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FOREWORD

"Thermal radiation" in electromagnetic radiation emitted by tatter in a

state of thermal excitation. The energy density of such radiation in an en-

closure at constant temperature is given by the well known Planck formula.

The importance of thermal radiation in physical problems increases as the

temperature is raised; at moderate temperatures (say, thousands of degrees

Kelvin) its role is primarily one of transmitting energy, whereas at high

temperatures (say, millions of degrees Kelvin) the energy density of the radi-

atiorn field itself becomes important as well. If thermal radiation must be

considered explicitly in a problem, the radiative properties of the matter

muist be known. In the simplest order of approximation, it can be assumed

that the matter is In thermodynamic equilibrium "locally" (a condition called

local thermodynamic equilibrium, or LTE), and all of the necessary radiative

properties can be defined, at least in principle. Of course whenever thermal

radiation must be considered, the medium which contains it inevitably has

pressure and density gradients and the treatment requires the use of hydro-

dynamics. Hydrodynamics with explicit consideration of thermal radiatio.. is

called "radiation hydrodynamics".

In the past twenty years or so, many radiation hydrodynamic problems

involving air have been studied. In thi-s ,.-rr a great deal of effort has gone

into calculations of the equilibz -. i properties of air. Both thermodynamic

and radiative properties have been calculated. It has been generally believed

that the basic theory is well enough understood that such calculations yield

valid results, and the limited experimental checks which are possible seem to

support this hypothesis. The advantage of having sets of tables which are

entirely calculated is evident: the calculated quantities are self -conbistent

on the basis of some set of assumptions, and they can later be improved if

calculational techniques ir* improved, or if better assumptions can be made.
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The origiv, of this set of books was in the desire of a number of persons

interested in the radiation hydrodynamics of air to have a good sourre o(

reliable information on basic air properties. A series of books dealing with

both tLeoretical and piactical aspects wa6 envisaged. As the series materalized,

it was thought appropriate to devote the first. thre vu'umes to the equilibrium

properties of air. They are-

The Equilibrium Thermodynamic Properties of Air.
by F. R. Gilmore

The Radiative Properties of Heated Air,
by B. H. Armstrong and R. W. Nicholls

Tables of Radiative Properties of Air,
by Lockheed Staff

The first volume contains a set of tables along with a detailed discussion of the

basic models and techniques used for their computation. Because of the size of

the related radiative tables and text, two volumes were considered necessary.

The first -.ontains the text, and the second the tables. It is hoped that these

volumes will be widely useful, but because of-the emphasis on very high tempera-

tures it is clear that they will be most attractive to those concerned with nuclear

weapons phenomenology, reentry vehicles, etc.

Our understanding of kinetic phenomena, long known to be important a-id at

present in a state of rapid growth, is not as easy to assess as are equilibrium

properties. Severe limitations had to be placed on choice of material. One

volume is offered at this timv•e:

Excitation and Non Equilibrium Phenomena in Air,
by Landshoff, et al.

It pr vides material on the more important processes involved in the excitation

of air, criteria for the validity of LTE and special radiative effects.

A discussion of radiation hydrodynamics wab felt to be necessary and another

volume was planned to deal with this topic:

Radiation Hydrodynamics of High Temperature Air,
by Landshoff, Hillendahl, et al.

It is not ready for publication at this time. It will review the basic theory Uf

radiation hydrodynamics and discuss the application to fireballs in the atmosphere.

The choice of material for these laot two volumes was made with an eye to

the needs of the principal users of the other three volumes.
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Moat of the work on which these volumes are based was supported by the

Uc•jic Siates Government through various agencies of the Defense Department

and the Atomic Energy Commission. The actual preparation of the volumes

was largely supported by the Defense Atomic Support Agency.

We are indebted to many authors and organizations for assistance and we

gratefully acknowledge their cooperation. We are particularly grateful to the

RAND Corporation for permission to use works of F. R. Gilmore and H. L.

Brode and to the IBM Corporation for permission to use some of the work of

B. H. Armstrong. Most of the other authors are employed by the Lockheed

Missiles and Space Company, in some cases as consultants.

Finally we would like to acknowledge the key role of Dr. R. E. Meyerott

of LMSC in all of this effort, from the initial conception to its realization.

We are particularly grateful to him for his constant advice and encouragement.

Criticism and constructive suggestions are invited from all readers of

these books. We understand that mucm remains to be done in this field, and

we hope that the efforts represented by this work will be a stimulus to its de-

velopment.

The Editors

J. L. Magee

H. Aroeste
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Preface

This volume is concerned with all theoretlcal aspects of the transmission

of theruma radiation in equilibrium air. It was prepared by Dr. B. H. Armstrong

and Professor Ralph Nicholls with some assistance from the Lockheed staff.

The princ•pal ob.,,~ctive of this work is the description in detail of

models and approximations which have been made in calculations of absorption

coefficients for air and its constituents. It cannot always be assumed that

the basic theory is well-known, and some effort is made to present key

derivations and discuss points which have frequently been allowed to remain

obscure in treatments of this sort. In contrast with the situation in thermo-

dynamic properties, we can expect very significant developments in both

theory and models in the future, and the presentation here is to be con-

sidered as a status report. However, the authors have prepared a very

scholarly work which should be widely useful.

The reader is expected to have some knowledge of quantum mechanics

and a certain amount of familiarity with atomic and molecular .,tructure.

Such a reader will be able to understand current work in thermal radiation

after mastery of the material presented here.

In a companion volume we have presented an extensive compilation of

tables of radiative properties of air. Nevertheless, we have felt that the

inclusion of some tables and figures summarizing the most important of these

properties in the present volume would substantially increase its usefulness.

Such material is presented in Appendix A.

We would like to thank Dr. Armstrong and Professor Nicholls for their

splendid cooperation. Thanks are also due the IBM Corporation for allowing

Dr. Armstrong's work to be included in our series on "Thermal Radiation.

J. L. Magee

H. Aroeste
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Chapter 1. INTRODUCTION

This volume is one of a set which is concerned with all aspects of

thermal radiation phenomena in heated air, over a wide range of temperature

and density. Thermal radiation phenomena are meant to be those which arise

due to or are related to, the passage of electromagnetic energy through an

atmosphere of some type when significant interaction occurs between the

radiation stream and the atmosphere. It is usually implied that some type

of partial thermal equilibrium is produced by this interaction, although not a

complete one, of course. In the case of complete thermal equilibrium, there

can be only an uninteresting homogeneous system with no net transport of

radiation at all. Radiation is a significant mode of energy transfer in all gases

at sufficiently high temperatures, and in many situations at low temperatures

as well. Since radiative energy transfer is controlled by the absorption coefficient

which is, in turn determined by the microscopic atomic and molecular, and

the statistical/thermodynamic properties of the medium, much of these volumes

are concerned with these underlying properties. In particular, after a brief

introduction to the theory of radiative transfer limited to conditions of local

thermodynamic equilibrium, the present volume is mainly concerned with the

detailed application of the basic quantum theory of radiation to real atomic

and molecular systems. The transfer problem only reappears occasionally to

guide this application into the practical channels which constitute the

raison d'etre of the book.

Although radiation transport is now of wide interdisciplinary application,

most of its basic developments were made in an astrophysical milieu. Some

of its contemporary applications are in stellar, solar and planetary atmospheres

and aeronomy, in meteor, missile and rocket re-entry phenomena, in
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combustion physics and chemistry, and in plasma and weapons physics.

Towards very high temperatures there are fewer contributing effects and

therefore the situation is conceptually somewhat simpler. Fig. 1.1 illustrates

some significant subdivisions and interrelations towards the high-temperature

limit of our considerations. As one progresses downwards in temperature, the

effects and interactions proliferate and become, at our present state of knowledge,

more fragmented and diverse, so that we will not attempt an illustration in this

case,

A large fraction of the work dating from World War II on specific

problems in the above fields of application has been motivated by defense

needs and financed by government contracts. As a result, much of the literature

on the subject is comprised of unpublished and therefore unrefereed contract

reports which are not universally available to the scientific community. Much

of the work described in this "grey" literature (Goody, 1964) is important,

but some obscurities and errors in an already complex field have propagated

through these reports. Other problems due to the particular history of this

field have also occurred. For example, a perusal of the reports concerned

with opacity calculations shows a considerable repetition of some of the formal

arguments involved in justifying the calculations (although not in the calculations

themselves), and a lack of assignments of priority, or acknowledgements. There

has also been a substantial lack of cross referencing. This has all been due in

part, of course, to the classified nature of some of the projects, particularly

the earlier ones, and the fact that even the unclassified reports were oiten not

readily available to some of the authors, who then found it necessary to repeat

some of the derivations. However, once such a situation has been created it

is generally self stimulating even in the absence of the original causes, due to
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the large amount of effort which must be expanded to ameliorate it. We hope

the present volume will help to exorcise these ghosts; however, all the

relevant material has still not been declassified so that this goal cannot be

completely reached even at the present time.

The initiation, not long ago, by Prof. S.S. Penner of the journ-l of

Quantitative Spectroscopy and Radiative Transfer has done much to provide

an appropriate vehicle for the open publication of this work, and the reader

is referred to that journal for recent research papers on topics discussed in this

volume.

Formidable experimental difficulties associated with the controlled

laboratory study of really hot gas( a have limited most experimental work in

the field to temperatures below 20,000 K. Thus, much reliance has had to be

placed on theoretical research involving modeis of increasing realism, complexity

and sophistication. As implied above, the basic theory employed has its rootz

in (a) astrophysical discussions of the transfer of radiation through stellar

envelopes, and (b) in the applied quantum mechanics of the radiative properties

of atoms and molecules. The bulk transport of radiation through hot gases is

usually discussed in terms of the radiation absorption coefficient, which is a

phenomenological parameter of the material through which the radiation passes.

This absorption coefficient in turn, can be specified as a function of wavelength

and absorber gas properties by recourse to quantum theory and statistical

mechanics. From a detailed knowledge of the "spectral" absorption coefficient

of the gas, realistic mean absorption coefficients can be derived in terms of

which radiation transport may more conveniently be discussed. In addition,

if conditions of local thermodynamic equilibrium prevail, absorption coefficients

3
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are related by Kirchoff's la.w +60 GtMission Cueificients of the gas.
The macroscopic absorption coefficient is comprised of two factors.

These are (a) the Population- of the absorbing species and (b) the cross
section per particle, or the microscopic "absorption coefficient". The first
of these factors is obtainable from statistical mechanics, and a full discussion
as well as tables are given, in the volume of this series, The Equilibrium
Thermodynamic Properties of Higa Temperature Air by Gilmore. In order that
the statistical mechanics treatment be realistic, accurate information must
be available on the thermochemical properties of the absorbers, and on

equilibrium constants, when chemical processes (dissociation, etc.) that can
o'-cur are also temperature dependent. The second of these factors requires a
quantum mechanical description of atomic/molecular structure to determine
radiative transition probabiltties and is discussed in detail in subsequent
chapters of the present volume. Realistic atomic and molecular models are
needed for adequate calculations of this second factor. Careful experimental
measurements of atomic and molecular properties are also needed in order to
assess or verify the quality of the models selected. Much progress has been
made during the past two decades in the approximate, y.t realistic quantum

mechanical analyses of complex atomic systems.

It should be emphasized here that both the above-mentioned aspects
of the problem of tIhe theoretical calculation of absorption coefficients require
the strong support of experimental programs that can provide the basic atomic
and molecular data on which the calculations ofter, depend. Thus, experimental
work in this field (among others, of course) occupies a dual role, since it
must provide some of the basic input information as well as serve its traditional

role in verifying the outcome of calculations.

h __



It has come as a surprise to many that all such basic measurements were

not made long ago. The growth of research institutes in "Laboratory

Astrophysics" is indicative of the large amount of atomic and molecular physics

left to be done.

The study of absorption coefficients of air may be further subdivided

quite naturally into two parts as a function of temperature. At low temperatures,

say below 12,0000 K, most of the absorbing species in air are molecular, and

both the statistical mechanics of absorber populations, and the quantum theory

of absorbing transitions must be couched in molecular terms. At higher

temperatures, air becomes a multispecies ionic gas. Theory (both

statistical and quantum mechanics) is far more developed for atomic than for

molecular species, and realistic calculations can be more readily carried out

on both aspects of the absorption coefficient, as is shown in later chapters.

The realistic and comprehensive theoretical studies that can now be

carried out or have been performed in the past decade have only become

possible due to a number of circumstances. The availability of large-scale,

high-speed digital computeri, the experimental provision of relatively good

critical experimental data, and the development of detailed and cogent

theoretical models and methods, have all been necessary conditions which

nad to be established before such work as is discussed herein could be

seriously undertaken. It is interesting to note that the accurate calculation

of opacities covers a remarkably wide range of physical phenomena and theories.

While crude opacity values are relatively easy to obtain, accurate values are

very difficult to calculate. Even though, for most aspects of the cailculations,

the basic physical processes are reasonably well understood, the carrying out

of the necessary calculations is a tedious and complicated task, and long-term

efforts are required.

i It ilr li In ' • i | ,4 t' '•i • " w



As a commentary on the recent development nf a rvi1tv,,y ... ,s.

scientific field, it is worth observing how much the need for air opacity

values (In view of the character of these aquantities) has stimulatcd reseaich

or. such a wide and otherwise di- erse variety of topics.

The plan of this volume, in detail, is as follows: the volume is divided

Into two parts, the first of which (Part A, Chapters 1-4) contains the basic

theory of radiation transport, and the quantum theory of radiation as applied

to individual atomic and molecular species. The second part (Part B, Chapters

5-8) discusses the calculation of the opacity of heated air based on the theory

presented in Part A. Chapter 2 reviews the elementary theory of radiative

transfer to establish definitions used later in the book, and to present the

overall scope of the problem. Chapter 3 reviews and discusses that part of

the quantum theory of radiation by atoms which is needed for the applications

discussed in Chapter 8. The formal results of the theory are reduced to the

formulas for specific radiative processes, and some clarifying and comparative

comments are made on the equivalent formulae derived by a number of authors.

Chapter 4 extends the theory of Chapter 3 to take account of radiative transitions

i olecular species. Chapter 5 is a brief historical review of research over

thk, ast few decades on absorption coefficients and opacity, and is included

to pla,-o the discussion of later chapters in correct perspective. Chapter 6

disc! ses the general features of the spectral and mean absorption coefficients

introduced in Chapter 2, as applied to a real multicomponent gas such as air.

Some inequalities and bounds for the mean absorption coefficients are derived.

After the historical discussion of Chapter 5 and the review of the general

features of air absorption coefficients of Chapter 6, the remaining discussion

is arranged in order of ascending temperature. Thus, Chater_7 reviews
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opacity calculations on air up to temperatures of about 20,0000 K, i.e. , the

region where molecular contributions dominate the system or cannot be naealemed.

Strong reliance is placed in this region on experimental knowledge of molecular

spectra. Chapter 8 covers opacity calculations in the high-temperature

(above 20,000°K) region where atomic species dominate. The atomic models

needed for such calculations are briefly reviewed first, and then the more

important contributing processes. Finally some of the recent large-scale air-

opacity calculations are reviewed. In contrast to the character of Chapter 7,

an entirely ab initio approach to the calculations can be taken; however, in

practice, most calculations still make use of empirical atomic energy level

information.

An appendix is included to show how the detailed molecular properties

of 02 , N2 , NO , and their ions are taken into account in the calculations

of Chapter 7.

7



Fig. 1.1
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Chapter 2. ELEMENTARY RADIATIVE TRANSFER

In this chapter, a non-r:ýgorous review of the theory of radiative

transfer indicates how the subject is dominated by the concept of spectral

absorption coefficient. An attempt is made to provide some physical insight

into the requirements which the applications of transfer theory impose on the

calculation of absorption coefficients, and to demonstrate the physical

significance of the Planck and Rosseland mean absorption coefficients. For

this reason, certain elementary solutions to the transfer equation have been

emphasized. An excellent and more comprehensive discussion of radiative

transfer, which also emphasizes the physical aspects, has recently been

given by Goody (1964) (see also Morse and Feshbach, 1953, 2.2). The

formal theory is more extensively developed by Chandrasekhar (1939, 1950)

and Kourganoff (1952). A good reference for the present purpose, although

unavailable in the open literature, is the report by H. Mayer (1947).

Aller (1963) gives an excellent account of approximate solutions.

We first undertake in Sec. 2. 1 a brief discussion of the formulation

of the transfer equation and the definitions involved. In this initial discussion,

we neglect scattering; however, a few remarks on this subject are given later,

in Sec. 2.3. In Sec. 2.2 we consider the definition of local thermodynamic

equilibrium in some detail, in order to clarify the roles of induced and

spontaneous emission in radiative transfer.

In many problems the spectral distribution of the radiation is not of

primary concern. For these cases an appropriately defined mean value of

the absorption coefficient is useful. The manner in which the mean value

9



is calculated depends on the characteristir.- r,:' th,, pro,..m ... e. .. unsidera.ion.

A limiting case of physical interest is tnat of an ontically thin sample of g&s,

Si.e., a samn le whose dimensions are small con.:pared fth the mrean free path

of radiation In the gas. Consideration of this leads to the definition of the

Planck mean absorption coefficient. Conversely the equally important

optically thick case is conveniently described in terms of the Rosseland mean

absorption coefficient. These two limiting cases are discussed in detail

and the respective mean absorption coefficients are derived.

Finally, we present a short discussion of the problem of radiation

transfer for intermediate optical depths. In view of the complications

involved, we limit our considerations to isothermal, uniform-density conditions.

2.1 The equation of radiative transfer (without scattering)

Consider a collimated beam of radiation of frequency v incident

on an extended volume of gas which absorbs the radiation, but does not emit.

If F is the flux of radiant energy per unit frequency interval, that is, energyV

per (cm2 x sec x unit frequency interval) this flux is assumed to be attenuated

by each thin slab of gas of thickness 6x in proportion to the product

of the magnitude F an' the thickness 5x . This is illustrdted in Fig. (2-1).
V

Thus, we can write

SFV = -F V8X (2.1-1)

t

1')

l . L



which defines the constant of proportionality u, the linear or volume

absorption coefficiet, as

This phenomenological rule, known as Lambert's, Bouguer's, or Beer's law,

leads, when Integrated, to the exponential decay law:

F - F e- V (2. 1-2a)

which is borne out in many experimental circumstances. From the usual interpre-
-1

tation of transport parameters, tv is thought of as a mean free path

for absorption. Thus, Eq. (2. 1-2a) can be rewritten

F = F e (2. l-2b)
V V

Experimentally, re-emission follows abborption, so that 6FV

as given in Eq. (2. 1-1) must be augmented by the radiation emitted in the

slab 8x and the result is the equation of transfer, Eq. (2. 1-4). Further-

more, the emitted flux will in general not be so well collimated as our ideal

parallel incident beam, so the definition of F must be generalized to

energy per unit solid angle across unit surface normal to a specified direction

0 , I with a unit vector . This is illustrated in Fig. 2-2 which shows

an infinitesimal pencil of beams within an element of solid angle dil about

11



the direction ? traversing a slab of gas of thickness L which extends

to infinity in directions perpendicular to x . The relationship between the

flux r of the collimated (or paralltl) beam of radiation and the

general intensity function I (V0,) which al.•ws for an angular distribution

is established through the Dirac 8-function (. .andrasekhar, 1950, p. 22):

V, (ee) - F 8 (cos e - cos e) 6(* - #o) (2. 1-3a)

where Po #0 is the direction of the parallel beam, and the 8-functions

satisfy

J 8(cose 0 -Cos P)8(# - o d# I 1 (dii 5 sin e d8 d) (2. 1-3b)

4rr

I (0,0) =- I ( is called the specific intensity and has dimensions of energyV Vj

per unit time pn.r unit frequency interval per unit solid angle per unit area normal

to 1i . The resulting equation of radiative transfer which takes account of

absorption and emission in the slab can then be written as

dý (2.1-4)

where s denotes length measured in the direction • The energy per unit

time radiated in the direction 0 by a unit mass of gas per unit frequency

per unit solid angle has been denoted by J('1) , the emission coefficient,

and p is the mass density. For convenience, the emission coefficient is

12
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often replaced by the source funcqtion defined as

I,,V -: pj,,O•Kl (2. 1-5a)

The equation of radiative transfer becomes

1 dI)

U4 dsV

The decrease in beam intensity (-61 ) can be expressed in a number

of equivalent ways, each of which defines a different absorption coefficient.

All of the resulting equations are derived from Eq. (2. 1-1) which invokes

simple proportionality to beam intensity 1. (by virtue of Eq. (2. 1-3a))

and the increment of path length 6x . Eq. (2. 1-1) thereby defines the

linear (or volume for unit cross section) absorption coefficient p whose

-1dimensions are (length)-

The effect of mass density p or number density Nv of absorbing

particles is seen in Eqs. (2. 1-6a) and (2. l-6b) below which define, respectively,

the mass absorption coefficient K., and atomic absorption coefficient 'IV

2 -l2K . has dimensions of (length) (mass)- . a has dimensions (length)

It is thus often treated as ,n absorption cross-section which interpretation

is pursued further in the next section.

61v = - 'v 1 (p6X) (2. 1-6a)

- - "A (NW1X) (2. 1-6b)

'3



We note that p6x is the mass increment 6m per unit area, and

similarly Nv 6x is the number increment 6Nv per unit area. Ccm-

parison between Eqs. (2.1-1), (2.1-6a), and (2.1-6b) lead to

Uv C0= N = t (2. 1-6c)

which relates most of the absorption coefficient parameters In common use.

One absorption coefficient parameter not previously discussed is the

dimensionless quantity, the optical depth T, . Its infinitesimal increment

is defined by

d" V 0 ds (2.1-7)

and, therefore, the total optical depth between points s' and s is

* (s's) f ji do (2. 1-8a)

(One should note that it is customary in astrophysics to measure optical depth

backwards along the line ss' . This would require a minus sign in the above

definitions.) The foregoing definitions of radiative transfer quantities along

with others which we do not consider here, have been conveniently summarized

by Aller (1963).

The equation of transfer (2. 1-5b) may now be written

dI
- i ()- 1 () (2.1-8b)d V-V



a_ .__ .. .-), whch....g rn- t- tansport of elevrumgnetic energy through an atmos-

phere, is often difficult to solve. An extensive literature pertaining to it has accrued

r the years, principallay in'lhe fields Of astrophysics and meteorology

(Goody, 1964; Kourganoff, 1952; Chandrasekhar, 1939, 1950; Mayer, 1947;

Aller, 1963; Elsasser, 1942; Milne, 1930; Bond, Watson and Welch, 1965).

Exact solutions can be obtained for only a very limited number of model

problems so that approximate methods of solution are ol paramount importance.

As stated by Goody (1964), the physical content of the equation of transfer

Is very meager. Under the conditions of local thermodynamic equilibrium,

most of the physics of the situation is in fact contained in the absorption

coefficient uV I the discussion of which constitutes the primary subject of

this book.

A general solution to Eq. (2. 1-8b) can be obtained formally as follows

(Goody, 1964). Consider a beam along the direction n as indicated in

Fig. 2-2. Multiply Eq. (2. 1-8b) by e V to obtain

vd [e V(s'1 s'1) "(s s')J s" ')-
d e [eT I(s"a) = e ) (2.1-9)

Integrating this equation along the direction 0 from s" = s' to s" = s

we obtain

T (81,S) - T (S",B")

e I (s,1J) = I (a',-0) + e J (sii(1) dTr,
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Thus using Eq. (2. 1-8a)

-T•('s _T -T(s",s) (2.1-10)

=e + f J (al, ') dr

Thus the intensity I'(s,A) at s is equal to the intensity I (s', )

incident at some previous point (sW) exponentially diminished by absorption,

plus the integrated intensity emitted between s" and s', each element

again diminished by the absorption which takes place ahead of s . In the

limiting case of an optically-deep medium, we can take s' at - and

set the incident intensity term equal to zero. Eq. (2. 1- 10) then becomes

a e- 7 ( alSas) - I

Ia(s,O) = J(s",fl) di, (2. 1- 1)

which shows how the radiation emerging from an emitting gas is lim!ted by

absorption in the gas.

2.2 Local thermodynamic equilibrium

One of the most common situations in which a solution to the equation

of radiativre transfer Is sought is that in which local thermodynamic equilibrium

(LTE) is assumed. This assumption is often introduced through the assertion

that Kirchoff's law

, V BV (T) (2.2-1)
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holds point-wise. This implies that at each point in the system a local

temperature T is defined. However, it may vary from point to point over

the system (Kc•,rganoff, 1952; Chandrasekhar, 1939, 1950; Aller, 1963). In

this formula J is the radiant energy emitted per unit mass per unit time

per unit solid angle per unit frequency interval and K is the similarly
V

defined mass absorption coefficient. We recall from Section 2. 1 that KIV p is

defined such that

dI- Kpds (2.2-2)

is the change in the emerging radiation intensity after traversal of a distance

ds in the medium to which xv pertains, assuming there is no emission.

B (T) is the usual Planck function 2hv 3 e-hvAT /c 2 (1 - e hvAT) , v
V

the frequency, and T is the absolute temperature.

Complications arise through the neglect of induced emission effects

(which cause jV to depend somewhat on incident intensities) in thesc

equations. Chandrasekhar (1939, Chap. 5, section 3) points out that

incorrect results are obtained if JV of Eq. (2.2-1) is substituted directly

into the transfer equation (2. 1-4). Ad-hoc corrections are then necessary

to compensate for the neglect of induced emission effects.

These problems may be avoided and natural allowance be made for the

effect of induced emission if a local temperature (and thus LTE) is defined

through a Boltzmann equation relating the occupation numbers Nn and Nm

of two quantum states involved*in absorption or emission (Chandrasekhar, 1939,

Eq. 108ff and discussion following Eq. 118, Mayer, 1947)

N
S= exp (hivnmAT) (2.2-3)Nn

1-7

In any real physical situation there will usually be mai I absorbing and
emitting states, and often many different atomic and molecular species.
Since the transitions and species can be treated one at a time and then
added, we limit ourselves to single events and single species in this
chapter. This is conceptually much simpler, and involves no loss of
generality if the reader bears in mind that the appropriate sums must
ultimately be carried out.



where hvnm - En - Em is the energy separation between the states. For

' _, I...city statistilcal weights have been assumed to be unity in this discussion.

LTE so defined makes no assumption about the radiation field which need not

be in equilibrium with matter. In practice it is often not in equilibrium

except at the center of strong spectral features. Eq. (2.2-1) implicitly

includes the radiation field but Eq. (2.2-3) does not.

To follow the consequences of this definition it is necessary to

introduce the Einstein coefficients Anm and Bnm for spontaneous and

induced emission, re-4pectively. We define these coefficients as follows.

Anmb(v)/4rT is the probability per unit time, per unit frequency interval,

per unit solid angle that an atomic or molecule in excited state n emits a

photon with energy centered about hv nm = En - Em . The line-shape factor

b(v) has been included so that our results can be expressed Per unit frequency

Interval. The ,l ý.,ap .he probability distribution in frequency for the

photon, and represents the probability per unit frequency interval that the

photon produced in the tram ' ':n n - m has the frequency v

The usual definitions of the Einstein coefficients (see, e.g.

Chandrasekhar, 1939; also Sec. 3.1 of the sequel) which assume infinitesimally

sharp lines do not incorporate this factor and consequently require cumbersome

double definitions of emission and absorption coefficients and of intensities.

The normalization condition J .(vd = 1 is satisfied by b(v) , and it will
0

be further discussed in .he next section (2.3). By using this factor in our

definitions at this point, all quantities can be expressed as functions of

frequency, rather than some appearing integrated over the line profile.

From the foregoing definitions we see that the energy emitted spontaneously

The Einstein B-coefficient 8 nm and the Planck function B (T) should
not be confused.
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in a time dt into the solid angle dO and the frequency interval dv by

ihe excited atom or molecule is

dEv An b~v
dES M 4• dt dfl dv (2.2-4a)

Since the spontaneous emission is isotropic, the total number of photons

spontaneously emitted per second per unit frequency interval per atom into all

angles is A nmb(v. . Now it turns out that the probability of the emission of

a photon hv is augmented by stimulated emission if the atom is immersednm

in a field of radiation containing a distribution of frequencies about Vnm

Thus, B is defined so that c-BnmIM) dQ dv dt is the probability that
nm

an excited atom or molecule in state n is stimulated by an external intensity

of radiation I1(0) to emit a photon with energy centered about hvnm in the

direction , the frequency interval dv and time dt . Thus the stimulated

or induced energy emitted by the single system into the various differential intervals is

dE (v) = (hv) c Bnm b(v)l,,(l) Ml dv dt (2. 2-4b)

The coefficients Anm and Bnm are properties of the individual

atomic or molecular systems, and their evaluation is a problem in the quantum

theory of radiation which will be discussed in Chapter 3. We assume, while

discussing radiation transport, that they are known quantities. Eqs. (2.2-4a)

and (2.2-4b) are respectively the spontaneous and stimulated radiant energy

contributions emitted per atom or molecule. The total radiant

19
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I energy emitted by an element of volume dv 'with mass dm = p dv) will

then be obtained by addina these two te, -ns ,and multiplying by the number of

particles within the element dv that are in the q.uantum state n . Thus,

if n n is the number density ol partUcles !n tlV state n

b(v)nn dv[A ,4-t + • I (0l j hv dfl dv dt (2.2-5)

is the energy emitted by the volume element dv in time dt into the

element of solid angle dQ and frequency interval dv about v nm

The energy emitted per unit mass of material will be this quantity divided

by the mass p dv of the element. The energy per unit mass per unit solid

angle, frequency interval and time is called the emission coefficient Jv

Thus

iv ~L'c-lnm In hv b(v) (2.2-6

It is shown in Chapter 3 that if Anm , Bnm and Bmn are the

Einstein coefficients for spontaneous emission, stimulated emission and

(stimulated) absorption for transitions between levels n(upper) and

m(lower) , each assumed for simplicity to be of unit statistical weight, then

A 3

Bnm c3

B =B (2.2-7b)
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The B-coefficients are defined here relative to radiation energy density

rather than to radiation intensity (Aller, 1963; Allen, 1963). We may

further relate the absorption coefficients a and K to Bmn by

appeal to Eqs. (2.1-1), (2.1-3a), and (2.1-6a). Thus

- U = I V 5x = on V., V 6x - , r 6x a in, hV b(,) - 1

or

V = onV = nm Brn hv b(V) c- 1  (2.2-7c)

From Eqs. (2.2-6) and (2.2-7a,b,c)

An n-• rM (hv) b(v)

and i'

"V p nm n hv IV hv (2.2-8)

This may be rewritten In a more compact form using the definitions of LTE

(Eq. (2.2-3)) and the Planck function:

3
ILIC. 1 (2.2-9)

2 I
c e kT-1

Thus

JV "" (T) (e kT _ )+ %•
V 

4
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which reduces to

P yv B S(T) + e kT 4v ýv(n) (2.2-10)

where

4 v P (1 - e-hvkT) (2. 2-11a)

K t v may similarly be defined by

tv X (I0 - e-hvAT) (2.2-1ib)

Thus

iv = ' B (T) + e-hvAT XK I (0) (2.2-1 lc)

Eq. (2.2-1lc) explicitly shows how the augmented emission coefficient

J depends on I as a result of stimulated emission. In this the expression
v V

for jv , which should be used when a change of quantum state occurs, the

first term is the contribution to the emission coefficient from spontaneous

emission and the second term is the contribution from stimulated emission.

That is
(spontaneous) B (T) (2.2- 12a)

iv m ()(221a

and
(stimulated) -hvAe (2.2-12b)
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There are therefore two equivalent ways of formulating the principle

of local thermodynamic equilibrium, viz.,

N "VT (21.2- 13a)

iv (spontane*ous)inI . (T (2. 2-13b)

Eq. (2. 2-13b) is more useful here since it allows the transfer eqjuation

without allowance for scattering to be written in similar form to Eq. (2. 1-4).

Thus

dl IV (spontaneous) + iv (induced) -(.-4

Sds I

Eqs. (2.2-11b),, (2.2-12a,b) and (2.2-14) lead to the following form for the

transfer equation which also Implies existence of LTE:

Ca ~(2. 2- 'a5a)

or

dl
ds =ý v1 (B -1) (2. 2-15bOds VV V

*t

Note that we have not included scattering in this definition; this is
sometimes done in Astrophysics by means of a generalization of Eq. (2.2-13b).
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Eq. (2.2-15b) is very similar to Eq. (2. 1-5b) and its formal

solution may thus be written down from inspection of Eq. (2. 1-10)

replacing IJ by B and u by u V respectively. The 'ormal

general solution of Eq. (2.2-15b) is therefore

s

S= e 's) + e'6V(a's)B( dr' (2.2 -16)

S'

where

S

S S -ds
V (2.2-17)

S.

2.3 Scattering

The type of scattering of primary interest in the study of high-

temperature plasmas is coherent scattering from the ground and low-lying

states of atoms and/or molecules and their icns. (By coherent scattering

is meant scattering thar occurs without a change in freqipency of the photon

involved, and without a chanqe of state cf the e-omic system involved.)

Therefore, we ;.ill confine ourselves here to a few remairks concerning coherent,

non-relativistic scattering which are intended to point out the difference

between transfer by (coherent) scattering and transfer by absorption/emission.

For more extensive discussions of tho general subject of scattering, see, e.g.,

Chandrasekhar, (195CO, and Van de Hulst (1957). Explicit forms of the cross

sections invo)ýPed for coherent scattering from hydrogen, and for Compton

2h



scattering, will be considered in the next chapter, along with mention of

the relativistic corrections required for Compton scattering at sufficiently

high temperatures.

Once the assumption of LTE is made, and the emission and absorption

terms in the transfer equation appropriately simplified, these terms will

differ from the scattering terms which appear in the transfer equation. The

reason is that emission into a beam by scattering is not accompanied by a

transition of the atom or molecule and is thus not directly affected by

excited states of the system other than the one which the system is in at

the moment of scattering. That is to say, absorption and emission occur

with a change of state of the system, whereas scattering does not. The

two types of processes, i.e., scattering and absorption/emission will be

related and pass one into the other for short-lived excited states. For

such states, scattering cannot be distinguished from a real absorption followed

almost simultaneously by a real emission with the emitting system reverting 4

to its initial state (Heitler, 1954). This happens near a resonance line and

is further complicated by ýhe fact that a photon with energy near enough to

a real excitation energy can produce the real 3xcitation, or transition,

with the help of a transfer of energy from or to a nearby electron or ion.

(cf. Baranger, 1962; "The One-Electron Approximation".) Thus, if we

compute all real absorption and emission transitions, including those which

need an outside interaction of energy 0 to LE to occur, we wili have

included the scattering produced by virtual states which fail to conserve

energy by an amount between 0 and IE
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Mayer (1947) has shown that there is no correction of the form

1 - eu to be applied to non-relativistic scattering. Actually, one should

not expecL it, since the atom does not change state and hence, there is no

upper state to ro-t-nit back into the beam, but it can be demonstrated

rigorously. Mayer does this by showing that the induced scattering into

the beam is exactly cancelled by induced scattering out of the beam.

Pictorially what he demonstrates is as shown in Fig. 2-3. Emission into

the direction G' depends on an integral of the form

J udu I(f1) dO 
(2.3-1)

over all other directions 7 , which is the ordinary scattering term, ;,nd

an induced scattering term proportional to

Cm(O.•d (2.3-2)

That is to say, this second term depends on the beam intensity in the

scattered direction, which is why it is called induced scattering. However,

the scattering out of the beam contains a term

Ciffaln I(()') I(() dn, (2.3-3)

dO'
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which, with the proper proportionality factors eactly cancels the previous

term. The implication apparently is that since induced scattering does occur,

one might expect a correction analogous to the 1 - eu correction obtained

in the case of absorption and emission to appear. However, it is not just

induced emission that leads to this correction (if this were the case we would

need only to correct the absorption term in the transfer equation and no distinct

emission term correction would appear (since both absorption and induced

emission are proportional to the intensity I , they can always be lumped

together).

The existence of spontaneous emission is also required - - an emission

term independent of the incident intensity. This is what is lacking in the

case of scattering. There is no spontaneous scattering. As Mayer (1947)

points out, the scattering terms in the transfer equation are proportional to

nb(l + nb) (nb = number of "radiation oscillators"). Thus, there is no

term independent of nb as there is in the case of emission (which is

proportional to 1 + nb)

The diminuition of the beam J,(6) due to scattering within the

element of distance ds can thus be written

(sc) N r I (I) ds (2.3-4)5Iv~~ = sc

where a sc is the total cross section for scattering by the particles with

number density Nv . In addition to this depletion, the beam will be

augmented by the amount

5 -lsc) Nv f ) - dA' (2.3-5)

2'
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"WA v C is the diifierentiai cross section for scattering from the

direction 0' into the direction (I . If we add the above terms to the

afe..... equation. -Eq. (2.2-15b), we obtain

" . v'(1jv-l) + Nv do dQ'- I Wd(1') dO-u (sc) 1  (2.3-6)

ds f ~ V VJ

where we have defined P, (sc) by:

L1(sC) = Nvasc (2.3-7)

2.4 Emission from a gas sample in the optically thin limit

The Planck or "Emission Mean" Absorption Qoefficient

Before defining the Planck mean absorption coefficient, let us

investigate the flux emitted by a plane-parallel slab of gas in order to

define the optically thin limit in several more or less equivalent ways.

Consider the radiation from an isolated slab of gas at temperature T , as

in Fig. 2-2. The total monochromatic radiation fLax per unit area leaving

one face of the slab within the solid angle AO is

Fv+ f IV cose d9A (2.4-1)

A 0

where 9 is meastired from the x-direction normal to the slab. Multiplying the

transfer equation, Eq. (2.2-15), on both sides by dn using dx = ds cos A

and integrating over the hemisphere of outward directions, yields the equation

f !!v- odo = ADBpt B ,I do (2.4-2)
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From Eq. (2.4-1) ar4 the definition of the mean (-partial) oitward intensity

IV+ IV++ fA

., - - -V (2.4-3)

we can rewrite Eq. (2.4-2) as

dF+ (2.4-4)
dx = I vB -+)(2 -4

The optically thin approximation now consists in neglecting + relative
to B , and taking the derivative dF /dx as the ratio of finite increments

V V

of emitted flux 6 F. and slab thickness 6x . With these approximations

we obtain from Eq. (2.4-4) the integrated flux or total radiant energy emitted

within the solid angle 60 ,

6F+ -5 Af6x f sP B (T) dv (2.4-5)

The same result could be obtained by integrating Eq. (2.2-10) for the emission

coefficient upon neglect of (a) self-absorption, and (b) induced emission.

The flux from a volume element 6 V - 6A6s cut out by the walls of an

infinitesimal slab is (see Fig 2-4)

6F+ f fJVp6V coo 6 dy df/6A (2.4-6)

But 6s =x/cos 0 and pi' = PV' B T . Thus

6F+ t 6x f f B (T) dtvdfl = ADl 6x fAB,(T) dv

Recall that we are considering an isolated slab; hence, there is no
incident intensity at the boundary.
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If All is the entire hemisphere, then Eq. (2.4-6) becomes

8F+ - Ca2 J" Pý B(T) dv] 6x . The result can also be obtained as follows

from the general solution to the transfer equation, Eq. (2.2-16), using the

approximation Uw6 x<< I . With the additional assumption that the incident

Intensity vanishes, Eq. (2.2-16) yields the total outward flux from one side

of an isothermal slab as

F = 2w dy B (T) f - e co 0 coos 0 sir 0dB (2.4-7)

We wish to show that the correct result - to first order in p,'x - is obtained

by expanding the exponential in spite of the fact that cos 9 - 0 within the

range of tht integration. With a change of variables Eq. (2:4-7) becomes

F = 2w f dv B P(T) 1.1- E3 (As,8x)j (2. 4-8)

where

½-X(Y) x (2.4-9)

are the usual exponential integrals (Chandrasekhar, 1950). By use of the

relatons

nEn+ l(Y) = e- - yE n(Y)

(2.4-10)

El(Y) - log y + I (- 1 )n- I - J
n=l
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as given by Chandrasekhar (1950) (y Euler's constant), we find

F=2vr f dy B (T) (A,.5x + 0 1fMu,6x)2 log ~A6j+ Q f[oc( 2 J(24-1

which agrees with Eq. (2.4-5) to first order in u'6x (with NQ 2rr),

This result shows that radiation in the angles near 9 = n-/2 , which are

not involved in many practical cases, does not contribute to F in first

order. There is contribution in first order to I where the result
V

corresponding to Eq. (2.4-11) is

V)-- (1 + Y) Ax'6X + (jA6X) log JAX +6 0 [Mdx[) 2u

The radiative energy emitted by one face of a slab of perfect radiator

in thermal equilibrium at temperature T can be obtained from Eq. (2.4-7)

by letting 6x - o . The result is, for the energy emitted per unit area,

BV(T) coso do di' = B(T) coo 0 di = f- cos 0fdf = ciT4  (2.4-12)
V 27_. r 27r

where

J(T) f B(T) dv -T 4 /A (2.4-13)
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We can define the (flux) emissivlty 6 of a slab relative to this standard

as the ratio of th. total radllant oaeryy one face of the slab emits to thal

emitted by one face of a blackbody slab at the same temperature. Thus for

a thin Sab, C I-- -iven by the ratio

6F+ 27rax flB{(T)d&-
4 • o r• =d 4 (2 .4- 14)

OTrd

Since this quantity depends on the slab thickness, it is somewhat more

satisfactory to define c/8x as the emissivity Per unit length. Tf we define

the Planck mean absorption coefficient (or emission mean) ýp(T) as

- fsBB 3,(T)dt, d& f.IB, (T) d,
BP(T)dy = (2.4-15)

then the emissivity per unit length of an optically thin slab becomes

c/fx = 2-Ap(T) (2.4-16)

A similar quantity, the "hemispherical emissivity" gh is sometimes

used (Penner, 1959). It is defined as the ratio of the radiant flux emitted

by a hemispherical volume (with radius 6R ) of gas into a "point" collector

at the center of its base. We will show that ehAR is one-half the thin-

slab emissivity per unit length;

ch/6R = up(T) (2.4-17)
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In general, the relation between the emissivity and the mean absorption

rnoaffititnt danantIQ nn thea geomnetry nf tha Amittinn sample thrminh xnumericle-i

facto- (Bond, Watson, and Welch, 1965). We can illustrate this directly j/,

the thin-slab limit with reference to Fig. 2-5. The radiation arriving at 0

from the shaded volume H within the hemispherical shell contributes to the

hemispherical emissivity. The radiation arriving at 0 from the remainder

of the slab, S , is the additional contribution which arises in the thin-slab

definition. We shall show that these two contributions are equal in the limit

of small optical depth.

Consider the isothermal solution to the transfer equation (Eq. (2. 1-11)

divided into the contributions from regions H and S:

I ,-T I -TI 1 2,r

IV = By(T) e dT' B(T) e d7 + B(T) e I

00

= BI(T) 1- e1Vl] + BP(T) [-T - eT 2 (2.4-18)

where

Tvl = JAýR

= MR/OSM~R(2.4-19)3 = R/cos 3"v2 v
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We obtadn the flux crossing the surface at 0 by multiplying I V of Eq. (2.4-18) by

cos 0 dO dv , and Integrating over dQ and dv - The result Is

1F - F + F2  (2.4-20)

where

F1  f JBv(T) (I - ea R) dy (2.4-21)

is the contribution from the hemispherical region H and

F 2 f= B (T) (eV1 - e0- 2 coo 0 do (2.4-22)

is the contribution from the remainder of the slab, region S.

We make the approximation of smell optical depth, viz., T .C 1 , and expand the

exponentials. The justification of this expansion has been given in Eq. (2.4-- 1i).

This leads to

F-= 7rR B(T)p' dy (2.4-23)

and

F f JB1 (T) I' + h sR/cos 9) cos 0dD dyi 2 BV ( 2V V V

(2.4-24)

irR By (T) fl di
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From Eqs. (2.4-23) and (2.4-24)

Fi = F2

From the definition of the Planck mean absorption coefficient, (Eq. (2.4-15))

the thin-slab emissivity is

qF- 2gp(T) (2.4-25)

while the hemispherical emissivity is

F1

, -p(T) (2.4-26)

2.5 Emission from a gas sample in the optically thick limit

The Rosseland or "Diffusion Mean" Absorption Coefficient

Whereas the Planck mean is of interest when the intensity I << B

another mean becomes of importance in the "opposite" limit, namely,

I :- B (2.5-1)V V

We have previously noted that when I «< B and LTE prevails, the radiationV V

is far from being in equilibrium with the matter. On the other hand, Eq. (2.5-1)

will be satisfied when the radiation is nearly in equilibrium with the matter.
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Inserting Eq. (2. 5-1) i's a zeroth-order approxima ion into the transfer equdtioi2,

Eq. (2.2-15) we obtain

1dBv
I B /• d (2.5-2)

for a first o-der approximation. With Eq. (2.4-1) the integrated net flux

in the ,-dfrection can be given, as Illustrated In Fig. 2-6, by

ci 0 do d(2.5-3)
" Fx f ds

since the first term of Eq. (2. 5-2) is isotropic and thus does not contribute

to the net flux. Substituting s x/cos e

p fA C 2  3 JA d- f iv (2.5-4)x• JM- X 3 o26•d JM- dX

-Aith sim.ilar Cxpressions for Fy and Fz Thus,

VBT dp - f -L 1 ddv _ (2.5-5)

UI the Rosseland mean absorption coefficient is now defined as

1 ~ dB (T) I dBV(T)
dT d, / dT dp (2.5-6)

_ _ _ _ _36I * We ar,ý here considering angular integrations over the complete sphere.



Eq. (2.5-5) becomes

47 ( /f dB v) V 4 1 B(T) (2.5-7)

F -- ýR •-T-•-d VT -3 -

In terms of the Rosseland mean free path AR R , and the radiation density4 IfB
1-' fBv(T) dv , Eq. (2.5-7) can be written

cA
F= c3 V-U (2.5-8)

This equation is the basis of the definition of the Rosseland mean free path

AR the Rosseland mean absoiption coefficient R , and the Rosseland

mean opacity R where

KR = MR/P (2.5-9)

Note that in contrast to the Planck mean, the Rosseland mean is an inverse

mean and thus emphasizes small values of the absorption coefficient. The

Planck mean emphasizes large values of absorption coefficient.

Eq. (2. 5-8) is analogous to that of the diffusion equation (Kennard, 11938)

S- D~n (2. 5-I0)

where J is a cur. 3nt, n is a particle density and D is the diffusion

coefficient. Thus AR is an effective diffusion length and cAR/3 is the
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diffusion coefficient. Eq. (2.5-7) describes the diffusion of the photons

through the gas.

The limits of validity of Eq. (2.5-7) can be obtained by examining

the approximations Implicit in Eqs. (2. 5-I1) and (2.,5-2) as follows. The

transfer equation (Eq. (2.2-15)) 1 ay be written

f q d: (2.5-11)
X, = Bo ds

A•lso

dl dlYv dT

ds dT ds

If I " B , (Eq. (2.5-1)) then 1/Vj dl /ds must be small compared
V V

to B , thus fromEqs . (2.5-1) and (2.5-11)
V

1z OI dT , (2.5-12)
i. •' ~dT ds << BvIP

which is the basic requirement of the approximation. Bit as I V BV

1 dT /dBV(T)IAI ds << B P(T) / d-T (2.5-13)

But the Planck function B (T) is given by
V

•" ~~~h BT) •--3 1/ ehiv/kT -

B V T) =c2
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thus

dB (T) (i-e-hVAT) kT2
P dT = h' (2.5-14)

Therefore from Eqs. (2.5-13) and (2.5- 14),

jdTvj

_ << 1-e 
(2.5-15)

' T hi/kT

which expresses the limit of validity of the diffusion approximation.

A derivation of the Rosseland diffusion theory can also be given by

analogy to simple kinetic diffusion theory (Kennard, 1938, p. 188 fU) if one

notes that the specific intensity I has the nature of an energy distri-

bution function (cf 2.4 of Morse and Feshbach, 1953), or that I /hV

has the nature of a particle distribution function. With reference to Fig. 2-7,

let n be the density of particles (in this case photons)at the surface S

We assume that the density varies only with x so that the density at dr

is n + Ax d" It is well known from elementary kinetic theory that the

particle flux F across a given surface within a gas is given by

r (2.5-16)
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where 18 the average velocity of the particles (Kernnrd, 1938, p. 62). if one

retraces this derivation giving all the particles the same velocity c the same result is obtained.

In view of the change in density along x , the rate at which particles collide within

dT and thereafter cross S C i. e., photons are absorbed and re-emitted to cross SJ

will be increased by the amount -!A x 5-1 c Thus, the flow of photons towards - x

will be

r d+ c (n (2.5-17)

where AX is the average value of Ax at the last point of collision for each particle.

Withasimilarexpressionfor r+, and by use of Ax = 1, -- I where I

is the mean free path between collisions (Kennard, 1938 , p. 140), we obtain thenet particle

flow across the surface S:

r = r+ + r = ci (2.5-18)

Generalizing this expression to three dimensions and setting the mean free path I

for photons of frequency v equal to 1/1A , we obtain the photon number

flux per unit frequency interval:

c (2.5-19)P -; Vn v

This result can be compared directly with the standard form of the diffusion equation

Eq. (2.5-10), to yield c/34J as the effective photon diffusion coefficient.
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For photons in equilibrium [or approximate equilibrium according to

Eq. ( . 5- 1)] the particle density per unit frequency interval n is given by

(, B,(T) (2.5-20)

with the result that the photon energy flux hvr' Fv becomes

V 3A 4rF(T) (2.5-21)

in agreement with Eq. (2.5-5) , Performing the frequency integ:ation leads $

again to the definition of the Rosseland mean free path of Eq. (2.5-6).

The fo.egoing derivations of the Rosseland diffusion theory have been

given for the physical insight which they convey. The more rigorous standard

derivation (Goody, 1964; Chandrasekhar, 1939) is to set the source function

JV(s I-V(T V (s',s)) In Eq. (2. 1-11) equal to BV[Tv(su,s)] andexpand

B (Tr) in the Taylor series
V V

dB d2 B T2 (S")
d P P +B T[ (s"'s)] = BT(s VS + d-- ,,(s"s) + 2 2 *"" (2.5-22)

Pis dT V s

The integration indicated in Eq. (2. 1- 11) can now be carried out and the flux

computed to obtain the result given In Eq. (2.5-7).
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2.6 Emission from a gas sample of intermediate optical depth

Radiative tvansfer in the realistic general case oi intermediate, or

finite, optical depth, where one cannot make the approximation that the

rII.adliatng gas sample is optically thin or optically thick, it quite difficult

to handle mathematically. Resort is usually made to numerical integrations

of the transfer equation (Hillendahl, 1964) involving elaborate approximation

techniques or to alternative methods as the Invariant Imbedding techniques

of An,'artsumiian and Chandrasekhar (C-oody, 1964; Chandrasekhar, 1950).

Mean absorption coefficients are no longer so useful in expressions for

che net radiative flux, since the coefficients become dependent on path length

and on the geometrical configuration of the sample. Intensities and fluxes

are thus computed directly.

A formal simplicity can be given to certain of the intensity and flux

expressions however, by defining mean absorption coefficients, which are

of convenience in calculation. The mathematics for the general case of

intermediate optical depth is sufficiently complex that the only situations

for which closed analytic solutions exist are those for gas samples with

extremely simple geomretric configurations at constant density and temperature.

We will therefore. .ons.der ex,-l.c.tly only these conditions and configurationts.

Consiaeration of more general cases can be facilitated by means of "trans-

mission functions" which we will also define and discuss briefly.

Consider an isotheimal, plane-parallel slab of gas of uniform density,

of thickness L , and of infinite extent perpendicular to the x-axis (Fig. 2-2).

Now select an 4nfin.tesimal pencil of radiation through the slab at an angle 0 to

the x-axis. The outward intensity I V+ along such a pencil can readily be

obtained from first principles. (See, for example, Penner, 1959, pp. 13-15.)
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intensity lV(s'C) set equal to zero, and the lower limit s' taken as

zero. For x <_ L ,since the density and temperature are assumed to be

constant, and there is azimuthal symmetry in I , we can write Eq. (2.2-16)

as

4ioI'Cos e

Iv(L,e) B(T) e-I's da's) (2.6-1)

O

The integration can be performed immediately, leading to the result

-L I/Cos 8I V(L,e) - B V(T) (1 - e V (2.6-2)

x

In terms of the normal optical depth r.n _ " ± dx , where x , as in
f jV

Fig 2-2, is measured normal to the slab, orqn terms of our original path-length

variable s , this result has the equivalent forms:

B.,(T) 1 -

(2.6-3)

I,(s,f) = BV(T) 1- 3
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Penner (1959, p. 14) calls the last of these expressionz the "basic law for

uniformly distributed radiators"'. We note that for s - R the lest of these

expressions Is also appropriate for the intensity observed at the center of

the base of a hemisphere of radius R .

If we multiply the intensity as given by Eq. (2.6-3) by cos 8 and

integrate over solid angle in order to compute the flux from one face of the slab

we find

9/2I-'/coe
F& 2'B&ST)f I - V cos 0 On 0 dO (2.6-4)

0

This is usually exprassed in terms of the exponential integrals En(Y) f A-n dt

previously introduced in Section 2.4 , by use of the transformation 1

t - i/co,3 8 . With these substitutions Eq. (2.6-4) becomes (cf., Eq. (2.4-8)

Ft, = Irk(T) 11 - 2E3 IL,) (2.6-5)

The total flux over all frequencies is obtained from this expression by

integration over v :

F = CPT"'[I - .. f (T)E (P'x) dv] (26-6)

This expression has been used with the assumption of a constart absorption

coefficient to obtain a simple estimate of the effects of finite optical

thickness (Davis, 1964). If i is assumed t_. be a constant i' indepen-

dent of v , Eq. (2.6-6) becomes

7orr 4 [I - A(irx)] (2. 6- 7)
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Computations of F/F by Strack (1962) using p , the Planck mean,

indicate that this is a useful approxima ion only under certain rather limited

circumstances. For further calculations of F see Davis (1964). The

correct value of 1' that m Lkes this expression exact is

w
Co 0 *,1.1 . d 2 .6 - h

as can be readily verified by substitutton in Eq. (2.6-7) (where B(T) is

defined as in Eq. (2.4-13)).

Because of the frequent appearance of the exponential function e

involving the absorption coefficient and path length, it is convenient to

define and name it as an independent quantity. The customary name applied

is intensity transmission function (Elsasser, 1942; Chandrasekhar, lI50)

since it is the ratio of the diminished intensity to the original intensity under

isothermal, homogeneous conditions, i.e.,

-u s I (S)
e ) Tr(u s) (2.6-8)

(cf. Eq. (2. 1-2)) in the presence of pure absorption alone. Although, strictly

speaking, one can have pure absorption alone only under non-equilibrium

circumstances, under more general circumstances this exponential function still

constitutes an integrating factor for the transfer equation (cf. Eqs. (2. 1-9 and

2.1-10)) as long as induced emission can be neglected. From Eq.i. (2.2-11 anti

2.2-12), one sees that this is possible as long as hvAT>> 1. This is

generally true for optical or infrared radiation at atmospheric temperatures,

so that the transmission function e is customarily used in such low-

temperature applications (cf., e.g., Goody, 1964). At higher temperatures

We define and use herein only this intensity transmission function. A flux
transmission function is often also defined and used; cf., e.g., Elsasser (1942).



one cannot generally neglect induced rf-!-emission Into the beam, so that

Eq. (2.6-8) no longer constitutes the most useful definition of a function

from which radiative intensities and fluxes can be more or less eirectly obtained.

Under conditions of LTE, the function which most effectively
_U S

Vrepn!acc whereI as an integrating factor for the transfer equation

is though here p.- (as before) is the modified absorption

CO-efliclnt P i - It is alocalled a transmission function

even togstrictly speaking, It Is not the simple ratio of two Intensities.

For gases In LTE, a direct connection of e with observation Is

afforded by the definition of emissivity for a non-thin slab. Let us define the

spectral amrisslvity of an isothermal gas sample as the ratio of the flux It

emits per unit frequency interval to the flux per unit frequency interval which

a blackbody emits. Then from Eq. (2.6-3) we find for the spectral emissivity

'vc of an infinitesimal pencil of gas of length s the resuit

rrrr (2.6-9a)

For such an infinitesimal pencil the intensity will all be In the direction

of the pencil; hence, the flux and Intensity are the same. Approximately

*the same result would be obtained for a lona, narrow cylindAer or column of

gas. Hence, the emissivity given by Eq. (2.6-9a) is also known as the beam

or coum (spectral) ernissIvIty and has been given a subscript c . It can

also be called the heQmlspherical emissivity, since by holding s constant

and integrating F Vand B Vcos e over a hemisphere we obtain the

emissivity that would be observed at the center of the base of a hemisphere

All these names are somewhat confusing, but we n. ention themi since they
are in the literature. In view of the defining equation, Eq. (2.6-9a), it
would probably be most straight forward to call this quantity the Intensity
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as at 0 in Fig. 2- 5. Of course, this "high-temperature" definition

C can iU'.1 iie used at low ter,,peratures as long as LTE prevails or

hv >> kT , whereas the reverse is not true, viz., e is no longer

appropriate at high temperatures. The definition of emissivity given by

Eq. (2.6-9) is very similar to tha detfnition ofunction

AL V s) often employed in low-temperature radiation studies. If there

is negligible re-emission into the beam, the fraction of the original beqam

intensity IV(o) which is r..bsorbed (under isothermal, homogeneous conditions)

is given by

A(4 s) (0(o) - I (s/ I(o) = 1 - exp(-ýi s)

or,

A(.i Vs) = 1- Tr(L. s) (2.6-9b)

Although this definition is formally almost identical to that given in

Eq. (2.6-9a) , the difference in interpretation and validity should be

noted. If there is appreciable re-emission into the beam, Eq. (2.6-9b)

loses its direct sianificance,

To define a total emissivity, we need to take the ratio of the total

(frequency-integrated) intensity to the integrated Planck function as in

Section 2.4 • Thus the total (isothermal) column emiss~vity can be

written as

S AB MT) dv

(2.6-10)

e(14
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Experimentally, one would expect to observe intensities that are effectirely
averages over small frequency intervRl, qi' Hs ne or b

The frequency intervals of concern here for defining and computing such

emissivities are those which contAin frorr, % frac-'!,on nf - spectnum .ine to

perhaps a few lines. Under most conditions the Planck functions will

normally not vary substantially over such an interval and the average of

the Intensity over AvI can be written as

i 1  - B(T)= Bh- Tr S(r) (. 6-11)

7 where 1 Trl( (2.161a)

Cdv

and Tri(8) = i e V dv (2.6- 12b)

with the result that the total column emissivity becomes (cf. Goody, 1964),

itwe choose equal intervals LvI,

-�C� __ (___ _ (2.6-13)
C ZBI(T)

where I rather than v is used to label the frequency intervals and
B (T) dv

() AV, The column (or intensity) emissivity can be converted to
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a slab (or flux) emissivity cs by integration of ýV and B over a

hemisphere of outward directions as in the preceding Eq. (2.6-4). Thus,

we can write

I I PIT) coo

(2.6-14)

-A 1 j~dz Bý(T) [ E,(Wx)]

which is, of course, Just the ratio F/aT 4 as given by Eq. (2.6-6).

Although, as mentioned previously, mean absorption coefficients are

rot as significant for finite optical depth as in the limiting cases, it is still

instructive to define them., This amounts merely to a re-expression of the

formulas for flux and intensity that one obtains directly from the transfer

equation, but it provides a certain amount of conceptual continuity between

the limiting cases. Also, because of the rapid, violently-fluctuating frequency

dependenr;e of the spectral absorption, it is often essential to define mean

absorption coefficients to make a given calculation tractable, as

well as physically meaningful.

The froauonc.',, Intogratod intonsitv of Eq. (2.6-3) which is

can he expressed in the same form as the spectral intensity by the proper

definiton cf a mean absorption coefficient which we will call uT " sPT#

wr can write

-w ef_ _2.6-16)



if we define PT as In Eq. (2.6-7a) (Mayer, 1964)

f B,~, -L?/COS a
COs n B-- e dv (2.6-17)

0

Co - tn -nf Tr(uvx/cos e) dv (2.6-18)

Analogously, the (frequency) average transmission function T can be

re-expressed as an average absorption coefficient by means of the definition

_(s) S , n (rr(s is) (2.6-19)

The total emissivities can then be expressed simply in terms of UT which,

In turn, can then be expressed in terms of the p o The hemispherical, or

column (intensity) em;ssivity becomes

c c = =1 Ts (2.6-20)

while the slab ("flux") emissivity takes the form

J£IGx) Ccos dO 1 f (1 -UTX .cos a cos 0 dO (2.6-21)Cs = rT B(T)- - r I-e)cs r(.-1



Although this is an exact expression, it is not of great practical value

because of the labor involved in obtaiLiIng a T(x,e)

The connection between G(s) and T (x, e) can be seen by

considering averages over limited spectral regions across which B

does not vary appreciably (viz., regions over which the transmission function

may be averaged as in Eq. (2.6-11)). For such a region Av , which we label

with the index I we have:

Cos e3 - .x/cos e
PT =8 - 4 n[ B(T) 0 Jv

-+ --- Aý- o Bt (2.6-22)

=_o._L 0 n e--(

99- cs-'4i B I Av 4- 1x/Cos e) 1 x/cos

- Ta

Rearranging and taking the exponential of both sides yields

~T~I)~c/cos0 ~ tiv -~i(x, 8) (x/cos e)
e- = T-xj•ja- ' O)/s a)e . (2.6-23)
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For the hemispherical or column emissivity, one obtains from Eq. (2.6-20)

and Eq. (2.6-e3)

c 1 e (2.6-24)

Eqs. (2.6-16) - (2.6-24) are primarily of computational Interest. In this

respect they are not trivial since they (together with Eqs. (2.6-11) and (2.6-12)

for the transmission function average) assist in determining the type of

spectral average one should use in order to avoid specifying any more

spectral detail than is essential for a given calculation, They provide

criteria for ascertaining which spectral features of the absorption coefficient

are most Important under a given set of circumstances. Thus, we can see

that the spectral average needed for a geometry which is neither optically

thin noroptically thick is that of the absorption coefficient In the e2iio1.ii

e . Spectral regions within Av for which

VUS 1 (2.6-25)

will contribute zeros to the average

_L C us
Saj e dv

rand to an emissivity such as given by Eq. (2.6-10) or Eq. (2.6-20). Thus,

one only needs to know accurately the width of such regions. Much less
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accuracy is ne-,ded for the strength of u since one only has to ascertain

that js ' s >> On the other hand, ior very weak reyiox-b where

u;s <« 1 (2.6-26)

the integrand e is near unity. In this case one can expand the

exponential and the contribution to an emissivity such as Eq. (2.6-24) is

proportional to u& s ; therefore, the strengths of these regions are of greatest

importance and their widths are relatively unimportant.

The relative importance of the widths and strengths

of small spectral regions (particularly lines), show up even more distinctly

in the calculation of Rosseland and Planck mean absorption coefficients and

will be discussed in more detail when we consider the calculation of these

quantities later (see Part B ) . The geometric parameter or length s

does not enter their calculation so that the relative importance of different

spectral features is fixed once and for all by the basic assumptions. For

the intermediate optical depths now being considered, the appearance of the

parameter s provides another variable which affects the importance of a

given spectral feature in the absorption coefficient as a function of optical

depth. Similar considerations are applicable to the gross contributions

to the emissivity as given by Eq. (2.6-24) for different I •a.le

B The only difference is that the gross contributions given by

Eq. (2.6-24) have the Planck function Bi as an additional weighting

factor compared to the fine contributions (for which B is constant)
V
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which make up

MiJ

Thus, If one in calculating an integrated flux or total emissivity away from

the Planck function maximum, where B1 Is small, much less accuracy is

required in the specification of 4. than for regions near the Planck maximum.

Spectrum lines usually constitute a large fraction of the detail which

must be accounted for in a radiation transport or absorption coefficient

calculation. Since they often exhibit common features and regularities

which can be used to simplify their treatment, it is worthwhile to consider

briefly the transport of radiation within the profile of an Individual spectrum

line. Furthermore, since lines, as opposed to more continuous spectral

features (such as ionization and dissociation) occur in virtually infinite

number and with a wide variety of shapes and features, it is preferable to

group such lines whenever possible into classes which can be treated as

units. For this reason, we will also touch upon the subject of band models.

By this is meant a relauvely simple analytic or stochastic representation of

a large number of actual lines.

Before considering band models per se, we give a brief exposition of

absorption or emission for a single line designated by the Index a . The

absorption coefficient for a line can be written as

W.1a- S" 1(v - vO) (2.6-27)

where S Ls the intensity of the line and b (v - vo) is a shape factor.

54



The line shape factor is to be normalized to unity:

-(,i - v 1) "'. - V) - (2.6-28)

over the profile of A line, so that the frequency integral of the absorption

coefficient is equal to S

p",o d(v - vo) - S (2.6-29)

We can apply the definition of the absorption function A(u Vs) or the

column emissivity or to a single line using Eqs. (2.6-9a, b). These

definitions for the line ai , become

c9 (s) I - Tr, ths)

(2.6-30)

A( 1  I)~ - TrIds a c W'aU

The approximate equality symbol has been uoed for the absorption function

to remind us that this quantity represents an observable net attenuation only

approximately, and this notation will be retained in the sequel where this

latter interpretation Is Implied. The approximation is, of course, very good at

low temperatures where the re-emission into the incident beam is negligible.

Another useful definition is that of average absorption A , of a single

line, which is for the line a that is a member of a group of lines,

+0 r (2.6-31)
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where A Is the average spacing between lines. This is related to the

so-called aeuivalent width W (s) by

w(() a (L A2.6-32)

where the basic defin.tiion of W (a) in given by

aa +40

-S)5f *p -J

(2.6-33)

By use of Eq. (2.6-30) , the equivalent width is seen to satisfy the exact

relation

W (8)- f yca (S) k (2.6-34)

""noe origin of the name "equivalent width" lies in the fact that Wet(s) i

the width of a totally absorbing line GuL -) having the same Integrated

absorption function, viz., the same value of JAi vs) dv as the given line.

The relation between W(s) and s is known, for historical reasons in astro-

physics, as the "curve of growth. " As stated in Eq. (2.6-34), W(s) is alsoequal to

the frequency integral of the column emissivity. We note, however, that this
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Is not the total column emissivity as we defined this latter quantity in

Rr.- (2. f6- 10). manra the Plarink function appears aa a weightina factor in

the total emissivity definition.

Experimental onh'erx7tonsoq of the intanrity of a line profile as a

function of absorbing thickness (in a cold gas) are often reduced to curves

of growth for comparison with theory. The theoretical prediction for such a

curve for lines with a Lorentz shape:

b(v - vo) . -1- W (2.6-35)
0 TT-( )2 2S(V-0o)+ WL2

(wL is the Lorentz half-width)

can be obtained by inserting Eq. (2.6-35) into the definition of W (s)

as given in Eq. (2.6-33) and performing the integration. The result one

obtains (due originally to Ladenburg and Reiche, 1913) is

W(u) - 2Tr wL u¢ {1o(U) + I0(u)4 (2.6-36)

where u n s/an2 wL , and 10 and I1 are Bessel functions, for

imaginary argument, of the zeroth and first order, respectively (Whittaker

and Watson, 1952). These considerations of a single line are applicablo'

to a band of isolated lines of equal intensity either by sumriiation

over the band or by reduction of the band to a single average line. For bands

of isolated lines of unequal intensities, a generalization can readily be made

to N lines if a distribution function can be specified for the N line strengths.
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The average equivalent width of the lines is

N ,
•($W S I() (2.6-37)

In order to compute W * some assumption must be made regarding the

distribution of line Intensities. For example, for exponential and Inverse-

first-power distributions of the line strength S it can be shown (Goody, 1964)

that, for the Lorentz line shape,

2rr WO
W (exp) 1 (2.6-38)

(2u + 1)1/

and

'W (inverse) - 2TrwL -u 10 (u) + 2 u¢-u{o(U) + Xl(u) - 1J (2.6-39)

respectively. The deffnitlon of u as given following Eq. (2.6-36) must

be modified in each case by replacing S by the average line strength I

for the exponential distribution, and by the maximum line strength S for

the inverse first power distribution.

Although the above models may be modified to include overlapping lines,

more elegant and powerful techniques are available through the formulation

of regular and random models based on a statistical approach. Both regular

and random models depend on an assumed Omultiplication property" of

transmission functions. That is to say, suppose there are two non-reacting
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components (i) and (2) of a mixture so that

Tr (1, Z - Tr (1) x Tr (2) z.6-40-)
V V"

Then if the interval Av over which averaging takes place is sufficiently

large, we can also write

ir (1, 2) - !rV(1) x %r(2) (2.6-41)

if the transmission for component (1) and component (2) are uncorrelated.

The conditions under which this is valid are discussed by Goody (1964).

The regular model was first developed by Elsasser (1942). The model

consists of an infinite number of lines of equal intensity with equal spacing

between lines, which may be allowed to overlap. The absorption coefficient

for Lorentz lines may then be written as

i(.) - (2.6-42)i - (V -1,612 + w L

where 6 is the frequency spacing between lines and the average absorption

can then be shown to be

1 -1 (y,'u) (2.6-43)

where y - wL/S and

+ 1/2

21r u) .xp( 2W y dx) (2.6-44)S-u1/2 c
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The function E(y, u) cannot be written explicitly in terms of known functions

and must be nu.mer,•&•-y Integr-ated or treated in limiting cases.

The random model was first considered by Mayer (1947) and Goody (1952).

in its most general form, It refers to N overlapping lines of unequal

intensity randomly spaced in an interval Av - N6 for which it can be shown

that

Tr "XP ( I (2.6-45)
AV I

Eq. (2.6-45) has recently been applied by Churchill, Hagstrom, and

Landshoff (1964) to a computation for heated air. The integral is appr,-,•-mated

by evaluating the argument at many points in Av and utilizing a trapezoidal

integration scheme. The final results show that an average T over Av1

may be fitted to the following simple empirical form

¶() ~ exP(L 5) + QX (-$A 9) (2. 6-46)

where p; and p" are mean absorption coefficients for two groupings of
Si/nes. Tables of •.i~ and W as well as graphs of the behavior of Tr1

are given for temperatures between 10000K and 12,0000 K and densities from

atmospheric normal to 10-4 normal.

In considering lines superimposed upon a background continuum, It

is of interest to inquire into the degree of separability that exists between

the two types of emission, What we can show*is that the total energy

* The method Is due to S. A. Hagstrom.
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T

radiated by aii atmosphere equals the energy of the continuum emission

plus the energy of the line emission diminished by the factor exp (-PC, ),

where p is the continuum absorption coefficient which is assumed to

be essentially constant over some frequency interval Av . The intensity

[(sA) in the direction 6 due to an emitting column of gas of length

s is given by

- (T) (1 - L) (2.6-47)
wa

where c and p are the continuum and line contributions to the

absorption coefficient, respectively. Integrating Eq. (2.6-47) over the

interval Av we get

1A (, dv B(T) (1 - e Lc 4)3)sI )

'S S
" dv Bv(T) - e 3 ,(T) e dv (2.6-48)

Av A V

where we have assumed gC' is constant over Av

The intensity due to lines alone is

(3,4) f v %~(T) Gl-e

"f dv B. (T) dv (T) e (2.5-49)

AV AV i
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4 ii

or, rearranging,

f - ,(T), ef T)- (2.6-50)

•A V

Substituting Eq. (2.6-50) Into Eq. (2.6-48) , we get

v BV C(T) -0 dv V(T) + 1L aec

t~v

- c+ r. (2.6-51)

where the continuum intensity ICV is given by

C (s dv (T) (1 - ecs) (2.6-52

AV

Note that Eq. (2. 6-51) holds regardless of whether the lines overlap or not.

The importance of Eq. (2.6-51) is that It gives us a ready idea as to

the relative importance of continuum versus line effects. Thus, if, for example,

""'s > 0. 1

the continuum spectrum will cause an apparent reduction in the line contri-

bution,and in regions where

>>
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the iines may be disregarded entirely, for most practical purposes.

The relation (Eq. (2.6-51)) may be put into an equivalent form in

terms of partial (intensity) emissIvties:

Ic CL e-c

C A -v B ,( ) - v B ( Y

g ~~ -U F~Y1~ is

6L)V 'e (2.6-53)

or

SCL +c L c (2.6-54)

whera

LI

and

Sen ct

are the line and continuum partial emlssivities, respectively.
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vO

6 x

FIG. 2-1 ILLUSTRATION OF A
COLLIMATED BEAM OF RADIATION F
INCIDENT ON A PLANE-PARALLEL Vo
SLAB OF GAS (SHADED SECTION).
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FIG. 2-2 ILLUSTRATION OF AN
INFINITESIMAL CONE OF RADIATION
IN A SLAB OF GAS OF THICKNESS L.

65

!

[
I



KEAM

FIG. 2-3 ILLUSTRATION OF INDUCED SCATTERING. I(V')
REPRESENTS THE BEAM INTENSITY IN THE PARTICULAR
DIRECTION 0'; SCATTERING INDUCED BY THE INTENSITY
I(nl) DIVERTS PART OF THIS BEAM INTO THE DIRECTION
n. THE EFFECT IS SYMMETRIC BETWEEN THE DIRECTIONS
Oi AND 0l'

o--x-a--c

b .

(6A IS MEASURED NORMAL TO THE DIRECTION
OF THE BEAM)

FIG. 2-4 FLUX EMISSION FROM AN ELEMENT OF
VOLUME IN A SLAB OF THICKNESS 8x.
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FIG. 2-5 THIN-SLAB AND HEMISPHERICAL GEOMETRIES

F x~$

FIG. 2-6 INTENSITY I AND x-COMPONENT OF FLUX Fx .

FIG. 2-7 TRANSPORT ACROSS A SURFACE AREA S .
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Chapter 3. THEORY OF RAn!ATIOM

In Chapter 2 we reviewed the influence of absorption coefficients

and related experimentally measurable quantities on the transport of

radiation through gases. The absorption coefficients and related quantities

were introduced as atomic constants, and no discussion was made of the

factors which determine them. In this chapter we therefore review the

classical and quantum models of radiation theory which are used to

determine the absorption coefficients and other transition parameters of

atoms and molecules.

3.1 Classical Lorentz formulation

The Lorentz theory (an excellent discussion is given in Stone, 1963)

based on the classical model of interaction between electromagnetic

radiation and matter is well known. It involves the examination of the

behavior of an ensemble of damped linear, simple harmonic electron oscillators

(called "atoms ) driven by the electric vector of the electromagnetic wave.

The theory has been spectacularly successful in discussing dispersion, itnd

many other phenomena of physical optics. In spite of its limitations, and

tho apparently arbitrary assumptions which have to be applied to overcome

them, much physical insight can be obtained by study of the Lorentz model.

In the discussion of the anomalous dispersion, the equation of motion

of a typical damped, driven, oscillating electron is

wmg + b + k x eE exp (iwt) (3.1-1)

where

V b/m (3.1I-2)

S. .. . ; . . .. . • •,± ,46 8



I -!

is called the damping constant. The characteristic angular frequency of

the electron Is

= (k/m) 1/2 (3. -3a)

°= 2TT vo (3. 1-3b)

and the angular frequency of the driving E-vector is w - 2fIv . Straight-

forward and well-known analysis leads to the following expression for the

frequency dependence of the absorption coefficients

I2

S=_L 4. . .1.• ,t. cm2 )
c e( (cm2) (3. 1-4a)

2

ýL -ZIA_-- -(T) N a (crn 1 ) (3. 1-4b)
mc ( \~~2 V

(2 N a
v Nc- -()" -((cm 2 /gm) (3.1-4c)

where N is the number of absorbing atoms per cm3

These equations represent the 'Lorentz' radiation-damping natural

line profile and, apart from a redefinition of y in the quantum formulation,

retain the same form of a tuned, damped oscillator in this case as a typical

Lorentz line is illustrated in Fig. 3-1, where the width W at 'half power point'

is seen to be the distance between the two frequencies at which the two terms

in the denominator of Eqs. (3. 1-4a,b,c) are equal. Thus we have

TT (3. 1-5)
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From a consideration of the decay of the oscillation due to clas!tcal

dipolk radiation, it is easy to show that when the driving field is removed,

If t is the time for the power to decay to 1/e of its inftil value, the

damping constant has the value

y SEE V e 0 sec-I (x in cm) (3. 1-6a)

t 3 mc 2

or t = 4.50 X2 (sac) (3. 1-6b)

Integration by elementary methods of Eq. (3.1-4a) with respect to v over a

a spectral line leads 'to the important result (see Aller, 1963)

Jm\, dv - KL (3. 1-7a)
f mc

In order to compare such an equation with experiment the model has

to be refined somewhat. Atoms exhibit more than one spectrum line and it

is thus assumed that the electron is so bound that iL can oscillate at one of

a number of characteristic frequencies v0 . The 'fraction' of the electron

associated with any one characteristic frequency is designatc I f and is

called the classical oscillator strength at that frequency. This requires

that the right hand side of Eq. (3. l-7a) be multiplied by f , and thus

2

=Ve"dv f (3. l-7b)

The similar expressions fo- the other integrated absorpticn -oefficients

become

2
p dv = "e Nf (3. 1-7c)

f V I~nc
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When 5 is measured in cm-1 rather than sec-1 Eq (3. 1-7b) taks the form

2
mc2

and a similar change occurs in the denominator of Eq. (3. l-7c and d).

The equivalent width W (Section 2.5) of an optically thin line

may be written as

W- J dv-Nx J v -dnv f - Nfx (3.1-8)f V fMV mc

Thus for optically thin lines, W caL be used to measure N, f or x

The application of Eq. (3. 1-8) to the optically thick case involves

a disuussion of the cut ve of growth (see Aller, 1963 and Section 2. 5).

A few properties of classical oscillator strengths are noted briefly.

a) The 'sum rule'

1'f - (3. 1-9)

is obeyed.

b) For continuous spectra Eq. (3, 1-7b) is written

cx dv = m f vd (3.1-10)

where df Is the element of oscillator strength associated with the

frequency increment dv
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c) In the classical formulation. the cac..1..th11 .... rtxeraw of a line is a good

parameter with which to specify the integrated absorption coefficient of the line.

Finally we make brief mention from a classicall standpoint of

scattering processes and of the Einstein A and B coefficients.

LlAht 8catterina. Suppose a classical oscillator with frequency vo

is hit by a photon of frequency v . Itcan then be shown (Heitler, 1954)

that the total cross section is

V4

" 2 v 22P 3 o (Ve2 v •2) 2 +a v 2 Y1

where

row e 2/mc2 (3.1-12)

is the classical electron radius, and y is the natural line breadth, given as

2 2
S c ro(3.1-13)

From Eq. (3. 1-11) one can discuss three cases of interest:

1) for vo<< v and Y << v , we obtain Thomson scattering cross section

&LSr 23~ ro (3.1-14)

3 r

2) when v , we have Rayleigh scattering cross section

q 2 = &L 2 _4 (3.1-15)3 re v 4
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3) with v v, one has the Lorentz cross section

2n 2 V 2

(Vo-V) 2 + Y2 /4

When 0 - o in case 3) we have the phenomenon of coherent scattering

at resonance or resonance fluorescence, which from a quantum viewpoint

can also be considered as a single process equivalent to absorption and

emission of a photon.

Einstein A & B Coefficients. In a transition of spontaneous emission

from U(pper) to L(ower) states, the number of radiative transitions per

second is N UAUL , where AUL is the Einstein A-coefficient or transition

probabiAity per atom per second for spontaneous emission. Thus the energy

E(UL) radiated per second from unit volume into all 4fl of solid angle is 4

(cf, Eq. (2.2-4a), integrated over 0 and v):

E(UL) = NU AU L hv UL (3. 1-17)

where Nu is the number density of excited atoms in the state U
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Similarly, in the L-U absorption transition stimulated by a beam

of radiaUon with specific Intensity Lv , and hence, energy density per

unit solid angle I,./c ,the number of absorption transitions per second is

I

NLBLU c.d{ (3.1-18)

The coefficient BLU is called the Einstein B-coefficient for absorption or

for stimulated (induced) emt.ssion. Thus, the energy per unit area per unit

time absorbed out of the beam IV within a path length dx is

A = dx NL BLU I ,a (3.1-19)

However, from the definition of the absorption coefficient a , we know

that this absorbed energy should be

AEUL = N L dxJ a VI Vdv 61 (3. 1-20)
f4 f

where the frequency integration is carried out over the width of the line U-L

By comparing these two formulas for the case of a line over whose width I

does not vary appreciably, we find the relationship between . BLU,

and the line oscillator strength:

' f hv LU •e_2d dLU = Bm fL (3.1-21)

fad BLU c m c LU

The B-coefficient is sometimes defined relative to the intensity alone,
rather than relative to the energy density. In this event, no factor c
appears in this expression.
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The last equality follows from Eq. (3.1- 7b).

We can therefore write

fLU = hvLU B.U (3.1-22)
TTe

When U is gu-fold degenerate and L is g1 -fold degenerate, the

B-coefficients of the component transitions may be summed to give an

overall B-coefficient which will apply when the levels all lie at the same

energy (Davidson, 1962).

SLi (v) " g UL" g (3.1-23)

UiLi

Similarly, by a detailed balancing argument the following relation can

be shown to exist between the A- and B-coefficients in the generall case

of degeneracy (Davidson, 1962):

33 (.-~
& Tc k ic(3 1 - e

OU AUL " gL P-U c 3 "gU UL c3

The intensities are however, still controlled by Eqs. (3.1-17) and (3.1-20).
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The energy absorbed per unit time, Eol" # by a (single) classical electron

oscillator (corresponding to Eq. (3. 1-19)) is given by

SE- r M ! I,•df (3.1-25)

(cf. Heitler, 1954, p. 38, Eo. 19.)

in terms of the specific intensity IV . The quantum-mechanical result

(which we will derive in the next section*) is

E = 4 TT2 e2 V r 2 f G( . - 6
Q. M. 3hc jv )d (3.1-26)

in terms of the matrix element rBa

The two results can be connected by the definition of the quantum-

mechanical f-number:

4rrm 2 (3. 1-27)

(see Eq. (3.2-62), following.)

Witt-is defi niton, Eq. (3. 1-26) yields

2 r
E Tre f I dn (3. 1-28)Q.M. mc O a J vi-)

in analogy to Eq. (3.1-25). That is to say, we obtain

EQ.M. = fa Ect. (3.1-29)

* See Eq. (3.2-43). By multiplying w of this equatior, b, AW ,

the iesult used here can be obtained.
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Thus, the oscillator strength, which in classical terms is associated

with the fraction of the electron responsible for the radiative transition,

may also be thought of as the fraction or factor which converts the

classical energy abcorbed or radiated per unit time to the correct quantal

value.

A classical derivation of photoelectric absorption has been given

by Thompson and an improved semiclassical derivation has been given by

Kraamers. These are described by Compton (1926) in Chapters 6 and 12,

respectively.

47
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3.2 Quantum formulation of radiation theory

J. 2. 1 Formal theory

We will not attempt to expound or review the basic principles

of the quantum theory of radiation. Rather, In the spirit of the applied

Investigator, we shall derive the working formulas needed for applications

of the theory from its basic formal results. In this spirit we will also

tabulate some of the parameters needed for applications to the radiative

properties of heated air. We will also attempt, where it appears useful,

to correlate the results of several more or less standard texts or references

(Bates and Damgaard, 1949; Bethe and Salpeter, 1957; Dirac, P.A.M., 1947;

Griem, H.R., 1964; Heitler, W., 1954; Mayer, H., 1947; Schiff, L.I., 1955;

Slater, 1960) where their authors employ different convtntions, and to

include some of the details of the reduction of the general formulas that are

normally glossed over or left to the reader in these texts.

The basic formulas that we need, called "Golden Rules" by Fermi (1950),

are

w Hia 2 d (3.2-1)

and

H Hw - Ek dE (3.2-2)
- -I4. EI~k dE

These formulas give the transition probability per unit time for a transition

from state I to state j induced by a perturbation with matrix element

78-



H. (firs.t-order parturiatuon, JUN. (3 . 2-j or (second-order

perturbation, Eq. (3.2-2)).

The Indices ' and J are symbolic for all the quantum numbers

needed to define the system (atom + radiation) before and after the transition,

respectively. The factor da is the number density of final states in thedE
cases where there is a continuous range of final states (e.g., spontaneous

emission, photoelectric absorption), or the density of Initial states in the

cases where there is a single final state but a continuous range of initial

btates (e.g., line absorption). These formulas are derived by Schiff (1955)

and are derived and justified in detail by Heitler (1954). Although they can

be derived heuristically for radiative transitions within the framework of

ordinary quantum mechanics and semi-classical radiation theory, they cannot

be rigorously justified except by appeal to quantum field theory.

Although in principle one is interested in all processes which result

In the abso rption or emission of a photon from nr into an incident beam, in

practice one usually confines oneself to the processes which dominate the

absorption and emission in the temperature-density regime of interest. In

this spirit, we will limit our attention to discrete atomic transitions, photo-

electric and free-free transitions, and simple scattering processes. We will

nct concern ourselves with radiative corrections or relativistic effects.

The first three of these processes, viz., discrete atomic transitions,

photoelectric, and free-free transitions, termed "simple absorption" by

Mayer (1947), are usually the most important and we will emphasize them

For the existence of a transition probability per unit time, a continuous
range of states must exist in either the initial or final state. For u
discussion of this point see Heitler (1954), or Schiff (1955).

Or to the rules of Quantum Electrodynamics, see Feynman (1962), p. 4.
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acoordingly. We will first reduce Eqs. (3.2-1) and (3.2-2) to the

specific transitions listed above that we wish to treat. This can be done

without reference to the type of etomic system because tha nature of the

atomic system is concealed in the wave functions used to compute the matrix

elements H After deriving the formulas specific to the various

transitions, we will proceed to specify the atomic systems. In appiylng

Eqs. %3.2-1) and (3.2-2) for the transition probability to different bituations,

one usually must deal with d states (i.e., states with the same

energy, but differing In some other quantum number or nkumbers). In view

of the principle of equal a probabilities in phase space one should, in

the absence of additional information, averrige over degenerate initial states

and sum over degenerate final states (Tolman, R. C., 1938, Sections 98 and

99). This degeneracy must arise from different spatial orientations or froin

degeneracy on quantum numbers other than the energy, as the sum over the

energy states lying in a small region AE allowed by the uncertainty principle

(and therefore effectively degeneratet has already been carried out p a the

derivation of Eqf (3.2-1) . It Is this sum that leads to the appearance o the

"number densilty of stetes" dn/dE . "With this prescription, the transition

probability per unit time becomes

u4-w HF' IH 12 da (3.2-3)tj A dE

for first-order processes, where the index a (i) labels the

degenerate family of g1 states (i) and the index 0(j) labels

the family of gj states (1) . That is to say, i and J

uniquely specify the energy of two degenerate states and a and
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Srun over the remaining quantum numbers. For simplicity in the derivations

which we now undertake, we will compute transition probabilities, cross

sections, etc. for a pair of distinct, non-degenerate substates a and 0

of a single atomic electron, and after doing this return to the general situation,

3. 2. 2 Reduction of the general formula to formulae for

specific processes

For radiative processes, the perturbation term that enters

the Hamiltonian for the interaction between the radiation field and an atomic
*

electron is

H AL P .A (3.2-4)mc

where p is the momenturn operator o, the atomic electron and A is the

electrcomagnetic vector potential. The normalization of A and the density
dnR

of states of the radiation field -- are related so that a consistent choice

of the two must be made when dnR is the appropriate density of statesdE

to use. For emission of a photo"n by -.n atomic sy-stem which makes a

transition between two bound states, the necessary continuous range of

states is provided by the radiation field which is produced in the final

state. Similarly for absorption accompanied by a transition between two

bound stes, the contiiuous range ol" rtates is provided by the presence
drt

of th, radiation field ir. the initial state. A consistent choice of dR
dE

and the matrix element of the interaction term given by Eq. (3.2-4) is given

This arises, of course, from expanding the term 2 m - c in the

Hamiltonian. See Schiff (1955), Sec. 35. It also can be interpreted

as the Interaction energy A between the atomic electron

current = ev and the vector potential A • See also Power, E.A.

(1964), p. 101.



by Heltler (195-4) as

w di(3.2-5)

(nuj-1) /2J -Ik e Y r

if m W (n 1) #, p e e d% (3.2-6)

In these equations dnR Is tie number of photon states ner ur.it volume of

a given polarization in the energy range E to E + dE and in the solid

angle element dfO about the propagation vector k . The polarization isY

specified by the unit vector c and there are two independent directions

of polarization. The matrix element given in Eq. (3.2-6) is appropriate for

the state a to contain n W photons per radiation oscillator (cell in

the phase space of the radiation field) and the state 0 to contain n• + 1

photons per oscillator. Hence, we can use a and ý as initial and

final states, respectively, for emission, or 9 and a as initial and

final states, respectively, for absorption. In this latter instance, however,

it will be necessary to replace nW by n -I and nW + 1 by n

The matrix ele:nent of Eq. (3.2-6) depends on a particular radiation

oscillator within the infinitesimal range dnR = W dO dE/(2ftc) 3  only

through ',he "occupation number" of the cell, n . Since, as stated

previously, the square of the matrix element appearing in Eq. (3.2-1) (or

Eq. (3.2-3) has been summed over this infinitesimal volume of phase space,

when we make use of Eq. (3.2-5) as the density of final states and Eq. (3.2-6)

as the matrix element in Eq. (3.2-1) , n should be replaced by R , the
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average number of photons per radiation osciliator in the range dnR

3.2.2.1] Bound-State Emisr'on

We now insert Eqs. (3.2-5) and (3.2-6) into

Eq. (3.2-1) (a. =- i, J J) to obtain

2 2

for the t ran iie n + 1) dO (3.2-7)

for the transition probability per unit time for emission into the solid

angle element dCO . The matrix element of p e e indicated

by the subscripts a , 8 after the a'bsolute value brackets is definecd

by the integral appearing in Eq. (3.2-6).

We now need to relate the occupatFon number n% of the raulation

oscillators to the intensity of a beam of photons. Since the number of

radiation oscillators (cells in phare space) per unit volume in an energy

range dE is given by Eq. (3.2-5) , we can from this equation compute the

intensity of radiation correspo.ading to the presence of some average number

RW I of photons per radiation oscillator. The physical properties of photons

within the Infinitesimal range dnR = 3 of oscillator states are theR 2Trc) 3 A

same; hence, a measurement of the intensity would not discriminate among

them and would therefore constitute a measure of the .Ay2EjgM.occupation of

these dnR states. Since._" I ('n) dA dw is the number of photons
R~ W

per cm3 in the (angular) frequency range dw and in the element of solid

angle dO , it must be equal to f times the number of radiation3

oscillators per cm3 in the same differential ranges dO and dw
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Hence, we have

1. (dw dO ALA d

which can be solved for I (i) in terms of 5.

I (•)= n2(3.2-9)

or vice versa. The intensity function I (-C) has been defined previously

in Sec. .2.1.

We will generally make use of the dipole-length approximation wherein

the exponential in the matriv element is taken to be unity and the electron

momentum operator p is replaced by the coordinate operator r through

use of the relation (Schiff, 1955, p. 253)

p P i m .0 rCLO (3.2-10)

Making use of Eq. (3.2-10) , we obtain from Eq. (3.2-7)

r 2 + 1) (3.2-11)

which by use of Eq. (3.2-9) becomes:

dw e I • •I 2 ww31 (0) ) (33 2-2
CL a (3.2-12

dOl 2'rr A c 3 c r E + AW3 (322
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The first term in this expression is the spontaneou transition probability

end the second is theiu transition probability. The total transition

probability (with emission into any solid angle element dO), is of course,

obtained by integrating Eq. (3.2-12) over all angles. However, except for

isotropic radiation, this is not interesting as an atomic parameter, as it

will depend on the intensity I . The total s transition probabilityW
is an atomic parameter in any event, and can be obtained from Eq. (3.2-12)

by integrating the first term over all angles. This parameter is also known

as the Einstein A-coefficient:

wl (spont)u A -J dM - •wAs (-, r•' di2 (3.2-13)

The indicated summation (4) over the two independent polarization

directions must be carried out before following the usual procedure of taking an

average over the random orientations of the dipole moment of the atom, since the

contribution of a given polarization depends on the dipole-moment orientation

which is specified by the vector rr CxO , 'as T+ YM O+ %0ý . The

summation can be carried out with reference to Fig.3-2 by taking r as

the direction of the Z-axis.
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With this convention, and takinv j 1 and C2 as two mutually perpendicular

but otherwise aribitraty polarization vectors, we obtain, since dn 1s an

element of solid angle about the direction , and since

Jsin2 edco- 2r, sin3 8d0-
3

0 0

the result (valid for a fixed direction -r) :

2 3

2 2

1- 01

3 3 r M (a) or o (3.2-A4)
Ahc

6 4-rr4 e 2 1 1
"3 h,,3 , r I,, (b)

3 hX.•

It is not necessary now to average over orientations of the dipole moment,

as no directional dependence on r' remains, due to the Integration overtr

solid angle. Eq.(3.2- 14a) is In the form given by Bethe and Salpeter (1957),

Eq. 59.11, and Eq. (3.2-14b)is in the form given by Bates and Damgaard (1949),

with the added provision that 1, 2 be summed and averaged over final

and initial states.

Because of the Isotropic nature of the emission given by Eq. (3.2-14),

the emission per unit solid angle is just A ,/4Tr . We now compute the

transition probability for induced emission from the second term of Eq. (3.2-12).

Note that we might as well have taken a single unit polarization vector
lying in the plane of "7 and 1 since the components perpendicular
to this plane do not corftibute.

On account of our dipole approximation, ?~ does not depend on
the propagation vector c .

Y
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Thus

de 2u3  3 2 2
..J(irid) -x 8' .j I;- '0dn 2TT A c 3  Aw3 W 3 1

(3.2-15)

where the superscripts on the two IM) factors indicate the polarization.

We assume that the radiation is unpolarized so that 1 0) ) (2)1.

and obtain

dw •2 2l(ind) - 1 %0 12 1 W) sin e (3.2-16)
M 2c

Now a is the angle between the propagation vector • and the atom
Y

dipole moment vector r .CtO , Thus, we can simplify Eq. (3.2-16) by now

averaging over random orientations of the dipole moment. To do this we

multiply Eq. (3.2-16) b/ "- where d;,i is an element of solid angle

about r . Since sIn2n Pdf - we obtain
as4TT 3

-d (Ind) - 4T2 e22 I 2 X-) . (3.2-17)
dfO 3A 2 c 8

The total induced or stimulated emission can nowbe calculated from
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this result by integration over all angles of emission:

2 2
'0(Id 2 r 1W (IT") Cal (3.2- 18)

The induced or stimulated trans'ation probability given by Eq. (3.2-18) is

related to the Einstein B-coefficient. The B-coefficient is defined here so

that

"dn (Ind)B :cl)) (3.2-19)

which Is the radiation density (p,} rather than radiation flux (I)
V V

definition an pv a IIc. (Compare with Eqs.(2.2-4b) and (2.2-7a,b,c))
V

Comparing this with Eq. (3.2-17) and noting that

we obtain

'" 2 , or,
60 3A c O

(3.2-20)

2 2 e 1-r1
60 3ti2 3h 2  r a

The last form agrees with the result given by Slater (1960a, p. 142), whereas

Eq. (3.2-18) Is the form given by Schiff (1955, p. 253). Griem (1964, p. 28)

employs a quantity 29 defined such that the total transition probability
ao.

is expressed in terms of the average intensity Ly- 4dJ d•=
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Fi

w MA +B kfIdfl 8Ad- o B

Thus, his formula for k ti the same as ours (recalling that for the time

being we are assuming our states to be non-degenerate, so that the statistical

weights are tll unity) but his formula for 2 differs from ours by the
2

factor
c

It Is perhaps appropriate to observe at this point that the ratio

A 8/Bc•B as given by Eqs. (3. 2-14) and (3. 2-20) has the value

3
S8nh

SL ,.3 (3.2z-2 1)

CLO C

which, as stated in Eq. (3.1-24) of Section 3. 1, is required by general

considerations of detailed balance (see, e.g., Slater, 1960, p. 21).

Although the more or less heuristic method of "averaging over atom orientations",

(performing an average ovfer the angle between r,,, and ) is the

simplest method of eliminating the direct dependence of the transition

probability on the coordinate system chosen, it Is not necessarily the most

perspicuous, and is in fact somewhat redundant. The final result will still

have to be summed and averaged over the magnetic quantum numbers of the

final and initial states, respectively. This redundancy can be removed,

at the expense of somewhat more algebra, in the following fashion.

Griem uses MKS units; hence, to convert to cgs units the factor
417go should be removed from his formulas (specifically his
Eqs. 2-48 and 2-54).
In the absence of an external field, different orientations of the atom
correspond to different superpositions over degenerate sublevels, which
are to be summed over and/or averaged, anyway.
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By use of the spheiIcal harmonics addition theorem (Rose, 1957;

Eq. 4.28), we can write 'C' , where - is a unit vector, as

F r -4r2. +0 (9,4)Y, im 4 k 3

where 0 , ,P , V speotfy t!,.• or.antation of r and c , respectively

with respect to sc.-io 1,txed . We can then write for the relevant matrix

element

S.•; " ./ dv ( R) r R aYý (•,0) X (3.2-22)

ra 1m ,) Ylm' (8 Yl (0,f) dv
md

Now the Integral over the product of three spherical harmonics has the value

(Rose, 1957, pp. 61-62)

d"1) (; 2+ 1) 11/2Idn Yi 3 m3 YZ 2 m2 Y41 m 1L +1 Olt2"3;mlm2m3) x C('.lt.2t.3;000)

(3.2-23)

"w-..here the .C(tIll, 3 ;mImt m3 ) are Clebsch-Gordan coefficients 1we follow Rose's

notation). Using this result and the fact that m3 m 1 + m 2  we obtain for

the matrix element (Eq. (3.2-22))

* For the definition of these quantities, see Section 3.2.3.
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/ - , \1/2/2

~~ C(2 rat r +m 4 1)
x C 1, a 14,0, 000) Y lm ma o-,( O O)

23.2-24)

x YI mo - mCl(A ,

where we have defined L =ER0 R ft r 3 dr . We now wish to sum this

expression over final states 0) and average it over initial states (a)

First we carry out sum over final states by summing over m and noting

that mr-n, can take on only the values 0, + I . Denoting the matrix

elemnt r * dv by MI. we can now write

2 SL +1 222M 4a L1 C2 L l?,;000) Y4(, (l ,O,n) ¥ (3.2-25)
m•

+ C2(Ia itmi 1,m*+1) Y ,2 + C 2( l( it;m ,M-1,lm - I])y2

In order to perform the average cver mC , we make use of Eq. 3.16c of Rose (1957):

C (JlJ2J 3 ;im2 m3 ) (2i2+l) M2JiJm -) (3.2-26)
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By interchanging the indic6s according to this relation,. ha ,, ,.
needed becomes

2% 1$ (3Z a' Yi p81 U;000) x (3.2-27)
m

2t8+ 1 C2(ttI -L )y2,+ 2ta41 2,(a ~a-- 1

-2 2,CS+1 c 2 (tt;M. ,1-m ,1)

33

yl.. 3 ' ' l ,-i

Each of the sums over the squares of the C-coefficients can now be carried
out by means of the orthonormality relations satisfied by these coefficients

(Rose, 1957, Eq. 3.7), with the result that each sum is unity. Eq. (3.2-27)

thus becomes

me1' _4g fMJ0 C2("xl" 1;000)( Y 2(B, (3.2-28)Sm B I~

By use of the formula (Bethe and Salpeter, 1957, Eq. A. 42)

E lyt(oml 2tL,+1
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I

we can finally write this result for one polarization vector 1 as

+ l 1 Msa in 3  C2L it, ;O00) (3.2-29)2•,t '+IMa -3 aS

ma me

Since this result no longer depends on the polarization vector we need only

multiply by 2 to account for the two independent polarization vectors.

For spontaneous emission, we found previously

2 3 1ii..12
W (spont.) r., C 1r 12+ • d

2rr A c 3 f1

If we make use of the sum and average we have Just found, we can evaluate

this as

w(spont)- T 2 2 w (spont)2 OL+ 1
n% ms

- 3 3 a1L ) C2 (",a i,;00O) dO

=4e 2 w3  (L) C (It i 2 '000) (3.2-30)
3A a C3hc3

with an analogous iesult for induced emission. We have changed notation

on A fron, tB .o R(,t 8 ) since this quantity dos not depend on

mCn or m . From the properties of the Clebsch-Gordan coeff•cients
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we know that C(t it ;000) vanishes unless 4 + 1 The values of

the particular Clebsch-Gordan coefficients C(4t, 1,L,+1;000) may be founnd

in a number of places. Condon and Shortly (1935, Table 2 3), e.g.,give

0 2 1, t,+1; 00 0) M+1
2t;+ 1

(3.2-3 1)

2 4,1

These are the coefficients (for the single, non-equivalent electron case)

called C , and Ci by Bates (1946, see Table I for s 2 S and p 2P

electron), and called C(,-.L+l) and C(t-¢-l) by Burgess and Seaton (1960).

With these values of the C-coefficients we now obtain for the spontaneous-

emission transition probability

4w3 2St-
Sw¢,&+l(spont) 2 4eRji 24,+i)

3A c3 2t,+ I

(3.2-3 2)

w _1(spont) 4 2 t 3 t:i 3A c 3 2t,+ I

In orde. to demonstrate that this result is Indeed the same as the result obtained

by averaging over "atom orientations" and then averaging and summing over

initial and final states, we must show that

2C, U + 1 • •8;20= 2 (t,0 • R2 (tt (3.2-33)

ms m9
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since if th's Is trze. "E. (12-330) and Eq (2, 2-i4) will agree. To show this,

first we note that (cf, e.g.,Rose, 1957, Eq. 111. 22)

x / r[l l 1]

y= L/2r [,-+ + (3.2-34)

/4(•)1/2Z V 3- r YI1,0

With these relations and over previous definition of r *j r3 dr

we can write the ryntrix elements of x, y, and z as

xsa ---" S x# Cdv

(3.2-35)1/2•\/

(z)=/2 Y10 Ya dfl

By Eq.(3.2-23),the angular integration over the three spherical harmonics

can be performed, yielding,
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.@ ,,13J r ..,.,],l,' C(Kl,,;*o~ooor, [o. *no ,' - , .. ..
( /2 1/2T ~~

x1l! C( -'0AI 4 -Im)CpI ni

C 1C(% L4,0 00) 1(1/ aOO,'CxL~ 14o [ am, , 1, M8)+C(, n;ma IMP

/2~~• r3c +2 1) 1/2~\3/~ 4Tr (2(8

41T(OR t+1) C(4- 14. O~o) C1ai;maOrn8 ) (3.2-36)

If now we square and add these components, the cross terms in I%<ai 2

and I y 12 cancel yielding

- lx8al + 'YsaL + Iz,,I 2  (3.2-37)

+ c2c, (4.o;mOrr)

But we have that (Rose, 1957, Eq. 3.16b)

C2 (J1 2J3;mlm2m3 ) C m(J 2JJ 3 ;m2mlm3); hence, we obtain from Eq. (3.2-37)

24 +2

+ C2(14,t. ;Om M) (3.2-38)
a 9
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The term in brackets is now the orthonormal sum on the first m-index

and hence, equals unity (Rose, 1957, Eq. 3.7). Thus, we finally &TIVe at

IT1 2 L C2(ta "LO;000)

which was to be demonstrated (Eq. (3.2-33)). In what follows, we will

continue the tradition of averaging over "atom orientations" beca use

of its simplicity, with the understanding, however, that it can be replaced

by the foregoing more detailed considerations If necessary.
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3.2.2.2 Bound-State Absorption

To ubtain the transition probability per unit time for absorption we

want the initial state 0 to contain n photons per radiation oscillator

(to correspond to the intensity I (0) through the relation, Eq. (3.2-9),
W

and the final state c to contain fi - 1 photons per oscillator. In
W

addition, we need to spelify that the density of states given by Eq. (3.2-5)

now pertnins to the jnijJ state. The matrix element given by Eq. (3.2-6)

becomes

IH r - - C e (3.2-39)
2n W

dn
With n as given by Eq. (3.2-5) , the transition probability per unit time

dE

(Eq. (3. 2- 1)) for absorption of radiation from an element of solid angle dfl

becomes, using Eq. (3.2- 10)

2 3dwc•=2 .C I SS 2 rl)d
dw C3 c r d

for a given polarization - ° By use of Eq. (3,2-9) this can also be

expressed as

2 2• ~ ~dws0 R T i•?l12)W1)(C) drn (3.2-40)

O 2 o.9 w
* ftc

If now we average this over polarizations we obtain in the same manner
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as before

dw . 2h _ I. I 2i(M) sin2 8df (3.2-41)

Again we average ovor atom dipole-moment orientations and this

produces a factor 2/3. The net result is

dw 3A 4 2 i 2 Ir1 •df) (3.2-42)

or, the total transition probability per unit time for absorption becomes,

22 2
w 2 (I 2 r iw (M dn (3.2-43)

These results (Eqs. (3.2-42) and (3.2-43) are seen to be identical with the diffeilatal

and tutal transition probabilities for induced or stimulated emission, Eqs. (3. 2-17)

and (3.2-18), respectively. These results can be correlated with those of Schlff (Eq.35.23,

1955) by noting that the intensity 1(w) as defined by Schiff is the total

intensity integrated over all angles, viz, our fI.(ii) dfl

As in the case of induced emission the total transition probability per

unit time given by Eq. (3.2-43) is not solely a atomic parameter except in the

case of isotropic radiation. Since we do not, in general, wish to be restricted to

isotropic radiation it is convenient for us to define a purely atomic parameter which

can be called an absorption coefficien.t per atom which is a cross section. In

order to define such a parameter, we first must take Into account the fact

that a line is not infinitesimally sharp. In any actual physical system this is
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true, as the absorption will cover a finite (even if small) range of

frequencies (Heitier, 1954, pP. 181-186; Mayer, 1947, p. 8) about

the reconance frequency -0t8 , (EP - E )/A . We can define the transition

probability per unit frequency interval wW by the relation

w.- LimA Ur-0 AW

where Aw is that contribution to the total transition probability which

occurs in the angular frequency range Aw . Then we raust have

w w• dw (3.2-44)

wherA the integration is taken over the entire profile of the line in order

that the total transition probability be equal to the sum of its parts. In

view of Eq. (3.2-44) It is convenient to acccunt for the line shape phenomeno-

logically by assigning a line shape factor b(w) to the line such that

ww = w b(w) (3.2-45)

Eq. (3.2-45) will be valid if we normalize b(w) according to

b(W) dw - 1 (3.2-46)

Thus, ww as given by Eq. (3.2-45) is the number of transitions per unit

time per unit frequency interval. For the idealized infinitely sharp
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transition, we have

b(w) (w - ) , (3.2-47)

whereas, for real transitions, b(w) will be a finite (but usually still

sharp) function.

We now recall that I,(?O) dO refers to the incident beam intensity

in the direction • . A cross section for absorption can be defined by

reducing this angularly distributed beam intensity to a plane-parallel

incident beam through

dO 1W(d) - o(W) 6( () dn (3.2-48)

2
where 10 (photons per cm /sec per unit frequency interval) Is the parallel

incident beam intensity. Since f86(") dln- 1 , we can substitute Eq. 13.2-48)

into Eq. (3.2-43) together with Eqs. (3.2-44) and (3.2-45). The result

after carrying out the integration over A is
M 4Tr2e2 -

3A 2 c rM 12 0 (w bltw) dw (3.2-49)

for the total transition probability per unit time, and by dropping the w-

integration, we obtain

wAsa W) - 422e2 ) r ol1 0 (w) b(w) (3.2-50)
3A c

for the transition probability per unit time yer unit freauency Interval.
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A cross section can now be defined by

7 act (3.2-51)

which, according to Eq. (3.2-50), will havu the value

2 2
a•(W) _ 4To IaW I -r b(w) (3.2-52)

The frequency integral of this quantity

Jasf(w) dw 3•-C r tc (3.2-53)

is just the ratio S/Io(w) as given by Heitler (1954, p. 180, Eq. 19)

where S is the energy absorbed per unit time as he deftles it. Since (as

noted after Eq. (3. 2-43)) the transition probabilities per unit time for absorption

and induced emission are Identical, it can be seen that the cross sections

for these two processes are also equal. This requires that the shape of an

absorption line be the same as an emission line which must be true from

general equilibrium considerations (Heitler, 1954, p. 186).

just as in the discussion by Bethe and Salpeter (1957, p, 296) of

photoelectric absorption, the cross section we have defined here has the

physical interpretation that J•(•) dw m w is the probability per

f A

When emitted or absorbed at the atom -- not after transfer through
a medium.

I)2
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S................. .. A OW/ in incident will be oxoited.

Also,

T= Nv C, (W) (3.2-54)

Is the probability per centimeter that a photon of angular frequency w
3

will be absorbed in a medium consisting of Nv absorbing atoms per cm.
Thus, we can interpret the product aNvIodx as :

(aNVdx) Io(w) - (probability of photon absorption in dx)

x Number of photons x JA

cm -sec-frequency interval (3.2-55)

- energy absorbed in dx per cm2 per sec

per unit frequency interval.

- dlio(w)

Alternatively, we can interpret this product as:

a(W)Io(W) , , Probabilitv of exnitation C2er atom

AW (N v dx'ihw second x frequency interval (3.2-56)

2x (number of atoms/cm ) x energy of excitation

energy absorbed ir, dx per cm2

per unit frequency interval

- dI(w)
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F. . ..

As far as the transfer equation (Sec. 2. 1) is concerned, it is not

really necessary to define a cross section. This was done in %ec. 2.1

for convenience of interpretation, but all that is needed is the energy that

is absorbed (and/or emitted) from the beam. The absorption can be obtained

directly from the transition probability (per unit frequency Interval) since

dl (ii)- Nv Aw d• (w) ds (3.2-57)a$

for the beam intensity decrement dI.(d) in a distance ds . The

phenomenological definition of the absorption coefficient is (Sec. 2. 1)

UW)- d (3.2-58)

Inserting Eq. (3.2-42) into Eq. (3.2-57) with the definitions Eq. (3.2-44)

and Eq. (3.2-45) now leads to

dlU) ) 2 2
) - ds " 1 Nv 3ic Jr aS b(u,) (3.2-59)

4 42 e 2 v

Thus, the quantity 3hc Ir as 12 b(w) can also be referred to as tht

absorption coefficient per atom (UW)/Nv)

This result implicitly assumes that the absorption is due entirely to

the single transition a - 0 . This has been done for simplicity, to

avoid cumbersome summation signs.

LIM
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D-c 147, p. 2'4b) gives

32

as an absorption coefficient. Referring to) p. 24S of his book, however, we

see that this Is the "probability per unit time of an absorption taking place

with an incident beam of one particle per unit area per unit time per unit

frequency range". Hence, It Is obtainable from our Eq. (3. 2-40) First we

set 1 (8) - AW NW(w) 80?) where N 0c(w) dw is the number of photonsW 00

of a given polarization c in the angular frequency interval dw crossing

unit area per second, and then Integrate over *We obtain

am A c MO 0'N~()(.~1

Now we convert to frequency v rather than angular frequency w by
no(v)

No w-n0() vo 21T Dirac's absorption coefficient,
(C)

Eq. 03.2-60) ,is then equal to w~ for n(v M

Another quantity commonly defined is the oscillator strength or f-n~umber

(Bethe and Salpe~ter, 1957, p. 256; Conuon and Shortley, 1935, p. 108) for a

fransitica from a (single) state 8 to a (singld state a

CL8 3 9C _ . (3.2-62

In terms of this quantity our cross section a (LO () (Eq. (3.2-52) becomes

(w T~2fb(w) ,(3.2-63)
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at

or, in terms of b(w) dw = b(2"rv) x 2rrdv = b (v)dv and a(w)dw "7(v)d&!

this can be written,

2
_•(v) = T-e f t (v) (3.2-64)

mc

where we drop the subscripts for simplicity.

The f-number definition is made, of course, because of the classical

correspondences noted in Sec. 3. 1. That is to say, if we integrate the

definition (Eq. (3.2-64)) over frequency v

,r2
a(v)dv = -- f

we recover the classical expression, Eq. (3.1-7b) of Section 3.1.

3.2.2.3 Photoelectric Absorption and Radiative Recombination

In the case of photoelectric absorption and emission we must deal

with a free electron in the presence of a residua. ion. Hence, we must

specify the type of wave function (and its normalization) that is to be used

to describe the free electron. The simplest description, if applicable, is

3to use a plane-wave momentum eigenfunction normalized to the volume L

Tris is the method illustrated by Schiff (1955) and by Heitler (1954), and

is an appropriate approximation for high-energy absorption, and is

mathematically and conceptually convenient as well.

For the limitations of this approximation and improvements thereon, see
Be'ie and Salpeter, 1957, Section 70; Mott and Massey, 1949, p. 356.



However, at low energies the effect of the potential in the final state is

important, the dipole approximation is usually valid, and one is usually

interested in a final state that Is an angular momentum eigenfunction

rather than a linear momentum eigenfunction. Since the questions involved

in passing from a free-state eigenfunction of one type to one of another

type as well as the free-state normalization methods are not trivial, we shall

attempt to give a fairly complete discussion of these aspects in order to

facilitate the use and understanding of the fundamental formulas.

Differential Cross Section for Linear Momentum Final Eigenstate

Although in the calculation of the photoelectric transition probability

our basic equation is still Eq. (3.2-1) , the calculation is somewhat more

subtle on account of the free electron which appears in the final state.

In order to obtain a transition probability per unit time in the case

of bound-bound absorption, it was necessary to sum over the continuous

range of initial (photon) states. Hence in that casethe density of states
d" was taken to be the density of initial photon states per unit volume,
dE
and was expressed in terms of the incident intensity through Eq. (3.2-9)

For photoelectric transitions, there is a continuous range of states in the

final state of the system provided by the free electron, so that the

derivation employed in the case of bound-bound transitions is no longer

appropriate. The final state sum employed in arriving at Eq. (3.2-1)

should now be over a differential element of the free electron phase space,

and dn/dE taken as the density of final free electron momentum eolen-

states in this phase space which Is

dn d3  L3  mp L3  (3.2-65)

dE (2rrTA) 3 dE 2Tr) 3
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since dE - (P/m) dp . The normaliration volume for the fre .. l..t... has

been denoted by L3 , and the result is for electrons of a alygn spin, not

both spins. We will discuss the sums and averages over degenerate states

later. The matrix element s obtained from Eq. (3.2-6) Just as for bound-

bound absorption except that nW is not now LegW= to be the average value

5. (we are not summing over radiation oscillators! but we could take it to

be 5W if convenient, since the rest of the matrix element and dE is
independent of the radiation oscillator (within the infinitesimal element dnR)

As in the case of Eq. (3.2-39), for an absorption transition we want

the occupation numbers to go from to n - 1 so that our matrix

element for photoelectric absorption becomes

2• n "e-i " (3.2-66)vH m w p e (3.-66

dn
and we must bear In mind that we have assumed, in specifying dE by

Eq. (3.2-65), that the free electron is normalized within a volume . We

will return to this point later. We have also explicitly inserted the photon

f normalization volume V . This was set equal to unity previously since

dnR/dE was expressed as the number density per unit volume, and the

two factors if included explicitly would cancel against each other (see

Heitler, 1954, p. 57).
dnR

Since -aE- was not used as before, It seems advisable to

display it explicitly now. Heitler (1954) evaluates a transition probability

and cross section in the following manner. He assumes an initial

system of just the atom plus one photon . Then n in Eq. (3.2-66) is unity

That this procedure is not possible in the case of discrete absorption
follows from the requirement of a continuous range of initial photon
states in order for a transition probability per unit time to exist for
discrete absorption.
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for some one radiation oscillator (in the initial stte) and v..nishles for all

others. In the final state all n = 0 . Thus, with no photons in the final

state, the density of final states per unit energy interval (of the free electron)

is Just that given by Eq. (3.2-65). Inserting Eqs. (3.2-65) and (3.2-66) (with

n = 1) into Eq. (3.2-1) , we obtain (initial state B , final state a

2 L3
1 2 -1 kii vd~ (3.2-67)dw e p -CfpeeVw9 2 VW 3

for the transition probability per unit time for the absorption of a photon of

angular frequency w with emission of an electron of velocity v into the

element of solid angle de . If again, we make use of the dipole approxi-

mation and Eq. (3.2-10), this result can be written as

dw = e • el2 v (3.2-68)
SCL 2 3 V vd?

We can obtain a cross section from this result by noting that the intensity

corresponding to one photon in the volume V is

0 AWc (3.2-69)

10ýV

(not per unit frequency interval)

With this value of the intensity, the formula

da8S = dwS. •W/Io (3.2-70)
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for the cross section (cf. Eq. (3.2-51)) becomes,

dwx Vd (3.2-71)
O C

so that, from Eq. (3.2-68)

m 2e 2 w -12 3
d 2A3c CrIM vL3 (3.2-72)

For unpolarized light, with reference to Fig. 3-2, we can now average over

the two independent polarization directions:

2- A- 3 vL e dfe 111%21 + 1 2a (3.2-73)

2e 2 1

4 0 *3c vL3 d1e il 8 2 sin2 8

4iT At c

where , as noted in Fig.3-2 Is the angle between the photon propagation

direction and the vector -r

Before proceeding to obtain the total cross section, it is interesting

to re-derive the above result without making the assumption nw - 1

If we wish to use the matrix element Eq. (3.2-66) as it stands with

n yT 1 , then there will be n. - 1 photons present In the final state.

For each free electron state there will now be (cf. Eq. (3.2-5))

dnR , VW2  dw/(2Trc) 3

11
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photon states (containing photons with the sawma physical properties).

Therefore, we must average the (square of the) matrix element Eq. (3. 2-66)

over the initial photon states which requires setting n ,
dn 1

and using the factor dnR x d for the final state density. The transition

probability now becomes

n. .2 vdA L V 2 dfl d
6wa = 2rV w e a 8 A3 - x (2rIc 3 _(3.2-74)

•=x = dnR d= I Cn) dw

But, by Eq. (3.2-.8), W 2 d d - c

(27Tc) 3  AWAC

whereby we obtain from Eq. (3.2-74)

S2 -i-d 2 v !n L()d) dw

8=L 2rTJ A 3  AWc

From this result, which can be written

e2m2 3`C2 3 _) dwdA

SW,,3 r vL dflO (3.2-75)

it is easy to see the greater flexibility of 'le initial state description in the

case of photoelectric absorption as opposed to the case of discrete

absorption. For a plane-parallel, monochromatic beam

I z(= 10 601) 6(,-WSQ
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Eq. (3.2-74) reduces to

dwgm "ff 6w., dw dO

2 2e mw•

i. i. vL3 dfl 1 (3.2-76)
2r3 Ac AWaC

A differential cross section is usually defined on the basis of these

definitions and is (cf. Eq. (3.2-70'

ý! ýr dw/dne x A w(
- -~--~(3.2-77)

dOe Io

which yields, using Eq. (3.2-76)

2 2
d er , e m 2tI 2"- ... I?" i vL3
dOe 21T A 3 c i - "

This is, of course, identical to Eq. (3.2-72). However, it can also be defied

directly from Eq. (3.2-75) by means of

a 6xAW (3.2-78)
dOe IW•d) dw dip ie3

This leads to the same result, of course, but is explicitly independent of

the nature of the incident beam. We can also derive (heuristically) the
*

photolonization cross section semiclassically - - that is, without the

This can also be done, of course, for bound-bound transitions (Schiff, 1955).
We choose to do it in the photoelectric case, instead.
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use uf the fieid-theoretic-m,2trix element Eq. (3.2-6). We follow the treatment

of Sec. 35 of Schiff (1955). In this case, we have the perturbation as

yiven by Eq. (3.2-4) , but the radiation is not quantized. Thus, the final

state density does not inrlude photon states and is Just as given by Eq. (3,2-65):

dn e mp d16 L3

dE (21-0)3

The transition probability is still

dE

Since this formula comes from ordinary quantum mechanics if the radiation

field is not quantizel. Thus for a transition with emission of an electron

into dO2 we obtain
e4

27 2 P 2 mp L3 da_.e
dw = 1 21- eX1 P" (3.2-79)

m 2 c 2 (2YA) 3

Now class cally we can take

A. e- r( '-w 0t) (3.2-80)

The conditions under which this is valid and the matrix element Eq. (3.2-4)
is the only required perturbing term are discussed by Schiff (19E ) in Sec. 35.
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for the vector potential. The Povnttng v.ector X M) averaged over

a period 2rr/w of the oscillation has the magnitude - A 2

This is the intensity 1° of the classical wave given by Eq. (3.2-80).

(Io not per unit frequency interval.)

The cross section Is again given by

do " Io I
0I

With the above expression for the intensity and Eq. (3.2-80) we obtain from

Eq. (3.2-79) (using p = imUW8 8 )

22 2

-r r• 3c e

in agreement with our previous result (Eq. (3.2-72)).

Unfortunately this simple form of the differential cross section (or the

more explicit form averaged over polarizations, Eq. (3.2-73)) is not a particularly

useful formula, except at high erergies where a plane wave final state is a good

approximation. Except in this latter approximation the angle e wh"ch app-ers

in Eq. (3.2-73) is not the angle of physical interest. In radiation absorption

studies of the type we are concerned with here, this Is not a disadvantage,

as one is not usually concerned with the differential cross section per se*,

but rather with the total cross section obtainable from it by a suitable integra-

tion over angles.

• An extensive discussion of the differential cross section and the angular
distribution of the photoejected electrons is given by Bethe and Salpeter
(1957). See especially Secs. 69, 70, and 72.



Recomnbination and Photoelectric Total Cross Sections by Integration
of Differential Cro.,s Sections

It is evident from th , form of Eq. (3.2-73) that it would be conceptually

simpler to integrate this equation over photon propagation directions (for a fixed

I r8 1) than over photoelectron directions. We would thereby avoid having

to determine directly the dependence of I - on the direction of the

photoelectron in the final state. We can perform the integration of

Eq. (3.2-73) over photon propagation directions in lieu of photoelectron

directions by relating the basic photoelectric cross section of Eq. (3.2-72)

to the cross section for the inverse process of radiative recombination. In

this latter process, a free electron is incident, in the initial state, on an

atom or ion. It is captured with the emission of a photon in the transition

to the final state, which therefore contains a photon and an atom ot an of

charge one unit less than thdt of the initial bound system.

If we equate the squared matrix elements for the photoelectric

process and for the radiative recombination process by means of Eq. (3.2-1)
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we obtain, in an obvious notation,

dw (P.E.) dw (R)
J-- _-- =(3.2-81)

m L3 de dO V
(2rTAi)3 ( c3•

where the denominators are the final state densities for photons (right hand side)

and for electrons (left hand side), discussed previously. (cf. Eqs. (3.2-5) and

(3.2-6ý). For the photoelectric process, Eq. (3.2-71) relates the transition

probability dw (P.E.) to the differential cross section. For recombination,

we have from the definition of cross section

d - dw (3.2-82)

Where S (particles per cm 2 per sec) is the electron flux. In the photo-

electric case we have previously specified that the free electron is normalized

to a volume L3 ; since • is given by

1.m ' ) = (3.2-83)

we can use a plane wave '.e (Fr) = e e L3/2 so normalized to keep

track of the proper normalization factors. Eq. (3.2-83) yields, for the plane

wave,

L3 (3.2-84)
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so that we can write Eq. (3.2-82) as

dcR L Ve (3.2-85)

From this result and from Eqs. (3.2-71)and(3.2-81) we obtain the relation

dy (P.E.) r2v2 c2 dT (R)
e.... _ - - - (3.2-86)dQ 2e 2 dOdO22cz

e 3) 'as

If now we refer both differential cross sections to the angle* between

pand I Eq. (3.2-86) can be multiplied by an element of solid angleY '

d-. taken about p and referred to an axis along k on the ieft hand side
Y

of Eq. (3.2-86) , and taken about k and referred to an axis along p

on the right hand side of Eq. (3.2-86) . Both sides can then be integrated

ovez the full solid angle to yield

S~222

(P.E.) 2 2_e _ , (R) (3.2-87)Ih 2 T2 ea8,

Since both cross sections can be defined physically only in terms of
this angle.
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Since the cross sections in this expro;.ion in general represent transitions

between degenerate sublevels, they are not the physically observed quantities.

The latter, which we will call a(P.E.) and i(R) can be obtained by

dveraging and summing the above relation over initial and final states.

That is to say, by definition we have

cI(P.E.) (P.E.)
g1, a(i') (j

and (3. ?-88)

-(R) (R

where we have used I' to denote the collection of degenerate states of

the bound system (ion plus active bound electron) and the photon. The

collection of degenerate states of the residual ion (minus a bound electron)

and the free electron has been denoted by J' . The appropriate statistical

weights are, of course, q(l') and g(j') , respectively. If we now sum

Eq. (3.2-87) according to Eqs. (3.2-88) , we obtain

g m 2ve
=(P.E.) :L -- •,(R) (3.2-89)

gi, 2 22

(We have primed the state index in order to be able to conveniently differentiate

between the composite systems of atom/ion plus photor/electron, and the

bound systems--atom or ion alone. Thus, gj and gi will be used to

represent the statistical weights of the ion and atom alone.)



This is usjually called the "Milne Relation" after E.A. Milne (1924) who

first derived it (from more general considerations than we have used here).

To return to our original argument, Eq. (3.2-86) can be written, by use of

Eq. (3.2-72), as

m2V2C2 di (R) da (P. E.) m2e22 2If2

e (Is______3 1d = W2 7 m e"3 I2S eI (3.2-90)

To obtain the physically observed photoelectric cross section in terms of the

matrix element we must now average Eq. (3.2-90) over initial states and

sum it over final states. We can explicitly perform the sum over the two

independent polarization directions as in Eq. (3.2-73) (but without the

factor 1/2 since we now want a sum, not an average). We obtain the result

Zv2 2  2 2  3

M e • c ,e 11 v(e 2I 2 sin (3.2-91)
2 2 drN 3 C h 0 ry8

(The prime on the i has been dropped, since we have now explicitly

included the sum over polarization directions.)

For a fixed direction r. , this result can be immediately integrated

over all photon propagation directions ] (viz., n) by use of

f-sin 2- dn = 8rr/3 . Calling ' d = -- R I and setting 9,, 2gj

to account explicitly for the sum over initial electron spins (j now refers to
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the degenerate states of the ion only), we obtain

R 2e 2 u3L3  
Fj M (3.2-92)

for the recombination cross section.

For the photoelectric cross section, this yields by use of Eq. (3.2-89)

the result

(3= i2rE2 e2 -vL I 2 (3.2-93)

Analogous to the electron-spin-weight case, we must set gi = 2gi'

since we are explicitly accounting for the two polarization directions as is

customarily done; g is then, as stated previously, the weight of the

atomic bound state. It is now evident that [ ra2 cannot actually depend

on the direction of the photoejected electron.

In the recombination process, the direction of the incoming electron

is, for the differential cross section, a preferred direction as is the direction

of the outgoing photon. However, once one Integrates over all outgoing

photon directions to obtain the total cross section, and sums over the (degenerate)

m-sublevels of the electron in the final bound state, the "preferred" nature

of the incoming electron direction disappears. This is so, since there are

no longer any other preferred directions to relate it to, and a change in the
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incoming electron direction would merely correspond to rotating the laboratory

apparatus. This is the reason one can take as the wave function for the

total cross section for recombination, a free-electron function of the form

r)= (2?, + i) i R- t (r) P t (cos A)

even though this form implies that the z-direction coincides with the beam

direction. Then our result above, based on detailed balance, implies that

this same form is valid for the photoelectric process.

Another way to view this is as follows. Let us pick some "absolute'

coordinate system unconnected with the atom and unconnected with the photo-

electron direction, P Then our photoelectric or recombination process

determines 4 vectors: Pe I r and a , where we denote by a

the atom orientation, and where - and Pe completely determiner r 8

We can drdw a diagram as shown in Fig. 3-3 . Now I- 2 cannot depend

on the absolute orientation of any of these vectors (i.e. their orientation

relative to the arbitrary system we have chosen), because this can be changed
I.

at will by merely rotating the axis. Furthermore, r does not depend on

Sat all (recall that the use of F means that we are taking the dipole

approximation) so that the angle between Pe and F . does not depend

en , either, nor on the coordinate system chosen. It is fixed once arnd

for all by the magnitude of Pe and the nature of the interaction between the

electroa and the ion. Because of this fixed relationship between pe and

e21
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It

ra one can obtain the correct total cross section from Eq. (3.2-73) by

replacing dr) by do-, , the element of solid anqle about r and
integrating over P (which is the angle between 1Y and r )

Once the integration Is carried out over all angles n the result Is equwivlent

to having integrated over P (the angle between Y and p ) in spite of

the fact that the jjjferential cross section expressed in terms of D is

not the physically appropriate one.

In order to obtain the differential cross section acc,!fately, considerable

pains must be taken in the specification of the final state wave function.

This is not a trivial problem and we do not wish to discuss it here, since

our only Interest is in the total cross section. For a discussion of this problem,

and references to the literature, see Schiff (1955) Sec. 37 and Bethe and

Salpeter (1957) Secs. 69, and 70. Bethe and Salpeter also give a discussion

of the angular distribution of photoejected electronr in Section 72.

The quantity 7* q in the present case, wherein o;,e of the states

SrP is asymptotically a plane wave, viz., asymptotically the momentum

has a definite direction, is an essentially different quantity than in the case

of two bound states. In the case of two bound states, we could consider

rQ connected in a one-to-one correspondence with the orientation of the

atom (viz., a system of coordinates fixed in the atom in some prescribed

fashion). In the present case, however, the free wave function makes Fa

depend on a quantity--the free electron momentum direction--which is

disconnected from the atom, and which asymptotically has a definite directional

dependence.
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(If we were cnnsidering an danyQUldr momentum eigenstate for the free electron,

the situation would remain analogous to the bound case. But we would then

pass directly to a total cross section rather than through the intermediary of

a differential cross section as in the present case. We will take this

situation up presently.)

Thus, we cannot now strictly average over orientations of the atom,

or employ the integral over the three spherical harmonics inside the matrix

element integration in just the same way as we did in Eqs. (3.2-22)to(3.2-30).

However, the angle between -r and • as we have seen is In a one-to-

Y
one correspondence with the angle between the free electron momentum PeoneT

and the photon vector ] . Therefore, we can also average Ia asY dOq

given in Eq. (3.2-73) over the angle 0 between r and k , In

analogy to the "average over atom orientations" carried out in the discrete

transition case. The resulting average differential cross section Is then

independert of - as well as 0 and equals ! averaged overdO.e

outgoing momentum directions. Although this Isotropic average is no longer

of any value as a differential cross section, the total cross section follows

from it by simply multiplying by 4-. The result, of course, is the same

as the results obtained by the other methods described above. We append

one further observation to this discussion.

In a plane wave approximation for the final state (which is not very

accurate at low energies) the angle between r,,, and 9 is egual to the

angle between P and y . We can see this as follows. If either
e Y

This was the procedure followed by Armstrong, Holland and Meyerott (1958).

1-3
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state a or 0 in Eq. (3.2-110. a plane wave (momentum eigenfunction) the

momentum operator eigenvalue can be taken from under the integral sign.

if c , say, !s the state to be approximated by a plane wave, we can write

Eq. (3.2-10) as

P { (imw 8)/ f a dv r a

Since the quantities in the brackets are scalars, this result shows that the

momentum vector p in the final state lies in the same direction as

Hence the angle a in Eq. (342-73) is approximately equal to the angle

between the momentum vector of the ejected photoelectron and the photon

propagation vector £ . Also, in this approximation, it Is clear that

IiI12 c 02 does not depend on the direction of P

The result we have obtained so far (Eq. 3.2-93) for the total photo-

electric cross section is valid for a linear-momentum-eigenfunction final

state (viz., a final state which is asymptoticallv a linear momentum eigen-

function). Since this is not the most generally useful form, we will

illustrate the passage from the linear momentum form to a form with angular

momentum eigenfunctions in the final state.

The general solution for a positive-energy electron in any central

potential that has the proper asymptotic behavior appropriate to .he definition

of the differential cross section can be written (Mott and Massey, 1949, p. 46)

12)4



as

u (r,,n0P) (2.t +-• 1) (2 1 /2 R1,e-R FA(r) Y ,o(•.) (3.2-94)

This Is an expansion In angular momentum elgenfunctions of a wave which

asymptotically has a definite direction. In the case of a Coulomb potential

e the phase shift P (Coul.) is given by
r

(Coul.) = arg r (i + I + I z/k)

R Et(r) Is the radial wave function computed in the appropriate potential

and has the asymptotic behavior 4

sin (kr - ,,t/2 -•

R (r) s( kr (3.2-95)

For phase shifts 0 this becomes a plane wave in the z-directlon

normalizad to a volume 0 , and REL(r) becomes J,+ 1/2(kr) . The

distorting effects of a non-vanishing potential enter asymptotically through

the phase shifts • . For the above wave function u(r,q,-,,) , Eq. (3,2-93)

for the photoelectric cross section becomes

2m2ev R (r) Y, r4-(2t l/ 2 ie_
r~2v f2L~j ~ H

(3.2-96)

R (r) Yt0 (c,•) r 2dr d(2

A

I21
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We have dropped the final state summation over q indicated pre.viously

as tho final state represented by u(r, ) has no further degenerate sub-levels.

We can carry out the angular integrations required in Eq. (3.2-96)

by means of our previous £qs. (3.2-36). If we set t , then non-

vanishing terms occur only for I = t .I . Eq. (3.2-96) becomes

222

+(p ) - 2m 3ty C 12rr(2e"+ 1;c(0) I- , 1 1( 1 ,,i-1;0) [C(tl,4-1;m C-I,0)

-Ckla.-1;mnnl,0)] + RI+I¢ C(,l,+l;O00) [(~,.1mlO

+ 2{1R.CI~l C(,t,l,.,-1;000) 00

+ Rt+1 C(t I I1 01;000) CL, 1,C+ 1; M C, 0)I (3. 2-97)
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We now note that in the sum over m only one coniponent contrihiiten for
a

a given projection quantum number of the free electron in the final state.

Since we have taken the free electron m-value to be zero, the particular

value of m selected out is determined by m - 0 - mr2  where m2 is

0 or + I . For reasons to be discussed later, we do not ascribe this

numerical value to ma , but we designate the one m. value which yields

a non-vanishing term in the sum over ma as ma, ma 1, or m *" , depending

on m 2 , and drop the ; . If one now expands the brackets in this

expression, some of the terms cancel. One then obtains by collecting the

remaining terms the result
a (P. E.) - 2m 2e 2 w (2,t+ 1) 4,- R -2, C 2(C'I "t- 1;0001 C2(Vlt,,,-1;mn ,-1,0)

3A 3cgQ lot[ I aII

SC 2l + C 2 (',It l;m',l,0)

+ c 2 Q, 1,+ 1; m ",0,0)]j

+ 2 R R_+, C(',l,-l;000) CQ&,,l"t+1;OOO)

QClt,1.-1;m ,-1,0) C•t,l,/.+l;m ,-1,0)

+ CQ, 1,t.- 1;m' , 1, 0) CQ'. 1,t.+ l;m' , 1, 0)
a a p

+ C(4,l".-1;m",OO)• C4,l~t2+l;m"27,0 (3.2-98)
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The orthogonaiity relation (Rose, 1957, Eq. 3.7)

SC(j l J2 J;mlm-ml,m) COlJ2J j;mrm-mlm) =
m1

along with the relation (Rose, 1957,Eq. 3.16b)

C(JOj 2 J 3 ;rn1m 2 m3 ) = ( 1)l+J2-J 3 C0 2JlJ3 ;m 2 m1 m 3 )

can be employed to simplify this complicated expression. The transposition

of the first two indices along with the second of the two C-equations above

shows that the first two terms in square brackets are again orthonormal sums

over the first m-index (cf. Eq.(3.2-38))and, hence, equal unity. The third

expression in square brockets corresponds to the orthonormality relation

above for J P'j' and, hence, vanishes. Since g, = 2,t+1, we obtain from

Eq. (3.2-98)

_2m
2e2 '~ 2

.(P. E.)= -14-. t2, ,t-1;000) .R2-
- 3•

3 A 3c 4(3.2-99)

+ 4T, C (t,, 1 ,It+ 1;000) +1 t

This agrees with the result first given in this form by Bates (1946), when

account is taken (cf. Eq.(3.2-31))of the values of the C2 factors, and the

Monthly Notices Roy. Astro. Soc. 106, 432 (1946).
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eneray quantum numbers which we have suppressed in our definition of
Rt+It . Because of our transposition of the first and second projection

quantum numbers in the C-co..'fficients in the square brackets of Eq. (3. 2-98)

the foregoing derivation does not actually depend on the m-value of the free

electron which we took to be zero (the derivation would have been a little

simpler had we allowed it to so depend). Because of this, our result is

independent of which direction we choose as our z-axis which is the implied

momentum direction for the wave function of Eq. (3.2-94) . We will not

demonstrate this in the detail of the preceding derivation, but by noting

the following situation. Our result, Eq. (3.2-99) shows that we could

have taken the 1-sum in Eq. (3.2-96) out of the absolute value-squared

brackets, as all the cross terms vanish. The reason must lie in the fact

that Eq. (3.2-94) represents a superposition of degenerate 4-sublevels,

and we could have considered transitions into them individually and summed

the resulting Individual transition probabilities in the usual fashion after

the rule of "averaging over initial states and summing over final states".

Had we done this, we would not have had to examine the cross terms at all.

Now from the spherical harmonics addition theorem (Rose, 1957, Eq. 4.27)

t&'" (n0 C+L Y ,rpiWl) Ytm(9ozD) (3.2-100)
1m
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we can de-couple the electron coordinate vector direction 9 , Cpe and

the z-axis (or momentum) direction Op , ýpp . To consider a transition into I
a single t,.m sublevel we would use one term of

u(r,@.cp)' t 32 /!P"1(2+l) 1/2 itLe RE' (r) x
L=o

(3.2-101)

I/ r 1/ 2  Y M(8 pc0p) Y CM(eePe)I

M

in the formula for the cross section. Summing over all these sublevels as

final degenerate states, we would have

2m T 2 t2]• (P .E .) = 3 3c 1 4 R Z 0- 1 t' 1 0 0 2 t- 1 - 1, M ( p ' ;p P

2 2 2-

+ 4T7 R2+ C2(t 1, t+1; 000) [: 4T !+1 (pýPC,.+1,4. 2 U+3 Y+ 1, Mfp') -

since the formulas are just the same as we used before except for the added

factor LM(OP 8 ;p 2 and the non-zero value of M .If we

now moke use of the formula (Bethe and Salpeter, 1957, Eq. A.42)

=2 (3.2-102)
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the equ,5tion above reduces back to the result Eq. (3.2-99) , and we see

explicitiy that our result is independent of the direction thet the wave

function Eq. (3.2-94) Implies for the asymptotic momentum direction. If
this were not so, we would, of course, be in trouble, for we have already

integrated over the outgoing momentum directions I The foregoing consideretions,

however, afford an explicit substantiation of our statement, made previously

(see Fig. 3-3 , e.g.) that I _r 2 is independent of the direction of

the electron momentum*.

Total Photoelectric Cross Section -- AnMular Momentum Final Eiensatete

It is interesting now to back up and rederive the Photoelectric cross

section making direct use of an angular momentum eigenfunction for the free

electron state, and of spherical-box normalization for the radial function.

The wave function for a free particle with a specific angular momentum 4

and confined to a sphere of radius R is (Goldberger end Watson, 1964,

pp. 18-20)

=m ke 4 (ker) e ,m(e,cp) (3.2-103)

when 0 designates the asymptotic linear momentum eigenstate, not
one of the sublevels M defined above. When these are considered,
they must be summed over as above to get all the cdmponents of x
Yas , etc., in the "rotated" coordinate system.

Th omlzainfco 1/2kThe normalization factor [_ S k can be obtained from the properties
of the spherical Bessel fun~tions •s given, e.g., by Schiff, 1955, or
more simply, from the hsymptotic sinusoidal form of Jt (kr)

131



4 I

The spheric•d, Bessel functionq have the asymptoLic behavior

ji(kr) -- in (kr -•.•/2)t kr

If " short-range potential exists near the origin, the radial wave function

has the asymptotic form above except that the phase shift is no longer CTT/2

In general, we can write the asymptotic form of the radial wave function as

in Eq. (3.2-95) , recalling that in the case of a Coulomb potentiLl contribu-

tion, the phase shift 6 will be a slowly varying function of r

For spherical-box normalization, we want the wave function to vanish

at the radius R . In order for this to occur, we must hdve

keR - -•'/2 - 6 n•r (3.2-104)

in v-iew of the asymptotic behavior, Eq. (3.2-95) , of the radial wave function.

Differentiating this relation with respect to n we find (denoting the value

of ke which satisfies (3.2-104) cs k n)

dn = R dk ,(3.2-10S)
e n

orsie(3.22- 1/2

or, since k ( ) , we can write this as

(IQ R m(3.2-106)
n (h

dEn)n
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Ar•

this gives us the number density of radial elgenstates over the wave-number

range dkn or the energy range dEn * The sum over states in the present

case can be indicated by The asymptotic form of the

radial wave function Eq. (3.2-95) can now be used along with Eq. (3.2-103)

(which provides the normalization) to obtain the result

'2 m in (ker - "4 dIy
kCr~j l 2 2  _Ym, 2  (3.2-107)

which Is independent of R , Just as the corresponding quantity is Independent

of L3 in the rectangular-box normalization. For this reason, we can assume

that the limit R - a will ultimately be taken so that the index n on k.

and E need not be explicitly acknowledged. The matrix element for

photoelectric absorption is again as given by Eq. (3. 2-661, and as usual

we convert from JI 01 to I 'r I by means of Eq. (3.2-10). For

simplicity we take nW in the matrix element equal to I , which implies

that the cross section Is given by (cf. Eq. (3.2-71))

a~ .- a-.: (3.2-108)MOB c

where V is the photon normali-dti-tM.%-'olume. Combining Eqs. (3.2-1),

(3.2-10). (3.2-106), and .3. &Z-108)), we obtain

417 2 (w. a its
4.r meC=R• .l (3.2-109)

A2 kec

133



In this result, the matrix element Is defined as

rS 3f *n1nCr * s ',n Cr) d r

Using Eq. (3.2-103)we see that this is approximately equal to

r - kf (j, (k r) Y , r ntmd 3 r . (3.2-110)

Since 4, (ker) has the asymptotic behavior sin kr , we ctn use

this result to pass to other equations for 7 Involving different asymptotic

normalization conventions. For example, we would have

;CL f --- Uw r *b d3 r (3.2-Ii

where

/ T7 k -- IYt, , (3.,2-112)

and If we inse"P Eq. (3.2-111) into Eq. (3.2- 109) we obtain

= f~ Ifu" -C ~bd rI2 (3.2-113)
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This Is the formula given by Bthe and Calet, (1957) in their Eq. 71. 1.
2 ..ha... .. Chose s 57 tha t er£.711The normalization of uw has been chosen so that u) ,(r) r 2 dr 5(E-E')

where EA =2m as w bil be discussed later. With the usual averageadco rr0 over atom orientations and the
formal designation of the sum and average over initial and final states.. E q. (3.2-113) can also be written as

in.~v ~ b 3 - ,
3cT I -l uw d rb (3.2-114)3c w

in agreement with Eq. I of Burge,;s and Seaton (1960).
Let us now define a matrix element by the relation

fntm fnmr) Ym(aio) 7[R• u(r) Y/ ,M,(e,•) d3 
n" 

(3.2-115)

where REt,(r) is normalized according to Eq. (3.2-95) . By comparing
this form with Eq. (3.2-110), it is casy to see that Eq. (3.2-109) can now
be written as

a 3 3 3c n4m I(3.2-116)

It is fair to do this now, as in the discrete case, because of our choice ofeigenfunctions.

135



whtere the factor 1/3 appears again if we average over atom oritintations,

and where ka has been replaced according to k / m . If we now

Insert the explicit sum and average over final and initial states,

2-•+• :ý we obtain from Eq. (3.2-116)

22

a4 2m1 Ii.1,I +Irw+1f (3.2-117)4¢ ,4+l 3A 3c 24+l m 1mM

Using the relation (Bethe and Salpeter, 1957, Eqs. 60. 12 and 60. 13)

2~ - (R+ - (3.2-118)

m

and noting that the sum over rn yields simply a factor 2t+1 after

carrying out the sum over m' above, we obtain

3hc°••1 323ine1 wv 24+1 n

in agreement with Eq. (3.2-99) . Note that in obtoining this result using

an angular momentum final state function we did not need to pass through the

intermediate step of computing a differential cross section. The specification

of the final state as an angular momentum elgenstate allows us to proceed

directly to a total absorption cross section.

* The energy quantum numbers suppressed in Eq. (3.2-99) have been
restored to the R-factors here.
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Normalization of Free-electron Radial Wave Functions

Since the transition probability depends on the square of the final

state wave function multiplied by the density of final states d we andE

inquire as to what normalizatlon of the radial wave function will permit us to

set 1 . In the case of angular momentum final elgenstates, since

the angular states are discrete they do not contribute to dn/dE. Therefore,

we need only to incorporate the factor d2 into RF (r) is the radial

eigenfunction*. From Eq. (3.2-107) we see that the radial eigenfunction

normalized in this fashion will have the asymptotic form

1~/2 IL /2 sin (kr + 6'dR/ R(r) () ()(3.2-119)

One further question is of interest: the above normalization permits us to

take a unit density of final states, but what does it yield for the quadratic

integral of the wave function itself ? In other words, what is the relation-

ship of the asymptotic normalization of the free-state wave function, and

the square integral normalization of the same function ? To obtain this

relationship, we can compute the value of the integral

r(\/2 1* (r)]/a 2r1

_137

For the free-state elgenfunction of Eq. (3.2-103) this is just

R FAr) - ke i• (ker)
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In order to do this, we consider the radIAl 8chr~ddnger equation obeyed by

fLiC (E t r. /,(r (3.2-121)
r RE4,lr ýd E

This equation Is

-~.(V - V(r) +kJ f(E,t;r) - 0 (3.2-122)

If we consider this equation for two values of E , E and E' , say,

multiply It in each case by the function belonging to the other eigenvalue,

integrate both resulting equations from zero to R and subtract them, we

obtain

dr[f D f' - fD2+ (k' 2 - k 2 ) ff' dr = 0 (3.2-123)

The terms in V(r) and L cancel, and we have set f(E,,t;r) f

f(E',t;r) f', and -4- - D . If we Integrate by parts twice, we can
dr

shOW that
R R

dr (f D2 f')V (fD' D f' Df)R +fdr f D2f (3,2-124)

0
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With this result, we obtain from Eq. (3.2-123) the result

off' dr - k 2  (k')2 R -L = R
k k 2 o [fm L J R(321

We can now evaluate I,,(E,E') as defined by Eq. (3.2-120).

That is to say, we can now write

It (E,E) = 2- 1 k )2 LIm f Df' - f D (3.2-126)

k (k') R - -DIf]

where the asymptotic form of f is given by Eq8, (3. 2- 110) and (3.2-121)

f Ji-M1/2 sin (kr + 56 (32-127)

Inserting Eq. (3.2-127) into Eq. (3.2-126), we obtain

2)r 1/21/
m I (E,E') = im 2 2 sin kR W).1 / 2  k'R sin k'R k)1/2 oskR

a2-- = - (k ) / (k') k/ W) •

(3.2-128)

where we. have neglected 6t tor simplicity. Using the identity 2 sin a cos 3 =

sin(a+3) + sin(a-S) , this becomes

I(EII) im sn~k+ k)& +sin k k) R(3.2-129)

13,4



Now the 6-function can be represented by (Schiff, 1955)

T6(k) sin (3.2-130)
R k

With this representation, we obtain from Eq. (3.2-129),

I(E, E') = x (k - k) (30- 131)

since the first term in Eq. (3.2-129) does not contribute if we limit ourselves

to k, k' > 0 . Since 6(k - k') = 2k 6(k 2 
- (k') 2 ) this result can also

be written as

l(E, E) =(f2) 2('
h2) 6 (k 2 

- (k ) (3.2-132)

or, since

6(k 2 = (E). = 6(E) (h2) (3.2-133)
d(k )2m

we can finally write our result as

1/2 r 1/2
I(E,EI) R (r R (r r 2 dr 6 (E-E')t ,I•.( i RE IL•

(3.2-134)

The asymptotic behavior of the wz-ve function so normalized is given by Eq.

(3.2-119).
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Therefore, as stated previously, with the use of a wave function having.thi

asymptotic form we can set = 1 In the equation for the transitiondE i l
probability (Eq.(3.2-1)) , as the final state density will have been included

in the matrix element. We can now correlate our results with a formula

given by Bethe and Salpeter (1957). The matrix element for photoelectric

absorption, Eq. (3.2-66) can be written as jI
__• (L_ . (e

I H'Im;m'•'=V1/2 m \ w Imt; Mi ' (3,2-135)

where

(r;re) it f (r)~ev M.jr) dv (3.2-136) i

and the subscript e has been used to denote the polarization direction. i
If now, we agree to normalize the radial factor of V) according to

Eq. (3.2-119) and consider light of a particular polarization only, the formula

for the photoelectric cross section becomes

2

2__ L H '2 (3.2-137)

Inserting Eq. (3.2-135) into Eq. (3@2-137) yields the result

-e" m 2cv M4 141
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for a transition between particular angular momentum sublevels me,t and

m'V . Eq. (3.2-138) Is thie result given by Bethe and Salpeter (1957) in

their Eq. 69.2.
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3.2.3 Reduction of the angular dependence of many-electron matrix

elements to analytic formulas*

Before we can apply the preceding formulas to real physioci

problems In general, we must account, in some approximate fashion, for the

possession of more than one electron per atom. In so doing, we must Indicate

how to average and sum degenerate many-electron transition probabilities over

the appropriate Initial and final states. For angular momentum eigenstates,

this sum arnd average is dependent on the angular quantum numbers which

uniquely specify the angular wave functions that appear in the matrix element.

For practical problems it is usually necessary to approximate "true" atomic

wave functions by separable product wave functions wherein the coordinates

of a given electron appear in only one factor of the product. We will follow

this procedure, and, in addition, will neglect configuration interaction.

For a discussion of this topic, the reader may consult Hartree (1957), pp. 17

and 159.

Our formulas, therefore, are applicable to Hartree-Fock wave functions,

for example, or hydrogenic product wave functions, but are not appropriate

for nonseparable wave functions such as the Hylleraas variational functions

often used for helium. In the separable approximation to bound-state wave

functions, the angular dependence reduces to known spherical harmonics so

that all the angular integrations involved in the matrix elements with which

we are concerned can be performed (Gaunt, 1928). This is by no means a

trivial task, especially for equivalent electrons, so we will not go through

all the details. Rather, we confine ourselves to Indicating the procedures and

giving some results. By the methodi of Racah algebra (Racah, 1942, 1943, 1949)

developed in the early 1940 's some time after the initial development period

of quantum mechanics, and by subsequent developments thereof (e.g., Kelly,

1959; Rohrllch, 1959), these angular integrations can be reduced to analytic

* The author is indebted to Dr. P. S. Kelly for assistarce in the writing of
this section.



lormulas involving functions of the angular momentum quantum numbers.

The earlier methods of Condon and Shortly (1935) can also be used for this

purpose, but are more tedious.

We begin this procedure with the total cross section for absorption

am given by Eq. (3.3-7b) which we can now write formally as

3• c gi 1

to indicate the required summation over final states and average over initial

stateb.

The number at dejenerate initial states, or the statistical weight,

of the initial level or term is designated g9 and is equal to 21 + 1 for

an a mic level or (2L + 1) (2S + 1) for a term (see below). Referring to

Eq. (3. 2-139),it is convenient to define and consider the quantity

Q '- 3 v)r 2  (3.2-140)

as this quantity is symmetric in the initial and final states and more or less

independent of the remaining factors in the formula for the cross section a

We follow the usual notation and employ capital letters J , L , and S

for the total angular momentum, total orbital angular momentum, and total

spin quantum numbers, respectively. For the total magnetic quantum numbers,

or z-components of J , L , and S , we employ M1 , ML L and MS



respectively. The corresponding lower case letters are employed for the

individual electron quantum numbers. (For the details of spectroscopic

notation the reader is referred to Allen, 1963, Chapt. 4.) The basic

degeneracy of an atomic state when there are no external fields present (as

in the cases we at) considering) is the degeneracy of the 21 + I sublevels,

or states, pertaining to the possible values of M . We will limit ourselves

to LS coupling (Condon and Shortley, 1935) which Is usually sufficient

for light atoms.

With these limitations in mind, the angular integrations and sums

indicated in Eq. (3.2-13% can be carried out. This analysis has been performed

explicitly by Rohrlich (1959) for all cases of astrophysical interest. These

cases fall into four categories

(a) (n .,,_ ,n .( ," !

(b) 4. - (,- (3.2-141)
(c) nn I -- ,n 1 ( ,2

S~~~~~(d) rn'• ,- n(,)

where n ,or the numerical superscript, Indicates the number of electrons

having the (,-value to which the supe:script Is attached. The first two

S categories normally dominate problems of practical interest involving large

numbers of transitions. As examples of these four categories of interest as

applied to heated-air problems, we cite the configurational transitions:

.t.J..,54



(a) (13)2 (25)2 2p - (s)2 (2s)2 38 (NIIl, OIV)

4-0. 4'- 1, 4' 0, n- 2

(b) (18)2 (2s)2 (2p)4  {(1)2 (2S)2 (2p) 3 3d (01)

- 1, 4'- 2, n=- 4

(c) (j)2 (2s)2 (2P)33-. (18)2 29 (2p) 4  (01, NI)

t= 1, V'- 0, n= 4

(d) (15)2 (2.) (2p) - (Is)2 (2p) 2  (OV, NIV)

4.' 0, V,'- 1, V'- 0, n= 2

It is important to note that in case (a) there is a well-aefined core (is 2s 2 )

to which the outer electron (2p or 3s) couples. Thus, the coupling of the

core electrons to each other must be specified in addition to the final total

coupling of the outer electron to this core. In the other cases, various

p couplings occur so that one has, effectively, an outer electron coupling

to a linear combination of cores. Let us take the specific example under

case (a)

(is)2 (2s)2 iS 2p 'P (is) 2 (2s)2 'S 3s 'S

In each term the core state is a 1 and the outer (2p, 3s) electron couples

to this to yield a p 2S term respectively. As another example, in

case (b), the wave function of the (2p)4 combination can be expanded in

a fractional parentage coefficient expansion (Racah, 1943) as* (for the

14L

The p4 fractional parentage c~efflcients can be derived from Eqs. 19 and 65
of Racah (1943), using the p fractional parentage coefficic,,ts given in
Table I of that paper.



M 'j

specific case of the ls2 2s2 2p 4 3 P ground term of 01):

i13 292 2p 15 * 2s2  2p2 IP{/ 4S+J D P P 3P (3.2-12

We will use the subscript p as in Lj to denote that the quantum number

to which it is appended belongs to a parent configuration (a core is also a

parent--with a fractional parentage coefficient of unity--so the same designa-

tion will be used for this case). For the formal definition of the fraictional

parentage coefficients, see Eq. (3.2-144).

After summation over all magnetic quantum numbers (viz., all strictly

degenerate sublevels) the line strength Si1 can be written as (Rohrlich, 1959;

Bates and Damgaard, 1949):

S i Ji) 4 5(A) a 2 (3.2-143)

where C1, symbolizes the triplet of quantum numbers SWt LW i(i)

belonging to state I , and -Cj the set belonging to state j

and A designate for the states I and j the set of all pertinent

quantum numbers except j , e.g., for case (a),

"A " Ln' SpSLp' L(i) S

14



where we have taken the left hbnd side of Eq. (3.2-141) as the "I

state end the right hand side as the "" state. The remaining factor,

2j , is defined by

- 2

2- 1 R( W r dr (3.2- 144)

where RW(r) and RW(r) are the radial wave functions for the two states

i and ) , normalized so that

fR2(r) r2 dr = 1 (3.2-145)

0

ind L> is the greater of the two orbital angular momentum values which

the "Jumping", or "active", electron has in states I and J

Eq. (3.2-143) shows that the line strength splits into two factors,

one of which depends on the line quantum numbers (and not on the parent)

and the other depends only on the multiplet to which the line belongs, The

definition of S(Ziz) is constructed so that if one sums It over all the

lines of a multiplet, the result is unity:

-' (£lj) = 1 (3.2-146)

1.4



Thus 5 (Zi,£i) is called the relative line strength. The strength of a

multiplet then Is given by

all lines of i and $
for a given multiplet (3.2-147)

= Onl11hi) o2j

2The sum indicated in Eq. (3.2-147) can only be performed if ai

is the same for all lines in a multiplet. This implies that the radial wave

functions are the same for all states in a term. While, of course, this is

not strictly true, It is a satisfactory practical approximation for the circum-

stances with which we are concerned.

£•(ht,) is called the relative multiplet strength. Rohriich (1959)

gives the value of _(.C(#,t) as

J;(Xi, j) (2144+l) (21041)+) W2(L(i)Ii)L(JI)O(J); S1)/(2S+1) (3.2-148)

where W(abcd;ef) is the Racah coefficient (Racah 1I, 1942, Eq'n 36, also

Simon, Vader Sluls, and Bledenharn, 1954, tables. See also the discussion

following Eq. (3.2-171).

We have set S( ( S. ). S since here we are interested only in

transitions which obey the selection rule for ordinary electric dipole radiation

that the spin does not change.
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CaM and Shortley give the line strengths Sij in terms of a factor

f(SLWJW.•) 8 La)Jc~) such that
2

" f(8L(W)J(),sLO)J•J Y P (3.2-149)

where the reduced matrix element * 'Py does not depend

on the line quantum number J . This equation factorizes the line

strengths into line and multiplet factors as does Eq. (3.2-143), but f is

not normalized to unity over all lines. Since Condon and Shortley give the

values of the sum of the strengths over all lines, we can easily relate f

to our SU (.£j ). The sums needed are

L- L+ 1 - (2S+ ) I,(4 -2 1)1 (Y' )LI •'Pj L+ )12 2

L-" L - (2S+1)(2L+1) L(L+) (1( i)LP!YO)LI (3.2-150)

L-' L-1 - (2S+1) L,(4I12-1)A (Y ayJlL-)N

where the symbol I has been used for the greater of L(a) and LO)

y represents the remaining quantum numbers, of the complete set of

commuting observables, which do not need to be considered explicitly,

but which exist in principle. As an example, the energy E could

belong to the set y

150
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Thus we see that

i •(i0£j = fS'L~l'T~); SL0!'(J)) L-. L + I

i 1(2s+ ) L, (41,- I)-

(3.2-151)

(S. Li) I (; S. LJT) L_ L
"(2S+I) L(L+1) (2L+i)

The relative multiplet strengths at this poirt would be given by Eq. (3. 6-150)

in terms of the reduced matrix elements : P: y, Lj). However,

the multiplet strengths can be reduced further and cast into a simpler form

and we shali do this below. We note here that by comparing Eqs. (3.2-151),(3.2-148)

an explicit expression for f(SL(t),J( ); SLOJ)oj)) can be obtained for the

case L- L+ 1:

fSL(I), 1(i); SL(J),JOj))- = 4,4 2 - ) (2J(i)+1) (2jO)+l) x W2(L(0),(1), LO), J y); S I)

(3.2-152)

* An explicit expression for the reduced matrix elements

Ci): P : y , LO)) A2can be obtained from the preceding formulas.

We have not done this herein as we wish to avoid explicit use of this

quantity. We use S•(iMj) and Instead, and have only related

Condon and Shortley's f to ,(Zl,£) so that the reader who wishes

to can use their tables of the f-factors (Table 19, p. 241, Condon and

Shortley, 1935).
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where again L> is the greater of L(') and LO) We shall not concern

ourselves with applying Eqs. (3.2-148) (3.2-152) to spectrum lines since

it has so far proved impractical to incorporate the details of actual

individual lines into a total absorption coefficient calculation, We will

assume in this chapter ihat all the atomic states belonging to a term are

degenerate and deal with entire multiplets (or in some cir cumstances even

broader groups of lines) instead of the individual lines themselves. However,
the foregoing formulau• for the relative line strengths are still of interest

because they are closely related to the formulas for the relative multiplet

strengths. In fact in some cases the formulas are the same and one needs

only to interchange the aet of quantum numbers to obtain a multiplet strength

from a line strength, as will be seen below.

Returning now to case (a) (Eq. 3.2-148) , the formula for J(M I M)

is

(Mij I (•S p L p SL-),n "'S pL p SLj)

(2S+1) (2Lli)+l) (2L,+61) 4,> (44> 2 -1) (3.2-153)

S~x W2(4, 'OL~• "L(0); Lp 1)

where C> is the greater of t' and t," . If we compare this equation

to Eq. (3.2-148)., we see that the correspondence S- L , Li)-
p

L) L) - , -0 LO) between the line quantum numbers
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(given to the left of the arrowg and the multiplet quantum numbers (given

to the right of the arrows)c'arries the formula for ,£(L1 1 L) into the formula

for Ohi lfm,) except for factors which are constart Wi~hin a transition

array. These latter factors (V-,,", aid S) do not affect the relative

multiplet strengths within a transition array so that the relative multiplet

strengths can be obtained from the relative line strengths by the above

Scorrespondence. In terms of the Condon and Shortley f-factors, Eq. (3.2-153)

becomes

S(•,) M (2S+ 1) f(Lp V'L(1); L •( 0) (3.2- 154)

The reason that the f-function of Condon and Shortley yields both

S(i,£) and the case (a) S•ifn.m) values is that in both cases one

seeks to reduce the matrix element of an operator that depends on only one

of two coupled angular momenta. In determining S(£i£ j) one has S

and L(i) coupled to j(i) (as well as S and LW coupled to J)

with the matrix element of the dipole interaction operator being independent

of spin coordinates. Thus, the matrix element is reducible to a function

of L(i) and LW alone. In the case of S(•i,•)n , L and Vij p

are coupled to Lti) (and L and t," are coupled to L The

matrix element in this case can be reduced to a function of L' and -"t

alone since only this element is non-vanishing. The situation is covered

by Eq. 44 given by Racah (1942b). Upon inserting the appropriate quantum

numbers LSJ or L t L, and summing over magnetic quantum numbers,
p 4
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It ts possible to form two functions which in combination yield the

product S(t1.. e) £Qtfr h) a2 for case (a). The functions are

KiW I P I 110) >12. (2j~ ) (210)+i) W2 (L(i)(i) L(JI(J) ;S 1)

2
x I<L()I I PiILU)>I

and
2j< L(i) I I P, I I LO)>l = (204i) 1) (204J) 1) W2 (t, *L(lk, " LO); Lp 1)

4> (44t> 2_ 1) x 0r2j

Going back to Eq. (3.2-139) now, bearing in mind Eqs. (3.2-143)

(3.2-144) and (3.2-147) we obtain for the cross section for absorption

a(u =T 4r2e 2uu b•w 23 ic bi ) 2 (3.2-155)

3Aic g1  Si fl

Many values of the relative multiplet strengths i(,lyj ) are

tabulated in Allen's (1963) book, in addition to the Condon and Shortley

tabulation of f-factors from which the S(mi,•j) can be obtained through

Eq. (3.2-154). In order to better illustrate the use of the relative multiplet

factors, let us consider some examples in detail. Our original example

for case (a) was the non-equivalent electron transition

Is 2 2s2 2p 2 P ls 2 2s 2 3s 2 S

15L
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for NIII, say. Eq. (3.2-153) yields

$IMj) = 2.3.1.(1) (3) W2 (1100;01) 6

since Biedenharn (1954) gives the value 1/3 for the square of the Racah

coefficient. This value agrees with that listed by Allen (1953) on p. 62

in the upper left hand corner of the page.

The arguments of the W coefficients can be permuted in a variety

of ways without changing their values (Edmonds, 1957, p. 94).

For example,

W (,t 'L(iI, "LL); Lp 1) = W (4,'4 "4L(ilLW; I Lp) (3.2-156)

The order of the arguments on the right hand side of Eq. (3.2-156) is that

which is employed by Burgess and Seaton (1960) and for convenience in

comparing our analysis with their paper we shall employ It in the sequel.

For electric-dipole transitions, in which LOJ) L(i) + 0, 1 , the Racah

coefficient reduces to a simple analytic form (see e.g., Condon and Shortley,

p. 238, for the analytic form of the f-functions). In Table 3-1 we give the

formulas for J(Ml0,IT.) for case (a) based on this analytic form. It is

worthy of note that the t - 4 + 1 and 4 - 4, - 1 cases are not independent,

but are derivable, one from the other, by an interchange of arguments based on

the invariance

W2 ('"'Ll LI; Lp) = W2 (,",')Ll); ULp) (3.2-157)

15 _ ii
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Table 3-1

Atift 1 1hn i 28+1) (2014~1) (21.041) 4>, (4,t2 _) W2 (4 ,L' L~j);I)

-(2S+ 1) f(Lp 4.-L" ; Lp C2L~

(A) 4-4-

L- L+ 1 (2 S+1.) (L p+L-I.+1) (LD-L+4)(L +L-4.+2)(L -L+4~-1)

M(L+ 1)
L- L (2S+1) (2L+l) (-L ,+L+t) (L,+L-4+l) (L +L+L+1) (LV-L+4)

pP
4L(L + 1)

L- L- 1 (2S+1) (L-L,+Lt-1) (L-L +4) (L+LD+Z+1) (L+L+)

4L

(B) L +1

L + 1- L (2S+1) (L +L-4,) (L -4i+1) (L +L-4L+1) (L -L+t,)

M( + 1)
L- L (2S+1) (2L+1) (FLO.tL+L+1) (L+L-0) (L0 +L4-L+2)

(L -L+4+ 1)/4L(L + 1)

L - 1 L (2S+1) (L-L +0) (L-L +4L+1) (L+L +,C+2) (L+L +-C+1)

Table 3-1 Relative Multiplet Strengths S(MTn~~~ for

non-equivalent electrons.
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The formulas of Table 3-1 may be summed over L to obtain

the total strengt., of the lines of the array which originate in the term

Y . The result is (Condon and Shortley, 1935, p. 248):

4-4 (3. 2- 158a)

E 3t.j M (2S+ 1) (2LiW+l1) -L124,- 1)

L(J)

S- 4 + I (3.2-158b)

( ai.e) = (2S+1) 2L(2)+1) (4+1) (24+3)

L(O)

To return now to our examples.

First let us compute the line strength factor f(SLI,SL'J') for

SLJ= 323

S'L1 - 323

The formula, from Condon and Shortley (1935, Eq. 29 2b), is

2
f = (2J + 1) M(1+1) - OsS+1) + L(L+1) (3.2-159)4J(J+ 1)
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Inserting the above values into the formula, one obtains f a . This4 "

is the correct %bsolute value.

To find Condon and Shortley's tabular entry In table 19 this value

must be normalized so that the maximum f value is 100. That is

ii
f ab x a (3.2-160)

where a is determined by

af - 100 (3.2-161)amax

Now, according to Table 19, fmax occurs for the S = 3, L = 2

to S- 3, L- 2 transition for 1- 5, J'- 5, viz., the 325 to 325
11x, 24

transition. We use Eq. (3.2-159)again and obtain fmax = 1 "

Again, this Is the r- .. i a.• •tae value. We determine a from Eqs.(3.2-160)

and (3.2-161):

"a = 1- 500

f-max 11x24

Inserting this value in Eq. (3. 2- 160) we obtain

fTab ' 9.94

S~158
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The tabular entry is 9.9. As noted on page 240 of Condon and Shortley,

the entries have been sharply rounded off. The line strength i,£j)

is given by Eq. (3.2-151) in terms of i and from this relation we obtain

f 4 L
£ 2S+l) L(L+I) (2L+i) 7.'Z3"5 40

This agrees with the result obtained from Eq. (3.2-148):

e•(Xi,£z =7"-- W2(2323;31) - 7" --. L8=4 "
7 5178 40

Next, let us consider a multiplet. We take the example quoted by

Condon and Shortley, p. 245:

Ti I d 2 4s(4F) 5s 5F-- d 2 4s(4F) 4p 5 DFG

for which:

L p 3 S 2

•' =0L"=l
Vi 00)
L(i) 3 L =2,3,4

Relativc values of $(Mremi) can again be obtained from Table 1

of Condon and Shortley by the correspondence SLJ -L , and

SL'J' - Lp ) which carries the line-strength f(SLI;SL'J') into the
p
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multIplet strength f(LY4 NLOI); LY "LU)) . Thus, the effective SLI - SL'J'

values are 303 - 312;3 ;A. Th, 3 eruries for LUI (or J') - 2,3,4 are

listed in the box above the "spin - 3" dlagonal which appears as:

In their example -m p. M4, Condon and Shortley quote these numbers

as the ratios 50:70:90, h.'ch ce.i ba obtained from the tabular entries by

multiplying the latter by 0.90. The values of this configuration are not listed

as such by Allen (1963), but do appear under the transition sd3 - pd3 .

This Is so because the only parent quantum number that appears in Eq. (3.2-153)

is , and therefore, In this transition all 4 F and 6F parent states

are equivalent for calculating £ M) . To obtain absolute values one may

use Eqs. (3.2-153) or Table 3-1. From Table 3-1, for A- A+ 1 we find

a) L+ I- L (F- D, L- 2 , 4 -0)

S et 1hm 5 (3+2-0) (3-2+-+1) (3+2-0+1) (3-2+0)SII 54(3)

= 25

b) L,-L (F-" F , L- 3 , ,- 0)

, 5 (7)(-3+3+0+1) (3+3-0) (3+3+-+2) (3-3+0+1)

"35
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c) L - I-.L (P-.G, L A4,£0)

,..I,•T) = 5 (4-3+0) (4-3+0+1) (4+3+0+2) (4+3+0+1)

=45

These display the ratio 50:70:90 quoted by Condon and Shortley.

In the case of hydrogen, our formula (Eq. 3.2-A55) must, of

course, reduce back to the same result as is obtainable by elementary means.

To see that this occurs, we note that

Lp 0

L(i) "iL

where, by Eq. (3.2-153) we obtain

S(,riI) M (2S+1) (2,V+1) (2"+)> (4 2 -1) (32-1

x W 2 ('t't "(A' "; 10) (4> 1(326)

From the formula for W for this special case, given by Edmonds* (1957),

we have

w 2 (4 t " 't it 10) =12V + l) 12L"+l 1) (3.2-163)

p. 98, Eq. 6.3.2.

'I
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Using this result end Eq. (3.2-162) in Eq. (3.2- 15S) we obtain for the hydrogen

cross section:

t2e2u 4.> O4IL> 2_ 1) 21 -14

a~uw) - 3 we b ( 4u) 2
3hc b(~u) -iy (3.2- 164)

We have used the correspondence L() - 4' which implies that

2
= (28+1) (2, +1) . If we Insert the explicit form of a #, given in

Eq. (3.2-144) this becomes

4rW3hc bls) J RnI(.)ln ( r)1r d (3.2-165)

An average f-number is often defined by (Bethe and Salpeter, 1957, Eq. 61.2;

cf our Eq. (3.3-86))

2

f It I ot of i R It ,(r) R WTn'€ ,n"• 7(2V,+ 1) 'nIt'C, n" Rn''r Rnt"r r ý

(3.2-166)

3 >+ n'(-+ n" 'I R n)(r) r3dr /a

T2 11) Ryd / ,C(r Rn.,.r 0

2
(where Ryd e /2 ao is the Rydberg energy unit).

SRyd ~ ~ ~ 1' -oRdegeeg



In terms of this average f-number, our cross section as given by Eq. (3.2-165)

can be written

22

mc "nwn

in agreement with Eq. (3.3-87) (the averaging does not alter the constants

in the formula).

Coefficients of fractional Daresltace

Rohrlich's case (a), which we have been discussing so far, does not

materially involve equivalent electrons. (The core may, of course, involve

them, but case (a) assumes that the core electron quantum numbers remain

unchanged.) To proceed to the remaining cases which do involve equivalent

electrons, we must define the coefficients of fractional Darentaae, or fpc,

previously alluded to. These arise in the problem of factoring a one-electron

wave function out of an antisymmetrized product wave function in such a

way that the overall wave function remains antisymmetric. They can be

defined by the equation

%(4SL) F(knSL, SL ) n([ n l sLP]4sLS) (3.2-167)SpL

where *([t n- SPLP] 48L) denotes the wave function for a state in which

n-I electrons couple together into a parent term SL..L , and the remaining

electron couples to this parent to yield the overall coupling SL . The Racah

notation for the fpc which we have denoted by F(mnSL, Sp L p) in Eq. (3.2-167)

is

F(,nSL, SpLp) L (nSL 4n- (SpLp) SL) (3.2-168)
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Eq. (3.2-167) may be lengthened to include explicitly the angular momentum

coupllrg of the substates distinguished by different magnetic quantum

numbers. The more explicit statement is:

(.6 nSLM SML) F(Ln SL, SPLP) C(p ;M(Pin ML
Spp M(Lp),•In() M(Sp),•lfs)

p p (3.2-169)

8 I; M( S) ,iA(s) I M( S)) n- 1S L~ WS)M( J'PX1')~om(s))

The coefficients C(j 1,J2j 3 ;m, m2 , mi3 ) are Clebsch-Gordan coefficients

used earlier (cf. Eq. 3.2-23). They are defined (Condon and Shortley, 1935,

Ch. 3) to give the correct fraction of each substate when coupling two angular"

momenta 0 and j2) to get a third j) . They are also known as Wigner,

or vector-couping coofficients, and are referred to by Condon and Shortley

as transformation amplitudes for vector addition. They are closely related

to the 3-j symbols (Edmnonds, 1957, p. 16).

Magnetic quantum numbers are not usually included explicitly in

matrix element formulas because the results do not depend on them unless

the operator whose matrix element is under consideration is itself not symmetric

with respect to the magnetic angle e . This occurs, for example, in the

case of an atom perturbed by an external magnetic field. In the absence of

such asymmetric perturbations, the factors of the wave functions which

depend on m and e integrate to one or zero, leaving only sums of
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products of Clebsch-Gordan coefficients, which also reduce to unity because

of the sum rule (Rose, 1957, Eq. 3.7):

CUl1 1 J 2 ,J 3 ,m 1 lm 2 ,m 3 ) Cjl,j21,j3', ml,m 2 ,m3) = , m3 ,m 3

mlom2

With the foregoing definition of the fpc, the line strength for Rohrllch's case (b)

(,n ._ n-l It) may be written as

n- pp pp
1 il.) q(4,,nSL(I); tn-1 SpLp V' SL()) = nF 2 (SnO S Lp)

(3.2-170)

jS(tLn- 1 t, Spýp SL (), ,n-1 V S pLp SLOj)

To obtain a formula for case (c), tng.., n-1 (t')2, we must expand

both n and (C,)2 with fpc in order to isolate the active electron.

However, the fpc for (4R12 are all zero or one, since there Is only one

possible parent state. In addition, we must recouple the expanded function

n-1 -. t' in the order t n-1 C•& to cause the active electron (viz., the

electron for which t -- -') to be the last to be coupled on in both states.

This is accomplished by the use of the Racah (1943) equation (6), which in

our case has the form

.(n- S pI CS'L',4,'SL) U( S SI; S'S") U(,L L';L'L")
Pp' 2 p2S' p

So-Lot

(3.2-171)

x (,n-1I Sp L C'S"L",4SL) x (phase factor)
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In this formula, the coefficients U are a particular form of the Racah

coefficients defined by a sum of products of four Clebsch-Gordan coefficients.

Their virtue is to again relieve us of any need to consider Clebsch-Gordan

coefficients explicitly.

Tables of the Racah coefficients W and the closely related 6-j

coefficients are now generally available (see Biedenharn, 1954; Howell, 1959;

Rotenberg, 1959). The relationship of the 3 symbols to each other is given

by (see Edmonds, 1957, Ch. 6):

U(abcd;ef) = 2 12f+ W(abcd;ef)

a+ b e2l 1)a+bl-cd (3.2- 172a)

and their relationship to the Cleb-ch-Gordan coefficients is given by

U(abcd;ef) = C(edc;memrdmc) C(abe;mambme) C(bdf;mbrnmdmf)
mambmdmemfam em (3. 2-172b)

x C(afc;mamfmc)

Using Eq.(3. 2 -171) and the expansion (3.2-167), we can now write the

angular factor for Rohrlich's case (c) as

((17 S pýi S S") (4,LL)L'L 2 n 2  SL', S Lp)

S"L"

(3.2-173)
n 1 n- 1,V4 W)

• 'S"L SL. , •,"
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We note that SpLp, S',L', S and L all have fixed values determined bythe chosen initial and final states, while S"L" takes on all the permitted

values for the configuration S n-lp L ISL,

To illustrate the use of Eq. (3.2-173), consider our example of

case (c):

1S2 2s 2p 4 (4 P) - is 2 2s2 2p3 (4 S)

The fact that this is really tncan introduce no more than a
phase change into the wave function and, therefore, has no effect upon

We find Lp 0 Sp =3/2

L' = I S' = 1 S" 2 or 1

L = 1 L"= 0
S = 3/2L 0 ) = 0 ', (

S 1 1'= 0 n= 4
F2 (p4 3p, 4S) (Rohrlich Table D

3T

From the tables:

(S2 2 -'-2 if S= 1

= 1 i if S" 2,

and U 2(IOL1;0) = 1

167
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Consequently,

- 2 4• (p3 sp a 2 4 p, p 3 s 4 S)

+1-5 -4-4--1 (3 sp5 4 Pp35SS.4 S163

J u . 9 + • 15 = 39 .

where the values of 5 for the non-equivalent electron transitions are

obtained from Eq. (3.2-153)as before.

Turning to case (d) , 4 n . ,, _ 2 may be computed without

use of i.p.c. since It is not necessary to alter any shell having more than

two equivalent electrons. The non-equivalent electron formulas of case (a)

may be employed as before, after 4 nt.2 has been recoupled to (l-hi'),.

This is accomplished by using the Racah (1943),Eq. 6, in the form

n 4,2 WL W ~ Tl . ~ T~',()
('t ~ ~- St "'2 VS 2 sSh; S 6 ,' :LtL'L)

S "L"
(3.2-174)

S, 'S"L", 4 ', SL)) * (phase factor)

Non-zero matrix elements can occur only If S" and L" have

values equal to those specified for 1n4' in the state nSLt t,' S pL p "SL

Therefore, we keep only that term in our expansion for which S" Sp and

L" Lp 16
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Then we have

(U SS S'Sp) U2 (4)'.('LL; L'Lp)

(3.2-175)
2-, (, n. ,• "S pL pSL(i), n• tVS pL p SL(]))

We .llustrate the use of Eq. (3.2-175) with the case (d) example, is 2 2s 2p 3P

_ is 2 2p2 3 P . Since Is2 is a closed shell the U coefficients are

both equal to one. On this account the transition might also be seen as a

simple example of case (b), with f.p.c. equal to one.

Using Eq. (3.2-153) in (3.2-175), we find

•(M•i,,I = 1 1 • 2 • (Is 2 2p 2s 2 P 3 P, Is 2 2p 2p 2 P 3p)

2 3 * 3 3 1 * 3 , W 2 (11O1;l1) = 18

since W2 = 1/9

This result agrees with Allen's tables.

A more complex example will pair the ground state of titanium,

which we write (ignoring the closed inner shells) as 3d2 4s2 ( 3F)

with the excited state 3d2 ( 3F) 4s 4p ( 3G) . This excited state is

actually degenerate, consisting of the two states 3d2 (3 F) 4s (4 F) 4p (3 G)

and 3d2 3F) 4s (2 F) 4p (3G) . We shall compute the transitions to these

two states separately.
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The Racah coefficients are

U2(-1 -1 1 1; 0 ~)=2/3 for the first transition,
2 2 2

U2111 1; 0o-2) =1/3 for the second,

and U2 (0033;03) = 1 for both.

Again using Eq. (3.2-153) and (3.2-.175) we find

,(ri,) = 2/3 •1 • 2 • 3 7 9 1 , 3 • W2 (0 3 1 4; 3 1)

= 36 since W2  1/21

S(OiMl.) for the second transition differs only in the Racah coefficient,

since Sp does not appear explicitly in Eq. (3.2-153). Therefore, its

value is 18. The sum of these numbers, 36 + 18 = 54 , is the result

given by Allen'who lumps degeneracies of this type.

Shore and Menzel (1965) have followed the Racah algebra approach

to transition-probability calculations in their compilation of extensive tables

of line-strength factors. Their tables cover a large number of the possible

transitions involving s , p , and d shells of electrons. Their line

strength factor differs from that of Rohrlich only by the factor 2S + 1

All values of J have been covered for which L <- 8 and S < 4 . The

corresponding multiplet strength factors are presented as a table of formulas
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for transitions among large classes of open-shell configurations. These

multiplet factors are functions of three quantities which are also tabulated.

These three quantities are (1) multiplet factors for transitions involving non-

equivalent electrons only (corresponding to our Eq. (3.2-153) and Table 3-1,

but omitting the factors (2S + 1) 4,> (44>2-1) found in Eq. (3.2-153);

(2) fractional parentage coefficients -- a complete tabulation for the p-

and d- shells, including phases, (3) recoupling coefficients required

when the order of angular momentum coupling of a state must be changed before

(1) can be applied. The multiplet factor table does not cover such cases as

n n (xet for l n
pp' , dd', (two open p or d shells), dn p (except for pd and

d p), and fn(n > 1).

An excellent compendium of classic papers on angular momentum

coupling is now available, incAuding work of Wtgner, Pauli, Racah, and many

later contributions (Biedenharn and Van Dam, 1965).

Angular factors for photoelectric matrix elements

The algebra involved in the angular-factor reductions in the

case of photoelectric absorption is reviewed in the paper by Burgess and

Seaton (1960).

Si
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3.2.4 Free-free Radiative Transitlons*

Although a free electron cannot absorb a photon and

simultaneously conserve both energy and momentum, a nearby third particle

may accept the necessary recoil momentum and thereby permit the photon

absorption. Such a process is called free-free absorption and is generally

the dominant radiation absorption effect for photons of energy less than the

Important photoionization thresholds.

For densities that are not too high, one can associate the photon-

absorbing electron with a particular momentum-absorbing ion or atom (hereafter

called the ion), and the free-free absorption process may be treated as a

radiative absorption transition between two continuum electron states of the

ion. Corrections due to momentum absorption by pairs of ions may become

important at very high ion densities, and Debye shielding effects and photon

absorption by electron pairs may become important at high electron densities.

Such effects are ignored here; only the Debye shielding effect will be

mentioned in subsection (vi) below.

(i) The Fundamental Cross Section

Both the initial and final states of the absorbing electron are in the

continuum spectrum of the ion, so the choice of wave function normalization

must be consistent with the "density of states" factor in the Fermi "Golden

Rule" (Eq. 3.2-1). This is most evident by writing the basic expression for

the transition probability as

(A IW H Ro o 27i d

Written by R.R. Johnston

172



giving the number of transitions per second from an ionic state I) In

do to a state I) in do due to the interaction H* . Here EI

and Ef are the total energy of the system in the initial and final states,

respe-tively, and the integration over the energy-conserving delta-function

has not yet been carried out. The photon "density of states" d3 n

is consistent with the photon amplitude normalization implicit

in H# presented previously (Eq. 3.2-6),
I I

"" e ni• w , (3.2-177)

and corresponds to an initial state of n photons in a volume (2ff)3

with polarization f W and wave number • in d 3 x . That is, the

incident photon flux is

= [ n ] c (cm- 2 sec- 1) (3.2-178)

(The electron momentum operator p here and in the following is to be

understood as the sum ip over the I electrons of the system.)

The state I*) is normalized on the "V-scale"

(aI=' f =f•a17) d 3 r 6i(i' 2 = -a') , (3.2-179)

corresponding to one state per interval do , as is evident from the

closure relation:

. I=>1 = 1--f- •lr > do (a 6'> =6(r- ) (3.2-180)
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Clearly the AImanslos ... da are (length)-" and the matrix

element of any operator 0 between such states has the dimensions

of 0 . Thus, one may symbolically indicate that (ja)) 2 do is

dimensionless.

Dividing the transition probability (3 .2-1 76) by the incident flux

(3.2-178) and using (3.2-177) one obtains - in the usual electric dipole

approximation - the result

= e (PI a1 5 f-Eda d, (cm2) (3.2-181)
jKP2 c 5(EfEjd -cm

This is the cross section per incident photon with energy in d(h(4 at

hw for a trarnsition from a state 100 in do to state 1, in

*d , and the indicated dimensions follow from the discussion above.

Forms of the matrix elements equivalent to (3.2-181) for exact

wave functions are easily obtained from commutation relations with the

results (see Eq. 3.2-10 and Bethe and Salpeter (1957) ý 59 (8)

mI• P imra l ,ir "1)E (3.2-1 82a

= -- Ze (#I
- "-•P ••iaV)a = Ze K/i I&> (3.2-182b)

The last of these is the so-called Coulomb "dipole acce'eration" form

most frequently used in free-free calculations. Here t, W E, - EE

and Z is the nuclear charge. For approximate wave functions the validity

of these alternative forms should be considered from the standpoint of the

underlying commutation relations. Thus, the "dipole acceleration" form
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is obtained from matrix elements of

[ý. H] pH- Hp ~-P -V ,(3.2-183)

in terms of the exact Hamiltonian H , written H 02 + V

For exact states la) and 10) , V Is the sum of the Coulomb

interactions and Eq. (3.2-182b) follows. For states lot) and j1)

which are two eigenstates of some approximate Hamiltonian, use of the

associated approximate energies and the form Eq. (3.2-183) with the

approximate potential V provides an alternate form of the dipole-

acceleration matrix element which may be useful (DeVore, 1965). Finally,

if the states lc) and I) are eigenstates of different approximate

Hamiltonians, even the validity of Eq. (3.2-183) must be recoaisidered.

Averaging over the polarization directions of the incident photon

as before (Eq. 3.2-14)

2 2 2

the cross section (3.2-181) may be written

2 2 2/
da 0=42e- jp) 6 - E- dot do (3.2-185)

3mWc f)

To proceed further, the states la) and lo) and their

normalization should be prescribed in greater detail -- most simply in

terms of their asymptotic forms. Neglecting for the present effects due

to electron exchange, the initial state la) asymptotically describes

an Lon in some state I - with wave function, say, c0(R) and energy
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Wi- and a free electron in a state described by the wave function
1 1)

C, (r) with energy ei k . That is,

and E, = Wi + ei + hw

If one assumes the long-range Coulomb potential to be shielded

at large distances, the state X( asymptotically represents an incident

plane wave and outgoing scattered waves -

S- ikir
+ f(+)

i •' (•' •A+ • e /(3.2-187)

N is
Here f ii rA) is the usual elastic scattering amplitude at energy

1ýi in terms of directions measured from that of the incident beam. Normalizing

on the k-scale determines A 3/2 and dt d 3 k, , as may be

seen from the closure relation,

Ci~~.j' - -

I,•I•>\,el\ e d 3 k e = - 7')

The final state 10) similarly represents asymptotically the ion

state i and a free electron in a final plane wave state with ingoi

spherical waves,

(2 (7) -- - (2i) -3/2 [if + f() f,. ') e rij (3.2-188)
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- 3

where again the normalization is on the t-scale and d• = d3 kf

The states iz are simply related to y, In terms of the Wigner

time-reversal operation (Goldberger and Watson, 1964, p. 170),

X T (3.2-189)

where TO is simply the operator of complex conjugation with neglect

of spin. Thus, we have

f(' kA [f@) r

Finally, Ef Wi + ef , and

With this choice of continuum states, the basic cross section (3.2-185)

becomes, after summing over the final electron states,

dct 3 = 3 22 c f nf I f 01d ( )PI1)2 d3 ki (cm2 ) (3.2-191)

3 (nkA
where we have used d kf =k---) dEf d(f , and kf is to be determined

from energy conservation, k 2 =k2+-'2 m
f 1h21

The physically significant quantity is the radiation absorption

coefficient r (a4) , which is the probability per unit length that a photon

of angular frequency w will be absorbed in the medium (see Eq. 3.2-54).

1 '77



1

For bound-bound and bound-free processes the radiation-absorbing

electron is uniquely associated with a momentum-absorbing ion, so

it is convenient to write

T () = NV (W) (cm-1

where Nv is the ion number den. Aty, and the cross section a(w)

has the dimensions (length)2 = area. For free-free transitions, however,

the electrons are no longer uniquely associated with any particular ion,

so the electron density is in general independent of the ion density

unless thermodynamic equilibrium prevails. Thus, it is convenient to

take the free-free absorption coefficient 'FF (W) proportional to both

the electron and the ion densities,

TFFl(w) = Nv Ne aFF( , (3.2-192)

and the coefficient of proportiondlity, FF(w) , is frequently called

the "free-free cross section" -- although it has dimensions (length)5 .

The quantity do of Eq. (3.2-191) is the cross section per ion

for absorption of a photon of angular frequency w by a free electron of

density (2r)-3 per unit volume with wave number i in d3 ki I

as is evident from the chosen asymptotic forms (Eqs. 3.2-187 and 3.2-188).

Then, if Fe( ) d3 k is the fractional number of electrons per unit volume

with k in d 3k -- normalized to unity -- one obtains

T FF(w)N Ne Je k 2T)3 do

178



Writing the free-free cross section as

0r(r efFe Ck) i FF (Ckf d3ki , (3.2-193)

one evidently obtains from Eq. (3.2-191)

5 2
F FF (2 77)ekf 2 5• o (k 1 1, = ... J df(•IpI)2 (cm5) (3.2-194)3mh woc

(ii) The one-electron approximation and radial decomposition of
the matrix elements

In most applications a one-electron approximation is assumed,

according to which the photon-absorbing electron is assumed to move in

a static potential V(r) determined by the average charge distribution

of the ion and possibly including some semi-empirical corrections for the

effects of ion polarizability and electron exchange (Kivel, 1966; Allen,

Kivel, Taylor, and Textoris , 1966; DeVore, 1964). As mentioned above,

the choice of asymptotic forms (3.2-186) and (3.2-190) precludes a correct

treatment of electron exchange. Accordingly, in this section and in most

of the following, electron exchange will be ignored -- except as approxi-

mately included in the potential V(r) -- and will be discussed only at

the conclusion of the next section.

Thus, in the one-electron approximation one assumes equalities,

for all r , in Eqs. (3.2-186) and (3.2-190), with the states \, (C)
taken to be continuum solutions of the single-particle Schr6dinger equation



__2m k k-6~=(2k m

satisfying the boundary conditions (3.2-187). (3.2-188). In this

approximation the necessary matrix elements become one-electron

quantities and are most frequently expressed in the dipole-length or

dipole-acceleration forms Eqs. (3.2-182a) and (3.2-182b)

\~IPIm) =irAfd3r [x9 Cj; )(9 CO

(3.2-195)

- A d~ [0~ C g'(ý) yO r)

If the effective single-particle potential is taken to be spherically

symmetric a significant simplification results from an angular momentum

decomposition of the one-electron states. Let

XV C) R (ki) ý (k ®r(3.2-196)k1C) (k•,r)• U *~ i A (r a•-
ki E m

.Z=0 m

where the normalized spherical harmonies Yem are from Edmonds

(1957). Similarly decomposing the asymptotic form (Eq. 3.2-187) with
- 3/2

A (2T) , gives

k (+)-ki ( "---r- • " --0 2 1 0 Z sin (ketr - Y1/2+ m(A AM A

where the scattering amplitude f(+ 1  i r) has been expressed in

terms of the elastic scattering phase shifts 6t(ei) in the usual way
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eA sin 8 Y1 A

k m

f=ekr~ -~- sine £ Xhm~k) Y£m, (3.2-197)

Lm

Therefore, writing

S£ 0,1(e) w,,(k,r)

R, (k,r) = i e kr (3.2-198)

the function w, (k,r) is the solution of

d w(k,r) - ++2m V(r)- k w2(k,1 = 0 (3.2-199)

satisfying the boundary conditions

w,(k,0) = 0

(3.2-200)

w,(k,r) r-• - sin (kr - I V/2+51)

and normalized according to

fw(k,r) w.(k',r) dr = 5 (k - k') (3.2-201)

0

The final state wave function may be similarly expressed

(r) = R (kf,r) YM(kf) Y(r) (3.2-202)

kf __ .

1=0 m

Using Eqs. (3.2-189), (3.2-196), (3.2-198) and (3.2-202) one easily

finds
151



4i

£ R= ~ei6(c) wt (k, r) 216 (C)R O -1iT i e- A . e RW (3.2-203)

The one-electron matrix elements (3 .2-195) then become

2 -2sP = (4 if) u MA.~ ,(2YM i 1) (2£ + (2A•f+1l)(2A'•+)

~~ @ ~ ~M) , (-Yf (i ) x (322/

x (2 +1I) P£ (kf"ki)

~A A 1Af
f f~

in terms of the radial integrals*

Mf i [mJr drR(f~r)J r R (k.,r) (3.2-21,5s

0

-~ r A ~r) -~-: t k1 r)(3.2-20,1)
0 0 J~

nd the Wigner 3-1 and 6-1 symbols (Edm)onds, 1957). IA obtaining

this result the following vector coupling relations are used -- (equation

numbers refer to Edmonds, 1957):

A (2 +l A)(2A f+ l)J (4.6.3) (tm2 Y1MA 2 m2  1) k k

f f



1/2

YA M A) ([U+ 1)(24 1)(2 L+ 1) (A A 'L)(A )Yk
4.6.5) Y m() s(k 4' ) Y 4,

SLM - -

and

A I+A 2 +A3 +MI+/lI2+/ 3  J4l2A3 • A•lJ 2 3  £1 2J3(-m l•2 _ 3) 1 m 2. 3 1.-A2m3/

6.2.8) 1
1m2m3/ 1 £2 A 3

Integrating over the direction of the outgoing electron and averaging over

the direction of the incident electron the free-free cross section (3.2-194)

finally becomes

4FF ( (-- - (A2+1) kM£2+l 2 MA,+1+

C T F F 8 ff e A 1 )10
(3.2-206)

in terms of the radial integrals (3.2-205a), (3.2-205b).

(lii) Relation to Elastic Scattering

For low-ent!7gy photons the free-free absorption cross section may

be approximately expressed in terms of elastic scattering amplitudes --

a relation discussed by Hundley (1962) and Low (1958) and utilized by many

authors (for example, Ohmura and Ohmura (1960), Firsov and Chibisov (1961),

and Ashkin (1966)).

The relation may be most easily derived in the one-electron approxi-

mation with neglect of exchange, although the result is of more general



validity (john, 1966) ... this approximation the basic matrix element

(Eq. 3.2-195) may be written

where Xk satisfies a one-electron Schredinger equation with Hamiltonian

H = H0 +V , which may be written in the Lippmann-Schwinger form (Goldberger

and Watson, 1964, section 5.3)

+ 1x
k = " kinHo kk

i3 a plane-wave elgenstate of HO with energy . Then, using

(3.2-183),

K~W~ = L (x~f(Hý - H)I ()
V :-P + 1 v

k "i C k. + i-- H
I

S+ _1 ivH k!v
•f C k f in -T H° k

The are momentum eigenstates, so we have

= ýi(91v' k) -hkf (9I~~ +

i i 1 V (3.2-207)
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The scattering amplitudes for elastic electron scattering may be

written (op. cit., section 6.2)

when • = .1 Thus, in the limit wc- o . Eq. (3.2-207) may be

written

L' f (3.2-208)

=(2) 2  ) 2 m

(3.2-209)

Because the cross-term in the square of this matrix element cot.ains the
factor (ma r Fk2 / , retention of the firstterm alone shoud leadonly

to relative errors of order (•cAy•)2 in the cross section, aside from
possible elastic scattering resonances near energy c .

Thus, an approximation to the free-free absorption coefficient useful

at low photon energies is given by



PFF(kit W e kf Q
3 T d + 0131

(3.2-21O)

= 3  Q(•) (cm3)

IEL a.u.

in terms of the momentum transfer cross section -- in cm 2 
-- which is

defined as

Qd F) f dif 01 - cos A) f cos I (CM2

The bracketed quantity in Eq. (3.2-210) is in atomic units (a.u.), EL

being the photon energy, a the fine-structure cor;,tant, and a the

Bohr radius. Expressing the scattering amplitude in terms of phase shifts,

Eq. (3.2-197), one immediately obtains

21r a 2
Qd(u) o- (21+1) sin2 •-2 (1+1) sin . sin (Cos

a U.,
1=O

2va 0 2  d(1+1) si -2 e)~

a .u. E=o
and

aFF W)o I 6 a15  
sin L+4.so 

121q) -]03u. 

.=0
(3.2-211)



As is evident from consideration of the asymptotic forms

Eq. (3,2-187) and (3.2-188), the zero-frequency relation may be

directly derived therefrom and concurs with the familiar arguments that

small momentum transfers preferentially sample large radii. Forms

equivalent to Eq. (3.2-211) have been so obtained by several authors

and differ only in the electron energy at which the phase shifts A

are evaluated. Consideration of the validity criteria, Eq. (3.2-209),

will resolve such ambiguity in favor of • , to order (h /W)2 with

neglect of resonances, and is substantiated by diiect comparison of

Eq. (3.2-211) with numerical results by Ashkin (1966).

Modifications to Eq. (3.2-211) due to effects of electron exchange

have recently been studied by John (1966), for the particular case of free-

free absorption on the neutral hydrogen atom. The cross section is obtained

from consideration of the asymptotic forms alone -- with due regard for

exchange -- for low photon energies and for electron energies below the

first excitation threshold. The result is the same as Eq. (3.2-210), with

Qd (F) modified to

21ra 02 r
Qd = M au W s (1+1) sin2 A(Es) - +l(Cs,s (3.2-212)

s I

in terms of a spin statistical factor

S(2s+1)=s 1- U2-s+ 1

s

where s is the total spin of the system. The phase shifts 8%(rs) are

those obtained from a correct treatment of electron exchange -- the resultant

Th(i



symmetry-dependence is manifested In their dependence on s

As discussed by John, for photon energies such that Eq. (3.2-212) is

,o longer valid. an adequate treatment of exchange effects requires

a detailed many-electron calculation -- such as the close-coupling

computations of, foi example, Burke (1962).

(iv) Free-free Absorp~tion in the Coulomb FiLld of Ions:
Hydrogenic Transitions.

The long-range of the Coulomb potential guarantees that for

reasonable positive Ion densities, free-free transitions in the Coulomb

field will dominate the low-frequency radiation absorption mechanisms.

Most effects peculiar to such Coulomb transitions are present in the

simplest case of free-free absorption in the field of hydrogen nucleii,

and accordingly have been most extensively studied. A summary of the

hydrogenic results is included in the first subsection below, followed by

some non-hydrogenic studies in subsection (v). Finally, modifications

due to Debye shielding are considered in subsection (vi).

The hydrogenic free-free absorption.

Radiative transitions in the field of a Point charge Ze

are called hydrogenic transitions. For such transitions the relevant wave

functions and matrix elements may be directly obtained to any desired

degree of accuracy and so have been extensively studied -- both as

a precise test of physical theory and as an initial approximation to

transitions in the field of ions other than hydrogen.

An extensive treatment of continuum Coulomb wave functions and

transitions as well as useful approximations thereto are provided by the

review article of Alder,et al (1956). Specific application to free-free

!8&
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absorption and detailed numerical results are presented by Karzas and

Latter (1961) and Grant (1958). Only results relevant to the fore-

going general theory will be presented here; for details, the above

references should be consulted.

As is well-known (Schiff, 1955), the long range of the Coulomb

potential modifies the asymptotic forms Eqs. (3.2-187) and (3.2-188),

so these become: j
X (r)- e + - - 2V _') k r-+ ( / exP [± I n 2k r

k C reI ~ri

f f)(k.• is the Coulomb scattering amplitude (op. cit., eq. 20.10), and

the dimensionless parameter In essentially characterizes the interaction

of the electron with the field:

I IIZe2 Z c
* -•' a• ="ZV (3.2-213)

Here v and k are the electron velocity and wave number, respectively,

a the Bohr radius, and a the fine structure constant. Classical theory

applies for I i>>1 or (v/c)-< Z/137 . Further, for Il<<1 the

Coulomb field produces only a small perturbation and Born approximation

should be valid. The critical value Ini - 1 corresponds to an electron

kinetic energy Z2 Rydbergs = 13.6 Z2 eV

For a pure Coulomb field the one electron states are well known.

The complete wave functions of Eq. (3.2-194) with the prescribed normaliza-

tion and asymptotic form are (Alder, et al., eq. II-B40, 41)

13 1



-2)~/e r~1 / i (+ ir, 1)e 
1 F P [i i;1;i(k jr-ýi.%]

(3.2-214)

(•'•> 2e-3/2 -A/ 'f.• r ,f1- •)

(r (20' e F (1-iT1d)e 1[irf;1;-i (kfr+kf *r

in terms of the confluent hypergeometric function. The basic matrix

elements are given by

2 9Z 2 e4  df(nj,,nf)

2(2T) Y k kf f

in terms of the dimensionless function (Alder, et al., eq. II-E.62, 1956)

d~f = 2 (e32 -i_ 1) (e 2ff n i ) "x - F(-iX); -rqe 1;

dl,'f992 4 flflf 21T x

4,ninf sins 0/2 , - Tf i

Substituting these equations into Eq. (3.2-194) the free-free cross section

is obtained

g2 e4

Fr 3 z e4  5a (ki,1  = 2 A f~ 1 ,f (cmf) (3.2-215)

190

_ IL



A classical calculation of the radiation absorbed by an electron being

scattered in a Coulomb field was first carried out by Kramers (1923) - see,

for example, Landau and Lifshitz (1962) - with the resulting so-called Kramers

cross section given by
16ý;3 z2 e4 5: F(ki,11) :a • aý (3 .2-16

K i 3~~k

The quantuin-theory calculation was studied very early by Gaunt (1930),

and it has since been customary to write the result (Eq. 3.2-215) in terms of

the Kramers cross section,

FF (ki) I g(kikf) - FF(k e)' (3.2-217)

defining the so-called "Gaunt factor",

FF f 32-( 3 f( TI' f)

(3.2-218)

-~T 2 1vnf 2 -1- 2-' dx= o"3 • ( •-1) (e fl) x dx° i ,

where

2i

x 4- i'/2
,0  1

This result was first o ,tained by Sommerfeld (1951) and numerical values have

Leen extensively tabulated (Karzas and Latter, 1961; Grant, 1958). Some forms

of Eq. (3.2-216) useful in applications are

-i-
L!



rr 161 3 2O' ao (cm )

(3.2-219)

U4 3 3 v, 2Ryd .2 (cm5 )= a c

in terms of the fine structure constant a , the Bohr radius ao , the

photon energy EL(a.u.), and wave length X (cm),

A spherical harmonic decomposition of the Coulomb states (Eq. 3.2-214)

may be similarly performed (Aider,et al., 1956, 11 B.3). The radial functions wt(k,r)

are given in terms of the regular Coulomb functions F, (k r)

w.,(k,r) F (k r) (3.2-220)

and the phase shifts 6 (-:) become the Coulomb phase shifts • (0} -'

arg 7(t+1+iy). Evaluation of the radial matrix elements (Eq. 3.2-205) is

discussed in detail by Alder,et al. (1956), and Biedenharn (1956) has shown the

equivalence of the resulting equatlion (Eq. 3.2-206) with Eq. (3.2-215).

As discussed by Alder,et al. ( 19,56, pg. 452) the main contribution to the

f -sum in Eq. (3.2-206) is from values ?. - *t . although the convergence is

slow - particularly for low photon energies. It is of interest to study the

dependence of this dominant t(-t-D) on the photon energy hw . The semi-

classical, most-prc-bable electron deflection angles are tabulated by Alder,et al.

(1956) in their table 11.7 in terms of • - (rnf-rni). Interpreting the deflection

angles in terms of angular momenta, the rough correspondence shown i.n Table

3-2 is obtained.

1992



Table 3-2

0.1 12.

0.2 5.7

0.4 3.2

0.6 2.5

0.8 1.8

1.0 1.5

Approximating C D/Aq I/ , one obtains

A similar result is obtained from the expansions of Burgess (1958).

The complexity of the expression (Eq. 3.2-218) for the Gaunt factor

has stimulated considerable effort to obtain approximations which Are

reliable in the various domains of interest. A critical summary of the

approximations is provided by Grant (1958).

From an asymptotic evaluation of the hypergeometric function in Eq.

(3.2-218), Menzel and Pekeris (1935) have obtained an approximation suitable

&or e i<< and e j' '<Cf
2l1 48 €I • •. 2/3

0P .1 728(1+E: /C) 1~/3 0.49 4- 1 .; /
g 0 (1- k/ I +d 0.0496 1(-5 - i.y:
gFF (k'f) (1 E; iR_/d j./ 1 -C e)4 3

( )-/' \t)21 (1 - •/f•• • / *

(3.2-221)
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A similar technique was employed by Burgess (1958) for asymptotic approxi-

mations to the Coulomb radial matri> `-,:ments (Eq. 3.2-205) valid fuf

. I. ., - and t-.<'ri .

As discussed at the beginning of this section, the Born approximation is

expected to be valid it I , or if the photon energy is small:

g(kip k) an4.k (3.2-222)

This displays the usual logarithmic divergence at small photon anergies due

to the infinite range of the pure Coulomb field. In practice, shielding effects

of othur electrons effectively limit the range of the field and so remove this

divergence - as discussed in subsection (vi) below. Partial allowance for

the long-range Coulomb distortions of the Born approximation plane waves by

Elwert (1939) lead to a simple modification of Eq. (3.2-222),

BE (kkf) -1 gBF, (k, kf) (3.2-223)gFF i e-T fj kf fF

of considerably wider applicability.

In the limit i - 1>> the "semi=classical" or WKB approximation is

expected to be valid. Using WKB wave functions the free-free matrix elements

may be evaluated (Alder, et al., 1956), with the resulting Gaunt factor

g~(ik) 1)(3.2-224)gFF (ki'kf) -75 2: "x x

x-

in terms of the modified Bessel function Kij

1 9L



A useful approxlmation to gC for 1 1?i is

g ;(kik 1+ 0.217751 12/3 0.1111-4/3
F (ikf) f 1 + - o.o1312IlI (3.2-224a)

a result which more closely approximates Eq. (3.2-218) than does the Menzel-

Pekeris expansion (Eq. 3.2-221) - see Grant (1958, eq. 14). From this, the

Kramers result is seen to be valid in the limit 9>>1

Grant has compared the above approximation with detailed numerical

evaluation of Eq. (3.2-218). Better than one per-cent accuracy is obtained by

the various approximations in the following domains of validity:

(kf/ki) - 1.0 - 1.025, . 30.0 semi-classical (3.2-224)

S1.025 - 1.30, 1Tjfj s 0.1 : Born-Elwert (3.2-223)

f 5.0 : semi-classical (3.2-224)

1.30, ifl 0.1 : Born-Elwert (3.2-223)

TIfl - 2.5 : semi-ul.assical (3.2-224)

From the tables of Alder,et i1. (1956), the semi-classical Gaunt factor agrees with the

quantum mechanical to within three percent for all r - 1.0 and " 0.1

In most applications the electron distributa;,n function Fe(Ci) of Eq. (3.2-193)

is Maxwellian. With Eq. (3.2-219) the Coulomb free-free absgrption coefficient

FF('•) may be written in terms of the Maxwell-average Gaunt factor <gp,(wa)>,

4 2 ( 1/244Z2 (R3
F T''a- NkT <4%3(4 )> (cm" ) (3.2-225)

Values of <gF(u;)> are contained in Karzas and Latter (1961).
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(v) Free-free apbsorption on non-hydrognenic ions

A satisfactory treatment of free-free absorption In the fields of ions

other than hydrogen would require ectensive iumerical treatments of, for example,

Hartree-Focok ionic states pertuirbed by continuum electron states which are

obtained from, say, close-coupling calculations. As yet, such detailed treat-

ments are not .vailable.

Fortunately, however, for low-energy photons the long renge Coulomb

0eld of Zharge ZI domninates the momentum-absorbing interaction and the

non-Coulomb portions of the ionic field result in only small modifications of

the h~lrogen-results of the preceding section. On the other hand, high energy

photons *end to sample the shorter range non-Coulomb field and so require the

more detai, ed calculations.

From "the discussion of Tablo 3-2, above, the angular momenta dominating

the Coulomb ahsorption cross section (Eq. 3.2-206) are in the neighborhood of

( D - (.1/hu) . Forther, one expects departures from the puke Coulomb field

to be limited to sony, range R , and so to contribute to the sum (Eq. 3.2-206)

onily through terms t -, L - k1 R = (R/a ) (e /Ryd) 1 / 2 . Thus one expects

substantial departure fron the Coulomb results only when the dominant terms
a

themselves become modified; that is, when L - D or W-_-0 ei.
D R

In a one-electron spherically symmetric approximation, the states in

a pure Coulomb field are given by Eq, (3 .2-220)ICIw (k,r) r2TFY kr) .-t..- •r sin (kr -Ln/2 -Tn In 2 k r + r),
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where is the Co,:Jomh phase shift given by

0•• H= Arq r- (t+ I + in)

As described by Schiff (1955, § .20) the short-range departure from the pure

Coulomb field results in an additional phase shift 6t, for r > R

according to

w 4,(k,r) = (k r) cos 6*, + Cl(k r) sin 6], (r • R)

(3.2-226)

r-J/e sin (k r - In 2kr 2t +a. Y

where one expects 6 I,(k) )1 0 only for t 4. kR . The function GIt(k r)

in Eq. (3.2-226) is the scAution cf the Coulomb equation which is irregular

at the origin and asymptoticaliy approaches cos (k r - &/2 - I In 2kr +o4)

The slow convergence of the t-sum in. Eq. (3.2-206) is best treated

by explicitly sep3rating the terms t 5. L for which 68, 4 0 and sumnming

the remaining series in terma of the Culomb result (Eq. 3.2-217) for char'e

ZI:

,FY ) I gF(ki kf) FT(ki ,D) +

(3.&"-227)

4 Lk ' II t lI -: f
B84 7 (41+1) Mf ÷ M, , I IIMC~ -MC 1

3 mW WI i,+1 +1 i' 1 i+ IM;il4t 1-0



The M It are Loom Eq. (3.2-205) in terms of the actual solutions (Eq. 3.2-226),

a"d the are the Coulomb radial matrix elements which may be

expressed in terms of hypergeometric functions (Alder et al., 1956; Gordon, 1929)

and have been approximated by Burgess (1958).

DeVore (1964) has recently carried out a one-electron approximate

calculation for the nitrogen ion N. The potential V(r) of Eq. (3,2-199)

was taken to be the unperturbed static Hartree-Fock potential of tha ion, and

effects of exchange and polarization were neglected. Comparison of the resulting

numerical solutions of Eq. (3.2-199) with the asymptotic form (Eq. 3.2-226) for large

r determined the phase shifts . For electron energies • € 0.36 Ryd,

the s- and p-wave phase shifts were large, and the d-phase shifts were iess

than two percent of the s- values. Higher angular momenta were ignored,

and the free-free absorption cross section was obtained from Eq. (3.2-227)

with L - 2 and photon energies v:j, : 0.01 Ryd. Comparison with hydrogen

ion results indicates only small differences for hPu.i - despite the large

s- and p-wave phase shifts. This result substantiates the general discussion

at the beginning of this section.

The predominance of the asymptotic domain in the absorption of low-

energy photons led Peach (1965) to evaluate the radial matrix elements

(Eq. 3.2-205) in terms of the asymptotic wave functions (Eq. 3.2-226) alone,

modified at small radii to ensure convergence of integrals over the irregular

solution. This approach corresponds to the familiar Coulomb approximation
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of Bates and Damgaard (1949) and Burgess and Seaton (1960) . The

Coulomb integrals are evaluated '•umericalty and the results tabulated in

convenient form. In terms of the Kramers' cross section (Eq. 3.2-219) -

with Z Z - Peach's results may be expressed as a "Gaunt factor"

defined by

9G (eist.jlcf.tLf) COS.1

(3.2-228)

Here 4f , ±t 1 only and t,> is the greater of (, 4
'if) . The functions

G and X are tabulated for 4,Vf equal (0-3) and a range of values of

ei and hut, . For low-energy electrons the phase shifts may be obtained

from the quantum defect method (Burgess and Seaton, 1960).

A similar result follows from Eq. (3.2-211) and the corresponding

Gaunt factor may be written

2t
gEL L (AiRi) sin2 [ + (3.2- -224+]

-F Ty1 Fa4+ 744 -0

and t = -, ÷tan In the limit of zero photon energy (Peach, 19a5,

eq. 32) and vanishing phase shifts 6 , (Eq. 3.2-228-229) reduce to the same

expression.
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In view of the slow rate of convergence of the 4-sum for Coulomb

interactions it appears most convenient to follow Eq. (3.2-227) and sum

explicitly only over those L-values for which 6 is non-vanishing.

Then, for example, Eq. (3.2-229) becomes (in terms of the hydrogen Gaunt

factor gFH(ZI) with charge ZI )

L 21
Ion g (Z) + -• •2 -

(FF, 4-- 64-41 "t 2, 2
't -0 1 

(Cl

(3.2-230)

This form ap;,ears to be the most useful approximation to the (anticipated)

- small modification of the Coulomb Gaunt factor due to the non-Coulomb

short range ionic field. Inclusion of electron exchange effects follows tne

treatment of John (Eq. 3.2-212 and 1964, 1966).

(vi) Effects of Debye shieldinq

As discussed .n connection with Eq. (3.2-222) the logarithmic

divergence of the Coulomb Gaunt factor for small photon energies is a

manifestation of the assumed infinite range of the potential. A small-U)

expansion of the exact result (Eq. 3.2-218) - using Eq. II E-66b of Alderetal, (1956)

leads directly to Eq. (3.2-222), as does the elastic scattering approximation

(Eq. 3.2-210) with the known Coulomb scattering amplitude. This last

formulation displays most clearly the origin of the divergence in the small

angle scattering - and hence large impact parameters.
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As is well known the assumption of a pure Coulomb potential 13 valid

only near the ion; the interaction is screened at large radii by other electrona. For

moderate densities and high temperatures an exponentially-screened Debys

potential is a usefui approximation to the actual pote.itial responsible for the

free-ftree absorption. That Is,

2i
VWr) Z *- e-ar (3.2-231)r

where

aL 2 n2 (Z lZ1 -l) (3.2-232)

for a gas at an electron temperature Te with nI ions per cm 3 of type

i and charge Zi

As the Born approxi~mation correctly exhibits the low photon energy

divergence a Born calculation of the scattering amplitude for potential V(r)

of Eq. (3.2-231) in the low photc.n enerav approximation (Eq. 3.2-210) may

be expected to de'mu strate the effects of shielding on the low frequency Gaunt

factor. The result of such a calculation is that the Coulomb Born Gaunt factor

(Eq. 3.2-222) is replaced by

~ k~1)J/\~ (kf~ik1 + a.2  2 2L
(kf) 1  + a. (k +k?)*a (k1 -kf +

(3.2-233)

a result not diverging at t - 0
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A WKD-approximation of more general validity - for small a and

not too small w or too large c1 - has been obtained by Green (19581,

GFF (k1 ,w) 1 - 2p 2 gFF(k' ,w) + O(p3) , (3.2-234)

in terms of the Coulomb Gaunt factor gF,(k ,w) at the same frequency W

but lower energy e k2 Ryd a C - 2pZ 2Ryd . The dimensionless

parameter V is related to the screening constant a through

CL ao

The Maxwellian velocity average of (Eq. 3.2-234) has been compared with

detailed machine calculations and has proved useful over an extensive

temperature-density range. To first order in . , one may use (see Eq. 3.2-226)

<g shielded (W) > < g~(i) g[~Fw (ki 0Oiu)] (21Jz2 Rig) (3.2-235)rrFF1gFF I - u1F2-35

As the expression (Eq. 3 .2-235) is only accurate to first order in 11 it is

most useful in determining when screening effects may safely be neglected.

Numerical evaluation of the velocity averages of Eq. (3.2-234) should be

suitable for most cases of interest.
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(vii) Free-free absorption on netral atom$

The short range of the electron-atom interaction relative to the Coulomb

force results in much smaller free-free radiation absorption cross sections on

atoms than on ions - typically smaller by several orders of magnitude (DeVore, 1965).

A convenient though rough measure of the relative importance of atoms

in free-free absorption is provided by the work of Firsov and Chibisov (1961).

Assuming s-wave interactions only, for electron energies less than a few eV,

the momentum transfer cross section was approximated by the zero-energy

elastic scattering cross section el(o) in Eq. (3.2-210). The Maxwellian

velocity-average may then be performed and the result compared with the

KraMLfr cross section. When the relative numbers of ions and atoms is

estimated by the Saha equation, the condition that the atomic and ionic

frequency-integrated free-free absorption be equal yields the result

Nat 2 .- 2.2 x 1026 G"5/2 -"c1/ (3.2-236)

Natom eel(.-36 21

Here is the temperature and e & the ionization potential of the atom in

eV, el is the zero-energy elastic scattering cross section in i0 1 6 cm2

and Natom is the atom density (cm"3) . For a given temperature, ionization

energy, and cross section (Eq. 3.2-236) then provides a critical density

above which atomic free-free absorption is expected to dominate and below

which ionic absorption should dominate. In obtaining Eq. (3.2-236), use

was made of the fact that the absorption per atoin is much less than the absorption

per ion, so equal absorption contributions necedlsarily implies N N

the total particle density (atoms and ions) to N
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Few detailed studies of the free-free absorption on neutral atoms

have as yet been carried out. A general treatment is of equivalent complexity

to the case of non-hydrogenic ions - discussed at the beginning of subsection

(v) above - so the resort to extenaive approximation is necessary.

Due both to its relative simplicity and to its particular relevance in

astrophysical applications, the free-free absorption on neutral hydrogen has been

most extensively studied. Early work by Wheeler and Wildt ( 1942 ) employed

the acceleration radial matrix element (Eq. 3.2-205b) in the cross section

(Eq. 3.2-206), using Born approximation wave functions and thu unperturbed

Hartree potential of the hydrogen atom - without polarization or exchange.

Chandrasekhar and Breen (1946) employed similar approximations -

differing principally in the replacement of the Born approximation s-wave by a

numerical solution in the assumed potential. The result is a much larger

cross section, approaching an order of magnitude greater than the result of

Wheeler and Wildt at X -2p and T =63000 K.

Most recent studies have employed the phase shift approximation. As

emphasized by Ohmura ( 1964 ) this formulation has the particular virtue that

variationally determined phase shifts are generally more accurate than variational

wave functions. Ohmura and Ohmura (1960, 1961) included s-wave phase shifts

only, with allowance for polarization and exchange according to Eq. (3.2-212),

anC found the results )f Chandrasekhar and Breen(1946) to be reduced by 40-60

per cent as a resul.

Finally, a very detailed treatment of the piase-shift approximation was

carried out by John (1964, 1966). Numerical solutions in the static Hartree

potential of the atom were obtained -with inclusion of exchange - for angular momentum

states 1 = 0, 1,2 and electron energies less than one Rydberg. It was found that
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inclusion of the effects of exchange increased the importance of the higher

phase shifts (A z 1), and the results obtained were 30-40 percent less than

those of Chandrasekhar and Breen (1946). Detailed comparison of the results

obtained by use of the numerical wave functions in Eq. (3.2-206) with the

phase shift approximation (Eq. 3.2-211) for the initial and final electron energies

independently ranging from 0.01 to 0.1 Ryd indicate at worst 3 percent difference

in p-waves and 12 percent in the s-waves. As the photon energy in the worst

case is Aw - 99 ,i . the agreement is remarkable in view of Eq. (3.2-209).

A variational method for direct determination of the hydrogen free-free

matrix element itself has recently been proposed by Khare and Rudge (1965)

which is somewhat reminiscent of the Schwlnger variational procedures of

scattering theory. Employing simple trial wave functions, the authors were

able to obtain results substantially in agreement with the numerical results

of John.

For atoms other than hydrogen relatively few results are available.

DeVore (1964, 1965) has studied the free-free absorption by neutral nitrogen,

assuming an unperturbed Hartree-Fock potential and an effective polarization

potential

v (r)-p 2
(r + r)p I

for two values of a and r . Numerical solutions to Eq. (3.2-199) were

obtained for 4 -0,1,2, and the cross section was evaluated from Eq. (3.2-206).

205



An approach essentially equivalent to that of DeVore has. beer, pursued

by Oivel et al. at AVOQ (1966) for both atomic c•,ygen and nitrogen. A

semi-empirical exchange potential akin to the Slater exchange approximation

was included and various constants in the potentials were normalized to

agree with results of electron-scattering calculations. The gross features of

the resulting cross sections are in reasonable agreement with the phase shift

approximation Eq. (3.2-211). In a recent report Kivel (1966) has further

explored the dependence of the approximate exchange interaction on the con-

figuration of the free electron plus atom through a study of the corresponding

Hartree-Fock equations. To obtain results consistent with the experimental

work of Taylor (1963), Kivel finds it necessary to evaluate separately the

free-free cross sections for each of the participating atomic configurations.

A comparison of similarly obtained cross sections for argon with various

phase shift approximations has recently been published by Ashkin (1966).

The various approximations differ in their choice of energy-censering of the phase

shifts in Eq. (3.2-211). The photon energy illustrated is hw- 1.8 eV and

the range of initial electron energies ci is .01 to 1.0 Ryd . For

ei b 0.05 Ryd (h&&V I ' 2.7) the use of the average energy ? of

Eq. (3.2-210) leads to essential agreement with the numerical results. For

energies .03 Ryd < ci< .05 Ryd Ashkin finds that a formula due to Holstein

(1965) gives results in best agreement with the numerical results.

Holstein retains the difference 6 i_2 in Eq. (3.2-208) explicitly and

evaluates the scattering amplitude f(c ,cose) only at the mean energy L . Clearly,
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for «/e'1 , all these results are equivalent to Eq. (3.2-210).

The RAND report of Hundley ( 1962 ) introduces the use of effective-

range expansions for the evaluation of the low-energy phase shifts of Eq.

(3.2-211). Peach (1965) suggested estimating ion phase shifts by the *quantum

defect" method, which has been demonstrated by Moiseiwitsch (1963) to

correspond to an effective-range expansion.

Dalgarno and Lane (1966) have employed the effective-range expansion

of O'Malley,et al. (1961 ) which iý more correctly applicable to atoms. The

authors obtain useful velocity-averaged absorption coefficients in terms of a

few atomic parameters and some conveniently tabulated numerical functions.

The approximations employed assume low temperatures - as atomic absorption

may be expected to be dominated by ion absorption at high temperatures - and

retain only the s-wave phase shift in Eq. (3.2-211). As shown by O'Malley,

et al. (1961) the zero-order elastic scattering cross section is expected to

have a low-energy dependence of the form

qo(.' - sin2 6 (k)

4-D+D 2 e Ii / 2 +D In e e +D C 3/2 + a 2 (3.2-237)
1 4 +4 D5

where DID 2 , and D 3 may be written in terms of the scattering length A a

and the atomic polarizability a ao according to

D 1  A D 2  1 'cA ,D 3 -82A,

207



If one approximates the momentum-trarafer cross section of Eq. (3.2-210)

by the elastic scattering cross section qo0 () , the oxplicit energy

dependence of Eq. (3.2-237) allows direct evaluation of the Maxwell-averaged

absorption coefficient, which is expressed in terms of thij Di'i and

certain tabulated functions of temperature alone. For most applications of

astrophysical interes' the approach of Dalgarno and Lane appears eminently

suited, particularly in view of the large numbers of atomic species and states

commonly present In the gas.
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3.3 Line broadening

Reference has been made a number of times in Chapter 2 and in

sections 3. 1 and 3.2 of this chapter to the finite width of spectral lines

and to their frequency-dependent profiles b(v) which have to be taken

quantitatively into account in opacity calculations on hot gases. The

study of line shapes and line broadening influences is an active and
difficult research field of long standing (see for example the reviews

of Baranger (1962), Griem (1964) and Alier (1963). It is thus not the

purpose of this section to make a detailed review of the field, but rather

to record established results of line broadening studies which are of

direct application to the study of hot-gas opacities.

It Is well knowa that the experimentally recorded profiles of spectrum

lines in emission or absorption depend upon three classes of influences:

a) instrumental effects, b) intrinsic properties of emitting or absorbing

particles and, c) environmental etfects. In the theoretical discussion of

opacities it is often assumed that purely instrumental effects have already

been allowed for. Intrinsic properties of the emitting or absorbing atom or

molecule give rise to its 'natural' width which is usually so small compared

to other effects that it ce-i be neglected. Two classes of environmental effect

are however important and often occur together. The first of these depends

upon the random motion of the absorbing or omitting particie, the component

of which motion In the line of sight gives rise to a Doppler broadening of the

line. The second of these results from the influences of collisions of neighboring

particles or. the emitter or absorber and Is thus called collision broadening.

Both effects are strongly temperature dependent. All of these contributors to

line shapes are briefly discuseed below.

Written by R. W. Nicholls
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a) Instruelntal Profile. Geon.etrical optIcs determines the gross

size of *A. slit image On the detector. -the slit width is always redu-wed as

fat, as possible so that most of the instrumental broadening ariies from

diffraction eftects. The xnlte size of the speftrograph implies that 3 finite

ard truncaced wave front reaches the detector fromn the slit. A diffracti-n

image of the Alit of finite angular width is thus fcrmed. In what follows it

will be assumed that this is either negligible relative to other causes, or

can be allowed for.

b) Na=1 filsi. The Lorentz profile of Eqs. (3.1-4ab,c) is

retained in the quantum formulation

aV mc 2 (3.3-1)

wthete f' r - + rL - sum of %oAdth. of U and L levels eccocding to the

uncertainty principle. If L is the ground state, TL -- 0 and r

where t is the lifetime of th6 upper state.
TheV Ir i W~

The central maximup Is yver narrow (W - ) (often negligible

compared to other broadening influences) and the wings can be fairly extensive.

The algebraic form of the natural profile (Eq. (3.3-1)) is retained with

appropriate redefinition -of parameters in the criantitative description of the

collisionally broadened line profile (see Eq. (3.3-3)).
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c) Vjermal b•fie. The random motion in line of sight of the
absorbing (or emitting) atoms implies a thermal of Dopple? profile of the form

2

:IK PC (3.3-2)

0

where -- • , and u - molecular weight and T - temperature.

d) Collision roadenIn. Collision broadening Is a result of motion

of neighbors and of environment. A complete theoretical discussion of the

complicated matter of collision btoadening is outside the scope of this review
(see Griem, 1964). Line broadening by co~llsion ressilts from collisions with

Atoms of same kind - (Self Broadening, or "Holtsmark" &roadening)

Atoms of a different kind - (Lorentz broadering)

Electrons - (Stark Broadening)

Two types of theories, collisional and statistical, have been developed

to explain the effects. In the former, the truncation of wave trains by

collisions ts examined by classical or quantum methods , often for unchaged

perturbers. In the latter, the influence of the average Alectric field strength

of neighboring charge carriers is taken Into account atatistically and the

Stark Effect invoked (A~ler, 1963; Griem, 1964; 'myanger, 1962).

2n
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The practical result of collision broadening is to produrce a line with

a profile similar in form to Eq. (3.3-1) but with width parameters rnatural
-end rolision. Thus

S (r n + r"'

2 (3.3-3)

Nearly always the Influenoe of r is much greater than r. and gives rise

to lines with very wide wings.

e) Effacts of Fields. If the gas has external magnetic and electric

fields applied through It in addition to the miorofields of oollisions,Stark

and Zeeman broadening have to be oonsidered.

In most typical situations of interest to this review more than one

broadening influence is present. For example, natural and thermal broadening

often occur in low pressure laboratory sources. Thermal and collision

broadening (illustrated In Fig. 3-4 ) often dominate the scene at higher

pressures. If fM(v) and f 2 (v) are the frequency profiles of the two

independent effects, the combination of two effects is represented by the

convolution or 'folding' integral d

Flv) -j *f V-V') f 1v') dv' (3.3-4)

f A number of analytical and numerical methods have been developed to treat

specific cases of this integral. For example the combined application of
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natural and thermal broadening was tvaiad by Voqt (.see Mtohell and

Zemansky, 1934) and the volume absorpton oeoffloelt is

t|

V 0 In .1 a 2+ (x-Y)

where
X=21v-v,)/In (33-a

W D

WD (3.3-6b)

WD

a /Jlnfr2  (393-6c)

Wn - natural or Lorentx width at 1/2 Intensity !
- r /2Tr

WD Doppler or thermal width at 1/2 intensity - .- ,/ 2 (3.4--6d)

Tables of these so-called Voigt Profilei are available for parametric Interpolation

(Van der Hulst and Ressnick, 1947; Hummer, 1965). Because collislon broadening

can often be expressed In terms of a Lore-itzian profile (see Eq. (3.3-3)),

collision and thermal broadening can also be treated in this way. Hansen, (1964)

has recently treated the problem of combined Stark (ionic) and Doppler

broadening by analytic approximation.

The thermally and collision-.bxoadened line often has a central core

which Is dominated by thermal effects and wings which are dominated by

collision effects. In this case the natural line profile exerts a negligible effect.
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FIG. 3-2 DIRECTIONAL RELATIONSHIPS BETWEEN
THE DIPOLE MATRIX ELEMENT VECTQR
rcL _ THE PROPAGATION VECTOR k

8 AND THE UNIT POARIZATION
VECTORS £l and c2
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FIG. 3-3 DIAGRAM INDICATING THE VECTORS INVOLVED

IN THE PHOTOELECTRIC OR RECOMBINATION

PROCESS, AND THE ANGLES BETWEEN THEM.

I ~/r PHI ~~~coLl oN wIn"S

FIG. 3- 4 REPRESENTATIVE LINE
PROrILE SHOWING
THLERMAL CENTEfR AND
COLLISION WINGS
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Chapter 4. THEORY OF MOLSCULAR ABSORPTION

It was pointed out in Section 3.2 that the quantity which determinesm

the probability of a U-L electric dipole transition for an atomic system Is

the transition strength matrix element 8UL = or* 2 (se Eqs. (3.2-14)

and (3.2-20)). In this chapter we shall adopt the notation

8 UL Ifa * . M*L 6(4.1-1)

where %* (m or Me) Is the transition moment, 1P and *L are the

complete wave functions of the upper and lower states, M is the

electric dipole moment and dr Is the element of configuration space.

Similar matrix elements to SUL control higher and other pole transitions

(Allen, 1963). Transition probability parameters such as adsorption

coefficients, oscillator strengths, Einstein A and B coefficients, are,

apart from constants, the product of 8 UL with appropriate powers of

frequency (see Eqs. (4.1-17), (4.1-18), (4.1-19)).

217

I,



In this chapter we discuss the form that 8UL takes for 1ole u

transitions. We also review the molecular transition probability parameters

which are determined by 8 UL . For the purposes of this chapter the

abeorption coefficient is the most important of these, and we review

oaloulations which have been made during the past few years on the

molecular contributions to the absorption coefficient of heated air in

Chapter 7.

4.1 The ftrn-Oppenhelmer approximation and Its consequences

The internal degrees of freedom of the molecule influence

the transition strength matrix element of a molecular spectral feature.

Consider the U V, J, v, M- L , v' , 1" , A" , M"

transition. U and L are the upper and lower electronic states, or

components of multiplets. For the other quantum numbers, primes refer

to the upper levels and double primes refer to the lower levels. v is

the vibrational quantum number, J is the total or rotational quantum

number, A is the quantum number of the component of the electronic

angular momentum along the internuclear axis, and M the magnetic

quantum number (which should not be confused with .M the

electric dipole moment) refers to the component of I in the direction
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of an externally applied magnetic field. It tekes 21 + I values. H
DOrn and Oppenheinaer (1927) proposed a molecular model In which

it was assumed that the electronic state of the molecule was negligibly

affected by the nuclear vibration and rotation. This assumption allows

the complete molecular wave function to be written In Zq. (4.1-2) as the

product of factors which take account of the electronic, the vibrational

and the rotational motion independently. A discussion of vibration-rotation

Interaction effects Is postponed until Section 4.3 , The total energy

of the molecule is written in Bq. (4. 1-3) as the sum of the three components

Eelect ',,vb and Erot

t e,vJAAM .. *e(rr) -'r- 07AM(eXAP) (4.1-2)

B Eelect + BVb + 3 rot (4.1-3)

e,vJ,L, M is the comnplete molecular wavefunction of the electronic state

e , vibrational level v, with 1, A, and M defined as above.

*,(Ier) is the electronic wavefunction written in subsequent equations

CAN or *L for upper or lower states respectively. The ., represent

electron coxrdinates relative to the Internuclear axis, r Is the internuclear

separation . #vr) is the vibrational wavefunction of the one dimensional

oscillator In the v'th lew.v appropriate to a particular molecular potential

(centrifugal effects have been neglected). #JAM(eW x,,) Is the wavefunction

of the symmetric top rotator. BXcp are the Euler angles of the molecular I
coordinate system relative to the fixed one.
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U4. liPol doannt IL caf be rasolved Into conu-1butions

aisng &ron the molecular leatro na and M.n wrising from the nuclei.

M.L MV Ln (4.1-4)

where N. * - e.*.- e -s 2 . (4.1-5)

£' eis the position vector of the sath electron relative to external axes and

Le Is the position vector of the a'th electron relative to the figure axis of

the molecule. J.(Sex.,) Is the dyadic appropriate to the tr'ansformation

of axes. Its elements uo the direction cosines of the angles between the

coordinate systems. " he element dr may be written

d ,Td- 0 dv - dT* r 2 sin 8 dO dP (4.1-6)

where dv is thu volume element for the vibrator and rotator and dr. is

the element for electrons.

From Eqs. (4.1-1), (4.1-2), (4.1-4), (4.1-6) R% may now be written

;.vl ^ M " - j., •'y: JM'.. .M.) *L • 1A""M" di* dv

1" F
-VVAM I, u ro *JAM ~ L YA.~ dv
""u let I u fA •JM M 2"I L y- JAMd dv

r r
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for a molecular line. Orthogonality betweet, *U and *L reduce the

second Inteoral on the right hand side to sero.

Using Eqs. (4. 1-5) and (4. 1-6) the first member may be rewritten as

where dO - sin dedcP (4.1-)

The first integral on the right hand side of Eq. (4. 1-7) when summed, if

necessary, over degenerate electronic states and squared is called the

band strength Si'; . The second integral determines the selection rules.

It has been studied for various typos of molecular transitions by Dennison (1926),

Kronig and Rebi (1927), Rademacher and Reich* (1926, 1927), Schadee (1964) and

others. When summed over the degenerate quantum numbers M' and M*

and squared it is the Hanl-London (1925), or line Intensity, factor A "

After squaring and summing over degeneracies Eq. (4. 1-7) thus becomes

Uv'lj'' R 2 Uv' . 'SALV'A" 1 " •(4. -8)

L UVIVA I Is the strength matrix of the Individual molecular band line. 8 Uv"
Lv"J"A SG-Lv

is the band strength defined in Eq. (4. 1-9) and is a very important quantity

(see the discussion of Section 4.4) . It can be factored Into two terms

controlled respectively by electronic and vibrational aspects of the motion of

the molecule . to the HMnl-London factor (see Section 4.2 for a

more complete discussion) or line intensity factor. It Is often a quotient of
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simple polynomial functions of J and A and is well known for all

branches of most allowed molecular transitions.
Theban stengh Uv'

The band strength SLv is an average, with respect to the

vibrational wave functions ,

sLv" = , Re(r) vdr (4. 1-9)

of the electronic transition moment R (r) defined in Eq. (4. 1-10).e

Re(r) = f*u Me *L dTe - J*u I-r- eL.I*L d-e (4.1-10)

The electronic transition moment is thus an average with respect to

electronic wave functions of the electric dipole moment.

Footnote:

In the case of infrared vibration-rotation transitions where *U *L

Eq. (4.1-9) becomes

I, ,12
Lv" -J*Vj R* dr (4. 1-9a)

See discussion in Section 4.4.
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If R (r) is independent of r , Eq. (4.1-9) becomes
e

.Uv' .R vldR*v " eqvv (4.1z-11 )

On the other hand, as is much more realist4i,' if Re(r) varies with r in

a polynomial fashion

Re(r) " r a. r

It is possible (Fraser, 1954) to use the r-centroid r7vv. , where

- 'dr
rv Iv, [v,, r (4.1-12a)

(rv~v,,)n= t• v". dr

R Jn (4. 1-12b)
J tv, iv. dr

to write Eq. (4. 1-9) as

Lv= '*v. an r .v, dri anfiv, *v dr

(4.1-13)

a3. n:,..,I 2 Ir, v, 2, R- (, J.
Inv'v vv v"e vv v v

The vibrational overlap integral square q in Eq. (4. 1-11) and Eq. (4. 1-13)

Is called the Franck-Condon factor

V'v" " v, #V., dr2 (4.1-14)
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It is responsible for the operation of the Franok-Condon Principle in the

determination of relative bond Intensities. The r-centroid is a

characteristic internuclear separation associated with the band. Franck-

Condon factors and r-centrolds are discussed more fully in Section

4.3.

Finally, using Eqs. (4.1-8) and (4.1-13) the total line strength is written

In Eq. (4. 1-IS) an the product of the square of the electronic transition

moment, the Fre.*k-Condon factor, aad the Hanl-London factor.

8Uv'1'A - R2 (7v) . ".
"Lv"J"A- " v V %V" I"A (-

The sum rules for the Xanl-Liondon factors and Franck-Condon factors are

21'+ 1 'A' - 2J'+ 1 (4.1-16a)
I' I"

qvv 1 , (4q I-l6b)
, v

A useful interpretation of Eq. (4.1-15) is that R;(r) controls the

magnitude of the transition strength for the whole band system, qVV"

determines its distribution from band to band in the system and -,A,

influences the distribution from line to line in a bend. This is an approximate

point of view because both Re(i',1 v.) and qv'v" influence the distribution

of transition strength from band to band. However, qv'v" can vary by,

many orders of magnitude from band to band In a system and Re Or J varies
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relativeW' slowly across a system. Nicholls and Stewart (1962) and

Tatum (1967) have discussed these topics more fully.

Any application of Eq. (4. 1-15) to the study of molecular intensities

requires a good knowledge of Re(r) , qvv" # and S),$A for all of the

contributing transitions. These factors are thus discussed in some detail

in followinV sectionn.

A number of molecular transition probability parameters may now be

defined in terms of Sv"A It is well known (Allen, 1963) that 4he

general expressions for oscillator strength f , and the Einstein A and B

coefficients are: (see also Wcqs. (3.2-14), (3.2-20), (3.2-21) and (3.2-62)

gfi ar2 VLULBaR (4.1-17)
I "1 UfuLI9LfLU1" 3 he

64rr4 VL 3 L :41-
gU =JL 3 h c3 3

JgUBULI I gL-LU1 3 h 2U (4.1-19)

where g is the statistical weight. In the case of a molecular line we make

the following substitutions:

9U- du(2j' + 1); 9L dL( 2 1 " + 1)

SUL • q " -I " " J#'A
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dU and dL are the degeneracies of the electronic states U and L and

are (28+ 1) for )9 states (A . 0) and 2(28 + 1) for other electronic

states (Devidson, 1962). The spectroscopic notation is standard (Herzberg, 1950).

Eqs. (4.1-17), (4.1-18), and (4. 1-19) are thus rewritten as follows for

a molecular line:

IUv'1 I djUv't * 2 Uvsj$ 2- qv') " .. ','du(2J' + 1) "Lv"J" dL(2J" + 1) -'3he2 v Re(vv.)
(4.1-20)

u 421* 3 2 PA
3hv' mV - Pe•go, (4.1-21)du(l'+ ) Lv'/ 3 h d3 Lvj R; v 'v " Sv.^.

dU( 2 j' + 1) BY dL(21" + 1) aUv'J' t 1 f2R2(tr . q ..)A (4.1-22)

*2L dL". (1Lv"1" 3h 2  v'v" JA

The arrows indicate whether a transition is upward (L -. U) or downward (U 1).

For the purposes of this discussion perhaps the most important

transition probability parameter is the absorption coefficient. As pointed

out in Chapter 2 the three most commonly defined absorption coefficients,

when integrated over a spentral feature are:

Atomic (or molecular) a dv d ý LU (cmZ/atom) (4.1-23)

Volume dI-m N f (cm- 1 (4.1-24)

tJudv UV 
mc LfLU -1

Mass K dv - N f cn (4. 1-25)
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a Is the optical cross section and % is the reciprocal of the photon mean
free path. Eq. (4. 1-24) in rewritten in EQ. (4. 1-26) for a molecular line

3 N v"' . 'r '"1 1-6
dv qh d2J' vJ' (4.1-26)

This equation may be modifiedas In Eq. (4.1-27) ,to take account of the line

shape b(v) where

Jrb(v) dv - 1

Thus u dv 01 e UvJ j 2(F R; ) qv 8  b(v)dvv• (4. 1-27)
u 3 hc dL ) Lv"d" #@ "S

As was pointed out in Section 3.3, various Instrumental, thermal, end

environmental influences control b(v)*. It is very difficult to propose

a completely satisfactory theoretical form for it which will satisfy
-ii

all circumstances. A Voigt (see Van der Hulst and Reesnick, 1947;

Hummer, 1965) profile is often used to take account of the combined

effects of thermal and collision broadening. The last influence produces

a line shape similar in general form though much broader than the Lorentz

shape produced by natural broadening. One procedure which is often

used is to use a Lorentz profile (Eq. (4.1-28)) in which the half width at

half height a is a variable parameter which can be modified as circum-

stances warrant. F(v) a
FM v.vvi) (4.1-28)
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An often unconsidered source of apparent broadening Is unresolved or only

partly resolved rotation structure as In the case of components of A-doubling

(Herzberg, 1950).
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Eqs. (4.1-26) and (4. 1-27) and equations derived from them have been the bases

of a number of the calculations of the molecular contributions to absorption

coefficients of hot air. Theme calculations are reviewed in Chapter 7.

A formal summation over all the lines of a band is possible in each

of Eqs. (4. 1-20) - (4. 1-26) to produce similar equations which apply to the whole

v'v" band. In the summations, an approximation of the form

E Vn Rq S - 9 VRe qE 8 " R; q (2J+l) (4.1-29)

is Involved where n is 0, 1, or 3 , It is assumed in such an approxi-

mation that a characteristic frequency V can be assigned to a whole band.

This is a fair approxi-.,don for a band whose rotational structure is not too

greatly developed and which does not extend over too great a frequency range.

Care must be taken not to force such approximations on cases where they do

not reasonably apply.

The following equ !on. " integrated bands result

d U v f ', • d v'.. .. 3 he V v'v"~ Re(7vav ' q v'v" (4. 1-30).UVI . V I en2MV t ( fvv" qv' (4.1-30)
du fLV"I l- 3 he 2 ....

du ALv 3 v *" • qv" (4.1-31)
3hhc

d UVV d V -M ( v~v.)q,. (4.1-32)

dv 3h- Nkz" L V IV(of v'v") qv'v" (4.1-33)
Band
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It is often convenient to rewrite Eq. 4. 1-33) so as to take account of the

contributions of bands (or parts of bands) which fall within the frequency

increment Av Thus

-~~ r k dv (.-4
Bands Bands
AV

Eqs. (4. 1-30) - (4. 1-33) have been used to interpret band intensity measurements in

absorption or emission in terms of transition probability parameters. Eq. (4. 1-

34) has been used in preliminary "broad band" estimates of opacities of hot

gases.

In some experiments vibrational lifetimes r have been measured.

They are related to Einetein A coetficlents by

_ v _ o (4.1-35)Elf my AV-,V,

Vp i

A formal summation procedure, similar in principle to that of Eq. (4. 1-29), has

been used to define the oscillator strength fLU of the whole band systems.

Summation is over all v' which combine with a given v".

2dl o d E : Ev Rv( ,,) 1vo t 4.1-36)
dL fLU dL v, Iv"v 3 he 2 v I v e v" V v'v"3

If an effective V for the system can be defined, and if R (r) is a

constant, Eq. (4. 1-36) can be rewritten, (using Eq. (4. 1-16b)
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d, f,,, "' 9. R' R22; .,g~~ 2;(-37)
3 h v'3 he

Dividing Sq. (4.1-37) by Sq. (4. 1-30)

fLU .I'm (4.1-38)

Iqo (4.1-38) should be u',v with c.ft:,-me care, if at all, in view of the

somewhat graot asumptiotaN lnvolvi~d in the definition of 10 and Re
It Is clear from the discussion of Eqs. (4.1-20)-(4. 1-22), (4.1-26), (4.1-27),

(4. 1-30)-(4. 1-34), (4.1-38), that agcodknowledgeof V,Re(r), qv I'Av ' SPA and N
NL

is necessary before they can be used in theoretical studies of opacities. The factors
which control NL are dim oussed in Volume I by Gilmore and in Chapter 7 of this

volume. Although it might appear that v is always known in principle, from
tpectrosooplc research this is not always the case, particularly when one is,Uv'/
dealing with Uv"74 in very hot gases where high values of J' will be excited.LV
Unambiguous band analyses have been carried out for a relatively s mall number of

bands of each system and those analyses which have been carried out usually

nvolve only those Y-values excited in common laboratory sources running

at temperatures under 1000aK. Extrapolation of the low tempcrature analyses
to high degrees of rotational development using the usual equations (Herzberg, 1950)

f Uv'1Jfor vLv"j" can be a somewhat naive procedure for no account is taken of
possible perturbations at high J numbers. The same argument holds to a lesser
extent for extrapolation of vibrational analyses.

A review Is now made in subsequent sections of HOnl-London factors,

Franck-Oondon factors, r-centroids, electronic transition moments and band

strengths, their properties and methods by which they may be obtained.
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4.2 The H18n1-London Factors
1"A"

The line strengths for a symmetric top model of a diatomic molecule

were first studied with the old quantum theory by Hanl and London (1925).
II

They were re-inventigated by Dennison (1926), Rademache and Reiche (1927),

Kronig and Rabi (1927), Hill and Van Vleock (1928), Bido (1937), and Zrls

(1935), using quantum mechanics, for branches of bends of allowed transitions

and for most common coupling oases. Herzberg (1950), Johnson (1949),

Jevons (1932), Mulliken (1931), and others list tables cf the Hfnl-London

factors for these oases. 8chlapp (1932), Kovacs (1960) and others have

studied the factors for forbidden transitions. Schadee (1964) and Tatum (1967)

have compiled tables for important transitions. The sum rules for Hfnl-

London factors were given in Eq. (4.1-16a). As a simple example, the

Hdnl-London expressions for allowed singlet, 6A - 0 transitions are

given for the P , Q and R branches by the following equations

Rt(' + 1 + A") (Too + I + A',j 0Us + Aj} (T' =A')

2Qm + )Aj2 - (21-+ 1)-2

S~~~ ~ 1)" = "I

= WO + V) (10+141 +IA,

As the selection rule 4aI- 0, +t 1 determines the P Q or R branch concerned,

it is only necessary to specify the branch and the J-value in the superscripts

and subscripts to the factors. For branches of bands of higher multiplicity

the K value has to be specified (Johnson, 1949). The intensity profile in a

branch is determined from line to line by By exp(-E 1 AT) for thermally

maintained populations. In 3 " I' for emission and j- I" for absorption

the early literature S was written as ij and called the intensity factor,
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4.3 rmnck-Oondon Factors and r-Centrolds, Vibrational

Waetfunctions and Molecular Potentials

A strict vibrational selection rule (Av +± 1) applies to inf[[re

vibamion-rotation transitions and which Involve a single parabolic (Simple

Harmonic Oscillator) potential. In this case, the potential (electronic state)

is common to the upper and the lower vibrational levels. The vibrational

wave functions of Sq. (4.1-9a) are Hermit. functions and are mutually

orthogonal. ML is assumed to be linear In r . Under these circumstances

Uv'(sea Herzberg, 1950, p. 80) SLV vanishes unless the above selection

rule aipplies. Realistic potentials are somewhat anharmonic and thus some

weak infrared vibration-rotation bands are observed for transitions which

break the selection rule. Infrared vibration-rotation transitions are only

observed in heteronuclear molecules. Homonuclear molecules, because of

their symmetry, have no permanent dipole moment and are thus infrared

inactive.

The Franck-Oondon principle takes the place of a strict selection

rule for vibrational transitions between different electronic states by

specifying their relative probabilities. In the qualitative discussion of the

photodissociation of diatomic molecules ,Franck (1925) pointed out that a

spontaneous electronic transition affects neither the instantaneous position

nor momentum of the nuclei. Thus the most preferred molecular transitions

we "vertical" ones in which r does not change on the energy-internuclear

separation diagrams. Further the molecule is, on a time average basis, most
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likely to be found near the turning points (rmn or rm of its oscillation,

and th,,s .hose v'-v" transitions are most likely to occur where one of

the turning points of the upper level v' Is nearly equal to one of the

turning points of the lower level v"

Condon (1926) placed this stiggestion on a quantitative basis and

showed (Condon, 1928) that it was the square of the overlap intqral of

vibrational wave functions (or Franck-Condon factor as it was called by

Bates, 1952) which was a measure of the relative probability of the v'v"

transition. This Is consistent with Franck's suggestion, as the vibrutionol

wave functions have large antinodes in the region of rmin and rma "

When the overlap between these regions of the two wave-functions Is I

large, the Franck-Condon factor will be large. Thus 'vertical' transitiona

at the turning points of molecular oscillations will be most probable.

Other transition, are not forbidden. Their relative strength will be determined

by the amount of non-cancelled overlap between their wave functions. Condon

(1947) has given a very good review of the circumstances leading to the

development of the principle.

It is thus the purpose of this section to review our knowledge of Franck-

Condon factor qv.v"* arrays and related quantities for important electronic I
band systems of diatomic molecules.

2
q A it Iv, dr (4.3-1)

Considerable effort has been experded, particularly over the past two decades,

to provide tables of Franck-Condon factors for important band systems.

Spindler (1965) lists some of the i.ore recent calculations.
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The first requirement for calculation of q-arrays is a knowledge of

the vibrational wave functions appropriate to the molecule in the upper and

lowet states of the transitions. Once these are known, a number of derived

quantities of the wavefunctions including q-values can be calculated. The wave

functions are solutions of the one-dimensional Schroedinger EQ. (4.3-2) for the linear

single particle oscillator of reduced mass i = M1 M 2/(MI+M2 ) moving

under the action of the 'rotaV,)nless' molecular potential U(r) . (We

discuss the effect of vibration-rotation interaction later#)

d2
Xv -U~r)] #v= 0(4.3-2)

dr 2  h 2 L

The specification of a realistic molecular potential provides the first

problem. No completely realistic non-numerical analyt c potentieI is available.

All analytic potentials are empirical, and platisible represrntations of what has

been thought to be a reasonable approximiation tc, molecular behavior. The

parabolic or simple harmonic potential was the first to be used. Eq. (4.3-2)

has closed solhtions (Hermite f.,nctions) for such potentials. The mode. is

only realtstic at very low vaiues of vibrational quantum number. Manneback (1951),

Condon (1928) and othors have produced limited arrays cf 'harmonic oscillator'

q-values for a number of transitions. Aitken (1951) ?roduced a large number

of arrays of them for many band systems on the Harvard Mark I Computer. An

attempt was made by Gaydon and Pearse (1939) to overcome some of tha lack of

realism of the parabolic potential by linearly distorting its wave functions to fit an

equivalent Morse potential. Although the resulting functions are non-orthogonal,

they were used with some success by a number of workers. Pillow (1949),
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Nicholls (1950), and others 63xtended and appliad the method to many

transitions (see list of references given by Nicholls and Stewart (1962)).

The Morse (1929) potential, Eq. (4.3-3) tas had the greatest popularity in

molecular spectroscopy for many years, because, among other properties,

It does predict the correct vibrational energy level array Ev for many cases.

Although it is an empirical suggestion, it does have some physical plausibility

in the adequate representation of the mechanical anharmnonicity of many molecular

states. There are nevertheless relatively severe theoretical objections to it

(e.g., It often predicts the incorrec. dJisociation energy De - ,2 /44eXe U(O)

is non-infinite, etc.)

2 2 1/2

U~r) Pe 1 - GxP - 0 (r-r]; 2( s ) (4.3-3

The vibration& wave functions for the Morse potential are also known in

closed form and have been th basis of a number of calculations of Franck-

Condon factors. Some of these calculations were performed on desk calculators

(Jarmain and Nicholls, 1954) when It was not common to have access to digital

computwrs. A number of approximate methods for evaluation of 'Morse'

Franck-Condon !actors were thus developed (Fraser and Jarmain, 1953:

Jarmain and Fraser, 1953; Fraser, i954; Wu, 1952). Franck-Oondon -actor arrays

were computed for a large number of astrophysical)/ and aeronomicaUy important

arrays by these methods (Jarmain, Fraser and, Nicholls, 1953, 1955; Fraser,

Jarmain and Nicholls, 1954; Nicholla, Fraser and Jarmain, 1959; Nicholls,

Fraser, Jarmain and McEachran, 1963). Access to computers allowed the direct
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computation of Morse Pranck-Condon Factor Arrays (using a program which

first computed the wave functions (Nicholls, 1961). Over 85 Frenck-Condon

factor arrays have been computed to high quantum numbers by this method,

some of which have been published (Nicholls, 19601 1961; 1962 a,L-,c,d;

1963a; 1964a,b; 1965 a,bc,d; Ory, 1964ab; Kalman and Laulicht, 1965). Not only

have radiative transitions been studied but also excitation and ionization

transitions whose cross sections are to some extent controlled by the Franck-

Condon factor (Craggs and Massey, 1959) have also been studied in a num.her

of important caseb (Nicholls, 1961; 1962a; 1965e; Wacks and Krauss, 1961;

Wicks, 1964),

One major limitation of 'Morse' Franck-Condon factor arrays is the

inability of the Morse potential to represent with realism the behavior of

all mdecules. Rydberg (1931, 1933), Klein (1932), Dunham (1932) developed

methods of constructing molecular potentials numerically from location of the

classical turning points of the oscillator at each value. Rees (1946) placed

this method on a sound analytic basis. The starting point for such calculations

was measured molecular constants, particularly the Bv values derived from

band analysis. Jarmain (1959, 1360), Vanderslice, Mason, Maisch and

Llppincott (1959, 1960) and Hurley (1962) have demonstrated the equivalence

of Rydberg and Klein's WKB method (which would be expected to hold at high

v values) and Dunham's representation of the potential at low v values. The

basis of the method has been reviewed by Gaydon (1953), Gilmore (1965), and

Spindler (1965), Jarmain (1959, 1960), Vanderslice and co-workers (see Steele,

Lippincott and Vanderslice, 1962 ard references therein) and others have

computed realistic Rydberg-KleLn-Dunham-Rees potentials for many molecular

electronic states. Gilmore (1965) has made a recent definitive and exhaustive

236



study of the potential energy curves by this method for all the known states

of 12, 102, NO and their ions.

The end results of such work is a list of rmin and r for each

vibrationm level for which mneasured values of G and Bv (Herzberg, 1950)

were used. A rectification of such a list into U(r) at equally spaced intervals

of r is necessary and has been performed In different ways by different workers.

Computer-oriented methods have been developed by Jarmain (1961, 1963a,b),

Cooley (196 la,b), and Cashion (1963) for the numerical solution of equation (40)

appropriate to a numerical potential produced in the manner described above.

These methods depend on the analysis of Numerov (1933). The resulting

wave functions have then been used to compute Franck-Condon factors by

straightforward numerical integration of their products. Jarmain (1963b) has

discussed criteria which wavefunctions arising from these methods must

satisfy. A number of other workers (Zare, Larson, and Berg, 1965; Spindler,

1965) have used Cooley's program to obtain wavefunctions for the

computation of Franck-Condon factor arrays for a number of important

band systems.

A comparison between arrays of Franck-Condon factors computed

from realistic molecular potentials and from Morse potentials indicates that

in general there is good agreement between the two arrays at low quantum

numbers and less good agreement at high quantum numbers although in

some ýases the agreement at high quantum numbers is much better than

might have been gL1L expected. If there is a very great divergence

between the potentials then there will be a divergence between Lhe arrays.

237



#1

All of the above discussion of Franck-Condon factors relates to a

rotaUonless model of the molecular vibrator (in the J.0 state) . It is tacitly

assumed that the coupling between vibration and rotation is small and that
the centrifugal energy h j (7(7+1) -A 2) of molecular rotation which

should really be added to U(r) in equation (40) has a negligible effect on

the molecular potential. This assumption is not always valid, particularly

for light, rapidly rotating molecules such as hydrides, and in principle the

Sq. (4.3-2) of which #v is the solution should have the centrifugal

energy term added to U(r). Pekeris (1934) solved Eq. (4.3-2) for a

Morse potential to which the rotational energy barrier has been added.

Herman and Rubin (1955) and Herman, Rothery, and Rubin (1958) have

examined vibration rotation interaction, using Morse-Pekeris wave

functions, for vibration-rotaU on spectra. Fraser (1958) examined the

effect of vibration-rotation interaction using the analytic approximation

with perturbation correction (Fraser, 1954b). Laarner (1961) made a

similar study of hydrides (particularly OH) and computed overlap integrals

by numerical integration of Morse-Pekeris wave functions, James (1960, 1961)

made a similar study using harmonic and anharmonic oscillators and

perturbation methods. Haycock (1963) extended Fraser's work with

particular emphasis on hydrides. The result of these studies would seem

to indicate that vibration-rotation effects are important in the case of light

molecules, particularly hydrides. For heavier molecules the effect appears

to be small, but more work is needed before this conclusion can be considered

to be firmly established. Nearly all of the work that has so far been done

has been for molecular transitions where the effect is expected to be large.
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It In very likely to be a small effect for the transition considered to be

important on hot air.

So far we have limited the discussion of Franok-Condon factors to

transitions between discrete vibrational levels, for which the sum rule

(Eq. (4. 1-16b))holds. There is an important class of molecular transitions

which however, involve unbound continuum states in one of the levels. For

example, the dissociation continuum of the 02 Schumann-Runge of the

02 Herzberg I systems, involve transitionsJ between the v" - 0 level of the

X3 r ground state and levels above the dissociation limit of the B3 E_
Ag u

and the A3 E+ states respectively in cold 02 . For hot 0, other

values of v" are incorporated. The wave function cont (r, v) of the

unbound state is a function of energy as well as internuclear separation

and cannot be normalized in the same way as bound state wave functions.

Normaliz•tion is carried out with respect to energy and involves the

asymptotic amplitude (see for example Jarmain and Nicholls, 1964). A

Franck-Condon density q vcont(v) is defined in Eq. (4.3-4)

i2
qo G) j,(r) cont(r,v) dr (4.3-4)

and the Franck-Condon factor for the whole continuum is

qv", cont q v cont (v) dv (4.3-5)

Under these circumstances the sum rule (Eq. (4.1-16b)) is replaced by

4
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4V' av'v. + qv,,cont(v)dv - 1 (4.3-6)

The element of the volume absorption coefficient in the continuum is

2 N
C:W Atdv m- U L v"I R 2(r) dqct (4.3-7)

Jarmai.n and Nicholls (1964, 1966) have recently computed Franck-Condon

densities for the Schumann-Rungs Continuum from v" - 0 , using wave

functions derived from realistic potentials and also for the Herzberg I

Continuum from v3 - 0,1, 2. The densities were compared with measured

absorption coefficients, and using Eq. (4.3-7) Re(r) was determined.

An earlier approach to this sort of problem derives from the suggestion

of Winans and Stueckelberg (1928). that from a Franck-Condon point of view

It will be the terminal antinode of the cortluous wavefunction which plays

an important part in the overlap integral. They thus suggested that. in "he

absence of firm knowledge of the form of the continuum wavefunotion it

should be raplaced by a 8 function at one classical turning point (r?

of the oscillator. The Franck-Condon density is then Iy *.Crj)i 2 . This

ingeneous idea was tested by Coolidge, James and Prese:,t (1936) in an

H2 transition using a Dunham potential and a differ'ntial analyzer to

obtain realistic wave functiois. They obtained giood agreement between

the two results. However a similar test carried out by Jatmain and

Nlicholls (1964) for the 02 Schumann-Runge transition led to no agreement

between the two methods. Ditchburn and Young (1962) used the 6

function method for comparison with experimental measurements on the 02

Herzberg I continuum. 240



A large enough number of Frenck-Condon Factor arrays have now been

calculated under similar circumstances that the systematics of these arrays

can be studied. Two related aspects of these systematics have been

Investigated: The Geometry of the Condon Loci, The Geometry of the

Pranck-Condon Factor 8urfaoe.

It was a very early observation in molecular spectroscopy that the

most commonly observed bands of a system lie in well defined regions of the

v',v" plane on and around an open limbed, quasi-parabolic curve which is

roughly symmetric about v' n v" and whose vertex is in the region of (0,0).

Condon (1926) In a semiclassical discussion was able to show that for a

simple harmonic oscillator potential the strong bands would Indeed lie on

a parabolic locus in the v'v" plane. The parabolae have thus been called

'Condon Parabolae'. For band systems where Are is very small, the

parabola collapses into a diagonal line. As are Increases the parabola

widens, its vertex moves away from (0,0) and subsidiary "parabolas"

nested within the primary outer parabola develop. Detailed examination

of these loci of the stronger bands show that they are not parabolic but

lie on open curves which remind one of parabolas. They are by no means

all symmetric about v' - v" . They are in fact the projection cc the

v'-v" plane of the three dimensional surface of qv'v" vs v' and v" .

The definition of q (Eq.(4.3-1) makes it natural to see whether

the shape of the Condon loci can be predicted by requiring agreement in r

between one antinode of one wave function and one of the other. The primary

locus runs through those v' and v" values for which there Is overlap

between one terminal antinode of one wave function with one terminal

antinode of the other (Nicholls, 1962e). The subsidiary loci run through
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those v* and v" for which there is overlap between a terminal antinode

of one wevefunction and a subsidiary antinode of the other (Nicholls, 1963b:

Murty and Nicholls, 1966). This analysis has been very fully investigated

by Murty (1964) who his shown that each locus has six possible segments

of which three usually occur.

The systematic variation In shape of the Condon loci with Ar. is

a reflection of a bimilar behavior of the qv'v" surfaces. It has been

described elsewhere (Nichols, 1964d.1 how with increase in Ara the

surfaces change from a diagor•al -idge to a series cf nested horseshoe-shaped

ridges whose apex moves steadily mway from (0,0). It has been possible

to represent this behavior by a series of plots (one for each v' , v") of

log v vs. log 8'Are . 8' is the harmonic mean of the O's

in the exponents of the two Morse potentials (Eq. (4.3-3)) and 8'Are

is thus a transition parameter characteristic of the whole system (Nicholls,

1964c, 1965f). The curves have a systematic undulatory shape as would be

expected, and can be used for the rough interpolation of Franck-Condon

factors.

The r-centroid approximation defined in Eq. (4. 1-12a, b) is another

important derived quantity of vibrational wave-functions used in the inter-

pretation of intensities of molecular spectra. Fraser (1954) has shown that

as a result of the compact nature of the wavefunction product *v1 *V-

(see Eq. (4.3-8a)) that Eq. (4.1-12b) is a good approximation for band

systems for which u Aee-10 4 (uL in am u and w in cm-)

0.01A < Are < 0.25A and for which v' and v" do not greatly exceed 10.
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This approximate property allows one to resolve the integral of the prodgct

of , ,., and a polynomial function of r into the product of the

vibrational overlap integral and the polynomial taken at an argument FvIvN

(see Eq. (4. 1-13)).

The r-centroid is a characteristic r-value associated with the v'v"

transition and recent work has shown that it may be identified with the

'Franck-Condon principle' value of r for the v'-v" transition in

question as is demonstrated below. Eqs. (4. 1-12a,b) imply that

* , *Vo,i)V' iV"(3-)

6 (r - ,v,.,) *v. dr (4.3-8a)

and thus that under Fraser's conditions the wavefunction product should have

approximately comparable properties to a 8-function at the r-centroid. A

recent study using tabulated Morse wavefunctions for a number of systems

(Nicholls, 1966) has confirmed this view for many bands on the primary

Condon Locus.

The r-centroid also satisfies the relationship (Nicholls and Jarmain,

1956)

U(vv) " U'(Fv U)" . - Ev (4.3-8b)

which has been the basis for many calculations ol r-centroid arrays a.ad also

for a theoretical demonstration that the r-centroid is the Franck-Condon

principle value of r (Nicholls, 1966).
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Armys of r-centroids have been computed for many band systems by

a nunnktr of methods, some of which are based on Sq. (4.3-8b) and some of

which involve direct calculation of the integral quotient of Eq. (4. 1-12).

The properties, methodd of calculation and arrays of r-centroids have been

fully discussed in a number of papers (Nicrolls and Iarmain, 1955, 1956,

1959; Nicholls, Parkinson, Robinson, and Yar.ali 1956; Nicholls and

Stewart, 1962; Nicholls, 1965g, 1966). The r-centroids are related to the

re's and the turning values rj 2  and r" 2  of the oscillators in the

v' and v" levels (Nicholls and Jarmain, 1959). It is also possible to

relate r-centroids and Franck-Condon factors to the expectation value Fv'

or fv. of r in the level v' or v" through the equation

ry orvv" to" " (4.3-9)

A vs
(Nicholls and Jarmain, 1955). That is the expectation ( V or v" r dr)

value is a weighted average of r-centroids and Franck-Condon factors for

all transitions out of the level concerned.

One of the most useful properties for applications of the r-centroid

is its monotonic dependence on wavelength Xv or frequency Vv6v" for

the bands of a system.
h ro IF rvv" increases monotonically with v

When r < r" , Ivt, decreases monotonically with X . This

behavior, and the two possible types of tVevbv surfaces (the three-

dimensional representation of 'vev,, as a function of v' and v")



which it implies, is directly related to the two types of surface.

In both, )v, 3Is less than Xo," When >r> re ' > 0 0  and

conversely. The monotonic relationship ailows simple interpolation of I
uncalculated Fv'v" values and also allows X v'v" Or Vv'v" to be

used as independent variables in place of rv vI in some applications

in the rescealing of measured intensities to provide a table of band strengths

(see section 4.4).

After a number of v arrays had been calculated It was observed

that Fv,+l, v"+l - iv" was approximately constant for each of the

v'-v" sequences. The constant was different for each sequence. The

theoretical Justification for this was provided and it gave a simple means

of making up an FV V -array once the leading entries O ,v for

the sequences and the constant differences were known. The constant

differences imply that the vv.-surface is approximately plane.

4.4 The electronic transition moment and band strengths

The electronic transition moment Re(r) is the final of the

three factors which control a line strength. It is formally defined in Eq. (4. 1-

1a) and because of our poor detailed knowledge of molecular electronic

wave functions, we are forced to study It experimentally. The electronic

transition moment enters into a discussion of molecular transition

probabilitiss from a number of standpoints. It is of course interesting in

Its own right as a knowledge of its magnitude and variation with r for

a large number of different systems gives greater understanding of problems
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of molecular structure. It has been pointed out a number of times in the

preceding discussion that from a transition probability point of view it is the
2

band strengths 8vIv,, or the product R e(vr 1") q I , which is a more
e v'v v v

important quantity than either of its factors. In the applications discussed
below we shall thus look on R e(r) , qv'v" and ¥7'v" as means to the end of

determination of reliable and smoothed band strengths.

Re(r) has been studied experimentally in three main ways:

a) From intensities of emission spectra

b) From inteisities of absorption spectra

c) From measucement of lifetimes of states.

The consequences of these will be discussed briefly in turn. Discussion of

examples of these which have applications to thermal radiaion from air is

deferred to Chapter 7.

The emission intensity . of a molecular band is giver. by

(Nicholls and Stewart, 1962)

X v = KNv, N 4V v1 Sv I,, (4.4-1)

K is a constant which allows fer urits and geometry, In emission,

geometrIcal considerations make absolute measurements very difficult to

mzk.0 and thus this equation has been used in many relative measurements

of band intensities, There are a number of other practical Oilficulties

associated with overlap in str'cture between adjacent bands which can

add -igni 4 cantly to possible errors in measured Ivv.I . These wili

not be discussed in detail here.

One obvious application of Eq. ý4. 4-1) is to measure IvIv bard
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by band by photographic or photoelectric means and to interpret relative
S band by band from

V = 1 vv ffi v it (4.4-2)

That approach requires either a knowledge of N. (e.g., from demonstrateai

thermal excitation of spectra in a furnace or shock-tube) or the determination

of relative S VVI along progressions of bands for which Nv, W const.

The method has been applied to furnace-excited C2 spectra for example,

by King (1948), Phillips (1954, 1957) and Hagan (1962), and others. The

method, while straightforward in application has the disadvantage that the

relative eri'or varies from band to band. Strong bands have profiles of large

area and are, In general more accurately measured than weak bands.

An alternative application of Eq. (4.4-1) (Fraser, 1954a) is to plot

(I .q l 4 " vs F- for progressions of bands in which v'
v'V v'v v Vrv

Is common in each. This plot Is equivalent to N 1/2 Re () vs. r . Ite

has been applied tn many band systems (see Nicholls and Stewart, 1962;

Nicholls, 1954 .). The result is a set of segments (one for each v'-const

progression of bands) which delineate the relative variation of R (r) with
e

S. The segments are displaced in ordinate from each other by an amount

controlled by V1/2 . Rescaling procedures allow all of the segments

to be placed cn the same ordinate scale and provide a knowledge of N v.

All the measured Intensities have then played a role in the delineation of

Re(r) , and a smootu empirical zurve can be fitted by least squares methods

to the final set of points.
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If the aim of such work is to study Re(r) per so, then the procedure

outlined above can be used with the reservation that Fv is an approxi-

mately defined quantity. If the aim is however, to provide a set of smoothed

I~v.v (.R~q) values from the smoothed R,(r) curve and the Franck-Condon

factors, the discussion of the preceding section on r-controids indicates

that {J/q v4)1t2 could equally vrell have been plotted against v or X

in progressions because of the monotonic relationship between rvev and

wavelength or frequency. Further, provided that no large extrapolation is

made outside the range of Fv"v.. (or ) or v ) for the system this procedure

will also allow estimates to be made of relative band strengths for bands

not measured, providing that a consistent estimate of qvv"M and rv.,,

x or v is available for each of them so that the correct ordinate of the

R (r) plot can be read off.

It should also be pointed out in this connection that while different

forms of R%(r) will obviously result from the use of each qv'v" (and rv v..)

arrays calculated on the basis of a different model of U(r) , that the

compensation achieved between division by qv., in the determination of

ReCr) , and multiplication by qvv" in the determination of S .t.. will

make the eventual smoothed Sv0v. arrays less sensitive to the model of

potential used that has often been thought.

The relative Sv'v.. arrays (often 6xpressed on a scale where S0 0

is 100) can be, and have been in some cases, placed (n an absolute scale

by comparison with absolute absorption coufficlents for a few bands or by

use of lifetime measurements (see for example, Nicholls. 1964d). One

advantage of emission measurements, in spite of their relative nature, it

that, In general more bands of & system are excited in emission than are observed

in cold absorption (see however the remarks below).



If the aim of the work is the provision of data on Re(r) , the realism

of model of potential used to compute qv'v" arrays is of great importance

as is the adequacy of the r-centroid approximation for the band system under

consideration. There has been relatively little discussion of any possible

systematic difference in behavior of Re(r) with r from band system to

band system. Bates (1949) proposed that the dependence upon r would

be most strong for perpendicular (•A = + 1) transitions than for parallel

(AA - 0) transitions. The change of the electronic structure is more severe

in the former than the latter. In one survey which was made of the meagre

experimental data (Nicholls, 1962a), support was found for Bates' proposal.

The band absorption coefficient (Eq. (4.1-33)) has been used by a number of

authors in recent years to provide information on band oscillator strengths,

and in some cases on the behavior of Re (r) with r from a plot of

1,)/2
(U (band)/v v,, qvv12 vs 'v'v"* " See for example Bethke (1959a,b),

Marr (1964a,b), Treanor and Wurster (1960). One advantage of absorption

work is that absolute absorption coefficients can be measured directly in

most cases (when NL is known). While much absorption work has been

done on the v".0 progression in cold gas samples, the technically more

difficult time resolved shock-tube spectroscopy of hot gases is being

increasingly used. Band oscillator strengths are a commonly measured

parameter in such work and more bands per system are in principle accessiblo

than when using cold gas samples.

Eq. (4. 1-35) has been used during the past decade to interpret lifetimes

T v' of vibrational levels in terms of Re (r) . The lifetime is the reciprocal

of the sum of Einstein A-coefficients of all (v',v") transitions which combine

with v' . Consequently care has to be exercised when interpreting lifotlme

measurements that the sum is realistic, that no competing processes to
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radiation depopulate the level, nor that it is being populated by unsuspected

cascade transitlons.

Three techniques have been developed for the measurement of molecular

lifetimes.

a) The delayed coincidence method (Heron, McWhirteri, Rhoderick, 1954,

1956; Brannen, Hunt, Adlington and Nicholls, 1955; Bennett,&Dalby, 1959, 1960a,b;

Dalby, 1964; Schwenker, 1965).

b) The decay of discharge method (Jeunnhomme, 1965; Wentinck, 1964)

c) The phase shift method (Demtrdder, 1962; Brewer et al., 1962;

Lawrence, 1965; Hesser and Dressler, 1965).

In the delayed coincidence technique the spectrum feature is repetitively

excited by a chopped electron beam and detected through a monochromator

with a photomultiplier. Electrical delays are inserted in the detector circuit

and the lifetime is inferred from the slope of a semilogarithmtc plot of

coincidence (with respect to the exciting pulse) counting rate vs. delay time.

This Is a modification of a commonly used method in nuclear physics. Provided

cascading and other secondary effects do not occur it is a very accurate

method and has been exploited to the full by Bennett and co-workers. The

results &re usually extrapolated to zero pressure to avoid the influence of

secondary processes, and a dependence of Tv, upon v° is often found

which is not surprising.

In the decay of radiation from a discharge the decay of the radiation of

a spectral feature from a pulsed discharge is studied. Care must be taken

in interpretation of the results that a single atomic process (radiation) is
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being observed and not the cumulative effect of a number of overlapping

processes in the discharge. The method is In principle quite simple.

In the phase shift method the spectral feature of interest is excited by

a sinusoidally modulated electron beam of controllable frequency. The

lifetime can be inferred from either a measurement of amplitude or phase

(relative to the electron beam) of the output signal. The phase measurements

are used in practical application. This method is being used with great

success on molecules of astrophysical interest at Princeton observatory.

In the interpretation of all of these methods, some prior knowledge

of the number of bands making a significant contribution to the sum over v"

of the Aviv., has to be known, before Tv, can be interpreted in terms

of R 2(F ,,) . In simple cases (e.q., (0,0) bands of systems where noe Vvv
oth:3r contributors to the v' = 0 progression) make a contribution,

ve A0" (4.4-3)

from which R e(F)vIv. can be immediately inferred. In cases where there is

more than one contributor the "branching ratios" have to be estimated, often

approximately by use of the Franck-Condon factor ratios.

Lifetime measurements have been used in a number of cases to Alace

relative band strengths on an absolute basis (Nicholls, 1964c).
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PART B

SPECTRAL AND MEAN ABSORPTI ON COEFFICIENTS OF HEATED AIR



Chapter 5. HISTORICAL REVIEW:

RESEARCH ON HOT GAS ABSORPTION COEFFICIENTS SINCE 1900

In Part A of this volume an account was given of the theoretical bases

both in radiative transfer theory and also in quantum mechanics, on which

calculations of spectral and mean absorption coefficients of heated air can be

made. In Part B, which follows, a detailed description was given of actual

calculations which have been made particularly during the past two decades of

these absorption coefficients. Typical illustrative results of such calculations

are also presented as p. rt of a larger more comprehensive compilation which

forms another volume of this series.

Before making the detailed description of actual calculations it will

be valuable for orientation purposes briefly to review in this chapter the

development of theoretical research on absorption coefficients of hot gases

made during this century. Much of this work has had a strong astrophysical

motivation.

The importance of radiation absorption coefficients of heated gases

in the detailed quailtitative description of stellar atmospheres was increasingly

realized during the decade 19 15-1926. During this period it became clear

that the purely convective models of stellar atmospheres were not adequate

to account for the observed facts, and that in some way the radiation flux

mu-st be included in any realistic account of stellar structure. Schwarzchild

(1906) had In fact already begun to lay the foundation of radiative stellar

models. Between 1915 and 1926 Eddington (1926) made a systematic applica-

tion of radiative transfer theory to stellar atmospheres,and with E. A. Milne (1924)
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was primarily responsible for establishing the direct physical significance

'of radiative stellar models. The work of this period, including the early

calculations of absorption coefficients, is described in Eddington's classic

oxxk (1926) which stands as a monument to and closes th; initial period of

development of radiative stellar models. The historical significance of

Eddington's book is heightened by its position relative to the formulation

of quantum mechanics. It appeared juat at the onset of the major period

of development of the subject and before the results of this development were

available. Also, it appeared just after Kramer's (1923) remarkable derivation

of semiclassical absorption coefficients, and Rosseland's (1924) discovery

of the correct mean absorption coefficient to use for stellar interiors. These

two developments enabled Eddington and Milne to provide a solid physical

basis for the radiative aspects of stellar structure.

The next period of development involved the application of quantum

mechanics to the study of absorption coefficients. Among the principal

papers in which complete quantum mechanical discussion of continuous

radiative processes were made are those of Oppenheimer (1928, 1929),

Gaunt (1930), and Stobbe (1930). The classic paper of Born and Oppenheimer

(1927) is of fundamental importance in the discussion of molecular contributions.

Following the formal quantal descriptions of elementary processes

which contribute to the spectral absorption coefficients, 8tr~mgren (1932,

1933) carried out the first systematic and detailed calculations of the mean

absorption coefficient 1/4R defined by Ro3seland as the most appropriate
254
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results as Iramers (1923) for the semiclassical photoelectric cross section.
His paper (Milne, 1924) appeared in the same journal, the Philosophical
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publication, the semiclassical cross sections are ordinarily attributed to
him, and Milne's paper is now remembered primarily for the connection
between the photoelectric and recombination cross sections first given
in it.



for discussion of radiative transfer in stellar interiors:

SdT d
4R A& dv.(1-i

dT

(The quantity RR A is often used, and is called the "Rosseland Mean

Opacity", see section 2.5)

The next important development was the paper of Menzel and Pekeris (1935)

which provided a very extensive analysis of hydrogenic matrix element formulae

with tables of numerical values to correct the Kramers' semiclassical approxi-

mation. In addition, they discussed, analyzed, and made improvements to

previous approximate formulae for the spectral and mean absorption coefPcients.

Papers by Marshak and Bethe (1950), and Morse (1960) for the first time

considered interparticle interactions in the calculation of occupation numbers

for study of opacity and thermodynamic properties of gases at high temperatures

and densities. These authors adopted the suggestion of Slater and Krutter (1935)

to apply the Fermi-Thomas method to the calculation of occupation numbers

and/or other thermodynamic properties under conditions of temperature and

pressure of astrophysical interest. This was the origin of the use of the

ion-sphere model in opacity calculations. Its original use, by Wigner,

Seitz, Slater, and others, was in the theory of metals. But, as pointed

out by Slater and Krutter (1935), it is also advantageous for thermodynamic

calculations under conditions of high temperature and pressure. It permits

more detailed consideration to be made of interparticle interactions than

the previous "excluded volume" type corrections which are more or less

Discussions of studies of truncation with early cutoffs and corrections for
the partition function may be found in Fowler (1936). See also Fermi (1924),
and Urey (1924).



intuitive in nature. Ite Thomas-Fermi calculations of Slater and Krutter (1935),

using the ion-sphere model, provided the necessary ground work for the

Marshak-Bthe (1960), and Morse (1940) calculations. This original ion-

sphere theory was more or less intuitively based, without any statistical

Justification. H. Mayer (1947) was the first to work out a detailed statistical

mechanics foundation for this theory.

With the development of nuclear weapons during the second World War,

it was recognized that conditions in and around the fireball of a nuclear

explosion would be similar to those in a star. Thus, in order to predict

these conditions, it was necessary to consider the opacity both of the

materials used in the construction of a nuclear weapon, and of the air

surrounding such a weapon, after heating caused by the nuclear explosion

has taken place. The first calculations of the opacity of air were therefore

carried out under the Manhattan project by Hirschfelder and Magee (1945).

Later, a much more extensive general development of opacity calculation

theory was provided by Mayer (1947), although he did not carry out any

explicit calculations for air in that (1947) report. The Hirschfelder-Magee

calculations covered a very extensive temperature-density range, but with

a limited number of contributing components. This work was later extended

to include a few more components and to include a consideration of Planck

mean absorption coefficients as well as Rosseland means (Hirschfelder and

Magee, 1958/1947). Their calculations were based on Morse's method with

some simplifications (i.e., neglect of excited states and pressure ionization).
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As stated above, Mayer (1947) gave the first statistical discussion,

based on the canonical ensemble, of the ion-sphere theory for obtaining

occupation numbers. He also included explicit consideration of free-bound

electron-electron interactions in his treatment, thus giving more accurate

and detailed formulae for the occupation number calculations than had previously

been available. In addition, he considered the effects of line transitions

on the opacity for the first time.

i ~Because of the complexity of this problem, previous Investigators

had limited themselves to the so-called "continuous" opacity, that is,
absorption due to the photoelectric and free-free processes, and scattering.

At the suggestion of E. Teller, Mayer performed the first realistic estimates

of the line effect, both by means of a statistical theory which he developed

(see also Goody, 1952, who developed it independently) and by direct

calculation (Kivel and Mayer, 1965/1954). Specific lines or groups of

Idea~l-ed lines had been used for some time in low-temperature radiation

transport studies (Elsasser, 1938) but these were traditionally confined to

relatively narrow frequency regions in contrast to the extremely broad

regions involved in a high-temperature opacity calculation.

rurther history of opacity calculations carried out under the Manhattan

project and afterwards has been reviewed by H. Mayer (1964). It is not our

purpose here to provide a definitive historical survey, and thus we limit the

discussion to the most significant developments in absorption coefficient

and opacity calculations, specifically those that are most concerned with

air, per se. After 1945, opacity calculations were continued under
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government sponsorship at the Argonne National Laboratory (Moszkowski

and Meyerott, 1957; Keller and Meyerott, 1952a, 1952b; Brachman and

Meyerott, 1953; Keller and Meyerott, 1955), wid at Rand Corp. (Gilmore

and Latter, 1955; Meyerott, 1955), as well as at Los Alamos (Cox, 1964;

Kivel and Mayer, 1965/1954).

Astrophysical studies of many aspects of opacities and absorption

coefficients did not stop during the war nor later, of course. At about the

time of Morse's work, Wildt (1939) suggested that bound-free absorption by

H was a significant factor in determining radiative energy flow in the

outer layers of the sun. This proved to be a particularly fruitful suggestion,

and precipitated an outburst of calculations of wave functions and absorption

coefficients of H- (Chandrasekhar, 1945a,b). We will not attempt to trace

the purely astrophysical work beyond this point. An extensive discussion

and evaluation of this work has been given by Cox (1965).

At the time of Wildt's suggestion, rough calculations of the H

photodetach -- nt cross section already existed (fen, 1933; Massey and Smith,

1936) whereby he was able to assess the importance of the absorption due to

this process. Also at this time, Massey, Bates, and colleagues had already

started detailed calculations of a number of photoelectric cross sections of

upper-atmospheric and astrophysical interest. For example, Bates, Buckingham,

Massey and Unwin (1939) calculated the photoelectric cross section for the
*

ground state of oxygen using the self-consistent-field method. Following

this calculation, Bates went on to obtain similar cross sections for the

neighboring elements boron, carbon, nitrogen, flourine, and neon. These
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calculations were interrupted by World War II, and resumed shortly thereafter.

In 1946 Bates published a very substantial review paper on the characteristics

of radiative cross sections for a wide variety of elements, listing the

calculations which had been made to that date. This paper also reviews

the basic quantal formulas, iticluding for the first time, explicit values

of some of the angular factors in the matrix elements. Concomitant

with this review paper, Bates (1946b) gave approximate formulae for the

photoelectric cross sections of light atoms and ions, using Slater screening-

constant wave functions. This %ork included results for N+ and 0+

Later, Bates and Seaton (1949) published still more accurate calcula-

tions on oxygen, nitrogen and carbon; detaled calculations of this type have

of course, continued and multiplied (further references will be found in

Section 8.1). Most significant to the present study is the work of Burgess

and Seaton (1960). By generalizing the Coulomb Approximation of Bates

and Damgaard (1949) these authors obtained a very general and widely-

applicable method of obtaining photoionization cross sections. Results for

excited states can be obtained just as well as for (in fact better than) ground

states. The accuracy and relative simplicity of this method lends itself well

to large-scale calculations of the type required for gases at high temperatures.

The methods of Burgess and Seaton were first applied to a calculation of the

continuous absorption coefficients of heated nitrogen and oxygen (10, 500 -

13,000 K) by Peach (1962). The results were in reasonable (although not

precise) agreement with experiment. A generalization of this so-called

"quantum-defect" method to free-free transitions has been reported



(Norman, 1963) but so far no applications of it have appeared in the

American literature. A more careful and elaborate generalization of this

method to free-free transitions has appeared quite recently (Peach, 1965)

in which the author promises to apply the results to opacity calculations

In a subsequent paper.

Returning now to more recent work on dir opacity calculations per se,

an approximate method for detailed inclusion of contributing lines in air

(or air constituent) opacity c&lculations appears to have been first attempted

by Moszkowski and Meyerott (1951) and by Kivel and Mayer (1965/1954).

Until about the mid-fifties, and except for the work of Hirschfelder and

Magee (1945, 1958/1947), the emphasis in opacity research was on atomic

opacities at high-temperature or high density conditions, or both. Starting

in the mid-fifties, additional calculations were begun which provide

information in the lower-temperature regions which are of particular application

to re-entry problems and to the outer layers of fireballs, and where molecules

exist or predominate (Meyerott, 1955; Kivel and Bailey, 1957; Kivel, Mayer

and Bethe, 1957).

At this time, the U.S. Air Force, through the Rand Corp., the Air

Force Special Weapons Center, the Air Force Cambridge Research Center,

and other sub-agencies, began to sponsor extensive new opacity-calculation

projects, a number of which were carried out at industrial laboratories such

as Aeronutronic Systems, Inc., Newport Beach, Calif., AVCO Corp., Everett, Mass.,

General Atomic, La Jolla, Calif., and Lockheed Missiles and Space Co.,

Palo Alto, Calif. The discussion in subsequent chapters will remain principally
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within the context Of these investigdtions, many of which are described

only in unpublished contract reports and have not appeared in the journal

literature. The new round of dtomic air opacity calculations began with the

work of Gilmore and Latter (1955). In 1957, Plass, Mayer, Wright, Rosengren,

Schlesinger, Sashkin, and Browne produced an extensive report which

contained an clborate analysis of Mayer's earlier (1947) ionic method of

calculation with additional formal theory supplementing the earlier report.

It also included an analysis of a hydrodynamic opacity model due to Wheeler

and Fireman. Following this, Armstrong, Holland, and Meyerott (1958)

reported on an extensive hydrogenic calculation for air in the temperature

region (2-20 eV) where atomic bound states predominate. This calculation

was based on Mayer's ionic method, but with additional improvements such

as inclusion of configuration splitting and large numbers of excited states,

including some multiply-excited states. Shortly after this, Bernstein and

Dyson (1959) completed a similar calculation with a cruder hydrogenic

model but which covers the impressive array of elements from hydrogen

to flourine.

Following the lead of Bernstein and Dyson, Stewart rnd Pyatt (1961)

performed the first large-scale atomic opacity calculation including lines

(in the hydrogenic approximation), and also covering a wide variety of

elements. At the same time, Armstrong, Buttrey, Sartori, Siegert, and

Wcisner (1961) performed a much more limited calculation of the Planck mean

absorption coefficient of N , 0 , and air, but which employed for the first

time, relatively accurate non-hydrogenic line f-numbers (this calculation was
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j subsequently refined by Armstrong and Aroeste, 1964). The computer code

developed by Stewart and Pyatt in their calculation was later used for an

explicit calculation for air (Freeman, 1963) of absorption coefficionts,

opacities, and some thermodynamic data. The temperature range of the

origindl calculation was extended so that the air results cover temperatures

from 1.5 eV to 2,250 eV. A combination of these two approaches (viz.,

that of Armstrong, et al., and of Stewart and Pyatt) led subsequently to a

large-scale calculation for air, similar to that of Stewart and Pyatt, but

using non-hydrogenic matrix elements (cf. Peach, 1962) for both lines

and photoelectric continuum by Armstrong, johnston,and Kelly (1965).

Concomitant with the rise in interest in atomic opacity calculations,

there was also a rise in interest in the low-temperature, molecular calcula-

tions for air. Following the work of Meyerott (1956), and of Kivel and

Bailey (1957), there appeared reports on work by Meyerott, Sokoloff, and

Nicholls (1960), of &reene (1958), of &eene and Nardone (1962), of

Churchill, Hagstrom, and Landshoff (1963), of Churchill, Armstrong and

Mueller (1965), and of Ashley (1964) on molecular contributions to opacity

of air in the 20000-20,000O range.

In 1963, an "Opacity" conference was organized by the Air Force

Weapons Laboratory and Los Alamos Scientific Laboratory, and held at

Kirtland Air Force Base, New Mexico. The proceedings were published

in toto in the journal of Quantitative Spectroscopy and Radiative Transfer

(JQSRT), Vol. 4, Sept./ Oct., 1964. This conference, and a succeeding

one held in 1964 (whose proceedings were similarly published in JQSRT,
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Vol. 5, Jan./Feb., 1965) proved to he of considerable catalytic significance

to the field. A number of older, important calculations and considerable

intormation, previously unavailable in the open literature were thereby brought

into the public domain. These conferences also provided the stimulus for a

number of authors to publish calculations which would otherwise have remained

in unpublished reports. The conference proceedings constitute an excellent

source of reference information and general orientation to the state of research

in the field. In addition to the detailed calculations of absorption coefficients,

cross sections, and opacities, a few review papers and books, most of them

relatively recent, have appeared which deal with the subject and we conclude

this chapter with brief reference to them.

Review Papers - The first significant review paper on absorption coefficients,

dnd dealing with photoelectric absorption, is probably that of Bates (1946).

ThLspaper reviews detailed atomic structure calculations of absorption from

the ground states of atoms and ions of laboratory and astrophysical interest.

Thus, while this paper is important for general theory and orientation, the

results discussed and presented are not sufficiently extensive to be of much

value for ldrge-scale air calculations. A later review by Weissler (1956)

is in a similar vein, but Is more extensive, and covers experimental studies

of photoelectrir-effect phenomena as well as theoretical investigations.

The paper of Burgess and Seaton (1960) applies quantum-defect methods to

large scale photoelectric calculations for the first time and also includes a

valuable review of many previous calculations. It also provides a very general



and practical method for computino approximate photolonization cross sections.

in 1961, Armstrong, Sokoloff, Nciaolls, Holland, and Meyerott published a

review paper covering the molecular and atomic absorption-coeffficient calcula-

tions that had been carried out up to that time at the Lockheed Research

Laboratories in Palo Alto, Calif. The review article by Cox (1965), should

be consulted for discussion of specifically astrophysical calculations. The

review article by Ditchburn and Opik (1962) provides an excellent bibliography

on photolonization processes.

k - The book "Quantitative Spectroscopy and Radiative Transfer" (Penner,

1959) treats absorption coefficients and opacities of molecular origin. Its

primary orientation, however, is towards combustion and lower-temperature

applications. The review article by Baranqer (SDectral Line Broadening in

Plasmas, 1962) provides an elegant and comprehensive account of modern

line-broadening theory which is essential for any realistic treatment of

atomic lines in high-temperature radiative problems. A particularly germane

book is "Plasma Spectroscopy" by Griam (1964). It reviews many of the

topics which we discuss below. Since Griem was active in the development

of modern line-broadening theory, his book 13 especially valuable as an

additional reference on this subject. In addition, he gives extensive tables

of relevant atomic structure data, and discusses line and continuous emission,

Ionization and excitation equilibria, and radiation transfer in extended

laboratory sources. It also contains a thorough discussion of experimental

techniques and measurements. Hydrogenic emission and absorption coefficients,

and ionization equilibrium are discussed extensively in "Astrophysics",
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Vol. 1, 2nd Edn., (Aller, 1963), who also gives an excellent discussion of

approximate solutions to the transfer equation. He touches only lightly,

however, on the Rosseland mean opacity. The recent book "Atomic Theory

of Gas Dynamics" of Bond, Watson, and Welch (1965) contains an extensive

chapter on opacities including (in the open literature for the first time) some

of the theory and formalism developed by Mayer (1947). This excellent book

also contains an extensive background and discussion of the atomic and

molecular processes of interest in gases at high temperatures.

Russian Work - Before concluding this brief survey, mention should be

made of Russian work in opacity calculations. We have not surveyed this

literature in detail; entry to it can be gained through the work of Raizer (1960),

and through the quantum-defect, Coulomb approximation calculations of

Biberman, Norman, et al. (Biberman and Norman, 1960; Biberrman, Norman

and Ul'ianov, 1961, 1962; Biberman, Vorob'ev and Norman, 1963; Biberman

and Norman, 1963; Norman, 1963; and Vorobyov and Norman, 1964). Another

useful reference is the work of Levinson and Nikitin (1965).

Qxierlmental Work - There is also, of course, some experimental work

in this field. The amount is meager, however, compared to the extensive

theoretical studies that have been carried out, as the experiments are

generally very hard to perform and on this account are often imprecise. For

this aspect of the subject, reference should be made to Keck et al. (1959),

Boldt (1959), to the book by Griem (1964), and to the Opacity Conference

issues of JQSRT (Vol. A, 1964; Vol. J, 1965).

265



I

Statistical Models - As mentioned earlier, statistical models of absorption

both for lines and for photoelectric edges have been proposed and worked out.

Since our emphasis has been on numerical computations of detailed spectral
features, we will not review the statistical work here, but rather refer the

interested reader to the sources Mayer, (1947), Goody, (1964), Stewart

and Pyatt (1961), and to the brief discussion of Bond et al. (1965).

We will now proceed to discuss the general features of spectral and

mean absorption coefficients in Chapter 6. The development of the low-

temperature molecular absorption-coefficient calculations will be considered

in some dietail in Chapter 7, and the recent large-scale high temperature

atomic calculations will be reviewed in Chapter 8.

i26
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Chapter 6. GENERAL FEATURES OF AIR ABSORPTION COEFFICIENTS

6.1 Spectral absorption coefficients

The aspect of absorption of radiation in a gas considered in this book

is that which Involves elementary interactions between the radiation photons

and the individual particles of which the gas is composed. This is the

dominant type of absorption process unless the gas is relatively dense and

highly ionized, in which case absorption may occur by excitation of

collective modes involving the combined simultaneous action of many particles.
*

In this book it is assumed that collective effects play no significant role

or are out of the frequency range of interest. Thus only the elementary

interactions involving individual gas particles need be considered. (On this

point see Kahn, 1959; Salpeter, 1960)

Let the number density of particles of type s in the state I be

denoted by N , and let the cross-section for absorption of a photon of

frequency v by a particle of type s in a transition which carries the

particle from the state J to the state J' be denoted by a M(v)
-1n

Then the absorption coefficient L in cm is given by

uv NE , (v) (6 1i)
s J, ,I'

(see Eq. (2. 1-6c) in which a is replaced by a

We refer here to collective effects among the atoms, ions, or molecules.
The electrons of a single atom or molecule are susceptible to a collective
description and such models are mentioned briefly in sec. 8. 1.
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where the sum is extended over all particle species a and their initial

and final states J and J' . The density of particles of type s in

quantum state J may be written

N - NP sj (6.1-2)

where N is the density of particles of all types, P is the probability

that a particle chosen at random is of type s and is In the state J

It is clear from Eqs. (6. 1-1) and (6. 1-2) that calculation of the

absorption coefficient falls naturally into two distinct parts. The first is

the calculation of the probabilities or "occupation numbers" Psi , which

is a problem in statistical mechanics and has little to do with the radiation

field, and the second is the calculation of the cross-sections a , which

is a problem in the quantum theory of radiation and to a first approximation

can be undertaken without reference to the various particle densities. The

problems encountered in performing these calculations vary markedly with

temperature and density. For this reason it is convenient to discuss the

problem with respect to several distinct temperature-density regions characterized

by qualitative differences in the effects which are dominant in determining

uv (Armstrong, Sokoloff, Nicholls, Holland, and Meyerott, 1961).

Cold air consists almost exclusively of N 2 and 02 ; hence, at

sufficiently low temperatures, only the cross-sections for these two mole-

cules need be considered. As the temperature is raised, N2 and 02

interact to form the various oxides of nitrogen. For example, at normal
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density, and temperature kT in the range 0.4 to 1.0 eV, NO is formed

and plays a significant role in determining the absorption coefficient. In

addition to the formation of new molecular species, dissociation and ionization

of the molecules also occur. Thus, at around kT = 0.6 aV, important
+

contributions are made by N2 and 0 At temperatures of about 1 eV,

dissociation is practically complete, and as the temperature is further

Increased the main contribution comes from atoms, ions, and free electrons.

The problem of obtaining cross-sections for molecular species is much more

difficult than the corresponding atomic problem; hence, the point at which

the molecular particle density becomes so low that molecules may be neglected

in the absorption coefficient calculation constitutes a natural and useful point

of division of the problem.

A similar division occurs in the statistical mechanical calculations

of occupation numbers. In some temperature-density regions, the inter-

dctions among particles may be neglected without introducing serious

errors into the calculation of occupation numbers for the various species.

At sufficiently high densities, however, the effects of interparticle

interactions must be included, with a consequent increase in the difficulty

of performing the calculations.

As a rather arbitrary demarcation between the regions where

molecular effects may be neglected and whei'e they make a significant

contribution, let us choose a molecular contribution to the absorption

coefficient which is generally less than about 1 percent of the atomic

contribution over the optical frequencies. From the results of Churchill,



Armstrong and Mue!ler (1965) the temperature-density points corresponding

to this demarcation may be found.

The curve labeled M in Fig. 6-1 is the locus of these points,

and divides the temperature-density plane into two regions labeled atomic

and molecular. The curve labeled I in Fig. 6-1 divides the plane into

tw regions according to whether the interactions among particles may or

may not be neglected. Again an arbitrary criterion has been selected for

determining the curve, namely, that the Coulomb interaction energy between

ions be 1/50 of their thermal kinetic energy, i.e.,

2 2 = Iik (6-3)La.. _.L (12 kAl6.
r so'~

where r , the average distance between ions, is obtained from the density.

The curve shown is obtained in Fig. 6-1 from Eq. (6.1-3) after some

smoothing.

Further subdivisions over the parameter ranges may also be made.

In Fig. 6-2 (from Armstrong, Sokoloff, Nicholls, and Meyerott, 1961) the

temperature ranges over which the various processes make significant

contributions are indicated, without reference to the density dependence of

the effects.

It has been traditional In opacity work to divide the absorption

coefficient into two parts. The so-called continuum part is composed of those

contributions that are relatively smooth functions of frequency, and the line

contribution is the absorption due to discrete (or "bound-bound") atomic and

molecular transitions. The continuum contribution involves photoelectric

and photodissociation (bound-free) absorption, inverse bremsstrahlung (free-free)
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absorption and scattering. Simple, but not very accurate formulas for these

contributions for many-electron atoms can be obtained on the basis of

hydrogenic models and much work along these lines has been done. In

atomic opacity calculations the line contribution has until recently simply

been neglected because of its complexity. On the other hand, it is the

principal consideration in molecular absorption. In Part B, we will proceed

from low to high temperature absorption coefficients. Thus molecular absorp-

tion is reviewed in Chapter 7 and atomic absorption is reviewed in Chapter 8.

6.2 Mean absorption coefficients

The Planck and Rosseland mean absorption coefficients

defined In Chapter 2 can be written as

- • Ju3eU v(u, T)du (6.2-1)

0 F
and

.A- 4, J 4ua 2u du (6.2-2)4ff4 ýI(uT) (*"-1 3)

0

respectively, where u a hvAkT . These formulae can be

obtained from Eqs. (2. 4-15) and (2.5- 6 ) of Chapter 2 by use of the expression

for the integral of the Planck function

2f7-

B MfB dvk-L1 (6.2-3)15 c2 h3  23

and by interchanging the order of differentiation and integratioux In

the integral

We write ktvM = 4(u,T) to avoid the suggestion that 4(v) depends
only on u
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to write

d5c 2 8" 0 (6.2-5)dT dT Sc 2 h3

IZqs. (6.2-1) and (6.2-2), the factor 1-e-u that differentiates between

taand Va' has been absorbed into the weighting functions.

It is useful (and traditional) to call the factors multiplying •(vM

In Eqa. (6.2-1) and (6.2-2) weiahtinn functions; Wp(u) and WR(u).

Els. (6.2-1) and (6.2-2) can thus be written

A P "JWp(u) 4(u,T) du (6.2-6)

-~~ VW(u)

*R1 AR JiuT) du (6.2-7)

0

Graphs of the weighting functions

Wpm ( U, u3 e (6. 2-8a)V( 4

and

WR(u) (6. 2-8b)
4r 4 (eW 1),

are shown in Fig. 6-3. By Inspection or differentiation it can be easily

verified that Wp(u) has its maximum at u - 3 . We can similarly show

that WR(u) has a maximum where

"4 2. (6.2-9)
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UM is thus just a little less than 4 (since (su- )/(,u+2 ) < 1) . In fact

Eq. (6. 2-9) can be solved graphically to obtain uM 3.74.

The weighting function curves shown in rig. 6-3 clearly show the

frequency regions, at a given temperature, that dominate the calculation

of each mean. Since C! is a direct mean and the contributions to it

are additive, further comment is unnecessary. The Rosseland mean

coefficient (R) , is however, a harmonic mean, or, physically, a mean

free path rather than strictly a mean absorption coefficient, and as such

merits further discussion.

Following Mayer (1947) we divide the absorption coefficient into

two parts

L"Uc + Uq. (6.2-10)

where is the continuous, or slowly varying part and 4. is the

rapidly varying line contribution. If we further introduce the notaUon

r(u) a ui/Uc (6.2-11)

such that - uc(l + r) , Eq. (6.2-7) for AR can now be rewritten as

W (u) du (6.2-12)
AR273 l-
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thus

A.J du - i- du (6. 2-13a)

0

AR Ac - Alt (6.2-13b)

where Eq. (6.2-13b) defines a notation for the continuous and line

contribuUons to the Rosseland mean free path respectively, in terms of

the two integrals in Eq. (6.2-13a). This expression shows explicitly how

the lines reduce the mean free path from the value Ao that it would have

in the presence of continuous processes alone.

The effect of a strong line can be shown in the following way.

We write r(u)/(1 + r(u)) as 1 +17~u and note that a strong line

implies

R--•7 << 1 (6.2-14)

whe-,-, uo is the position of the line.

Then

r - 1- + + (6.2-15)
1 +R
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The line contribution to AR from the small frequency region Auo about

where u is large is

W (uo) F~
u[ (UolT UUo (6.2-16)

to first order in - The zero order term precisely cancels the

contribution of Ac , leaving only a first order contribution to AR

from this interval. Thus to lowest order the line eliminates the entire

transmission over the interval. Its zero-order effect on AR depends

only on the width of the spectral r geion which it blacks out, and is independent

of the strength of the line. The first order correction term is

ru)- 4A.0 - u0 (6.2-17) I,

which, as one would expect, does not depend upon uc since

Ut 0, 'Uc in this region. For a simple model of rectangular, non-overlapping

lines of widths aui

-Au +Au
4'& (uiT) " Si 2 - U 3C (6.2-18)

"0 , u otherwise
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these results imply that to first order in [r(uo)]

hE~ E ,t Rc I
f WNu d 

W f ( u )

0 (6.2-19)

This equation follows from Eq. (6.2-13) If the first two terms of Eq. (6.2-15)

are used for r(u)/( 1 + r(u)] . The last term of Eq. (6.2- 19) is negligible if

the lines are sufficiently strong.

For Lorentz and Doppler line shapes, the integrations over the line

profiles can still be performed (Mayer, 1947) leading to an approximate
AUr

result with the same form as Eq. (6.2-19) but with !!2 being replaced

by TO/2 v 1. 0 times a quantity N, , called the wingspread of the line*.

For the Lorentz dispersion shape

Wb) (6.2-20a)b(ki) - wVVO 2 +(v-v)2 +w

fb(v)dv - 1 (6.2-20b)

with conventional half-width w , the wingspread Is given approximately

by

Vo/2
aw 1 (-~.- 1(6. 2-21la)kT (ý

276
Meyer defines the wingspread of a line as the distance between the line
position u - hv AT and the froquency u - hvAT at which
r - I , i.e., wher& the line absorption coefficient Is equal to the
continuum absorption coefficient.
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where

iv e2 N f

o t•j(j)d. - (6.2-21b)

is the absorption coefficient integrated over the line or, loosely speaking,

the integrated line strength. Thus, for the Lorentz shape, the first approxi-

mation to A for a single line is

A~in x 2 AP x Uc(6. 2-22)

so that a line of this type approximately blacks out a frequency interval

Av = V•kT/h , or

Av (blacked out)- w ( (6.2-23)

(For further discussion, including the problem of W strong lines,

and the formulas for the Doppler-broadened case, see Mayer, 1947.)

We will conclude this section with a brief discussion of the weak

line cases From Eq. (6.2-13), we define a weak line by

r(u) << 1 (6.2-24)

In this approximation, we can expand r/(l + r) as

(6.2-25) i
I " - r(u) El-r(u)+...]
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Thus, to the same order of approximation that strong lines black out a

frequency interval completely (neglect of - I) , weak lines may ha

neglected completely. The first-order contribution of a weak line follows

from Eq. (6.2-25) and Eqs. (6. 2-13a,b)

A JRu) Wf (U) d u 44n WR(u)du (6.2-26)S(u°) VC 1A

0 0 c

U, as is usually the case, the variation of the line profile is quite rapid

compared to variations in WR(u) and "c , the integration in Eq. (6. 2-26)

can be Immediately performed. The result is

A - w (6.2-27)
4 1C R(U) um u0

where again ;1 is the integrated line absorption coefficient. From this

result it is evident that the contributions of weak lines to AR are

additive and independent of the line width. The contribution of a given line

depends only on its strength , in distinction to the strong-line case where

Just the opposite situation prevails. We can now state a consistent first-

order approximate formula for AR In the presence of weak a C<C

and of strong, >> non-overlapping rectangular lines. The
(UC

as defined in Eq. (6.2-21b).
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formula is

Sdcju W Rz (u )AR'f W 1-A uIT)- Au1io i(s)

(6.2-28)

W u ) Au Wj
P WRw Ot VVu

11 t (u T W2 jV~
j a (w uN T)

In this formula, the Au1 are the (reduced) widths of the strong lines and
2

the .-AU) -- =h- Nv f, are the integrated weak-line absorption coefficients.0 me

The letters wt, and s*, have beon used in appropriate places in the

formula to distinguish weak lines and strong lines, respectively.

Although these formulas and their equivalents for more realistic line

profiles are descriptive and qualitatively very useful In providing physical

intuition, it has been found both practical and convenient in the most recent

calculations of mean absorption coefficients (Stewart and Pyatt, 1961;

Freeman, 1963; Armstrong, Johnston, and Kelly, 1965) to perform analytic or

detailed numerical integrations over the line profiles with the aid of high-speed

digital computers. If this is done, lines of intermediate strength can be

accurately accounted for, together with overlapping lines.

Huebner (1964) has presented a valuable review of the subdivisions

of the temperature, density, and atomic number domain with brief comments

on the principal contributors to the opacity within these various regimes. We

present below a slightly condensed version of Huebner's summary. The

reader should note that this summary covers a considerably wider domain of

temperature, density and atomic number than we undertake to cover in Part B.
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V1

MAJOR OONTRIBUTIONS TO THE ROS8ELAND MEAN OPACITY
IN VARIOUS T, Z RBGIONS

(after Huebner, 1964)

To acquire an or'lantation for the relevance of the theories, methods,
and approximations which are applicable to the calculation of the Rosseland
mean opacity and to emphasize the Importance and the difficulty of obtaining
good estimates of the line absorption contribution to this opacity one may
consider a three-dimensional space with temperature, compression, and
atomic number as the tire. coordinate axes. Dividing each of the three
axes in their positive directions Into three regions, which for simplicity
shall be labeled as low, medium, and high, one obtains 27 major categories
for opacity calculations. No sharp dividing lines can be established since
the regions must overlap to some extent. Nevertheless, this division
creates a useful concept, especially if one deals with mixtures of elements
which Is predominantly the case.

The low and medium ranges of temperature are divided approximately
at the temperature above which molecular effects are unimportant, i.e.,
kT4, ow 2 eV. In the medium temperature range atomic line transitions
pred vlnate. The high temperature range is defined to have as its lower
limit a temperature above which atoms are essentially stripped of all
electrons, therefore reducing bound-bound (line) transitions and incidentally
also bound-free absorption edges (photo effect) to a small number which,
with Increasing temperature, rapidly approaches zero. Heavy atoms can
be considered stripped at abput 10 keV, light elements at a few eV; this
correa-ponds to kTm, h P 2Z eV.

At the very lowest compressions (large expansions) of matter in the
gaseous state interaction between free electrons and ions, atoms, and
molecules is small, collision broadening Is negligible and, unless there
is a very large number of lines, as may be the case with molecular bands
or heavy elements, line absorption may be neglected. Taking into account
the heavy element effect on the number of lines, the division _bewapn low
and medium cumpression* regions is approximately i -,w 10 Z . The
division between the medium and high compression ran'44' may be taken
at a compression above which pressure Ionization Is so large thal only ls
electrons are bound (and perhaps electrons In the n - 22 shell in the case
of heavy elements). This compression i1 at 11m,h m 10 except for heavy
elements at low temperature rlm,h ft 10

The low range of the atomic number coordinate shall cover the light
elements for which atomic line absorption can bo calculated for each line
individually. This task becomes cumbersome at Z o 20 . For medium
Z elements it is usually possible to group some lin'smbnd approximate
their collective effect and treat the remaining lines individually. The

Compression is defined as r 0/0o , where po is the density at
standard conditions.
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division between medium and high Z elements may be taken at Z
S50. For heavy elements most of the lines can be grouped and the t

of these groups may then be approximated. It is usually not necessary to
consider individual lines in this range.

Not all of the 27 possible regions delineated above are of interest
to present day science and technology. A brief discussion of relevant
methods for calculating opacities in the various regions and an outline
of some of the phases which require improvements follows.

1. Low temperature, low compression, low atomic number. Opacity in
this region is of interest in upper atmosphere physics and also in theories
for the formation of proto-stars. Molecular bands due to vibrational and
rotational spectra are frequently the least accurate quantities entering in
the calculations. Although the line widths of the transitions are small,
the number of transitions in a band is large and the collective effect is
significant. Quantities such as dissociation constants, f-niumbers
and band structures are best taken from the tables and graphs compiled
predominantly from experimental data (Herzberg, 1950). Great efforts
have been under way for some time now to fill one of the largest gaps,
that of the f-numbers, by experimental methods notably shock tube
techniques, pressurized cells, and lifetime measurements. More reliable
calculations are also made of the Franck-Condon factors.

Another important contribution to opacity at low temperatures are the
absorption and scattering by agglomeration of particles (grains) such as
droplets or dust. Vapor pressure, droplet size, latent heats, etc. are
determined by thermodynamic considerations. The grain size in relation
to the wavelength of the radiation and the complex index of refraction
which depends on the chemical composition of the grains must be known
before the absorption coefficient can be calculated (Van De Hulst, 1957).
For small grains the difference between gas temperature and internal
temperature of the grains can be neglected except at the very lowest
densities where the number of inelastic collisions with gas molecules is
too low to establish equilibrium.

Continuous processes such as molecular dissociation, atomic bound-
free transitions, Thomson scattering, etc. are of some importance.

2. Low temperature, low compression. medium atomic number. In high
altitude atmospheric phenomena concerned with ablation from re-entry
bodies, meteorites, or with debris from nuclear explosions, contributions
co the opacity come mainly from grains, molecular effects, and continuous
atomic transitions. Opacities of medium Z elements of interest in the
formation of proto-stars are mostly due to grains and probably to a lesser
extent due to other molecular effects.

2,
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Contributions from grains. and molecules are similar to the ones
discussed in region 1.

The atomic continuous processes can be calculated from the knowledge
'4 atomic energy levels and occupation numbers. Most energy levels are
tabulated (Moore, 1949, 1952, 1958) and the occupation numbers can be
obtained from the lIoltzmann and Saoh equations.

3. 4w tamneratura. low aomnression. hioh atomic number. Except for
possibly studies on debris from nuclear explosions, no applications are
known. Continuous atomic transitions, molecular, and grain effects are
probably the most important contributions to the opacity in this region.
Very little work has been done in this region.

4. Low temnerature, medium conmresion, low atomic number. This is a
region of interest in astrophysics, and in technical fields; for eAample,
in rocket design. Excepting the upper range of compressions in this region,
I ressure broadening makes molecular band absorption the dominant effect
see Section 4.3). Grain absorption and scattering can be important.

A new effect, that of the negative ion, notably the negative hydrogen
ion, enters opacity calculations. The binding energy of the extra electron
In hydrogen Is about 0.75 *V. The bound-free and free-free processes
(Sremsstrahlung) of these negative ions can dominate the absorption
coefficient.

Line effects due to atomic bound-bound transitions become also
important. Stark broadening of lines must be considered for the lightest
elements In addition to collision broadening.

For light elements the number of lines is too small to apply
statistical averaging and therefore they should be treated Individually;
however, techniques such as application of the Elsasser model to sum over
an entire series appear to give reasonably good results (Stewart and Pyatt,
1961). Line strengths and atomic energy levels are tabulated. Rayleigh
scattering and resonance scattering by bound electrons can be significant.
Occupation numbers can be obtained from the Boltzmann and Saha equations.

5. Low ternature. medium conwression, medium atomic number. Interest
in this region is mostly In the fields of technology. Processes contributing
to the opacity and methods of calculation are similar to the ones in region 4.
Resonance and Rayleigh scattering are less important, since the number of
lines is large. Many lines can be grouped and their average effect
estimated. Methods of calculating line absorption as discussed by Goody (1964)
may be applicable in this region, and also at higher temperatures.
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6. Low temperature. medium Aomnronsioa, high atomia numbe. Gaseous
reactors can be cited as an example of application of opacities in this
region. Very little is known about molecular bands for heavy elements.
Since the number of lines and the line density are very large, it seems
that one can neglect the effect of molecular bands. It is entirely impractical
to treat lines individually. Various approximate methods may be used to
estimate line absorption. One can sample individual lines in some small
frequency ranges, calculate the line absorption in these ranges and then
interpolate to get the total line absorption. Another approximation is to
space lines evenly throughout the entire frequency range (Sziklas . 1961.).

Energy level and line strength data are very sparse for heavy elements,
and the Slater approximation to the Hartree-Fook self-consistent field
calculation is tedious and time consuning. Thomas-Permi-Dirac calculations
give probably the next best estimate to energy level data (for references,
see Section 4.4.1).

7. Low temperature. hiah comoression. low atomic numbar. This regionis almost exclusively of interest in astrophysical problems. Besides theusual grain effects and absorption due to the negative hydrogen ion,

conductive opacity (a measure of resistance to energy transport by electronconduction) shows Its effect by lowering the total opacity below that of

the radiative opacity. Energy transport by electron conduction competes
with or, borrowing terminology from the field of electrical net-works, is
in shunt with energy transport by radiation. Nearly complete pressure
ionization precludes existence of molecules and of most lines. Free-free
transitions and Compton scattering are important. 1;

Energy levels and occupation number calculations become problematic
when the compression is so high that the Coulomb interaction energy for *
free electrons is greater than the thermal energy.

8. Low temperature. high comnression. medium atomic number. Astro-
physical problems have some limited interest in opacities of this region.
Processes contributing to opacity and their calculations are similar to
those of region 7. Energy levels can be calculated from the Thomas-Fermi-
Dirac potentials.
9. Low temnerature. high comnresslon. hiah atomic number. No specific
applications or calculations of opacity are known to the author. Continuous
radiative absorption and electron conduction will dominate, but some lines
In the lower compression range of the region may be important.

10. Medium temneraturs, low com~ression, low atomic number. The opacity
in this region is almost entirely due to continuous atomic transitions.
There Is some resonance and Rayleigh scattering but bound-free absorption
Is dominant. The Framers' formula for bound-free transitions and hydrogenic
Gaunt factors are commonly used. This method becomes unreUable, particularly
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for the less Ioniesd atoms in the range 10 r£ X a elm ow 20 . (Bsthe and
Salpeter, 1167.)

For the low lu'aiation stages energy levels are available in tables
and for highly Ioniued atoms building the Ions up, using screening constants,
elves satisfaotory results. Occupation numbers may be obtained from the
Sahe equation.
Il V,.-tM t-MmRUWM. lOW cu•_=&_qlin .medium ahtgmio QWWWI-__. Bound-

freabsorption and oscttering by free olectolr a dominate the opacity. Many

energy levels for low Ionization stages are available In tables and may be
corrected for Other relevant Ioniation stages with the use of screening
constants. Unavailble levels can be readily calculated using the Thomas-
Fermi potential or the Water approximation to the Hartree-Fock method.
Occupation numbers we obtained from the flaha equation.

For highly Ionized atoms (usually for temperatures above 100 Wv) energy
levels are calculated from occupation numbers end screening constants and
occupation numbers are calculated from energy levels with the aid of
Fermi-Dirau statistics. Iterations ar carried out until the degeneracy
parameter has converged under the condition that the total number of
electrons (bound and free) Is conserved (Mayer, 1947),

Crnss sections for the bound-free transitions from all but the lowest
lying l( els are difficult to obtain with accuracy. The opacity has Its
strongest dependence on these transitions when the calculations are most
difficult. The large number of eluctron configurations will "split" the
bound-free absorption edges and distribute them around the position of the
edge for the average configuration.

12. Mjedium tamDeratma. jrw aomnrssion. high atomic number. To the
author s knowledge there "., no Interest In opacities In this region at this
time. Continuous effects should dominate.

13. Medium temeramre. medium compression. low atomic number. This
it another region of great Interest in astrophysics. Although the number
of lines is small, they are pressure broadened and their absorption is
best taken Into account on an Individual basis. Hydrogenic oscillator
strengths and Gaunt factors are tabulated (Karsas and Latter, 1961)
and are usually used.

Snorgy levels and occupation numbers may be obtained by the method
outlined for region 11. However, since for the position of the lines the
difference between energy levels is important and not their absolute value,
all levels should be obtained by one and the same method. Shifting of
lines with respect to one another or with respect to their series limits
(photo electric edges) can change the opacity significantly through the
creation or closing of "windows" in the frequency spectrum.
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Bound-free transitions are important and conductive opacity can be
significant in the low temperature-high compression range of this region.

14. MRdium temoerature, medium comDression.. medium atornlc numbeg.
Opacities in this region are of interest in astrophysical problems and also
in the design and effects studies of nuclear weapons.

Line effects are very important. There are many lines and they are
collision broadened; therefore, they may be grouped and their collective
effect estimated (Mayer, 1947). Absorption of many lines may still have
to be calculated on an individual basis. Statistical procedures may be
applied to decide which of these lines can be grouped (Moszkowskit 1960,1962).

In the low temperature range of this region energv levels are
labulated or may be calculated by the Hartree-Fock-Slater method, and
occupation numbers can be obtained by means of the Bahe equation. For
higher temperatures energy levels are most conveniently obtained from
Thomas-Fermi potentials, and the occupation numbers by Fermi-Dlrac
statistics.

Bound-free absorption can be important but is difficult to calculate and
is therefore usually not very accurate. Compton scattering is strong In
the upper temperature range of this region. Conductive opacity reduces the
radiative effects on the total opacity in the corner of this region where
temperature is low and compression Is high.

15. &_L~um temperature, medium compression, high atomic number. This

region of opacity calculations is of interest in nuclear weapons work.
Calculations are similar to those in region 14, except here almost all
lines can be grouped and their collective effect estimated. The Hartree-

Fock-Slater method for calculating energy levels is too tedious to be useful.
Continuous opacity is again important at the upper temperature range of
Lhis region while conductive opacity is significant in the low temperature-
high compression range.

16. Medium terrverature, high comDressionn, low atomic number. Opacities
are of astrophysical interest. Pressure ionization reduces lines to a very
small number or makes line transitions completely impossible. If lines
are present they must be treated individually; their effect can be quite
important due to the large pressure broadening. At the lower temperature
range of this region conductive opacity is also Important. Energy levels
are obtained most conveniently from screening constants.



17.
OPeciieas n ult veryasmiaryto oseinregioni 1 nes are
a little mmre likely to occur. Xnergy levels and occupation numbers are
calculated by methods similar to the ones discusised in region 11.,

14. Udium teml rf1ratur high oM__laon, hiah atomi' number, This

region has no application to the author's knowledge. Line opacity and
conductive opacity can be expected to make contributions but the two
effects tend to cancel. lound-free absorption and scattering predominate.

19. 112h temneatrMM, low somnmaaion. law atomic number. Opacity Is
entirely due to continuous processes, mainly free-tree aisorptlon and
Oompton scattering. As the temperature approaches 2mc electron-positron
pair production begins to dominate the absorption processes, but even only
at a small fraction of this temperature the high energy tail of the photon
distribution croates enough electron pairs which have a long lifetime at
low compressions to increase Compton scattering by several powers of
ten (Sampson, 1959).

20. *•iah tomarature. low omnression, medium atomic number. Opacity
calculations are essentially the same as in region 19; however, In the
low temperature range of this region bound-free absorption can be of
greater importance.

21. Miah temnerature. low gonMruasion. hiah atomic number. There are
no applications of opacities in this region known to the author. Calculations
would presumably be similar to those of reclona 19 and 20 with increased
absorotion due to bound-free transitions.

22. Hiah temperaturo. madium comnrasslon. low atomic number. Opacities
in this region are of Interest in the calculations of stellar models.
Contributions to the opacity are similar to those of region 19, but the
Increase in Compton scattering due to elect-on pair creation does ncot occur
until somewhat higher temperatures - several tens of keV - are reached
(Sampson, 1959). The increased density shortens the lifetime of electron
pairs and, therefore, a higher production rate is required to get the same
effect ,, the Comp ton scattering.

A -Y lines are possible near the low temperature limit of this
range. •-,und-free absorption Is important. Energy levels and occupatiotý
numbers may be calculated as described for region 11.

23. riJemnerature. medium gonmresuion. medium atomic number.
Opacities t again of Interest to theories about stellar interiors. Similar
to region 22 bound-free absorption and Compton scattering are important.
The number of lines in somewhat larger and many of them can be grouped
to estimate their absorption. Energy levels are most conveniently Obtained
from Thomas-Fermi potentials, and the occupation numbers by Fermi-Dirac
statistics.
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24. Hich temrerature, medium aompression. hich atomic number. This
region is of interest in nuclear weapons work. Calculation of opacities
is similar to those of region 23. Lines can be grouped and their absorption
estimated.

25. Hich temperature. high comoression, low atomic number. Opacity
Is predominan ly continuous due to bound-free and free-free absorption
and Compton scattering. Energy levels can be obtained from screening
constants. Electron-positron pair production begins to doiinate
absorption processes as the temperature approaches 2mc . However,
below this threshold energy Compton scattering does not increase as
significantly as it did for similar temperatures at low and medium
compressions (Sampson, 1959).

26. H•gh temperature. high compression, medium atomic number. Opacity
calculations are similar to those of region 25. Energy levels may be
obtained from the Thomas-Fermi potential; occupation numbers from Fermi-
Dirac statistics. A few lines may exist and pressure broadening will
make them important.

27. IjHh temperature, hich compression, high atomic number. The opacity
may be calculated similar to that of region 26. Some groups of lines may
be important.
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6.3 Inequalties and bounds on mean absorption coefficients

]h calculationa of the Rosseland and Planok mean

ahocrption coeffioients, It Is advantageous to have limits for the values

to be epeated for these quantities. This It particularly true when one

Includes considerations of the line contribution, since It has such a

wIldly fluotuating, complicated frequency dependence. Bernstein and

Dyson (1959) have presented a theorem which places an upper limit on

the Rosseland mean opacity. This theorem Is based on the 8chwartz

Inequality

f qgdx] & S f 2cdx J"g 2 dx (6.3-1)

If f2 is chosen to be the Rosseland mean integrand, and g2 is chosen

proportional to the absorption coefficient .&(v) . then I f g dx is a

definite integral independent of W(v) , and the Integral I "(v)dv can

be evaluated by means of the Thomas-Reiche-Kuhn f-number sum rule.

Their result may be given as (of. also Bond, Watson, and Welch, 1965)

R/p KRt /0 A o (6.3-2)

where

""0 - (T)4.43 x 105 cm2 /gm (6.3-3)
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In this relation Z is the atomic number, A is the atomic weight, and

Ryd Is 13.6 eV when kT is also expressed in eV.

Unfortunately, at low density, the upper limit of Sq. (6.3-2) Is many

orders of magnitude higher than the continuous opacity, which should be

the dominant contribution (at sufficiently low density). Hence it would be

convenient if an upper limit could be obtained closer to the truo value even

if, perhaps, more effort might be needed in its calculation. An advance

in this direction was made by Armstrong (1962) by applying the Schwartz

Inequality in a different manner, as follows.

Recalling the definition of the Planck mean absorption coefficient

a - u J u 3 4(u) du (6.3-4)

0

with

u hvAT , (6.3-5)

we can apply Schwartz's inequality with

f2 46 2u
f - (6.3-6)

4T4  u(u) (eu - 10)

and

92 - 15 u3 e-U u) (6.3-7)
i4

w • r ii .... ... .. 
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to derive

2 (6. 3-8)

where

- .. 4,. CM (6.3-9)jn](eI" 1)3 / 2

0

The value 0.9743 for I was obtained by numerical integration,

and inserting this result into Eq. (6.3-8) yields

% 1.053 .
(6.3-10)

The Planok mean Up is much more tedious to compute than the Bernstein-

Dyson a. , but It generally gives a lower valua and is a quantity of some

interest In Its own right. It does not depend on the detailed shape of the

lines, In dlstinction to the Rosseland mean, so it is still much easier to

compute than the Rosseland mean. The values of these two means for the

gg u absorption coefficient of air data given by Armstrong (1959) were

compared and the ratio Kp/R was found to range from a minimum of 1. 1

at the low-density, high-temperature end of the parameter range, to a

maximum of 7 or 8 at the high-density, low-temperature end. On the other

hand, for air we can take the Dernstein-Dyson bound K0 as 1. 5 x 106 cm2 /gm

(7C/A - . ) at kT - 2eV, which Is the low-temperature end of the parameter range

referred to above, and Ko - 1.5 x 105 cm2 /gm at 20 eV, the high-temperature
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end. Using the extreme K values given by Armstrong (1959), namely,

3.2x 10 cm2 /gm kT- 2V 3  
3 (6.3-11)Kc~ -• 5.4 x 10- gm/cm3

2 ~ kT - 20jeV 3

K O. 25 cm2/gm "0-l gm/cm (6.3-12)

we obtain for the ratio K o/KR I In the case of the Dyson bound,

K 6
t a 1. 5 x 106 3 4.7x 102 6.3-13)

KK 3.2 x 103

15 x 1051. 6.0 x 105 (6.3-14)
KK 0.25

From this empirical "check", the inequality (Eq. (6.3-10)) would appear to

be much nearer an equality than the inequality (Eq. (6.3-2)) . Physically,

it is easy to see why the relationship between ap and aR might hold.

Fig. 6-4 shows the general case of a line superimposed on the continuum.

The Planck mean obtains its dominant contributions when is large as at

A.
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On the other hand aR obtains its dominant contributions from regions of

M values of v. as at B and C . We can realistically make the

4contribution of this line to aR as small as we please by passing to

physical conditions ouch that the line becomes progressively more narrow

and peaked (low density, low temperature). The Planck mean is invariant

to this distortion, depending only on the area under the curve -- which is

preserved under all but the most severe physical conditions . At the

opposite, but physically unrealistic, extreme, we could distort the line

shape to be flat (i.e., condtant in frequency) over a width w much

greater than the span of the two weighting functions but atill such that

S4 w - constant . Then the weighting integrals could toe performed, giving

unity in both cases and the two means would be equal. Perhaps a clearer

explanation, however, resides in the fact that a harmonic mean of any

function, say

(6.3-15)

Ax

is always less than the corresponding direct mean

LD = JA±(x) dx (6.3-16)

Ax
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This Is easily seen by setting

f .(6.3-17a,

and

g 9 T (6.3-17b,

in the Schwartz inequality. Eq. (6.3-1) , and integrating over the range Ax

This immediately yields

"iH :C D " (6.3-18)

Except for the factor 1. 053 this is the same as Eq. (6.3-10). Hence, it appears that

the weighting functions are somewhat superfluous. The equality occurs when

both functions are constant over Ax.

Another approach to the problem of bounds has been taken by

Liberman (1962) who wrote a general factorizatlon formula

(l)uu) du 1/2 du (6.3-19)

0 0

where

4Uu) - Au) (1 - e-U) (6.3-20)

and
.,4u -•u-- . (6.3-21)w e'(u) - eL

4 .7T4 (1 - eu)2

293



di

On the left hand side of Eq. (6.3-19), the first integral is the reciprocal of UR

and the seoond integral may be evaluated by means of f-number sum rules

for t - 2, 1, 0, -1, -2. (The Bornstein-Dyson theorem corresponds to

,t 0.) Apparently, the bound for 4 - 2, i.e., a2 I is also considerably

superior to as was shown by computation for hydrogen compared with

the Bernstain- Dyson continuum opacity values. U~berman's result for

, - 2 may be written as

1 i2,
aR &• a2 "19i22 U'2 (u)du (6.3-22)

0

Armstrong (1965) has recently noted that since e.u (1 + u) A 1 , one can

write

u u 2(1+u)e-ud(u)du 4 u 2 2(u")du (6.3-23)

from which It easily follows that

Ju 3 e-U V(u)du 4 u2 (1 -eU) ýL(u)du (6.3-24)

Eqs. (6.3-4) , (6.3-20), and (6.3-22) may then be combined to give

ap • 56.3 a2 (6.3-25)

which offers an opportunity to examine the relative utility of ap and

P•2 as upper bounds for aR

294



>1

Let us consider the two idealized model absorption coefficients shown

in Pig. 6-5 . For the first model portrayed in Fig. 6-5 we understaind

that &-0 unless u << 1 . In this ease we note that

u 2 0 -e u 3 Ou 3 u-u , (6.3-26)

and therefore, calling this first mode. 11 (u) , we can write

Ju3e-u (1) (u)du Ju ' (u) du (6.3-27)

with the result that

ap(1) -. 56.3j 2  ( (6.3-28)

For the second model, we understand that the absorption coefficient

peaks at a value of u(2) >> 1. (In Fig. 6-5 this value is arbitrarily

represented as u(2) - 7). We can now write that

Ju3euA(2)du - C u2g du (6.3-29)

with

C OW u + <( 1 (6.3-30)

and therefore
ap(2) ,56.3 C a2 

(6.3-311
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For u (2)_ 6, 56.3 C is equal to unity, and for u(2) >> 6

56.3 C << 1

Since u - hvAcT, these models are idealized representations of

high temperature E(I.) and low temperature E4 (2) absorption, with

"high" and "low" defined by the relative size of kT and the range of typical

ionization edges end absorption frequencies taken for hv . We can thus

conclude qualitatively that for temperatures of the order of typical atomic

ionization potentials and larger, a 2 < aP and constitutes a better bound

for a. . On the other hand for temperatures below these Ionization

potentials, the inequality in Eq. (6.3-10) is expected to be more useful.

These conclusions are also indicated from the behavior of the

functions that weight IA(v) in the defining integrals for ap and a2

The function u 3 e -u cuts off the high-frequency absorption (compared

with kT), whereas u 2 (1-e-u) does not, but rather, increases monotonically.

Thus, at low temperatures where most of the absorption potential lies far

ahead of kT in the form of lines and edges, aP < 12 " However, at high

temperatures kT has already passed most of the absorption potential (which

lies toward u - 0 in the free-free continuum), and v(v) is decreasing

monotonically, with the result that a 2 < ap

Some confirmation of these predictions can be obtained by a

compar. on of results. Liberman has computed 92 - a2/P for hydrogen

for a range of densities at kT - 5, 10 and 20 eV. Figs. 6-6 (5 and 10 eV)

and 6-7 (20 eV) show his results in comparison with the Stewart-Pyatt (1961)

results for it and K. f which include line contributions. For kT - 5 eV,
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rp Is about I.# Z time. a 2 for the densities shown, and this ratio

clearly increases with kT, while a rough calculation indicates that Ip

becomes approximately equal C2 at about 3-4 eV, and then presumably

P C< r 2 when kT Z 3 eV. Also, as kT increases, KR approachea K2"

The suspicious behavior of WR vs. Z at the low-density end of the 20 eV

S~curve (where KR appears to be on the verge of crossing •2)is probably

due to the Compton scattering contribution included in the Stewart-Pyatt

results, but omitted In the sum rule*
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MOLECULAR
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FIG. 6-2 EFFECTS WHICH CONTRIBUTE TO THE ABSORPTION
COEFFICIENT OF AIR AS A FUNCTION OF TEMPERATURE
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FIG. 6-3 PLANICK AND ROSSELAND WEIGHTING

FUNCTIONS AS GIVEN BY EQS. (6. 2- 8)
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FIG. 6-4 SCHEMATIC ILLUSTRATION OF SPECTRUM LINE SUPERIMPOSED
ON CONTINUUM BACKGROUND. THE REGION BETWEEN B
AND C IS THE LINE CORE, AND THE REGIONS TO THE LEFT AND
RIGHT OF B AND C, RESPECTIVELY, ARE THE LINE WINGS.
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FIG. 6-5 SIMPLIFIED MODEL ABSORP-
TION COEFFICIENTS WHICH
ILLUSTRATE THE DOMINANT
TREND IN (a) HIGH-TEMPERA-
TURE ABSORPTION AND (b)
LOW-TEMPERATURE ABSORP-
TION
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Chapter 7. MOLECULAR ABSORPTION COEFFICIENTS

In this chapter we discuss the molecular contributions to the opacity

of relatively low temperature (< 1 eV) air. Molecular species and transitions

which make important contributions are reviewed in section 7. 1. Less

important molecular contributions are discussed in section 7.2. A review

is made in section 7.3 of actual calculations of the molecular aspects

of air opacities based on the theory of Chapter 4.

One difference between the approach to the (low temperature)

molecular calculations of this chapter and the (high temperature) atomic

calculations of Chapter 8 should be pointed out. Both require independent

study of population and transition probability parameters. They differ however

in the way by which contributing spectral features are taken into account.

Detailed molecular theory is less comprehensively developed than atomic

theory. Thus a priori selection of the probably important contributory

molecular spectra of those species which are expected to be present on

iiiermodynamic grounds is made from general knowledge of the spectra

of the species. Atomic theory is however, well enough developed that

a completely theoretical allowance can be made not only for the structure

of atomic species expected to be present but also for all transitions between

the predicted energy levels.
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7.1 Molecular species and transitions of importance

The major constituents of air are N2 and 02 which react

chemically when heated to form NO . The heating also causes some

lonlzation, Thus N2 , 02 , NO and some or all of their ions might

be expected to be major molecular contributors to the absorption coefficient

air at temperatures below say 12, 000°K (about I eV). Above 1 eV,

dissociation of diatomic species rapidly becomes complete and major

contributions to the absorption coefficient comes from atoms, atomic ions

and free electrons. At relatively low temperatures, say below a few

thousand degrees, contributions from the triatomic species C02 ,

H2 0 and NO 2 (formed from chemical reactions) must also be considered.

In this section we review band systems of the above six major

diatomic molecular species and indicate which of them are major contributors

to the absorption coefficient. In section 7.2 possible minor contributors

are discussed, and in section 7.3 a review Is made of calculations over the

past two decades of the molecular -,ontribution to the absorption coefficient

which have taken these transitions into account. The discussion is mainly

confined to the conventional optical region of the spectrum: 1000 A -

10,000 A which includes the near vacuum ultraviolet and the near infrared

with the ultraviolet and visible regions.

There is an incorrect yet widely held point of view that all electronic

transitions and band systems of N2 , 02 , NO and their ions are well

known, completely studied and analyzed, and that all possible molecular
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constants have been definitively established and tabulated. Conventional

spectroscopic studies have, of course been carried out on these molecules

for many years, but new bend systems and new bands of old systems

continue to be discovered. This is the pattern of contemporary molecular

spectroscopy. Relatively few band systems per molecule, relatively few

bands per system and relatively few lines per band have been definitively

measured and analyzed In the overall study of diatomic species. The

relatively recent identification of the D3 AU - a Chamberlain system

of 02 in the airglow spectrum (see Chamberlain 1958, 1961) and the discovery

of the D2IIu - A2flu Janin-d'Incan system of N2 (see Jnin and d'Xncan,

1958; Grandmontagne, d'Incan and janin,1959; Tanaka, Namioka and Jursa, 1961)

and a number of new systems of NO (Miescher, 1962) are examples of

continuing research on molecules, some of whose spectra have been known for

many years.

The relatively fragmentary and changing state of our knowledge of

the qualitative (wavelength) and quantitative (intensity) aspects of the

spectroscopy of N2 $ 02 , NO and their ions has had an important

influence on the progress of theoretical studies on the absorption coefficient

of heated air as will become clear in the discussion of following sections.

Definitive opacity calculations require a firm knowledge of the positions

(wavelengths) of all possiole contributing features and of the transition

probability parameters of each. Our knowledge of both of these aspects

of the spectra of the six important diatomic species has been incomplete

because of the motivation of much of conventional molecular spectroscopic

research. One major aim of such work is the determination of molecular
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constants from which molecular structure may be inferred and discussed.

Bend systems are excited and measured so that sufficient vibrational and

rotational analyses may be made to determine for each electronic state such

vibrational constants an me, we, w.y. and such rotational constants as

e (from which the equilibrium internuclear separation re may be determined)

a 0 etc. Some of these symbols have been discussed in Chapter 4

and are more fully discussed by Herzberg (1950). When sufficient bands

have been identified and measured to provide the vibrational constants,

and sufficient bands have been rotationally analyzed to provide the rotational

constants, the motivation disappears for more extensive measurements and

analyses which, except for uncovering perturbations and predissociatlons,

will not provide much more information on molecular structure. Thus perhaps

only 20% of the known bands of a system have been rotationally measured and

analyzed. Seldom have vibrational levels been followed to the dissociation

limit of the electronic state. Few laboratory sources of spectra excite high

temperatures such as are discussed in opacity calculations, and thus the

positions of rotational lines at very high rotational quantum numbers

(say >100) which are excited In high temperature sources have not been

measured. The prediction of the position of such lines by extrapolation of

the series of expressions determined from analyses of lines of lower quantum

numbers has high probability for error. Systematic rotational analyses of

high temperature spectra of carbon containing molecules of importance in

astronomy Is being carried out by Phillips and his colleagues at Berkeley

(Phillips, 1963). Some years ago Mesdames Gibson and Buttery at Lockheed

made some rotational analyses to high quantum numbers of 2 bands excited
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in a shock tube (Gibson, 1962). The determination of molecular potentials

by the Klein-Dunham procedure often requires a firmer knowledge of

vibrational and rotational constants than has been provided by conventional

analyses (see discussion of Gilmore, 1965). A rough average statement

might be that of the less than 10 bands systems per diatomic molecule

which are known, less than S0 bands per system have been identified and

less than 5-10 bands per systems have been subjected to rotational analysis

of less than about 50 lines per branch. The 'best' constants for band systems

treated in opacity calculations are displayed in Volume 3 of this series

and have been supplied after a critical review of the literature by Gilmore.

Pearse and Gaydon (1963), Wallace (1962a,b) have provided most

valuable compilations of known molecular spectra which illustrate a number

of the above points. Tyta and Nicholls (1964a,b, 1965) and colleagues are

producing identification atlases of molecular spectra.

From the above remarks we may conclude that in a practical sense

molecular contributions to hot air opacity, and the manner in which they are

allowed for, differ from atomic contributions in two ways:

a) Although there are far fewer band systems per molecule than lines

per atom, the closely packed, multi-line structure of the band

systems, which becomes more extensive at higher tempei Itures

as the high rotational levels become excited give rise to broader

regions of opacity than are contributed by atomic lines at the

same temperature.
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b) Our detailed theoretical knowledge of molecular spectra and

molecular structure is far laus comprehensive than the comparable

state of development of atoicrd theory. Thus in theoretical studies

of molecular opacity, appeal has tj "• made to experimental

knowledge of molecular spectra to decide which spectral features

should be included in the opacity calculations. In atomic calcula-

tions the theory is comprehensive enough not to have to make so

direct an appeal to experiment.

With the above remarks as background, we now review a partial lIst

of band systems for the important species N2 ' 02 0 NO and their ions.

Gilmore (1965b) in a discussion of the known potential energy curves of

the electronic states of these molecules has in his Table 1 made a complete

list of all known electronic transitions between the states. Some of these

transitions are only known by virtue of one or two bands as may be seen by

comparing his list with the detailed compilation of Wallace. Accordingly

we list here the majo band systems of the species in Tables 7-1 - 7-6

which also contain information on wavelength extension of the systems.

These tables are illustrated in Figs. 7-1 - 7-6 with simplified energy level

arrays on which the electronic states and transitions are indicated.
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Table 7- I

MAORMWD SYSTBCMS OF N2

Far Vacuum u.V. Birge-HoPfleld, Worley,

920-1644 Mrge-Hopfleld (a) b'lI -XI•+
U 995514f rge-Hopflejd (b) - Worley b 1 Z E-xU g

120 3-2602 
Lyrnan- Birge-Hopfield 

a11/g XIE g
1333-2004 Wilkinson-Mulliken a1 1 +
2019-2232 

-u g2034-2786 Fifth Positive 1z- '- -

g u
2138-2733 Herinan-K~aplan 

3E+-Ar2224-3661 Gaydon-Herman Singlet Systems (b,4, p',d,m,oru kdhg

s',d',h,e) -all
2256-2904 Fourth Positive C -31 . B311

Ug
2263-2855 Kaplan's Second Y 11g - W lU
2333-5060 Vegard-Kaplan 

A3_÷ -I E+
2369-2477 LofthuS 

ZIA. - W 1g
2687-5482 Second Positive C3 _ -31, -

63 94166-5076 Goldsteln-Kaplan 
C ,u - B31gu3 .

4273-4p First Positive 3 - X3r+
5047-6336 Gaydon..Green 

pb u 3Probably 3r _ 31
6058-8900 Infra-red Afterglow - 3 - 3a r•u - B311

31g
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Table 7-2

MAJOR iAND SYSTEMS OF 02

Wavelanath Ranae WName

1958-5720 Schumann-Runge B3,:- _X3jg

2540-6541 Herzberg U c E_ - Xru
2562-4881 Herzberg I A3 'u - X3 9

2570-2630 Herzberg MI D3 AU - X3rT

3650-4840 lroida-Gaydon A3 E:+ - b1 E'u g
3700-43 80 Chamberlain Airglow C3 Au - a 1Ag

5795-8645 Atmospheric blEz -X3,;

9 g
1. 27 - 1. SOW Infra-red Atmospheric saIg - X3,g

1.914 Noxon b1E4+ -aIA
g g

Table 7-3

MAJOR BAND SYSTEMS OF NO

Wavelenath Rance (W kama Transition

1455-1888 B - x 2n

1461-3459 y A21:- X2n

1462-2392 € D2 - X2II

1475-1870 y E2r - X2n

1504-2060 B'2 -X2

1910-2415 6 c2T1 -X2

2018-6511 8 B2i - x'r

5225-8021 Ogawa 1 - B2fl

6000 Feast 1 D2: - A2r

7725-9733 Ogawa 2 b4E - a

1. Feast 2 E2 " - A2E

1.36 - 5.330 Vibration-Rotation X2rn - X2fl
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Table 7-4
MAJOR UlND SYSTEMS OF N+

2-WalenatJ RanTr 
nsitim n

1377-2060 Second Negative 
-2E X2r+

2240-30 70 eanin d' Incan D2fl . A~u
2913-5865 First Negative a2E+ X- +

5516-17706 2om. -

5 S161706Melnel A2 u _X21:+

Table 7-5
MND SYSTEMS OF 0

Wavelenath Ranag CA)
2060-6103 

Second Negative A2nlu - X2M
6992-7891 

First Negative bA - a4fu

g u

Table 7-6
BAND SYSTEM OP N0v

Wavelenat Ranae W.j

1160-1680 Mtescher-Bher AT - X 1Ir +
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Different transitions of course dominate different regions of the

spectrum and to various extents. In the calculations which are reviewed

in section 7.3 the most common molecular and atomic contributors to the

spectral absorption coefficient of heated air are listed in Table 7-7.

These certainly seem to be the major contributors, but the Tables 7-1 -

7-6 and Figs. 7-1 - 7-6 raise the possibility that other transitions (e.g.,

N Melnel, Janin-d'Incan, N2  Brge-Hopfield, etc.) should eventually

be incorporated in the calculations. Many of the transitions listed in

Table 7-7 are spectroscopically quite complicated. For example each band

of the N2 First Positive system has 27 branches. Nicholls (1962) has

recently discussed many of these systems and what is known of their

transition probability in the context of aeronomical (auroral and airglow)

luminosities. Spectroscopic data for many of these transitions are listed

by Gilmore in Volume 1 of this series.

314



Table 7-7

MOST COMMONLY TREATED ATOMIC AND MOLECUIAR CONTRIBUTORS

TO THE ABSORPTION COMIPPCIENT OF HEAT IR

Atomic Contributors

0 , 0, N : Photoelectric transitions

e z Free-free transitions

Molegular Contributors

First Positive, Second Positive, Lyman- Mrge-Hopfield, Birge-Hopfield

First Negative

Schumann-Runge

0 y , Vibration-rotation

NO2
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7.2 Less important molecular species and transitions

Minor contributors to the absorption spectrum of air which have

to be considered briefly are: a) contributiuns from minor constituents

of the atmosphere; b) contributions from other band systems of major

constituents than those listed in Table 7-7. So far very little quantitative

account has been taken of minor contributors in calculations of absorption

coefficients.

Gilmore (1965a) has made a recent assessment of the relative

importance of minor contributors and has made approximate quantitative

estimates of their effects.

The minor atmospheric constituents are CO 2 and H2 0 . NO 2

formed from chemical reactions in heated air also has to be considered. As

the temperature rises, diatomic dissociation and reaction products of these

molecules also have to be considered. Such products as CO , OH ,

CH , CN , NH are probably present in small amounts and all have band

systems wh.ch could contribute to the absorption coefficient. Their parent

triatcmir- molecules are in such relatively small concentration that the

effect of such diatomics would probably be quite smali except in spectral

reions where the effect of major contributors is small and the air is

effectively transparent.

1:i the vacuum ultraviolet region of the spectrum Gilmoi-e (1965a)

calls attention to the possible importance of the Birge-Hopfield bT1 u - X1E
u g
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and u - rg systems, particularly bands of them which originate in

absorption from high vibrational levels (- 10) of the X I state. He is
g

able to explain Wray and Teare's (1962) measurements of absorption

coefficient of N2 and 1270 A as a function of temperature, in terms of

contributions from these band systems. There are many other band systems

of N 2 in the vacuum ultraviolet which may also make some contributions

(see the review of Wilkinson, 1061). Intensity data for all of them is very

sparse. The CO Fourth Positive System (AWIT - Xlr) may also make a

contribution in the vacuum ultraviolet absorption under conditions of a

significant concentration of CO . It makes such a contribution in the *1
solar atmosphere (Goldberg, Parkinson and Reeves, 1965). NO also has

many systems (Miescher, 1962) which may contribute. Possible consideration

should be given to the Wilkinson-Mulliken a - X gsytems of N.
1+u g

and the Hopfield-Birge systems B r+ and bE+ - XI E of CO

Gilmore points out that In the visible region of the spectrum the

major constituents of air are transparent and in this region some of the minor

contributors may have significant effects. Account has been taken of the

very complex spectrum of NO 2 (Mueller, 1963) in a number of calculations

of absorption coefficient. It is very difficult to deal with this spectrum in

such calculations in any more than semi-empirically. It undoubtedly plays

a role at low temperatures.
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The CN Red (A2WT-X2r) and Violet (B2,-X2•) systems may make

some contribution bec~u~e the N arises from a major constituent. Their

spectroscopy is fairly well known. They lie in the same spectral region
as the N2 First Positive and N+ First Negative Systems, and for this

2 s

reason discrimination between contributions from CN and the N2 and

N2 may present difficulties. Absolute band strengths are available from

some CN Violet (Nicholls, 1964) bands. While intensities

for CN Red have been measured (Dixon and Nicholls, 1957) there is not

agreement between recent lifetime measurements (Wentinck, Isakson and

Morreal, 1964; Jeunnehomme, 1965) using the same method. Jeunnehomme's

measurements appear to be the more reliable.

Although firm spectroscopic knowledge of them is fragmentary, some

account may also have to be taken of N 2 and CO systems whose lowest

electronic states are in the first two or three excited states of the molecules.

N2 First and Second Positive band systems are strong contributors and in

this position. There are other contending N2 systems in the same position

about which much less is known, e.g., Herman-Kaplan (E3 7+ - A3k+)
g u

Fourth Positive (D 3+ - B3H ) , Goldstein-Kaplan (C' 3T - B3 T!),u g U
Fifth Positive (x 1Z - a'llr), etc. and a number of others (see Fig. 1)

g U
(see Pearse and Gaydon, 1962; Wallace, 1962a; Lofthus, 1960). There

are a number of similarly situated systems of CO e.g., Cameron (a 3W - xl:)

Third Positive (b33r - a3 11) and a number of others. Some of these systems

are admittedly weak (i.e., difficult to excite in emission) others are of
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moderate strength. Until they have been shown to have negligible transition

probabilities they should not necessarily be ruled out as possible contributors

to the spectrum of heated air.

The obvious minor contributors to the near infrared spectrum of

heated air are NO2 CN Red, N2 Infrared Afterglow (8'3r- B3 ag)

CO Asundi (a' 3'F+ - a3 n) , N+ Meinel (A2fl - X2 E), NO Ogawa (b 4 - - a 4 n),

in addition to the vibration-rotation spectrum of NO , NO 2 . CO , CO2

N2 0 , CN and NO+

Until we know more of the probable relative populations of the

minor species and of the general qualitative and quantitative spectroscopy

of the types of band systems cited above, it is profitless to speculate further

on their probable contributions.

7.3 Review of calculations of the molecular contributiorn to the

absorption coefficient of heated air

Calculations on the opacities of hot gases have been made for many

years in astrophysical situations; such work is the heart of traditional

astrophysics (Aller, 1963). It is directed towards an understanding of

planetary and stellar envelopes and various models of them. The calculations

often involve gross average absorption coefficients of a relatively small

number of contributing species. The Planck- and Rosseland Mean absorption

coefficients were thus developed in astrophysical discussions of stellar

atmospheres, and for the solutions of the appropriate equations of transfer.

During the past two decades as interest in the earth's atmosphere

increased, similar, but more detailed calculations of the absorption coefficient
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of air have been undertaken. The calculations have been made for a wide

range of temperatures and densities, and have taken account of chemistry

and of as many spectral features of known atmospheric constituents as

possible. Those contributors to the air absorption coefficient which have

been thought to be most important were listed in Table 7.7. The motivation

of recent quantitative work on absorption coefficients is of specific interest

in such artificially induced high temperature aeronomical phenomena as

high altitude nuclear explosions (in which radiation is a very important

mode of energy transfer), and the entry of high speed bodies (meteors,

spacecraft and missiles) into the atmosphere.

While the first calculations were of broad average absorption

coefficients, our current knowledge of air constituents, chemistry, and

spectroscopy of air constituents, incomplete though it be, has recently

led to a number of more detailed calculations of increasing sophistication.

It is the purpose of this section to review what studies have been made

and to attempt to place them in perspective. Nearly all of them have

been made on the assumption of the existence of thermal equilibrium. Non-

equilibrium effects undoubtedly occur and are difficult to allow for. A

discussion of such phenomena is given in Volume 4.

Many of the calculations of absorption coefficient of heated air

are unfortunately only described in reports of contract-supported research,

which are not universally available nor completely abstracted. No claim

can be made here that all such reports have been reviewed. Some of the

work has, of course been published in the open literature, and it is hoped

that a representative selection of such papers are discussed below.
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The original studies which were necessarily classified at the time

were made In connection with nuclear weapons development in the early 1940's

at Los Alamos. Some of these reports have now been declassified. Two

'Opacity' conferences co-sponsored by the Los Alamos Laboratory and the

Air Force Special Weapons Laboratory were held at Kirtland AFB in the summers

of 1963 and 1964 and were particularly useful for a general orientation of

the field. Two status reports (Huebener and Stewart 1964, 1965) arising in

part from the conferences provide a fairly comprehensive, author-supplied list

of workers in the field and studies being made. The second of the conferences

was published I in The Journal of Quantitative Spectroscopy and

Radiative Transfer, Volume 5, No. 1, Jan./Feb. 1965. The papers in that

proceedings (some of which are referred to here) provide a good orientation

In the current state of the field.

All the molecular calculations were based, In principle, on Eqs. (4. 1-27),

(4. 1-33) and (4. 1-34). The earliest calculations involved very broad averages,

later calculations, although they also involved averages took account of

individual band systems, and later individual bands of the systems. The

latest calculations incorporate a study of the absorption coefficient line by

line of each band. It is clear from the above equations that In common with

atomic contributions all of the calculations involve two stages:

a) Statistical Thermodynamic considerations to evaluate NL

for each contributing species as a function of overall

temperature and density

b) Spectroscopic considerations for the frequency of the spectral

feature and the strength factors Se1 = Re2(Fv1 v) q and SPA,,
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The studies reviewed below include the early pioneer work of the

1940's (section 7.3. 1), the approximate, yet more detailed calculhtlons

of the 1950's (section 7.3. 2), and the recent entirely computer-based work

of the 1960's (section 7.3.3) in which a realistic attempt is made to take

the effect of all probable absorbers into quantitative account.

7.3.1 Early Work of the 1940's

The earliest discussion of the molecular contribution to th6

opacity of heated air was by Hirsohfelder and Magee (1945) and Magee

and Hirschfelder (1947). They made a preliminary quantitative dis-

cussion of such phenotnena as the luminosity of the shock wave which

accompanies a nuclear explosion, and the effect of the opacity of

the surrounding heated air in impeding reducing energy loss by

radiation. They made estimates of the contribution to the mean

absorption coefficients from bound-free photolonization transitions

of 0- , N-, 0 , N , free-free transitions of electrons in ionic

fields and of the molecular species O0 and NO2 . The Rosseland

mean was estimated over the temperature range 2000-20,000 K.

The emphasis was not at all on the minutiae of spectroscopic detail

of the absorption coefficient. In all of this work, which remained

classified for about 10 years, and in common with many of the more

recent calculations, thermodynamic equilibrium was assumed.
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7.3.2 A&groximate methods of 1950's

During the 1950's and as a result of renewed interest in nuclear

explosions and re-entry phenomena, a series of theoretical studies of

heated air absorption coefficients were carried out at Rand, Lockheed, AVCO

Los Alamos and other laboratories.

Much of the work was based, insofar as molecular contributions were

concerned, on Eq. (7.3-1), written in a number of equivalent forms,

JWv 2 Re (v•'vv) " v'v. SjoleoViju b(v) (7.3-1)V''" E vLR vv 8I'IJT

where the summation is over the spectral features which fall at v . Many

of the calculations used the tables of Gilmore (1955) for the population

factors NL . The differences between the studies reviewed here Is

predominantly in the way in which the meagre transition probability data

was used and in the averaging techniques were employed. The absorption

coefficient has often been calculated, aa Indicated in Eq. (4. 1-33) in a

series of increments Av using a 'smeared rotational structure' averaging

procedure. According to Eq. (4.1-29) the band oscillator strength may be

written

vi v'vi) v'v" (7.3-2)fv.v i • v, v 6 e

Thus from Eqc. (4.1-33) and (7.3-2) the average absorption coefficient in

Av is - &, E-Fd NL fv'v" Av (7.33)

Bands AiV
Lack of information on R (r) for a number of band systems at the time of these

early calculations forced the use of an Oelectronic oscillator strength" Iel

for a whole band system (see Eq. (4.1-36), where

fel R (7.3-4)

Sis a characteristic average frequency for the whole band system, and

Re is similarly a characteristic average of the transition moment square.

Eq. (7.3-2) may thus be approximately written: (see Eq. (4.1-37))
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f v'v" " f6 qv'v" (7.3-5)

Finally Eq. 7.3-3) may be approximately written

ci AV N___qvv"A (7. 3-6)
"V A V Fa aBands Av

This equation has been the basis of a number of calculations discussed

below.

Meyerott (1955) briefly reported on, and gave tables of discrete and

continuous contributions, total and Planck Mean Absorption Coefficients

of heated air at the temperatures 60000, 80000, 12,000°, 18,000°K, for

the density ratios 10, 1, 10-3, 10-6, in 0.25 eV increments of the spectrum

from 1 eV to 12 eV. No detailed band structure was assigned and a smoothed

Very approximate equations such as Eq. (7.3-5) have led to the use

in some of the literature on absorption coefficients of such erroneous

equations as

fspectral fel f vib frot (7.3-5a)

feature

which, since oscillator strength is (frequency x transition strength)

apart from a constant, is a meaningless statement. It is the transition

strength which is separable (under well defined circumstances) into

factors for vibration rotation and electronic motion. Recall

sLvuuA' . R2 (Fv~vu,) J"A'
Uv'I'A' e 2 v" v WJ"A" (4.1-14)
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absorption coefficient was computed. Lack of information on band

strengths or even electronic oscillator strengths of systems forced

him to use an estimated f - 0.2 for all contributing band systems.e

The data were presented so that contributions from different band

systems could easily be rescaled when f values became available.

Meyerott (1956) published the bases of the 1955 calculations

and presented extended tables of data. He used Eq. (7.3-6) and a

'smeared' rotational structure assumption. Gilmore's (1955) tables

were used for NL , and the following contributors (Table 7. 8) were

included:

Tablh 7.8

1) N2 : First Positive, Second Positive and

Lyman-Birge Hopfield Systems

2) N : First Negative

3) NO : 8 and y systems

4) NO2 :

5) O, 0, N, N2 Photoelectric (bound-free)

transitions

6) e : Free-Free

This list is very similar to Table 7. 7. Where firm data specific to a

contributor was not known, an appropriate approximation had to be used.
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f was set equal to 0. 2 for all diatomic band systems. Tables of

approximate Franck-Condon factors were available from the work of

Fraser, Jarmain and Nicholls (see references in section 4.3).

Measured room temperature absorption coefficients of NO 2 were

used. Insofar as the contributions from atomic species, these are

discussed more fully in section 7.4. Branscomb and Smith's (1955)

experimental and Bates and Massey's (1943) theoretical photo-

dissociation cross sections for 0 were used. A hydrogenic

model was used for the bound-free photoelectric cross-sections of

0, N, N2 (see p. 180 of Aller, 1962) and for the free-free contribution.

Tables were given of u f for each contributor and in total

at frequency interval equivalent to A(kT) - 0.5 for 30000, 60000,

80000 and 18,000°, density ratios of 1 and 10 over the wave-

length range of 1700A-5 microns,

Although admittedly approximate in many details this was

the first set of absorption coefficient calculations in which an

attempt was made to take quantitative account of a number of

atomic and molecular contributors. It laid the groundwork of

more extensive calculations in a number of laboratories.

Meyerott (1958), in a discussion of the radiant heat transfer

from the bow shock wave to re-entering hypersonic vehicles pre-

sented a further refined version of the previous calculations in

which specific values of fel were assigned to each molecular
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transition. The measurements of Marmo (1953) and Weber and Penner (1957)

(see Penner, 1959) were used to assign fel of 0.008 and 0.0025 to the

NO $ and y systems respectively. The measurements of Ditchburn

and Heddle (1953, 1954) (now thought to be overestimated) were used

to assign the value 0.259 to the 02 Schumann-Runge system

(including the photodissociatlon continuum). Experimental work from

the AVCO laboratory (see below) was used to provide provisional

f values of 0.02, 0.07, and 0.20 for the N First and Second

Positive and N2 First Negative Systems respectively.

An experimental and theoretical program on emission from

shock heated air was started in the AVCO laboratories at about

the same time. The relation between emission and absorptiun

coefficients has been pointed out earlier.

Keck, Kivel and Bethe (1957) of AVCO discuss in their first

paper a simplified theory to take account of NO emissions. They

used a distorted SHM method to compute qvv ,,-values for the NO 8

arid y systems. They also state an expression for the average

emission from the gas. In a second paper (1959) Keck, Camim,

Kivel and Wentinck interpret a mainly experimental study of hot air

emission from shock tubes in terms of the underived expression
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Eq. (7.3-7) based on a formal 3mearing of band structure

HL r 11r 0 X3 fe ýP k exp [ (#) (7.3-7)

It appears that the basis of the averaging procedure has been to assign

to each band in the system just a Q-Branch (6 - 0) to represent all

rotational structure, whether or not a Q-Branch is formally allowed

or not. All of the band intensity is then supposed to be vested in

the fictious Q-&ranch over the profile of which summations or

integrations can be made. In Eq. (7.3-7)

2
r= radius of classical electron

mc

fe "- 3mc Re 2  electronic f-nurber of the band system

1X] " concentration of absorbing species
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cp is a dimensionless quantity resulting from formal

Integration over the assigned Q-Branch and =

he V,,11 R,, ,'- "') ER E

X is the wavelength of the (0,0) band of the system.
00

ft and QR" are the vibrational and rotational contributions to the

partition function of the ground state. The E's are vibrational and

rotational energies of the upper state. On the assumption of thermal

equilibrium,Keck et al. state that the emission power over the wavelength

band (AX) of the spectral slit is

d' 7r. 2hc 2 fe, iX] t <0> X5 hQT exp(-hc/kTA.A)
dA d0 dX/ X < kT

Al +(7.3-8)

6 2
where <qa> " X M>:- X- rd).

AX X Al2

They were thus able by a comparison between the power profiles of measured

emission spectra and those predicted from Eq. (7.3-8) to assign those fel

values to each of the trensit.ons which make theory and experiment agree.

These were in part the fel numbers used by Meyerott (1958). The

theoretical method has been used subsequently by a number of workers,

for in spite of its approximate averaging procedure, It Is well adaptable to

computer application. Golden and Miller (1963) used the method to compute
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the spectral absorption coefficients of band systems of atmospheric gases

an, ,,etallic oxide.s, and to plot (by computer) their results graphically.

Temperatures were, characteristically 10000(1000)60000. The best available

input data from the iiterature were used. Ashley (1964) used the method to

study emission from equilibrium air over the wavelength range 3800A-6500A,

for temperatures 1000 0 K(1000)8000, 12,000(6000)240000K and for density

ratios 1(1001)10-6. He also used selected experimental input data, and replaced

fel by 3 la- ao { where R a(FV,,0J) were from the compilation of

Kock, Allen and Taylor (1964) which is not entirely without objection. Main

and Bauer (1965) has used the method to study opacities of carbon-air

mixtures frolm J0000 to 10,0000 and wavelengths from 1400A to 2 microns.

Main end Bauer, Ashley,and Golden and Miller all provide clear

discussions of the theoretical basis of Eq. (7.3-7). Patch, Shackelford and

Penner (1962) have carried out similar calculations using the same method

and have demonstrated, for NO, equivalence between the method of

calculation based on Eq. (7.3- 7) and that used by Meyerott based on Eq. (7.3-6)

Meyerott, Sokoloff and Nicholls (1960) extended Meyerott's earlier

work and employed improved experimental data in calculations based on

Eq. (7.3-6). Contributions from N2 (First Positive, Second Positive),

+ (First Negative), 02 (Schumann-Runge), NO 2 (O,y) were calculated in

addition to those from 0 0, N, and e . Gilmore's (1955) tables of

NL were used. Franck-Condon factors were obtained as before from the

work of Nicholls and co-workeds, fel values from the AVCO laboratory

wero used for N2 and N2 systems. Weber and Penner's measured

values were again used for NO systems and Ditchburn and Heddle's
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measurements were used for 02 . Calculations were made over the

following ranges of parameters

T: 1000(1000), 4000(2000)8000, 12,000OK

/0o: (I0"11) 10-6

X: 1. 9837 microns to 1167 A in 0. 25 eV intervals.

A typical result of such calculations of absorption coefficient is displayed in

Figs. 7-7 and 7-8 for conditions (T - 6000 0 K, P/0" 1) which emphasize molecular

contributions.

The relative contribution of each band system is indicated as a

function of temperature for atmospheric densities in Fig. 7-7.

There are many limitations to the accuracy of this calculation, but

the results are probably realistic to an order of magnitude. It could have

been improved by using a version of Eq. (7.3-1) but ths necessary band strengths

were not available at the time. Armstrong, Sokoloff, Nicholls, Holland and

Meyerott (1961) reviewed the development of this sort of calculation which,

apart from the improvement which could be effected by use of band strength

represents almost the ultimate in such 'smeared' or 'smoothed' model

calculations.

"i
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7.3.3 Calculations with the SACHA Code in 1960's

The next improvement !n such calculations takes account of the

detailed rotational structure of the contributing molecul,3- absorbing band systems.

The amount of labor involved in this is enormous and is only possible by recourse

to large scale computing facilities. The only known work of this nature has been

donte during the past 5 years in the Lockheed Research Laboratories by Churchill,

Hagstrom, Landshoff and Mueller. A comprehensive computer code: S(spectral)

A(bsorption) C(oefficient) of H(heated) A(ir) has been written which takes account

of the detailed structure of the spectrum line by line.

The first calculations of this research program were described in a report

by Churchill, Hagstrom and Landshoff (1963). The essentials of this work, with

some extensions, were recently published (Churchill and Meyerott, 1965) and the

latest results of this program are described by Churchill, Armstrong and Mueller

(1965) and typical results from this work are included in the tables in Table

7-12. Churchill, Armstrong &nd Mueller's report includes a discussion of

the contribution from atomic species, as described in detail in section 7.4 below.

The calculations with the SACHA code are based, in principle

on Eq. (7.3-1). The absorption coefficient u at a frequency v in

a rotational line is given by

; L.vcj I hv, v.. b(v) (7.3-9)
u NLV.. Lv"J" Lv'v"J"J

Now, from Eq. (4.1-32)

• v, " " " f 3 2~c [.. (T I",Ovv W +
R2(Fq+# (7.3-10)

where 8P, is a simplified notation for the Hdnl-London factor of the I"

line in a specific branch considered.
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Further from statistical mechanical considerations in equilibrium air

N(2J"+1) w I exp(-ELv../AT)
NLvI,, = LvT" (7.3-11)

N it the particle density of the species In all levels which can in principle

be obtained from Gilmore's (1955) tables. wI Is the nuclear spin statistical

weight. Q is the total partition function which has a contribution from each

electronic state n . Two values of n are U and L; there are in

principle many others, i.e.,

S1- (n 7.3,-121

Further Qn may be factored for each electronic state into contributions

from each of the internal degrees of freedom of the molecule. That Is,

Qn Qel. Qvib-rot. Qnuclear (7.3-13)

where

Qel " wA (2S+1) exp(-voohcAT) (7.3-14a)
oexp[-G(v) hcAT.rot (7.3-14b)Ovib-rot. V,-0 exp QG(V c/T] t

rot - (2j 1J1) expE-Fv0O)hcAT]I d (7.3-14c)

Qnuclear = (21+1) (2lb+1)/• (7.3-14d)
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Nearly all of the spectroscopic symbols are conventional (Herzberg, 1950).

UA Is the statistical -ve.,jht for orbital angular momentum (G or 2) dependlng

on whether A is zero or nonzero. Ia and Ib are the spins of the two

nuclei and 0 is a symmetry number which Is Z for homonuclear molecules

and 1 for heteronuclear molecules. It should not be confused with the line

width. The approximate formula developed by Bethe (1942) and corrected

by Brinkley (see Brinkley, Kirkwood and Richardson, 1944) for Qvib-rot to

brI (1+yT) (7.3-14e)Qvib-rot "1- ext(- 1.438e to/v 0 T . 4388Bo0

o and 8o are vibrational and rotational constants for the v- 0 level.

y is Bethe's correction for anhatmonlcity aid non-rigidity.

2w0x0 + C +(731f
1. 4388w r 2o (o 1o

With these substitutions Eq. (4.3-11) may be rewritten:

Q w (2j"+1) exp [-JG,(v" + Fvsi(Jj2 (
NLv".." - Ntotal otal (28+1)WA Onuclear Qvib-rot

where ELve616 has been replaced by hE[vo+ G (v") + F v(J")]" v is

L00 0 v 00

tn the Doltzman factor which controls Ntotal I the concentration of the

absorbing species.

Write Pn" W Qn,,/Qtota] (n"'L here) (7.3-16)

which is the fractional population of the n" 'th electronic state.
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This allows the definition of a function H which contains only molecular

•''•n . halt & h

HnvJ' vI R!(f 4 00) q of A 1" (7.3-17)
Hn"v"J" = 3hc (2A+ 1) wA Qnuclear n-nv-j 0 v v v'v J. .

Also define E " G [. (v") + F,,VA")] hcA (7.3-18)

L - 2.6875 x 1019 particles per cc and is Losohmldt's number.

Eq. (7.3-9) may now be written in compact form using Eqs. (7.3-10), (7.3-15)

(7.3-17) and (7.3-18)

LL° [oQvIb-rotj Hnv"ofil exp(-E V0;./T) n b(v) (7.3-19)

This is the equation on which the SACHA code Is based. H and B are

quantities which are characteristsc of the isolated molecule and are thus

Independent of temperature and density. Temperature and density control

the dimensionless bracketec term and the exponent. H has the dimensions

-2 +1
of (length) . The line profile b has the dimensions of (length)

The equation is thus dimensionally consistent as uV has the dimensions

(lenqth)- . While there is provision in the general SACHA code for any

line profile function it has been found useful to employ the physically

reasonable Lorentz form (see Eq. 7.3-20)) which represents pressure broadened

lines, and to use the line width parameter a as a controllable assignable

constant which can be varied from calculation to calculation in parameter

studies.

nv" (7.3-20)
nf a2 + _N V nvI,,)
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The six bend systems: N2 First and Second Positive, N2 First

Negative, NO 0 and y , 02 Schumann-Rungs were Incorporated in the

first set of calculations (Churchill, Hagstrom and Landshoff, 1963). Such

a calculation requires a detailed examination of the spectroscopic structure

of each band system and of the branch structure of each band within the

system. This procedure is reviewed in Appendix Al where the necessary

spectroscopic properties of the above six band systems are listed and

illustrated. The procedure has also been discussed by Churchill and

Meyerott (1965). An atlas of all important lines of the six systems is

assembled by computer on magnetic tape. The following computed data

is stored (for further computations) for each line

v (frequency) a (Identification parameter) IH , £0C

The Identification parameter a is an octal number formed from the upper

and lower vibrational and rotational quantum numbers, a branch (of the band)

identification number and the band system identification number. The

calculation of v H and B for each line involves recourse to the

spectroscopic structure of the band system and the Eqs. (7.3-21), (7.3-17)

and (7.3- 18)

MTN '' +o(V') - Go(v") + F, .) - F'(Ju) (7.3-21)

In the Churchill, Hagstrom and Landshtff (1963) calculations, the following

input data was used in the calculation of H . The statistical weight and

frequency data were calculated from standard spectroscopic data (Herzberg, 1950).

The constant Re approximation was adop'ed and the values of Re were

taken from the measurements of Treanor and Wuster (1960) (0) Bennett and

Dalby (1959) (N2) and the recommendations of Meyerott, Sokoloff and
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Nicholls (1960) for the other systems. Franck-Condon factors were taken

from the calculated values of Nicholls (1960, 1961, 1962). The ffOnl-London

factors were calculated appropriate to the branch of the band under

consideration (see discussion of Section 4.2).

The final atlas tape for these calculations contained data for 151,528 a.

lines are as listed in Table 7.9.

Table 7.9

System Number Bend System Number of Lines Treated

. 02 Schumann-Rungs 13,836

2 N2 First Positive 58,476

3 N2 Second Positive 16,750

4 N First Negative 21,306

5 NO B 15,760

6 NO y 25,400

Total: 151,528

The atlas tape was then used in the line by line calculation of u•

from Eq. (7.3-19). Population factors N were taken from Gilmore'stotal
(1955) tables.

The wealth of data which emerges from such accurate calculations

requires that some averaging or merging be done before the data is printed

or plotted. Two types of averages have been computed using the SACHA

code: a) mean absorption coefficients and transmissions for use in

transport calculations; b) incremental absorption coefficients for each

contributor summed over small frequency intervals (see Eq. (7.3-3)). The

mean absorption coefficients are discussed here as they were the major end

result of the calculations of Churchill, Hagstrom, and Landshoff (1963).
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I is recalled from the discussion in Chapter 2 on radiation

transport that the effective absorption coefficient 4 which incorporates

the affect of stimulated emission is given by

- %U (1 - exp- hvAT) (7.3-22)
V

The obvious average absorption coefficient to consider (see b above) is

the incremental coefficient

SAV r+AV dv (7.3-23)
AV

Av is chosen to be large relative to the width of individual 1 nes yet

narrow enough to contain only a few lines. Calculations of this nature

were made in later applications of the SACHA code (see on).

It will also be recalled (see Section 6.2) that two mean absorption

coefficients can be defined for use In radiative transfer studies.

a) The Planck Mean CLp(T) is uced in optically thin cases

up(T) J' B• dv (7.3-24)
l •dv

b) The Rosseland Mean • R(T) is used in optically thick cases

SJ . "dT (7.3-25)

U.. d ,SJdT d
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I

luth of these can be end have been evaluated using the SACHA code.

B (T) is the Planck function.
V

In cases between the optically thin and the optically thick limits

it is more useful to define a transmission functton Tr(,) .

The transmission of an isothermal homogeneous slab of material

of thickness x is

Tr (v) ex;)[-{ ý( U j V cv)I}X173-6

where a sums over the lines and c refers to continua. The average

transmission at v is

.(v) 1 Tr(v) dv (7.3-27)

In many practical applications the contribution of the continuum can be

neglected. Thus an average absorption coefficient can be defined from

Eq. (7.3-27) in Eq. (7.3-28)

O (v) C(7.3-28)

This equation has been the basis of a number of calculations using the SACHA

code and Eqs. (7.3-26), (7.3-27), (7.3-22) and (7.3-19). Average absorption

coefficients i(v) and average transmissions Yr?(v) have been computed

as a function of temperature, slab thickness, line width (a) for a number of

representative frequencies. Curves are given of these quantities by Churchill,
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Hagstrom and Landshoff for the temperature range 10000 ýT•-12,000°K,

the density range I < p/p 0 < 10-4 and for optical paths from cm to 109 cm.

c was get at 1 cm lor this work and Av was set at 100 cm .

Calculations were made at each 20C0 cm- 1 from about 18,000 cm- 1 to

50,000 cm-l. Typical results of this work are shown in Fig. 7-9.

The SACHA code was also used by Churchill and Hagstrom (1964)

to compute the contribution to the absorption coefficient of air from the NO

vibration-rotation spectrum.

It will be recalled from Eq. (4. 1-8 a) that the transition strength

in this case is

volt M j . dr 2 Sv ll,. S - o. Sl.l,, (7.3-29)

where #v1 and #V0 are both vibrdtional wave functions of the same

family and are mutually orthoconal, M is the total dipole moment, and

Sij is the HOnl-London factor. Assuming electrical anharmonicity, the

dipole moment is expanded as far as quadratic terms

M(W) - M( ] Po + P) g + P2 2  (7.3-30)

Thus the integrated band absorption coefficient (which is often a measured

quantity from which the empirical constants pc' p1 and P2 may be

determined) is
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tf udV VI ,N n ~ ~ O 2V 3hc vIv N-[v *-(o+ l +P29)Band (7.3-31)

"3hc vv" v + 2 #v C2j

The term involving p0  has vanished due to the orthogonality of the #'a

Providing the vibrational wave functions are known, the integrals on the right

hand side can in principle be calculated, and thus Eq. (7.3-31) car. be used to

determine p1 and P2 if integrated Intensities of two ibands have been

measured. The fundamental and the first overtone (1-0 and 2-0) bands are

usually employed. In this way the vibrational band strength SvIv" of

Eq. (7.3-29) can be determined. Churchill and Hagstrom determined this

as follows in a preliminary step of their calculations of the NO vibratUon-

rotation spectium. Breene and Todd (1958) had made some calculation of

the vibrational matrix elements of Eq. (7.3-31) based on wave functions 4

appropriate to Lippincott's (1953, 1955) potential for the ground state of NO .

They went through the procedure outlined above, using Penner and Weber's

(1953) integrated intensity measurements on the fundamental and first overtone

bands of 1,O . Schurin and Clough (1963) remeasured the fundamental and

obtained a somewhat higher value. Churchill and Hagstrom thus scaled

Breene and Todd's values to become consistent with Schurin and Clough's

measurements, and used the new arrays of 8vv, In the H functions

of the SACRA code.

An atlas of v,m ,H,and E values for each of the 25,610 lines was I
then generated as described above for electronic transitions. Gilmore's (1955)

data for N were used and average absorption coefficients and transmissions
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were calculated from 1200(200)2000(500)9000 cm", for temperatures

between i000° and S000° at density ratios 1(10-1)10-4 and for optical

path lengths between 1 and 106 cm. A parameter study was also conducted

on the line width parameter a . Values of 1.0, 0.1 ana 0.01 cm- were

used.

Churchill and Meyerott (1S65) describe In detail an improvement on

the calculations of Churchill, Hagstrom and Landshoff in which contributions

from the molecular transitions listed in Table 7. 10 were taken into account.

Table 7. 10

kne Nud gJlm Number of Lines Treated

1 02 Schumann-Rungo 4,611

2 N 2 First Positive 48,785

3 N 2 Second Positive 20,369

4 First Negative 3,216

S NO 8 18,518

6 NO y 31,429

7 NO vibration-rotation 25,610

8 N2 Birge-I-opfield 38,983

(b' x

The basis of the method was almost the same as described above for the

1963 calculations. Gilmore's (1955) population data were employed and

the NO vibration-rotatlon and N 2 Birge-Hopfield contributions have been

added. No fel (or Re) was available for the N 2 Birge-Hopfield system
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so a provisional value of 0. 1 was assigned to lei The Franck-Condon

factors employed were those of Nicholls (1965).

Average transmission and average absorption coefficients were

calculated for much the same range of parameters as are presented in

Volume 3 of this series. A model study was conducted on the

line-width parameter and values of 1,0, 0.1 and 0.001 (cm-1) were used.

Finally the most recent application of the SACHA code by Churchill, Armstrong

and Mueller (1965, 1966) to the molecular part of the absorption coefficient of

air must be described. It is the most extensive study so far made, and

takes account of the contributors listed in Table 7.11. The atomic constituents

and high temperature results are discussed in Chapter 8.

Table 7. 11 Contributors to the Absorption Coefficient of Heated Air

1: Schumann-Runge bands of 02

2: N 2 : First Positive

3: N 2 : Second Positive

4: N2 : Birge-Hopfield (b' E +u X1 E+
2u g

5: N: Firot Negative

6: NO: R

7: NO: y

8: K0: vibration-rotation

9: 02: Schumann-Runge Continuum

10" NO2

11: 0- Photodetachment

12: electrons (free-free in presence of ions)

13: N Photolonization

14: 0 Photolonizatlon
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Contributors 1-0 were treated by the ACHA code in the manner discussed

beow.t Contributors 9-12 twore continua and were treated in a semi-

empirical way. Contributors 13 and 14 were treated by the PIC code and

are discussed in Char:ter 8.

Insofar as the use of tha SACZHA code in the treatment of

contributors 1-8 is concerned, a number of refinements were used which

had not been employed in previous application. Firstly, band strengths

BvIv,,

2-
Sv'v" = Re(rvIv") q v v (7.3-32)

were employed wherever possible in place of the constant R approximation
e

used previously. The band strengths of aeronomically Important band systems

compiled by Nicholls (1964) were used with some additions to 0.ll in 'windows'

In those tables. Also a new EQU•LXBRrUM code was written and used to

compute the densities of absorbing species. This code takes account of

the newest thermodynamic information on 12 molecular species (including

molecular ioas) 21 atomic species (including single, double and triply

ionized atomic ions) aad electrons present in heated air. Data from this code

was used in place of the classic tables of Gilmore (1955) which have been

used in all previous work. A complete description of the EQUILIBRIUM code

including a printout and data cards Is provided in Appendix B of Churchill,

Armstrong and Mueller's report.
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Most previous applieations of the 8ACzA code have provided

average absorption coefficients or transmissions because of the vast

amount of output involved. In contrast the output of this application

(appendix 1 of Churchill, Armstrong and Mueller's report) is a 385 page

listing of th- absorption coefficient of air for each of the contributors

listed In Table 7. 11, and the total absorption coefficient, over the energy range

range 0.EO(0. 10) 10.70 eV over the temperature range 1000(l000)24,00001

and over the density ratio range 10(10"1)10-6. The results of this study are

reproduced in full in Volume 3 of this series and are illustrated here in

Fig. 7-10 and Table 7-12. Fig. 7-10 compaies the spectral absorption

coefficient of 12,000QK normal density air as a function of photon

energy as calculated by Churchill, Armstrong, and Mueller (1965) and by

Meyerott, Sokoloff, and Nicholls (1960). Table 7-12 is a reproduction of

a typical page of the 385 pages of computer print-out referred to above.

The above discussion is a review of progress In the studies of

the past twenty years on the molecular contribution to hot air. Further

improvements will probably involve the inoorporation into BACHA of

contributions for minor constituents when more is known of them, refine-

ment of the experimentally determined input data on line and band strengths,

and improvements on the form of b(v) which Is employed. All of these

improvements require much supporting laboratory research. In particular

our detailed experimental and theoretical understanding of the phenomena

which control molecular line shapes is not very deep.
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Chiter 80 ATOMIC ABSORPTION COEF"ICIENTS

I t has been pointed out in Chapters 6 and 7 that absorption coefficient

and opacity calculations have two parts: a) calculation of occupation numbers

of absorbing species by statistical mechar~ics and, b) calculation of absorp-

tion cross sections for each of the species involved by quantal methods.

The calculation of occupation numbers is treated in some detail in Volume 1

of this series and is also discussed elsewhere in this volume. In this

chapter we are mainly concerned with a discussion of quantal methods for

the calculation of cross sections of atomic constituents of heated air.

A review was made in Chapter 3 of the basic quantum theory of

radiation from which was derived specific formulae for atomic absorption

processes. These formulae involve atomic constants, energy and or angular

momentum eigenvalues, and integrals over molecular or atomic wave-

functions. The theory is applied with some modifications to molecules in f

Chapter 4 where it is shown that because some of the basic integrals involving 4

molecular wavefunctions cannot be evaluated, appeal has to be made to

experiment. The way in which this works out for molecular contributions

to air opacities is described in Chapter 7. However, for atoms, the

situation is much more favorable. There is a wide choice of atomic models which

provide knowledge of energy levels, wavefunctions and complete radial

integrals to varying degrees of accuracy.
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I
8.1 Survey of atomic models

The amount of work involved in formulating an atomic model and solvir -

it for the desired features varies tremendously with the degree of

accurticy required, and as in the molecular case, with the amount of empirical

Information which is available, or which one desires to use.

The choice of an atomic model is somewhat complicated by the fact

that no one model will yield all needed information to a consistently high

degree of accuracy. For example, the Hartree-Fock method, or model,

yields radial wave functions of quite adequate accuracy for most absorption-

coefficient calculations, but the energy eigenvalues one obtains thereby are

typically in error by about 0.5 eV per electron (the so-called correlation energy)

for light atoms. (For references see Table 8-1.) Since we are concerned

with spectral absorption coefficients, and with temperatures for which kT

may not be much larger than 0.5 eV, this error could be significant, if, for

example, these energies were used to determine a line or a photoelectric

edge position. Most of the error in such line or edge positions can usually

be avoided either by an elaborate choice of screening constants or by use of

experimental energy levels (or both, i.e., the screening constants can be

evaluated empirically. See Stewart and Pyatt, 1961.).

The simplest model Is, of course, the hydrogenic, independent-

electron model. This is at one and the same time, the most comprehensive

and useful, but least accurate model available. Most of the opdcity

calculations performed until recently employ either a strict hydrogenic approxi-

mation or some rather limited departure from It. At the opposite extreme
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I

would be the Hartree/Hartree-Fock models with corrections for correlaeton.'

however, It will probably not be practicable to use such advanced and

computaUonial'y complicated models in a general opacity calculation for

some years to come.

In Table 8-1 we give a list of various atomic models which have been,

or can be used to calculate atomic features needed for opacity studies, together

with principal references to these models. The list is indicative only, and

not rigorous nor exhaustive, but is sufficiently complete that the

reader should have little difficulty in extending it. The lack of a reference

under a particular atomic feature for a particular model may mean that it is

not possible to compute that feature by means of the model, that it has not

been done, that it has not come to our attention, or that we consider it

unimportant for opacity applications. Non-separable variational methods

are not included since they have not been widely nor very successfully

applied to the general many-electron problem. For an application of this

method to the ground state of oxygen, see Breene (1962).

In addition to the references in the table, mention should be made

of the tabulation of atomic (and molecular) f-numbers, relative multiplet

strengths, and general atomic structure information a7 C,- W. Allen (1964),

and the National Bureau of Standards Bibliography of atomic oscillator

strengths (Wiese, Smith and Glennon, 1966). We should also explicitly point out

that the extensive calculations of radial dipole integrals in the Hartree-

Fock-Slater approximation by Kelly (1964b, 1965) permits practical use to

be made of this model in large-scale air opacity calculations (see Armstrong,

358



Johnston and Kelly, 1965). The most comprehensive tabulation of hydrogenic

Gaunt factors for free-free transitions, as well as f-numberu and Gaunt

factors for bound-bound and bound-free transitions, is that of Karzas and

Latter (1961). The hydrogenic radial dipole integrals tabulated by Green,

Rush, and Chandler (1957) can be used to advantage for same-shell

transitions (see Section 8.4), and for limited improvements on a strict

hydrog',nic model.

It is not appropriate in the present context to give a detailed

description of each of these models: the details are readily available in the

literature cited. We will, however, describe the "hydroqenic model" in

the next section because of its basic importance, and then discuss a

comparison of some of the most important features of the non-hydrogenic

models which have been used in practice. We present a bibliography on I
photoelectric absorption in Table 8-2 because of the basic importance of this 4
process in atomic absorption of heated air. The bibliography is similar to

that of Ditchburn and Opik (1962), but with a different emphasis and up-dated

references. We have attempted to include the most important general

references, and as many as possible of the papers dealing with nitrogen

and oxygen. Additional references may be found in Ditchburn and 41pk (1962).

A similar table has been compiled for free-free processes, and is presented

in Table 8-3.

359



Table 8-2

Implortant References on Photoelectric Absorption Cross Sections

Kramers (1923)

Milne (1924)

Olppnhelmr (1928, 1929)

Gaunt (1930)

Stobbe (1930)
Maue (1932)

Monxel and Pekeris (1935)

Massey and Smith (1936)

Hall (1936)

8ommerfeld (1939)

Bates, Buckingham, Massey and Unwln (1939)

Bates and Massey (1943)
Bates (1946a, b)

Dates and Seaton (1949)

Seaton (1951)

Weissler (1956)

Bathe and Salpeter (1957)

Seaton (1958)
Kelly and Armstrong (1959)

Armstrong and Kelly (1959)

Armstrong (1959, 1964b)

Burgess and Seaton (1960)

Dalgarno and Parkinson (1960)

Karzas and Latter (1961)

Cooper and Martin (1962)

Cooper (1962)

Dalgarno, Henry, and Stewart (1964)

Johnston (1964)

Burgess (1964)
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Table 8-3

Important Reforences on Free-Free Absorption Cross Sections

Kramers (1 923)

S~Menz-el and Pekeris (I1935)

$ommerfeld (1 939)

Wheeler and Wildt (1942)

Chandrasekhar and Breen (1946)

Mayer (1947)

Berger (1956)

Bethe and Salpeter (1957)

Grant (1958)

Karzas and Latter (1961)

Rre-ne, Jr., and Nardone (1960, 1961, 1963)

Brussaard and Van de Hulst (1962)

Peach (19F5)
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8.2 Hydrogenic an, slmpl ý Coulomb, force models

The hydrogenic model of the atom was quite naturally an archetype

for opacity calculations. This model predicts the dross features of the

p•riodfc table and many of ýhe qualitative regularities cAI atomic spectra.

In addJtion, most features of many-electron atoms become hydrogenic or

nearly hydrogenic In the limit of large orbJal or angular quai.tumn numbers.

The reason for this is that the higher tbh value of the quantum number an

electron has, the smaller is the fraction of its time that is spen, at smail

distannes. At large distances from the nucleus, the residual ion 'or "core")

acts as a hydrogenic point cha.,ge to the electron.

One aspect of the realism of a hydrogenlc model is its prediction,

In agreement with expsrinjent, of a Rydberg-Ritz-type formula for atomic term

valu93 of the form

Z2 x Ryd
ELS - - ILS+ 2(il - A i~sd)

where the atomic teri- Is denoted by L , S for orbital and spin angular

momentum respectively, and Ryd is the Rydberg unit (13• 605 eV). The

hydrogenic shell quantum number is denoted by the integer n . The

"quantum defect" ALSA is a measure (together with the ionization potential

ILS ) of the departure from strictly hydrogenic behavior. The ionization

potential I depends strongly on the angular momentum coupling (L-S value)

of the core, or of the residual ion with charge Ze , 6 depends most

strongly on the one-electron orbital angular momentum, L . For s- and
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p-levels (. - 0 and 1) in N and 0 A is roughly 1.5 - 1.0 . For

d-level. ("I - 2) it drops sharply to about .05 or stiialle,. When L > 2 ,

is always very close to zero.

The L-S terms (ELs) for a given t and n usually cluster about

an average value which depends on t . The average is often used to

represent the entire group of terms ir approximate calculations.

The word Term is applied to the group of levels associated with L

and S and which differ only in j , the inner quantum number associated

with the vector sum of L and S . The energy differences of these levels

differing only in J is due to spin-orbit interaction, and is usually negligible

for high-temperature air radiation studies (in view of the overall uncertainties

in this type of problem). The center-of-gravity on any other convenient

average of the levels of different I is taken to be the term energy.

The words "hydrogenic model" do not imply a unique set of formulas.

as a variety of more or less independent corrections can be made on formulas

strictly applicable to hydrogen, in order to account for non-hydrogenic

features. Even the terminology "hydrogenic f-numbers or matrix elements

is rather loose when used in an opacity context. What is usually implied

is a Kramers-Gaunt approximation with the Gaunt factor taken to be independent

of frequency or energy. We will not propose a precise definition of the

hydrogenic model but xi]l l'r ... t in this section, formulas and results,

obtained from iydrogenic formulas by some correction or other. Perhaps

the prototype of this model is the set of formulas presented by Mayer (1947)

and improved by Stewart and Pyatt (1961).
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8.2.1 Photoelectric Cross Sectio.,'

A most useful starting point, because of its simplicity, is

the Kramers (1923) serulclassical expression for the photoelectric cross

section per electron. Compton (1926) gives the Kramers' formula for the

absorption coefficient per electron in the n-th shell as:

A 4 410 3 (
- o4 h6 4n n3  hc

Is 0

where X is the wavelenqb. of the incident radiation (cgs units), m is

th.' electron mass, I the ionization potential, and 4n is the
0 2

statiatical we,'ghtu of an electron in the shell. If we take 0. ,,

this !ormula can be reduced to

4 2 nh) 3  hv

(8.2-2)

- 0 hv< T

Since Eq. (8.2-1) is a semnclr'qsical expression, spin is neglected and it
is not summed over the usual two final spin states of the free electron.
Therefore, we shrild also neglect spin in the sum over initial states.
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where n 2r2 a is the ionization potential of the n-th shell with

ao = e 2nm2 the Bohr radius. Eq. (8.2-2) is also the result obtained

from Mayer's (1947) Eq. 2.21 if one divides the latter expression by 2n2

to account for the fact that it is for a complete shell of electrons, and

has been corracted to account for spin weights (see footnote on preceding page).

The expression, Eq. 78.15, given by Bathe and Salpeter (1957),

a (a.u.) - • (8.2-3)
3/rr 2 v 3  n3

is equivalent to Mayer's expression when converted to cgs units. (In

Eq. (8.2-3), a.u. signifies atomic units and a a e 2/Ac is the fine-

structure constant.)

Now the difference between Eq. (8.2-3) and the exact expression

for hydrogen (Eq. (3.2-99) with hy'irogen wave functions inserted for the

R (r)) is usually a factor of order unity (Gaunt, 1930; Menzel and Pekeris,
n(n)

1935) called the Gaunt factor g (v) . In view of the simplicity of the

Kramers expression and the complexity of the exact hydrogen expression,

it is convenient to write the exact photoelectric absorption coefficient

for hydrogen as

bf(v) - ( (h )3 vbf)
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where isn) the number density of absorbing hydrogen atoms in each

state n , and gbf, M is the Gaunt factor. It Is defined strictly as the

ratio of the exact hydrogen expression to the Kramers' expression for the

absorption coefficient.

We can make a straightforward approximate generalization to other

atoms by replacing the hydrogentc 1n by the ionization potential of the
*

other atom and inserting as an additional factor in Eq. (8.2-2) the nu,-,ber

of electrons in each shell of the non-hydrogenic atom. In contrast to

hydrogen, non-hydrogenic atoms are not degencrate In -t and we can

further break down the summation Indicated in Eq. (8.2-2) to specify

subshells of given angular momentum C. The result is then

~b(v) -~ N~n'&~ ) 3~ 2 nC.(v (8.2-5)

where we have used n(n,.) to indicate the number of electrons in the n,.

subshell. This formula, with gni(v) set equal to unity, was used by

Stewart and Pyatt (1961) for bound-free absorption studies as follows. They

define a Stromgren D-function, D(u, = u K , where u m hvAT and

K Lm ,.P with P the mass density in gm/cm3, and where u is the
lln-ar absorption coefficient in cm1 Eq. 18 of Stewart and Pyatt (1961)

t1-3n states

2

z> Ryd) (kT) 2  (8.2-6)

These can be obtained from experlment or approximately from screening
constants; see references given in Table 8. 1.
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where m is what we have called n(n,) In Eq. (8.2-5) n n, is

our n is our n, , , p again Is the mass
flgn AM1  v

density, A the atomic number, M 1 is the atomic mass unit, and

Ryd • /2 a. W 13.6 eV. The free-free D-function which they use is

given by

where m a e 2/ Ac is the fine structure constant. Substituting Eq. (8.2-7)

into Eq. (8.2-6), with use of the definitions of K and D(u) yields the

result

flj Ck 2  > AL g 64 2]
(P) r33 1 J(8.2-8)

In view of the equivalences stated above, and the cancellation of factors

(including their mean square ionic charge <Z2 > and their degeneracy

parameter r which we have not defined) Eq. (8.2-8) is identical with

Eq. (8.2-5) if g.(v)- 1 M

A convenient way of writing £q. (8.2-S) which also accounts for

configuration splitting (Armstrong, Holland and Meyerott, 1958) is to

consider the total absorption coefficient for a given atomic term, T

specified by n , t , L , and S (L - total angular momentum,

S - total spin). We replace NvT) the number density of atoms in

the state, or term T , by

N•P " Nv (8.2-9)
v T
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where PT is the fraction in this state ("fractional occupation number,-,)

end N. the total number density. It will now be assumed that the wave-

function is separable and thus that the many-electron wave function consists

of a product of one electron wavefunctions. If this assumption is made,

a single electron wavefunction can be factored out of the total many-electron

function (Eq. (8.2-12)) and employed in a one-electron-transition matrix

element (Eq. (8.2-11)). Then a ore-electron-transition dipole matrix

element which initially has the form,

f (11' 21 " 1) "r r-' ) d3 r ld r -- N (8.2-10)

in an N-electron atom# simplifies to

r ~--- rN)dr 2-.-4( ()d
**5f - 'N *V2 1 2 --- drN xJ f()i qrd 3 r82-1

where we ha-,!e factorad Y according to

T6 1 1, 2 , 2$ N) - (G V2,--N) (8.2-12)

and the factor on the left of Eq. (8.2-11) is the overlap of the passive

electron wave functions.

Now, strictly speaking, the factorization is not as simply done as

Eq. (C. 2-12) would indicate. The reason for this is that electrons obey
Paull statistics and the total wave function YW' r 2 , "'rN) must be

antisymmetric in the coordinates of all the electrons, This is usually

taken into account by employing wave functions of a determinantal form

(Slater, 1960)o In order to describe analytically the ejection of a single
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electron from a system containing several electrons, we must find the

matrix element for a transition involving just the one electron, which i
will in general be a very complicated Integral over the coordinates of

that electron. An integration over the coordinates of the iomaining, or

"passive" electrons will also appear in the matrix element but this will

only be of ac overlap type. That is to say, there will be no operator

in the matrix element connecting the initial and final coordinates of the

passive electrons.

We will not here go into this p:oblem in any detail. The effect of

the antisymmetry of the electrons is to replace the simple factorization

indicated in Eq. (8.2-12) by a linear combination of such factored terms

over different lj.gnj terms of the residual N-1 electron system (core or

ion are words often employed). That is to say, Eq. (8.2-12) should more

properly be written

"r r h F(&O8L, apL) CV 1) (F21 --- r 1ý (8.2-13)

'SL
p p

where S and L denote th'g total spin and total angular momentum

of the term which is to be the Initial state, 8 and L, denote the

values of S and L for the possible parent terms of the N-I electron

core, and the coefficients F7 (q SL, 8L1) are called o

fractional parentaee. These coefficients, sometimes called OPP or FPO

for short, wore Implicitly Introduced by Becher and Gkoudsmit (1934),

and the algebra governing their behavior was first worked out by

Racah (1943). (See also Rose, 1957.) Xf there are no electrons equivalent

to the factored one (i.e., having the same value of n and ) in the

parent configuration, then the factorization reduces to the simple expression,
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_

Eq. (8.2-12). We will assume that the overlap integrals are unity. This

is not, of course, strictly true since the other orbitals do change when one
electon is ejected, but it is a good approximation under most circumstances

(10% or better). We will also use FeC which are normalized to the number

of ea lv ae elatq•1= . By " eis .eans we can omit the factor n(n,,)

which appea'l . Eq. 79 ?- 5).

An abs~vtion coefficlent according to this hydrogenic approximation

can now be written as

(J~I42 ( 4 he 2 2 T2nL

p v 3/3 mc An(hv) 3PYp An,

where the dipole selection rule &-4.1 is explicitly acknowledged.

The symbols In Eq. (8.2-14) have the following meanings

IT - Ionization energy of atomic term T

Nv - Total number density of gas particles

PT w Fraction of total number density Nv which are in term T

Iall terms
\all species .

" (6). Bound free Gaunt factor for initial bound state n ,4rot

final free state * (energy of free electron), ' .

In the foregoing analysis we have, for simplicity, suppressed the spin wave

functions and sums, and the sums over magnetic quantum numbers,

•CkLpL; mMpM) , (Pi r "--',) , which

permit th. coupling of the core and one-electron angular momenta to the
specific total L and 8 (0( LpL; m MM) are Clebsch-Gordan
coefficients -- see Chapter 3). We have also neglected the effect
of r*dial exchange.
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v * Photon fi equency; obeys conservation equation

hv - '+ ,

T : Symbol for 18 coupUng term T ; specifies total angular

momentum and total spin L and 8, respeotively. A

unique energy RT or lonisation potential IT . can be

assigned such a term by using e.g., the center of gravity of the

component I- levels:

E (2 z) Jý

F2(•,LqL, SpL.) - Fractional parentage coefficient, or fraction of

term T of the configuration 4q (specified by 18) which

arises from the parent term Tp (specified by Lp S8) of the

configuration ,n-l

q a Number of electrons of angular momentum 4 , (which comprise

the configuration 4 q , which couples to the term SL).

Tp - Symbol for LO coupling term of the g or g=, which

remains after one electron has been ejected from the initial

system by photolonizetion.

The squared fractional parentage coefficients of the more important

terms needed in air studies are given in Table 8.4 for configurations Involving

one or two angular momentum subshells. (For more complicated cases

involving three or more subsheils, see Armstrong and Keliy (195,) or Rohrllch

(1959).) The non-trivial results in this table are taken from Menzel and

Goldberg (1936). The remainder have been included here for the convenience

of the reader who may not be familiar with the methods of computing them.
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Table 8.4 Parentages of Terms Arising from 8heU of
Iquivalent Zleotronn (after Menzel and Goldberg, 1936)

Confguration Term Parentage
p 2D pp2 (1D), ,p ( + - IP)

2 2
4P p 2 (3 p) , 3p(2 3 p)

2 p2 ( 3 ) ,0(, 3P + I 1p)
- p2(1k) ,_p % 2 • l

p 3 p p(22 p)

11, p(2 2 p)

2 2 23 +I22?) -

i 2 p2  3 P u2 p(22 p) ,

I D s2p(22 P) , .p 2 (22 D)

1a . 2 p(22P) , sp2(42I)

24 3p4(4 4p + 2 2p)

43 43 233)

D Sp2(2 3+ ID)

pP P 3 3 3

4 3 3!p4(3S4 + _. 2]D +. 28)

(3

1 3p42 .P)
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Table 8.4 (oont'd)

Configurationi Term Parentage

p 2p4

33

2p3 4 p2 (34p)

3 p8 .p 234p 4.3 p

23D .p 2 4.1 3 p) + - 1D)

26

3 a Wp 4 AJ 2 P

P2.3 3P6  i 3

3D p2(A 4p 2D +.I 2p)

13 4. 33)4

Dsp 2 D+ 2 Pfr 1)jP

23 334 2 .1 p +

p sp 6 * a 373

4 4 (JL 8 +t 3D+ 3 + - 18
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In order to use Eq. (8.2-14), we also need the Gaunt factors g

The most comprehensive tables of these quantities have been given by

Karzas and Latter (1961) and earlier partial results were given by Bethe

(1933), by Mayer (1947), and by Armstrong and •ielly (IS59ý. These factors

have a slowly varying frequency dependenze, particularly near threshold

where they are most important. This can be seen from Figs. 8-1, 8-2, and

8-3, taken from Karzas and Latter. On this account It often suffices to use

the threshold (c - 0) values of the Gaunt factors as a constant approximation

over all frequency values. Accordingly, we have inciuded (Table 8. 5) a

table of threshold values for a large variety of states.

Table 8.5 Asymptotic Bound-Free Gaunt Factors
S (g n 4., Dt- 1+ gnit,,+ 1

Angular momentum 4
n, s p d f g h i

3 1.06160 1.09768 0.76259 ... .. • ...

4 1.18 1.25 1.13 0.606 ... ...

5 1.2901 1.3661 1.3526 1.0369 0.44309 ...

6 1.3957 1.4724 1,5109 1.3360 0.87216 0.30932 ...

7 1.4955 1.5724 1.6372 1.5539 1.2183 0.68851 0.20827 ...

8 1.5900 1.6643 1.7479 1.7233 1.4908 1.0323 0.51789 0.13638
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The values for n = 3 are taken from Mayer (1947), the v aUs for

n ~4have been computed from the radial integral., n.~L values

given in Bethe and Salpeter (1957), and the remainder\ )are from

ArmstrCong and Kelly (1959).

An analytic formula for the threshold Gaunt factor values has been

given by Armstrong and Kelly (1959). Their result can be written

nl 5 2 4im Zk cn(8.2-15)g, n '-' 25 .en0

where the required asymptotic expansions of the Gordon (1929) hydrogen

dipole integrals Rn,. are

n1/2
Rn 1)n -t ( 4)1

""'n, (nI-, ~4(2t,- 1) 1 x (8.2-16a)

)t+2 -2n
• n2 c(-nr , 2U, - 4n)

+ F F(-nr I' + 1,24,+1, -4n')

and R n - (n n' \ /2 - (8. "6

4I1 a-2n F(-n, 2t, -4n) - F (-nr-2,24, -41
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In these formulas F c(,0; x) is the agQHLthypergeometrio function,

and the radial quantum numbers nr are defined by nr = n-t-l,

"nr -n

Figs. 8-4, 8-5, and 8-6 show the cross sections of Eq. (8.2-14)

r hydrogen, viz., i(v)/NvPT for F2 1 , for principal quantum

numbers n from one through fifteen. They are shown as functions of

photon energy h, In eV; the solid curves are exact results due to

McDowell (1964), and the dotted curves shown for n - 1 , 2, and 3 have

been obtained from Eq, (8.2-14) by taking the Gaunt factors as constant

and equal to their threshold values. The cross sections given are shell-

averaged values an where the average Is defined by:

"anL'nt " •r,,(8.2-17)n n 2
n

Extensive tables of the exact hydrogen cross sections have been given by

Burgess (1964),
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8.2.2 Hydrogenic free-free absorption

The basic calculation of free-free cross sections has already

been reviewed in Sec. 3.2.2.4; in this section we will merely discuss some

of the formulas and results (in the hydrogenic approximation) that have been

used in practice. M:st opacity calculations have made use of the Kramers'

(classical) formula for the free-free absorption coefficient suitably modified

by a Gaunt factor gff

161 3 Z2 e4

Aff ` V Q Ne Ni gff (8.2-18)

(cf. Eq. 3.2-216). In this formula N and N. are the number densities
e

of free electrons and of ions, respectively, v is the initial free electron
1

velocity, and a is the fine-structure constant. In practice one is usually

interested in an average of the absorption coefficient (viz. gff/v1 ) over a
-1

Maxwellian distribution. Since the M3xwell average of v is given by

2
,nv

J my

2kT v 2 dv

Eq. (8.2-18) can be written, upon averaging, as

16V3  Z2e 4 Ne Ni
2 3 gffm W

(8.2-19)

16tr5/2 Z2 e4 Ne N1
T'• 2Z 3/2 3 l/2 gff

m w (kT)
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where fgff %2

- v~v~ (8.2-20)Off f(v) v2 d-_•2-o

f v dv

and f(v) is the Maxwellian distribution function.

A formula for gff given by Menzel and Pekeris (1935), Eq. (3.2-221),

has frequently been .sed in opacity calculations (e.g., Mayer, 1948;

Moszkowski and Meyerott, 1951). This formula becomes, when the

Maxwell average (Eq. 8.2-20) is taken,

aff 1 + 0.1728 u-/3 ( (8.2-21)

where u - hv/kT and • Ryd/kT. (Note that this formula is given

incorrectly by Mayer, lS148, and by Moszkowski and Meyerott, 1951.)

There are a large number of papers in the literature prior to the late

1950's which discuss and derive approximate Gaunt factors valid under very

limited circumstances. We will not review these, as they are moe or less

superceded by the excellent reviews and discussions of Grant (1958), and of

Brussard and Van de Hulst (1962), and exact numerical computations for hydrogen.

The numerical computations beginning with Berger (1956) were culminated by

the comprehensive calculation and tabulation of Karzas and Latter (1961).

Grant (1958) gives the semi-classical (WKB) approximation (Eq. 3.2-224a):

S.C. 1 + 0.21775 iti-2/3 0.01312 it1-4/3 + 2(8.2-22)
1f 1

valid when Ig1 >> 1 , where t zacI vf i I It is interesting to
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note that this formula is more accurate than the Menzel-Pekeris formula.

Grant also calls attention to the fact that Gauss-Laguerre numerical integration

is very effective for obtaining the Maxwell averages needed. According to

him, three terms are usually adequate to obtain 3-significant-figure accuracy,

using the weighting factors and roots of Gauss-Laguerre integration, Grant

obtains the 3-term formula for

0.711 g(0.416) + 0.279 g(2.294) + 0.010 g(6.290) (8.2-23)

where the argument of the Gaunt factor which is to have the values indicated

in this equation is y , given by

mv - h, (8.2-24)

y 2kT kT

Grant's 3-term integration of the semi-classiual formula Eq. 8.2-22) and of

the Born-approximation result (Eq. 3.2-222) compares favorably with Berger's

(1956) numerical calculations, and are, of course, much simpler. However,

he evidently overlooked a useful limiting form of the Born approximation result

(apparently first given by Elwert -- see Brussard and Van de Hulst, 1962).

If, in addition to the validity requirement of the Born approximation:

ri 1

I'f << 1 (8.2-25)

=t
\ vJ
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we require that

hv << kT , (8.2-26)

we can write

f w ni , j , say . (8.2-27)

This yields, when inserted into Eq. (3.2-222)

Born 2 , n2iBorn . (8.2-28)

In view of our requirements (Eq. (8.2-27)) we can write

r =f-'fl ,,ZOO 'v = Ac - =_2• C (8.2-29)v2 2e v =2c

2where 2 m is the electron energy, and Ae: hv is the photon energy.

Thus, we obtain

B r In 4 (8.2-30)

Setting

u' A/kT , u • hv/kT , (8.2-31)
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1!_
the Maxwell average, Eq. (8.2-20) yields

gff Ju
(8.2-32)

JIn 4
i'7 yu

where y = 1.78107 is given by ec where c is Euler's constant.

Expressing this result numerically we obtain

gff 0.55131 In 5 (8.2-33)
U

For Grant's (1958) example 2, the conditions (Eq. 8.2-25) and (Eq. 8.2-26)

are satisfied, and u (defined by our Eq. (8.2-31) has the value 0.0124.

Eq. (8.2-33)yields, for this value of u , gff = 2.866 . This result is

considerably closer to Berger's presumably more accurate value of 2.817 than

is Grant's value of 2.979 obtained by 3-point Gauss-Laguerre integration. The

Karzas-Latter (1961) result (from their Fig. 5) is 2.9, which, unfortunately,

cannot be read to greater precision. This appears to dispute Grant's claim

that the difference between his result and Berger's is due primarily to the

inaccuracy of the Born approximation. As noted above, the Born-approximation

validity conditions as well as the additional condition imposed by Eq., (8.2-26)

are well satisfied at u = 0.0124 and kT - 100 9V , the conditions of this

example. Thus, not much error should be expected from the Born approximation.

Eq. (8.2-33) should prove quite useful in a broad low-frequency, high-

temperature region where free-free absorption tends to be most important. i

3
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84.A3 HPd--enI-c Agund--ound Traniltions and Oscillator !MRenat-

In the case of bound-bound transitions, there is now sufficient

tabular data to provide exact values of the bound-bound oscillator strengths

for practically all transitions of Interest (Menzel and Pekeris, 1335; Karsas

end Latter, 1961; Green, Rush, and Chandler, 1957). For large-scale

oalculations or for exploratory or approximate results a Kramera'-type

value may nevertheless still be useful. By comparing Eq. 63-11 of Bethe and

8alpeter (1957) and Rqs. 1.31 and 1.33 of Menzel and Pekeris (1935) we

see that we can write the exact hydrogenic f-number for a transition from

a lower state n to an upper state n' averaged over the shell of

Dinicflal auantum number n (containing 2n2 states) as *

5 /
fnn V3Tr nS(n' 3 n 2 gnn (8.2-34)

where g , , the b Gaunt factor is given approximately by
nn

I - 0. 1728 -13

0 ~~~nn i/ ()

or (8.2-35)

g* 1- 0.1728 Z2 n+

where

This expression is not valid when n - n'
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and R u 2T2 e4 m/h 3 is the Rydberg frequency. If this line oscillator-

strength Is *smeared* over the regions between the Unes it can be seen

that the effective oscillator strength per unit frequency interval , approximately
-3

has a v3 principal dependence Just as In the bound-free and ftee-friwe

cases. We can show this by converting the f-number sum over a finite
0

number of lines to an integral by use of the Ruler-Maclaurin theorem

(Franklin, 1940).

Summina of HydroAenic Line f-numbers Near the lonrgation fdag:

We recall that for hydrogen

hymn " Ryd (8.2-36)

hymn is the entrgy absorbed or emitted in the transition from a state

with principal qutantum number n to a state with principal quantum,

number m . Ryd is 13.6 eV.

The ionization energy In (m - ..) hvO m * which enables us

to write

M -(8.2-37)

The asymptotic f-number per electron from Eq. (8.2-34) can also be written

as ( 2 -5/3/3).

finn (8.2-38)

From unpublished material by(J.*mWe)ner
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Oansider

M-M M

By use of the Bulev-JMaclaurin formula (Franklin, 1940):

f 43)' f(x) dx:+ ( -2fW 2f (W + 720 (8.... 82-39)

we obtain

1,92-2 2t.2.21
Id 4(2~2) 2 n2) + (d-) + (8.2-40)M1( n2"I4 -na)

We will denote 2 finn by simply E when convenient. If we rewrite

Eq. (8.2-40) in terms of vo and vm , we obtain

/2 2 3/2 - 3/2
Cn 2 V + ..L NO -v VM) +

VM2 /14nn 3 / 3

(8.2-41)

+ - .. v-v9 )2(2 M) +

4f4 44n44

Neglecting the "overflow" of line strenqth below vm or past Vo

this expression gives the total f-number between vM and vo . We wish

to obtain a function AE such that
dv

V0

AE dv f xn (8.2-42)

384



Lh

This will be the continuation of the photoelectric f-number per unit

frequency interval. By differentiating Lq. (8.2-42) (a funcLion of vM)

the following result is obtained:

Let * a(O (8.2-43a)
) ~dvM d,,;"

3/ 3/
Then .. !2- + 3(v Ov)3 +a+/8224bThndv n 12 V 3 +2n V ,4 2(8-4)

+ -!SL (v 0 -2) (8v 0 -7,vvov )
4n 2  V +

or, In terms of x - vi/ 0,1 n 2 /M2,
II

+- 1. 1/2 (1 )+ I. (11(-x21 8.-4
dx 2n x3 2n x 2n 2  x 5  ...

This expression is an expansion around x = 1 , in powers of (1 - x):

the second term is exceptional; the next term contains (1 - x)

Convergence is, of course, most rapid for x close to 1 , I.e., m

large. Actually the series is asymptotic in L. The leading term ism •'

just the extension of the photoelectric formula (with Gaunt factor put equal

to 1). The function (Eq. (8.2-44)) is plotted in Figs. 8-7, 8-8, and 8-9

for various values of n . The dotted lines correspond to the lowest

order lerm of Eq. (8.2-44), and the solid line is the total.
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The foregoing discussion, though overapproximate, provides much

physical insight to the problem. Corrections may be added as follows.

The deficiency arises in the fact that the bound-bound Gaunt factor which

was set equal to I in Eq. (8.2-38) has terms in its asymptotic expansion

which are of the same order in n as the first and subsequent correction

terms which we have obtained to the leading term in Eq. (8.2-44). As will

be seen in the following discussion, these act to cancel part of the higher

terni contribution of the expansion and, hence, cAuse d to approach
dv

c loser to the simple behavior of the first term of Eq. (8. 2-44).3
VSumming of Hydrcaenic Line f-gumbers, Including the Gaunt Factor Correction:

If Eq. (8.2-36) is used to express hv in terms of n and m , and

g as given by Eq. (8.2-35) is multiplied into Eq. (8.2-38), the result is

0,nm3  17 -0 Z2/3 2/ / 3 2 _/3 (8.2-45)

(m2 -n2  M n2_n2 2. "

We now set

f -) 13/3 g Was 7/3 (8.2-46)

2i2t173 2( 2 8/)

Use can again be made of the Euler-Maclaurin formula If the integrals of

f(x) and g(x) can be evaluated.
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Consider the integral of f(x):

x13/3ax f /3dy
(2_n2111/3 n n2 J ~2_ 11/3 (8.2-47)

fE f

where y x/n .

Substitute _n = I cos A , andx y

n 2 (sin 8)119/3

M 8o

with the lower limit 80  given by cos A -0 M "

Integration yields

16• n 2 M-o --n 2)._•
M

Further, by differentiating f(x)

f x 1 10/3 21x]6/3

f 11 x 101) x16/3(8.2-49)3 211/3 3 2 2)14/3
n(x n x -n
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Similarly

g/3 d~c 1 (8.2-50)

edg(X)uZ 4/3 X10/3 (8.2-51)
3 8/3311/3

We now insert Eqs. (8.2-46), (8.2-48), (8.2-49), (8.2-50), and (8.2-51)

into formula (oq. (8. 2-39)) (retaining thereby the terms up to and including

the first derivative). The result is, after some simplification,

0. 178 Z-/3 n1/3 - -- 8/3

0 8n

10/3 13/3 16/3

4n 2 M2 2M 11/33 9 14/3 +
40n2  n -n) -n)

2 5/3 7/3 1L14/3
+1O 3 M 17 M (8.2-52)

10 2 M2..2 + •2- _ 8/3 36 • m 8/3 ' <.-, •
n M _ n2  2 _M n (M 2-_)

where is given by Eq. (8.2-40). If we now make use of Eq. (8.2-37)

and Its variants: 2 2 2 2 n .-

M 2 _ n2 VM Vo - VM
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we obtain after some more algebra,

Z''2E E 0+0.1728Z / / 2410 8 10

(8.2-53)

S(vo- VM) •/2 _ /0 13/6\ N ,, v ,, ( 53 - , - v8/ 7 2

+ Y'MM ý M& kv ' 9  M'~ 3  v

Note that the first term is essentially (i.e., to within the factor n 1/3)

of the same order as the =correction term in Eq. (8.2-41).

If we now differentiate -q. (8.2-53) with respect to vM , and set

x again, we obtain
0 0

dx3,- d , -- Ln2  2 /
1/3 C1_x) 1/2(7I-3~~4iX (8.2-54)j

(I (x)x 1/3 __7 x-3 + lx -4 47X

n4 54 5"4 -50-4 -5" 2'7 x
n

(The third derivative in the Euler-Maclaurin formula (Eq. (8.2-39)) will have

as lowest terms those of order 1/n ).

-2 dF(2)
Calling the term of order n in the brackets -A- , that of order

n ' ,etc., the numerical results of Table 8.6 are obtained for the
t•

care nn3 :3
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Table 8.6

x EO 4E12) 4d(3)4EWd
dx dx dx dx dx

1.0 0.33 -. 0271 0 0 0.30

0.9 0.50 -. 04728 -. 0027 -. 00085 0.45

0.8 0.77 -. 0836 -. 0091 -. 0050 0.67

0.7 1.30 -. 1512 -. 0267 -. 0131 1.11

0.6 2.40 -. 2885 -. 0788 -. 0884 1.94

0.5 5.35 -. 600 -. 248 -. 337 4.17

Line f-number sum per unit (reduced) frequency interval for

principal quantum number n = 3 . The reduced frequency x is

tdiven by v/v 0  where vo is the ionization, or photoelectric edge

frequency. The f-number sum is given by Fr= _.(x fm3 , and the

superscripts appended for the various columns give the terms

of that order in powers of the quantum number n of the lower state

(here n = 3). The last column is the sum of all the terms calculated.
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8.2.4 Coherent scattering from bound systems

As has already been implied in our brief classical introduction

(Eqs. 3.1-14, 3.1-15), when light scatters off ar atom, the scattering is

termed "Rayleigh scattering" if the photon frequency v is below the atomic

resonance (or "line") frequencies, and it is termed "Thomson scattering", or

"Compton scattering from bound electrons" if the frequency v is above the

resonance frequencies and below the photoelectric thresholds. As one approaches

the bound-bound resonances from either direction in frequency, the scattering

pro-esses pass continuously into the processes 3f simultaneous absorption and

re-emissign of a photon. This has been touched on qualitatively in Sec. 2.3

and is discussed by Heitler (1954) avid Dlrac (1947). Dirac (p. 206) shows

explicitly by integration over a Lorentz profile that, "the total number of

scattered particles in the neighborhood of an absorption line is equal to the

total number absorbed." This supports the interpretation of resonance scattering

as absorption followed by emission.

This has occasionally been overlooked in considering the problem (e.g.,

see Dalgarno, 1963; this oversight was corrected by Heddle, 1964). The basic

formula for either coherent scattering piocess is the Kramers'-Heiseniberg formula

(Heitler, 1954):

~ n2 [n "n -Eno n'°>on n 'n ndn = m• ( o :°>in +P in.+ i W

S""(8.2-r5)

0 j
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The photon pmari•iation vectors before and after the collision have been

denoted by and - , respectively, P is the electron momentum operator,

El and Eo are the energies of the intermedtate and initial states, respectively.

The photon energy is Awo , and the initial and intermediate states have been

2 2designated no and n, , respectively. r0 is e /mc , the classical

electron radius. Bocause of the difficulties of evaluating this formula for

real, many-electron atoms, and because of the relative smallness of the

magnitude of the effect, it nas been customary in opacity calculations to

approximate the effect very severely. Mayer (1947) suggested merely assigning

theCompton scatterin cross section r 2 to all the bound electrons in
3 o

the atom as an estimate of the total coherent scattering (this Cumpton cross

section is the dimensional factoi appearing in the Kramers-Heisenberg formula

to within the ingular factor 81r/3). Mittleman and Wolf (1962) have shown

that the Kramers-Heisenberg formula for the differential scattering cross section

for hydrogen can ba reduced to

d'- = 2 a~ 2~ [- 56).

ro 0 [ P (k) - P(k)] (8.2

where P(k) is a function of the photon momentum magnitude k which can

be computed numerically by means of a differential equation. They present a

graph of P(k) , as well as a graph of [1-P(k) -. P(-k)]2 from which the

differential cross section can be immediately obtained from Eq. (8.2-56).

For opacity calculations, one is usually interested in unpolarized light. In

this event, we need the average of V() ) over the two possible initial
0
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polarization directions (1) , and the sum over the two final polarization

directions (J) . This computation can be performed as follows. There

is complete azimuthal symmetry in this problem; if we choose the +y axis

as the direction of the incident light we can therefore rotate the z-axis

to lie in the scattering plane as shown in Fig. 8.10.

The scattering angle has been designated R ; we are free to choose

any orientation of the orthogonal initial Z's we wish, and accordingly select

them (as shown in Fig. 8.10) to be along the + z-axis and along the - x axis.

The final e's must then lie relative to the axis we have chosen, as shown

in the figure. From this figure it is clear that

22 2)2. 1'~~ ~~J 12 2 j

= 1[os2 ccos2 r + sin2 ýP cos 2 9 + sin2 ,p cos2

= [os2 n + (8.2-57)

From this result, the polarization-averaged differential cross immediately follows,

and the total scattering cross section is easily obtained by integration over
1 2

solid angle. The integral of i (cos 2 n + 1) over solid angle yields 8Wt/3

2
the factor which multiplies r0 in the totai Compton crors section, so that

the Mittleman-Wolf formula yields for the total cross suction

SON - P(k) - P(-kj2

39
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The total Rayleigh scattering cross section can be written in terms of the polariz-

ibillity a of a gas by means of the equation

128 v ,5 -8
1R= 14Ia , (8.2-58)

OR4

Equivalently, it can be written in terms of f-numbers as

=C -8wr 2 2i (8 .2-59)

ii

where the sum is taken over all the transitions i-J . Since approximate

f-numbers are available for most of the transitions in nitrogen and oxygen,

improved estimates of the scattering cross sections can be obtained by means

of this equation (Stergis, 1966). Alternatively, one might attempt to scale

the results for hydrogen as given by Mittleman and Wolf (1962).

With the more detailed and accurate line broadening theory now available,

the importance of scattering in high-temperature plasmas appears still further

reduced over what one might estimate a priori. The reason is, as pointed out

by Baranger (1962) that a photon can be absorbed in the far wing of a line (at

a point where one might be considering Rayleigh scattering) by a transfer of

energy and momentum to a free electron. For very modest concentrations of

free electrons the cross section for this process dominates that for scattering.

Let us consider some crude numerical comparisons of these effects.

We restrict the discussion to the appropriate condition that v- v >> y
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where v is .he resonance frequency at the center of a single isolated line

and y is its full half width. We can approximate the Baranger absorption

cross section as

hcr fy

B• (_Vo)2

by means of the Lorentz formula negIccting the half-width as stated above.

The f-number of the line has been designated as simply f , and the half-width

can be approximated as (Stewart and Pyatt, 1961)

S2 
1 2/2Y fZ e2 20 m

where p is the density, ci is the fine-structure constant and n is

the principal quantum number of the upper level involved in the line transition.

From Eq. (8.2-57) we obtain the Rayleigh scattering cross section as

8V 2  2 22
R =3 o (V2 V 2) 2f

Now in order to observe Rayleigh scattering we must have

"R > (B

From the foregoing iormulas for -R and -B r this yields an upper limit

P -" PC

to the density in order that Rayleigh scattering be observed. For a line with
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a• 4 , Z = 1

P '101 4 ( kT) Ii2

(o o+'V) 2

whore v. and kT a•rc expressed in eV. If we assume an t-number

f= 0.1 , kT- I eV, a line position v° at 5 eV , and a density p 109

say, we find that below a frequency v -- 1 eV on the lino wing, only Baranger

absorption will be observed, above this, Rayleigh scattering will be observable

up to the point where it cannot be differentiated from absorption/ re-emission,

as shown In Fig. 8.11. On the other hand, by taking v - v we find that

for p- 6 x 10 10 cm- 3 , no Rayleigh scattering at all should be observable.

In low-temperature applications such as terrestial atmospheric problems,

where there is little or no frea electron concentration, it has traditionally

sufficed to simply use the classical formula, Eq. (3.1-15) for most poblems.
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8.2.5 Compton Scattering Cross Sections

Although Compton scattering is not really part of any

hydrogenic model it Is included in our discussion at this point for

convenience and because of the fact that the accuracy of the results with

which we concern ourseives is comparable to the accuracy of the hydro-

genic model.

The simplest approximate method to treat scattering, and the method

most commonly used in practioeais to set the absorption coefficient due

to scattering equal to

Ps(v) - Ne CT (8.2-60)

as mentioled in the previous section. We recall that a ro 2
2 3

is the total Thomson classical electron cross section, and is
•mc

independent of frequency.

Na is the number density of free electrons. This is a valid

approximation to the correct Klein-Nishina (Heitler, 1954) quantum mechanical

cross section as long as hv and kT are small compared to mc ,

which is the region of primary interest to us.

Eq. (8. 2-60) correctly gives the absorption out of a beam due to

scattering of radiation by free electrons, in the above approximation. In

the transfer equation, one must, of course, include all terms which correspond

to radiation being emitted back into the beam, as well as those which

correspond to radiation taken out of the beam. For true absorption processes

(bound-free, free-free, bound-bound) in LTE, the emission back into the beam

Is simply related to the absorption out of the beam (Kirchoff's law). One
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j part of the emission back Into the beam is isotropic, and the other (induced)

part Is in the same direction as the incident beam, so that no angular

integrations involving these terms need appear in the trunsfer equation to

account for transfer back into the beam from other directions. For th'%se

and other reasons the transfer equation for true absorption processes

reduces in the presence of LTE to a simplified 13rm that can be expressed

in terms of a modified or effective absorption coefficient MB() given by

4'(V) " Av) (1 - a-hvA/T) , (8.2-61)

This situation does not prevail in the case of scattering (Mayer, 1947; see

also Chapter 3). The scattering cross sections are not generally isotropic,

so that the intensity scattered back into the beam in a given direction

depends on the intensity of the beam in other than that given direction.

Thus, the intensity scattered into the beam in a given direction must

remain in integral form in the transfer equation, and there is no simple

relation between scattering *emission" and scattering "absorption", viz.,

there is no Kirchoff's law for scattering. The intensity scattered out of

the beam and the intensity scattered lnt. the beam cannot be combined in

a general way, as can the corresponding intensities for true emission and

absorption, to yield a simple effective absorption coefficient of the form

of Eq. (8.2-61). This is true regardless of the behavior of induced

scattering as the simple modification 1 - ehvAT expressed in Eq. (8.2-61)

arises purely from terms Unear in the intensity. That is to say for true

absorption and emission, both the absorption and the induced emission are

linear in the intensity. This is not the case for scattering; induced scattering
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is quadratic in the intensity function. Therefore induced scattering

into and out of the beam could not lead to a simple modification of the

I - e-hvAT form. It turns out, fortunately enough, that at low

frequencies where the Thomson cross section is valid, the induced

scattering (in and out) terms exactly cancel. This was shown by

Mayer (1947), who also showed that the proper form of the absorption

coefficient to enter the Rosseland mean under conditions of LTE is

!Av)" - P'(V)abs A(V)scat (8.2-62)

(cf our discussion of this topic in sections 2.3 and 3.2.2.4)

in the low-frequency Thomson limit.

More recently, Sampson (19 59) has shown that for the Klein-Nishina

formula, which must be used when hv - mc 2 , this cancellation of induced

scattering terms no longer occurs, and other terms appear as well, so that

the effective U scat (v) that enters the Rosseland mean calculation is no

longer NeaT , nor is it in fact NeaT (Klein-Nishina), but is a complicated

function of the Klein-Nishina differential cross section, He has performed

numerical calculations of the Rosseland mean opacity for Compton scattering

alone based on the effective absorption coefficient which he derives. We

reproduce his graph in Fig. 8-12 of the Rosseland Opacity as a function of

kT and AM I where p is the dencity (gm/cm3), Z is the atomic number,

dnd M the atomic weight. He has assumed that the material is completely

ionized, i.e., that

Ne - ApZ/M (A Avogadro's number)
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and has also included the effects of electron-positron pair formation.
gamos~n has .lso made an Interesting comparison of I's ...... for,

the Rosseland mean opacity with the results one would obtain from a naive

use of the Klein-Nishina formula. He recovers a "Rosseland mean cross

section" 6RMMT) from the computed value of the Rosseland mean opacity

according to:

pK CT)

6RM(T) O , (8.2-63)

where N is the number density of scattering electrons (and positrons).

In units of aT * the Thomson cross section, this can be written

5 M(T) p KC (T)
m * (8.2-64)UT N o T

Sampson gives values of this ratio derived from opacities K c computed

by naive use of the Klein-Nishina cross section, and by use of the effective

Klein-Nishina cross section which he derives (as appropriate for the

diffusion approximation). In Fig.8-13 we plot his results as a function of

temperature j T * His corrected values drop substantially lower towards

high temperature than the values obtained by uncorrected use of the Klein-

".shina formula. Values of the Rosseland mean opacity for scattering

alone can, of course, be recovered from the figure by inverting Eq. (8.2-64)
aR,(T)

and substituting values of a from the figure. Simple use of the
aT

Thomson formula, as discussed in the preceding section, would correspond

to the value unity in the figure.
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8.3 Analytic formulas and approximations to hydrogenic absorption coefficients

8.3. 1 The Ros seland-Menzel-Pekeris Formula

Relatively simple analytic formulas can bc obtained, from the

hydrogenic approximation, for the total spectral absorption and also for the

mean coefficients of aLwndc species which behave hydrogenically. This can

be done by such techniques as approximating the sum over discrete states

by integrals, by using the Saha equation (perhaps restricted to two states of

ionization) to evaluate the occupation numbers, and noting the close relation

between the expressions for the bound-free and free-free cross sections.

Menzel and Pekeris (1935) derive the approximate formula for the combination

of bound-free and free-free absorption coefficients:

C0Z 2 N N a
A "v (kT)

where Co M V3 , Na is the electron concentration in

electrons/cm3 , Ni is the numberdensityofions . The effective Gaunt factor

g' is given by

g I 0. 1728( (8.3-2)

(Recall that R w 2Y 2e4 m3 is the Rydberg in frequency units.) This

formula can be integrated to yield a Rosseland mean absorption coefficient

C " h3 Z2 N NN1
- (kT) 0 gR (8.3-3)

Recall that in the presence of single ionization only, the product
N N is proportional to NO the neutral number density, through
A Saha equation. 0

4o1
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where 0 is a complicated numerical function defined and evaluated

by Menzel arnd Pekeris. Numerically, Eq. (8.3-3) is

4.58 x 10-23 Z 2 N 1/3 -1

TR = T 7/2 -r 01098 .57x 105Z (cm ) (8.3-4)

with T in oK. The bracketed expression in g9R

Except for the correction factor gR due to their use of Gaunt factors

tnis formula is the same as an earlier one due to Rosseland. Their extensive

discussion of the approximations involved indicates that under the proper

circumstances, it is a very useful approximation. Expressions of this sort

have been used more recently by various authors (see, e.g., Raizer, 1960;

Pappert and Penner, 1961; Penner and Thomas, 1964; Stewart and Pyatt, 1961;

Bond, Watson, and Welch, 1965, Sec. 11-4.2; Unsold, 1955, Sec. 47;

Ashley, 1964) who show that they can be made to reproduce the gross

features of the detailed monochromatic hydrogenic absorption coefficients

rather well. However, they should be used with caution. Over such

fine spectral regions as considered by Ashley (1964) for example; the

resultant re-distribution of oscillator strength can be quite violent.

Stewart and Pyatt (1961) on the basis of such a method derive the

result for the gojjjlm Rosseland mean opacity, K R

R a 1 (8.3-5)

In this formula, M is the atomic mass number, M1 is the atomic mass

unit, <Z2 > the mean Ionic charge, Ne the number density of free
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electrons, and the bracketed { I quantity has the value 4.76 x 106 cm 2 /gm.

They compared the values predicted by this formula (using accurate <Z2>

values from their detailed occupation-number calculation) with the

continuum Rosseland mean results of Armstrong (1959), At temperatures

kT - 5 and 10 eV the two results agree to within 30% over the entire

density range covered by the Armstrong calculations. At kT - 2 and 20 eV,

the agreement deteriorates towards high densities but remains within an

order of magnitude. Thus, as far as contnium means are concerned this

equation provides a quick and simple order-of-magnitude estimate.

Unfortunately when line absorption is included these methods break down;

they also, of course, will break down whenever the hydrogenic approximation

bre ak s down.

8.3.2 The Strdmaren Function

Because of the V3  frequency dependence of the Kramers

radiation absorption cross sections, Strdmgren was able to devise a very

convenient and quick method for computing Rosseland mean absorption

coefficients. We present this method here as outlined by Mayer, including

Mayer's table of the Stramgren function. We write the Rosseland expression

from Chapter 2 (Eq. (2. 5-6 )), in terms of the mean free path 6 *R)" A R

as

A =m A, Izu da (8.3-6)

0

where we incorporate the v- 3 dependence of the cross sections into the

weighting function Z and define the reduced absorption coefficient D(u)

4
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as

D(u) A A0 u3  (8.3-7)

where g aJ is the continuous part of the usual absorption coefficient

In cm- , u • hvAkT , and the universal length ho. given by

A mc k 8 (8.3-8)

has been defined in order to make the expressions simple and dimensionless.

In the definition Sq. (8.3-8) , is the total particle number density.

Numerically Ao can be expressed as

A.I " L " 3 c a pN - 0.790 x 10-7 cm2 x P

or (8. 3-9)

4- .762 x 106 g Ikj) M
' gm

The weighting function Z(u) differs from the Rosseland weighting function

W(u) only by the• factor u3 ; viX.,

Z(u) - W(u) u3 " _ u 7 . 2 u (u - 1)-3 (8.3-10)
S4r

4

Since the function W(u) is of considerable utility in opacity calculations, we

3 give in Table 8-7, values of W(u) for a wide range of the argument u

Rough values of a Rosseland mean can often be obtained simply by inspection

of the value of the absorption coefficient in the region of u where the

function W(u) has its maximum.
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The Rosseland Weighting Function W(u) m 4.1 IL.2u

WuU W(U) u W(U)

b.5l9Qt3:u? :ýI 4 do7 3st089122-,.)2

7.7U.bb?96-u,! 1.o 1.78b586-ui . 1 b b b? u
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U l.9 4.139L4~ U2 92167 679u 9.b8~5~, 2. 3.50251-03
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With the definitions given in Eq.s. (8.3-7) ard (68.3-6) , the Kramers'

D-funation becomes

2 g kbf(U

Dbf(u) ",Pn -- L (8.3-l1)nb (kT) 2 A

where P -n is the fractional occupation number of state n* Weftt

limit ourselves now to constant Gaunt factors g9(n) (taken, e.g., to be

threshold values). With this limitation, and the further definition

uj
D (u) M E D(ui) , (8.3-12)

UI-

where 2 (1)

D(u) a P A. U z a I AT (8.3-13)

-O u<ui

the Rosseland mean for bound-free absorption (only) becomes

A R =A OJ ) (8.3-14)

: D(u1 )
u 1 0O

Each of the D(uI)'s is a step function beginning at u, (and zero prior

to ui), and DK(u) is the sum of these step functions over the range

0 to u of ui . Therefore, between each step D,(u) is constant, and

we can perform the integration of Eq. (8.3-14) step-by-step:

* I
And each term 'n the sum contributes only for u > _U

kT
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uj+ 1
r 9

AR- Ao j D J Z(u)du
uj

"Sou , u(u)-u (8 3- s)

J

u

where S(u) " Z(u)du is the Strdmaren function, and we have

used the notatin uj+ to indicate that the D function of argument

u,+ is to be evaluated past the j th-edge (i.e., larger u) for Inclusion

in the denominator when the Strdmgren-function numeration iF S(uj+4 ) - j(uj)

Table 8-8 (taken from H. Mayer, 1947) lists values of S and Z as

functions of u . The method outlined above is very useful for obtaining

approximate results quickly, particularly if many of the absorption edges

can be lumped together. For heuristic simplicity we have illustrated this

method for the bound-free case only. It can, of course, be simply

extended to include the Kramers free-free cross section, since the latter

also varies as v It cannot, however, be generalized to include

bound-bound transitions (except for merged lines) without a radical

departure from the use of the Strdmgren function. Although the line f-

number strength, as we have seen, approximates a V 3  dependence

when smeared over the region between the lines, unless they are completely

merged together, the sum of the actual line profiles yields a frequency

dependence of widely-varying v dependence.
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Table 8-8

The Function Z(u) :1 4 (U:3 and its Integral

the Strdmgren Function S (u) f Z(u) du (from Mayer (1947)).

0

u Z(u) S(u) u Z(u) S(u)

0.0 0 0 3.5 8.2003 6.2881

*1 4.042 x 106 8.015 x -8 3.5 8.9572 7.1469

.2 6.773 x 10-5 2.F69 x 10-6 3.7 9.7404 8.0819

.3 3.582 x 10-4 2.103 x 10-5 3.8 10.546 9.0957
.4 1.180 x 10- 3 9.185 x 10- 5 3.9 11.371 10.1902

.5 2.995 x 10 2.902 x 10 4.0 12.211 11.3676

" .6 6.440 x 10- 7.454 x 10- 4.1 13.064 12.6309
.7 .012339 !.660 x 10-3 4.2 13.926 13.9808

.8 .021726 3.351 x 10- 3 4.3 14.793 15.4i174

.9 .035822 6.170 x 10-3 4.4 15.660 16.9409

1.0 .05607 1.071 x 10-2 4.5 16.525 18.5793

1.1 .08410 1.765 x 10-2 4.6 17.384 20.2478

1.2 .12175 2.787x 10 4.7 18.232 22.0290

1.3 .17101 4.214 x 10-2 4.8 19.067 23.8940

1.4 .23401 6.257x 10-2 4.9 19.884 25.8403

1.5 .31303 8.981 x 10 -2 5.0 20.681 27.8664

1.6 .41042 .1258 5.1 21.453 29.9725

1.7 .52859 .1724 5.2 22.199 32.1510

1.8 .67064 .2313 5.3 22.915 34.4014

1.9 .83681 .3066 5.4 23.599 36.7225
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Table 8-8 (continued)

u z(u) s(u) U Z(u) s(u)

2.0 1.0316 .3994 5.5 24.249 39.1128

2.1 1 .2564 .5129 5.6 24.861 41.5698

2.2 1.5134 .6502 5.7 25.436 44.0895

2.3 1.7970 .8144 5.8 25.970 46.6656

2.4 2.1307 1.009 5.9 26.463 49.2917

2.5 2.4940 1.238 6.0 26.913 51.9633

2.6 2.8948 1.505 6.1 27.319 54.6755

2.7 3.3344 1.815 6.2 27.682 57.4249

2.8 3.8128 2.173 6.3 28.000 60.2082

2.9 4.3302 2.582 6.4 28,273 63.0213

3.0 4.8857 3.048 6.5 28.502 65.8637

3.1 5.4791 3.568 6.6 28.686 68.7225

3.2 6.1087 4.1483 6.7 28.826 71.5978

3.3 6.7735 4.7923 6.8 28.923 74.4853

3.4 7.4715 5.5041 6.9 28.977 77.3810

7.0 28.991 80.2800 10.2 17.027 157.1759

7.1 28.961 83.1773 10.4 16.163 160.3624

7.2 28.895 86.0698 10.6 15.053 163.3490

7.3 28.789 8R.9546 10.8 13.815 166.1404

7.4 28.646 91.8283

7.5 28.470 94.6856 11.0 12.530 168.7424

7.6 28.258 97.5219 11.5 10.787 174.4525

7.7 28.016 100.3346 12.0 8.4757 179.1535

7.8 27.742 103.1223 12.5 7.0717 182.9749

7.9 27.439 105.8825 13.0 5.4602 186.0382

i
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Table 8-8 (continued)

u Z(u) S(u) u Z(u) S(u)

8.0 27.110 108,6119 13.5 4.4377 188.4766

8.1 26.757 111.3053 14.0 3.3745 190.3846

8.2 26.379 113.9608 15.0 2.0121 193.0267

8.3 25.981 116.5797 16.0 1.1629 194.5800

8.4 25.562 119.1587 18.0 .35896 195.9583

8.5 25.126 121.6939 20.0 .10157 196.3685

8.6 24.673 124.1825 22.0 .028787 196.4813

8.7 24.206 126.6251 24.0 .0066659 196.5103

8.8 23.726 129.0210 26.0 .0015798 196.5174

8.9 23.234 131.3691 30.0 .000071419 196.5194

9.0 22.732 133.6682 0 196.5194

9.1 22.222 135.9163

9.2 21.706 138.1127

9.3 21.183 140.2571

9.4 20.658 142.3489

9.5 20.127 144.3881

9.6 19.596 146.3742

9.7 19.066 148.3066

9.8 18.535 150.1856

9.9 18.007 152.0119
10.0 17.480 153.7856
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88.3.3 Hich Temoerature imrtirag Values of the Opacity

At sufficiently high temperatures, all the atoms of any material will

become completely ionized so that the only processes which absorb

radiation will be free-free transitions, Compton scattering, and pair

production. The free-free absorption will be accurately hydrogenic

(except for plasma screening effects; these can be approximately included

in the Gaunt factors; see J.M. Green, 1958) so that we can use analytic

formulae for it. In addition, Compton scattering is given approximately by

11scat - Ne aT (8.3-16)

where aT " is the classical Thompson Cross Section.2\Mc )I

Unfortunately, this formula is more accurate at the lower than the higher

temperatures which we wish to discuss now. However, as we will see in

the next paragraph, it is still a useful order-of magnitude estimate, even

in the region where the Kleiii-Nishina formula (Heitler, 1954) is required

for accurate computation. Therefore, we proceed to use it and to neglect

pair production before turning to a more accurate account, as the formulae

obtained have been used in the Astrophysical literature and thus are of

considerable heuristic value.

We follow closely the treatment of Mayer (1947). Now the

scattering absorption is proportional to the number of free electrons per unit

volume, whereas the free-free absorption is proportional to the square of

the number of electrons. Therefore, scattering will dominate at low densities

and free-free absorption will dominate at high densities. Let us consider the

,

We neglect photon-photon scattering. On this point see Sampson (1959).
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low-density scattering limit first.

Use of Sq. (8.3-11) in the formula for the Rosseland mean free

path leads simply to

itiP_ { W(u)du (8.3-17)^seat N a T e'

since NeOT Is Independent of frequency* we can also write In this

limit

where p Is the density in gm/cm , A is Avogadro's number,

is the average atomic number, and MZ . Mz N is the

average molecular weight (Nz is the number of nuclei of charge Z and

N is the total number of nuclei). Using these definitions, we obtain for

the mean opacityt

scat PAscat

In this limit, the opacity is independent of density and temperature. Using

2
the first-order (in hv/mc and v/c ) corrections to uT from the Klein-

Nishina formula, Meyer (1947) has improved this result somewhat. He

gives

K c T [11 - II (kT/mc2)] (8.3-19)

* If the erroneous factor 1 - hv/kT is included in IA scat the result

is Ascat =
NeFT
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which shows a mild temperature dependence. In the htih-density, free-free

limit, we can write

Ac W A 0 Jf A (8.3-20)

0

in analogy tc Eq. (8.3-6). The value of Dff is derived

by Mayer (1947), e.g., and by Stewart and Pyatt (1961).

We write It In t form (defined according to Eq. (8.3-7))

•ff(U) - 3/2 (k.')/2 <Z 2 > N* ao 3 gff (8.3-21)

where <Z >u N - . (8.3-22)

Inserting this value into Eq. (8.3-20) yields

Ac 0 "32o ! /2 <da(8.3-23)
4 3/2 (*J <z 2• > 3f gff

If we set gef I end use S(-) ufZ(u)du - 196.5, we can write

K = " -- I w 11965_ (8.3-24)

Inserting Ao from Eq. (8.3-9) we obtain
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K 4. 762 x 10 6 ~..k (W)/ Z >.&o n3/2) (8.3-25)

Now No 4 , so we obtIn

K " 5.4 x 10 5 0 -Xj - (8.3-26)

(This Ii equivalent to Eq. 28 of Stewart and Pyatt, 1961; if their Eq. 19

Is substituted into their Eq. 28, the equation above results. Mayer, 1947,

gives 4.815 x 104 as the coefficient In the above formula instead of

5.4 x 105.) In the analysis given by Mayer (1947) he r-.tains the approxL-

mate form of the free-free Gaunt factort

1f '-I 0. 1728 7]13u/2(1 + (8.3-27)

[Ryd (z) 2

rather than setting it equal to unity, and takes it out from under the

integral in Eq. (8.3-23) by evaluating it at the point where Z(u) has its

maximum, that is, at u 7 . This provides a correction to K% which is

Qff~ W ( + .58

This correction, however, Is of dubious value, since no one form of the

free-free Gaunt factor is valid over the complete frequency range of the

integral in Eq. (8.3-23). -For specific temperatures, one could evaluate

the integral numerically from a tabulation of values of gff such as has

been provided, e.g., by Karzas and Latter (1961).
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In contrast to the scattering limit, Eq. (8.3-26) for the free-free

opacity limit is proportional to the density and to the 7/2 power of the

temperature. This temperature dependence has been used in astrophysical

studies, but its limitations -- neglect of scattering, neglect of proper

variation of Gaunt factor, and neglect of screening, should be borne in

mind.

8.4 Non-hydrogenic absorption- coefficient calculations

8.4.1 Deficiencies of the Hydroenic Amproxlmat4on

Some of the more recent opacity calculations (cf. e.g., Armstrong,

Johnston, and Kelly, 1965) have departed substantially from hydrogenic

approximations, for reasons discussed below. First, in illustration of

the type of difference between the hydrogenic result and more accurate

results in the case of line transitions, consider Table 8-9 which presents

a comparison of values of the radial dipole integral (squared): ,4

a (f RIRf r3d) (8.4-1)

R1 and Rf are the initial and final state radial wave functions, and

.t> is the greater of the angular momentum belonging to the two states.

The results to which the hydrogenic values are compared kave been

computed according to the Hartree-Fock-Slater (HPS; Kelly, 1964b) method,

and (where available), to the Hartree Fock (HP) analytic Hartree-Fock (AHF;

Kelly, 1964a), or Coulomb approximation (CA) methods (Dates and Damgaard,

1949). In one case, an experimental value is quoted. The f-number and
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Tabib 8-9

*e*ele Initial State Final Stt q 2 (dipole length)

Hydrogenl c HFS* HF, CA, or Exptl

S2 ,203(4s) 2s2 23s(4P) 0.294 0.243 0. 131 (AHF)

4( 4 P) 0.0488 0.024 0.0211 (HF)

3d(4 P) 1.50 0.0138 0.0060 (AHF)

4d(4p) 0.195 0.0090 0.00317 (HF)

Nil 2s2202 2s2 *W 0.375 0.043 0.033 (HF)

2#22p34 2122pp 13.5 5.1 4.1 - 5.9 (Expt'l)

2ý** 2s2*1 1.69 1.2 1.3 - 1.5 (HF)

NV Is32. (2 S) 1.22p(2 p) 0.360 0.318 0.323 (AHF)

1,2 2 P) 1,s230(2S) 0.0117 0.0335 0.0280 (CA)
12,3A( 2D) 0.060 0.0532 0.0595 (CA)

02B 22p4(3P) 21.2 2 3 3.( 3 S) 0.294 0.151 0.0974 (AHF)

40(3 S) 0.0488 0.0171 0.0180 (HF)

3d(3D) 1.50 0.0055 0.0026 (AHF)
*~3D

4d( D) 0.19" 0.0037 0 00147 (HF)

A comparison of the squared radial dipole integral 02 2 1 (fRtRe 3dr)2
In the hydrogenic and Hartree-Fock-Slater (HFs) (4C2 > - 1)
approximations with more accurate results where available. AHF
denotes Analytic Hartree-Flock values, CA , Coulomb Approximation values,
and HFY numeriol Hartree-Fock values.

The hydrogenic and HFS values are independent of the angular momentum
coupling
The rehidual charge seen by the aoUve electron at large distances Is used
to define the hydrogenic approximation.
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cross section, the quantities of physical interest, are proportional to

this square of the dipole integral. As can be seen from the table, all

the values tend to agree near a high degree of ionization (N'Y) -- this

is to be expected due to the donarnc'e of the Coulomb force. However,

for neutral atoms, there is a wide scatter of values, the hydrogenic and

more accurate values occasionally agreeing, but more often not.

The HFS approximation Is an approximation to the HF scheme and

as such is not as accurate. It is obtained if one replaces the exchange

term in the HF equations by the exchange term appropriate for a free-

electron gas. This simplifies the equations considerably and uncouples

them. Although the results are not as accurate as HF results, they are in

general considerably better than hydrogenic values and the calculations

are sufficiently general, yet simple and economical, to be very appropriate

to the air-radiation problem under discussion here. It is not yet possible

to obtain HF results for more than a fraction of the transitions needed in

this type of work.

It may be possible systematically to improve the hydrogenic

approximation to bound-bound matrix elements to the point where their

accuracy competes with that of the Hartree-Fock method. Attempts in

this direction have been made by Varsavsky (1958), Naqvi (1964), and

others, but the results are not yet sufficiently definitive nor general to

afford adequate reliability. In addition, it would appear that the amount

of labor and complication involved will probably exceed that of the HFS

method and approach that of the Hartree-Fock method so that no advantage

would be gained by this approach.
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Another difference between a hydrocienic and non-hydrogenic mod.l for

line transitions occurs if one bases the approximation (as is usually done)

on f-numbers rather then on dipole integrals. In terms of the f-number,

the absorption cross section and absorption coefficient are given by

aill(C) - . fj bbijl(() (8.4-2)

end
2

-(A (2mc N f b1 (C) (8.4-3)
iJ

where b W(€) is the line shape factor normalized to unity over the extent

of the line:

J b1i (e)d. - 1 (8.4-4)

In the independent-electron hydrogenic approximation, the electrons are

uncoupled and we need only specify the orbital angular momentum and

principal quantum number n . In terms of these quantities the f-number

* for a transition from state n,4, (C') to n'4,'('j ') is given by

(Chapter 3, Eq. (3.86))

f a L (~i , (8.4-5)3 (U + 1) VRydl ij

where L.> denotes the greater of the two quantum numbers 4 and V'

and ali Is the radial dipole Integral in units of ao , as given in Eq. (8.4-1).

Now in the hydrogenic approximation, all the angular-momentum sub-levels
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belonging to a given principal quantum number n (viz., levels for

J - 0, 1, 2 -- n-1) have the same energy. Thus, for transitions

between these levels, the so-called "same-shell" transitions, between

such states as 2s - 2p, 3s - 3p, 3p - 3d, etc., the factor hv11  in

the expression for f,, Is zero and therefore f,, vanishes. In N

and 0 (as in any many-electron atom), these levels are separated by

a few volts so that hvij is appreciably different from zero. The dipole

integrals tend to be very large because of the substantial overlap of the

wave functions. Consequently, the f-numbers or cross sections turn

out to be usually moderately large for transitions among these states,

and their omission leads to a serious discrepancy.

It would be possible, of course, to avoid this problem by using

hydrogenic values for the ctJ and experimental or calculated values of

the hvi, . This could be done through Eq. (8.4-5), neglecting the angular

momentum coupling and L-S term splitting of the actual many-electron (light)

atom, or through the more correct relation

fl "(W S\(M/ g, (8.4-6)

appropriate to L-S coupling and separable wave functions for the individual

electrons. In this formula, the factors S(L) and S(M) are called relative

line strengths and relative multiplet strengths, respectively. The statistical

weight of the initial state is called gi . This formula will sum back to

Eq. (8.4-5) (except for a factor amounting to the number of available

electrons), if the a and hvi3 are assumed to be the same for all

the terms (viz., If hydrogenic degeneracy is assumed) and the equation
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is summed over ail the terms of a transition array. In other words, a

"Ohydrogenc" model could be based on Eq. (8.4-6) which would account

for all the multiplet structure of the atom and the correct energy differences

hvij . The only difference between this *hydrogenic* and a non-hydrogenic

model would reside In the radial integrals aJ " This intermediate type

of approximation was used by Armstrong, Johnston and Kelly (1965) for

high levels and large angular momenta. For the more important low-lying

levels, the more accurate radial integrals of the HFS theory were used.

It is also interesting to note the difference between hydrogenic and

non-hydrogenic results in the case of photoelectric transitions. There

are a number of possible differences between a strictly hydrogenic

approximation and a more detailed description such as the HF scheme

which takes into account the electron Interactions and coupling.

2 2 4Take 01 as an example. The configuration is ls 2 2s 2 2p

In a strictly hydrogenlc (iidependent-electron) approximation there would

be Just one state for this configuration and one photoelectric edge for

photoejection of a 2p-electron. In actuality, the electron tagular

momenta can couple in several different ways, each of which leads to a

different interaction energy. The result Is that this configuration of 0I

has three terms, or states (ignoring the fine structure) rather than just one:
3 P, I1D, I1S where this notation designates the total angular momentum

and spin in the usual spectroscopic notation.

The 3i Is the lowest level with the 1D - 2 eV above it, and the

1S -4 eV above it, as illustrated in Fig. 8-14.
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The configuration which results from the 232 2p 4 upon photoejeotion

of a 2p-electron, viz., 2s2 2p 3 , likewise has three terms 48, 2D, 2P,

separated by similar amounts. Photoejection of a 2p electron from the P

ground term leaves the ion in a linear combination of the 4 S 2 D, and 2P

"parent* terms so that three photoelectric edges are observed as shown

In Fig. 8- 15 rather than the one edge that a strictly hydrogenic approximation

would entail. The ID term yields two edges and the 18, one, so that a

total of 6 edges results from photoejection of a 2p electron from the 2s2 2p 4

configuration. For temperatures kT ic&B where AE Is this *term

splitting* of the configuration, the differences in the spectral absorption

features of the hydrogenic and non-hydrogenic models are likely to be of

considerable importance.

In addition to the splitting of the photoelectric edges due to electron

interactions, the actual magnitudes of the cross sections are, of course,

also different in the hydrogenic approximiation and in a more exact theory.

Fig. 8-16 Illustrates this difference for the lowest edge of the ground term

of O. The cross section for the transition O0 2s 2 2p 4 (3 P) - 2s 2 2p 3 (4 S)E

is shown in the figure with threshold or edge at 13.6 eV where c denotes

the energy of the photoejected electron and the contributions of both the p - s

and p - d branches of the transition are included. The dashed curve is

the 1IF result from a computer code due to Dalgarno, Henry, and Stewart (1964)

in the dipole-length form. The dotted curve represents the same approximation

but in the dipole-velocity form. The difference between these is a crude

measure of the uncertainty in the result. The solid line is the result of a

calculation of Armstrong, Johnston, and Kelly (1965) which Is more amenable
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to large-scale machine computations, while at the same time no less

accurate than the HF results. It employs an approximation at low

energies due to Burgess and Seaton (1960) and at high energies one due

to Pohnston (1964). These are discussed below. The two dash-dot

curves are hydrogenic-approximation results, one with the correct

Gaunt factor *, one with this factor set equal to unity. The difference

between the hydrogenic and the more accurate non-hydrogenic results

are quite striking: factors of two to four at threshold increasing to more

than an order of magnitude at high energies. The ionization potential

appearing In the hydrogenic photoelectric cross section formula has

been taken as the appropriate oxygen experimental value, and the Gaunt

factor has been made consistent with this choice of ionization potential.

This is tantamount to employing a screened effective nuclear charge.

From such calculations as this it appears that the hydrogenic result lies

consistently below the Hartree-Fock photoelectric results for 0 and N

but with agreement improving as one passes to states with higher and higher

degree of ionization. Thus, as one might expect, the hydrogenic approximation

is most suitable at high temperatures and low densities.

8.4.2 The Methods used by Armstrong, Johnston, and Kelly (1965)

8.4.2.1 The Low-Energy Theory.

Recently, Burgess and Seaton (1960) presented

an approximation to the radial matrix elements in terms of the asymp-

totically-correct wave functions. This approximation derives from the

observation of Bates and Damgaard (1949) that the major contribution

to the radial integral for bound-bQund transitions usually comes from values

The Gaunt factor is the ratio of the quantum-mechanical cross section
to the classical Kramers value discussed previously.
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of r sufficiently large that the effective potential is a Coulomb potential.

Replacing the actual one-electron wave function by Its asymptotic form -

(a linear combination of the regular and irregular Coulomb wave functions

for the observed value of the energy, modified for small r to ensure

convergence of the radial integrals ) Bates and Damgaard evaluated the

radial matrix elements R4 and presented their results in tabular form.

Burgess and Seaton applied similar considerations to the evaluation

of the radial matrix elements for bound-free transitions. Whereas

the asymptotic behavior of the bouna-state wave function is determined

by the physically-observed enegy of the bound state, the large-radius

behavior of the free-electron wave function, at a given energy, is

determined by a phase shift 8, (L', ). In the approximation of

asymptotically-correct wave functions, Burgess and 8eaton numerically

evaluated the radial matrix elements, parameterized the resulting photo-

ionization cross sections, and tabulated their wesults. The basic variable

of the theory is the effective quantum number v defined by

(n4 - 1e) " - n,, (8.4-7)

where 1 Is the lonizatlon limit of the aSn%, series, and the effective

quantum number and the quantum defect satisfy u n'L - n' - v n "I4

In order to use the Burgess-Seaton theory one assumes that the

quantum defect or phase shift which are ielated at the series limit by

8 ,' (c, L') V , (i, L) (8.4-8)
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Oa be extr;aplated tb small positive energies. Thus, a knowledge of

the bound states of the line series connected with a given photoelectric

edge It needed. Although this experimental Information Is available

for many of the most important photoelectric edges, it is not for all.

When it Is lack/ig, cruder approximations must be made, the crudest of

which would be to set the phase shift equal to zero where no experimental

Information Is available (this is the situation with, for example, most

states involving double excitation beyond the n = 2 shell).

A low-energy expansion of the Burgess-Seaton cross section for

integer v agrees with a corresponding expansion of the exact hydrogenic

results to first order in e . Thus the Burgess-Seaton theory is to be

considered a valid approximatlon when the electron kinetic energy Is

much less than Z Rydbergs. Furthermore, when sufficient Information

regarding the physical bound states is available, the result of Burgess

and Beaton Is probably more reliable than continuum Hartree-Fock

calculations (Dalgamo, Henry, and Stewart, 1964) as some effects due

to exchange and Polarization of the core are reflected in the physical

energies of the states with large principal quantum number used in the

extrapolation for the phase shift.

Thus we conclude that the Burgess-Seaton approximation is a

reasonably valid and useful approximation near the photolonlzation threshold,

with the exception of the Inner-shell transitions in the presence of an

excited outer electron. The simplicity of the resulting expression for the

photolonization cross section renders it particularly suitable for evaluation

of the large number of Initial states present in the usual opacity problem.
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8.4.2.2 The Hich-Enemy Thaory.

For energies of the final-state free electron

much greater than zero the Burgess-Beaton approximation is inapplicable.

An approximation of frequent utility in high-energy scattering calculations

is the Born approximation. A straightforward application of the Born

approximation to calculation of the photolonization cross aection, however,

leads to an incorrect result. It can be shown (Johnston, 1964) that a use

of the acceleration form of the matrix element In a high-energy Born approxi-

mation gains one iterate of the Born series over the use of the dipole-

velocity form. The second Born approximation to the velocity matrix

element contains a term with the same high-energy behavior as the first

Born approximation (thus guaranteeing an incorrect high-energy result when

using the first Born approximation alone ) whereas the first Born approximation

to the acceleration matrix element gives the correct high-energy behavior.

Accordingly, the dipole-acceleration Born approximation (or better) should

be used for high electron energy.

When the angular integrations and polarization averages are performed

on the acceleration form of the matrix element the result obtained Is:

0(C) iI- - - F & L.-(8.4-9)
~3m2W 3c p k(2,1+ A+(*±1)

With

a CL f*- R ,,(r) -2 RWr) r2 dr (8.4-10)

where, In the first Born approximation, the properly normalized free-electron

wave function is a plane wave.
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1the k•ms~trong, Yohnston., and Kelly .'51 calculation, through

use of a generalization of the KFS code of Hermann and Skillman (1963)

wave functions were generated for the many bound atomic states present

in the gas. The resulting numerical bound-state wave functions were

fitted with analytic functions and from these, the matrix elements of

Sq. (8.4-10) and the cross sections were computed. The NPf line

f-numbers were used for the low-lying states (4 9 3, n < 6) and quasi-

hydrogenic (as described above) or hydrogenic values were used for the

remainder. No attempt was made to compute a non-hydrogenic free-free

oontrlbution; the r3sults of an earlier calculation (Armstrong, H~olland,

and Meyerott, 1958) were used for this part. The atomic core configurations

Included In this calculation (along with the relevant Ionization potentials)

are tabulated In Table 8-10.

Table 8-10 Table of Atomic Core C.pfigurattons
and Ioatzation Potentials

Ioniz. Potentials,~ secf •I• Core Deeignation Inz ostd

S0 N

S2 ,34 28+,1i 2s1 30 ( A Q-a11.617
(2D) 2 16.942

,,,) 3 18.631

2 sp 4 (P) 4 28.42

(2 D) 5 34.19

(N5 6 37.88
(P) 7 39.99

___0__ 2 5 3 P) a 52.11ioiain o h oie saewt or opsga s tae..

The Ionization potentials given are from the lowest state of each stage of
ionization, to the Ionized state with core coupling an stated.
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Table 8-10 (oont'd)

8peales awe Care buetgslf lords. Pofmtales*

0 N

O-U, N-1 I. 3 81) (3 1P) f04 /L) V - 1 35.154 14.S43

(1D) 2 37.859 16.447
( 1) 3 40.60 16.601

Re 4 42.623 20.400
3
(D) 5 50.028 25.9893( 1') 6 82. 70 26.094

(,D) 7 58.336 32.430
3( ) 8 89.60 33.787

(I P) 9 81.238 35.230

Uip (3p) 10 70.339 42.3
(1D) 11 72.127 43.1
1(18) 12 77.708 47.4

0-11, N-1 1* Us I2p (2P)u 94+1L) y IV 4.946 20.617
2s 2pa (4P) 2 63.758 36.703

(2 )) 3 70.671 42. 148
2(5) 4 75.312 45. M 1
(P) 5 77.300 47.710

3p9 (48) 6 83.607 52.781
(2D) 7 86.568 54.799
(2 P) a 90.642 5. 188

O-IV, N-U Iss 22s 2 (I5) nuDA2+ 1 L) y - 1 77.411 47.426

2S Up (3 p) 2 87.575 55.757
( P) 3 97.081 63.629

UpI (3p) 4 103.881 69.189
(tD) 5 106. 122 70.843
(1 ) 6 113.088 76.606

o-V, N-KV Is 2US (25) he(28+sL) , - 1 113.898 77.450

2p ( P) 2 125.821 87.442

o-VI, N-V I Is (18) nA( 2+1L) 7- 1 138.110 97.8!3

The ionization potentials given are from the lowest state of each stage of
Ionization, to the Ionized state with core coupling as stated.
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8.5 Review of Major Calculations Made to Date

The first documented calculation of the opacity of air including the

high-temperature regime appears to be that of Hirschfelder and Magee (1945;

1958/1947). In the original (1945) calculation, the opacity due to photo-

and free-free absorption was calculated between 20,0000 and 106 OK. The

formulas employed were those of Morse (1940) which, in turn, were based

on the methods of Stromgren (1932, 1933). Since these methods utilize a severe

hydrogenic model, the principal effort in this type of calculation centers about

the obtaining of Eddington's (1926) "guillotine factor" which contains the

combined effect of the photoelectric edge positions and the occupation numbers

of the atomic states involved. They neglected the excited states of the various

ionic species, and assumed all such species to be in their ground states.

Pressure ionization was also neglected, and the effective nuclear charge was

computed from Slater screening constants, Below 20, 000K, they computed

the free-free and photoabsorption by 0 and N , and the absorption by

NO 2 * They found the free-free absorption of 0 and N to be the

dominant effect down to about 3,0000 K. For the calculation of this effect, they

used the partial wave free-free formula of Wheeler and Wildt (1942), including

a- and p-states, and made a numerical computation of the free electron

functions involved. Later on (see Magee and Hirschfelder, 1947/1958) they included

the effect of 02 , and used the Bates and Massey (1943) cross section for

O . In this later report, they also give the details of the NO 2 calculation

and consider the Planck mean absorption coefficient defined to permit the radiation

and matter to exist at different temperatures.

428



The atomic calculation of Hirschfelder and Magee was Later refined and

extended downward in temperature by Kivel and Mayer (1965/1954), using

Mayer's (1947) more detailed methods including some consideration of the

effect of lines. A comparison of the Kivel-Mayer, and the Hirschfelder-Magee

results is given in Fig. 7 of Kivel and Mayer (1965).

In 1955, a brief report by F.R. Gilmore and A.L. Latter appeared

(Gilmore and Latter, 1955), in which they give values of the continuous

absorption coefficient of air and the Rosseland mean free path between 2 and

600 eV temperature. The density range covered is from 10-4 to 10 times

normal density. They assumed that the air molecules are completely dissociated

into atoms, and that all atoms are identical and have the average atomic number

7.262. Mayer's (1947) equations were used, first to calculate the average

electronic occupation and ionization energy of the K , L , and M shells

and then to calculate the continuous absorption coefficient and the Rosseland

mean free path. The effects of fluctuations (from the average atom), of line

absorption and of scattering (in the spectral coefficient) are omitted, and

the Gaunt factors are taken to be unity. This preliminary work was subsequently

refined and extended by Gilmore, and although the results have not been

published, they have been made available to other workers in the field by

private communication.

The work of Kivel and Mayer (1965/1954) referred to above in which use

is made of a simplified atomic model (energies from screening constants, a

limited number of excited states, neglect of configuration splitting) which Is

not accurate for low stages of ionization left the important temperature range
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from 2 to 20 6V in doubt. This was pointed out in the extensive and elegant

analysis of atomic opacity calculations carried out by Plass, et al. (1957).

Immediately thereafter, a calculation in this region was undertaken by

Armstrong, Holland,and Meyerott (1958). The limitations of the ionic method

which concerned Pleas, et al. (1957; see, e.g., p ix) were circumvented

by employing empirical energy-level values, and by extensive use of digital

computers. This use of computers enabled Armstrong, Holland, and Meyerott

to incorporate much more atomic structure detail Into an opacity calculation than

had previously been practical.

In this calculation, the photoelectric, free-free and Compton scattering

contributions to the absorption coefficient of nitrogen, oxygen and air, were

computed over the temperature range 2 to 20 eV as mentioned and over the density

range from about 10-5 times normal density to normal density. The photon energy

range covered was 1 eV to 1 keV . The occupation numbers of the ionic states

were computed with the ion-sphere/grand canonica] ensemble statistical methods

introduced by H. Mayer (1947) (and developed somewhat further by Brachman

and Meyerott, 1953). Individual LS coupling terms were included for levels

of principal quantum numbers 2 and 3 with energies obtained from experiment

where known. Where empirical energy-level information was lacking, estimates

of the energies were made by isoelectronic Interpolation, or by the Bacher-

Goudsmit (Bacher and Goudsmit, 1934) method. In the cases where insufficient

experimental information was available to yield results by the foregoing methods,

*

The K-shell contribution which appears explicitly in Figs. 4-1 to 4-30 of
AFSWC TR 58-36 are too small by a factor of 2 and ihould be corrected
accordingly.
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the Bohr formula was used with a constant quantum defect assigned by obtaining

a value from a related configuration. For principal quantum number n - 4

the quantum defect formula was used for all levels, although angular momentum

sub-levels were treated individually for 4 - 0, 1, 2 and 3 up to n 9

(Levels for t L• 4 were lumped.) Multiple excitations were partially included

by using one-electron levels of ionic cores fox all core-coupling possibilities

of the n - 2 shell. Screened Kramers' hydrogenic cross sections were used

with Gaunt factors taken as constant and equal to their values at the photo-

electric edges. Fractionai parentage coefficients were included in the cross

section formulas in order to account properly for transitions from equivalent

electron states.

The calculations of Armstrong, Holland, and Meyerott (1958) were of

spectral ab.iorption coefficients (and air compositions) only; these results

were subsequently integrated over the appropriate weighting functions in

frequency to form Planck and Ropseland mean coefficients by Armstrong (1959a).

Some of the results of the earlier calculation which had not been included in

the Armstrong, Holland, and Meyerott (1958) report (viz., separate aLsorption

coefficients for N and 0) were also included in this subsequent ,eport.

Very shortly after this Lockheed work was done, the first of the reports issued

by the General Atomic Opacity group appeared (Bernstein and Dyson, 1959).

This latter work, although undertaken without knowledge of the Lockheed work,

was quite similar to L. A larger variety of elements (from hydrogen to flourine)

was considered, rather than just oxygen and nitrogen as in the Armstrong,

Holland, and Meyerott work. However, in compensation, less atomic detail

was included. Quantitatively, the greatest difference in the two sets of results
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is caused by the fact that Bernsteii and Dyson used, in effect, ideal gas

occupation numbers, and did not lower the continuum edge ("pressure

ionleation") to account fur bound electron- free electron interactions. This

effect is moderately significant towards the low temperature end of these

calculations. The first "opacity bound" theorem appeared in the Bernstein-

Dyson report. (for a discussion of such theorems see Chapter 6.1

The opacity calculation program at General Atomic (as well as the one

at Lockheed) was continued, with the result that in September of 1961, the

comprehensive report of Stewart and Pyatt (1961) appeared. This was probably

the most significant improvement in opacity calculation methods since the war-

tilmc work of Mayer. For the first time, full advantage of modern computers

(IBM 7090) could be taken. This fact along with use of the line broadening theory

developed in the interim by Baranger and others (Baranger, 1962), permitted a

detailed, realistic inclusion of line effects for the first time. Stewart and Pyatt

calcuiated atomic photon absorption coefficients and mean opacities for

hydrogen, beryllium, carbon, nitrogen, aluminum, and silicon over the tempera-

ture range from 1.5 to 34 eV, and the density range from roughly 0.10 gm/cm3

downward to values around i0 1 2 and 10-3 gm/cm3 . The calculation included

the usual contributions from free-free, bound-free, and Compton scattering

processes, as well as the line effect. They used Kramers formulas with unit

Gaunt factors for their bound-free and free-free cross sections. For the line

effect they- used an ("oscillating") Elsasser-band formula which analytically

sums the line profiles over an entire line series; this profile formula is multiplied

by a lirn•-strenqth to line-spacing ratio. They take this ratio to be the same

function (- v- 3 ) as for the photoelectric and free-free contributions.
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The atomic energy levels which Stewart and Pyatt employed were.

computed internally by their code by isoelectronic interpolation, using the

nuclear charge expansion-screening theory developed by Layzer (1959) and

by Varsavsky (1958) which permits use of empirical data for the zero-order

(in nuclear charge Z) contribution to the energy. Corrections to the zero-

order energy are then made by perturbation theory; it is only at this level that

(empirically evaluated) screening constants are used, so that the results

are considerably more accurate than energies obtained by Slater-type screening

constants. Stewart and Pyatt tabulate some thermodynamic functions (pressure

and internal energy) as well as opacities, and they make use of a considerably

improved pressure ionization (or bound-free electron interaction) theory

compared to previous work. The effect of line absorption ts quite dramatic;

their results show that lines increase the Rosseland mean by a factor which

is as much as ten (for hydrogen at 2 .25 eV and high density) but which is more

typically about two for nitrogen at moderate densities. Omission of same-shell

transitions for the non-hydrogenic atoms impairs the accuracy of their Planck

mean results at the lower temperatures which they consider (Armstrong and

Aroeste, 1964). This is not so serious an effect in the case of the Rosseland

mean.

Stewart and Pyatt did not actually give results ior air, per se, but their

work was continued by Freeman who performed calculations for air (Freeman, 1963)

by use of the Stewart-Pyatt codes. Shortly after the appearance of the Stewart-

Pyatt work, more accurate values of the Planck mean were computed by Armstrong,

et al. at Lockheed (Armstrong, Buttrey, Sartori, Siegert, and Weisner, 1961)
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who for the first time departed from the traditional hydrogenic matrix element

approximation-. No comprehensive results were forthcoming from this group

however, until 1965. At this time, the work of Armstrong, Johnston, and Kelly

(1965a) appeared (see also Johnston, Armstrong and Platas, 1965; Armstrong,

Johnston, and Kelly, 1965b). These authors carried out a comprehensive

opacity calculation using the old occupation numbers of the Armstrong, Holland,

and Meyerott (1958) work, but with non-hydrogenic photoelectric and bound-

bound matrix elements. They also utilized the Stewart and Pyatt (1960)

prescriptions for line widths and shapes. Since a brief description of the theory

involved has been given above (section 8.4.2), and a detailed description

has now been published (Armstrong, Johnston, Kelly, DeWitt, and Brush, 1966)

it is not necessary to comment further on this work here. It should be noted,

however, the paper by Armstrong, Johnston, Kelly, DeWitt, and Brush (1966)

also contains a relevant discussion of the statistical mechanics of plasmas and

an extensive bibliography of the literature relating to the lowering of the

ionization potential in a plasma.
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Appendix A

SPECTROSCOPIC PROPERTIES OF SIX IMPORTANT

BAND SYSTEMS WHICH CONTRIBUTE TO THE OPACITY OF HEATED AIR

It was pointed out in Chapter 7 that the following six band systems

02 (B 35 - X 3§) Schumann-Runge

N2 (B
3  -A Eu) First Positive

N2
3 3N (Cf B Vl Second Positive

+ B2,+ 2 +
N2 (B 2 X 2+) First Negative

2 u
NO (B 2 1- X 2 Beta

NO (A X n1) Gamma

make important contributions to the spectral absorption coefficient of heated

air. Basic energy level diagrams which incorporate these transitions are displayed

in Figs. 7-1, 7-2, 7-3, and 7-4.

It was also pointed out in section 7.3.3 describing the use of the SACHA

code, which takes account of the contribution to the absorption coefficient of

the line structure of molecular bands, that the absorption coefficient in the

region of a line could be written

[Nota' Hn-J ,)

vLo Qvib-rot Pn nv,, exp Ev..,,/ • b(v) (A-n)
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where

Hflv~j BY a2 LO W n'v*J' R2 qj 8 A' AaHnevJ" " 3hc (2S÷l) w/A Qnuclear VV vV J'A (

v," "h-C [Go(v"e) + Fv")] (A-3)

and

Vnv"IJ 0 voo+ F'(11) - F"(J") + G'(v') - G"(v") (A-4)

Further

FvL/) a Bv JUJ+I) - Dv 1 2U+1)2 + ... (A-S5)

and

G(v) - w (v+l/2) - wexe(v+1/2) 2 + (A-6)

The quantities nvjj (line frequency), Ev, (lower level energy),

SlA',, (HBnl-London factor) depend entirely upon the type and structure

of the molecular transition considered. In this appendix therefore, a

detailed discussion is given of the form of HnV,, for each of the above

band systems, taking its properties into account. Much of the material which

follows is based upon the report by Churchill, Hagstrom, and Landshoff (1963)

on the SACHA code which has been discussed by Churchill and Meyerott (1965).
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The symbols in the above formulae are standard (Herzberg, 1950) and values

of molecular constants are taken either from papers cited below or from

Herzberg's compilation in application of the formulae.

The 02 (B 3 -u - X 37-) Schumann-Runge System

The allowed rotational transitions of a Schumann-Runge band are

illustrated in Fig. A-i which shows typical rotational energy levels, and

tho quantum numb'.-s and symmetry properties associated with each. Each

band has six strong branches: Pi , P2 0 P3 # R, 0 R2 # R3 for each

of which LJ and LK is + 1 (The Q branch is forbidden in a

S- 7 transition.) The separation of these lines is such that the three R lines

are so close together as are the P lines that the six lines often appear as

one unresolved P and one unresolved R line. Six weak satellite branches

R R P pof the form P , Q , R and Q for which aJpi &K are also

illustrated in Fig. A-I. Alternate triplets in the P and R branches

are missing since the oxygen atoms have zero nuclear spin. Even K

rotational levels are missing in the X state and odd K rotational levels

are missing in the B state. The SACHA calculations merged the three R-lines

into one line and the three P-lines into another line by addition of the appropriate

Hdnl-London factors as Schumann-Runge lines do appear as singlets except

at very high resolution.

The values of the Hdnl-London factors were thus 3K" for P-lines

and 3(K"+l) for R-lines. For each of the states, Eq. (A-5) is rewritten

Fv (K) Bv K(K+I) - DvK 2 (K+1) 2  (A-7)
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33
The Bv and D v values for t"- X 1I: state were calculated from the

constants givun by Herzberg (1950) and the values for the B 3Y state

were taken from the work of Brix and Herzberg (1954). Thus the H-function

of Eqs. (A-I and A-2) for the Schumann-Runge system is

" o l8 i2 /o
Hn'' 8:eLo (r q S

" " HKIK"" 3hc 3 knuclear/ VKK" a V'v" VV" SKeK"O

,16i•2 L R2 ( •K"÷.1 if K'-*K"÷4(-8

3hc VK'K"* R2e (rv'vII) qv'v", JV if 1{I - Kl1-A-8
3h Kee if K' a Ku-1

for K" - 1, 3, 5 ...

The N2 (B - A 3u+) First Positive System

As is seen in Fig. A-2, which illustrates the branch structure of bands

of the N2 First Positive system, a 3rn - 3'L band is very complicated,

exhibiting as it does 27 possible branches, distributed between three sub-bands

3 3.+, 3 3÷'* 3 3T+ . Each sub-band has nine possible branches.

For any band the nine principal branches P1 0 P2 , P3 # Q1 , Q2 * Q3

Ri * R2 * R 3 which obey all the selection rules are strongest, the ten P-form

and Q-form satellite branches are somewhat weaker and the eight 'forbidden'

N-form, O-form, S-form and T-form satellite branches (shown do-ed in

Fig. A-2) are extremely weak and neglected here. The remaining nineteen

branches are included in the calculations.
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Formulae for the levels of a 3V.. state have been provided by

Schlapp (1937). The sp~n splitting of the A 3 state is known to be

small and only approximately known at that. The A 3F state was thus

treatod as an effective state as for the Schurnann-Runge system

described above. Eq. (A-7) was again used and the Bv and D constants

calculated from the work of Naud6 (1932) . The triplet splitting of the 3fn

state was however taken into account using the formulae of Budo (1935) for

any degree of uncoupling

Fv4 (j)- B, [J(J+) - 7 - 2Z 2/3Z ] - Dv(J-1/2)4 (A-9)

v2 (J) Bv [Ji(j1) + 4z 2/3z 1 ] - D v +1/2) (A- O)

F, 3 (I) Bv B[I(J+1) +.I - 2 Z2 /3Z,] -Dv(J4.3/2 )4 (A-li1)

where

Z a Y (Yv -4) + 4 + 4J(J+i) (A-12)

z2 i Y (Yv-1) - A + 2J(J+1) (A-13)

and Yv V Av/Bv is a measure of the degree of coupling of the spin to the

internuclear axis.
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At high J numbers with J a K+I, K and K-I respectively,

FvI , F v2 and Fv 3 are representative of the case 'b' coupling model

of Hund. At low J numbers case 'a' holds. Further F v2(0), F v3(0)

and Fv3 () are undefined because of the case 'a' requirement that

J : : IA A71 . The Bv , Dv and Yv values for each vibrational level

were taken from the work of Budo (1935) and because ,'A-doubling it-small except

at large K it is neglected here.

The H-function for the First Positive system of N2 then becomes

H n: v IJ;.. 8 L 0 R2. (F'vIvI') qv'v"I X 3ForK"v (A- 14)n Ovit HK'K" 9• hc •K'" 4•K24 for K" odd

where

3S = S - SK" itJ

S taken for each respective branch and line from the tables of Budo (1937)

as follows

Line and branch S1 (Jj")

PI(J+l) Jl-J(J+2) u1 + (J+2) (Y-2) + 2(J-l) (J+I)22

(J+l) (2J+3) Ce(J)

2 ~2
Q1 (U) Z2 +1J2 ) u + (Y-2) + 2j(j 2-1)]

i C1(J)

R1(J-1) (U12-) C (J+i) ul - Y+2j 21

(2j-7 ) C
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Line and branrhs(u'

P2 (J+1) 81(+

Q2 01) 8(2.1+1 2,i 2

R2 1+1)-C2

p3 (741) 7(7+2) [j u3  (Y-2) + 21(74.2)112

(27+3C 3 )

2 3 j 2 2

QR3 (J-) (1I1 +9- 1) u 3  (-) (Y-2) + 21(1+1 .12)]

1(21-) C3 (JT)

R3(J1) (1+1) I[(+1 -1u3+(-1) (Y-2) + u1
2 j(2)

J(j(J*) C 3(G)

(7Q12 ) (2j1) C(72+1 ) [ ( Y42) +u1 -(-2 2 7(+

13~l 7 1(21)C(1

2 2
PR 130-1 (J -1) [(74.) ýJI -(Y-2) -uJ(+])

Q I2J-1 )G2 1) C 1(Jl) (-)-u

i Cl~i
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Line and branch 1 jJ)

IPQ2 (C2

Q (0+ .1) 2j[TrIT+1Y -2(2T+3)12

21 (J)+I 2j3 2

2QR (J12(J+2) [J(Y-2) + 231
232 J(2j) C~(J

2 2J

QP (Jl) J(J+1) [(J +-(Y-2) -u U33]

Jj+i) c,3 (J)

2

RP3J1) L(+) £ 3 - (Y-2) - 2J(J+1)]
31 (J+1) (2j+3) 30)

where

Ul (YY-4 + 2 1/2

u3- (Y(Y-4) + 4(Ji.1)2 /
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I]

cl(j) - J(J+i) Y(Y-4) + 2(2j+1) (J-1) (J+I)J

C 2 (J) - Y(Y-4) + 4J(J+I)

C 3 (J) - (J-1) (J+2) Y(Y-4) + 2(2j÷1) J(J+1) (3+2)

N2 (C 3 u - P 3 l n) Second Positive System

The six main branches of an N2 Second Positive band are shown in

Fig. A-3. The band structure is simple if both states behave according to Hund's

case 'a' or both behave according to Hund's case 'b'. Both 31n states of

the N2 Second Positive system are represented by case 'a' at low K-values

and to cptse 'b' at high K-values. Three sub-bands 3110 - 3 n 0o8 3I11 - 3r ,

3 72 - 3,"2 are present in each case and each sub-band has strong R and P

branches and (except for 3 fl - 3 ri ) a weak Q branch. For all K values in ,
0 0

case 'a' and for high K values in case 'b' the three P branches are close

together and the three R branches are close together which gives rise to a

characteristic triplet structure. Nitrogen nuclei follow Bose statistics (1-1)

and thus the symmetrical levels(s) will have the higher statistical weight

JI (s) = (21+1) (1+1) and the antisymmetrical levels(a) will have the lower

statistical weight II(a) = (21+1) . For example I(s) - 6; xI(a) - 3

Thus the total weight for the doublet is 9 which is 1/2 the maximum weight

2,u0(2I+1) one would expect for a heteronuclear system of the same type ana

for which both nuclei have Ia b b

The Q2 and Q3 branches have line intensities which fall off as

i/J". Their contribution is thus small and neglected in this work.
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Formulae for the rotational terms are as follows:

Let

Vv,,v, 00 + G'(v') - Go0v', (A-15)

then

~~ Vv ~ v'J(J*+) + F(J)-F(I).(A-1I6a)

Rn
V," = "v",v'#I"(J"hl) =Vv~v' +F n(J"..") - Fn(J") ' (A-16b)

P,,
, 11, ==- " v ,v i,j l(jli -l) V 4V Iv + F n( " l n (• (A - I6b)

for

rn-= 2,3

The two line components of a A-doublet have identical frequency except

for the influence of w The symmetrical component has w 6 while

the unsymmetrical component has La 3 The H-function for the whole doublet

is then constructed from the sum of the two contributions as follows

12
n'~~ 2V 1 a- Re( ),(3 61 (A-7a
Hn'.v(, r sI •o sill (--L + 9-2 •-1 7a)

n"v" ,"'J " 33hc 23 Pi'l" ve (v (9) 92"

8 i2 L U 2 I I l- 1 7b )

9hc Vjij. Re v v Sv

where

Qnuclear - 9/2
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Budo (1937) has given Hdnl-London factors for various coupling cases.

In this work, and because of the compact structure of the sub-bands they were

1 1treated as a Pl - rI transition for which

R

sit, = J--+l (A- 18a)

s ,, = (A-"•I8b)

The final for the H-functions are then

R n o2 Lo R 2
to n" Re (F v'vI) qv [j"+l ] (A-19a)

(R branch)

P Br 2 Lo PnHn 0 2 L0  R2 J" (A- 19b)

l 9hc IVY Re (Fv'v) qv'v-

for

n , , 2 , 3

Values of By , , and Yv for the C 3 rl and B 3 nl states

of N2 were taken from the work of Budo (1935; 1936).

N (B .- X 2x F) First Nigative System
2 g-

The branch structure of N+ bands is illustrated in Fig. A-4). The

situation is rather simple as only P and R branches occur and the doublet

structure is not well resolved in many cases. Thus the band system can be treated

as a - transition. Case b coupling applies strictly. The energy and
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frequency behavior are well represented by Eqn. (A-3 and A-4). The molecular

constants Bv , DV and G0 (v) were taken from the work of Douglas (1952) .

The H-function for this system then becomes

2
n 'v 'j 'I 6rr2 L ° 02 1,, if V- even

Hn1v"J N" HKINK', 3hc 2KIK" e (Fv'v") q vv S x

if K" odd

where

S, K"1+ (R branch) (A-21a)

SPI K" (P branch) (A-21b)SK,

The alternative factors depending on eveness or oddness of K" arise from

symmetry properties of 2 2 7 transition of homonuclear molecules. Even

K" levels are symmetric (t 1(s) - 6) and odd levels are antisymmetric

'•(s) N, 3 .

The (B 2-n x 2 n) Beta System of NO

The branch structure of NO Beta bands is illustrated in rig, A-5.

It is relatively simple as both 211 states pass from case 'a' to case 'b

coupling together with increasing internuclear separa'i•on, There are thus two

sub-bands for each band, one for each of the 4l7i 2 - "l1 / 2 , and

2.- 2
f3/2 - transition. The strong P and P branches are solely

taker- into account here as the Q-branch contribution is small and decreases
-1

as J

482

L -



!4

The B and X states are each Intermediate between case 'a' and

case 'b'. Hill and Van Vleck (1928) have analyzed the term structure for such

a case. It is represented by the expression

1 p] 4 if (n'i)

T (v, J) - Te + G (V) + Bv (+1/2)2 _1 + (-)n D(J+) 4 if (n 1 (A-22)

where
P W a=[(1+1/2)2 v + Y2/ Yv - A/Bv (A23)

n - 1 stands for 2 1/2 and n . 2 stands for 213/2 Frequencies

of lines in the various branches of a band are then

R1 W) V ve t V ) + F 1 (J"l+) - Fi(w°) (A-24a)

R2 () V + V(2) + r• (J"1+ - Flo ) (A-24b) 4

P() = Ve + (1 + ri (J-1) + F'i(j") (A-24c)

P2Q) + ÷ (A(21 ÷ ( F2O°) 0A-24d)

where

v-o (A-24e)
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V(n) (n)- Gn(v') - WW(v"); n 1,2 (A-24f)V V 'V nV

and

P (J) Fn (v,') - Bs ({+1/2)2 _ 1+ -I")n £(J+ i/2) 2  -Y .+ 2 /4312

(34 if n-1 (A-24g)

v•(j+l)4 if n-2

Bv and Ov were calculated from the work of Gillette and Eyster (1939).

As the 2nl states approach case Wb' behavior the selection rule

AK - 0±+.1 increasingly applies and satellite branches are vot; weak. D's-

regarding .A doubling and neglecting the weak Q and satellite branches

the band structure is quite similar to that of a 2F - 2F transition, i.e., it

has four strong branches. If the satellite lines are merged into the composite

line but Q branch contributions completely neglected the H~nl-London factors

are sufficiently accurately given by

R2 R1sil- Si - (A-25a)

P2 P1
S, sill (A-25b)

and the H-function becomes

n:vJ HI2 Lo 2 4rr2 LS (A-26)Hnv, -VJ HII,- c -3 Re2 (vIv,,) vil. qv'v j, sill

__________________8_
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The NO (A 2 - X 2ri) Gamma System

The rotational transitions of an NO Gamma band are illustrated in
2

Fig. A-6. The transition is quite complex because while A F behaves

strictly according to case 'b', the X 2f1 state moves from case 'a' to case

b behavior with Increasing rotation. The doublet splitting of the X state

gives rise to two sub bands, six strong branches (P1  1 # R1 P2

Q2 , R2) four weaker satellite branches (P Q12 ' QR12 Q P21 2 * 1)
0S

and two very weak forbidden satellite branches ( P12 and R2 1). The effect

of the last two was neglected and the remaining ten branches merged as

follows P1 0 R2 I (RI+RQ 2 1 ) 1 (Q1+QP 2 1 ) # (Q2 + QR12 ) 1 (P2+PQ12)

2Term vaiues for the X U1 state follow Eq.(A-22). Term values for the

A 2. state follow Eq.(A-5) . The constants in these equations were taken

from the experimental work of Barrow and Miescher (1957), and Deezsi (1959).

H6nl-London factors for the complete transition have been given by Earls (1935) 4

apart from an arbitrary constant. They were normalized in this work to obey the

sum rule (Eq. 4.1-16a). The Hdnl-London factors for the lines combined in the

above way are

Transition and Branch S:L
P (W) (211)2 + (2L+1) u (4u 2 + 41+1 - 2Y)

(2L+ 1)2 + (21+1) u 42+ 41 - 2Y)

R1(U) + Q2 1(J) (2161-1 - u(4j 2 + 4j +1 - 2Y)

Q,* (J 2)(n • {6, , u(4+2 ÷G 4(2 +- 1Y) }
21+ 8R1 2() 1 161-7 + u(41÷ 41+- 2Y)}

pQ() + PQ 2 (J) WT (61,7 - u(4? 4j+1 - Y)

i8P + P



where

- (27.1) (A-27)

Thus the H-function for lines of this system is

H n'vIJ 2a2 Lo R2 (rvIvI,) qv'v" S (A-28)

n"v"IJ H1"J 1  3"hc '"7 e POP(2

where the S values are listed ini the above table.
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