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This oaper contains a discussion of unitary irreducible 

reoresentations of the group U(2,2) in terms of the non-comoact 

algebra of creation and annihilation operators and some apoli- 

cations to massless fields. In particular, the U(2,2) algebra 

yields discrete values for p^ (energy), one of Its generators. 

The little group and wave equations of massle. s fields are also 

derived from the Lie algebra of U(2,2). 
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I.  INTRODUCTION 

This paper is a contribution to the explosion of group theo- 

retical publications pertaining to elementary narticle concents. 

The present state of theoretical research on elementary particles 

seems to Indicate that there exist ever increasing possibilities 

for the so-called "classification" of particles. Recent attempts^ ' 

for the unification of internal and soace-time 

Proceedings of the First Coral Gables Conference on SYMMETRY 

PRINCIPLES AT HIGH ENERGY, January 1964, Florida (W.H. Freeman 

and Company, San Francisco, iy64). See also Phys. Rev. 135» 

761 (1964). 

symmetries into a single group theoretical structure aiming at an 

hypothesis of simultaneous charge, hypercharge, and spin indepen- 

dence of strong interactions (at high energy) have led to further 
(2) discussions of the subject by othersv '. These authors have shown 

that ^here are some basic difficulties in the models proposed 

^  (1) earlierN /. 

2 W.D. McGlinn, Phys. Rev. Letters 12, 46? (1964) 

F. Coester, M. Kamermesh and W.D. McGlinn, Phys. Rev. 135B, 

451 (1964) 

H. Bacry and J. Nuyts, Physics Letters IP, 2, 156 (1964-) 

M.E. Mayer, H.S. Schnitzer, E.C.G. Sudarshan, R, Acharya, M.Y. Kan, 

Phys. Rev. 136 E, 888 (1964) 

A.  Beskow anc. U.   Ottoson,  Kuovo Cimento JOCCV.   1,   248  (1964) 



In particular, if one adheres to the existing interpretations of 

the isotopic spin, then spin and isotopic spin assignments to 

various generators of the group U(3*l) lead to non-commuting 

operators for the respective observables. Therefore what re- 

mains as acceptable is the product of two commuting groups i.e. 

the cover group is Just the direct product of the Poincare group 

with an intern«.] symmetry group. 

In the light of these investigations the fundamental issue 

appears to be the possible existence of a non-compact symmetry 

group containing several commuting "little groups" whose repre- 

sentations can provide enough quantum numbers to fit in all the 

"free" particles. 

One of the subjects which is considered to be closed in 

the theory of representations of Poincare group refers to nr^s- 

less states. In view of a great interest in the last few years, 

in the problem of masses of strongly interacting particles, it 

may not be a waste of time to further discuss the extreme situa- 

tion: the massless state of matter in general (very high energies) 

It is hoped that a further understanding of ::masslessness'' may be 

exploited for the study of a more special case, the particles 

with mass. 

We shall, as in the previous oaper , use the techniques 

of creation and annihilation operators for the representa- 

tion of the massless coni'omu-.i group U(2,2). Cur discussions 



will be confined only to unitary, irreducible representations. 

II.  REPRESENTATION OP U(2<f2) 

In order to establish the method we consider a special set 

of ten Hermitian operators satisfying the commutation relations 

for the inhomogeneous Lorentz group. These are given by p 

(four translation operators), and by the relativistic definition 

of angular momenta-'. 

V = Vv " xvpn = :L <X'P JVv|p> (I1M) 

where 

P - 

1 0 0 0 xl 
0 -1 0 0 !x> = x2 

0 0 -1 0 x3 
0 0 0 1 x4 

ip> = 
Pi 
?2 
p3 

{11,2) 

and x^, pv (M-,V = 1,2,3»^) are subject to commutation relations 

Cx^,pvI! »-ikg^y, Cx^jx^ - (IP^PVIJ = 0. (Ho) 

with g  being the elements of P. Every Lorentz matrix L satisfies 
|i,V 

the condition 

L P L = P, (II.4) 

«^ 
where L is the transposed form of L, 

*3 
:,B.  Xur^iino^lu,  MODERN QU/JfTUM THEORY (W.H.   Freeman and  Company, 



San Francisco, 1962). See oage 234 eq. (VIII.8.3) also page 

50 for the definition of the k x U  matrices M v which are gen- 

erators of rotations and Lorentz transformations. The matrices 

M  constitute a non-unitary representation of the homogeneous 

group. This book, in this paper, will be referred to as MQT. 

The operators x and p under a Lorentz transformation trans- 

form according to 

x> = Ljx>, |p> = L!p> . rii.5) 

In a way similar to (II.1) we introduce complex creation and 

annihilation onerators. For example, the Hermitian generators of 

the homogeneous Lorentz group can be represented by 

v = 
f <a|ß<Vv|a> (II.6) 

where 

n   „ 

1 0 0 0 

0 1 0 0 

0 0 -1 0 

0       0       0 -ll 

a> = <a    = rJJtt-i 

(11.7) 

and the operators a , a' (cx,P 

relations 

1,2,3,4) satisfy the commutation 

r« t. 

ap' '-aa>^P' a1,a'  = c (II.8) 



with ß being taken as the "metric" of the 4-dimensional complex 

spare. We are using a representation of 7'3 given by 

[V7vl+ 
= " 2 ^v Ii|> ^4 = ii3 

7
5 = yl 72 y3 74      ' 

A
+ = | (1 ± i 75)     , 

akLV   =   "   2  i   [7|XJ   7Vj      » 

^    a      sic aa3 

and 

'11 = ^22 = g33 = ' shh = 1* gj4 = giiJ := 0* gk: = 0'  k ^ ^, 

where 7. (J = 1,2,3) are hermitian ?.nd yu  is anti-hermitian. 

The corresponding commutation anä anti-commutation relations 

are 

T:  Guv' I öaßJ = I 1 (gav V + gßv V " gaa av^ '  guß aav)' 
(II.9) 

1 ''       1 

2 a.v' aaß!, " -75 Vvaß 4 ^  g3v " ^xß 5av  >       (II. 10) 
■ T 

I ; %v'  7p ! = i (gpv \  -  gpj. 7v) > C11-12) 



1 Q 
2 V3 7P ^ =   Vval 7' 75 (11.13) 

From the isomorphism of the two representations (II.1) and 

(II.6) it follows that the transformation operator S, corres- 

ponding to a Lorentz transformation L, satisfies the condition 

s'ßs --- ß (11,14) 

in complex four dimensional space. The condition (II.14) is 

valid only for proper Lcrentz transformations. For improper 

Lorentz transformations the right side of (II.1^) should be 

replaced by -:'. In this paper we shall not be concerned with 
k 

the  latter case . Under a Lorentz transformation of the 

4 See eq. (VIIT.5.55) On page 240, and eqs. (VIII.8.21), (vni.8.22) 

on page 257 of MQT. The eqs. (VIII.5.56) and (VIII.5.57) on page 

24l of MQT are examples of S-transformatlonr. The operators 

7t.> i y,,t  VKT,. are also generators of S-transformaticns. 

generators J v, the operator column vector |a> transforms accord- 

ing to 

> = S |a> . (11.15) 

The commutation relationG (II.3) are invariant under S-trans- 

formations satisfying the condition (II.14). 

A special type of S-transformations are gauge transformations 
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of the type exp (10). Furthermore, from (11.14) it follows 

that the determinant of an S-transformation is defined up to 

a phase factor. Hence the group of S-transformations can be 

decomposed according to U -■ U, x S X Zs  where U, is the one- 

dimeasional unitary group and S is the group of S-transforma- 

tions with determinant + 1. The factor Z is of the form exp 

(■^ 1 rrn), n = 1,2,...,  representing an invariant 3-trans format ion 

subgroun of fourth order whose members consist of + 1 and + i. 

This means that there are four types of vector operators a 

pertaining to the representations of the group U(2,2). 

In terms of the operators a and a^ the hermitian generators 

of U(2,2), for the positive energies, are given by 

J^v =|< a|ß aiV |a> (11.16) 

pjt = - < al74 -^7^ la> (11.17) 

P^ = - < aW^ A, 7p. |a> (II.18) 

r =  < a|ß yr  |a> (11.19) 

r =  < alß |a>   . (11.20) 

The 16 Hermitian operators as defined by (II.lb) - (11.20) 

provide an irreducible unitary representation^-3'' of U(2,2). 

J  B. Kursunoglu, Proceedings of Second Coral Gables Conference 



on Symmetry Principles at High Energy, Freeman and Co., 

San Francisco, 1965, page 163. 

The commutation rules of 11(2,2)  are given by 

r    I 
[•W  V?      = i  ^av Jup + gpv JapL - g,^ Jvß - g^ Jav),       (11.21) 

J^' D
P 

+    + 

Jtiv> Pp 

" i   («pv Pp. - 6pp. Pv)   > 

= 0    , 

= i   (epv P^  - g^ Pv)   > 

n^  P,"    »0    , 

nH'  pv 58   2i   (ßnv   C   -   ^ Jnv)^ ^M-V 2  vM.v 

P^   ^i = ? i P.t , 

Pn'   '' -2  i  p 
fi 

«W \| = 0- 

(11.22) 

(11.23) 

(11.24) 

(11.25) 

(11.26) 

(11.27) 

(11.28) 

(11.29) 

These are satisfied by (II.16) - (11.20). 

The operator f commutes with all the rest of the generators. 

From the above commutation rules it is seen that zhe  group U(2,2) 
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contains the Poincar^ group E.S its sub-group. The specinl repre- 

sentation (II.16) - (II.PO) refers to ma^sless case. 

An Invariant of TT(2,2) is given by 

nu - I K t + P^i + V ^V > - r'- (11.30) 

The 
LL      - 1    JIV    _ p _ _Vp 

invariants I1 = Pu P^,  I2 " ? ^    Juv Pp p    " ,T
UP Pv D H 

of the sub-group as can easily be shown (via (11.16) - (11.20)) 

vanish. 

Now, from the definition '11.16) of Juv we obtain 

j£ = JU +  J2i  > i*  - l'2'l) (11.31) 

and 

J£ ' 2 c£sk Jsk 

Jn= I <AlailA> ' J2i= " t <B!ai.iB> (II.32^ 

where oi (1=1,2,3) a^e the usual Pauli matrices and 

I  2 
B> = 

Ah 

They satisfy the commutat"'on rules for the commuting angular 

..J-. ,J^,_J = Cij£J2£ 

(11.33) 
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where 

J2 = 3(3+1)» jf = d1(J1+l), j| = J2(J2+1), (11.3^) 

h = 1  (4al + 4a2^ J2 = I ^a3a3 + a2|aI''       (11.35) 

The commutation rulec (11.33) are the same as the commutation 

relations corresnonding to the T.j.e algebra of the ^-dimensional 

PXaclidean group, namely the grour 0^. 

Hence we see that the space part of J  is decomposable into a 

direct nroduct of two three-dimensional rotation groups. The 

resultant angular momentum j is associated with angular momenta 

J = iji - J2i.. \31  - J2i + I,--., 3l  + j2 (11.36) 

where | Jj " Jp' ^=s^ is the rii-ni-m:m  value of J, it is '.he spin 

quantum number of the representation assuming the values 0,  ö", 

X J  4  •  • ■ 

Prom (11.17) and definitions of 7^ (see page 235 of MQT) 

the translation operators p  can be written as 

Dl = Jlx - J2x + k ^W +  aial + a3a2 " a2a3) 

V2 = Jly- J2y - k1  (alah  '  4al + ^  " a2a3)     ,TT _ 

P3 = Jiz " J2z + I ^3ai + ala3 " aIa2 - 4ai;) 
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Pil  = ^ + Jg + :L + I ^a3al + aia3 + ala2 + a2a4^ 

Using these definitions we can construct the helicity 

operator of massless particles in the form 

f     t     t     t 
r    = J-p = 1 + ^ <al0|a> = | (a^ + a|a2 - a^ - a|a^)tj (II.38) 

where 

P=f- (11.39) 

and where i <a|ß|a> commutes with the ten generators of the group 

and is therefore a group invariant. We shall consider only posi- 

tive energy representations whex-e the helicity operator ro to- 

gether with ph, J^, and J- form a complete commuting set. A 

set of simultaneous eigenstates of these commuting operators will 

be designated by |n,C> - The requirement of non-negativity for 

j, and J2 assures also positive sign for the energy and the former 

is obtained only by defining the vacuum state by the conditions 

a1iO>=0 a^jO>=0 

and (II.40' 

a2  !   0 > = 0 aj  I   0  > - 0     . 

In complete analogy with Pock representation of harmonic 

oscillator (see chapter 7 of MQT) we find that occupation number 

operators are given by 



n 

t ^ r t 
Nl = alal' N2 ^ a2a2' N3 = a3a3-> N2; = a4ai (UAl) 

which satisfy the eigen-value equations 

Na ^V = na IV (a = i'2*!*1*) (11.42) 

wheie 

n
a 

= ^*i>2,3,... 

The normalized elgenstates are defined by 

^ • Ttj) ^ ]0>'   l^>=77ZlT(^n2i0>' 
n (1IM) 

so that the sl.iultaneous eigen-states |n,C> of the complete 

commuting set P^J'IQ* J% and J- are products of these eigen- 

states. 

Prom (II.38) it follows that the helicity operator can he 

expressed in the form 

J-P - § (^ + N2 - N3 - N4) = I N (11.44) 

and it acts on the state |n,^> according to 

J-p |n,C> = I nin,e> 
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where 

1 „ 
2 n I Cn1 + n2 - n3 - n^) = h ' h-±  J 

assumes both positive and negative half odd-Integral anä Integral 

values including zero. Hence we can write 

J-^ |n,e> - + s !n,e> . (11.45) 

The elgen-value equation can further be siaplified by noting 

that it Is equivalent to 

J.p la,., ?.> = T3 s p^l r.x,i> 

where 

KA>* n ,e> 

j.p |n+,l> = s p^|n+,C>, |n+,4> | (1 + T3)|nT,fJ> 

(11.46) 

Hence, the most general state is a superposition of two ortho- 

gonal states 

nT,l> = |n+,f> + jn_,|> (11.4?) 
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referring either to two different states of polarization or tc 

two different particles. It depends on the reflection syrnmetries 

of various spin states whether one has t1ust a different state of 

polarization or a different particle. Two states of polarizations, 

whether they refer to identical particles (e.g. zeron s = 0, 

photons s = 1) or two different particle states (e.g. v,v with 

s » ■5') as eigen-states of T-, span a two-dimensiona" Hilbert 

space. 

Finally we note from (11.37) and (11.43) that the diagonal 

element of the operator p^. with respect to the state |n,^> is 

given by 

<n,6!pJn,£> = i (ni + no + n, + nh)+l  = i n + 1 
* 2      ^342     (ii.48) 

where n - 0,1,2,... so that zero point oscillations are also 

included in the algebra of U(2,2). 

III.  WAVE EQUATIONS 

As is well-known the group of translations, being an Abelian 

sub-group of the Poincare group, has only one-di»ensional irreducible, 

unitary representations. Per a translation of states by a real 

vector b the unitary operator is exp C-i b p J . This group of 

translations contains also the representations exp C-i b p' ' 

provided p is obtained from p by a proper Lorentz transformation 

pu - L: Pv • 
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An Infinitesimal translation of a function of coordinatec 

by an amount c b is represented by 

exp Cic^PpP ^ (x) exp r-lcbvp^J = (l+icb^)^ (x)  (l-icbvpv) = 

V  (x)  + icb^" {jp^(x)J    , 

Hence in the limit of c -*• o we obtain 

^ |1. = i ^ CP^, , (xQ 

or, since this is valid for all bu, we have 

■i  ^Tr-Cp.. ö . (ni.i) 

Now consider the eigen-states !r,t> of the complete commuting 

set q 

q |r,t> « r | r, t> . (III.2) 

The translation operator will act according to 

exp r.-iebM'p(X7]!x> = jx + cb> = (1 - icb^p(I)lx> . 

Hence, this being valid for every b, we get 

D, !x> = - i ^- jx> . (III.3) 
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A way of obtaining a wave equation may proceed by repre- 

senting the state |r,t> in a Hubert space spanned by |n,C> . 

Thus writing 

Ostjn,^ = lr,t,s> 

and regarding it as 2s+l component wave function we can derive 

a wave equation. 

FAom (11.45) we obtain 

<r,t|.r.pln,t> = + £ <r,t|p4|n,e> 

or introducing the unit operator 

/ 

• 
r,t> </,t| dV, 

using (III.3) and performing the obvious steps we get the wave 

equations 

H|r,t,s> = + ii Ig. I r,t,s> (111.4) 

where the Hamiltonian H is given by 

H = f? J'P  ' (HI.5) 

For spin ^ particle (s=|) we have J = | ta. The corres- 

ponding wave equations are 
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Hlv> =» ih ^ I v > (III.6) 

H|V> = -ih Ig. I v > Cm.7) 

where 

H = c o^.p, |v> = \r>t>^ >  = two component spinor. 

If we call |v> the neutrino state then the anti-neutrino state 

can be defined by 

|v> = T |v> (III.8) 

where T = 1 a2 C is the time reversal operator for a two- 

component spinor state and C is Just complex conjugation 

operation. The operator T acts on a. according to (see page 

221 of MQT) 

T"1 ai T = - ai . (III.9) 

Hence the wave equation (HI.?) can be written as 

Hiv> « U 1^ |v> (III.10) 

which is of the sane form as (III.6) but refers to anti-neutrino. 

Reflection symmetry here consists of time reversal operation 

alone, since space parity is not valid in this case. 

As a second example we take s«! with J beirg represented 
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by JT, = h K., (1=1,2,3J where K.   e the generatr-a of three- 

dlr^nsional rotations. Thus (III.4) yields the wave equations 

H h> = lh g^ |T)> (III. 11) 

H h> = -It ^ |T)> (III.12) 

where \r}>   is a three-component complex vector, and H = cK-p is 

the Hamiltonlan of a single photon. Now defining |p> as a 

three-dimensional column vector in terms of p±i   (i«.l,2,3) and 

operating on H on the left we obtain 

<p|H = 0 

which is due to H being a 3 x 3 anti-symmetric matrix operator 

in p's. Hence the equation (III.11) yields 

V-T) = 0 (III.13) 

which is the transversallty condition of the photon wave (see 

chapter II of MQT). 

The wave equation (III.12) refers to a state of polarization 

opposite to the one described by (III.11). This can be seen by 

performing a parity operation on |T)> . Thus if we take 

*i> - Ö h> (III. 14) 

and noting the transformation 
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C H C = - H 

the wave equation (III.12) becomes 

H|fj>- it   1^ 1T)> (111.15) 

which is of the same form as (III.11) lut refers to a state of 

polarization opposite to the one contained in (III.11). The 

correspc.nciing transversality condition is obtained as V-T) = 0. 

A third example is the wave equation for zeron. We first 

observe that 

<n,§|s.pln,e> » ± 1,  n,4|n,4> * 1 for every n, 

where 

S =» i J . s 

/*   /i  -. 
Thus for sero spin we must have S = + p. Hence 

p2 |o,4> = p^ |o,?> 

which, using the saias methods, yields the scalar wave equation 

v20 . i^ ^4 = 0 . (III.16) 
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IV.  THE LITTLE GROUP 

The group of Lcrentz transformations which leave a null vector 

invariant Is isomorphic to the two-dimensional Euclidean group. 
7 

This is a known result . However, here we shall derive it in 

7 E.P. Signer, THEORETICAL PHYSICS. International Atomic Energy 

Agency, 1963, pp 59-82, Edited by A, Salam. 

a direct way. 

Under an S-transfomation the requirement of invariance of p 

is contained in the statements 

p^ * - <a|s''74A+7plS |a> = - <a\yhA+y[L\&> ^ . (IV.l) 

This must hold for every a0 and a^ , which is possible only if 

the S-transformatlons in question commute with p . The operator 

J'P = i N is the only non-trivial invariant of the group and 

therefore a given S-transformation must be a function of ^ N and 

also must satisfy (II.14). Such an operator is uniquely defined 

to be: 

i iN0 
S = e ^ (IV.2) 

where 9  can be regarded as an angle of rotation in ' N*> xy-plane. 

For an electromagnetic wave 9   is the angle of rotation of the 

electric vector in the plane perpendicular to its momentum. 
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The result (IV.2) Droves the required isomorphism between 

grouD of Lorentz ;transfor-iatijns which leave a null vector in- 

variant and the two-dimensional Euclidean grouo. Thus the 

representation of the little group for massless particles is 

one-dimensional.  The representatives o^ 3 are of the form 

<n',e|s|n,t> = 6  .e 
+ i s (9 

nn' (IV.3) 

where 

^ 2 u $  5: Tn' ^ s 

ar he dimension of the representation is 2 s + 1. 


