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ABSTRACT

Define F < G (F <G) 1f F and G have the same
median, sag the orfgin and _G-IF(x) is concave-
convex about the origin (G !F(x)/x is increasing
(decreasing) in x positive (negative)). Conservative
tolerance limits are derived for distributions which
are s-ordered with respect to the Laplace distribution,
These are especially reasonable for mensuration data.
In addition, many inequalities concerning combinations
of order statistics are obtained. These results are
useful in robustness studies of tolerance limits,
estimates and statistical tests derived for specified
distributions such as the normal distribution. Some
examples are given.
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TOLERANCE LIMITS AND INEQUALITIES FOR s-ORDERED DISTRIBUTIONS

by

Michael J. Lawrence

I. INTRODUCTION

Motivated by classical but somewhat unsatisfactory measures of skewness
and kurtosis, van Zwet (1964) introduced two partial orderings on the space of
distribution functions. Barlow and Proschan (1966a) investigated the
properties of linear combinations of order statistics from distributions
ordered in the sense of van Zwet but corresponding to positive random variables.
Our objective is to extend the results of Barlow and Proschan (1966a,1966b) to
distributions s~ordered in the sense of van Zwet but not recstricted to the
positive axis. If we were to confine attention exclusively to symmetric
distributions, this would be a relatively straightforward task. However, we
extend the s-ordering definition of van Zwet to include a wider class of
possibly skewed distributions. We obtain tolerance limits which are
conservative for a wide class of distributions. This class of distributions
is especially reasonable for measurement type data. In addition, we obtain
many results concerning linear combinations of order statistics from s-ordered
distributions. These results should be useful in robustness studies of
estimates and statistical tests derived for specified distributions such as
the normal distribution.

The basis of van Zwet's ordering between distribution functions, and
hence between random variables, is that one random variable can be expressed
as a convex or concave-convex transformation of another random variable, We
adopt van Zwet's notation for c-ordering: F £ G 1if and only if G-IF is
convex on the support of F ; and a more general definition of s-ordering:

F s G 1if and only if F(m) = G(m) = ! and G—lF is concave-convex about m ,
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on the support of F. If F and G are symmetric, then our definition of
s-ordering coincides with that of van Zwet. For convenience, we shall assume
that the median of F and G 1s the origin.

One expects that if F $ G then G 1is rore skewed to the left than F ,
If skewness is measured by the standardized odd central moments, then we would
expect (assuming for convenience that EX = EY = 0 , and that X (Y) has

distribution F (G) )

2k+1 2k+1
(1.1) £ B k=1,2, ...
, k¥ — 5 ks  ;
(EX™) (EY™)

Van Zwet proves this result and also that if 1 and n tend to infinity and 0
lim-% = r ,0<r<1l, then F g G if (1.1) holds asymptotically for some
fixed k , all 0 <r <1, and order statistics xi,n and Yi,n . If F
and G are symmetric, then F ; G would seem to imply that G has heavier
tails or more ''kurtosis" than F . Van Zwet proves this when the even
standardized central moments are taken as the measure of "kurtosis".

Barlow and Proschan (1966a,b) have derived tolerance limits for the
distributions which are c-ordered with respect to certain distribution
functions, as well as developing many interesting inequalities for linear
combinations of the order statistics from c-ordered distributions. They have
particularly exploited the properties of distribution functions which are
convex with respect to the exponential distribution, and have also introduced
and developed for positive random variables, the properties of the weaker

-1
star-shaped ordering; i.e., E__Eill is increasing in x for x on the

support of F and F(0) = 0 .

It is the object nf this thesis to develop some of the statistical

propertiies of distribution functions related by both s-ordering and star-




shaped ordering., We will be particularly interested in a natural class of
distribution functions--viz,, those which are s-ordered with respect to the
Laplace distribution (also called the bilateral exponential distribution).

Examples of such s-ordered distributions are:
U-shaped g uniform g normal s logistic £ Laplace g Cauchy

(cf. Van Zwet (1964), pp. 70-71, 72-73.)

There are numerous reasons why we are interested in studying the properties
of distributions related by s-ordering. The most apparent one is that very
often we do not know the exact distribution but because of physical consider-
ations we can make certain deductions about the properties of the distribution,
and hence do not want the disadvantage of a distribution-free approach. For
instance if we measure the length of an object, it is plausible that the
probability of obtaining an error in the range (|x|,[x| +5x) , given that the
error is at least |x| 1s increasing in |x| . The class of distributions
having this property are s-ordered with respect to the Laplace distribution,
Another example would be the commonly occurring situation where the normal
distribution is assumed, but we suspect that this is not true and that in fact
the tuails are heavier or lighter than the tails of the normal. We then wish
to know if the normal assumption is conservative or not., In short, we want to
know how robust the normal distribution is against s-ordered alternatives.

In Chapter I1, we develop some new inequalities for concave-convex
functions ¢ , when ¢ satisfies a skewness condition. These inequalities
are used in Chapter III to construct tolerance limits for distributions s-
ordered with respect to the Laplace distribution (these distributions we call
SIFR). We further investigate symmetric SIFR distributions by obtaining sharp

bounds on F symmetric and SIFR when given only the mean and the variance of

o el
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F . This is used to construct a confidence bound on the variance of F .
Also in Chapter III, the robustness of tolerance limits from the normal
distribution against s-ordered alternatives is investigated. Results are .
obtained for small sample sizes.
In Chapter IV, we are interested in inequalities for the order statistics
and their expectation when related by the weaker r-ordering. We say that
F S G 1if F(0) = G(0) = % and Q:l%i!l is increasing (decreasing) in x
positive (negative). Bounds on the expectation of the 1'th order stacistic
from F are given in terms of the expectation of the order statistics from
G when F ; G and F and G are symmetric. Also, an inequality relating
a linear combination of the expectations of the order statistics from F and .
G 1is given for F g G , G symmetric about the origin and the direction of
the skew of F known.
If F = G and F and G are symmetric, then we prove that not only are
the standardized even central moments of G greater than that of F but so

are the usual sample estimates of the standardized even central moments in a

stochastic sense.

Preliminaries

We adopt the following definitions:

(1) F £ G if and only if G_lF is convex on the support of F .

(11) F H G 1if and only if F(0) = G(0) = % and G-lF is concave-convex,
about the origin, on the support of F .

(i11) F s G if and only if F(0) = G(0) = % and Q:iﬁiil is increasing
(decreasing) for x positive (negative) on the support of F .

(iv) F 1is SIFR(SDFR) if and only if F g (;) G , where G 1is the Laplace
distribution; i.e., G'(x) = % e-lxl y =® < X < o ,

v) X%Y ifandonly if P(X <a) >P(Y<a), -=<a <.

L ]
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We assume throughout that F and G are continuous with median at the
origin. Note that F g G implies F s G.
Define F(i) to be the distribution of the i-th order statistic from F
a -1 -1
and F_ to be the distribution of |X|” . Since Geg)F(yy " G F ve-see

that

(a) F < G implies F

mA

G

(1) (1)

(b) F < G implies F

A

G

1) 1

If furthermore, F and G are symmetric about the origin, then for a > 1

(c) F g G 1implies Fa £ Ga ’
(d) F = G implies Fa £ Ga
on the positive axis. 1 ’

If G is symmetric about the origin and & = {G(6x) | 8 > 0) then a

— — - T

sufficient statistic for § based on a complete random sample é
Y = (¥;,¥,, .eo, Y)) 18 given by (|Y1|,|Y2|, e IYnl) . Suppose we are
interested in studying the robustness of statistics derived under the
assumption that the observations are distributed according to G when in fact
they are distributed according to F where F ; G . Since by (c), F ; G : !

implies F1 3 G1 , the results of Barlow and Proschan (1966a) apply to linear

combinations of the sufficient statistics for G .

Throughout we let X, < X, < ... < X (Y1 LYy S e :-Yn) be an ordered

sample from F (G) , and we observe that Y gt G-lF(X) where gt denotes

stochastic equality.

LA e ket X1,
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II. INEQUALITIES FOR CONCAVE-CONVEX FUNCTIONS

Some inequalities on concave-convex functions, interesting in their own
right and also required later on, will now be developed. We will need a slight
extension of a theorem by Hardy,Littlgwood and P6lya (1929). 1In this
connection, see also Barlow, Marshall and Proschan (1967) and Karlin and
Novikoff (1963) p. 1252,

We say that ¢ 1s concave-convex about the origin and defined on ({-a,b]

if ¢ 1s concave on [-a,0] and convex on [0,b] .

Theorem 2.1

Let u be a signed measure on ([-a,b] , 0 <a , b <=, then
(2.1) f¢(X)du(X) >0
-a

for all ¢ concave-convex about the origin, continuous at the origin, and

defined on ([-a,b] if aud only if

b b

(2.2) /xdu(x) =0, /du(x) = 0
-a ~a
and
-z' b
(2.3) /(x + z')du(x) + /(x - z)du(x) > 0
=a 2
for all
z ¢ [0,b]
-z' ¢ [-a,0]
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Proof
Suppose first that inequality (2.1) is satisfied for all ¢ concave-

convex about the origin, continuous at the origin and defined on [-a,b] .

Now (2.2) follows 1if ¢(x) = (+)1 or ¢(x) = (+)x , and (2.3) follows if

¢(x) 1is a "double angle function," i.e., a function of the form

X + z X i -Z
px) = 0 -z2' < x <z
X =32 X i Z .

Next, suppose that (2.2) and (2.3) hold. Since ¢ 18 concave-convex

about the origin and continuous there, there exists o , 8 such that
$(x) - ax - B >(<) 0 for x >2() 0 .
Hence we may assume that
¢(x) >2(<) 0 for x2>(<) O

Consider now a sequence of functions ¢n(x) such that each ¢n is the

sum of a finite number of positive multiples of “double angle functions" and
¢n(x) is increasing in n for x > 0 and decreasing in n for x <0 .
Since ¢ 18 concave-convex we can construct a sequence of functions

¢n(x) >(<) 0 for x >(<) 0 such that ¢n(x) converges upward (downward) to

¢ for x>0 (x < M , By construction
b

./f;n(x)du(x) 2@ 5

a

for each ¢ and (2.1) follows from the Lebesgue monotone convergence theorem. |




Remark

If ¢ 1in Theorem 2.1 1is not only concave-convex but also satisfies

¢(x) < -¢(-x) , then we see that the inequality (2.3) need only hold for all

z , z' satisfying z > z' .,

We will now prove a lemma which although fairly elementary is nevertheless

quite useful.

Lemma 2,2

n m
a + b,§, > x
121 1" 321 33
for all
L2y 2y, 14,20
1 3_61 26,2 .., 3_6m >0

if and only if

-
? K
a, + z bi > x for 0 < j <n
1 1 and 0 < k <m

{ 0

and we define z =0,

1
’ Proof
Let
i
n

! Yo T = % g i uJ - Yj - Yj+1 Y “a " "n
| m
i Vo =1 - % S

and

- —




T A+
(2.4) Au, + ) B v >x
0 33 0 k 'k
for all
n
0 <u, <1 , 0<j<n , and z u, =1
(2.5)
m
0O<v <l , 0O<k<m , and Z Ve = 1
0
if and only if
(2.6) AJ +B > x for 0 < j <n
0 <k<m

The proof 1is straightforward. If (2.4) is true for all uj v Vi satisfying

(2,5), then clearly the inequality (2.6) must be satisfied. If (2.6) is true,

then

!y ) P v 1
v u, (A, + B,) > v ux =x ,
k=0 <=0 1 3 K Tlp K ymo J

which completes the proof. ||

We would like to determine conditions on al,az, sees 8 such that

¢ aX)i a ¢(x,)
R Al T A

holds for all X LX) L eee 2% and all ¢ concave-convex. However, it is




possible to construct an example to show that no such inequality holds for all
¢ concave-convex, all ordered x's and a, $0,1 <1 <n. If we assume
that ¢ 418 concave-convex about the origin and ¢(0) = 0 , then a simple
additional condition on ¢ which admits a solution to our problem is
¢(x) < -¢(-x) for x> 0.

In proving the next theorem it is necessary only to consider ¢ such
that ¢(0) = 0, and ¢ 1s concave-convex about the origin. This can be seen
by making the transformation ¢*(x) = ¢p(x+c) - ¢(c) , 1f ¢ 1is concave~convex

about x = ¢ . To simplify notation we will define Aj = i a, and
1

Theorem 2.3
If ¢ 1s concave-convex about the origin and defined on (-=,b) ,

¢(x) < -¢(-x) for x>0, ¢(0) = 0 and ¢ 1is continuous at the origin then

n n
2.7) of ) a x, o )l a, ¢(x,)
1

for all X $X) < .. ixkioixk+1i eee S <b if and only if (2.8)

or (2.9) 1s satisfied, where

Oi-A +A <1

i IN=
(2.8) Ap <0 for 1 <i<k<j<n ,
A, - 0
J._.
d =A =0
q p
(2.9) 1 SAL AL S < A for O<p<r'<i<k<j<r<q<n ,
A, < -1
j_.

and r'(l <r' <k+1), r(k <r <n) are fixed.




11

Proof

It will be counvenient to assume X " 0 with a = 0 . Clearly we can

G always do this with no loss of generality.

We use Theorem 2.1 and adopt the measure

)
-1 , X = a,x
1 ;g |
a y X = X
u(x) = i t
n
= z a ,x= 0
1
0 , elsewhere
b y Clearly then
/du(x) - /xdu(x) =0

and hence from Theorem 2.1 we see that
oL agx;) - Tagotxp <0

if and only if

-z' 00

(2.10) < f(x + 2')du(x) -/(x - 2)du(x) < O

) +z
Y z ¢ [2',=]

-z' ¢ [’m’O]

In what follows we shall assume that

3
W
4




If no Xy exists, add an extra term X < -2z' and a = 0 . Similarly

add X41 > 2 if x, <z and let a4, =0.
Case (1)
n+l
Assume that -z' < § a;x, <z . Now the left hand side of (2.10) equals
0
8-1 =
- - - U - -— -
L Ai(x1 xi+1) As(xs +z') Ag(x2 z)
(2.11)
nfl _
- A (x, - x, ) -
pp 11 i-1
Since Xg =%, 20, x, - X;_1 2 0 and since these differences can be

arbitrarily small for suitable choice of the x values, we see that the

necessary and sufficient conditions for (2.11) to be nonpositive are

% Ay 5.0 1l <i <k
; (2.12)

If (2.12) holds then ) a;x >0 .

Case (2
n
Assume z < ) a;x, , and recall that =z > 2z' > 0., The left hand side of
1

(2.10) can be written as




k-1 n+l

z A, (x, - x,..,) + X A, (x, - x, ,) -z
0 i1 i+l K+l 11 i-1

s-1
- A (x +2') - ({) A (x

17 %41

_ ol
- A (x, -2) - A (x, - x, )
L7 41 171 i-1

=z == A +A, - 1) + fﬁil (-A_ + A . .) +
P L z 8 s+1 T
(2.13)

X X
el o L = g2y = -
CAg v A P+ A A ]

- ' -
Now from Lemma 2.2 and identifying x = —f— As + AQ - 1, we gee that the

necessary and sufficient conditions for (2.13) to be nonpositive are

(2.14) for s <h <k<g<#t ,

Since (2.14) must hold for all =z , z' such that

1)
z' <z <) ax

then from (2.12) and (2.14),

' - -
As(l--z—)+Ag—l-Ah_<_Ag-1-Ah ,

and we have that (2.14) holds if and only if -A Kg <1 for 0 <h<k,

k <g<n,
Thus, we have established the necessity and sufficiency of conditions
n
(2.8) for the case Z a,x, > -z',
jal 171 -
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Case (3)

Assume that Z a

z' . Note that 1f -z' < X; and z > X then

the left hand side of (2.10) is nonpositive. The left hand side of (2.10)

1% = -
can be written as

- z' z' Xg+1
z[(Az-z A + ) +—z(-AB+As+1) + N

X
+ g-1

-k, +4, )+ ...]

By Lemma 2,2, the necessary and sufficient conditions for (2.15) to be

nonpositive are that

for s <h <k«<g<2?
z' -
e (l-As) + As - Ah + Ag <0

By noting that if -z' < x. then A, = Ay =0 ,and if z> x then

1 0 n
Kg = Kn+1 = 0 , and that the above conditions must hold for all =z > z' ,

we see that the necessary and sufficient conditions for (2.7) to be true in
the case that z ajx, < -z' , are (2.9). Now from (2.9) we see that
) a;x; < x; and hence {f ) ajx; > -z' then the left hand side of (2.10)

is zero. ||

Remarks

1. We see that the only concave-convex functions which admit a solution
of (2.7) with all weights 535, ..., a nonzero are those which can be
generated from a double angle function with fl bounded above and below.

2. 1If in Theorem 2.3, we reverse the skewness condition on ¢ and set

¢$(x) > -¢(-x) for x > 0, then we can see from the proof of the theorem




that (2.8) is replaced by

0 <A, <1

3

Ai =0

for

and for (2.9) we need r' = k+1 .

By considering ¢*(x) = ~¢(-x)

Corollary 2.4

If ¢

¢ continuous at the origin and ¢(x) >-¢(-x)

o)1

-8 < X, < X, € 440
S s

or (2.18) is satisfied.

for all

(2.17) A

(2.18) 1

and r'(1 < r'

concave-convex dabout the origin and defined on

< k+l) , r(k < r < mn)

15

we get the following corollary.

(-a,=) , ¢(0) =0,

for all x > 0 , then

if and only 1if (2.17)

for O<p<r'<i<k<j<r<qsn »

are fixed.
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By noting that if ¢ 1s concave-convex then

can obtain similar inequalities for convex-concave functions,

trivially, we shall not include them here.

In the special case that ¢ 1is concave-convex and antisymmetric (i.e.,

¢(x) = -¢(-x)) , we can set z = z'

the necessary and sufficient conditions on 81585y «eey 8y

in the proof of Theorem 2.3 and obtain

is true for all ¢ concave-convex and antisymmetric.

case the result also follows directly from Lemmata 4.1 and 4.3 of Barlow and

Proschan (1966).

Theorem 2.5

If ¢ 1s concave-convex and antisymmetric about the origin and defined

on (-»,x) then

o) <}

1 1

for all x

1
satisfied.
6l & 1<t # Zj.i 1
(2.8) Ai <0 for
A, >0
j_

Ai 2 1
(2.19) A, < -1

]

A ‘1-\ = ()

ai¢(xi)

I 2 H <uk < J & n

for 0 <p<r'<i<k<j<r<qgs<n

-¢ 1s convex-concave, we

such that (2.7)

However for this special

Soees xS 0 <... < X if and only 1f (2.8) or (2.19) 1is

As they follow

i
pr—




Proof
The proof follows from Barlow and Proschan (1966) with the observation

that

n k n
) a¢(x) =] - a 0(-x,) + ] a d(x)

1 1 k+1
and hence the right hand side only involves ¢ convex on [0,®) . ||

Theorem 2.6
If ¢ 1is concave-convex and antisymmetric about the origin and defined

on (-=,®) then

for all X) S % S el $X

(2.21) 1is satisfied.

20 <... <x 1if and only if either (2.20) or

A 20
(2.20) Kjio for 1<1<k<jc<n
0_<_A1-Kji1
Ai < -1
(2.21) Kj > 1 for 0 <p<r'<ic<k<jc<r<gqgs<n ,
A=A =0
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I1I, TOLERANCE LIMITS AND CONFIDENCE BOUNDS

It wili be convenient to let X (Y) have distribution F (G) . We
assume that G 1is symmetric about the origin and strictly increasing on its
R support and that both F and G are continuous. Let X1 §_X2 < ven < Xn
E (Yl <Y, 2 ... f_Yn) denote an ordered sample from F (G) . We say that a

! random variable X 1is stochastically greater than a random variable Y ,

denoted by X 5% v , 4f P(X > x) > P(Y > x) for all x .
We construct tolerance limits by using the relevant inequalities of

|

!

‘ Chapter II to give stochastic comparisons between the order statistics from
; F and G when F 5 G . Consider for example Theorem 2.3. The weights

‘

81585y o0y @ in inequality (2.7) which must be selected to satisfy

conditions (2.8) or (2.9), are dependent on the value of the index k defined

—

ﬁ§ by X, < ... < Xk S0 Xk+1 ST Xn , which is therefore a random variable,

Let

I><

- (xl’XZ’ rIr Xn) denote a random vector of ordered observations,
Thus when making a stochastic comparison using inequality (2.7), the weights
must be chosen as a function of X , i.e., (al(g), very a (X)) = [a(X)]
We require that these weights satisfy conditions (2.8) or (2.9) for every
possible outcome, X ; and then say that [a] satisfies (2.8) or (2.9).

If we let ¢(x) = G-lF(x) in Theorem 2.3, then the condition
G-lF(x) :_-G-lF(—x) » X 20, will be satisfied, for example, if
G(0) = F(O) = 3% , G is symmetric about the origin and 1 - F(x) > F(-x) for

x>0,

Theorem 3.1

If F & G, G symmetric about the origin, F(0) = G(0) =} ,

f 1-F(x) > F(-x) for x >0 and [a] satisfies (2.8) or (2.9), then

‘—l‘l

==




b ]

s bl
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Proof

From Theorem 2.3 we have that if [a] satisfies (2.8) or (2.9), then

¢ 1F [fa(x)x <§a(x)c'lr(x)2t§a(y)y
s B S i ™ foal i

The stochastic equality follows from the fact that G-lF preserves
order with respect to the origin, and G-lF(Xl), G-lF(XZ), SO G-lF(Xn) are

jointly distributed as the order statistics from G . ||

Corollary 3,2

If F < G, G symmetric about the origin F(0) = G(0) =% ,

1 - F(x) < F(-x) for x >0 and [a] satisfies (2.17) or (2.18), then

n st n
c(gai@_)yi) 25 F %ai(gc_)xi)

If we let F be symmetric about the origin, we can similarly prove the

following:

Theorem 3.3

If F $ G,F and G symmetric about the origin and [a] satisfies

either (2.8) or (2.19), then

n n
c([ ai(pyi) 8¢ F(Z ai(g(_)xi) :
1 1




Corollary 3.4

If F ; G, F and G symmetric about the origin, and [a] satisfies

either (2.20) or (2.21), then

i i
c(z ai(_g)yi) g F(Z ai(g)xi) .
1 1
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3.1 Tolerance Limits for SIFR and SDFR Distributions

Barlow and Proschan (1966b) have considered tolerance limits for the
class of distributions which are c-ordered with respect to the exponential.
These distributions possess an increasing failure rate, and so arise naturally
when wear-out is present. The two sided analogue of the increasing failure
rate class is the class of distributions which are s-ordered with respect to
the Laplace distribution G , i.e., G'(x) =1 e-|x| . We will call the
distribution F SIFR(SDFR) when F £ G, (F 3 G) and G 1is the Laplace. We

note that this implies that F(0) = G(0) = % ., The distribution function F

with density f , F(0) = 3% is SIFR(SDFR) 1if I f ;(x) is increasing
(decreasing) in x for x > O and %%%% is decveasing (increasing) in x
for x < 0. Note that F need not be symmetric and that we chose the median

at the origin only for convenience. Recall that the normal distribution is
SIFR and the Cauchy distribution is SDFR.

The SIFR class can arise naturally when we are considering problems such
as the distribution of the error of some measurement, for here we would expect
that the probability of an error in the range (|x|,|x| + 6x) , given the
error is greater than |x| , would be increasing in |x| . We will develop
tolerance limits for F SIFR and F SDFR in the one sided case when F 1is
skewed and in the two sided case when F 1is symmetric,

If we have a complete sample and F 1s symmetric about the origin, then
it is an easy matter to construct conservative two sided tolerance limits for
F . We need only assume F 3 G where G'(x) = %3 e-|x|/9 . Then
(yfy < Y[, < vev s |Y| ) 1s a sufficient statistic for 6 and tolerance
limits for G may be constructed from these, Since Fa , the distribution

of |X| 1s star shaped with respect to Ga , the distribution of Y|
G 'F, ()

- is increasing in

(which is the exponential distribution) i.e,,




X , we can apply Theorem 3.1 of Barlow and Proschan (1966b). Let

r

y -1
6. a® 1-2-1 (n - +Dx (x|, = [X] )
and
- =2r log(l-q)
A,q,r x2(2r)
a
and
C** B -1
o max ( 0y r(n - r+l1) )
Then
*%k g

X)

C
a,q,r r,n =

PF / dF(x) > q > l-a

*% ~

-C 6 (X)

a,q,r r,n-—

However, if we have a censored sample and/or F 1is not symmetric this

inequality is not valid,

We will need to develop some properties of the Laplace distribution.

Given an ordered sample X) Xy 2 vee X 2 0 < Xpegp L oe0 Xn , we define

the statistic er',r,n(l) by
y kel r
e p & = IZH - 1R =X, )4 k-%-Z (n - i+ (X, - X, )

If Xl >0 let k=1 and if Xn <0 let k =n-1,
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We can easily verify that if xl :.xz < vee <X <0< xk+1 < __xn

are distributed as the n order statistics from distribution G where

G'(x) == e le/e » 6 > 0 (the Laplace distribution with scale parameter 6 ),

then the maximum likelihood estimate of the scale parameter 6 , given censor-

]

ship at r' and r where r' <k, r >k is

r
-X_, (r'-1) + E' |Xi| + X_(n-r)
r~r'+l

t
Hence we see thgt if r and r' are such that 1lim %— and 1lim i- exist

L@

ra=oen is asymptotically the maximum likelihood estimate

finitely then

for the scale parameter when X has the Laplace distribution with scale
parameter 6 .,

Lemma 3.5

If Y~ G where G'(y) =k e_IY| then

260 aD - X 2@@-r'-1)) .

(N.B. - denotes "is distributed as",)

Proof

If Y- G, the Laplace distributed function, then

P(Y <x+y I Y>y>0)=1 - e X

which 1s independent of y . Now if Yh is the hth order statistic from

G we have

P(Yh+l-Yh:;th y>0) = P(Y h+l>x+y|Y y>0) e




e T ———— -
ST Byt Sy

Theorem 3,6

and since this is independent of vy

Y. 2 & | Y, >0) = o (n-h)x ,

Py — Yy

or the random variable

(n-h) (Y Y, )

b+l = ‘h

given that Yh > 0 1is distributed as the unit exponential. Now from

symmetry we have

P(Y_  -Y >x| - (n=h)x

n-h “n-h+l- <0) = PUY

Y heh1< b1 Tp2X [ Y200 =

and hence the conditional distribution of 1( Y given Y <0 is

Yier Yy
exponential with mean unity, which completes the proof. ||

Let Hu (rl’r) = i.l_o.&(k_ql s and

'q o I
ng(r r'-1)

i+1

' 250, v _ r
Ha,q(r ,r) 1if xa2(r r'-1) < -2m log(l-q)

c* q(r',t) =

a,

1 2 (per'- " -
= if xa2(r r'-1) > -2m log(l-q)

where m = min(r',n-r+l1) .

We first give the tolerance limit on the tail probability, 1 - F , for

values to the left of the median.

1f F is SIFR, F(0) =% , 1 - F(x) > F(-x) for x > 0 , and

0 <q<’ then

* -
- ' - -
PF{l—F[C%Ith,rMN’nn@ﬂ ;lq}.zla
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Proof

Let G be the Laplace distribution, f.e., G'(x) =% e-|x| , then

from Theorem 3.1,

' = t 0 -
S NRIPHCO LI A B G 5t ¢ )]

for mH l_zq(r',r) > 1. It follows in this case that since
]

- ' Y = -
PG{ G[ Ha,l-Zq(r ,r)er,.r’n(l)] < q} l-a
we have
- [ a =)
PF {F[ Ha,l-Zq(r ,r)er.’r’n(_}g)] < q} > l-a .
Now if mH (r',r) <1, we note that

a,1-2q

1l - st l = d -
F <- ; ery,r’n(._)g)) f_ G (- ; er'.t.n(l)) i G <'Ha’l_2q(r ,r)er"r'n(_!))

which proves the theorem. ||
Clearly Theorem 3.6 implies a tolerance limit on the distribution F for
values to the right of the median. However, we shall not present this result,
We note that the tolerance limit in Theorem 3.6 achieves 1l-a
confidence for the Laplace distribution, (i.e., is sharp) only when
xi[Z(r—r'-l)] < =2m log2q . The following corollary gives bounds on q and

a such that this condition is satisfied.

Corollary 3.7

If F is SIFR, F(0) =%, 1 - F(x) > F(-x) for x>0, 1l-a z_l-e-1
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_ E=8'sl
m
and q<ke then
- = ' 8 > le —
Pp {1 F[ Hm.l-Zq(r ’r)er',r.n(&)] 21 q} 2t
Proof

From Theorem 3.6 it suffices to show that x§2(r—r'-l) < =-2m log2q .
Let K denote the chi-square distribution with 2(r-r'-1) degrees of
freedom. Then since log K(x) 1is concave, K(2(r-r'-1)) > el by Jensen's

inequality. Therefore

X2 (2(e-r'~1))

2(r-r'-1) on

Now
_r-r'-1
. m

q<ze
implies

=2m log(2q)

r-r'-1 Ay

and the result follows. ||

If F 1is SIFR and symmetric about the origin we have from Theorem 3.6

Corollary 3.8

If F is SIFR and symmetric about the origin, then

- ' a
Cq’q(r ,r)Or.,r’n(}g)
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In a similar way to Corollary 3.7 we obtain

Corollary 3.9

If F 1is SIFR, symmetric about the origin, 1l-a 3_1-e" and
r-r'-1

m

q > l-e , then

Ha’q(r' vr)erv 'r’n(l)

PF / dF(x) > q 2 1-a .

—Ha.q(r' )0 ’r’n(_&)

It can be seen from Corollary 3.9 that we generally have to truncate the
sample in order to have a sharp tolerance limit. For example, if we are
computing the tolerance limits between which 957 of the symmetric SIFR
distribution F 1lies with 997 confidence when n = 12 , we will need to set
r' =2 and r = 11 in order that the limits be sharp.

We now give the tolerance limit on the tail probability, 1 - F, for
values to the right of the median., We let

HOL q(r',r) if xiZ(r-r'—l) > =2(n=2) log(l-q)

if x§2(r-r'-1) < -2(n-2) log(l-q) .

Theorem 3.10

If F is SIFR, F(0) =% , 1 - F(x) > F(-x) for x > 0 and

0 <1l-q <'% , then
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Proof

Let G be the Laplace distribution, then from Theorem 3.1

' 3 st ' o
F[Hl-m,Zq-l(r ’r)er',r,n(éﬂ = G[ﬁl-m,Zq—l(r ’r)er',r,n(!ﬂ

for (n-2)H,_ (r'yr) <1 and % <q<1. It follows that since

a,2q-1

we have proved the theorem in the range

(n-2)H, (x'se) « 3 5

-a,2q-1

that is
2 '
xl_GZ(r—r -1) > -2(n-2) log2(1-q)

- |
Now suppose that (n Z)Hl—a,2q-1(r o) > 1 . By noting that

the proof follows. |

We note that the tolerance limit is sharp only when xi_QZ(r-r'—l) >
-2(n-2) log2(l-q) . The following corollary gives bounds on q and o such

that this condition is satisfied.

Corollary 3.11

If F is SIFR, F(0) ="' , 1 - r¥(x) > F(~) for x>0, l-a > l-e .
r-r'-1

and 1l-q > % e o-4 , then




29

- ' 8 = o
Pr {l F[Hl-oz.Zq--l(r ’r)er',r.n@] 21 q} zime s

Proof

By Theorem 3.10 we have only to show that
Xo_ 2(e=r'-1) > -2(n-2) log2(l-q) .

Let K denote the chi-squared distribution with 2(r-r'-l) degrees of

freedom. Since K 1is IFR, we have from Barlow and Proschan (1965) that

K[2(r-r'-1)] :_l-e-1 .

Now
x[x2 Me-r'=1) = i
l-a

therefore

If 1-¢q>%e , we have proved the result. ||

In noting that F(0) = ) by assumption, we see from Corollaries 3.7
and 3.11 that we can obtain sharp tolerance limits on 1 - F for most q ,

and a values of interest.

If F 4is SIFR and symmetric about the origin, we have from Theorem 3.10,

Corollary 3.12

If F 1is SIFR and symmetric about the origin, then
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Com e b 2 i

Cl-u,q(r"r)er',r.n(l(')
PF / dF(x) < qp > l-a .
! 1 q(r"r)erg'r'n(_x_)

Constructing a proof similar to Corollary 3.1l, we obtain Corollary 3.13

for the symmetric case.

Corollary 3.13

If F 1s SIFR, symmetric about the origin, 1l-a i_l--e_l and
r-r'-1

q < l-e n-2 then

=
Hl-a,q(r ,r)er.’r’n(ﬁ)

Po f dF(x) < q) > l-a

' (X)

sy —

- ' Py
Hl—q,q(r ,r)er

We see from Corollary 3.13 that the tolerance limit in Corollary 3.12 i

is sharp for most q and a values of interest. ;
Tolerance limits for SDFR distributions although probably not as useful
as those for SIFR distributions are nevertheless quite interesting. Again,

we give one sided tolerance limits when F 1is skewed and two sided limits

when F 1is symmetric.

Theorem 3.14

If F 1is SDFR, F(0) =% , 1 - F(x) > F(-x) for x>0, 0 <q<}

t
and (n-Z)Ha’l_zq(r »r) <1 then

- - ' a - -
i PF{ 1 F[Hm,l—Zq(r ’r)er',r.n(p] 21 q} 2im
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Proof

Let G be the Laplace distribution, then by Corollary 3.2
> ' ry st = ' a
F[Ha,l-Zq(r ’r)er',r,n(l)] = G{Hm.l-Zq(r ’r)er',r,n(li]

= 1)
for (n 2)Ha,1—2q(r ») < 1 . By noting that

PG{G[-Ha,l-Zq(r"r)ar',r.n(l)] iq} = l-q

we have proved the theorem. ||
Tn a similar way to Corollary 3.7 we see that if 1l-a > l-e-l , then

for the above tolerance limit to exist

2
x 2(r-r'-1) r |
IR R R T

Thus we see that we cannot achieve high coverage with this tolerance limit.
Now in the case that F 1is symmetric we can obtain two sided tolerance limits.

From Theorem 3,14 we obtain immediately

Theorem 3.15

If F 1is SDFR, symmetric about the origin, and (n-Z)Ha q(r',r) <1,

then

' (X)

: -
Ha’q(r .r)er o e

Pe / dF(x) > qp > l-a .

-Ha.q(r',r)g 7 = (X)

Again in a similar way to Corollary 3.7, we see that if 1l-a > l-e-1 ,» then

for the above tolerance limit to exist it is neceusary that




e
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2 '
xa2(r r'-1) r-r'-1 -1
Qcl-expl- gy sl-exp (-5 < l-e

and so high coverage is not possible.

Theorem 3.16

If F 1s SDFR, F(0) = , 1 - F(x) > F(-x) for x>0, % <q<1,

'
and mHl—a,Zq—l(r »r) > 1, then

- ' a - -
PF{l F[Hl-on,ch-l(r ’r)er'.r.n(l)] 21 q} 2 Lre

Proof

Let G be the Laplace distribution, then by Corollary 3.2,

1 b t ; =
l:‘[Hl-m,Zq-l(r ’r)er',r,n(g(-)] -g- G[-Hl-a,Zq—l(r ’r)er',r,n(l)]

for mH (r'yr) > 1 . By noting that

1-a,2q-1

Pc{G[Hl-a,Zq-l(r"r)er'.r.n(l)] iq} " L

we have proved the theorem. ||
If l-a > l-e-1 » then by similar reasoning to that used in Corollary 3.11,

we see that for the above tolerance limit to exist

2
X 2(1’-1"'1) [
l-qf_%exp(- l-a — ) i%exp(_:_s;l) .

m

It will thus be necessary to truncate the sample rather severely in order
that the tolerance limit on the tail probability exists.
If F 1is SDFR and symmetric about the origin, then from Theorem 3.16

we have,
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Corollary 3.17

If F 1is SDFR, symmetric about the origin and mH q(r',r) > 1, then
]

l-a

S
+H1_a’q(r .r)er.,m@)

Po / dF(x) < q ) > l-a . .
- ' a
Hl_a,q(r .r)er.,r’n(&

In the same way as for Theorem 3.16, the sample will have to be truncated

rather severely in order that the tolerance limit exists.

— e i e
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3.2 Tolerance Limits Based on the Standard Deviation

Frequently sampling plans are based on the assumption that the underlying
distribution is normal, which gives rise to tolerance limits of the form
ili_kls where x and s are the sample mean and standard deviation
respectively. If the mean u 1is known, which we will assume, the folerance
limits are of the form u + Azs . Since we are generally not sure that the
assumption of a normal distribution is correct, it is interesting to see how

robust the normal tolerance limits are against s-ordered alternatives. The

following theorem throws some light on this.

Theorem 3.18

If F s G and F , G are symmetric about the origin, then

lax AQY
Pp f dF(x) > a] <(>) Pe f dG(x) > a
l&x —lSY

for all a e [0,1] and A <1, (A > /n) , where

Proof

Define G, by

2

G, (x) = P(YZ < x)

and similarly for Fz . We see that G;le(yz) = [G-lF(y)]2 and by
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differentiation we find that G;1F2(x) is convex if G-lF(x) is convex

for x >0 . From Lemma 3.1 of Barlow and Proschan (1966a)

n
32 ! x? .
-1 1 4 LI T
G Bk} 50) n—; G, Fy(X])
2 2 ] 2. st 2
for A <1 (A" > n) . Since G2 F2(Xi) = Yi
2 2. st st 2 2
F,(0%s0) 25 G0 6,(A"sy)

The theorem now follows from the observation that F,(x) = F(/x) - F(-/x) . ||

Applying the strong law of large numbers we obtain

vorollary 3.19

If F ; G and F , G are symmetric about the origin, then

on AoY
f dF (x) 1/ dG(x) for A <1
-on -AUY

and oi is the variance of X .

This is the symmetric analogue of F(el) :_G(ez) , when F o G and
61 ’ 92 are the means of F and G respectively. [See Barlow and
Marshall (1964), Theorem 7.1.]

As an example of Theorem 3.18 we let G be the normal distribution with
known mean but unknown variance. If we consider the tolerance limits up * As
for G which contain 997 of the population with 997 probability we see that
if the number of observations from G is n then X > /o for n <18 .

Hence we can assert that if F < G, F symmetric and G the normal and both

n 4-—————-————-———-———*




with known means, then for a sample size less than 18, the 99% tolerance limit

with 992 confidence based on the normal is conservative for F .
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3.3 Confidence Bound on the Variance of a Symmetric SIFR Distribution

In order to calculate a confidence bound on the variance of a symmetric
SIFR distribution we need to develop bounds on the distribution in terms of
the mean, which we will assume to be zero, and the variance. We note that
two symmetric SIFR distributions with the same mean and variance must cross
at least three times. Bounds will only be given to the right of the mean,

bounds to the left following by the symmetry of F .
Lemma 3,20
If F 1is SIFR and symmetric about the origin with variance 02 , then
b 0 s x&o

F(x) >

-bx
l1-4e X >0

where b 1is a function of x and 02 and is given by the solution to

2
Aerloa(f g k)
b b

and the bound is sharp.

Proof

The bound for 0 < x < o is obvious and is attained by the symmetric
distribution with miss % at -0 and +0 . For x > o we consider the
distribution GT(x) which is symmetric about the origin and for positive

arguments is given by

GT(X) =




where b 1s determined by ?

-]

2 /xszT(x) - 02

0

We note that since F must cross G at least once in (0,) , and G-lF(x)

is convex for x > 0 that F(x) > Gray(®) » x 20 . |
Lemma 3.21

If F 1is SIFR and symmetric about the origin with variance 02 , then

—_— -~a(x~A)
0<a<o 0<x=<o '
F(x) <
]
1 X >0 ’

where a 1is given by the solution to

Proof 1

Consider the distribution GA(X) » symmetric about the origin, and which |

for positive arguments is given by |

o
o
| A
E
| A
o>

1 -y e-a(x-A) x> 8 X

and where a is given by
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w0

2 /xszA(x) = 02

0

and A 1lies in the range 0 < A < 0 . Since GA(x) is SIFR with mean zero
and variance 02 , it must cross F at least once in the interval (0,«) .
Let GA cross F from above at x = u(A) . If u(A) does not exist set

u(d) = » ., Let us consider the following two cases:

Case (i) u(0) > o

Since G-lF(x) is convex for x 1.0 , we see that

F(x) < Gy(x) 0<x<o

Case (ii) u(0) < o

Since G-lF(x) is convex for x > 0 , we see that u(4) ¢+ 4 , u(o) = =

and u(A) 1is continuous in A on the positive support of F . Therefore

F(x) < sup e_a(u-A) 0O<x<o .

O<A<o
The bound for x > o 1is obvious and is achieved by the distribution with
mass % at x = -0 and x = 40 . ||
We are now in a position to derive a lower confidence bound. on the

variance of a symmetric SIFR distribution.

Theorem 3.22

If F 1is SIFR and symmetric about the origin, then




2 x2 2(r-r'-1)
- 252 (X) exp |- l-a
K 2(n-2)

-1
(k (n—2)-2 + 2 ([n-Z][%i_QZ(r-r'-lﬂ ) +

+ 4[*2

—

-2
_a2(r-r'-1ﬁ ) > l-a

; Proof

From Lemma 3.20 we have the bound

F(t;0) > h(t;o) =

1 -% e-bt t >0 ,

and b 1is given by the solution to (3.1). If G 1is the Laplace distribution,

then since F 1is SIFR

{
1
—1— a St l = 1 N ]
G [n-z et.’r.n(_)] 5" F [_n-Z er.’r’n(_kg)] > h [—n-Z er.’r’n(_x_) ; o] y !
Since
2 e
xl_a2(r r'-1)
0 - i 2(n-2)
PG < (n-Z er',r,n(—')) s
we have

2 '
xl_aZ(r r'-1)

! | 1 2(n=-2)
Pt (n-2 er'.r.n(i) I U) <l-=%
2
x5 2(x-x"-1)
- PF 02 > b : i 2 > l-a
26 _, (X)




since

o+ b.

Hence we have the result. ||
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IV. PROPERTIES OF THE ORDER STATISTICS .

Marshall, Olkin and Proschan (1965) and Barlow and Proschan (1966a) have
developed inequalities for order statistics arising from distributions F
and G in the case that G-lF is starshaped on the support of F and
G(G') = F(0') = 0 . Van Zwet (1964) has extensively treated inequalities for
the expectations of order statistics arising from c-ordered and symmetric
s-ordered distributions. These inequalities are not only interesting but are
useful in developing bour-: and giving insight into the nature of convex and
concave-convex transformations. We shall develop inequalities for the order
statistics and for power combinations of the random variables in the case of
two symmetric r-ordered distributions, except for one inequality where we
require the stronger s-ordering. The inequalities reflect the fact that an
antisymmetric starshaped transformation of a random variable shifts mass to
the tails,

Barlow and Proschan (1966) showed that if F(0) = G(0) = O and 9:1%&&1
is nondecreasing in x > 0 , then the ratio of order statistics EYi,n/EXi,n
is also increasing in i = 1,2, ..., n for all n ; i.e., r-ordering on the
positive axis i8 preserved by the expected values of the order statistics.

EX, ]

Van Zwet (1966) showed that if F é G then i41,n = o

[EYi+l,n - EYi,n]/[EX
is nondecreasing in i = 1,2, ..., n for all n . He also proved that if

F g G, F and G symmetric about the origin, then the expected values of the

order statistics are similarly s-ordered. Independently of van Zwer we

proved a related result, ramely that for r-ordered symmetric distributions the

expected values of the order -’ ~tistics prese:ve the ordering.

We shall need the concept of total positivity. A function K(x,y) of

two real variables x ¢ X, y e Y , where X and Y are ordered sets, is

said to be totally positive of order r (TPr) if for all 1 <m<r,
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X, s X, < e j_xm and Y1 < Yy S oeee :_ym , where each X, € X, yy € Y
we have the determinantal inequalities

m

>0 .

K(x,,y,)
2 i1

For further treatment of TP functions and their properties, see Karlin (1964).

It is convenient to define

n'

. i-1 n-1i
(1-0) ' (n-1) ! F© "(x) (1 - F(x))

K(i,n,x) =

We will need the following well-known result:
Lemma 4.1
&(i,n,x) is TP_in i = 1,2, ... and -= < x < =

Froof

Since

k

F(xi)
— (x1 Ll Xy & Ly 8 X Q o < ay (SRR an)
F(xi)

is a generalized Vandermonde matrix, we know (see Gantmacher (1959), p. 118)

that it is totally positive. The lemma follows. |

Theorem 4.2

Let F ; G, F and G symmetric about the origin, then

Exi r. n n
— —_ -—
(1) = ¢11[2]+1,1i<[2]+1
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EX EX
(11) EYn—:l+1,n EYi,n tn>1i .
n-i+l,n i,n
Proof

Let

h(i) = /(x - ¢G T F(x))K(1,n,x)dF(x)

xi n
= —.
EYi,n EY c 0
i,n

Since F 1s symmetric, we have that

n
h(i) = -h(n-i+1) for 1 > r I B
i.e., h(i) 1is antisymmetric about H%L.. Since K(i,n.,») 1is TP_ for

i=1,2, ... ; < x <o and (x- cG-lF(x)) changes sign at most three
times for c > 0 , we have by the variation diminishing pruperty of TP
functions that h(i) must change sign at most three times. If h(i) does
change sign three times then the order of the signs must be the same as for
n+1

(x - cG-lF(x)) ; viz, + = + - . Since h(i) 1is antisymmetric about 7

EX
we see that E?ilﬂ'* i 3_[%] + 1, proving (1).
i,n

(i1) may be most readily proved by a geometrical argument,

By conditioning on the (n+l)st observation, we see that

i i
B 5 F <l - n+1)Exi,n+l T %) nel

and hence for n < 2i we obtain the following diagram from which we observe

EY

—adl +n for n.< 2i .

E'\:I.,n
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I

EYi+1,n+1
EYi,n
EYi,n+1
.
B 041 BRy s X141 ,n+1
Similarly we can show that
EYi -
——— +n for n>2i . ||
EX =
i,
We are now in a position to obtain bounds on EXi n Note that
?
EXp-
hxi,i I‘.Xi’n ) [E] + 1,n
EYi i EY n — EY - !
J ' [-f] + 1,n
for 1 3_[%] + 1, and where [g] is the smallest integer larger than or
equal to %-. The first inequality follows from Theorem 4,2 (ii), and the

second from Theorem 4.2 (i), If

e-/IxIdF(x) i

then
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2
-OEY1 -GEYi
in_< Ex <——ln_ .
EYp~ — 1,n — EY
[EJ o 1,n-i+1
2 ]

Using Theorem 4.2, inequalities for linear combinations of order
strtistics from r-ordered distributions may be derived in much the same vay
as Barlow and Proschan (1966a) do for star-shaped ordering (i.e.,

F(0) = G(0) = 0 and G-lF starshaped on the support of F). As these
inequalities parallel those of Bariow and Proschan (1966a) we shall omit them.

Van Zwet has obtained necessary and sufficient conditions on

81585, cooy a such that

n n
F(ZaEx )iG<ZaEY
i=1 1" "1i,n 1=1 i""i,n

*
for F é G . We derive sufficient conditions on 8158y, oy a such that
the above inequality is true when F $ G . We strongly believe that these

conditions are also necessary but have not been able to show this,

Theorem 4.3

If FgC,G symetric, F(0) = G(0) =% and 1-Fx) @ Fx) , x> 0

then

n n
(4.1) F(Z a EX, n) < c([ a EY, n)
1 4 1 ‘

when

*
Personal communication.
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' Sl A YR o DI R D1 I
(4.2) 0 < jzo (j) Aj+1[y (1-y) +y “Q-y) ]-Al <1
and

n-1
n\ - n-j i o=
(4.3) jZO (J) Ay v (1-y)” -A T 0

for all %<y <1.

Proof

We prove (4.1) for the unbracketted inequalities first,

I Let

¢ n: i-1 n-i_,
LGS TR (a2 (SR e

Now by letting ¢ = —F—lc the theorem can be re-expressed as follows. For
¢ concave-convex about the origin and ¢(x) < -¢(-x) for x > 0 and G

is symmetric about the origin then

(4.4) o /xh(x)dxf_/tb(x)h(x)dx

1

1f (4.2) and (4.3) are satisfied for all ! <y < 1 . By an argument similar

to that used in Theorem 2.1 we can see that (4.1) is true if and only 1f (4.4)

{
holds for all X3 c2) Xq >0 , when ¢ is a double angle function: i.e.,
X + X, for x < -x,
$(x) = 0 for -x, < x < x;

S e e e cm—.———— - c———— a1




For ¢ a double angle function, (4.4) becomes

g
-

-x Qo
: jo (:H-xo)h(x)dx +f (x—xl)h(x)dx
? o X1

[- -

| minf O, th(x)dx + x

- 00

| ! (4.5) maxfo0, /xh(x)dx - x ) xh(x)dx >0
i 4
) /xh(x)dx <0
n

Let p(y) = §. 1 m y (1- y) and substituting y = G(x) ‘f
in (4.5) we obtain

l-yo 1
€y - Tramyptnay + f €y - ¢HyIetnay
0 ¥y -
1 1
(4.6) | max o,fc‘1<y>p<y>dy - ¢ryp] for /c‘l(ymy)dy >0
0 0
,
1 1
min O,‘/‘G—I(Y)P(y)dy - G-l(l-yo) for /G_l(y)p(y)dy <0 ,
0 0

and (4.1) is true if and only if (4.6) is true for all 1 > Y1 2 Y9 2 ]
and all G-:L strictly increasing on (0,1) and antisymmetric about % .
We shall now show that (4.2) and (4.3) together imply (4.6).

From the well-known equality ’

i-1
n! RPN o Y A P |
(n-1)!(i-1)! _/y S = jZO <j> AL
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we see that (4.2) is equivalent to

1-n 1
(4.7) Oi—/p(y)dy +/p(y)dy11 5 s In K B
0 n

and (4.3) is equivalent to
l-n
(4.8) S f p(y)dy > 0 ten <l

0

Let G (x) be a "double step function"; that is for s in Sl I

1
[
(o]
| A
»®
| A
[
!
3

If (4.7) and (4.8) are true we can see by substitution that

1

fG'l(y)p(y)dy >0 and
0

l-y 1

0 1 -1 -1 -1
f (G “(y)-G (l-yo))p(y)dy +f (G “(y)-G (yl))p(y)dy
0 y1
1
=1 -1
> max 0,/0 (Yp(y)dy - G (yl)
0

Since any strictly increasing function defined on (0,1) and antisymmetric

about ! may be approximated arbitrarily closely from below (above) for

x> % (x <) by a positive multiple of double step functions, and since

SN S



L i Ry e AT G ST

.

= 4

for a >0

i ]
1
Lo, max 0.[GI1(y)p(y)dy = G;I(yo)
0
1.
> max[0, Jo, f 6 Py - 6o |
0

the theorem follows by the Lebesgue monotone convergence theorem. If
1 - F(x) < F(-x) the proof follows in a similar way. ||

Similarly to Theorem 4.3 we obtain

Corollary 4.5

If F < G , G symmetric, F(0) = G(0) =% , 1 - F(x) (i)F(-x) o 20,

F@ aiEXi") > G@ aiEYi,t)

EY exists then
i,n

if

n-1
SR (2) Rl an™ s land, <o

and

n-1
n\ - b n-j (<)
L) sarer ¢

for all ) <y <1.

If F 1s symmetric we can deduce the following corollary from the proof

of Theorem 4.3.
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Corollary 4.6

If F £ G, F, G symmetric about the origin and EYi = exists then
»

n . n
F{) a EX ) (7 a.Ey
1 i 1,n 3 1 i "i,n

if
0 (2) 2 (n) Kj+l[yj(1_y)n—j + yn-j(l-y)ﬂ -Kl (é:_i)

for all Y <y <1.
Van Zwet (1964) proves that if F 5 G and F , G symmetric about the

origin, then

i m
b - b
Elx%] [E]v1?]

(4.9) for 0 <a<b

for those values of a such that E|Y|? exists and

L2k 2k
(4.10) X B - for k = 1,2,

(EXZ) (EYz)

“

for those values of k for which EY‘k exists. We will prove a stronger
result; namely that given F g G then the inequalities (4.9) and (4.10) hold
stochastically for the usual estimates of the expectations, and hence by the
strong law of large numbers, for the expectations themselves.

We need to introduce the concept of majorization, and one of the theorems
applying this concept. For a fuller treatment see liardy Littlewood and Pélya

(1959) and Ostrowski (1952).
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Definition

(1) A sequence a = (ai, e Toxs an) is said to majorize a sequence

g-(bl, ""bn) (written a >b) if a, > ... >a , b > ... 2b , and

1 - n 1 -
r r n n
gailgbi for r=1, ..., n-1, while §31=§bi.

Theorem 4.7 (Hardy, Littlewood and Pélya)

If ¢ 1s convex on the interval I and x>y where Xps eeey X

Yir s ¥g belong to I , then
n
§ ¢(x) > 1 o0y

Theorem 4.8

If F ; G, F and G symmetric about the origin, then

P ]
)
1

[F]

and if EIYIb exists then

(1)

x5 118
Elx[2) . Elv)
(L) b = b

(E|X]®) (E]Y])
Proof

Raise to the ath power the absolute value of the observations from F

and ordzr so that

X132 IxI5 2 e 2 (Xl
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Now if Fa(x) = PF(IX|a <x) ,a>0 wesee that G;IFa(xa) = [G-lF(x)]a and

since Si—-gﬁll t x >0 we have

If follows from a theorem in Marshall, Olkin and Proschan (1966) [cf. Barlow

and Proschan (1966), Theorem 3.12] that

0 o1 X
[
| A
r
0~

i=1

for k=1,2, ..., n.
Now from Theorem 4.7, by considering the convex function ¢(x) = x© >

Xx >0, ¢ >1 we obtain the stochastic inequality

n
AR AL
1 st 1

Letting ac = b we obtain

Now if E|Y|b exists, then E|Y|® exists and by a limiting argument

we can see that E[X|b exists. (ii) is then true by the strong law of large

numbers. ||




Corollary 4.9
1f F ; G, F and G symmetric about the origin, then

T 2rk : n |
1%

® (2 (o) = |
! (1 1

(11) 1f Eerk exists then

Ex2rk ) EY2rk

(x%%) (EY?%)

Corollary 4,10

If F 5 G, F and G symmetric about the origin and Ethk exists, then

Exirk EYirk
e for k=1,2, ...

2r 2r

(EXi ) (EYi )

Proof

The proof follows in the same way as for Corollary 4.9 and by the

-1 =1
observation that G(i)F(i)(X) = G "F(x) , where F(i)(X) = P(Xi <x) .
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