iu) dw. (Hint: see pProof of K,)

=00

Exercise (g) In the example of section IV, assume instead that
BT is white. Find the optimum transfer function, the optimum

mean square tracking error, and draw the radar block diagram.

Exercise (h) What is fhe weighting function of a filter whose

transfer f ti is —
r function T37S ?

Exercise (i) Let x(t) be a time series such that Ax(T) = ke-B,T('

Show that x(t) is Markovian. oyse this result and exercise (f)

to evaluate the integral L cos Ul dw ,
27 2 2
s 1+ T w

SUMMARY AND DISCUSSION

We have here attempted to introduce the coancepts of
filter, transfer function, weighting function, time series,
stationarity, ergodicity, autocorrelation function, power spec-
tral density and noise. We have also introduced the Wiener
theory of optimization, derived the Wiener-Hopf equation, and
have shown how it can be solved. A particular application has
been discivssed in detail, and a tracking radar angle loop has
been optimized in the presence of an input which has been cor-

rupted with noise.
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The Wiener theory can be applied to other cases, al-
though the derivations in this paper must be somewhat altered
to achieve greater generality. An example is the design of
an optimum loop when some parts of the loop have already speci-
fied transfer functions. This could occur in the design of a
beam riding guidance computer where the aerodynamic equations
have already been determined by the airframe design. Wiener
theory can also be applied (by the use of Lagrange multipliers)
to problems with constraints. A typical problem of this type
is the design of a beam riding guidance computer to minimize
deviation from the line of sight subject to the constraint
that the mean square acceleration is not too large. (Or else
the missile might slow down too much or fall apart.)

In general, Wiener theory is applicable only to steady
state problems where the time series may be considered as
stationary. Because of the mathematical simplifications which
occur for this case, the theory is quite well developed. Al-
though a considerable amount of work has been done on practical
cases for which Wiener theory does not apply, the general case
is nowhere near as well understood. For example, transient
statistical problems, non-stationary problems, final value
problems ( in which one is interested in the output only at a
specified time) all occur in missile work, and seem to require
special handling.

Wiener theory is directly applicable to a large frac-
tion of statistical design problems in missile work, nonethe-
less. Some people prefer to take a different approach to some
of these problems. One such approach is the game theory ap-
proach, where it is assumed that the target maneuvers in such
a way as to maximize the tracking error (or miss distance),
and the filter is designed to minimize this maximum.

Another different class of problems occurs when the
time series under consideration are defined discretely, i.e.,
say at multiples of At. This type of problem occurs with
search radars, which only '"look" at a target every so often,
One is then concerned with maintaining track on this target
and minimizing the tracking error, A system which tracks in
this manner is referred to by some as a ''track while scan”

systen,

Finally, it should be stated that although the results
of section I are prerequisites to the subsequent sections, they
are extremely important in their own right. Because the em-
phasis of this paper has been on time series and optimization
in the presence of noise, it might appear that section I was
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just the means to an end. 'rSuch is not the case. The concept

and properties of a transfer function are to most missile en-

gineers as the ABC's are to a school child. They use them al-
most every working day in a practical sense, even though some

of them may know nothing of time series or Wiener theory.

It is safe to say that the science of guided missiles
would be far behind its present state of development if it
were not for the concept of a transfer function. It is there-
fore strongly suggested that the reader absorb section I thor-
oughly, whether or not he has the time or patience to absorb
the rest of the paper. Section II is of secondary importance,
sections III and IV of less importance still.
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PERTURBATION METHODS

by

S. T. Haywood

- 71 -

w0 g WSO -



e

T )0 HOMIBG UNVERNTY '
APPUED PHYSICS LABORATORY

Ly ]

I. A WORD ON TAYLOR'S SERIES

If y = f(x) is a twice differentiable function defined
on an interval a < x < b containing a point X, then

(D) y =2 = £(x) + £(x) (x-xp) + 3 £ (€) (x-x)?

where £ 1is a point between x and x_. This is a form of
Taylor's series with remainder. The refainder term, namely

(2) 1" @) xex)?

represents the error committed when the first two terms alone

are ,used as an appsoximation to f(x).
<

(3)  Error = [£(x) - f(x_) - £'(x) (x-xo)l = le (&) l(x-xo)z. |

The number ¢ usually is itself a complicated function of
X. Normally, the only thing which can be said with assurance
about £ 1is that it lies between x and Xy and hence lies

in the interval (a, b]j. If we let M be the maximum of
| £* (x)| for a < x< b, then |[f" (g)| < M and we may write

(4) Error = If(x) - f(xo) - f'(xo) ( x-xo)i < g (x-xo)z.

Thus, although it is usually very difficult to find the exact
error, it is fairly easy to establish a bound for the error.
Usually this is quite sufficient.
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The form of Eq. (4) shows that the error will be small
if x 1is "close enough” to x . Just how close is ''close
enough'" depends on how much efror is permissible and on the
magnitude of M.

II. LINEAR APPROXIMATIONS

(5) £(x) ¥ £(x_) + £'(X,) (x-x)

is called the "linear approximation to f(x) at x = xo" inasmuch

as the right hand side is linear. Geometrically, the approxi-
mating function is the tangent to y = f(x) at x = x_. From
the preceding discussion, It 1is evident that there i8 a range
of values of x '"close" to x_ for which the linear approxima-
tion is adequate, i.e., the efror committed by using the
approximation lies within acceptable bounds. The length of
the range depends on the behavior of f(x) in the neighborhood
of x = x . More specifically, if f" (x) is large near x = X
(which mans that the curvature is large), then M will be
large &nd the length of the range will small (for a given per-
missible error). On the other hand if f" (x) is small near
x = x, (small curvature), then the range will be correspondingly

large.
4
vi y
M large M small
I
|
me | |
permissible i |
error [ | [
| I |
! i |
' [ |
| : |
’ I'
X X
o
range
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For functions of more than one variable the results are
quite similar. For example, the linear approximation to

w o= w(x, y, z) at (x, y, z) = (x,, ¥, z,) is

(6) w(x,y,2) & w(x,,y,,2)) + A(x-x_) + B(y-y,) + C(z-z_)

where
AW )
(7) A=y
AW
(8) B = 1 & evaluated at X=X Y=Y, Z=E .

ow
(9) C=3x

As before, there is a set of points (x, y, z) around (xo, Yor zo)

for which the error in the approximation is small enough to be
acceptable. Once again, the actual extent of the point et de-
pends on the values of the second partial derivatives in the
vicinity of (xo, Yo zo).

In the case of a function of two variables, the geometri-
cal interpretation of the linear approximation is readily
available. The approximating function is merely the tangent
plane to the surface w = f(x,y) at (xo, yo).

ITI. FORMULATION OF PROBLEMS

The mathematical form of an engineering problem is an
equation or a set of equations whose solution gives the desired
answers. Consider, for example, the following simple problem
which could arise in connection with surveying. Find the
angles of a triangle whose three sides are known.
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The mathematical form of this particular problem can be written
as the following three equations.

(10) a2 - b2 + c2 - 2bc cos a (law of cosines),

(11) Sig B . 31: a (law of sines) ,

(12) a+ B+ y=7

It should be noted that the mathematical form of the problem
is not unique. Equation (11), for instance, could be replaced
by

(13) b2 - a2 + cz - 2ac cos g (law of cosines).

IV. EQUATIONS CONTAINING PARAMETERS

The solution of an equation or a set of equations usually
will depend on one or more parameters. In the surveying problem
Jjust considered, the solution depends on three parameters, namely
the sides of the traingle a, b, c. Other examples of this are
given in the following equations.
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(14) x3 -ax + 6 =0 1 parameter --- a ,
2 parameters -- a, b

(15) '{axz + y2 =25

X + by =5

(16) e = ax 1l parameter --- a ,

(17) (y+ (3 + ay2) y + 2y =0
{' 1 parameter --- a

y=1, § = -] when t = 0

(18) xy = 1
yi = ax -1 1 parameter --- a

t =0, x=1,y=1

The first three examples (Eqs. 14, 15, and 16) are
ordinary equations for which the solutions are numbers. The
last two examples (Eqs. 17 and 18) are differential equations

for which the solutions are functions satisiying certailn
initial conditions.

V. METHOD OF LINEAR PERTURBATIONS

The following situation very frequently occurs. The
solution to an equation is known for certain values of the
parameters appearing in the equation. It is desired to find
the solution when the parameters have values differing
slightly from the values for which the solution is known.
There is a fairly standard terminology to describe this state

of affairs. 'Knowing the solution for given values of the
parameters, find the behavior of the solution when the
parameters are perturbed."” The word perturbed carries the
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connotation of differing slightly.

One method for handling the problem just described is
the method of linear perturbations, for which the groundwork
has been laid in the preceding paragraphs. The idea is quite
simple. The solution to the equation is a function of the
parameters appearing in the equation. The value of this
function is known for certain given values of the parameters.
The method of linear perturbations consists of replacing the
function by its linear approximation at the known point.
Consider the following example, which illustrates the method.

Vi. EXAMPLES

Let the equation to be solved be

(19) x2 + a = 8x .

This equation has one parameter, a. When a = 12, the equation
has the solutions x = 2 and x = 6. What will be the solutions
for values of a close to a = 12? The solutions are functions
of a. Indeed, since the equation is a quadratic, we can
easTly find

(20) x =4 +V16 - a.

We shall consider only one of these solutions, namely

(21) X =x(a) = 4 + VIG - a.

For this case we have

(22) x(12) = 6.

7 U=
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Furthermore,
(23) dx 1
- = so that
da 2'V16 - a ’
(24) (dx) p—]
da a=12 1
The linear approximaticn to x(a) at a = 12 is
(25) x(a) = x(12) + ( ) (a-12) = 6 - = s 9 - .
da a=12 &

Equation (25) now can be used to estimate the solution for
values of a near a = 12. Thus, when a = 12.04, we obtain

x = 5.99. The exact result, of course, can be obtained

from Eq. (21) which gives x = 4 +1f§7§§-= 5.989975 (making

use of a table of square roots). We now see that the error

in the linear approximation is about 5.99 - 5.989975 = 0.000025.

The preceding example is so simple that it is apt to give
rise to certain misconceptions which it would be well to dispel
immediately. Simple as Eq. (21) is, Eq. (25) is even more
simple, so that there is a clear advantage in using Eq. (25)
rather Eq. (21). Nevertheless, Eq. (21) is simple enough so
that there can be no real objection to its use. Besides,
apparently we need Eq. (21) anyway in order to get the deriva-
tive which we used in Eq. (25). As a matter of fact, this
last statement is false. We do not need an explicit representa-

tive of x(a), as in Eq. (21), in order to find the derivative
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%g . This is very fortunate, since usually it is impossible

to find such a representation. In such a case we use implicit

differentiation to find the required derivatives.

This technique would be applied to our problem in the
following manner. Equation (19), namely

(19) x2 + a = 8x

is differentiated implicitly with respect to a, observing
that x = x(a), to give

(26) 2x %; +1=28 %; , whence
dx 1
(a7 EE 162

Setting a = 12 and x = 6 (remember that it is known that
X = 6 when a = 12) gives

(24) dx - -
a=12

) =

Observe that Eq. (21) did not appear at all in this method.

Next, we consider a case involving two parameters. The
equations are

(15) ax2 + y2 = 25
X + by = 5
- 179 -
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and it is desired to find the behavior of the solutions in

the vicinity of a =1, b = 3.

is possible to express both
of a

all, the solutions when a =
X =5, y=0.

~
-

x(1,3)

~

(28) x = x(a,b)
= y(1,3)

y = y(a,b)

(29) A=

and the derivatives are to be evaluated at a = 1, b = 3,
problem now consists of computing A, B, C, D.
(15) partially with respect to a

Eq.

ox

(
2 ax S

(30)

(o] Ko¥
o) »%

ax

IX

b

e

When these are evaluated at
the result is

it

As in our previous example
y explicitly as functions

X and

and b, since nothing worse than a quadratic equation
is involved; however, we shall avoid this approach.

First of
1, b =3 are x = -4, y = 3 and

We shall treat the case x = -4, y = 3,

+ A(a-1l) + B(b-3)

+ C(a-1) + D(b=3) where

The
Differentiating
and b yields

+ 2y %% =0

+ b %% +y=0.

a =1, b=3 x =24, y =3,

(31) (-8A + 16 4+ 6C = O
A +3C=0
<-SB + 6D =0

| B+3D + 3 =0.
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These equations are easily solved to give

8 3 8 4

(32) A~g,B=5,C=-15,D=-5

Hence

(33) {x=-4+g(a-1)--§.(b-3)
y¥3 -3 (-1 -3 @®-3

VIT. PERTURBATIONS APPLIED TO DIFFERENTIAL EQUATIONS

One of the main applications of perturbation theory is to
systems of equations consisting partly or wholly of differen-
tial equations. As an example, we consider

(18) xy =1

yk = ax - 1 X =y =] when t = 0O

We assume the parameter a 1s small in absolute value. When
a = 0, the solution to the above equations is

(34) e R
y =eb .

How should this be modified when a = O? We acknowledge that

x and vy, as well as being functions of t, will also depend
on the parameter a. Hence, we write x = x(t,a), y = y(t,a).
The linear approximations to these functions in the neighbor-
hood of a = O are
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(35) x(t, a) ¥ x(t, o) + Aa
J where
(y(t, a) fy(t, o) + Ba

(36) x(t, o) = et
{Y(t, 0) = et (see Eq. 34) and

(37) A=
evaluated at a = 0 ,

It should be observed that A and B ordinarily will be
functions of t. Our problem now is to compute these deriva-
tives.

The technique we use is to observe that x(t, a), y(t, a)
must satisfy Eq. (18) identically, that is

Q

Y - |

(38) X 5T |

@
»

= axX - 1

31

Differentiating these equations partially with respect to
a yields

oy
(39) J xs_m +a-E a—t-=0
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- _ .-t - .t dx _ -t dy _ _t
We now set a 0, x e ',y e’ 3t e ', and at e
to obtain
(40) TR refa-o
t dA -t, _ -t
€ ¢ " © B =e

which are the equations we must solve in order to find A and B.

It is evident that our procedure so far is the same as it was
in our previous examples. Here we must contend with differen-
tial equations, and the equations we must finally solve, i.e.,
Eq. (40), are themselves differential equations, whereas our
final equations were algebraic in the other examples. Never-
theless, the technique for finding those equations is the same
in both cases.

Since Eq. (40) is a differential equation, it may seem
that no great advantage has been derived by use of the pertur-
bation analysis, but this would indeed be a false evaluation.
Equation (40) is linear, whereas the original Eq. (18) is non-
linear. This conversion from nonlinear to linear (quite
naturally called linearization) is the direct result of using
the linear approximations. It is a decided advantage for the
home team to have linear equations to solve.

VIII. INITIAL CONDITIONS

In order to solve Eq. (40), we require initial conditions
for A and B. These are obtained by using the initial condi-
tions appearing with the original Eq. (18). There we see that
Xx =y =1when t = 0, no matter what the value of a is.
Hence, setting t = O in Eq. (35) gives A = O, B = O. These
are the initial conditions to be used in conjunction with Eq.
(40). The solutions are

(41) {A =te
B (1 - t) et -1, whence
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(42) {x ~e by at o

y =et +a [(1-tet-1]

These, then, are the answers we set out to obtain.

Now it happens that Eq. (18) can be solved explicitly for
x and y 1in terms ¢f t and a. The results are

(43) x = e-(1-2)t
. e(l-a)t A0
l -a

which, for a = 0, reduce to Eq. (36). It should be kept in
mind, however, that it is very seldom possible to get such
explicit analytic solutions. We introduce Eq. (43) merely to
illustrate another point. First, we consider two infinite

series.
z z2 z3
(44) e” =1+ z + ov togT ot valid for all z,
(45) L l + 2z + z2 + 23 + valid for |z] < 1
1:2 s s e I |

Thus, by applying Eq. (44) to Eq. (43), we obtain

(46) x = e~(1-a)t _ -t cat _ -t (1 + at + ﬁﬁ;l“ TR )

Similarly, we obtain

2
(47) y =1[1 + a + a2 + ...l {et (1 - at + ﬁ;%l_ P a}
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2
First consider Eq. (46). The series 1 + i;il— + ... con-
verges for all values of a and t. In addition, whenever
the product at is small enough, the first two terms of the
series, 1.e., the linear approximation 1 + at, can be used
without excessive error. "Hence, Eq. (46) yields

t t

(48) x%et (14+at) =et

+ at e~

if at is sufficiently small. This is precisely the result ob-
tained by the perturbation analysis. (Compare with Eq. (42).}
The present approach should make it clear that, not only must

a be close to zero, but t must be sufficiently small also in
order for the perturbation analysis to remain valid. In short,
the point we wish to make is that, when applying perturbation
methods tc differential equations, it must be kept in mind

that the results are apt to be valid only for a restricted

range of the independent variable, not to mention the resitricted
ranges of the parameters. This does not prevent the method from
being a very useful one.

Equation (47) also can be simplified under the assumption
that at and a are small.

t + 1)]

R

(49) y & (1+a) [ef(1 -—at) ~al = (1 + &) (e - a(te

t t

e + a [et - (te

n

+ 1] =eb s al( -t)et -1l .

Once again this is the result given previously in Eq. (42).
Clearly the procedure employed is to discard all powers higher
than the first power of the small quantity. This automatically
leads one to the linear approximation.
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IX. A TRAJECTORY PROBLEM

As another example, we consider a simplified version of
a fairly complicated problem. A missile of mass m 1is fired
at an angle of elevation y with a muzzle velocity b. There-
after, it travels in free flight subject only to gravity and

to air resistance which is proportional to the square of the
velocity.

X = v cos O

o | y = v sin 8
v =Yx2 4 92

(x,y) ©

mg

?
R X
e Alr resistance
1?2 force diagram

The equations of motion (obtained from Newton's Law) are

{50;{3:-_31:} ‘\J:’c2+y2 a'%

¥ = - ay x2 4 §2 -g t=0 X=y =0
X = b cos Y,
y = b sin y.
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One of our simplifications will be to assume that the earth
is flat over the distance travelled by the missile. The main
simplification will be to assume that a 1is small, i.e.,

a = 0. The solution of Eq. (50) depends on three parameters,
a, b, 7% and may be written as

(51) x =x (t, a, b,?7)
{y-y (t, a, b,7)

The time of flight, T, of the missile is the time re-

quired for y, which started at zero, to reach zero once again.

Hence T 1is defined by

(52) y(T, a, b,7) =0 .

When solved for T, this yields

(53) T=T (a, b, 7

The range, R, of the missile is the value of x when
t =T. Hence R is defined by

(54) R = x (Ty a, b) Y)

whence, in view of Eq. (53),

(55) R =R (a, b, y)
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Thus, T and R are functions of the three parameters, a, b, y.

When a =0, b = bo, Y = Yoo it is very easy to solve all the

equations involved and find the values of T and R. We want
to find out how T and R behave when the parameters are
perturbed.

The linear approximations to Eqs. (53) and (55) are

(56){T = T(O, bo, yo) + Aa + B(b - bo) + C(y-'yo)
R = R(O, bo’ yo) + Ea + F(b - bo) + G( y~ yo) where
(" 3T 3R
A-3a E=3z
e, evaluated at
< B = oT F = OR
b b a =0
c 22T c - R b =b,
\ dy 3y Vi ¥

We must compute the derivatives A, B, C, E, F, G. For this we
must turn to Eqs.(53) and (54) which define T and R
implicitly. Differentiating Eqs. (52) and (54) partially with
respect to a, b, Y, we obtain

ray oT oy ox OoT ax oR
< dy 9T + qy 0 ax oT N dx _ dR
T db b dT db db b
2y oT + Y . 0 ax dT P dx _ dR
5T 3y = 3y T 3y ~ 3y ¥
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X. THE KNOWN SOLUTION

We digress momentarily to consider th. case a = 0, b =b_,
Yy = v , and to compute some quantities which we shall present?y
need.” We let

(59) {x = x(t, 0, b, y,)

Y = Y(t’ 09 b09 '}’0)

and observe that these functions satisfy

(60) {X-o t_.o{x-\r-o
Y = -¢g X = b° cos vy, Y == bo sin Yo

These equations are particularly easy to solve. The results are

(61) {jx = bo t cos Y X = b0 cos Yy,

1 2 :
Y = bo t sin Yo = 3 gt Y = bo sin Yy = gt.

From these we easily obtain

- 2b  sin y
(62) T, = T(0, b_, 7)) = —
\ bo2 sin 270
R, = R(O, b, yo) g
~
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Hence, when t = To, we find

(63) { X = bo cos y,

Y = - bo sin 1

Return now to Eq. (58). These must be evaluated at
a=0,b = bo, Y = Yo’ and therefore at T = 'I‘0 also. Under

these conditions, the derivatives Jdy/oT and dx/2T become the
expressions given in Eq. (63). However, there still remain
the derivatives ¢y/¢a, oy/cb, etc., about which, as yet, we
have no information. Hence, we let

(
o H T H(t) P 38 P(t)
* 55 3 evaluated at
(M =355 =M1 Q=5 =) X
a =
dx dYy
N = 5; = N(t) W o= 5; W(t) b = bo
S Yy =1
Q

The evaluation of Eq. (58) now gives.
- b_sin y A+ P(To) =0 b cos Yo A+ H(To) = E
o

(65) < - b_ sin Yo B + ﬁ(TO) =0 b _ cos Yo B + M(TO) = F

- b_ sin Yo C + W(To) =0 bo cos vy, C + N(To) =G .

It is a very simple matter now to solve this set of simultaneous
linear equations for A, B, C, E, F, G. Unfortunately, our

troubles have merely been transferred to another place. We now
find it necessary to evaluate P(T ), Q(T.), etc. These quanti-
ties are partial derivatives of tRe trajgctory variables x and
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y with respect to the parameters a, b, ¥, and presumably can

be obtained by differentiation of Eq. (51).

However, we do

not actually have the explicit representation, Eq. (51). All
we have is the original set of differential equations (50)

which define x and vy.
tially with respect to

o’ Y = Yo’ we obtain

(

(66) < — =0

(67) Vv - \‘ic2+ Y2

a’ b")'l

By differentiating Eq. (50) par-
and then evaluating at a = O,

where

This is a set of linear differential equations, in contrast

to Eq. (50) which™ 1Is- nonlinear.

We now require initial con--

ditions for Eq. (66) in order to solve them.

XI. INITIAL CONDITIONS

The linear approximations

Xx X + Ha + M(b - bo)
(68) {

y =Y+ Pa + Q(B - bo)

Since we want X = y = O when t
Y have, we conclude that H = M

to x and y are

+ N(y - )b)

+ Wy - y,)

= 0, no matter what values a, b,

= N =P =0 =W=0when t = 0.
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These are half of the initial conditions for Eq. (66). From
Eq. (68) we obtain

b)) + N(Y- %)

x =X + Ha + M(b
(69) {

y=Y+ Pa+0Q(b=-b) + W(y - v)

Once again we let t = 0 and find

(o)

o) ‘{ b cos ySb cos y +H a+ Mo(b - bo) + N (Y- %)

b sin y=b_ sin 7  + P, 2+ Qo(b = bo) + WO(Y )

from which we hope to get the initial values of ﬁ, ﬁ, etc. We
may write

(71) b cos ¥ =bcos [7, + (Y - 70)1

=b[cos y cos (Y - 7)) - sin Y, sin r - YOH

Now we are interested only in the case when y - Yo is a small

angle. Hence, we may say

n
-

n

(72) { cos (v v,)

sin (y - v,)

(These are the usual 'small angle approximations.') Equation
(71) now becomes
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73 & = =
(73) b cos y®b [cos - (v -v,) siny_ ]

Next we write b as bo + (b - bo)

(74) b cos ¥y = [bo + (b - bo)] [ cos Vo = (V - Y,) sin ¥ ]

= bo cos y, + (b ~ bo) cos y, - (y - yo) bo sin Yo

wherein we have discarded the term involving the product of the
two small quantities (b - bo) and (¥ - 70). The result in

Eq. (74), of course, is merely the linear approximation to b
cos Y at (bo, yo), and could have been obtained more easily

perhaps by the methods discussed earlier. However, the
technique used here is seen quite often, and is itself worthy
of attertion. A comparison now of Eq. (74) and Eq. (70) shows
that H = 0, M = cos Yo! N = - bo sin Yo when t = O.

A similar treatment of b sin y leads to
(75) b sin ¥y = bo sin Yol (b - bo) sin Yo t (y- yo) bo cos y

so that P = 0, Q = sin Yo' W = bo cos y when t = 0. We now
have all the initial conditions for Eq. (66).

It is a relatively routine matter to solve Eq. (66) and to
evaluate the solutions at t = To' The results are
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3 TO/Z
2 2
l-l(To)--bo sinz'yo/ dt +32 dt
o
b, sin 2y 2b 2 sin® y_
M(To) - z ; N(To) == g
(76) 4
.T°/2
P(To) - 232/ t2 Jtz + ﬁz dt
o
2bo sin2 Yo b02 sin 2 %o
Q(T,) = g ; W(T,) = ~ , where
.
b cos VY
(77) = O s T O

After some tedious computations, the integrals in H(To) and

P(To) can be evaluated, all the results can be substituted
in Eq. (65), after which Eq. (65) can be solved for A, B, C,
E, F, G, which in turn can be substituted in Eq. (56) to

yield ;
boaa 4 l + sin Yo
T = To o —y (cos 70) Zn
4g” sin YO cos 70
2 sin VY
2 (o}
(78) < - sin Ves (2-cos Yo{] + <————§————> (b - bo)
2 bo cos Yo
+ z (7 - %)
.
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4
4 b "a cot y 1 + sin y
o (o} 2 2 o
R =R, . [ (cos 76)(1 + 3 sin yo) in o5y
4g o)
2 2bo sin 2 %
(78) - sin y (1 - 3 sin®™ y )] + Z (b - b))

Cont.

2b cos 2 ¥
0 o
+( z ) Ry )
2

If bo = 305 ft/sec, Y= n/6 radians, and g = 32.2 ft/sec”,
then Eq. “(78) becomes

T = 9.48 + 4320 a + 0.0311 (b - b ) + 16.4 (¥ - 7,)
(79) {

R = 2500 - 2160000 a + 16.4 (b - bo) + 2890 (v - YO).

Thus a missile fired with a muzzle velocity of 305 ft/sec at
an angle of elevation of 30° in a vacuum (a = o) would travel
2500 feet in 9.48 seconds. A missile fired in exactly the
same way in an atomosphere for which a = 0.002 would travel
minus 1820 feet in 18.12 seconds. This oLviously ridiculous
result should serve as a warning against the incautious use of
results obtained by a perturbation analysis. The trouble here
is that a = 0.002, while seemingly quite small, is not small
enough. It is apparent that whether or not a quantity is small
is a relative matter. The same quantity may be either small
or large, depending on the use to which it is put.

A rough rule which can be used (though not always safely!)
in situations like this is that the perturbation terms should
amount to no more than a few per cent of the quantity being
computed. Thgs, in our problem, a should be restricted to
about 5 x 1077, while b .- b could have an order of magnitude

of about 10 ft/sec, and y - Yo about 0.05 radians (about 3%,

So long as a, b, ¥ have values -~onsistent with these restric-
tions, Eq. (79) may be used to comrute time of flight and range.
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The problem just completed is a typical example of the
troubles encountered in a perturbation analysis. Practically
all of these troubles stem from the fact that the various
functions are defined implicitly and cannot be obtained in
an explicit analytic form. Consequently, it is necessary to
employ implicit differentiation, which usually leads to rather
formidable looking expressions. On the other hand, any equa-
tions which must be solved are linear. The perturbation
method is well adapted to finding quick-but-.-not-too-dirty
answers to a wide variety of practical and theoretical prob-
lems.

XII. AVERAGE OR MEAN

Whenever a series of measurements of a certain quantity
(say the length of a stick, for example) is made, a collection
of numbers x_ , r =1, 2, ..., N, is obtained. Because of
errors in th& measuring instrument, and perhaps other factors
beyond the control of the person making the measurements, the
numbers X. normally will not all be the same, but instead
will vary to an extent depending on the factors affecting the
measurement. The question then arises as to what value should
be assigned to the measured quantity. Furthermore, it would
be nice to have some estimate of whatever error is apt to be
in the assigned value.

Let x represent the value to be assigned. Then x X
is the residual or the deviation of the rtP measurement. A
standard way to choose x 1s to choose it so that the function

N
(80) E = E(x) = Z (x - x)?

r=1

will take on its minimum value. E 1is merely the sum of the
squares of the residuals (hence a positive quantity) and can
be minimized by proper choice of x. By differentiating

Eq. (80), setting the derivative equal to zero, and solving for
x, we find

(81) x=i-§ Zxr
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Thus the average of the X, is the value which minimizes the
sum of the squares of the residuals. It also has the following
easily verified property.

N
(82) :E: (x - xr) =0

XIII. VARIANCE

Although the average certainly does not display all the
information contained in the complete set x_ , still, in
one number, it gives us an important fact abolit that set.
Another important number associated with the collection of the
X, is the variance which is defined by

N
2 1 : : : 2
(84) o’ =N (x - xr)
r=]1

and is merely the mean (or average) of the squares of the
residuals, the residuals being taken with respect to the mean
x of the x_ . The variance is a measure of how the measured
values are spread around the mean. If the measurements are
very accurate, so that the measured values are all close to
the mean, then the residuals will all be small and the vari-
ance will also be small. However, if the measurements are not
very accurate, so that the measured values sometimes depart
widely from the mean, then the residuals will be large and
the variance also will be large. Thus, it appears that the
variance is related to the precision of the measurements and
can serve as a measure of that precision.

These two statistical quantities, the mean and the

variance, are the most important ones used in present day en.-
gineering design.
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X1V. COMPUTATIONS BASED ON MEASURED VALUES

Very frequently it is necessary to compute a quantity on
the basis of experimental data. For example, we may measure the
side of a square and then compute the area of the square. Since
there is an error in the measured value, then there will also
be an error in the computed value. We may make a large number,
N, of measurements of the side of the square and compute, for
each one, the area of the square, obtaining therebhy N values
for the area. For each of these two sets of numbers, length
of side and area, we may now compute the important statistical
quantities, mean and variance. Clearly, there should be a re-
lationship among these numbers.

More generally, consider the problem in which we measure
x and compute y by y = f(x)2 A collection of measurements
X, with mean x and variance Oy leads to a collection of com-

puted values Yp = f(xr) with mean y and variance oyz. The
linear approximation to f(x) at x = X is

(84) y ¥ f(x) + £'(x)(x - Xx). Hence

(85)

<
R

f(x) * f'(i)(xr - X)

It follows from this that the mean of y 1is given by

N N
8)  Fog > v gy HE ¢ @ - D)
r=1 _
r=1
= £(x).

Thus the average value of y can be obtained by computing it
directly from the average of x. Equation (85) now may be
written in the form
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(87) Y - §ELE (5 - B

and this can be used in turn to compute the variance of y.

N N
(88) o=k > e -DP-g > i@ ?x, - 0
r=1 r=1
N
RN N A N E T
r=1

This shows how the variances of the measured and computed values
are related.

It must be borne in mind that the results just derived are
based on the use of a linear approximation and hence are subject
to all the limitations implied by that approximation. Only in
the case of fairly accurate measurements can we expect Eqs. (86)
and (88) to be valid.

XV. FUNCTIONS OF MORE THAN ONE VARIABLE; COVARIANCE

More often than not, a computed value is based on measured

values of several different quantities. Thus, 1let Xpr Yoo Z

bezcollgc iogs of measurements with means X, y, z and variances

Oy oy » O, respectively, and let w = f(x,y,z). The linear
approximation at (X, y, z) is

(89) ww f(x,y, z2) + A(X = X) + B(y -y) + C(z - 2)
\
of
A‘H
evaluated at
B = of X = X
Wf -
of y=vy
¢ 3z Z = Z
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It turns out, just as before, that w = f(x, y, z). Thus,
Eq. (89) may be written as

(90) woooW EA(x, - X) + B(y, - ¥) + C(z, - 2)

which leads to

N
- _ 2
(91) ow2 - é :E: [A(xr - X) + B(yr -y) + C(zr - 2)]

r=1

- A2 o 2 + B2 o 2 + C2 o 2 + 2AB o + 2AC o©

X y z Xy Xz
+ 2BC o
yz
where oxy, Oxz’ oyz are new quantities defined by
4 N
Oy, = & x, By, - P
xy N r r
r=]1
N
(92) 1 at -
Oz = N :E:(xr - X) (zr - z)
r=]1
N
oy, = Z(yr - Pz, - )
r=

These new quantities are called the covariances of x and vy,
x and z, and y and 2z respectively. They give some idea
of how the measurements of x, y, z are related. A very common
situation is to have independent measurements, that is to say,
the value obtained by measuring one quantity is not affected
by, nor does it affect, the value obtained by measuring
another quantity. Thus, if x and y are independent measure-
ments, we may expect the product (xr - X) (yr - y) to be
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negative about as often as it is positive, and we may also
expect its magnitude to be distributed fairly equally between
the positive and negative values. The net result is that

oxy should tend to zero as the number of measurements increase.
In fact, we might take °xy = 0 as an indication that x and vy

are independent. If all the measuvurements are independent, then
all the covariances vanish, and (¥i) reduces merely to

(93) 2 2 2 2 2 2 2

XVI. MATRIX FORM

A very convenient way to handle the variances and covari-
ances is to write them in matrix form.

2
Ox oxy Oxz
2
(94) °xy oy Gyz
2
Ox2 oyz %

This is called the covariance matrix of x, y, 2. Equation
(91) now may be written as a matrix product.

2 o A

O% oxy Xz

2

ow = (ABOC) c o 2 o B

Xy y yz

(95) 9
oxz oyz % ¢
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There remains one obvious generalization. We may make

measurements of n different quantities x, y, z, ..., and
use these measurements to compute m other quantities u, v,
W, ... . Knowing the covariance mafrix of x, y, z, ..., we
would like to find the covariance matrix of u, v, w,
Let
o 2
x °xy Oxz
2
Oy o Ovg *°°
(96) M= y y y n x n matrix
o c c €
Xz yz z
be the covariance matrix of x, y, z, ..., and
o 2 c c
u uv uw
o o] 2 o
(97) uv v VW
m X m matrix l
2 i
Cuw Syw Ow
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be the covariance matrix of u, v, w, ... . Also let

gu ou ‘u

0X oy vZ

_ v 3V Av

(98) D = == Iy 5z - m rows

3w W dw n columns

Ix oy oz
be the matrix of partial derivatives of u, v, w, ... with re-
spect to x, y, z, ..., all these derivatives being evaluated at
(x, y, 2z, ...). Then exactly the same sort of analysis as in

the simpler cases shows that

(99) V=DMD

where D is the transpose of D

XVII. STANDARD DEVIATION AND PRECISION

Suppose we have a large number of measuremsnts x_ of a
quantity x. Then the mean x and the variance ¢“ can "be com-
puted in the manner previously described. The number o
itself is called the standard deviation of the data. It is
customary to express the precision ol the measurements in
terms of o (rather than 02). In ordinary circumstances we
may expect about 50 per cent of the measurements to fall in
the interval from x - 0.670 to X + 0.670. (The coefficient
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0.67 is determined on the basis of probability theory and
certain quite reasonable assumptions about the nature of the
errors to be expected in measurements. Different coefficients
correspond to different percentages. Thus, about 90 per cent
of the measurements fall in the interval from x - 1.650 to

X + 1.650. It is in this sense that o determines the pre-
cision of the set of measurements.)

XVIII. APPLICATION OF STATISTICS TO THE TRAJECTORY PROBLEM

To illustrate one of the uses to which these ideas from
statistics may be put, we return to the trajectory problem and,
in particular, to one of the results in Eq. (79).

(100) R & 2500 - 2160000 a + 16.4 (b - bo) + 2890 (7v- 76)

where bo = 305 ft/sec and Yo = n/6 radians. To simplify the
present discussion, we assume a = 0 (vacuum trajectory). Thus,

(101) R - 2500 ¥ 16.4 (b - b_) + 2890 (¥ - y,)

This expresses the range error due to errors in muzzle velocity
and angle of elevation. These errors are unavoidable. C(Conse-
quently, we cannot expect to get a range of exactly 2500 feet
on any given shot. A much more reasonable déemand 1is to require,
say, that 50 per cent of the shots should fall within 67 feet
of the target, i.e., from 2433 to 2567 feet. 1In terms of
stgndard deviation, this means that we want 0.670R = 67, or

op” = 10°. But

2
R

2 2

+ (2890)°2 o,

(102) 0.2 = (16.4)°2 o,
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(See Eq. (93). We assume, of course, that muzzle velocity and
angle of elevation are independent.) Tais equation now consti-
tutes a restriction on the values of o and o0 “, which are

determined by the precision of manufacture of the missile and
its launcher. Thus, if launchers are manufactured in such a
way that o 2 = 10’4, then Eq. (102) gives ob2 =34.1. This

means that the powder charge (or whatever controls the muzzle
velocity) must be measured accurately enough so that o =
34.1 (or less) in order that at ieast the required pergentage
of hits will be made in the target area.

XIX. SOME APPLICATIONS OF PERTURBATION ANALYSIS TO
SATELLITE PROBLEMS

Now that artificial earth satellites have become fact
rather thar fiction, there are many problems which no longer
are of merely theoretical interest but are also of great practi-
cal importance. Information about the environment of the satel-
lite can be collected and transmitted back to earth by instru-
ments carried in the satellite. Besides this, a great deal
more information can be derived from observations of the path
type of information and ways of obtaining it.

The complexity of the problems precludes a detailed analy-
sis in this brief report. Our intent here is to describe some
problems, indicate how perturbation analysis is applied, and
exhibit some of the resulting equations.

XX. GRAVITY

One important purpose of artificial earth satellites is
to obtain information about the fine structure of the gravita..
tional field of the earth. This can be done by observing the
motion of a satellite which is far enough from the center of
the earth so as not to be affected appreciably by the atmos-
phere, and yet close enough so that irregularities in the
gravitational field are still large enough to cause observable
variations in the satellite's trajectory. There is good
reason to believe that the irregularities we are trying to de-
tect will be ''relatively small," so that perturbation techni-
ques should provide a useful tool for finding the gross or
"first order'" effects to be expected.
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XXI. TWO BODY PROBLEM:

We consider first a simplified problem (without the
irregularities mentioned above) which we can solve analytically.
This is the standard '"two-body problem.'" We assume that the
earth is a homogeneous sphere of mass mg. As a result of this

assumption, the force of attraction of the earth on an external

body, say a satellite of mass mg, is

(103)

where G 1is the gravitational constant and r 1is the distance
from the center of the earth to the external body (assumed to
be small enough, relative to the earth, to be taken as a
point). Moreover, the force is directed toward the center of
the earth. We take a rectangular coordinate system (x, y, 2z)
whose origin is at the earth's center and whose axes have their
directions fixed in inertial space. The components of the
force F in the x, y, and z directions are - %ﬁ, - gl, and -

respectively, since ; ; % 5 ; are the direction cosines for

the force direction. Newton's Law, applied to the x-coordinate,
gives

Fz
T

¥ = Fx _ e Mg Mg X
S T T 3

r

(104) m

There are similar equations for the y and 2z coordinates. We

divide by mg and let a = G me to obtain the equations of motion

of the satellite.

(-- ax

X = = ——

r3
(105) J y = - g% r --Wsz + y2 + z2

r

y . 9Z

r3
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We let
(106) h=y2 -2y, b=zk=xz, Cc=2Xxy -yXk
Differentiation of these gives
107 dh 5 . ayz ayz db dc
r r

Hence h, b, c are constants. Furthermore,

(108) hx + by + cz =0 ,

which shows that the satellite always lies in the plane with
this equation. Inasmuch as h, b, c are constants, this plane
does not alter its orientation with time.

XXII. POLAR FORM

Now that we know the satellite moves in a fixed plane,
we move our coordinate system so that the

lie in that plane.

v

(x,y)

\J
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The equations of motion then become

(109) X = - , y==-%, =z =o.
5. v--g

It is convenient to introduce polar coordinates (r, O) by
means of the usual transformations. Substitution in (109)
leads to

= 2 _ _«a

roe+2re=0
The second of these equations can be written as

2

1 d 0
(111) F I (r° @) = 0. Hence

(112) r2 é = n

constant.

We now can solve Eq. (112) for © and substitute in the
top of Eq. (110) to obtain a differential equation for r in
terms of t.

(113)

Lo}

1
"d:w
]

ﬂJ“

Presumably this can be solved to obtain r as a function of
t; however, it is much more informative to ignore the depend-
ence of r wupon t, and to find out how r depends on ©.
This will give us the trajectory of the satellite in the plane
without specifying just where the satellite is in that trajec-
tory at any given time. Later we can return to answer the
question of time dependence. Hence, we differentiate r = r(0)
twice with respect to t, after which some routine maneuvering
with Egs. (112) and (113) leads to
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(114) d2r _ g_ dr\2 -r - arz
de 3 aa) n2

The change of variable r = % now gives

2
(115) + p =
o

Q|
=hJQ

which is an easily solved linear differential equation.
The solution is

(116) p = 32 + k cos (8 - 6,)

where k and ©_ are arbitrary constants which depend ulti-
mately on the inftial conditions.

From Eq. (116) we obtain

2
(117) r = a(l-¢ ) where
1l + € cos (6 - q)
(118) Jkn? n’
e _— y = ———2'— .
a a(l - €7)

When | €|§_1, Eq. (117) is the polar equation of an ellipse
with one focus at the pole. Thus, the trajectory of the
satellite is an ellipse with the center of the earth at one
focus. The size and shape of the ellipse, i.e., the semi-
major axis a and the eccentricity € depend on the initial
conditions. ~ -
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The hitherto neglected time dependence now can be attacked
by substituting Eq. (117) into Eq. (112) to obtain a differen-
tial equation for © in terms of t. We shall not do this since
we do not need the results in what is to follow.

XXIII. ORBIT PARAMETERS

The general solution of Eq. (105) involves 6 arbitrary
constants. To specify any particular trajectory and the posi-
tion of the satellite in that trajectory, then, 6 conditions
are required. A reasonable choice is the set of values x, vy,

z, X, y, z at some initial time t_ (usually taken to be

t = 0)--the so-called initial conditions. The initial posi-
tlon and velocity coordinates thus constitute a set of 6
parameters which completely define the motion of the satellite.
However, this is by no means the only set of 6 parameters which
can be used. Other commonly used parameters are the 6 Keplerian
parameters. Two of these specify the orientation of the orbital
plane. Three more specify the orientation, size, and shape

of the ellipse in the orbital plane. (These 3 are 6 , a, € .)
The sixth parameter is the time at which the satellife passes
through some particular point of its orbit, say the point
closest to the focus (perigee). The particular problem being
studied determines which set of parameters should be used.

XXIV. OBLATE EARTH

Unfortunately, instead of being a homogeneous sphere, the
carth is a non--homogeneous, oblate spheroid. It is somewhat
like a sphere with a belt around the equator.

rquatoyr
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The effect of the belt is to add a small component of force
to the gravitational attraction of the sphere. The new force
of attraction now has a component parallel to the axis of the
earth, and consequently no longer is always directed toward
the center of the earth. This brings with it all sorts of
complications in the motion of the satellite.

The equations of motion of a satellite now become

X = = Eg + A x £
r
(119) {§=-ﬁ§+1yf
r
= az 3
z=--g+liz (f + = )
. r r
3(r° - 5z2)
where f = = and A 1is a parameter whose mangitude
2r

depends on the degree of oblateness of the earth. (For these
equations, the x and y-axes must lie in the earth's equa-
torial plane while the z-axis points in the direction of the
north pole. The form of the function f and the derivation
of the above equations of motion are important matters which
we shall not cover here.) The solutions of Eq. (119) now will
depend on A

(120) X

x(t, A) , y=y(t, ) , z =2z(t, A)

The linear approximations to these at A = O are

(121) X X +MA, yTY+NA, zZ2%TZ +P ] where
122)  [x - x(t) - x(t, o)

< Y = Y(t) = y(t, o)

LZ =Z(t) = z(t, o) and
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)
=

|

=%

>

AL
4
it

=8 =2 2|

(123)

evaluated at A = O.

p=
.

Differentiation of Eq. {119) partially with respect to A,
followed by evaluation at A = O, gives the fcllowing differen-
tial equations for M, N, P.

) M 2«
M—'GES--~'}:“-5(XM+YN+ZP)]+XF
(124) { N = - a[}%} - §§ (XM + YN + ZP)1 + YF
R° R |
p=-a[—33--3ﬂ§.(xm+m+z1>{| +Z(F+—g)
. R R R
2 2
where R = —QXZ +Y2 +22 and F - 3(R '752 ) Now X, Y, Z
2R

presumably are known functions of t (although they may be
rather complicated) since, when A = O, the equations of motion
reduce to the case which we previously managed to solve analyti-
cally to obtain the Kepler ellipse. Hence, the system of
simultaneous linear differential equations in Eq. (124) can be
solved and the results substituted in Eq. (121) to find the
actual trajectory of the satellite. This would indeed be a
formidable undertaking on paper. Fortunately, we shall be able
to make use of the equations in Eq. (124) without actually
solving them.

XXV. ROTATION OF ORBITAL PLANE

We return to Eq. (106), namely

(106) h=yz-2zy, b=2z2X-x2zZ, C€=XYy-YKX.
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Previously, when A = O, we found that h, b, ¢ were constants.
When A # O, however, there is no reason to suppose that they
will still be constants. Hence we write

(125) h = h(t, 2), b =Db(t, 2), c =c(t, 1)

and introduce the linear approximations

h ¥ bh(t, o) +H A

(120) { b ¥ b(t, o) + B A

0
1

c(t, o) +C A where

fa =
]
2l

(oY
o

evaluated at A = O.

~
—
N
N
~r
e N
ve)
[l
(03]
=

o>
(¢}

O
I
oy
>

The equation

(108) hx + by + cz = 0

still holds, even if h, b, ¢ are not constants. When A = O,
Eq. (108) is the equation of the orbital plane, and h, b, c
(which are constant) determine the orientation of that plane.
When A # O, Eq. (108) is still the equation of a plane, and h,
b, ¢ still determine the orientation; but, since h, b, ¢ now
vary with time, the plane is no longer fixed. We may still
refer to it as the orbital plane, since the satellite always
lies in it, but we must permit it to move around. Our present
purpose is to find out how it moves. This we hope do to by
studying the derivatives H, B, C.
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By differentiating Eq. (106) partially with respect
to A and then setting A = O, we find

YP+ZN-ZN-YP

H =
(128) B=-=ZM+XP-XP-2M
C=XN+YM-YM=-XN

which expresses H, B, C in terms of the known functions X,
Y, Z and the solutions M, N, P of Eq. (124). Differentiation
of Eq. (128) with respect to time yields

H=YP-YP+ZN-XN
(129) {B=XM-ZM ~P-XP
k~é=xi<'-i('N+YM’-i{M.

In these, the second derivatives of M, N, P can be replaced
through use of Eq. (124), whilg the second derivatives of X,

Y, Z are given by X = - a X R™ etc. This simplifies Eq.
(129) to
; 3YZ K 3XZ
(130) H — ’ B = - 0 C = 0
B R

It is a simple matter to verify that the point
(b, -h, o) lies in the orbital plane as well as in the xy-
plane. Hence, the line segment joining this point to the
origin lies in the intersection of these two planes. Let ¢
be the angle between the line segment and the x-axis. Then
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¢
RHH““(D, h)
. _ h
(131) g = - arctan 5

is one of the two keplerian parameters determining the orien-
tation of the orbital plane. (The other is the angle of in-
clination of the orbital plane to the equatorial plane.)

(132) 6 = 4(t, ) ¥ &t, o) +Pr, & = (%%)

A =0
From Eq. (131) we find
d3h _ . 3b
133y ¥ ._2:A 73
oA b2 . h2
which, upon setting A = O, gives
bH-hB
(134) b= - —92———-27 . Hence
b0 + hov
bH-hB h X+ by 3c_ z2
1ss)  b-- 20 --3%. o O . > 5
’ 2 2 2 2
bo + h0 R bo + ho (bo + ho )R
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since hox + boY + coZ = 0 from Eq. (108). Therefore, differen-
tiation of Eq. (132) with respect to t gives

Yo o
(136) B = o 2) =

This simple expression contains a large amount of
information, only part of which ge shall endeavor to extract.
The variable part of @ |is Z2R- , which is never negative.
Hence, # never changes sign. This means that @# is either
always increasing or always decreasing, depending on the sign
of Cy- This, in turn, means that the line segment which de-

fines ¢ rotates in the xy-plane (though not uniformly) and
the orbital plane rotates with it. The instantaneous rate of
rotation is given by Eq. (136). Although we shall not do it
here, it is possible without much trouble to compute the
average rate of rotation of the orbital plane from Eq. (136).

s average rate is easily observable in actual satellites,
and, since it is directly proportional to A, can be used to
estimate the value of A. This, of course, gives a measure
of the earth's oblateness. 1In this way, observation of the
motion of artificial satellites gives us information about
the shape of the earth.

The preceding long-winded exposition was designed to
show how perturbation techniques have been applied to find the
effects of the earth's oblateness on the orbits of satellites.
The particular effect which was studied was the rotation of
the orbital plane. There are other effects also, all of which
have been studied by the same method and are to be found dis-
cussed in various published sources,

XXVI. SATELLITE TRACKING

Although it is both interesting and important to
have the type of information given by the above analysis,
there are even more important factors to be considered in
the practical problem of tracking a satellite. To '"track" a
satellite means to determine its position (and perhaps velocity)
in space, and also involves the ability to predict future
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positions on the basis of present knowledge. The obvious way
to do this is to integrate Eq. (119), namely

-
x =-S5 +axt
r
2 2
119) (y--H +ays ¢ = 3Cr -75z)
r 2r
i-—-ﬁg+xx(f+15) r=‘\/x2=y2+z2
. r r

A high-speed digital computer can handle this task both easily
and satisfactorily. It is only necessary to supply the machine
with initial values of position and velocity, i.e., Xo1 Yor Zgo
*o’ 90, io’ and with a time interval At, after which the machine
produces values of x, y, z, x, ¥y, z at the times t, +n at,

n=1, 2, 3, ... . This all sounds very simple; unfortunately,
the big problem still remains. It is still necessary to make
the machine computations apply to some particular satellite
which we wish to track. This means that we must properly
choose the six parameters (or initial conditions) Xor Yor Zg»

b4 y Z.. Mathematically, then, the tracking problem re-

o’ Yo o
duces to the determination of 6 parameters.

In order to determine the parameters we must, by
observing the satellite, make measurements of some quantity
which depends on the parameters. Then we can compare the
measured values with computed values of the quantity and
attempt to juggle the parameters so as to bring the computed
values into agreement with the measured ones. Naturally there
must be some mathematical technique for doing this juggling.
The one which is used is the method of least squares.

XXVII. DOPPLER SHIFT

Several different things have been measuvred in
various tracking schemes. The emphasis at APL is on the
doppler shift.
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Let the upper curve in the diagram be the trajectory of a
satellite carrying a radio transmitter operating at a fre-
quency of fT cycles per second. Let the lower curve be t(he

path of an observer on the earth. The observer moves rela-
tive to the satellite path because of the rotation of the
earth on its axis. At time t, the observer receiver a sig-

nal from the satellite which was emitted at time t - g. S

is the distance from the observer to the position occupied by
the satellite when the signal was emitted, and c¢ is the
speed of light. At a time At seconds later, when satellite
and observer have both moved to new positions, the situation
is as pictured in the diagram. The time interval over which
the satellite has been transmitting its signal is (t + at

- §—£—3§) - (t - g) = At - é% seconds, so that the total num-
ber of cycles emitted is fT(At - ég). All of these cycles

are received by the observer in time At. Hence, the observer
thinks the transmitter is operating at a frequency of fo =

£t - 22 1 as
T = fT (1 - &30 The amount of the doppler shift
is the Jdifference between the apparent frequency and the sccti-
f
. T AS
ual frequency, i.e., fo - fT = - <At The instantaneous

doppler shift D = D(t) now can be obtained by letting 4t O.

oI5
25

(137) D = -
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It is fairly easy to make very precise measurements of the

function D. To be able to compute D, we must be able t> com-

pute %% . This derivative is the rate of change of the dis-

tance between satellite and observer. Presuming that we know
the position of the observer, we will be able to compute S

(and hence %%) if we have a way for computing the position of

the satellite. But this is just what the integration of Eq.
(119) gives us, namely the position of the satellite as a
function of the 6 parameters. Hence, D itself is a function
of those same 6 parameters. The route may be devious and the
expressions complicated (fortunately not toc complicated),

but the important fact remains that D depends on the parame-
ters we wish to determine.

XXVIII. PERTURBATION OF THE TRAJECTORY

As indicated previously, the method of least squares
is used to find the parameters. All the details of this pro-
cedure are to be found in several APL reports. Here is it
merely cur intention to show how perturbation methods become
involved in the computations, and to indicate the nature of
the resulting expressions. Basically our problem is to find
out how the satellite trajectory (which determines D) depends
on the parameters. The dependence, of course, is given im-
plicitly in the original differential equations of motion,Eq.
(119). What we need for use with the least squares procedure
is something more explicit. The usual situation is that we
have a rough idea of what the parameters should be, and we are
trying to get more precise values. This is the same as saying
that we know approximately what the trajectory should be, and
that we are trying to find a better trajectory which presumably
is "close'" to the estimated trajectory. Hence, we attempt to
find the new trajectory by perturbing the old.

Each of the trajectory variables x, y, z is a function

of the 6 parameters Xor Vo1 Zg0 Xg0 Yoo Zge Each may be differ-

entiated partially with respect to each parameter. There are
18 such derivatives. We, of course, are interested in these
derivatives when they have been evaluated at x_ = x

o)
etc. Let

0o’ Yo T Yo
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Q= 3%
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(138) { W= 5%1 evaluated at X, = X, etc.
o
0z
U=_
\ oixg

These are three of the 18 derivatives. (The first zero sub-
script on X,o Means that it is an initial condition; the

second subscript denotes a particular set of initial condi-
tions.) The linear approximations to x, y, z at X0 'Y ' %’

X0’ Yo' Zep 3TFE
(
x |
X = X + Q (xo - xoo) + |
*
(139) < y =y + W (xo - xoo) + | terms involving the other
! 15 partial derivatives
* [
z =2z +U (xo - xoo) +
I

* * *
where x , vy , z are the trajectory coordinates computed for !

the special case Xo = X500 etc. We shall content outselves |

with finding just one of the 18 simulataneous equations which
can be solved to obtain the 18 derivatives. ‘

Differentiate the first equation in Eq. (119) par-
tially with respect to x .

o
(140) QE (Qi_)= - qJdl 8% _ 3x [ x _ox y 2L 4 2 Lol
dt2 X0 ;H' Xo ;5 %5 axo X0
0 of X f oy of oz
+ A f + A X —_— = = o e
RER {ﬁaxo oy ax_, 9 xn}
Now evaluate at xo = X , etc.
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2 *
* *
(141) g = - q —g——ig- [x‘Q+y W +2z U] +1f*q
dt r r
“ * * *
+ A X fx Q + fF W+ fz U
2 * 2
* - *

where f = S0 s g(z )] and now r = —J}x*)z + (y )2 + (z*)z.

2r

*

Also fx = (%§> evaluated at x = x*, y = y*, z = z*. There are

17 more equations similar to this one which can be solved for
Q, W, U, etc. This sounds like a nearly impossible task, but
fortunately, in terms of the capabilities of modern electronic
digital computers, it is a rather simple one.

Once Q, W, U, etc. are obtained, then Eq. (139) is
the desired explicit representation of the trajectory in terms
of the parameters. With this we conclude this illustration of
some of the problems involved in satellite tracking.

Each time a satellite passes near a receiving station,
a measurement of the doppler shift can be made. By using several
receiving stations and making measurements over long periods of
time (weeks, months, or even years), a large amount of doppler
data can be accumulated. It would be eminently reasonable to
suppose that out of all this data we should be able to extract
very precise estimates of the orbit parameters, the precision
being limited only by the unavoidable "noise' in the data. We
would expect the orbit parameters to approach constant values;
however, this is not at all the case! The parameters computed
from the data of one week will be different from those computed
from the data of the preceding week. From week to week the
parameter values will change or drift. This peculiar behavior
is caused by errors in the values of a and A wused in the
equations of motion, Eq. (119). The number a, for example,
is proportional to the mass of the earth, which is known to
an accuracy of only about 1 part in 10,000. The number A is
known even less accurately. On the other hand, dopgier shigt
measurements can be made with accuracies up to 1 part in 10%
which is several orders of magnitude better than our knowledge
of a and A. Of course, the satellitce is not afflicted by
this lack of knowledge. Its motion is governed by the exact
values of a and A, whereas we poor mortals are compelled
to use more or less inaccurate estimates. This means that
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the computed doppler shift will inherit the errors in a and
A and transmit those errors to the computed values of the
orbit parameters.

Since the drift of the orbit parameters is directly
related to a and A, then we should be able to get improved
estimates of a and A by measuring the amount of drift.

This is one of the results to be expected from satellite track-
ing. Here again, perturbation analysis is an appropriate tech-
nique for handling this complex problem.

There is one more set of parameters which we wish
to consider. This is the set of 3 parameters which define
the location of the receiving station, e.g., longitude,
latitude, and distance from the center of the earth. Hereto-
fore, we have considered these to be known. By using re-
ceiving stations of known position, we can eventually, as in-
dicated above, very accurately track a satellite. As pointed
out previously, this means that we can accurately predict its
future positions. If now we make doppler measurements at a
receiving station whose position is not known very well, then
we can employ exactly the same techniques used in tracking to
determine the 3 parameters of the receiving station. Of course,
this problem is simpler since only 3 parameters are involved.
This 1s known as satellite navigation. It is potentially a
very accurate navigation scheme. In this particular applica-
tion, too, perturbation analysis eases the labor required in
the computations. It is to be especially noted that an ade-~
quate satellite navigation scheme depends primarily on a good
tracking scheme.

XXIX. BRIEF COMMENTS ON PERTURBATION ANALYSIS

In common with many other useful procedures, the
ide as behind perturbation analysis are quite simple. The
application of these ideas to particular problems leads to
work of varying degrees of difficulty. The princiral prouliem,
of course, is the evaluation of derivatives. The difficuities
arise because it is usually necessary to resort to implicit
ditferentiation to obtain the desired derivatives. Further-
more, there may be several intermediate variables to be con-
sidered: that is to say, the variables we are after may be
related implicitly to certain other variables which, in turn,

.are related implicitly to the basic variables appearing in

the mathematical formulation of the problem. Most of the
problems in satellite work are of this type. As partial com-
pensation for these troubles, perturbation analysis leads to
linecar equations.
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APPENDIX: ELEMENTARY ASPECTS OF MATRIX ALGEBRA

A matrix is a rectangular array of numbers.

3 0 -10 1
-1 5 4 0o
7 2 -2 -5

The above example is a matrix with 3 rows and 4 columns,
hence a total of 12 elements. Two matrices are equal if and
only if they have the same shape, i.e., same number of rows
and same number of columns, and have their elements in the
same order. The following three matrices are not equal.

OG0

The purpose of a matrix is to permit a collection
of numbers to be handled as an entity. The ability to do so
turns out to be extremely useful.

Addition---The sum of two matrices is defined if
and only if the matrices have the same shape. In that case,
the sum is obtained by adding corresponding elements together.

1 2 3\ /s 2 1\ _/6 4 4
3 4 5 (:6 Z -5 (—3 6 0
Multiplication---If A and B are matrices, then
the product AB is defined only under the following condition:
The number of columns in the left hand factor A must be the
same as the number of rows in the right hand factor B, When
this condition is satisfied, then the elements of the product
AB can be computed by a procedure which sounds complicated
but is quite easy to carry out. The element in the mth row
and ntbh column of AB is obtained by multiplying the elements
of the mtb row of A by the corresponding elements of the nth
column of B (first with the first, second with the second,
etc.) and adding the products thus obtained.
-2 1 1 2 3>
A = B =
3 4 3 4 5

+
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-2 1 | 2 13 -2+3 444 =648
AB = -
J 4 J 4 b 3+12 6+16 9+20
(1 0 -1)
18 22 29
BA {8 not defined. It will be noted that the pro-

duct of two matrices has the same number of rows as the left
factor and the samo number of columns as the rl‘ht factor.

Vectors--=A matrix with only one column is usually
called a columin vector. A matrix with only one row is usually
callod a row voctor,

Lincar Equations---8imultanocous linear equations
car. vasily be writton In a matric form,

3x ¢+ 2y =)
7x ¢+ 8y - 3
let C - (3 g) be the matrix consisting of the coefficients

of the unknowns.

Let X = (;) be the column vector whoso clements are the un-

knowns, Lt K = (;

the constant terms in the equation. Then
A *] . (’) or CX - K.
7 S y 3

Unit Matrix---A square matrix is one which has the
same number of rows as columns. This number is called the
order of the square matrix. A very special square matrix is
the unit matrix 1 whose clements are all zero except for those
on the main diagonal, all of which are one.

) be the column vector whose clements are
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)| 0

0 1 socond order
1 0 0 0

0 1 0 0

0 0 1 0 fourth order
0 0 0 I//

Sometimos a subscript is used to donignate the order, o.g.,
!‘. If A is any matrix and 1 is a unit matrix of thoe

appropriate order, then Al = A and 1A = A,
1 o\ /1 2 3\_ /1.0 2.0 3v0
0 1 J 4 5 K003 O+4 0+8
./t 2 3
3 4 )

1 2 3 1 0 0 14040 0+2+0 0+0+3
3 4 5 0 1 0 -
0 0 1 J++0 0+4+0 0+0+8
(1 2 3
3 4 S

Inverse of a Matrix---Let C - (3 g) as before,
S -2)

and let B = (-7 3/

5 -2 3 2 15-14 10-10
Thea BC - (_7 3 ) (7 5) - (-21+21 -14+15)
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Similarly, CB = 1. It is apparent that the matrix B has a
spocial relationship to the matrix C. B s said to be the

inverse of C, and it written B = C'l. Of course, it would
be equally proper to say that C s the 1nv’rlo of B, {.0.,
Cc~-8"). This leads to the statoment (C'l) = C,

In general, whoenever two squaro matrices H and

M (of the same ordor) satisfy the condition HM - MH - I,
then each is the inverse of the other. Thus,

4 1 1 a -1 0
R - 7T 2 3 and LR | 1 =1
11 2 3 -8 3 )

aro inverses of each other since

8¢+1-8 -4+143 O-l¢]
HM - 14+2-16 =7+2+8 0-2+2
22+2-24 «11+42+9 0-3+3

1 0 0
= 0 1 0 = 1
0 0 |

and (similarly) MH = 1.

Not all (square) matrices have inverses. For ex-

ample, A = (g ?) has no inverse. To show this, let B =
(; :) be an arbitrary matrix of order two. Then
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and it is clear that AB can never be equal to ] = (3 ? no

matter what values are given tow, x, y, 2. Matrices without
fnvorses are said to be singular; matrices with inverses are
nonsingulur. The determinant of a square matrix is the detur-
minant whose elementis are the matrix elements in exactly the
same order. The condition for a matrix to be nonsingular is
that its dotorminant be different from zero.

The problem of finding tho inverse of a matrix is a
vory important one; however, it will not be discussed here.

The importance of a matrix inverse perhaps can be
ostimatod by considering the following oxample. The set of
linoar equations

4 ¢+ y ¢+ 2 =
Ix + 3y ¢+ 3z = -]
11x ¢« 3y ¢ 32 = 3

x
can be written in the matrix form as HX = K, where X - (y) .

) 4 1 1 z
K> [-1] , and H = 7 2 2 is the matrix considered
3 11 2 3
ot 2 -1 0
previously with the inverse K - 1 1 -1 . Multi-
-8 3 1
ply both sides of HX = K by H™! to obtain
Bl ax = 1x = x = vl x

which says that the solution of the matrix equation is

- 2 -1 0 5 11 x
X=H ' Kk=-[1 1 =1 -1 = 1] =|y
-8 3 1 3 -40 z

Hence x = 11, y =1, z = - 40 is the solution of the original
set of equations. This is easily verified by substitution or
even by solving the equations in some other way.
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Transposo, Svametric Matrices---The transpose of a
matrix A " Is !Eo matrix obtalned by Interchanging rows and
columns. We shall denote the transpose of A by A.

5 T IR el

The transpose of a row vector is a column vector, and con-
veracly. A matrix which is equal to its own transpose is

said to be symmetric.

| -4 J
8 - -4 S )| - § s symmetric.
3 | 3
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ADAPTIVE METHODS AND DEVICES
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A. G. Carlton
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I. INTRODUCTION

In considering adaptive methods and devices, it would
be convenient to know what is meant by the term adaptive. If
one attempts to distinguish the adaptive from the non-adaptive,
o may have great difficulty in determining the dividing line,
and more trouble in getting agreement with his conclusions.

Ve consider one method or device more adaptive than another,
to the extent that it produces satisfactory results for a
significantly greater variety of conditions.

Some people refer to a device as adaptive if it in
some way detects and compensates for inadequacies in its
operation. Others consider such a device as demonstrating
active adaptation and refer to devices without this feature,
but operafgng satisfactorily over a wide range of conditions,
as having passive adaptation. Some people seem to consider a
device adaptive only if its operation cannot be understood;
we see no merit in such views,

Evolution has tended to produce living organisms which
are much more adaptive than the products of human technology.
Our understanding of the adaptive principles used in nature
is far too meager to yield easy application to engineering de-
signs. Many able people are attempting to discover the methods
used by central nervous systems, but the problems are still
very formidable.

In discussing adaptive methods, we shall consider four
topics: 1) adaptive features of standard techniques; 2) adap-
tive filters, designed to handle a variety of input signal and
noise characteristics; 3) compensation for unknown transfer
functions; 4) compensating for noise correlated, in an unknown
way, with the remaining input.

II. ADAPTIVE FEATURES OF STANDARD METHODS

Before considering complex methods design . » incsrease
adaptivity, it would be well to notice adaptive wtur2s of
some methods very widely used but not generally sid~ 2d
particularly adaptive. These are the closed lo the v Rar

filter, and the bang-bang servo,

Closed Loop Methods---These methods are 12 tn ¢ 0. i8S
variety and complexity In living organisms, in - /v asy ¢
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of activity. One of the achievements of cybernetics was its
recognition of the powerful use of closed loop methods in
life processes. Technology made little use of closed loop
methods until nearly the present day, and even now the closed
loop is foreign to the thought of most people, even scientists i
and engineers.

The first clear cases I can find of closed loop methods
are in computation - Newton's methods of successive approxi-
mation for finding a square root of a number or a zero of a
polynomial.

These computation methods illustrate some interesting
features of closed loop systems. Consider computing the
square root of 2, There is a classical method of doing this,
involving repcated processes similar to long division but
more complex, and if one mistake is made the answer may be
grossly wrong. Newton's simple method involves repeated long
division, is easily remembered, and is virtually foolproof.
The idea is to guess a square root, divide it into the .umber,
and average the divisor and quotient for the next upproxima--
tion. Thus, I guess 1, divide it into 2, arn< g2t 2. The next

guess is =(1 + 2) = 1.5, giving 1.337% us quotient, 1.416 for
the next fuess. At the next s+:., & cne gets 1.41421., Repeating
the process would give 12-7igure accu-acy. An error at any
step but a final unchicked one would not affe:t the final re-
sult, only lengthening the computation. This tendency to cor-
rect ericorss 18 characteristic of closed loop methods, as is
the rrecision obtainable with simple operations, and to soume
cxzient the nulling of the difference between cutput and input,
Since the square root can be determined even by a man who for-
gets the classical method, the technique also shows that lower
guality components can be used than in the open loop method.

A closad Yoo method of finding the root of a polynomial
f(x) = 0 i# to select a trial evaluate f(xo)/f'(xo), and

chense ax the next appreximation x, = x - f(xo)/f'(xo). ¥hen

this method works, it is far easier to get precise results than
with formal algebraic methods, particularly if the polyaomial
is of more than the fourth degree. Sometimes the method fails,
either because f'(xo) is zero or because successive approxime-
tions diverge. The teundency of instability of the process can
usually be alleviated by suitably taking account of £"(x),
which {4 analogous to the use of lead or derivative terms for
stalzilizing servo systems. The classical servo system was
Watt's steam engine governor, Iirst analyzed mathematically
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by Clark Maxwell about one hundred years ago, le¢aaing to
Routh's study of stability of servo systems.

The simplest and most widely studied closed loup system
13 the servo or inverse feedback system, sketched in Fig. 1A.

- X

N (o)

X ——— X X F X

1 -.?'—, FoF °+ > I F3T f—Op
Fig. 1A Fig. 1B

The output is produced by the operator ¥, a linear
transfer function, operating on the "error signal" XI - Xo.
Solving the relation

Xo = F(XI - XO)

for the transfer function XO/X we obtain

I ’

From this, it is bhard to see ainy advaatage for the
clused loop system. if for some real frequency «, F(w), the
system is obviously unstable; and if the system ls stable it
is equivalent to an open loop system with transfer function
F/(F + ") as shown in Fig. 1B,

The closed looy system can be made stable by proper
design, bhowever, ard may be very superior to the open inop
cystem if we consider depariure from the ideal as Jla Fog. 1C
or Fig. 1D.
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z\ ./
X X X X
I 3—F ___| G | (0] > I F G é (o)
{_ o+ 1 >
(o]
Fig. 1C Fig. 1D

Assuming G a linear transfer function not known and fixed
in advance, we find in the closed loop system

Xo =7 - FG(XI - Xo)

(closed loop)
fg ) FG f_f/xl
XI FG + 1

_ FG z
XO = WT—I XI + FG_TT (closed 1009), while

= FG -
Xo ﬁa—ﬁ XI v 4 (open 100p)

Variations in G a:d Z affect the output directly
in the open loop system, much less strongly in the closed loop
(negligibly for FG sufficientlw large). When the operator G

is non-linear, producing distcriion, the results are similar.
The possitility for instability of the closed loop is increased
by the wvariations we have consicared, but in general with proper
design the transier functior srom input to output can be made
much less dupendent on these variations than is that of an

open loop system. . note also that the open loop is badly un-
stable if 2 i produced by a constant Z 0, whereas the
closed luri ~an be made stable against such disturbances. For
any r«i<unable definition of "satisfactory performance' the
civ..cd loop system is satisfactory over a much wider range of
permissible G and Z.

A linear filter has an adaptive feature if satisfactory
performance is defined in terms of mean square deviations,
since such performance depends only on the first and second
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moments of the signal and noise, and is thus unaffected by
any further details of the probability distribution.

A bang-bang servo system is one in which there is a so-
called bistable element, sometimes referred to as a switch
cr relay. This element produces the maximum possible numeri-
cal output with the same sign as the input. In a missile auto-
pilot, the output might be control surface position or rate.
In such a system the gain may be very large, but positive
instability is prevented by the effective gain of the bistable
element being reduced as the system nears instability. Such
systems have been studied extensively in recent years at APL
and elsewhere. A practical problem with these systems is the
excessive dissipation of power.

The super-regenerative detector has some points of
similarity with the bang-bang servo, and demonstrates some
vaguely similar features.

I1II. ADAPTIVE FILTERS

You have learned something of the problem of filtering
signal from noise, and have learned about Wiener's filtering
theory, giving minimum mean square error in equilibrium, for
stationary signal and noise with known spectral densities.

We now consider the problem of devising a filter to give
satisfactory performance for a variety of input characteristics.

Polynomial Signal---Suppose that the signal is a poly-
nomial in time, of_agkree n, but is not otherwise restricted.
Then the filter must follow such a polynomial perfectly to
avoid unbounded errors. Writing the signal as

C

1 '] c
- 2 .2 n  n
X(t)—Co+r!-t+§-!-t +.-.+mt ’
we see that
c c c
1 2 n
X =Ca + — + + + —
(o} 2 n
P p p
) c, + cn_1 P+ . + clp + cop
n
p
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The steady state error in following x |is

(x - x F(p)) p=0 =[x {} - F(ﬁ% ) p=0

A necessary and sufficient condition for zero steady state
error is that

1im }'TF(P_)-O.
p—0 p

Writing F 1in the form

2
- ag + 3;P + 3,p° + ...

2
bo + blp + bzp + ..

we must have ag = bo, a, = bl’ ceey B = bn, with

n+l n+2
L _F - (bn+l - an+;\p + (bn+2-an+é>p P o000

2
bo + blp + bzp N S

If the filtering is accomplished with a servo, the forward
transfer function G of the servo is

2
P a9 + ;P + agp” + ...
1-F n+1 n+2
(bn+1 - an+1>p + (bn+2 - an+2)p ERLEL

The forward transfer function in a servo filter must integrate
once more than the degree of the polynomial.
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If the noise is stationary with known spectral density
0(w), one can select the coefficients of F subject to the
restriction that (ao, 8y, ... 2 ) - (bo, bl’ .. bn)’ which

n
make the mean square error,_[ lF(w) 2 0(w)dw, as small as
desired, at the expense of large transient errors.

The problem of designing a time-varying filter without
transient or steady-state error in following a polynomial of
given degree, and minimizing the mean square error due to
stationary noise, has been solved theoretically. The solution
of this problem in practice appears to be unduly difficult,
and perhaps of little value in view of the artificiality of
the assumed signal characteristics.

The theory can be easily extended to consider signals
consisting of a stationary component of spectral density
& (w) plus any polynomial of degree n. The optimal constant-
coefficient filter is that which minimizes

/{FIZ o+ |1 - 7|2 ¢}dw

by choice of F among those transfer functions satisfying
the restrictions (ao, a1, .- an) = (bo, bl’ ‘e bn)' We note

that the filter described by Hanson is optimal not only for
the noise and signal spectral densities assumed, but also

for cases in which the signal has any linear function of time
as an additional component.

The Minimax Filter---The minimax principle, acting to
minimize the maximum expected loss, has many advantages,
whether one is dealing with alert enemies or intractable
nature. The approach J%Et mentioned is minimax for signals
which may include any n degree polynomial, but have a re-
mainder with known spectral density.

A useful class of signals to consider is that in which
the spectral density &¢(w) is not known, but subject to linear
constraint of the form

fd‘(u))a(w) do < 1
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For example, if the mean square signzl acceleration is limited,
we would have a(w) proportional to w*; for limited mean square
signal velocity, a(w) is proportional to w<.

By use of Lagrange multipliers and calculus of varia-
tions it is found that the minimax filter satisfies

1 - Fgy of? = Ra(w D g% > 0

< Aa(w) w: ¢ = 0,

* * *
with F¢* o the optimal filter for & and @, T the maximum
’

signal spectral density,and A chosen to satisfy the constraint.

At this point it may appear difficult to determine the
minimax filter, as the solution given is far from explicit. For
simple forms of noise density ©(w), however, the solution is
easy. For white noise, ©(w) constant, one can show that

o

2 )
o]

F* + 0 .
To illustrate the procedure, consider a =cn4/a2, indi-

cating limited mean square Earget acceleration._ Eguating our
expressions for |1 - F¢* Ql , and setting a2/a = s
’

4

° . w4 ’ w:d*w) >0
¢* + O ®,
.4

= J)4 ’ w:@*(w) =0
%o
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giving
4
u'} L)

¢ * =(0<—%—— 1 , w2< wz

i ; j

0
’ 2
w” > W

wo is determined by the constraint

w 4
0o w

w
wdo 20 r°f 4 4\ .
o= f¢(w) a(w)d =f C d??' -1 ?— - ?f Cbo L ) d.\.”'l

(o]

The minimax F can only be approximated in practice. A very
good approximation is similar to the filter against accelerating
targets, mentioned by Hanson, but with a damping factor of V3/8
rather than 1/2. That is,

1 + V372 phv
F =
1 + V372 ploy + Py

Estimating Input Spectral Densities---Perhaps the most
obvious method for coping with a variety of input spectral den-
sities is to process the input to estimate the spectral densi-
ties and choose the filter on the basis of these estimates.
There are considerable difficulties associated with this
approach, beginning with the problem of estimating two spectral
densities on the basis of one time series, and suitably chang-
ing filter characteristics based on these estimates. With
this method there is no check on the correctness of the adjust-
ment, which is open loop. The final problem is that in radar
tracking and missile guidance the input is typically not avail-
able - geometry provides feedback and only the so-called error
signal is measured.

~ 140 -




1 K00 HOPE S BEVIONT !
APPLED PHYSICS LABORATORY
LR ) o

Adjusting Error Spectral Densities---A key to closed
loop adjustment of the filter characteristics is the relation,
stated above, that for white noise,

Since the transfer function between input and error

X, - X
signal is —Ix—"- = 1 - F(w), this implies that if the filter-
1

ing is optimal, the spectral density of the error signal is

=0 .

© + @) |1-F ‘2

®,0

Closed loop adjustment of the filter is thus possible
by changing filter characteristics in such a way as to main-
tain the error signal spectrum approximately flat. In prac-
tical applications of this concept, the error signal energy
in a low pass band has been compared with that in a higher

1 + 2§ TP

1l + 2C p + szz

has been used, with T varied at a rate depending on the
ratio of energies. This simple scheme has resulted in ex-
cellent adaptation to varying amounts of signal and noise, re-
sulting in near optimal filtering.

pass band. A filter of standard form F =

Optimal Filtering in Transient and Non-Stationary Cases---
By exploiting the principles of least squares, it is possible
in many cases to design a filter which minimizes mean square
errors in the transient response as well as in equilibrium,
and which can cope with nonstationary inputs. This extension
from filtering which is optimal only in steady state and re-
quires stationary signal and noise certainly increases the
adaptivity.

One would like to apply to this type of filtering some
of the adaptive methods mentioned above - minimax principles,
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estimation of input spectra, and closed loop adjustment based
on thc spectrum of error signals., Only the first two of these
principles have been applied. Minimax design is considerably
more difficult than in the case of the Wiener optimal filter,
but has been accomplished by Busey in at least one problem.
The basic method of adaptation is estimation, by sampling, of
the spectra of the noise and of signal driving functions; in
some appliications the raw material has been available. Sim-
plified ciosed loop filter adjustment based on the error sig-
nal spectrum does not appear possible. One could use meas-
ured deviations of the error signal spectral density to ad-
Jjust estimates of strength of noise and signal driving com-
ponents, thus using closed loop adjustment, but it is by no
means clear that this would be superior to direct estimation.

Limiting RMS Output Accelevation---The RMS output
acceleration of a missile must be limited. A system designed
by Follin to adapt the filtering to limit RMS acceleration due
to noise and avoid the most harmful effects of hitting accel-
eration limits is described in Reference (1), pp. 20-21.

IV. COMPENSATING FOR UNKNOWN TRANSFER FUNCTIONS

It is frequently the case, particularly in autopilot
desi,;n, that a variable, not completely known transfer function
is a significant part of the servo loop. In autopilot design,
on2 may attempt to compensate by varying gains as functions of
ram or static pressure, but there will often be large residual
variations not properly compensated. The bang-bang systems
mentioned earlier have often been suggested for autopilots to
cope with these variations. 1In practice, however, the auto-
pilot is t*ypically compensated as well as feasible for pres-
sure variations, and parameters selected to yield compromise
p«rformance over the region of possible variation. We shall
now consider some special techniques for cases in which such
compromise is inadequate.

Maximrizing Stable Regulator Gain---The first problem
considered is to maximize regulator gain without instability.
This problem arose in attempting to control roll precisely in
a missile with enormous variation in aerodynamic gain. With
standard t=chniques, the roll autopilot gain had to be kept
low to avoid instability with high aerodynamic gain; roll
control was inadequate with low aerodynamic gain. The solu-
tion dependsd on the fact that the resonant frequency was
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nearly unstable, the aerodynamic changes being primarily in
gain. Energy in this frequency region was detected, and com-
pared with energy calculated for neutral stability. The
difference was used to vary the autopilot gain. The difference
in performance of the system, according to whether the energy
is measured before or after the variable gain, is significant.
Both can be made stable and are correct in steady state, but
the closed loop system has zero velocity lag and transient
response independent of the critical gain.

Sensitivity Feedback---One of the least desirable types
of autopilot, from the theoretical standpoint, is a wing posi-
tion control system, which attempts to make wing deflection
proportional to demanded acceleration. Such autopilots have
been used, however, either because of their great simplicity or
because the alternative accelerometer feedback system causes
trouble due to amplification of a missile body vibration and
bending. Satisfactory operation of a wing position control
sysiem requires adequate knowledge of the ratio of acceleration
to wing position. A solution proposed by T. W. Sheppard was
to compare average acceleration with average demanded accelera-
tion, and use this comparison to adjust the gain of the auto-
pilot. This approach was found to be feasible even in some
quite complicated cases. It was also found, the hard way,
that sufficiently shoddy components for changing the gain could
invalidate any performance analysis. There is still a require-
ment for compact, reliable, reasonably precise gain-changing
devices for use in guided missiles.

Tracer Signals---In the laboratory, a common method for
determining system response is to insert signals at the input
and observe the output. The use of this method in flight
with autopilots could furnish useful information on airframe
and other responses. Tracer signals of various sorts have
been proposed for various purposes, but are usually rejected
because of interference with flight or strong dependence on
details of dead space, friction, etc., when too small or too
high frequency to disrupt normal missile operation.

Tracer signals can be used effectively in many systems
which function intermittently. As an example, they can facili-
tate adjustment of gains of pulse radar IF strips.
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ABSTRACT

Classical optimal filtering methods have been ex-
tended to a large class of problems in which the input has
incompletely specified characteristics. By minimax princi-
ples the optimal filter and the best input are determined.
Two problems of time-varying filters are considered, first
the optimal settling of filters to steagdy state and second
the design of adaptive filters which adjust to varying or
unknown environment.
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I INTRODUCTION

Linear filtering theory is largely based on the
fundamental work of Wiener, "Extrapolation, Interpolation,
and Smoothing of Stationary Time Series," 1950, which in
many respects paralleled the independent work of Kolmogorov.

It may be well to review the problem considered by
Wiener. He assumed that there was availab’e the entire past
history of a time series consisting of signal plus noise pos-
sibly correlated with the signal, that all processes involved
were stationary and indeed ergodic to the second order, with
known auto-correlation and cross-correlation functions. He
wished to determine the realizable linear filter to apply to
the signal in order to minimize the mean square difference be-
tween the output and the message translated by an assigned
positive or negative time interval. Wiener solved this prob-
lem by using variational analysis on the weighting function to
obtain an integral equation, then by using subtle Fourier anal-
ysis to solve the integral equation. Multiple time series were
handled by an extension of this technique.

It will be noted that the problem solved by Wiener
contains two restrictions beyond the assumptions: first, op-
timization is restricted to linear functions; second, the loss
function whose expectation is minimized is the squared error.

In attempting to extend filtering theory, it is
appropriate to modify or eliminate various of these assumptions
or restrictions. Various investigators have widened the field

of permissible filters and dealt with alternative loss functions.

Nonstationary processes have been considered; some trivial ob-
vious results have been obtained, and some adaptive filters
appear suitable, but little has been done that is both signifi-
cant and rigorous. In this paper we shall remove the assump-
tion of complete knowledge of the correlation functions and
also indicate some minor extensions of the basic theory and
techniques, consider the optimum filter with only portions of
the signal history available and attempt to classify the types
of adaptive filters.

I1. THE FREQUENCY APPROACH

The reader of Wiener's work will note that although
his basic problem is formulated in terms of time series,
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correlation functions, and weighting functions, his solutions
are expressed in terms of spectral densities and transfer
functions. It appears reasonable, consequently, to set up
the problem in the frequency domain. From the elementary
propertics of spectral densities, we have

(2.1) o2 - f{lei‘”"-rlzu+| F|2 N} a .

where 02 is the mean square error, F(w) the filter transfer
function, a the time translation, and M and N the signal
noisg spectral densities, so normalized that the signal power
is qu(w) dw. All integrals are taken over the entire real
frequency axis unless otherwise indicated, and the dependence
of the variables on ® will usually not be indicated. It is
assumed here and henceforth that the signal and noise are in-
dependent; this entails no loss in generality in the classi-
cal developments, where M can be regarded as the sum of the
signal and signal on noise spectral densities, N as the sum
of the noise and noise on signal spectral densities.

It is useful to consider the spectral densities as
resclutions of the signal power into a continuum of frequency
components. From this standpoint it is clear that ergodic
properties are not relevant to the problem of linear filtering,
although the optimal filter may be nonlinear if the second-
order characteristics are not ergodic.

Before applying variations to minimize 02 by choice
of F, let us indicate some extensions of thds relation to
problems beyond the original one. In the first place it will
be noted that Eq. (2.1) is valid even though the power of sig-
nal, noise, or both is unbounded; it is not necessary that the
correlation function exist. It will be seen that this may be
of importance.

A trivial generalization of Eq. (2.1) is to replace
i

e by the Fourier transform Y(w) of any desired linear
operator on the signal, e.g. by iw for the derivative. Thus,

(2.2) 0% = f{'y-r|2u+|1~‘|2 N} dw.
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Another easy extension is to the case in which it
is desired to weight errors unequally for various frequency
components. A symmetric non-negative function W(w), so
normalized that ij(w) dw = 1, could be inserted to obtain

(2.3) of=f{|Y-F|2M+|F|2N} Wodw

which is of course formally equivalent to Eq. (2.2) with M
and N replaced by MW and NW.

The next extension is to minimize 02 subject to a
restriction on the mean power of the output gr some other linear
function of the output. As an example, if 0 must be minimized
subject to the restriction that the output acceleration power
must be less than g, i.e., that

(2.4) f(u + ) | F|2 o} dw €3,
we should minimize
(2.5) o + 28 =f{lv -FP | PPN e F|? :.04} dw,

and select A to satisfy Eq. (2.4). In certain cases,
especially with non-gaussian processes, restraints such as
Eq. (2.4) may preferably be applied only to the noise. In
this case the integral to be minimized can be reduced to Eq.
(2.2) by suitable definition of N. This type of side condi-
tion can be introduced formally as here, or can be used in
the definition of the class over which F is optimized.
Several simultaneous side conditions can be introduced in the
same way.

The final extension to be considered is to replace
the class of relizable transfer functions by other classes,
say jﬂr , as appropriate.
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III. MINIMIZATION OF o2 BY FC

We now consider the selection of F within the

class §F‘to minimize 02. An increment J or F will produce
an incremental 02 of

3.1 o§ +F-o§=f|J|2(u + N) do +f3 [(M + N) F-MY] a,

a relation obtained by noting that every transfer function has
an even real part and an odd imaginary part.

The transfer function F will be optimal in ;f'if
the right-hand integral of Eq, (3.1) is non-negative for every
J such that J + FC and.[|Jl2 (M + N) dw is finite.

The absolutely optimal F 1is, from Eq. (3.1), evi-
dently

(3.2) FO ’m .
The optimal realizable F 1is given by

(3.3) F, - —1 MY

R+t M + N)~

+

where the new symbols denote factorization and decomposition
of a meromorphic function as

(3.4) H::H‘H'+H++u ,
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nt being analytic and without poles or zeroes in the lower half
plane, H the conjugate of H+; H+ and H_ have no poles in the
lower half plane and upper half plane, respectively. Polynomial
terms of H appear in H+. If M + N is not factorable, FR = Fo.

To check the validity of Eq. (3.3), substitute it in
Eq. (3.1), obtaining

2 2 2
(3.5) o -0 = J (M + N) dw
J + FR FR /1 I
+f3(u+n)‘l'L: dw;
(M + N)

the latter integral is zero, by contour integration over the
upper half plane, for J sufficiently convergent, i.e., for

f|J|2 (M + N) do finite.

As an example let us consider the spectra
3.6) M=om? |, N=g , withy=-1 ,

the absolute optimum (realizable with infinite delay) is then

1
1 + & p4/0

(3.7) Fo(p) -

and the optimal realizable F |is
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1 +v2 p (g/0)}/4

(3.8) F,(p) =
R 1 +v2 p (8/0)/% & p° (d/0)172

This transfer function is the zero velocity lag loop with 0.7
critical damping which will be discussed below. The corre-
sponding errors are

2
a, = .3535 ¢

3/4 °1/4

(3.9)

012‘ - 1.414 g3/4 o174

A very useful relation can be obtained by manipula-
tion of the second integral of Eq. (3.1) as follows:

(3.10) f’.f (M +N) F - MY) dw =f3/?[(u+n)|1-‘|2-uvl-'1dw

- f?f/l‘-‘ (M + N)l F|2 - ReMYF - Im MYF] dow .

This integral is zero for sufficiently convergent
realizable J 1if

(3.11) ’FRIZ (M + N) = Re MYF + Re:Im MYF ,

where Re:ImH represents the real complement to the given
imaginary function such as to render H realizable.

This can be more formally expressed by the Bode
relation
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9 1 w (MY?)w dw
(3.12) lFRI (M + N) = T . =z wz , where j; indi-

cates disregard of poles at w = * u, provided MY docs not di-
verge for large w.

Solutions of Eq. (3.11) for simple forms of MY are
readily obtained; for example,

(3.13) |FR|2 (M +N) = [ MY, if MY is constant
.2
MYF (ia), if MY = -S-—z
a‘ +

2 4
MY + k, 1f MY = < + c2 @2 o+ c4 D

I:k determined byf log IFR|2 d = (ﬂ

By symmetry under the interchange of M¢» N and F&»
(Y - F) we obtain

(3.14) ‘Y - Fnlz (M + N) = NY, if NY is constant.

For ordinary filtering, with Y = 1, these define the optimal
spectral density of the error signal in a servo type filter,
and can be used to construct an adaptive filter which will be-
come optimal for any signal spectrum.

Expressions for IFRIZ , based on Eq. (3.11) are
quite useful in optimizing filters with side conditions such
as limited mean square output, since the expressions for |FR|2

are frequently more convenient to use than those for FR in
determining the Lagrange multipliers.
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IV. MINIMAX FILTEL.ING

Let us consider now some typically statistical prob-
lems, in which one has incomplete knowledge of the spectrum
of noise, of signal, or both. Ve discuss below adaptive quasi-
linear filters which appear suitable for cases in which one
ectrum is completely unknown, and which can cope with cases
volving a spectral density of known form but unknown magni-
ude,

The problems considered by Viiener were essentially
probabilistic, i.e., the system is completely described in
terms of appropriate probability measures; the problems we are
now considering are statistical, in that we are dealing with a
system defined by probabilities, some of which are unknown,
Our problem in this case is one of statistical estimation of
a function of the signal. Our estimating function should be
optimal in some sense. One of the most logical criteria for
an estimate, developed by Abraham Wald, is that it minimizes
the maximum expected loss; that is, each filter is assessed
on the basis of the expected loss with the possible system
which is least favorable for the given filter, and the optimal
filter is that filter for which the maximum expected loss is
minimum. This formulation of statistical decision theory is
very similar to two-person game theory, independently de-
veloped by von Neuman. We adopt this criterion and consider
as optimal the minimax filter, with the loss function propor-
tional to the squared error. In a completely prescribed sys-
tem, the minimax linear filter is the Wiener optimal linear
filter.

Minimax theory offers a strong justification for the
use of linear filters. If the distribution functions of the
processes are not krnown but the class of possible distributions
includes Gaussian distributions, the minimax filter is linear,
since with a linear filter the mean square error is independent
of the form of the distribution function, and with a non-linear
filter the mean square error exceeds that with a linear filter
when the processes are Gaussian.

Typical problems encountered in practice involve

situations in which the noise process is known to be limited in
power, in mean square velocity, etc.:

(4.1) fN d =co.fN 22 du = C., etc.
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Such restrictions can be put in the general form
(4.2) j.N @ dv =1,

where 0 is a prescribed symmetric non-negative function, K a
prescribed positive numher. It can be shown straightforwardly
that the variation in 0 due to variation n in N 1is a non-
negative function of n, zero if and only if n = O, plus

(4.3) j'n [lFu’le - é} dw,

where F is the optimal transfer function with M and N,
and A 1!’§ Lagrange multiplier to be selected to satisfy Eq.
(4.2). From EqQ. (4.3) and the fact that n + N must be non-
negative, it follows that the maximum N s No given by

(4.4) lFu . |12 -0 v N_ >0
"o
<A ©Q »: N =0.

- o

This result is easily generalized to the case of
several inequality restrictions

(4.5) KJ thOJ dov = 1 (G -1,2..., k)

with the KJ not specified but 2 1.

The maximin N 18 No satisfying
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(4.6) IFM'Nolz -ZAJ K, @, b: N> 0

§ZAJKJOJ v: N, =0

with the AJ, Ki satisfying Eq. (4.5) and also
(4.7) AJ (K, - 1) =0, (G =1,2..., k)

Similar results are obtained for cases in which the
signal spectral density is subject to one or more equalities
or inequalities, and where both spectra are limited only by
such restrictions.

The results just given have derived the maximin
spectrum or spectra, but our object is to determine the mini-

max filter. For this purpose we now prove that
Min Max oﬁ F - Max Min o: F
F N ' N F '
ant that the minimax F |is FM N To prove this, we observe
that Yo
Min Max 05 F < Max N F =
F N ' ""M,N
o
Maix JNIF 12 M|y - F 2 6
§ /~1 M N M.N
! 0| o
N +fM|Y-FMN |2dJ)=Max Min ogF
—JJ 'o N F '
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We nave thus shown that
2 2 3
(4.8) Min Max oN F < Mr Min oN F
F N ! N F '
But by the fundamental theorem of game theory,
(4.9) Min Max 02 2 Max Min 02
’ N,F ~ N,F

F N

from which it follows at once that the 'game" is determined,
with the minimax filter heing Fl N and the maximin N being
"o

the No previously defined.

The basic result of the minimax approach to optimum
filtering is that the errors depend in the second order cn the
spectra and the form of the filter. As a consequence if ua
suitable approximation to the optimal form is used and the
parameters are adjusted properly the resulting system will be
satisfactory.

V. TIME VARYING FILTERS

Let us now consider the problem of filtering when
only a finite anu perhaps fragmentary history of the signals
is available. 1In this case the filter parameters are varia-
ble, and we must assume a particular form of transfer func-
tion. In general the steady state optimal filter with varia-
ble band-pass and damping is best. We may attack this prob-
lem in the time domain by considering the rate of change of
the filtering errors and adjusting parameters to maximize
the rate of decrease of the error.

For a linear system the tracking accuracy may be
described in terms of the variances of the tracking error
and error rate. As an example let us consider the simple
zero velocity lag feedback system in Fig. 1. The input
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consisting of signal and noise x(t) + xn(t) is at the left,
the output, X at the right. The equations of the system

are
dxc .
(3.1) T " Xt b (x - xc) +b X
dx .
~ S -a (x - x ) +ax
dt (o] n

Note, in explanation of the notation, that x; # *c

Actually the principal interest centers upon the
errors €, = X - X, €. < X - X. - In the second diagram -is
shown the error loop equivalent to the original signal loop.
The signal x now appears as an acceleration input to the
first integrator. This is a significant advantage when, as
is often the case, the acceleration spectrum of the signal is
known .

So far a, b are unrestricted. 1If ; and xn both have

flat spectral densities @, @ respectively then this filter is
optimal with the vialues of a and b previously derived.

The present purpose is to extend the optimization to the
transient period. The gains a, b in this case are time
functions and the resulting system, while not necessarily
optimum among all possible systems, is the best obtainable

with a given structure. The key to the solution lies in setting
up the differential equations relating the variances and co-
variances of the integrator outputs €o- eé . Write Eq. (5.1)

in terms of the errors and express the solution in the neighbor-
hood of t as a power series in it. Terms beyond the first
degree in .\t are not required. The result is most easily ob-
tained by direct use of the second figure

(5.2) € = € + € - M - b e at - b./‘ x dt + O (;tz)
c c n
o) o) o
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o o

t+At
(5.3) €. ~ €. - ae, At +'[ x dt + a_/ X dt + O (At2)-

t

t+J3t

t

.. Square Eq. (5.2) and average over the ensemble of
inputs x, X, Then denoting resulting variances and covari-

A AN

ances by‘?k €. '€.; respectively

C

A ~ - oA .
(5.4) €, - € 2 (e
(o] (o]

.st-2b’e‘c At+b2¢At+O(_\t2)

o

where ¥ is the spectral density (assumed constant of xn).

The term ¢ is derived as follows:

function of xn

t+At t+At
<f xndtf x  dt >
t

t

t+at

)

at

"

o

=¢j;

= g At
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o

At

¢ (a) is the autocorrelation

t+At

‘[ <::xn (u) X, (v)™>du dv

t

at
8 (u - v) du dv

At
.[ 6(u - v) du dv
(o]

W A T
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Dividing Eq. (5.4) by At and letting M t—>O,

(5.5) W = 2 eCé - 2 ch 2

Similarly, assuming the spectral density O of X

is flat
de-
(5.6) T‘t’=-2a’e‘cé+a2¢-o
®” -
cC _/\. - /N - N .
(57) T (c a Ec b (cc +ab d

These variance and covariance equations may be used
to adjust the gains to get optimum tracking. This will surely
result if functions a, b can be found making the right hand
members of Eqs. (5.5), (5.6), and (5.7) simultaneously minimum

for this will make ?c and ?E decrease at maximum rate. This

simultaneous minimum does occur and at

o &,
(5-8) a = 6 ’ b = -3— *

as can be seen by setting the partial derivatives of all three
right nembers with respect to a and b equal to zero. The

resu'ting system has optimum tracking and rate of settling and
the variances facilitate evaluating performance of the system.

This optimization of the transient behavior has a by-
product-the known steady-state result. For in this case the
left hand members of Eqs. (5.5), (5.6), and (§.7) vanish when
using Eq. (5.8)
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(e 1/2 ) o 1/4
(5.9) a = 3) , b = V2 3 . (steady-state)

For simplicity the input acceleration spectrum has
been assumed flat. There are several ways to deal with non-
flat spectra. For example it can be shown that for a general
@ (w) with autocorrelation function g(t)., © in Eq. (5.6) would

t

be replaced by 2/. W (t, 7) 6 (t- 1) dt. Here W (t, 1) is the
o
impulsive response of € to x. Or a flat spectrum could be

be filtereu by € (w) +lG(w) = O(u;)+ 0(w)"] to give a signal
of spectrum ©(wn) into the integrator. This last is particu-
)

. o + 1

larly simple in the Markoff case O = -5 where @ = —— .
C" +w C + jw

The original error tracking loop could be modified as shown in
the third figure thus introducing one additional integrator.
Proceeding as before six variance - covariance equations re-.n
sult. In general with a system involving n 1integrators (n

n (n + 1)
L e

order aifferential operation) there will be variance

equations although generally some are trivial.

The transient filtering problem has been discussed on
the basis that the noise and signal spectra are known. This
leads to a solution of the optimum settling time of a filter
and to the best combination of parameters even if the transfer
function is not optimal. If the noise and signal spectra are
not known then the above technique of computing variances
fails and other methods must be used. 1If sufficient time is
available it is possible to measure the spectral densities
and use the variance methods but less cumbersome methods are
desirable.

VI. ADAPTIVE FILTERS

The discussion which follows will concern adaptive
systems, i.e., those which change parameters or adapt as a
function of the environment. In general the rate of change
of parameters is slow compared to the data rate of the input
so that they may be treated as time varying rather than

P TR g
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non-linear systems. If the response of the adapting loop is
fast, paper analysis is impossible and simulation techniques
are needed. In designing an adaptive system it is necessary
to consider the response and stability of the loop as well
as the source of intelligence to be employed in adjusting
the system.

Adaptive systems may be classified according to
several distinct criteria as follows:

1 Object of adaptive loop

a. Setting of gain or transfer function

b Adjusting output level or other parameter

c. Adjusting stability margins of main loop

2. Source of information

a. Measurements of normal input or output

b. Injection of tracer signal outside band
pass of normal input

c. Time sharing tracer signal

d. Amplitude or phase of sc¢lf excited oscilla-
tions

3. Type of system

a. Open loop, i.e , system adjusted according
to measurements on the input

b. Closed loop, i.e., system measures signal
or tracer output.

In addition all adaptive systems may be classified
according to standard servo practice as electrical or mechani-
cal, digital or analogue, etc., but such distinctions are not
desirable for the present purpose. The class of adaptive
servos ranges from standard AGC and AFC loops to servo driven

autotransformers for voltage regulation to more sophisticated
optimal filtering loops.

Let us now look at examples of the three different
adaptive systems listed under criterion 1. These are the
zero velocity lag tracking loop mentioned earlier, a similar
filter with limited output acceleration, and a system for
maintaining a servo loop as tight as possible without in-
stability when the loop gain is slowly varying or not known
accurately.
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Figure 2 shows a simple servo where only the gain
is varied and the loop gain is to be maximized (possibly to
minimize the effects of a variable back torque from the load).
The unknown gain is assumed to be in the servo. The band-
pass filter passes the frequency at which instability is ex-
pected and this signal is detected and used to adjust the
gain to damp the oscillations. Let Xo be the gain at which

the loop is neutrally stable. Then the rate of buildup or
decay of oscillations is proportioned to (A/A_ - 1). The
amplitude, z, of the oscillations satisfies tRe equation

(6.1) z = k, z(A - xo)/xo =k, z_ (A - A)/A,

1 Yo

If the signal is picked off at point A, the control equation
is

(6.2) A=-g (s) (z -2z)),
while if it is picked off at point B, we have
(6.3) A =g (s) A (z - z)

= - A, 8 (s) (z -2))

Combining these equations we find that in case A

(6.4) ;_s +—r1-g(sﬂ A--kl z, Aog(s) (X_)’
[ —
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while for case B

— 2 ,
18T + kl z, 8 (s}] A = X, 2, 8 (s) lo

—

While both systems can be made stable, and both have
AP Ao as the steady state solution, the transient response of

the adaptive loop depends on the required gain in case A,
contrarily, in case B the transient is fixed and the system
has zero velocity lag with respect to variations of Ao. If Ao

increases linearly with time then A = A_ but z > z, with z = 0.

Thus a closed loop adaptive system is better here. These state-
ments are subject to modification if there exists dead space or
friction i:. the main or adaptive loop; actually simulation is
then required to determine the behavior.

If the main loop shaping network f(s) is properly
chosen then a very good servo response is obtainable but in-
put signals at the loop resonance frequency must be avoided.
This design is especially useful for a regulator, i.e., when
x1 = 0 and the servo is designed to counter the back i rque.

Figure 3 is a diagram of an adaptive filter in which
the RMS output acceleration due to noise is limited. The
adaptive loop 1is very simple and, with the gains as shown,
has a response which is independent of input noise spectral
density. This can be seen from the fact that the error in RMS
acceleration is proportional to ..A/A and hence the control
equation is

(6.6) A~ o,

if the filter g(s) is unity. If it is desired to have the
adaptive loop time constant proportional éo the main loop time
constant then the A must be replaced by A< and the control
equation is

(6.4¢) A~ A,
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If the noise is flat or of known spectral shape it
is possible to measure its amplitude at the input to the
filter and compute the RMS acceleration from the known transfer
function of the filter. It is then possible to use an open
loop method of adjusting A but, while this eliminates adaptive
loop stability problems it does not have the accuracy in adjust-
ing A. If the noise does not have the expected spectrum the
filter f(s) will not be optimal in shape, however the performance
of the system will deviate in the second order if A is correct,
but errors in A may give first order effects on system per-
formance due to violation of the constraints.

While this loop is very simple we have discussed it
because some simulator studies of the effects of non-linearites
may be of interest. The non-linearity concerned is that due to
a fixed limiter inserted in the loop as shown at the bottom of
Figzure 3. The analysis was carried out using various fixed
values of A and noise rather than closing the adaptive loop
as apove. Figure 4 shows the results obtained. The solid upper

curve shows 02 vs A for an unlimited system. If the limiter
is inserted then the dashed curve is appropriate; the minimum
is only a few percent above the optimum at the minimum. The
lower half of the figure shows the effect of the limiter on

the output cceleration before and after the limit. The result
of the simulator study was that the minimum in 02 occurs almost
exactly at ay = L, hence the simple adaptive system just de-

scribed forms a very sophisticated tracking loop.

Figure 5 is a block diagram of the zero velocity lag
tracking loop in which we do not know the signal or noise
spectra although we assume the noise to Fe nearly flat. In
order to adjust band-pass we may use the result, Eq. (3.13), so
that the error signal spectrum is proportional to the noise
spectrum wvhen the loop is optimal. While the transfer of the
loop is not correct if the noise is not flat or if the signal
is not that assumed, it is still true that adjusting the loop
band-pass so that the error signal spectrum is flat is nearly
optimum.

The method of measurement is to use two filters
f.(s), a low pass filter covering the band-pass of the main
16op, and f2(s) covering an equal band-pass just above the

main loop and take the ratio of the outputs. The optimum
shape of such filters has not been determined but simulator
runs show suitable performance for simple filters. f2(s)

should have a finite band-pass because the actual high fre-
quency noise is unimportant; only the u .1se in the vicinity
of the main loop baad-pass is important.
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In the loop as shown the obvious scale factors have
been inserted to make the response frequency - relative to
the main loop - independent of the value of the spectra. The
filter f3(s) determines the band-pass of the adaptive loop and,

in order to have minimum RMS errors in A, f_(s) must be
adjusted so that the lags in following changes in the spectra
are balanced by the fluctuations in the noise out of the
detectors. From this criterion we can determine the adaptive

loop band-pass as La ~»\/% . where 1/T~g/8 is the effective

time constant relating to the change in input spectra. How-
ever, if step changes in the input signals are contemplated
then the adaptive loop should be as tight as stability dictates
and the gain settings in the figure are correct. The ratio of
the filter outputs minus one is proportional to 6A/A so that

(6.8) A~ 4

and the band-pass in the adaptive loop is proportional tu that
in the main loop.

In all of the adaptive systems considered it is easy
to specify the gain changes to keep the loop dynamically similar
for different inputs, but it is harder to specify the exact band-
pass or the shape of the filters in the adaptive loop. It is
always possible to make a linear stability analysis, if the in-
puts are fixed, and the noise out of the squaring circuits can
be computed for Markovian noise but no general theory of optimal
design exists.

There are many ways of instrumenting adaptive servos
which give adequate performance and the effects of non-linearites
and complexity must be considered carefully if a satisfactory
design is to be obtained. For example the use of smoothed
absolute value instead of RMS leads to only a few per cent more
noise in the adaptive loop. As another example the division
in the last example may be replaced by a subtiraction if the
dynamic range is not too :reat. At low input signals the loop
is then sluggish but the tracking error is small due to the
small input.

Underlying the design of adaptive servos is the
assumption of relatively slow, or only occasivnal, changes
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in environment. 1I. rapid changes occur a different main loop,
possibly non-linear, is required. Adaptive loops may be called
quasi-linear but because they are non-linear no general method
of analysis has e¢merged to determine optimal performance as a
standard of comparison with specific loops, or to check in-
strumentation approximations.
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Fig. 1 ZERO VELOCITY LAG FEEDBACK SYSTEM
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I. INTRODUCTION

The guidarnce and control system of a guided missile
consists of three basic elements: a guidance intelligence
system, a guidance computer, and an autopilot. The guidance
intelligence system measures in a suitable reference frame.
work the position of the missile relative to the target, the
autopilot causes the missile to execute maneuvers as com-
manded, and the guidance computer commands maneuvers on the
basi? of inputs received from the guidance intelligence sys-
tem.

The guidance computer cannot simply command an ac-
celeration proportional to the measured error in missile
position, as the resulting change in missile position would
affect the measured error so as to result in harmornic oscil-
lation of the missile. This can be corrected by adding to
the command a term proportional to the error derivative, damp-
ing the oscillation. With proper choice of the constants, such
a guidance computer may cause the missile to respond very
faithfully to the inputs from guidance intelligence. This is
nct typically sufficient to result in the smallest possible
misses, however, because the guidance intelligence is not
perfect. In addition to genuine information as to error of
missile from target, called the signal, the guidance intelli-
gence gives spurious information called noise. There are
many sources of noise, including internal noise in the sen-
ing device, atmospheric effects, and scintillations of the
target. The missile should respond to the signal but ignore
the noise. The problem of optimal filtering in missile
guldance is the problem of achieving the best compromise be-
tween these conflicting requirements.

It is sometimes thought that the noise effects are
of miror importarce. Consider a very simplified situation
in which the only elements are acceleration capability of the
target and the level of noise which is "white", i.e., uni-
formlv spread over all frequencies. Simple dimensional an-
alysis shows that the minimum mean square miss is proportional
to the 4/5 power of the noise spectral density, and a little
more effort shows that 80 per cent of the minimum mean
square miss is due to following the noise.

1) Preserted at Indianapolis Meeting, AAAS, 28 December 1957.
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The very similar problem in directing antiaircraft
gunfire was one application considered by Viener in "Extra-
polation, Interpolation, and Smoothing of Stationary Time
Series" Wiener considered signal and noise ensembles
which were stationary stochastic processes and determined
the realizable linear filter which minimized the mean square
miss. If the signal and noise are uncorrelated, the char-
acteristics of interest are the power spectral densities
S(w) and N(uv) representing the resolution of the mean square
signal and the mean square noise into a,.continuum of fre-
quency components. Thus E [signal]?2 ==[S(u) du. The linear
filter is defined by the transfer func¥ion F(w) specifying
the scale factor and phase shift applied to each frequency.
The mean square error o2 is given by

(1) 02=f{|1-1-*|23+

Since Il - F (s the erroneous ractor applied to signal com-

FI 2N } dw

ponents and |F|] the erroneous factor on noise components.
To be realizable, the filter must operate only on inputs
from the past, not on future inputs. The realizable F min-
imizing o4 was found by Wiener to be

(2) Fo (u) = e L —jut
S,N =7 (S(w) + N((.J)]+ f s dt
C

(D .
j S(u) e“lt du
[S(u) + N(u) ]~

=@

In this expression, S(w) + N(w) is factored into (S + N*

(S + N)7, (S + N)* being analytic and without poles or zeroes
in the lowe: half-plane, with (S + N)- the complex conjugate
of (S + N)*.

These results hive been applied directly to missile
guidance problems, bLut have some serious shortcomings. The
most obvious defect is ihat the spectral density of the signal
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1s assumed fixed and known Since an enemy interested in
increasing our error may select cthe signal characteristics,
it 1s reasonable to assume varied techniques chosen to im-
pair the performance of our system

Il FILTERING PPOBLEM

The problem of filtering is essentially one of
statistical decision, Statistical decision theory in this
problem, whether we are fighting a conscious enemy o1 im-
placable nature, calls for selecting the filter for which
the 02 maximized over possible signal spectra is a minimum.

In viev of the complexity of kEq. (2), the deter-
mination of this minimax filter appears difficult The
minimax ftilter can be determined without too much trouble,
however, by the use of indirect approaches. The first step
in solving the problem is to investigate the maximin S(w),
that is, the S(w) which maximizes the minimum achievable 02,

The possible signal spectra will be limited by
linear restrictions, limits on the power of linear functions
of the signal. An airplane, for example, will have some
bounds on its position, velocity, and acceleration, due to
limits on its course, propulsion, and structure.,,. If the
mean square acceleration cannot exceed a2, then | S(w) wd

5

dw< a’. In general, there may be n such linear restrictions
of the form

fl
p—t

(3) K, fs(u) 0, () du
with kJ> 0, S(w) > 0, QJ(U) >0

For example, with limited mean square velocity and
acceleration, we might have 9, = w2, 8, = wd

The maximin S(w) is that S(u) subject to these con-
straints which maximizes

(4) min _2  _ 2
F %s,N _[[’FS,N| N
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Intrroducing the constraints by Lagrange's method,
we wish to maximiz.

(5) TR = “‘f" Zl k5 fS(u) 6,(u) du =

‘f{irs,nl ‘N *[:Il B Fs,Nl ot Z
Ake] } du

For any increment . on SJ the resulting increment on I is

(6) 61=f{| + A N|2N+ I-FS+_;,N,2
(S+A)}
-I{IFS,N|2N+ l-FS'N'2(8+A)} dw

o] -rem]® - % apee) @

For a maximin S(w) it is required that 61 be nonpositive
for all permissible a.

The first integral is the minimum 02 given spectra
S + o and N, the second integral and o2 given the same spec-
tira and nonoptimal F, so the diffeirence of the two integrals
is nonpositive. Thus §I is not greatei than the third in-
tegral. This integral will be nonpositive if the coef-
ficient of ) is ze. 0 when a A of either sign is permissable
and nonpositive wvhen any peirmissible O is non-negative.
Since S(w) > O, peirmissible 5 are of eitheir sign for S(w)
> 0 but aie non-negative when S(w) = O.
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Thus the maximin S(w) is So(u) such that
(7) 1-F 2R Z k.0
S ,N J JJJ w : S (w) >0
o o
<t w i S, =0,

with the A, chosen to satisfy the given constraints. The
result Jusg obtained is unsatisfactory in that the con-
straints were applied strictly, rather than as inequalities
By similar manipulation one can show that when the unique
constraints are replaced by inequality constraints, kj > 1,
the result is the same as above, togethei with the condition

1 A . -
(8) j (kj 1)= 0,

implying that each constraint is either redundant or ap-
plied strictly.

To derive the minimax filter, we show that the
game is determined since

min max _2 < max 2 -
F S “S,N,F S "S,N,F
S_,i
o
max 2 2
(9) ‘s[{"lFs,Nl +sll'FSN du =
o o’

—
z
o

2 E '
ma;x min _2
S ,NI du + : AJ S F °S,N,F
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Thus the minimax 02 is equal to or less than the minimin 02.

Since the iundamental theorem of game theory states that the
minimax is equal to or greater than the maximin, the game is
determined, with FS N the minimax filter.
o'
The second indirect approach is to deal with the

function |1 - FS le vhich is much more tractable than Fs N
or the formally equivalent 1 - Fs N Applying variational
procedures to 02 -/{ IF 2 N + 1[- FIZST

the result derived by Wiener for the optimal realizable F

dw, one can obtain

S,N
and also the useful result:

(10) |1 - F ' 2 (S + N) = ReNF + Real complement to

S,N
Im NF |

where the real complement is the real function which must
supplement the imaginary function to yield a realizable trans-
ier function. For simple forms of N, Eq. (10) can be solved
rather easily, for example

|1 - Fs NI = (S + N), =N. N (») constant
- caz
N [1 - F(ia)] L N(@) = 52,
a® + w
(11)
2 4
N + K, N(w) = Co + C2w + C4 w

(K determined by.[ log |1 - Fg NI 2 4w = 0).

Divergent spectra play a useful role in some prob-
lems and the general results on optimal filters are stiil
valid.

By ucing the results Eq. (7) and (11), it is pos-
sible to determine So(m) and {1 - F .
filter, and one can then determine F

SO-NI for the minimax
S _,N
special cases or in general by applyigg Wiener's result to

by factorization in
the determined So(w)-

- 179 -



To illustrate the method, consider the case of
white noise of spectral density N and mean square target
acceleration equal to or less than a2. Our constraint is
then

12[ s(w) «! do = 1.
a

From Eq. (7),

4
|1 - F' = A 92 w: S(w) >0
a
uﬂ
il—z (D:S(U.))-O.
a

From Ec. (11),

g 2y

Thus, setting a2/A = w04

4
N w
- w: S(w) >0
[o]
1 w: S(w) =0 .

The solution for S is

4
w
o 2 2
S =N A 1] , w < 0,
w
2. 2
C , W > W, ,

1 4
w, must satisfy the relation ;2—:[ S(w) w" dw =1, or

%o

4 4 2 5]
- j’ N (wo - w) dowo = a”, from which w, = G; )

2 1/5

_a)o
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It is clear that '1 - F, 2 uﬂ/a%, w” < Wy

2 2
1 , aF > w2
o]

Some numerical calculation is required to obtain F itself.

relation,

o2

Lignal is fs |1 - Fl

large
large frequencies.

i

_‘/.N log !1 - FS NI 2 dw, from which we find o

8N wo .

w,

The minimax mean square miss is obtained from the

valid for white noise,

From the fact that |1 - FI

2

2
dw = 8 N w°/5.

2 is unity for all

it follows that F(w) is proportional to 1/w for

From the practical standpoint of guided

The portion of 02 due to failure to follow the

missile design, this is most unfortunate, as the mean square
acceleration of the missile resulting from noise is

fN‘F’2w4dw

which clearly does not converge for N constant and F of order
1/w.

as

we
is
so

It is therefore necessary to modify our problem s

to select a minimax filter among those for which | N IF,

dw is limited to a specified value. To solve this pProblem
observe that the previous determination of the maximin S
valid regardless of the class over which F is minimized,
we need merely find the optimal F among those filters for

which jk l
quantity

2 4

Fl w'xdw does not exceed a specified value. The
o be minimized becomes

2 2 4
oS,N’F+AfN |F| o do =

- Jis

1-F|2+N|F|2(1+xw4)J dw,
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with A chosen to satisfy the mean square missile acceleration
requircment. This is exactly equivalent to the former iil-
ter optimization problem with an effective noise spectral
density of N (1 + A w?). It is to solve problems of this
sort that one coEsiders on-convergent noise spectra, such

as N = NO + C2 w® + C4 w®. Calculations of minimax filter

for such cases have been carried out. The optimal filters
and the minimax mean square miss depend on the ratio cf
possibie mean square target acceleration to allowable mean
square missile acceleration due to noise. This ratio should
be noticeably larger than unity to avoid significant de-
crease in accuracy.

A completely different apprcach to the problem is
hinted at by scme of the results obtained for optimalﬁl - ﬂz
(S + N). This quantity is the spectral density of the

riif ference between the innut and the output of the filter, a
¢i ference which is the error sigral in a servo type filter.
The spectral density of this difference is equal to the

noise spectral density if the noise is white and the filter
is optimum. Useful but less simple relations can be de-
rived for other types of noise. Thus we have the possibility
of checking the correctness of the filtering process by in-
vestigating the spectrum of this difference, and adjusting
the filter accordingly. An advantage of this type of fil-
tering is that it can take advarntage of a situation in

which the opporent's strategy is poor. With suffi-iently
slow adaptation, such a filter will closely approx:.:ate the
minimax filter in the most difficult situation, and can be
considered a sub-minimax filter, one of the few practical
examples of the existence of sub-minimax solutions to game
theory problems.

Adaptive filters based on these considerations have

been devised and have demonstrated excellent performance,
although there is at present no adequate theory in this iield.
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I. SUMMARY OF USEFUL FORMULAS IN VECTOR ANALYSIS

vector Representation---Let x, y, z be a right-handed
three-dimensional rectangular coordinate system. A vector Vg
can be represented as an ordered triple of numbers correspond-
ing to the coordinates of the point P. Two concepts charac-
terize a vector: magnitude and direction. A vector can be
thought of as a directed line segment, i.e., with a head on
one end, and a tail on the other. Translations of the vector
do not alter the vector. Thus, if the tail is lccated at
(xl, Yy zl), the head at (x2, Yo 22), the vector is repre-

sented by the ordered triple (xz-xl, yz-yl, zz-zl), which does
not depend on where the tail is located.

F(X,¥5125)

A more useful representatiq&_o a _vector is based on
the concept of base vectors. Let i, j, k denote the vectors
whose ordered triple represeatations are (1, 0, 0),(¢0, 1, 0),
(0, 0, 1), respectively. Such a triad is called a right-
handed orthogonal triad of unit vectors, and forms a coordi-
nate system. 1In terms of these unit vectors, the vector Vo
above is expressed (0, 1, 0) as

— —»

(1.1) 'V; - xo-?.+ Vo J + 2k

(0,0,1)

—lp
Length of a Vector---The length of the vector V_,
denoted by |v°| , is given by °

(1.2) iv;l _-JXOZ by 2 zoz
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Addition of Vectors---If V =x i +y j + 2z k ,
3> > 3 ° ° o o
V1 = xll + le + zlk, then'v; +-Vi is defined to be a

vector given by

1 > > -T 2> —»
(1.3) Vg V) = (xg + %) 1+ (v, +y)) 3+ (2, +2))k

This definition is in agreement with the parallelogram
law found in most elementary physics texts.

Multiplication of a Vector by a Scalar (Number)---
s Ot & vec ol 2
avo is defined to be the vector given by

-
(1.4) ¥ = ox i +ay J+ oz,

Exercises: Prove

> > >
(a) Vv_ + 3' =V, vV,

o 1 1
- - —=» - -
(b) v, (V1 + Vz) (Vo + Vl) + Vo

(€) a (¥, +V) = +a¥,

Dot Product (or Scalar Product) of Two Vectors--- The
dot product of two vectors iIs a scalar.

- -
It is denoted by Vo ’ Vl’ and is defined by
> > -» >
(1.5) v, .V, = |Vo| |V1| cos ¢ , where # 1is the angle

between the two vectors.

It can be shown that

(1.6) _V’ V- x X, +y

o 1 o y1 t2Z, %

0 o 1
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Cross Product (or Vector Product) of Two Vectors---
The cross product of two vectors 1s a vector.

It is denoted by Vo x Vl, and is defined by

> - -+
(1.7) v, x vy = |v | |v1| sin & n,

where ¢ ig as aboye, # is a unit vector normal to the plane
formed by - and V its direction determined by the right-

1)
hand rule. It can be shown that
—> - ]
(1.8) Vo x V) = (v, 2y =2, vt + (2, % = 2 %)y +
>
(xo y1 B yo xl) k

or, in the form of a determinant,
T T x
k

1 - S
(1.9) Vo x Vv, = X, Yo Zg

Components---The component of a vector in a direction
is a vector formed by projecting the vector c¢ntqQ a line Qs}nt-
i

ing in that direction. Thus, the component of - in the

, -
direction is xo i

I - - -
(d) ME O L O
— > - - > - —-
() Vg - (Vy +Vg) =V .V, +V .V,
- - -» -» -
(f) a(V vl) - (dvo) g vl - vo (dvl)
—
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- T S > > >
(h) a(Vo X Vl) = (aVo) b V1 =V, x (aVl)
WDV x(VyxV) =@ . VIV - Vv,
o X 1 X VY, (Vo V2)V1 - (Vo . vl)v2’
4 > > = g » -
(i') V, X (V1 + V2) = (V0 X Vl) + (V0 X V2)
DV . (V. xV,) = (V. xV) .V,
G Vg - (Vyx V) = (V, x V) 2
X, Yo z, (This expression is some-
Xy Y1 z, times called the box
Xy Yo z, product of three vectors.)

»> —>
(i) The component of Vo in the V., direction (if

1
|Tl'1| # 0) is given by

—
K waN
WV, T,V Ty, VT h
Vo 1-‘.3,,V0.J—y,v l.—zo,sotatone

o' "o
> I> > > > >
can write V_ = (v . i (v j)T+ (Vo k)k.

-
(m) Let V V be non-collinear, and different from

zero.l, 2
—-> >
Let V3 be_t.he vec_t.or formed by projecting Vo into the
plane formed by V1 and Vz. Then - -
'\7 =-;1’x (V x—xr),where—r?= leVZ .
3 o] ‘71 X ?2l

The following are in general impossible or incorrect
statements. Why?

-> > > >
(n) Y’o X (Ll X_Y)Z) = (V0 X Vl) X V2.
. > >

)V, . (V; x V) = (V. 'v’l) x V.
- - > > > >
@V, . T, V=@ VLT,
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I1. ROTATED COORDINATE SYSTEMS

-
Let T ; -; , k, denote a right-handed orthogonal triad
1 1 1 >
of unit vectors distinct from 'f, 3', k. Expressing each—i' :
- - > 1
Jl’ kl as the sum of its components along -I, Y, k, we can
write
e A —» -» >
(2.1) i, = ayy i+ a5, 3+ apg k
i —» e —>
Jy T @2 1+ a5 j +ag3 k
> —» - -
1‘1 a3, i+ arg J + aqq k
-»> =, — —> > > >
Since |i,| =1, |J1| =1, 4, .3, =0, 4, xj; =k,
we have
2 2 2 _
(2.2) a;; t @t oagg 1,
2 2 2 _
(2.3) Ayy” + Ayy” t+ Aya” = 1,
(2.4) a), apy + a)5 agy + @)3 a3 = 0,

(2.5) a3, = @15 ay3 - ayy ay3,

(2.6) azy = a;5 ap) - a;; a3,
(2.7) agg = @)y agy - a5, a3, .

Conversely, it can be shown that any set of a's satis-
fying Egs. (3.2)_; (2.7) will produce a right-handed ortho-
gonal triad 11’ Jl’ 1 when substituted into Eq. (2.1).

f the a's are_gs apovg, and one solves Eq. (2.1) for
.i', 3’, Kk in terms of il’ jl, 1’ the solution, as can be
shown, is expressible in the following simple form:

> _
(2.8) 1 = a, Tl + a5y ?1 + asl_l?

1
> >
J = “12?1 E “223: + azp ky
o= e > P
<= ajg 1)+ apg J) + az3 ky

- 189 -
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Equations (2.1) and (2.8) make the problem of expressing
in a second coordinate system a vector known in one coordinate
system quite simple:

Thus
(2.9) ;r _ > —-» » > -» -»>
‘ o "X itV 3tz k=x, (a); 1, +ay, J; + a3 k)
-» 5 . d
Y, (ayp 1) + agy J) + agy ky)
(@), T, 3 )
tz, \ayg 1y + ay3 j) + aggy ky
- . . T,
=Xy 4y T Y M2 t %, 4374,
+ (x_a +y Qo +tZ_ a )3—’
o 21 o 22 o 237Y1
( Yk
+ xo a31 + yO a32 + Zo a33 1.

I11. DERIVATIVES OF VECTORS AND MOVING COORDINATE SYSTEMS

Suppose the vector V is a function of time. Since a
vector can be described by its components, it is clear that
a situation could arise where the components are constants
in one coordinate system, yet varying in another coordinate
system moving with respect to the first. To talk about the
derivative of a vector, we must then first specify the co-
ordinate system. In Newtonian Mechanics, most physical laws
expressible in vectorial form achieve their simplest ex-
pressions when the coordinate system is fixed relative to
the fixed stars (or moving with a uniform velocity with
respect to them). (In a gocd many missile systems, the co-
ordinate system may be fixed relative to the earth, as the
motion of the earth has negligible effects). We therefore
define the derivative of a vector V (more properly the in-
ertial derivative) as follows:

va = x_i'+ Y?J’ + zl?, where ?, 3", 1?, have fixed direc-
tions in inertial space, then

3.1) V=xT+ y7+ 2.
An alternative definition, equivalent to the above, is

3.2) ) - 1um T+ at) - T(t)
A0 at
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Vﬁ being a vector, can be expressed in a second coor-
dinate sygtem by the rules of Part II. Care must be taken

that the 1, j, ¥ in tgg above_gefinition are %perj;a;éy
fixed, for if V = Xy 11 + N Jl + zy 1, and are

in motion, it is not true that V- x T+ ¥, 31'

1 h 1 2

1l 1
(sez exercises below)

Exercises: Prove

(@ =3 (@) = o + o7

dt

(r) 2 (7, +\7’)—1+2
(s)gfcl(vl.v’z)—v; v,V .V
DIENCAFE ANE AN AN SN 4

(u) 1f 1 TT ,'T form a right-handed orthogonal triad
of unit vectors, and V— Xy -i’l +y; 3’ + 2z, kl, then

F_ . P - M
VvV = X, i1 + y1 Jl + z1 k1 + x1 ?1 + y1 Jl

+ 2, k1
Let 11, Ji’ kl be a right-handed orthogonal triad of

unit vgptorsivin motion with respect to the inertially fixed
triad ¥, 7, X¥. If one differentiates Eq. (2.2), one obtains

(3.3) Ay @ + @ g Ay + Ayg @yg = 0
which is equivalent to

» > _
(3.4) i) i = 0.

Since then'f; is normal to 3&, it can be expressed as
a linear combination of ?1 and'E;. There then exist functions
a and b such that

— —- >
(3.5) il = aj; + bKl. Similarly, there exist functions ¢, d,
e, f, such that

> _ > =¥
(3.6) Jy = ciy + dKk, .
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(3.7) k, = ei; + 3,

Differentiating Eq. (2.4), the following string of
equalities can be seen to hold:

(3.8) a ='T1 . 33 = &11 ay, + &12 @py + &13 ayq
T - lay) ay) +ayy @y +oayy dy5)
= - (fl . 31) = - ¢,
Similarly, it can be shown that b = - e and d = - f.

Setting a = w5, e = 0y, d = W,, Egs. (3.5) - (3.7) can
be rewritten as

> »
(3.9) 1)1 =g 3 - Wy Ky

.

S5 o

(3 10) I bS‘Ti + Dy kl
> >

(3.11) k| =, ?1 -0, 7

If we introduce the vector

> > >
(3.12) = Dy 11 D, o+ W 11

note that where {! is the angular velocity vector, Eqs. (3.9)
(3.11) are equivalent to

(3.13) Tl =.§ x ;&.
> > -

(3.14) 5, =2 x j;.
> >

(3.15) %, =30 x R, .

The vector77 is called the angular velocity vector cf
the moving coordinate system. Its physical interpretation is
that its direction gives the direction about which the coor-
dinate system is instantaneously rotating, its magnitude gives
the rate of rotation, the sign of rotation determined by the
right-hand rule.
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The relationship between the (incorrect) derivative
as computed by an individual fixed in a moving coordinate
system and the inertial derivative can now be expressed as

3.16) V. -V +TxV

inertial moving observer
for
> . > . > P -»>
(3.17) Vipertial = ¥1 11 + ¥1 1 +2) K + % & x 1,)
> > >
+ ¥ € x Jl) + zI.(a’x kl)
- § T (% 1. 3
~ “moving observer T X ¥ 1; * V) Jhp+27
> PR
- vmoving observer * * X V-
Exercise
(v) Prove
T -3 27 x V
inertial = 'moving observer X vmoving observer
3 >
+‘3 x V + 3 x (Q x 65.
where

- = v > v >
moving observer = *1 1, +y; 3; + 2 K.

IV. MISSILE MOTION

Let us consider the problem of computing the position
of a2 missile of the cruciform type in space as a function of
time. Such a problem would be of importance in a trajectory
simulation.

Let T, 3’, I be an inertial orthogunal triad, ? pointing

up. (We assume that the earth is flat, and we neglect earth
motion) .

- 193 -



W o s

R JOIE HOMBE UNVERITY
APPLIED PHYSICS LASORATORY

T,

let 3’ denote the vector joining some fixed point (say
the launch site) to the center of gravity of the missile, and
let

> g
(4.1) 3 - x1 + y3 + zk.

3 is called the missile position vector. The motiva-
tion of this section is to find P as a function of time.

The missile velocity vector with respect to the launch
site is given by

--’ .* .
(4.2) 3'- x1 + yj + zﬁf and the missile acceleration vector
by
(4.3) -P' - x?+ ;j'+ zl?>
-’

If F 1is the force on the missile, m its mass, Newton's
second law of motion tells

> >
(4.4) F = mP,

Assuming -we know ?ﬁ we see that it is a simple matter
to find X, y, z, and integrating twice gives us our answer.
However, fs comes to us in missile-fixed coordinates. (For
example, thrust is along the longitudinal axis, 1ift normal
to it). Sco a coordinate conversion will be called for.

lLet il, Jl’ kl be determined by missile orientation,
1 parallel to the longitudinal axis of the missile, Jl par-

allel to one control surface pair, k1 parallel to the other.

In general, we will know F,, Fz, 3 (more about this
later) where Eq.(4.5) F Fy 1? +-F Jl + Fslﬂi - ng
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1
lifts. The last term is just gravity.

F. will be thrust minus drag, F2 and F3 aerodynamic

From Eq. (2.1) we have
1

(4.6) x = ; [Fla11 + F2a21 + F3a31]
e _ 1
y = 5 [Fia15 + Fpagy + Faagol - g
s =
z = 5 [Fia;3 + Foayg + Fyaggl

Integrating twice gives x, y, z. It is clear that a's
, must be known. That is, we must know the orientation of the
| missile in space.

3 —- >
If we knew the angular velocity vector of the 11, Jl’

E; coordinate system, the a's could be easily found.

For example,
-» -> > -» > -»> - —»
i

(4.7) @, = 11 1= x 11) =0 . (i1 x 1) = Q
l -» 4 -l-{)
L, 4 1
| 1 0 0
l
|
a

» P > ->
| 111 * Ppdp + 9gKy) . (- agy3; + ay1k))
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Proceeding similarly, we have the equations

4.8) a,, = - «a

11 g 231 + 93 a9
@19 = = O azy + U3 @y,
a3 = = @ @35 + D3 ayg

@y = 9 a3y - Y3 @y

@gg = ) 39 - U3 @14

@y3 = ¥ agz - %3 @53

3) = = O @y + Oy @y ‘
dgp = = ) @y + ¥y @y

dg3 = - @) @y3 + P a4

Integrating these equations then would yield the a's.
The numbers wl’ wz, w3 can be found as follows if we know

the applied moments Ml, M2, M3 about the center of gravity

> > >
which would cause rotations about 11, Jl’ kl respectively:

The angular momentum vector is given by

- -» -» >
(4.9) H = I1 wl 11 + 12 wz Jl + 12 wh k1
where Il’ 12, I, are the moments of inertia of the missile
about'zl, 3&, k1 respectively, taking the origin at the center

-
of gravity. (For a general rigid body, the expression for H
is more complicated, involving the products of inertia. 1In
this case, however, because of symmetry, the prodycts of_&ner-
tia all vanish, and the moments of inertia about 1 and kl are
equal.)
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If we set

—» -
(4.10) M = M1 il

Mechanics tells us that

-~
+ My Jy + Mg E&, the moment (or torque) vector,

> —»
(4.11) H = M.
Differentiating Eq.(4.9), we have
P S . . -
= D :
(4.12) H =1, 2 1, + 1,0y J; + I, % k) +Q x H

-

. A4 *
Ly T 41, By + (1) - 1p) o]y

i
-
g

-»
+ [Ig B3 + Wy (I2 - Il)] ky

N - - - -»
= M1 11 + M2 Jl + M3 kl =M.
Hence
) M
(4.13) wl = TI (why?)
0 My - (X - 1) 0y
2 1
2
. Mg - (I, - 1)) ® &
a) =
3 I,

Equation (4.13) is a special case of '"Euler's equations'.

Integrating Eq. (4.13) produces the w's, which produce
the a's, which in turn produce x, y, z. Our problem is now
completely solved provided we know Fl’ F2' F3, Ml, Mz, M3, m,

Il, 12' The last three are trivial. The first six are usually

obtained from wind tunnel tests. They are generally quite com-
plicated functions of other variables. It is not our purpose
to exhibit these functions explicitly, but it will be worth-
while to at least have a look at what these other variables
are. F. of course depends on thrust. None of the others do,
unless {here is thrust misalignment. All six depend on

(a) the magnitude and direction of the air stream
velocity with respect to the missile,
(b) speed of sound (which changes with temperature),

(c) air pressure (depends on altitude and temperature),
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(d) center of gravity position (which moves as fuel
is spent) and

(e) the angles 61r 09, 63, 64 at which the control
surfaces are inclined.

In addition Ml, M2, M3 depend on W), Wy, Wq (aero-
dynamic damping).

5.
A few words about (a) and (e) are in order. If W is
the velocity vector of tq§'w1%g with respect to the i, j,
- is the (negative of the)
velocity of.the airstream with respect to the missile.
Expressing B -'W in the 11, Jl’ kl coordinate system, we
have

> - -»
(4.14) P - W =1U il

-» -»
+ V Jl + W kl’ where U, V, W are some
numbers.

It is possible to find numbers a, g such that (why?)

> - » - » -»
(4.15) P - W= 1P - W| (cos a 11 + sin a sin & Jl

+ sin a cos & Ei).

—- -

|P - W| is called air speed, a is called angle of attack,
and g is called the aerodynamic roll angle. Air speed divided
by speed of sound is called mach number. Data from wind tun-
nel tests often comes in terms of mach number, angle of attack,
and aerodynamic roll angle (other parameters different from
these must also be given, such as pressure, for example).

Exercise:

>

- »> -
(w) If W = Wl i+ W2 J+ w3 k, express air speed, angle

of attack, aerodynamic roll angle as functions of Wl, W2, W3,
X, ¥y Zy @195 @19y @13, @9y Qggr @33y @37 @39, d33:

The object of a missile flight is generally to intercept
a target. Artistry in many fields is required to achieve
this objective in the "best'" (a highly subjective term, so we
shall use it freely without attempting to define it) possible
manner.

The aerodynamic designer tries to make the functional
dependencies of Fl’ F2, F3, Ml, M2’ M3 on the aforementioned
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parameters the best possible.

Given the missile design, we have seen how the missile
motion is determined once the missile's environment is known,
and once 67> 62, 63, 64 are known. 61, 62, 63, 64 represent

our control over the missile. (Thrust can be controlled in
some cases, also). Thus, given the aerodynamic design and
the thrust, the problem reduces to: How best should 61, 62,

63 64 be varied in the presence of a varying environment,

and how does one do it? This question opens a Pandora's box
of problems which today are keeping thousands of people busy.
It is not our purpose to continue much further along these
lines, although we will subsequently discuss certain aspects
which will have some bearing on the matter.

V. TWO DIMENSIONS

We have seen how the equations for a portion of a three-
dimensional simulation can be set up. The loop is nowhere near
complete, however. The sensing instruments, autopilot, guid-
ance computer, guidance intelligence, as well as other features
must also be simulated. These features are discussed elsewhere
in the training program.

Such a simulation (the 1103A digital computer at APL is
currently engaged in such tasks) is most often used for per-
formance analyses. An autopilot or guidance computer designer
will, however, do most of his work in two dimensions, as the
three dimensional equations are too complicated to gain in-
sight. Occasionally he will work in three dimensions, when
his problems are basically three dimensional in nature. Most
of the time this is not necessary.

Accordingly, let us reduce the equations that have been
derived so far to two dimensions, where they are of a simpler, :
more suggestive, and perhaps a more familiar, form.

>
We select the T: J plane, and assume everything happens
in that plane. For simplicity, assume W = 0. Then !

(6.1) z =0, F, =0, w, =w, =0

3 1 2
a5, = cos vy, ao = sin vy, a3 = 0 :
ayy = - sin vy, @yy = COS v, aApqy = 0
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a =0 = 1.

31 ' 932 %33
— = - 1r = = = =
Ml Mz - 0, ¢ 2"’ 61 63 0’ 62 t (54 o] (Where
+ or -~ depends on sign convention)

=0,

From the above and Eq.(4.7),
(5.2) Dy = V.

Equation (4.6) becomec

= -

(5.3) «x = [Fl cos ¥ F2 sin V]
.._1
e [F1 siny + F2 cos Y] - g

Equations (4.8) all reduce either to 0 = 0, or Eq. (5.2).

Equations (4.13) reduce to

Mq

(5.4) '&/‘ =1; .

Given the two forces and the moment, Eqs. (5.3) and
(5.4) enable us to solve for x and y. (Also, of course, for

¥).
Sometimes it is desirable to write an equivalent set of
equations in terms of 7y, where if v 1is missile speed,

2 2

X

(5.5) v +y

(5.6) x = v cos ¥
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(5.7) y = v sin y.

From (4.15),

—
(5.8) P - W

—» —» - —>
vcos yi +vsinyj=vcos a :I.1 - v sin a 3y

—» ->
vcos a (cos ¥ 1 + sin ¥ j)

- »>
-~ v sin a (- sin ¥ 1 + cos ¥ j)

-»> —y
vecos (y - a) i +vsin W -a) j.

Hence
(6.9) ¥y =a + y.
(5.3) becomes

(5.10) v cos y - v¥ sin y = % [F1 cos ¥ - F, sin V]
v sin y + vy cos y = % [F, sin ¥ + F, cos ¥l- g .

Multiplying the first equation by cos ¥y, the second by
sin y, adding, one has

(5.11) v = = [F1 ] -g sin y

where

(5.12) F1 = F1 cos a - F2 sin a.

Multiplying the first by - sin Y, the second by cos ¥y,
and adding, one has
: . 1 g
(5.13) vy = = [F2 ] - g cos v,

where

L
(5.14) F2 = F1 sin a + F2 cos «.

It is common for an autopilot designer to make further
simplifications. He will commonly neglect Eq. (5.11) entirely,
assuming that v = 0. He w;ll assume F, and a are small, and
replace Eq. (5.14) with F2 = F, cos a. He will neglect
gravity, make first order“assumfitions on F2 cos a, divide
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through by v, and come up with a replacement for Eq. (5.13),
namely

(5.15) y = Aa + B

where A and B are functions of mach number, speed of sound, air
pressure, center of gravity, mass.

He will linearize Eq. (5.4), coming up with

(5.16) ¥ = -Dy - Ca + E6, where C, D, E are functions of the
same things A and B are.

Equations (5.9), (5.15), and (5.16) are then used to com-
pute vy, a, y as functions of 6. If, in addition, he wishes to
know x and y, he uses Eqs. (5.6) and (5.7).

Exercise

(x) Rewrite section V under the additional assumption
that W lies in the'f, plane, but is different from zero.

VI. MEASUREMENTS MADE BY MECHANICAL END INSTRUMENTS

In the Bumblebee family, there are three basic devices
commonly used whose measurements can be simply expressed in
vectorial form (when the instruments are perfect, which of
course they never are). These are the free gyro, the rate gyro,
and the accelerometer. There are other devices used in these
and other missiles, such as stable platforms and stapfus. It
is beyond the scope of this paper to delve very far into this
field. Instead, we shall merely state what the above three
devices measure, and discuss some of their applications. We
shall not describe the mechanical details of how they do this,
leaving this subject for the reader to pursue.

The accelerometer as used in the Bumblebee missiles is
mounted in the missile, and is sensitive to accelerations algpg
a chosen direction fixed in the missile. Specifically, if n
is a unit vector in this direction, the accelerometer measures

G;-&g;ES . K; where as before, j points up, and g is accelera-
tion due to gravity. Usually, there are two accelerometers,
one for which T = '} , the other for which ™ = k,. They are
used in the missile autopilot. The acceleratioii command is
compared to the accelerometer output, and the wings are driven
until the difference is zero. An autopilot which functions in
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this manner is called an accelerometer (or acceleration)
feedback autorilot.

The rate gyro is sometimes, but not invariably, mounted
in the missile, and is sensitive to rotations about a chosen
direction fixed in the missile. Specifically, if n is a unit
vector in this direction, the rate gyro measures § . n.

Usually, there are three rate gyros, for n = 13, 3;, E;,

respectively. The latter two are used for damping in the auto-
pilot, and the former in the roll control loop, One will also
find rate gyros mounted on hcming seekers, whose purpose is to
aid in space stabilization of these devices, as well as to
furnish steering error signals to the guidance computer.

The free gyro has two degrees of freedom, and two possible
outputs. The free gyro is used for attitude stabilization dur-
ing boost, where both outputs are used, and in the roll control
loop during beam riding, where only one output is used. There
are thrgg definitive directions, denoted by the unit vectors

» Gg» GI' where S is the direction of the spin axis, fixed in
inertial space by virtue of the action of the gyro. a;a;s the
ipner gimbal axis, and is always perpendicular to both S ,and GO.
G, is the outer gimbal axis, fixed in the missile. Let n be
sgme unit vector fixed in the missile which is perpendicular, to
GB. The two possible outgp§§ can be expressed in terms of S,

—» = XGg

Go, n since clearly GI B e &
[sxG,
- —
(6.1) cos 01 =S . GO'
x
The second output is the angle 02 between GI and n,
> -
SxG
> 0
6.2 cos 6, = n. .
(6.2) 2 —gfl "GOI
—»
In the rol!bcontrol loop,-g is usually horizontal, Go

coincident with 11. Only the angle 02 is used.

=
In the attitude stabilization loop for boost, Go is 3;,

K'is'fl, §’is in the direction of firing.
Exercise
s\ b oS - §f
(y) Prove that sin 02 a g S 8 , the sign depending on
convention. |§ X E’O|

*or some function of it.
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VI1. OTHER USEFUL COORDINATE SYSTEMS

In this paper, most of the useful techniques for manipu-
lating coordinate systems have been presented. Practically
all three dimensional work with missile motion can be handled
by a judicious use of the concepts and basic formulae developed
here. (Theire is, of course, nothing here that is new, and
everything can be found in one or more well known texts on
Mechanics or Vector Analysis)

Having developed the basic concepts and formulae, a few
applications and practical manipulations have been presented.
We cruld go on at considerable length discussing other appli-
cations and special coordinate systems in detail. This will
not be done here, however, as any reader will now have little
difficulty in mastering such topics, should he come in direct
contact with them,

We will, however, mention in passing some other useful
coordinate systems.

Wind-Fixed Coordinate Systems---It sometimes simplifies
calculations when a constant veIQ%}ty wind is being studied
to fasten the tail of the vector to a point moving with the

wind. This is still a Newtonian frame of reference, so that Eqs.

(4.4) and (4.11) hold. 1In this coordinate system, Section V
carries over intact. (Compare with the results of Exercise

(x).)

Radar-Fixed Coordinate Systems---Here the triad of unit
vectors is fixed in the dish of a tracking radar or a guided
missile guidance transmitter. This is useful when studying
tracking radar dynamics or certain beam riding problems, in
particular for developing expressions for beam riding error
signals.

Deck-Fixed Coordinate Systems---When missiles are being
fired Trom a ship, the motioHXET-TFé ship presents new prob-
lems from the land-based case. Since radars are normally
attached to the deck, their measurements are most easily ob-
tained in a deck-fixed coordinate system. Stabilization of
these radars is then required. This calls for coordinate
conversions from deck to radar, or deck to inertial, of one
type or another. These conversions are accomplished physi-
cally by the judicious use of gyroscopic devices, such as
rate gyros or gyrocompasses. (The latter is a form of stable

platform).
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Homing Seeker-Fixed Coordinate Systems---A homing
seeker 1s a tracking radar mounted in the missile, and prop-
erly choosing certain unit vectors fixed in the seeker aids
in studying seeker dynamics.

Inertial Guidance Coordinate Systems---In inertially
guided aircraft or (long range) missiles, it is sometimes
' convenient to choose a moving coordinate system, one of
whose unit vectors points in the direction of the normal to
the earth's surface at the position of the aircraft or mis-
o sile. Sometimes people choose instead the direction of
gravity, and sometimes the direction to the center of the
earth. (These three directions are slightly different).
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