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ABSTRACT

The set of hydrodynamic equations together with Maxwell's

equations which describe a nonuniform plasma as formulated by Cohen 11962j

have been applied to a two dimensional Problem where the magnetic field

has only one component which is transverse to the direction of propaga-

tion and the profile is of the form e . These assumptions lead to a

set of second order coupled electromagnetic and hydrodvnamic differen-

tial equations which describe the region under consideration. Solutions

to this coupled set have been obtained by the application of the method

of Frobenius. Considerable simplification resulted in the solutions

when the assumption that the rms velocity of the electrons is much

smaller than the speed of light was made. The resulting set of approxi-

mate solutions have been applied to tne problem of obtaining reflection

and transmission coefficients for the case of a plane wave Incident fror

free space upon a layer of compressible inhomogeneous plasma.
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1. INTRODUCTION

While problems dealing with compressible homogeneous plasmas

and incompressible homogeneous and inhomogeneous plasmas have received

considerable attention in the past, little has appeared on the problem

of propagation through a plasma that is both compressible and inlomo-

geneous. Furthermore, one finus that frequent use is made of the bounu-

ary condition that the normal component of tne electron velocity shall

vanish at the free space-plasma interface. While the application of

this boundary condition may yield useable answers, it is doubtful tnat

rigid interfaces can be realized in situations dealing with reentry

cormunications. The boundary condition in question can be avoided by

suitably choosing a profile which is continuous at the air plasma intt.r-

face. The electron density will consequently be zero there anu tnc

vanishing of the normal component of tne electron velocity will be sat-

isfied automatically. Additional boundary conditions for the pressure

and its first derivative, however, must be introduced in order to specify

tie problem uniquely.

In the following, the equations describing a compressible in-

homogeneous plasma will be derived first. Then a special case of tue

latter will be considered and the corresponding solutions will be found.

Lastly, these will be applied co the determination of the reflection and

transmission coefficients for the case of a plane wave incident upon a

layer of compressible inhomogeneous plasma.
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2. STATEMENT OF THE PROBLEM

Let us focus our attention on the problem of determining the

transmission and reflection coefficients for the case of a plane wave

incident obliquely upon a plasma layer which is both inhomogeneous and

compressible. Let the layer be bounded by free space for the region

x<O on one side, and on the other, for x't, by a compressible homo-

geneous plasma. The profile describing the inhomogeneity of the layer

will be of the form exp(-Bx). The relative dielectric constant of free

space will be taken as unity and that of the compressible homogeneous

region as exp(-Bt). From this it follows that the relative dielectric

constant is then continuous everywhere. Furthermore, it will be assumed

that the magnetic field has only one component H and that the latter is
z

transverse to the direction of propagation which has been chosen to be x.

Finally, the problem is transformed into a two dimensional one by requir-

ing that all variations along the z-axis to be zero. The reader is

referred to Fig. 1, p.22.

Since the relevant equations for the regions x<O and x>t are

special cases of the equations describing the compressible inhomogeneous

plasma, the latter region will be considered first.

3. DERIVATION OF THE EQUATIONS DESCRIBING AN

INHOMOGENEOUS COMPRESSIBLE PLASMA

The linearized equations describing a warm, nou-uniformsource-

less plasma as formulated by Cohen [1962J are

VxE iwjH (1)

VxH -iWC E - eN v (2)

0 0
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v.iH 0 (3)

-+ -V. E , -V 0 (4)
0

V. (N) iWN (5)

-iwmN v + N eE s-VP (6)o o

N mv 2
P 3 + (7)

3 1lo

where N and v are the average density and rms velocity of the electrons;
0 0

m and e are the mass and charge of the electrons; E and H are the electro-

magnetic field vectors; and v and N are the velocity vector and density

of the electrons imparted by the fields. In addition a time dependence
-iwt

of the form e has been assumed and suppressed tthroughout.

The velocity vector appearing in (2) may be eliminated by use of

(6) yielding

-iwc E ieVP (b)
e 0 (AJmfC

where

20- 2 (9)

0

Multiplying (8) by Vx, using (i) and (3) and expanding produces

A2T + k2 i + --VcxVxH - - VcxVP (10)

where
k 2  2

0 00
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Similarly the electric field vector appearing in (2) may be

eliminated by the use of (6). Multiplication of the resultant equation

by V, produces

N

iwmV.(N ) aV. ie o ==V (11)

An expression for V.(N v) may be obtained by solving (7) for N1 and

sub1tituting the resultant expression into (5) producing

P N
V ( i w T 3).2(12)

0

The last term appearing in (12) is a static term and is henceforth

dropped. Upon substituting of the time varying por.ion of (12) into

(11) and expanding one obtains

V2P + k 2 FP -IC.VP i -eC.VxH (13)p C e e 4

where
22 W

k - (14)
p 2 "

V
0

An expression for the electric field may be obtained by solving

(8) for E. Then
¢I

-~ i ie
E - VxHVP (15)

W&C C WM

Similarly, an expression for v may be derived by elminating from (2)

and (6). Then

V 3 2  VP + e(I-)V (16)

W C m2C(C-1)



Hence the plasma is completely specified once H and P defined by (10)

and (13) are known.

4. SOLUTIONS OF THE COUPLED SYSTEM

Let us expand (10) and (13) in the cartesian coordinate system

for the case where

~I
: - (x), " 0, and H oH H

Then

a2H It2h H
az + - 1 - z 2 ie 1 4 OP
2 ~ ~ CWxH '~----(17)

x2  y2 C ;x ax 0 () z  WM17) d

ax andx y

and

3 2p P a2p 1 E acP 2C(N Lm I E H Z
+ P _+ k 1(x)e i (16)

ax2  ay2 C ax ax p e c 1x ,y

In general the y-variation can be removed by a Fourier trans-

form. However, since we are dealing with the propagation of plane waves

through the plasma we can simply assume a y-variation of the form

exp(iay) where a - k sin e° and 0 is the angle of incidence measured

from the normal [Hessel et al 1962]. Equations (17) and (1b) become

d2  -1 d d k C(x) - a2 2d1H d 2) cdx2 c dx dx 0koW Ed
d x

or in an abbreviated form

LH -ea 1 dc p (19)
L1 z wm c dx
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Id 2 dE d + k 2 -2 P -an Id t
tdx rCdxdx p e c dx z

L C - I d HE (20)
2 e C dx z

where L1 ana L2 correspond to the differential operators in brackets.

Equations (19) and (20)are more readily solved if they can be decoupled.

Multiplying (19) by L2 produces

L2(LH) -e L 1 dc) (21)
21 z M 2 cdx

It is evident that P may be eliminated from (21) by means of (20) if L,

an I d
and commute. To meet this end, let us choose

E dx

c(x) - exp(-Bx). (22)

Tnen

2z (23)

ano similarly

LIL2P 2 B2 P (24)

Before proceeding with the solution of (23) and (24) let us return once

more to (19) and (20) to see if an additional simplification can be

effected. For the exponential profile (22), (19) and (20) become

d 2H dhz 2 -2-B
+ B - + (k - a )H2 )H aBP (25)

dx d o
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2-
+B P k2 e-cB z aBH (26)

dx2  dx p

where P e
Mtn

An equivalent system may be generated by ttne addition anG subtraction of

(25) and (26) which has rue form

d 2 W k + k Bx 2 k -k Bx
d2 +B- + (0 2 -- e - B - a2)W .e (2722_ dW 2 2 B P___ e "¢ (27)

dx2

k2 2 2 2

d2R + B dR + kk -Bx 2 k -Bx
-- 2 l +  e -+ aB - a2)R - 2 e W (Th)

2dx

where

W-H +P
z

and 
(29)

R H -P'
z

Unlike Eqs. (25) and (26), (27) and (28) permit a comparison between the

2 2
relative magnitudes of k 0 and k . Let us consider the ratio

o p

k 2 2v
0 . -- (30

k 2 2
p

where v is the r.m.s. velocity of electrons and c the velocity of lignt.

p

Normally this ratio will be considerably smaller tsan unity, then 
to

first order, any contribution due to k 2 may be neglected. 
Ihe effect of

2O

neglecting k 2 in (27) and (28) is equivalent to dropping the term
0

involving k 2 in (25). This result may easily be verified ty the addli-
0

tion and subtraction of (27) and t28) an'd the subsequent 'ase of (29) taus



recovering our original system (25) and (26) with the term involving

2
k absent. Thus we are faced with the task of solving

+ 2 d 2 e
{d + B ~- aBP (31)

tdx L dx z in
and

d +B d + k2 -Bx 2  M

T2  + k o e a Jp 'L BH (32)

By means of the transformation

-BxP - e 1- F(x) (33)

-Bx

- x (34)

(31) and (32) become

_ g2

d 2 + e BF (35)

dx2

and

d- + (k2 e-Bx 2 2 B 2Ix ky a - F , _me BG - (35)
e )F

dx

Lquations (35) and (36) may be decoupled according to tne method indicated

uy (23) and ('4). Then

S+k2eBx + B2 d  2B k2e-BX dF

dx4  p - x 2 p -dx

+ ( 2 B2)2 2 3B2  2 -Bx =
- k + (- - a2)e -Bx F 0 (3?)

p1



d 4  + Ik2 Bx - 2 + B2 d 2I(1
dX4 + P lax ax

12 B2 2 k(2 2 -Bx

+ t - 2)- p + z (3)

Before applying the method of Frobenius to each of thu atvcouplec

equations it is convenient to remov the factor e To this en, It

F(x) - f(z)

G(x) - g(z) (39)

where z - exp(-

Tnen
4 uf +63 d3{ {^

z + + z Kz2 + 7 - 2v2 ddz 4 dz 3  vjdz

; ' 2v2df {  4 21

+ zj5Kz' + 1 - v'I- + K(4 - v')z + v - y f = U

(4L )

anu

4-
4 g 3 z2 + 2 L

4+ z z2  + 7 -2v2
dz Uz )dz

+ zfKz 2 + I - 2v 21 +- - 2 Kv z, U (41)

where
4k 2 2K= p 2 4 2 la"
2 v 2 + 1, anoa y lb-

B2 B2 B2
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Assuming power series solutions of the form

f(z) an z
nuo

(42)
a,

g(z) b zn+ s

nuo

one obtains upon substitution into (40) ana (41) the following recucsion

relationsnips

4k2  2 2
a -- "n+s) -v
n 2  2 2}2  2 an-2B [(n+s) -v -Y

4k 2 2
b 2 -(n-2+s) -v 2  b (43)
n B2 [(n+s)2_ v22 _ 2 bn-2

where s is determined from tte indicial equation

2 v2)2 2
(s- - y =0. (44)

Since two of the roots of the indicial equation are also zeros of the

aenominators of the recursion relations for the case n - 2, both

solutions of the first and second kina must be constructed. As this

procedure is rather well-known, only the final results will be pre-

sented. Thus the solutions generated by the method of Forbenius are

2 mI
W - e -x, + m (l )A(2) ... (m) [ e2

A +m- D(1)D(2)...D(m)B2 eB

(45a)



A Wx e +B f D(1)D(2)...D(n) I 2  e j

(45b)

P B Wx - p A (x,-a) (45c)

1 x) -H A(x,-a) (45d)

P WCx)(:-x -- e
B B ( , lI1(ID2 . )m1 B 2

+ e(O)A 1 + 1 (rn-1 B 2+2czB+4a 2
a 2aD(1)D(2) ... U(-1) [4a(B+21)

ki~~B 2 1(k-1) DM-1) r

22
m x a(~ 1'kAk1 Li-1)()..6-) p -

C 2k1 Da-1 2aD1D2..Dm1

2 2

+ e axI+ a 1 2a1) mO... A(m-2) B 2_6cB-12a2

+ A(k1 _ - 'kA~ j l-eBx1  (45f)
k26k-2 3 D(k-1) 2
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PD(x) = P (x, -a) (45g)

HD(X) = HC(x, -a) (45h)

where

A(m) = m(m+l) + _2 (2m + 1)
B

D(m) = m(m+l) (m + 2) (m + I + a) (45i)
B B

A'(m) - (2m + 2_ - 1)
B

The above solutions hold for the case where 2a is not equal to anB

integer or zero.

Substituting the generated series into (31) and (32) reveals

only PA' -_t HA and P -e HB to be solutions. Additional solutions,
Wm A 'm

however, may be found by forming linear superpositions of the various

series generated. Thus, if

H3(x) - Y H (X) + - Y H (x) (46)
3 n A A B c

P 3(x) =c PA(x) + YD P c(x) (47)

then a substitution of (46) and (47) into (31) and (32) reveals that

kP2(B - 2a)

Yc YA + 2tB(B + 2-0 YB (48)

Y - 'B. (49)

Hence, the various y's cannot be determined uniquely. Substitution of

(48) and (49) into (46) Wid (47) produces

P3 = YB 21B(B+2a) PA- PC + YAPA (50)

H = y H + e- YAH (51)
3 m Bc M A A
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or alternately

P3  Y P + Y PA (52)

H 2 (B-2c )  (e
3 WM B Hc 2ctB(B+2a) HAl !m YcHA

The last terms in (50) to (53) may be dropped, since oeing already

solutions of the system, they add noting new. That tne alternate forms

are equivalent and that eitner representation may be used for toe Prob-

lem at hand will be demonstrated shortly. Similarly, if

n - Y HB(X) - h4 s C m Ih

P4 (x) = YL PB + YF P1  (5

t nen

2k (B +Uz)
Y z YG +  P Y(0

L G -2aB(B-2u) YH (S)

YH - " (57)

and

kp2 (B + 2a) DJ
P4 YHp -2a(- - PB - P L + YG; PB (56)

4 -2c(Be -2ae)

H mj - e YB HB (59)
4 H Wm D wI(I B B

or

P - Y"HP D + YEPB (bO)
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H--I -H H I Y -14 (6114 w -2aB(B-2a) HB D1 E "o B

Again the lsst terms appearing in (59) through (61 may be dropped since

they are already solutions of the coupled system.

The sets of solutions satisfying (31) and (32) are summarized

below

PI(X W P A(XWi

H (x) P WxI mAH1(x) e HA(X)

P2 (x) - PB(x) (62)

k 2 (B-2a)

P(x) 2 ')(B2a) P (X) - P (X)
3 2ag±(B3+20 A)

H3 (x) (x)

2
k (B+2cz)

4 -2ciB(B-2a) BD

H4(x) - eH(x)

The complete solution describing the pressure and magnetic field for the

region 0 c x < t is obtained by forming a linear superposition 
of all the

solutions tabulated above. Thus

1(x) - CH(x) + C 2H2 (x) + C313(x) + C4H4(x) (63)

and

P(x) - CiP (x) + C PW(x) + C PW(x) + CIPl(x)
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Recalling that the C's are yet unspecified the substitution

2k (B-2a)
C' -, (65)C1 -1 2aB(B+2a)

k 2(B+2a)
C2 - c (66)

2 -2aB(B-2a)

transforms (65) and (66) into the form which would have resulted if the

alternate forms for P3, P4, H3 and H4 had been used. Thus it can be

concluded that the various forms are equivalent.

5. THE BOUNDARY CONDITIONS

Having obtained solutions to the coupled set of electromagnetic

and hydrodynamic equatiot.s a consideration of the boundary conoitions at

the interfaces located at x - 0 and x - t is in order. For the electro-

magnetic fields we shall require that the tangential components of the

electric and magnetic fields are continuous at the interfaces. In order

to determine the behavior of P at the free space-plasma interface Eq. (6)

is expanded in component form. Thus

- N e E - iwm N v (67)ay 0 y 0 y

and

- -- Ne - iwm N v (68)
x o x o x

2

where NO  0
m 2 (l - eBx)

2
e

Since the electron density N is equal to zero for x equal to zero and

0

the components of toe electric field and ion velocity are expected to be



H

lb

bounded it follows that

-O (69)

x-o+

Pl - 0 
(70)

In additinn we shall require that P be continuous at x - t.

6, THE DETECIINATION OF ThE REFLECTION AND TRANSMISSION COEFFICIENTS

The partial differential equation describing tne magnetic field

in free space is obtained from (15) for the case c - 1. The solutions

are well-known and the expression for tne magnetic field may be written

as

ik cosO x -ik cose x )iksinoYHl - (e o o+ Re o o)e(1

where R is tne reflection coefficient sought and 0 the angle of incidence
0

measured from the normal. Using (15) it follows tnat the expression for

tne tangential component of tie electric field is

k cosO ik cosO x -ik cosO x )ik osnoY
0l W 0 0 00

Ey C €Oe o o- Re o o) e (72)

For the region occupied by the compressible inhomogeneous plasma we have

Hz2 (C1HI(x) + C2H2(x) + C 3H 3x) + C4H4(x) e 00  (73)

) ik~sine°Y

P M IC1 P1W + C 2P2() + C3 P 3(x + C4P4 ) e . (74)

The tangential component of the electric field Ey2 may be calculated
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from (15). By making use of (73) and (74) this may be expressed as

S e ) + C2(H _ P2) + C3(1; _- P

y2 o 0-(X) I(HI -WM2 33 P3 )

+ C (H _ P4 )) (7:)

where the prime denotes differentiation with respect to x an u k sine 0
0 0

The equations describing the pressure and the magnetic field for

tne region occupied by the nomogeneous compressible plasma may be ob-

tained from (17) and (1$) setting c c 3  exp(-Bt) constant.

Then

dH 3  (k ° 2 a )Hz (7k

dx2  o 3 z3

a2P
o 3  2 -2 (7
2+ (kp2 E3 - L)P3 - 0 (77)dx 2

Since the region for x > t is semi-infinite only outgoing waves will be

present. Thus solutions for tnis region arc of tue form

2 2
H Te+i Tk -a (x-t) ik sinO yIz3 o3 e o 0 (78)

e+ip2C3 a2 - ik sine y
3+2 - a (x-t) eus oio ('9)

As before the tangential component of the electric field E is obtainec

y3

from (15). Making use of (78) and (79)

Ey3 Ti o -3

42 2

+ g . i VIC p2 - a (x-t) eikosineo • 80

iec

+ 2 Qe p 3 ex-)} osi 0~
w mE



0

0

H 0 0 0 0 0 0
o 0

IIT

-4 0 Cl A

c., C14 C14 C

1~41

o 0 0 0 0 C

1-r4
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Application of the indicated boundary conditions yields (81) where the

desired coefficients may be determined by applying Cramers rule.

7. NUMERICAL RESULTS

For purposes of numerical evaluation the reflection and trans-

mission coefficients may be expressed as

W - kcosO k2 a 2W i(kesOW + 2 a2W
R 1 o o o 377 4 0o 3a 45 o3 2

I4 k kcosOv'C 3 a7  4 +ikoO 3  3 W2

(82)

i2k case W5
W + k I c_ a o5C a

1+ cos o k 2 2 a +i(k 0 oe oW3 o 3 2 W

(83)

where

H'(o) H1(o) Y~O) H4(o) 0

P 1(O) P 2(o) P 3(o) P 4(o) 0I

1 P()P'0 P'(0) P'(0)

P )P 2(t) P 3(o) P 4(t) -1

(84)

HiP(o) H2(o) P'(o) HP'(o)

H ) H 2(t) H 3(t) H 4(t)
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HI (o) H2 (o) 113 (0) H 4 (o) 0

P1 (o) P2 (o) P3(o) P4 (o) 0

W3  P, (0) P (0) P' (0)() 03 (0 1o4 0
Pl(t) P2 (t) P3 (t) P4 (t) -

((t)- -P(t) (t)- ( 4Hn) e(t) W , W n"4''e1a H 2 3 -4 t  WM,

(86)

! ,  °) H() H 3(°) .4(°

P1 (o) P2 (o) P3 (o) P4 (o)

W4= Pi(o) P (o) P (o) P (o) (87)

P3 ()a) t)P 1 (o))4(t

P ((o) P2 )(o P3(o) P4 (o) 0

2 3 3W P. (0) P2 ( ) P;O o/ (0) (o87)

W = H(t) 2(t) 3 (t) H4 (t) U

Pl(t) P2 (t) P3(t) P4 (t) -1

1I 't) t ( I IC Ct) ecrC)H't cPP) I'(t)- e'ci4t) eait e2P2 3 wm3 WM

(88)

It should be noted that all of the Lntries in tne above determinants are

real. Furthermore, expressions for tne reflection and transmission coef-

ficients for tae case where ,2 2 may be obtained by replacing
o 3

the factor (k2  3 - L appearing in (b2) and (83) by +i(a 2 -c )1/2

While all of tiie series solutions converge, their rate of conver-

2gence depends critically upon the magnitude of the factor (kp /B) Using

(14) and the expression for the acoustic velocity in an electron gas at a

temperature T
2 _3kT

v 2 U (89)0 m
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it follows that

42 f2

IB) Mk 2 (90)B, ik TB 2

where m is the electronic mass, k the Boltzmann constant, and f the

frequency of the incident electromagnetic radiation. For a frequency of

IGHz, a temperature of 2000*K, and B equal to unity, tne value of (k p/B)2

will be of the order 108. Consequently, all of the series will converge

rather slowly ano require the calculation of many terms. Furthermore,

these terms rapidly reach magnitudes which exceea the capabilities of

most computers. While it is believed that this problem can be overcome

by special programs, a lack of time prevented any efforts in this direction.

In order to obtain some idea of the behavior of the functions in-
2

volved, (k /B) was set equal to unity. Then for a frequency of 1GHZ,
p

B-50, and the thickness of the compressible inhomogeneous plasma layer

equal to .014 meters, a reflection coefficient of about unity and a trans-

mission coefficient effectively zero were observed for all angles of inci-

dence between 5 and 85 degrees. It must be pointed out that the assumed

numerical values actually describe a plasma at a temperature so high that

it is no longer consistent with the governing equations and the assumptions

behind them.
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0 T
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Figure 1. (i) Plane wave incident obliquely upon a layer of

compressible inhomogeneous plasma occupying the region
o < x < T. (ii) The profile for all three regions.
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