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UNITARY REPRESENTATIONS OF U(2,2)
AND MASSLESS FIELDS*

Behram Kursunoflu
Center for Theoretical " udies
University of Mis. i
Coral Gables, Florida

This paper contains a discussion of unitary irreducibhile
representations of the group U(2,2) in terms of the non-comnact
algebra of creation and annihilation operators and some appli-
cations to massless fields. 1In particular, the U(2,2) algebra
Yields aiscrete values for Dy (energy), one orf 1ts generators.
The 1little group and wave equations of massle.s fields are also

derived from the Lie algebra of U(2,2).

*
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I. INTRODUCTION

This paper is a contribution to the explosicn of group theo-
retical publications pertalining to elementary narticle concents.
The present state of theoretical research on elementary particles
seems to indicate that there exist ever increasing possibilities
for the sc-rtalled "classification" of particles. Recent attempts(l)

for the unification of internal and space-time

'.-l

Proceedings of the First Coral Gables Conference on SYMMETRY
PRINCIPLES AT HIGH ENERGY, January 1964, ¥Florida (W.H. Freeman
and Company, San Francisco, 1964). See alsc Phys. Rev. 135,

761 (1964).

symmetries into a single group theoretical structure aiming at an

hypothesis of simultaneous charge, hypercharge, and spin indepen-

dence of strong interactions (at high energy) have led to further

discussions of the subject by others(g). These autnors have shown
that *here are some basic difficulties in the models proposed

(1),

earlier

2 W.D. McGlinn, Phys. Rev. Let’ers 12, 467 (1964)

F. Coester, M. Hamermesh and W.D. McGlinn, Phys. Rev. 135B,

451 (1964)

H. Bacry and J. Nuyts, Physics Letters 12, 2, 156 (195Lk)

M.Z. Mayer, H.S. Schnitzer, E.C.G. Sudarshan, R. Acharya, M.Y. Han,
Phys. Rev. 136 B, 888 (1964)

A. Bessow anc U. Ottoson, Buove Cimento XXXIV. 1, 248 (1964)




In particular, if one adheres to the existing interpretations of
the lsotopic spin, then spln and 1sotopic spin assignments to
various generators of the group U(3,1) lead to non-commuting
operators for the respective observables. Therefore what re-
mains as acceptable is the product of two commuting groups i.e.
the cover group is Just the direct product of the Poincaré’group
with an internal symmetry group.

In the light of these investigations the fundamental issue
appears to ve the vossible existence of a non-compact symmetry
groun containing several commuting "little groups" whose repre-

sentations can provide enough quantum numbers to fit in all the

"free"

particles.

One of the subjects which is considered to be closed in
the theory of representations of Poincaré’group refers to m~ss-
less states. In view of a great interest in the last few years,
in the problem of masses of strongly interacting particles, it
may not be a waste cf time to further discuss the extreme citua-
tion: the massless state of matter in general (very high energies).
It is hoped that a further understanding of'masslessness' may be
exvloited for the study of a more special case, the particles
with mass.

We shall, as in the previous paperl, use the techniques

of creation and annihilation coperators for the »epresenta-

tion of the massless conform:l group U(2.2). Cur discussions
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will be confilned only to unitary, irreducible representations.

II. REPRESENTATION OF U(2,2)

In order to establish the method we consider a special set
of ten Hermitian operators satisfying the commutation relations
for the inhomogeneous Lorentz group. These are given by P,
(four translation operators), and by the relativistic definition

3

of angular momenta~,

Ruv = XD, - Xp, = 1 <x|F Mﬁv|p> (I1.1)
where
- 1 _ _1 . -
-1 0 0 0 Xy Py
P = 0 -1 0 O o= %], lo>= |P2| (1I.2)
0 0 -1 0 X P
(0 0 0o 1 x) Py

and x,, Dy (nsv = 1,2,3,U4) are subject to commutation relations

Cx,»p, ] =-ibg,,, Tx,,x, ] =0p),p, ] = 0, (II.3)

with ELv being the eiements of F. Every Lorentz matrix L satisfies

the condition
LFL=F, (II.H)

A
where I, 1s the transposed form of L.

’B. Xursunoflu, MODERN QUANTUM THEORY (W.H. Freeman and Company,




San Francisco, 1952). See nage 254 eq. (VIII.8.3) also page

50 for the defin’tion of the 4 x 4 matrices th which are gen-

erators of rotatioris and Lorentz transformations.

MLV constitute a non-unitary representation of the homogeneous
T

group.

The matrices

This beck, in this paper, will be referred to as MQT.

The operators x

form according to

|5> = x>, 18> = Llp> . ’11.5)

In a way similar to {II.l) we introduce complex creation and

annihilation operators. For example, the Hermitian generators of

the homogeneous Lorentz group can te represented by

Iy = 5 <algo, la> (1I1.6)
where
B . -
1 0 0 0O [a,
A e | N = < | = T t T I8
f 1 0 o© ’ a> as| o <a al,a2,a3,a&J s
G 0 -1 ¢ a3 (II.7)
] 0 0 -1 a.a
- - bl

and the operators a,, a, (a,p = 1,2,3,4) satisfy the commutation

relations

CHPE =§:al,ap: =0 (11.8)

" and pu under a Lorentz transformation trans-

L




O

£ being taken as the "metric" of the U-dimensional complex

with
space. We are using a representation of v¥'s given by
[VH’V\J*_ ==~ 2 gP‘-V 114: Ty = i3
1 .
r,=5 (21 75) ,
1, I 1
v = i Lyu’ yv_ ’
1 a3
75 %y T3 fuvep O 0
and
311 =85 T 833 = - &y = 1, gjh = ghj = 0, &2 = 0, k # 2,

where Yy (3§ = 1,2,3)

are hermitian and Yy is anti-hermitian.

The correspording commutation and anti-commutation relations

are

Bl 1 1

‘-3‘- o"u‘v, 2 Uas:} - 2 - (gav Guﬁ* + SBV GQL; - ga_u O'V"; - gu,B va):

(II.9)

] 1

3 : Gi»&V’ ()'a,_., + L —75 cuva;’ﬁ + gau, g}\, gU-E' Bay (II.I,O)
P, 1
%iv? '/5- - s (I1.11)

1o 1-1q ) (II.12

2 %uve Yo Boy ¥y = Bpu Tyl s -12)




p

cvan 7Y (11.13)

- .Y = -1

ol
R
<

5

From the isomorphism ol the two representations (II.1l) and
(II.0) it follows that the transformation operator S, corres-

ponding to a Lorentz transformation L, satisfies the condition

in complex Tour dimensional space. The condition (II.14) is
valid only for proper Lcrentz iransformations. For improper
Lorentz transformations the right side of (II.1l4) should be
replaced by -:. 1In this paper we shall not be concerned with

the latter caseu. Under &-Lorentz transformation of the

4 See eq. (VIII.5.55) @n page 240, and eqs. (VIII.8.21), (VTII.8.22)
on page 257 of MQT. The egs. (VIIX.5.56) and (VIII.5.57) on page
241 of MOT are examples of S-transformations. The operators

755 i Vu, ng

. are also generators of S-transformaticins.

-

generators Ty ? the operator column vector !a> transforms accord-

ing to
|85 = 5 jay . (II.15)

The commutation relations (II.3) are invariant under S-irans-
formations satisfying the condition (II.14).

A special type of S-trancformations are gauge transformations




of' the type exp (ip). Furthermore, from (II.14) it follows

that the determinant of an S-transformation is defined up to

a phasc factor. Hence the group of S-transformations can be
decomposed according to U = U1 X So X Z, where U1 is the one-
dimeasional unitary group and So is the group of S-transforma-
tions with determinant + 1. The factor 7 is of the form exp

(% i m), n=1,2,..., representing an invariant S-transformation
subgroun of fourth order whose members consist of + 1 and + 1.
This means that there are four types of vector operators a,

pertaining to the representations of the group U(2,2).

In terms of the operators a, and al the hermitian generators

a
of U(2,2), for the vositive energies, are given by

1
Jw=35¢< al|p %y |a> (II.16)
o< aly, A, v la> (T1.17)
Pu = b 4 Ty i
p; = - < alyu ALy, |a> (11.18)
r = <al? Vs la> (11.19)
r = <algja> . (IT.20)

The 16 Hermitian operators as defined Ly (II.16) - (II.20)

provide an irreducible unitary representation(j) of U(2,2).

5 g, Kur§unoélu, Proceedings of Second Coral Gables Conference




\D

on Symmetiry Principles at High Energy, Freeman and Co.,

San Francisco, 1565, page 163.

The commutation rules of ¥(2,2) are given by

o ] ]
| Ty ”a@} =1 (gyy Jup t Bay J&u 8. Vv T 8y Jav) s (I1.21)

L

I +] . + + ,

_Ju.\ & pp] =1 (gpv pu = spu pv) 3 \II.22)

o D\T] =0 (II.23)
e - . ]

Juve Pol = 1 (&gy By - &y By) (I1.24)

r _ -7

Du’ p\'y =0 s (II.QS)

L .

nu’ Pv = 21 (guv c - ‘2‘ JU-V), (II.EG)

(+ ] +

s ti=7tpl, (II.27)

O _ =1

oo, tl=-21p" (II.28)

L ! [

.

[Tuvs T =Y (II.29)

These are satisfied by (II.16) - (II.20).
The operator I' commutes with all the rest of the generators,

From the above commutation rules it i1s seen that the group U(2,2)
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contains the Poincaré group o5 its sub-group.

Tha special reore-
sentation {II.16) - (II.20) refers to massless case.

An invariant of U{2,2) is given by
w L + W - W .V 2

= [ I § v p
The invariants I, =p, P, I, =3 J* Juy Pp D

_ vp K
Jup J p, P

of the sub-group as can easily be shown (via (II.16) - (II.20))
vanish.

Now, from the definition ‘II.16) of J, we obtain

Iy =J + 3y , (F=1,2,3) (Ix.31)
1
Jg =5 sk Isk
and
I 4= 5 <Alogla>, Ty= - % <Blo,|B> (II.32)
where 0Oy (1=1,2,3) are the usual Pauli matrices and
a a
!A>=[1 , |B> = ,31
' lae dL"J
They satisfy the commutat*on rules for the commuting angular
_ .6
moner &
- - _ — = = r =
LI 5Ty =0, Ly 0 g = ey g 0 Wpg Ty = b ey pdnp s
(II.33)



TR i)

!

11 .
where
T = 3(31), 0 = 3030 T = 3,(0,4), (I1.34)
1= % elay +alen), 5, = 1 cagel 4 e, (11.35)
6

The commutation rules (II.33) are the same as the commutation

relations corresvonding to the T.e algebra of the 4-dimensional

Euclidean group, namely the grour 0.

Hence we see that the space part of Jﬁv is decomposable into a
direct oroduct of iwo three-dimensional rotation grouvs. The

resultant angular momentum j is asrociated with angular momenta

3=l -2l 13y -l + 1,000, 30 + 4, (II.36)

where |J1 - 32‘ (=s) 1s the minimum value of j, it is he spin
quantum number of the representation assuming the values O, %,

1,...

From (II.17) and definitions of y's (see page 235 of MGT)

the translation operatcrs P,y can be written as

* o+ ey # ol - o
Dl = JlX - sz + s (&lau + a al + 6'332 - a.l,d-?))
- & g el o e 4 dley -l
Pe T Tyt Tpyt T (m - e teg s aey)
_ 1
P3 =y - I 3 (agal ¥ a§a3 ) alag i a£au)




oy = Jl + 32 + 1 + % (aga1 + aIa3 + aZa2 + agah)
Using these definitions we can construct the helicity
operator of massless particles in the form

T
L, = J8 =1+ % <a|Bla> = % (alal + aga2 - agaq - aya) i (11.38)

p =L (II.39)
g

and where % <al6‘a> commutes with the ten generators of the group
and is therefore a group invariant. We shall consider only posi-
tive energy representations where the helicity onerator Ko to-
gether with Py> J2, and J3 form a complete commuting set. A
set of simultaneous eigenstates of these commuting operators will
be dusignated by |n,€> . The requirement of non-negativity for
Jq and 32 assures alsc positive sign for the energy and the former

is obtained only by defining the vacuum state by the conditions

. b
ap 1 0>=0 a'3|o>=o
and (II1.40°

In complete analogy with Fock representation of harmenic
oscillator (see chapter 7 of MQT) we find that occupation number

oneratcrs are given by




t
Eal, N, = ala N, = aBag, Ny = aual (I1.41)
which satisfy the eigen-value equations

N

w 0> =ng |n > (@ =1,2,3,4) (II.42)

where

na = 0,1,2,3,9.9 .

The normalized eigenstates are defined by

n
(8.1) 2 |O> s

> = o W) o5, g -
! v (n,!
(n;!) (n,!) (11.43)
= 3 L o1 Ty
|n3> ,_ (n‘%') (3.3) |O> 3 |ﬂu> .,/' (nl‘!) (au) !O) >

so that the si.ultaneous eigen-states |n,€> of the complete
commuting set pu,to, J2, and JB are products of these eigen-
states.

From (II.38) it follows that tre helielty operator can he

exoressed in the form

[
J3
"
rofi-

(Ny + Ny - Ny - Ny) =5 N (TI.44)
1t N2 W =3

and it acts on the state |n,£> according to

39 |n,€> = % nin,t>

rOfb

L

(TTE
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where

e R
o
[}

rof -

(nl +ny - ng - nu) =Jy - dpy =t

essumes both positive and negative half odd-integral and integral

vaiues including zero. Hence we can write
33 Ine>=+s |n,&> . (II.45)

The eigen-value equation can further be simpliried by noting

that it 1is equivalent to

3-p ng, £>= 135 pyf np,€> (II.46)
vhere
-
i t> |n,,€> l-l 0
352 = ’ Ta =
e In_,e> 3 I_o N

3o |n,e> = s pyln,t>, InLes =3 (2 + 1),

J-p |n_,&> =-5 puin_,€> ‘n_,£> = % (1 + 13) nesbo

Hence, the most general state is a superposition of twc ortho-

gonal states

lag, &> = |n,6> + in_,€> (II.47)




referring eilther to two different states of polarization or tc
two different particles. It depends on the reflection symmetries
of various spin states whether one has just a different state of
polarization or a different particle. Two states of polarizations,
whether they refer to identical particles (e.g. zeron s = 0,
photons s = 1) or two different particle states (e.g. v,V with
5 = %) 25 elgen-states of T3, Span a two-dimensiona™ Hilbert
space.

Finally we note from (II.37) and (II.43) that the diagonal
element of the operator Dy with respect to the state |n,E> is

given by

1 1
<n€|pln€>= (n1+n +n, +n,)4l ==n+1
M = 3 2 (II.48)
where n = 0,1,2,... so that zero point oscillations are also

included in the algebra of U(2,2).

III. WAVE EQUATIONS

As is well-known the group of translations, being an Abelian
sub-groun of the Poincaré'group, has only one-dimensional irreducible,
unitary representaticns. For a translation of states by a real

vector b the unitary operator is exp [ -1 bupgj . This group of

, -
Py
prcvided 5; is obtained from o, by a proper Lorentz transformation

translations contains also the representations exp [ -1 i

Al

r'd I v
D 0 = 4, .
O Py




An int'initesimal translation of a function of coordinatec

by an amount ¢ b, 1is represented by

m
exp Eicb“p@] ¥ (x) exp[:-iebvpu] = (1+1cbupu)¢ (x) (l-icbvpv) =
¥ (x) + 1eb” O ,9(x)3 .

Hence in the limit of ¢ > o we obtaln

L JR -
v I 107 [y, ¥ (x)]

cr, since this is valild for all bu, we have
o .
4 E=lpy, v (II1.1)

oxH

Now consider the eigen-states ir,t> of the complete commuting

set q

qlr,td>=rl r, t>. (III.2)
The translation operator will act according to
exp E-icb”pujlp =|x+cb>= (1 - icb“pp_)lx>
Hence, this being valid for every b, we get

(x> . (III.3)
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A way of obtaining a wave equation may proceed by repre-
senting the state lr,t) in a Hilbert space spanned by !n,€> -

Thus writing

<r,t|n,t> = !r,t,s>

and regarding it as 2s+l component wave function we can derive

a wave equation.

F.om (II.45) we obtain
<r:t|J°pln)€> =+c <1‘,t|D4|n,€>
or introducing the unit operator
7 ’ 3 Vg
Ir,t> <rit| 43¢,

using (III.3) and performing the obvious steps we get the wave

squations

Hlr,t,e> =+ 10 9o | r,8,8> (III.4)
where the Hamiltonian H is given by
H=ys J'p . (I1I1.5)

For spin % particle (s=%) we have J = % bo. The corres-

ponding wave eguations are

(A LR

4
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Hlv> = ih g,c- | v o> (III.6)

Hlv> = -13 g-t- | v > (ITI.7)

where

H=r¢ 0'p, lv> = ‘r’t:l

=5 > = two component spinor.

If we call lv> the neutrino state then the anti-neutrino state

can be dafined by

19> =17 [v> (III.8)

where T = 3 95 C is the time reversal operator for a two-
component spinor state and C is Just complex conjugation
operation. The operator T acts on 9y according to (see page

221 of MQT)

T=-0, . (II1.9)

Hence the wave equation(III.7) can be written as

H|9> = 14 g-f |9> (III.10)
which 1s of the same form as (IIX.6) but refers to anti-neutrino.
Rerlecticn symmetry here consists of time reversal operation

alone, since space parity is not valid in this case.

As a second exumple we take s=1 with J beirg represented




19

by Jy =k Ky, (1=1,2,3) where K, e the generatc~s of three-
dir 'nsional rotations. Thus {III.4) ylelds the wave equations

H|n> = in gf | n> (III.11)
3
H |n>= -1t 3¢ |n> (TII.12)

where |n> is a three-component complex vector, and H = cK-p is
the Hamiltonlan of a single photon. Now defiaing |p> as a
three-dimensional column vector in terms of Pys (1=1,2,3) and

operating on H on the left we obtain
<xp|H =0

which is due to H being a 3 x 3 anti-symmetric matrix operator
in p's. Hence the equation (III.1l) ylelds

Ven =0 (ITI.13)

which is the transversality condition of the photon wave (see
chapter II of MQT).

The wave equation (III.12) refers to a state of polarization
opposite to the one described by (IIX.1l). This can be seen by
performing a parity operation on |n> . Thus if we take

|5> = € | (III.14)

and noting the transformation

} 1"
A ULl

i

PRI



the wave equation (IIX.12) becomes

H 7> = 1in gf | 7> (ITI.15)

which is of the sama form as (IIX.11l) tut refers %o a state of
polarization opposite to the one coniained in (III.11). The
corresponding transversality conditien is obtained &s V:n = 0,

A third example is the wave equation for zeron. We first

observe that

A
<n,€|soﬁ\n,€> = 4 1, n,&ln,§> =1 for every n,
where

4 1
SQEJ-
Thus for gero spin we must have §= + f. Hence
2
p® |0,6> = pj; |0,6>

which, using the saue methods, yilelds the scalar wave equation

o/
N
S

V2 - . (III.16)

I L
R
%
%
1
o
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Iv. THE LITTLE GROUP

The group of Lcrentz ‘ransformations which leave a null vector
invariant is isomorphic to the two-dimensional Euclidean group.

7
This 1s a known result' . However, here we shall derive it in

7 E.P. Wigner, THEORETIC"L PHYSICS. International Atcmic Energy
Agency, 1963, pp 59-82, Edited by A. Salam.

a direct way.

Undei' an S-transformation the requirement of invariance of D,

is contained in the statements
1 --<a|Sty Ay S |a> = - <al|vyay,led> = (Iv.1)
pl-l— )4+u. u-{-p. pu‘ .

This must hold for every a, and az s, which 1s possible only if

the S-transformat.ions in question commute with pu. The operator
J-S = % N is the only non-trivial invarient of the group and

therefore a given S-transformation must be a function of % N and
also must satisfy (II.1l4). Such an operator is uniquely defined

to be:

L ine

S=e? (IV.2)
where 6 can be regarded as an angle of rotation in “™e xy-plane.
For an electromagnetic wave & 1s the angle of rotaticn of the

electric vector in the plane perpendicular to its momentum.




The result {(IV.2) proves the required isomorphism between
groun of Lorentz transformatlons which leave a null -rector in-
variant and the two-dimensional Euclidean groun. Thus the
representation of the little group for massless particlies 1s

one-dimensional. The representatives o 5 are of the form

+1s 0

<n',t|sln,t> = 6nn'e_

(1v.3)

where

ar ne dimensicn ¢of the representation is 2 s + 1.



