ARL 67-0044 MARCH 1967 la dia periode Anno 2012

00

0

()

653

Rerespace Research Laboratories

SIMULTANEOUS TESTS FOR THE EQUALITY OF COVARIANCE MATRICES AGAINST CERTAIN ALTERNATIVES

P. R. KRISHNAIAH

APPLIED MATHEMATICS RESEARCH LABORATORY

Project No. 7071

0⁰ 9 950

Distribution of this document is unlimited

United States Air Force

ARCHIVE COPY

ERRATA

ARL 67-0044

MARCH 1967

- share is as

こうえんでもいが教育していたいないです。 がちら

炭

あって変換し

should read as w - v >1 Page 6, line 2: w - v Page 8: Add "for j = 1, 2, ..., p" above last line

AEROSPACE RESEARCH LABORATORIES OFFICE OF AEROSPACE RESEARCH UNITED STATES AIR FORCE WRIGHT-PATTERSON AIR FORCE BASE, OHIO ARL 67-0044

SIMULTANEOUS TESTS FOR THE EQUALITY OF COVARIANCE MATRICES AGAINST CERTAIN ALTERNATIVES

P. R. KRISHNAIAH

APPLIED MATHEMATICS RESEARCH LABORATORY

MARCH 1967

Project 7071

Distribution of this document is unlimited

AEROSPACE RESEARCH LABORATORIES OFFICE OF AEROSPACE RESEARCH UNITED STATES AIR FORCE WRIGHT-PATTERSON AIR FORCE BASE, OHIO

Preceding Page Blank

FOREWORD

1

This report was prepared for the Applied Mathematics Research Laboratory, Aerospace Research Laboratories by Dr. P. R. Krishnaiah under Project 7071, "Research in Applied Mathematics". It contains some procedures for testing the hypothesis of equality of covariance matrices against different alternatives when the underlying populations are multivariate normal.

The author wishes to thank Miss Eva Brandenburg for typing the manuscript carefully.

ABSTRACT

ŝ

ACTORNEY &

「「「「「「「「」」」

In this paper, we consider the problems of testing for the equality of covariance matrices against certain alternatives when the underlying populations are multivariate normal. The alternative hypotheses considered are (i) at least one covariance matrix is not equal to the covariance matrix of the next population, (ii) at least one covariance matrix is not equal to the covariance matrix of the standard population and (iii) at least one covariance matrix is not equal to the covariance matrix.

Table of Contents

Section

1.	Introduced as a second	Page
	Introduction and Summary	1
	Preliminaries and Statement of Problem	1
3,	Test for H Against A	4
4.	Test for H Against A ₂ and A ₃	8
5,	General Remarks	-
	References	9
		10

1. Introduction and Summary

In many situations, it is of interest to test for the equality of variances or covariance matrices against certain alternatives. Hartley [6] considered the problem of testing for the equality of variances against the alternative that at least one variance is different from the other. Gnanadesikan [3] considered the problem of testing for the equality of variances against the alternative that at least one variance is not equal to the standard. Recently, Krishnaian [11] considered testing for the equality of variances against the alternative that at least one variance is not equal to the next. In the above procedures, it was assumed that the underlying populations are univariate normal. In this paper, we consider multivariate generalizations of the above test procedures. The test procedures proposed in this paper are based upon expressing the total hypothesis as the intersection of some elementary hypotheses and testing these elementary hypotheses by using conditional distributions. In the two sample case, our procedures are similar (but not equivalent) to the procedure proposed by Roy [14]; the test statistics used by him in testing some of the elementary hypotheses are different from those used in this paper.

2. Preliminaries and Statement of Problems

Let $S_i = (s_{iqr})$ denote ith sample sums of squares and cross products (SP) matrix and let $n_i + 1$ denote ith sample size. Let Σ_{ij} denote top jxj left hand corner of $\Sigma_i = (\sigma_{iqr})$ and let S_{ij} denote the top jxj left hand corner of $S_i = (s_{iqr})$. Also, let $S_{ij}^{-1} = (s_{ijtu}^*)$ and let σ_{0j}^2 denote the common value of σ_{ij}^2 (defined below) when

$$\sigma_{1j}^2 = \cdots = \sigma_{kj}^2 \, .$$

In addition,

4

ţ

١,

.

PARTING.

$$\mathbf{\mathcal{B}}_{ij}^{z} \begin{pmatrix} \mathbf{\beta}_{ij1} \\ \vdots \\ \vdots \\ \mathbf{\beta}_{ijj} \end{pmatrix} = \mathbf{\Sigma}_{ij}^{-1} \begin{pmatrix} \sigma_{i1, j+1} \\ \vdots \\ \vdots \\ \vdots \\ \sigma_{ij, j+1} \end{pmatrix}$$

Ī

$$\mathbf{\dot{b}}_{ij} = \begin{pmatrix} \mathbf{\dot{b}}_{ij1} \\ \vdots \\ \vdots \\ \mathbf{\dot{b}}_{ijj} \end{pmatrix} = \mathbf{S}_{ij}^{-1} \begin{pmatrix} \mathbf{\dot{s}}_{i1,j+1} \\ \vdots \\ \vdots \\ \mathbf{\dot{s}}_{ij,j+1} \end{pmatrix}$$

$$s_{i1}^{2} = s_{i11}^{2}, \quad \sigma_{i1}^{2} = \frac{\left|\Sigma_{i,j+1}\right|}{\left|\Sigma_{ij}\right|}, \quad \sigma_{i,j+1}^{2} = \frac{\left|\Sigma_{i,j+1}\right|}{\left|\Sigma_{ij}\right|} \text{ for } j=1,2,\dots,(p-1)$$

$$s_{i1}^{2} = s_{i11}^{2}, \quad \sigma_{i1}^{2} = \sigma_{i11}^{2}, \quad s_{i,j+1}^{2} = \sum_{i=1}^{2} s_{i,j+1}^{2} ...$$

$$D_{imtu} = (b_{itu} - b_{mtu})^{2} / (s_{ituu}^{*} + s_{mtuu}^{*}), \quad N = \sum_{i=1}^{k} n_{i}^{2}$$

$$F_{imt} = \frac{s_{it}^{2} (n_{i}^{-} t+1)}{s_{mt}^{2} (n_{i}^{-} t+1)}, \quad F_{imtu} = \frac{(N-kt) D_{imtu}}{s_{i}^{2} (t+1)}.$$

Also, let

$$H_{j1}: \sigma_{1j}^{2} = \dots = \sigma_{kj}^{2} \qquad H_{j2}: \beta_{1j} = \dots = \beta_{kj}$$
$$A_{1j1} = \bigcup_{i=1}^{k-1} \left[\sigma_{ij}^{2} \neq \sigma_{i+1,j}^{2} \right] \qquad A_{1j2} = \bigcup_{i=1}^{k-1} \left[\beta_{ij} \neq \beta_{i+1,j} \right]$$
$$A_{2j1} = \bigcup_{i=1}^{k-1} \left[\sigma_{ij}^{2} \neq \sigma_{kj}^{2} \right] \qquad A_{2j2} = \bigcup_{i=1}^{k-1} \left[\beta_{ij} \neq \beta_{kj} \right]$$

$$A_{3j1} = \bigcup_{i \neq i'=1}^{k} [\sigma_{ij}^{2} \neq \sigma_{i'j}^{2}] \qquad A_{3j2} = \bigcup_{i \neq i'=1}^{k} [\beta_{ij} \neq \beta_{ij}]$$

In this paper, we consider the problem of testing H against A_1 , A_2 and A_3 where H: $\Sigma_1 = \ldots = \Sigma_k$, $A_1 = \bigcup_{j=1}^p A_{1j1j=1} A_{1j2}$, $A_2 = \bigcup_{j=1}^p A_{2j1} \bigcup_{j=1}^{p-1} A_{2j2}$ and $A_3 = \bigcup_{j=1}^p A_{3j1} \bigcup_{j=1}^{p-1} A_{3j2}$

The test procedures considered in this paper are based on the following method. We first test H_{11} against the alternative of interest. If H_{11} is rejected, we declare that H is rejected. If H_{11} is accepted, we proceed further and test H_{21} and H_{12} holding the first variate fixed. If $H_{12} \cap H_{21}$ is accepted, we proceed further and test H_{31} and H_{32} holding the second variate fixed. We continue this proceudre until H is accepted or rejected. Here we note that $\bigcap_{j=1}^{r} H_{j1} \bigcap_{j=1}^{r-1} H_{j2}$ is equivalent to the hypothesis that

$$\Sigma_{lr} = \dots = \Sigma_{kr}$$

We need the following known results (see [14]) in the sequel:

When S_{ij} is fixed, the distribution of \underline{b}_{ij} is independent of the distribution of $s_{i,j+1}^2$ the distribution of \underline{b}_{ij} is j-variate normal with mean vector $\underline{\beta}_{ij}$ and covariance matrix $\sigma_{i, i+1}^2 S_{ij}^{-1}$, and $s_{i, j+1}^2 / \sigma_{i, j+1}^2$ is distributed as χ^2 with $(n_i - j)$ degrees of freedom.

3. Test for H Against A₁

The following lemma is needed in the sequel.

Lemma 4.1

If x_1, x_2, \ldots, x_k are distributed independently as central chi-square variates with m_1, m_2, \ldots, m_k degrees of freedom, then

$$f(F_{12}, F_{23}, \dots, F_{k-1,k}) = \frac{(m_1/m_k) \left[\int_{j=1}^{k-1} m_j \int_{i=j}^{k-1} F_{j,i+1}/m_k \right] (m_k^{-2})/2}{\prod_{j=1}^{k} \Gamma(m_j/2) \left[1 + \frac{1}{m_k} \int_{j=1}^{k-1} m_j \int_{i=j}^{k-1} F_{i,i+1} \right] \sum m_j/2}$$

where $F_{ij} = \frac{x_i m_j}{x_j m_i}$

The proof of the above lemma is given in [11].

We will first consider the problem of testing H_{j1} against the alternative A_{1j1} when the first (j-1) variates are held fixed (with the understanding that no variate is held fixed when H_{11} is tested). In this case, we accept H_{j1} if and only if

$$(4.1) \qquad \qquad \lambda_{ij} \leq F_{i,i+1,j} \leq \mu_{ij}$$

where λ_{ij} and μ_{ij} are chosen such that

(4.2)
$$P[\lambda_{ij} \le F_{i,i+1,j} \le \mu_{ij}; i = 1, 2, ..., k-1 | H_{j1}] = P_j$$

When H_{j1} is true, $s_{1j}^2/\sigma_{0j}^2, \ldots, s_{kj}^2/\sigma_{0j}^2$ are independently distributed as chi-square

variates with $(n_1 - j+1), \ldots, (n_k - j+1)$ degrees of freedom. So, using Lemma 4.1, we can write down the joint distribution of $F_{12}, F_{23}, \ldots, F_{k-1,k}$ when H_{j1} is true. We will now discuss about a procedure for testing H_{j2} against A_{1j2} when H_{j1} is true and when the first j variates are held fixed.

When H is true and the first j variates are held fixed, we accept H if and only if

(4.3)
$$F_{i,i+1,ju} \leq c_{ij}, \quad u = 1, 2, ..., j$$
$$i = 1, 2, ..., k-1$$

where c_{ij} 's are chosen such that

(4.4)
$$P[F_{i,i+1,ju} \le c_{ij}; u = 1, 2, ..., j, i = 1, 2, ..., k-1] H_{j1} (H_{j2}] = P_{j}^{*}$$
.
When H_i is true $s^{2} = (\sigma^{2})^{2}$ is division.

When H_{j1} is true, $s_{i,j+1}/\sigma_{0,j+1}$ is distributed as a chi-square variate with (N-k j) degrees of freedom and it is distributed independently of $D_{i,i+1,ju}$ for i = 1,2,...,k-l and u = 1,2,...,j. Also, when $H_{j1} \cap H_{j2}$ is true, the joint distribution of

$$\binom{D_{12j1},\ldots,D_{k-1,kj1},D_{12j2},\ldots,D_{k-1,kj2},\ldots,D_{12jj},\ldots,D_{k-1,kjj}}{k-1,kj2}$$

is a central multivariate chi-square distribution with 1 degree of freedom and with Ω^{j} as the covariance matrix of the "accompanying" multivariate normal where

$$\boldsymbol{\Omega}^{j} = \begin{bmatrix} \boldsymbol{\Omega}_{11}^{j} & \boldsymbol{\Omega}_{12}^{j} & \dots & \boldsymbol{\Omega}_{1j}^{j} \\ \boldsymbol{\Omega}_{21}^{j} & \boldsymbol{\Omega}_{22}^{j} & \dots & \boldsymbol{\Omega}_{2j}^{j} \\ & \ddots & \ddots & \ddots & \ddots \\ & \ddots & \ddots & \ddots & \ddots \\ \boldsymbol{\Omega}_{j1}^{j} & \boldsymbol{\Omega}_{j2}^{j} & \dots & \boldsymbol{\Omega}_{jj}^{j} \end{bmatrix}$$

$$\begin{aligned}
 & \omega_{ii^{1}}^{j} = \left(\omega_{ii^{1}}^{j} vw \right) \sigma_{0,j+1}^{2}, \\
 & 0 \qquad |w-v| > \\
 & \left\{ \begin{array}{c}
 0 & |w-v| > \\
 \frac{\left\{ s_{vjii}^{*} + s_{v+1,jii^{1}}^{*}\right\}}{\sqrt{\left(s_{vjii}^{*} + s_{v+1,jii^{1}}^{*}\right)\left(s_{vjii}^{*} + s_{v+1,jii^{1}}^{*}\right)}} & w = v \\
 \sqrt{\left(s_{vjii}^{*} + s_{v+1,jii}^{*}\right)\left(s_{vjii^{*}}^{*} + s_{v+1,jii^{*}}^{*}\right)}} & |w-v| = 1 \\
 \sqrt{\left(s_{vjii}^{*} + s_{v+1,ii}^{*}\right)\left(s_{wjii^{*}}^{*} + s_{w+1,jii^{*}}^{*}\right)}} & |w-v| = 1 \\
 \end{array}$$

and t = max. (w, v); (for the definition of the "accompanying" multivariate normal. see [7]). So, the joint distribution of

$$(\mathbf{F}_{12j1}, \dots, \mathbf{F}_{k-1,kj1}, \dots, \mathbf{F}_{12jj}, \dots, \mathbf{F}_{k-1,kjj})$$

is a multivariate F distribution with (1, N-kj) degrees of freedom and with Ω^3 as the covariance matrix of the "accompanying" multivariate normal. For various details on the multivariate F distribution, the reader is referred to [9, 10].

Now, combining (4.1), (4.2), (4.3) and (4.4) we use the following procedure for testing H against A_1 .

Accept H against A₁ if and only if

ģ

(4.5)

$$\begin{pmatrix}
\lambda_{ij}^{*} \leq F_{i,i+1,j} \leq \mu_{ij}^{*} & i = 1, 2, ..., k-1 \quad j = 1, 2, ..., p \\
F_{i,i+1,ju} \leq c_{ij}^{*} & u = 1, 2, ..., j \quad j = 1, 2, ..., (p-1) \\
i = 1, 2, ..., k-1$$

where $\lambda_{ij}^*, \mu_{ij}^*$ and c_{ij}^* are chosen such that the probability of (4.5) holding good, when H is true, is (1-a). But this probability is equal to $\prod_{j=1}^{p} q_j \prod_{j=1}^{p-1} q_j^*$ where

$$q_{j} = P[\lambda_{ij}^{*} \leq F_{i,i+1,j} \leq \mu_{ij}^{*}; i=1,2,...,k-1 \mid H_{1j}]$$

$$q_{j}^{*} = P\left[F_{i,i+1,ju} \leq c_{ij}^{*}; u=1,2,...,j \quad j=1,2,...,(p-1) \mid H_{2j}\right],$$

$$i=1,2,...,(k-1)$$

The optimum choice of the critical values is not known. For practical purposes, we impose the following restrictions.

$$q_1^{\pm} \cdots = q_p^{\pm} q_1^{\pm} = \cdots = q_{p-1}^{\pm} = (1 - \alpha)^{1/2} p^{-1}$$

 $c_{ij}^{\pm} = c_j^{\pm}$.

In addition, we impose the restriction that the test associated with testing H_{lj} is locally unbiased.

The (1-a) % simultaneous confidence intervals associated with the above test procedure are given by

$$\frac{\lambda_{ij}^{*} s_{i+1,j}^{2} (n_{i}^{-j+1})}{s_{ij}^{2} (n_{i+1}^{-j+1})} \leq \frac{\sigma_{i+1,j}^{2}}{\sigma_{ij}^{2}} \leq \mu_{ij}^{*} \frac{(n_{i}^{-j+1})}{(n_{i+1}^{-j+1})} \frac{s_{i+1,j}^{2}}{s_{ij}^{2}}$$

$$i = 1, 2, \dots, k-1 \quad j = 1, 2, \dots, p$$

$$|b_{iju}^{-} b_{i+1,ju}^{-} \beta_{iju}^{-} + \beta_{i+1,ju}^{-}| \leq \frac{c_{ij}^{*} s_{jj+1}^{2} (s_{ijuu}^{*} + s_{i+1,ju}^{*})}{(N-kj)}$$

$$u = 1, 2, \dots, j \quad j = 1, \dots, (p-1)$$

$$i = 1, 2, \dots, k-1$$

4. Tests for H Against A₂ and A₃.

When H is tested against A_2 , we accept H if and only if

$$ij \leq F_{ikj} \leq b_{ij}$$
 $i = 1, 2, ..., k-1$ $j = 1, 2, ..., p$
 $F_{ikju} \leq c_{ij}$ $u = 1, 2, ..., j$ $j = 1, 2, ..., p$
 $i = 1, 2, ..., k-1$

where a_{ij} , b_{ij} , c_{ij} are chosen such that

$$\begin{array}{ccc}
p & p-1 \\
\prod_{j=1}^{n} Q_{j} \prod_{j=1}^{n} Q_{j}^{\dagger} = 1 - \alpha,
\end{array}$$

and

$$Q_{j} = P[a_{ij} \leq F_{ikj} \leq b_{ij}; i = 1, 2, ..., k-1 \ j = 1, 2, ..., p | H_{1j}]$$

$$Q_{j} = P[F_{ikju} \leq c_{ij}; u = 1, 2, ..., j \ i = 1, 2, ..., k-1 \ H_{2i}].$$

We can evaluate Q_1, \ldots, Q_p by using the methods (or their modifications) discussed in [1, 4, 5, 8, 12] whereas Q_1^t, \ldots, Q_{p-1}^t can be evaluated by using the methods discussed in [9, 10]. The optimum choice (in terms of increasing power of the test) of the critical values is not known. But, for practical purposes, we can choose them by imposing restrictions similar to those in the previous section.

We will now propose a procedure to test H against A_3 when the sample sizes are equal to (n + 1). According to this procedure, we accept H if and only if

$$\begin{cases} 1/\lambda_{j} \leq \mathbf{F}_{iij} \leq \lambda_{j}; i \neq i' = 1, 2, \dots, k \\ \mathbf{F}_{iju} \leq c_{j}; i \neq i' = 1, 2, \dots, k \quad u = 1, 2, \dots, j \\ \prod_{j=1}^{p} \mathbf{R}_{j} \prod_{j=1}^{p+1} \mathbf{R}_{j}' = 1 - \alpha \end{cases}$$

where

$$R_{j} = P[1/\lambda_{j} \le F_{iij} \le \lambda_{j}; i \neq i' = 1, 2, ..., k | H_{1j}]$$

$$R_{j}^{i} = P[F_{iiju} \le c_{j}; i \neq i' = 1, 2, ..., k | u = 1, 2, ..., j | H_{2j}].$$

Using the method discussed in [6], we can evaluate R_1, \ldots, R_p . In order to evaluate R_1^i, \ldots, R_{p-1}^i we note that, when H_2 is true and j is fixed, the statistics F_{iiju} are jointly distributed as a singular multivariate F distribution. So it is complicated to obtain exact values of R_j^i . But, we can obtain approximate values of R_j^i by using Bonferroni's inequalities [2; p. 100]. For practical purposes, we can choose the critical values such that

$$R_1 = \dots = R_p = R_1^i = \dots = R_{p-1} = (1-a)^{1/2p-1}$$

The simultaneous confidence intervals associated with the above test procedures can be obtained easily.

5. General Remarks

Roy [14] proposed a procedure, based on conditional distributions, for testing the equality of two covariance matrices. But, the lengths of the confidence intervals associated with the procedures proposed in this paper are at least as short as the lengths of the corresponding confidence intervals associate with the procedure by Roy [14]. In the univariate case, the procedures proposed in this paper for testing H against A_1 , A_2 and A_3 are respectively equivalent to the procedures considered by Krishnaiah [11], Gnanadesikan [3] and Hartley [6].

REFERENCES

- 1. Armitage, J. V. and Krishnaiah, P. P. (1964). Tables for the studentized largest chi-square distribution and their applications. ARL 64-188, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
- 2. Feller, W. (1950). Introduction to Probability Theory and Its Applications. Wiley, New York.
- Gnanadesikan, P. (1959). Equality of more than two variances and more than two dispersion matrices against certain alternatives. <u>Ann. Math. Statist.</u>, 30, 177-184.
- Gupta, S. S. and Sobel, M. (1962). On the smallest of several correlated F statistics. <u>Biometrika</u>, <u>49</u>, 509-523.
- 5. Gupta, S. S. (1963). On a selection and ranking procedure for gamma populations. <u>Ann. Inst. Statist. Math.</u>, <u>14</u>, 199-216.
- 6. Hartley, H. O. (1950). The maximum F-ratio as a short cut test for heterogeneity of variances. <u>Biometrika</u>, <u>17</u>, 308-312.
- Krishnaiah, P. R. and Rao M. M. (1961). Remarks on a multivariate gamma distribution, <u>American Mathematical Monthly</u>, 6β, 342-346.
- 8. Krishnaiah, P. R. and Armitage J. V. (1964). Distribution of the studentized smallest chi-square, with tables and applications. ARL 64-218, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
- Krishnaiah, P. R. and Armitage, J. V. (1965). Probability integrals of the multivariate F distribution, with tables and applications. ARL 65-236, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
- 10. Krishnaiah, P. R. (1965). On the simultaneous ANOVA and MANOVA tests. Ann. Inst. Statist. Math. 17, 35-53.
- 11. Krishnaiah, P. R. (1965). Simultaneous tests for the equality of variances against certain alternatives. <u>Austrl. J. Statist.</u>, Z. 105-109.
- 12. Ramachandran, K. V. (1956). On the simultaneous analysis of variance test. Ann. Math. Statist., 27, 521-528.
- 13. Roy, S. N. (1953). On a heuristic method of test construction and its use in multivariate analysis. <u>Ann. Math. Statist.</u>, <u>24</u>, 220-238.
- 14. Roy, J. (1958). Step-down procedure in multivariate analysis. <u>Ann. Math.</u> <u>Statist.</u>, <u>29</u>, 1177-1187.

Unclassified Security Classification					
Sociality classification of title, body of obstract and indusing grantation much be granted when the events report to sheetified;					
1 ORIGINATING ACTIVITY (Commente multion)		2. REPORT SECURITY & LASSIFICATION			
Aerospace Research Laboratories	1	Unclassified			
Wright-Patterson Air Force Base, O	hio	23 anour	,		
J REPORT TITLE		1			
Simultaneous Tests for the Equality	of Covariance)	Matrice	5 8		
Against Certain Alternatives					
4. DESCRIPTIVE HOTES (Type of report and inclusive dates)		<u> </u>			
Scientific. Fianl.					
S. AUTHOR(I) (Lost name. Bist name, initial)					
Krishnajah, P. R.					
S. REPORT DATE	Te. TOTAL NO. OF PI	A868	78. NO. OF BEFS		
March 1967	15		14		
** XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Be. ORIGINATOR'S SE	EPORT NUM	22A(0)		
ь риојест на. 7071					
•. 61445014		NQ(8) (A my	other numbers that may be sealghed		
4 681 307 ARL 67-0044					
18. AVAIL ABILITY/LIMITATION NOTICES					
1. Distribution of this document is unlimited					
11- SUPPLEMENTARY NOTES		12. SPONSOMING MILITARY ACTIVITY Aerospace Research Laboratories (ARM)			
	Aerospace Re	escarch	Laboratories (ARM)		
		Office of Aerospace Research, USAF Wright-Patterson AFB, Ohio			
13. ABSTRACT	1 1/	<u>4 0014 244</u>			
In this paper, we consider; the problems of testing for the equality of					
covariance matrices against certain alternatives when the underlying popu-					
lations are multivariate normal. The alternative hypotheses considered are					
(i) at least one covariance matrix is not equal to the covariance matrix of the					
next population, (ii) at least one covariance matrix is not equal to the covariance					
matrix of the standard population and (in) at least one covariance matrix is					
not equal to the covariance matrix of		A			
not equal to the covariance matrix of	another popula	tion.	•		

Unclassified Security Classification 大学に見た

į

1

「「「「「「「「」」」、「「」」、「」」、「」」、

and the second second second second second

Unclassified

14. LINK A LINK # LINX C KEY WORDS * 7 ROLE ROLE #1 ROLE Simultaneous tests Covariance matrices Multivariate normal INSTRUCTIONS 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of De-fonse activity or other organization (corporate author) insuing imposed by security classification, using standard statements such as: (1) "Qualified requesters may obtain copies of this report from DDC," the rope ħ. 2a. REPORT SECURITY CLASSIFICATION: Enter the over all security classific winn of the report. Indicate whether "Restricted Date" is included. Marking is to be in accord-(2) "Foreign announcement and dissemination of this report by DDC is not authorized." (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through or with appropriate security regulations.

of a group compare a compare so have had a second

(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through

A The second sec

-

(5) "All distribution of this report is controlled. Qual-ified DDC users shall request through

It the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indi-cate this fact and enter the price, if known.

11 SUPPLEMENTARY NOTES: Use for additional explanatory notes

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or isboratory sponsoring (pay-ing ior) the research and development. Include address.

13 ABSTRACT: Enter an abstract giving a brief and factual Summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical re-port. If additional space is required, a continuation sheet shall port. If addi be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U)

There is no limitation on the length of the sbatract. How-ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Rey words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be or short parases that characterize a report and may be used as index entries for catalogung the report. Key words must be selected so that no security classification is required. Identi-fiers, such as exupment model cessignation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of terhnical con-text. The assignment of unks, rules, and weights is optional.

. . .

Unclassified

Security Classification

26. GROUP: Automatic downgrading is specified in DoD Di-rective 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional merkings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital latters. Titles in all cases should be unclassified. If a meaningful title cussot be selected without classifica-tion, show title classification in all capitals in peromhesis distely following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(5): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of sarvice. The name of the principal asthor is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, yeas. If more than one date appears on the report, use date of publication.

7. TOTAL NUMBER OF PAGES: The total page count should follow normal peginetion procedures, i.e., enter the number of pages costsining information.

NUMBER OF REFERENCES. Enter the total number of references cited in the report.

8. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

85, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project num subproject number, system numbers, task number, etc. doer.

94. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number sunt be unique to this report.

95. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (ether by the originator or by the sponsor), also enter this number(s).

10. VAILABILITY/LINTATION NOTICES: Enter ony limitations on further dissemination of the report, other than those

. ...

Security Classification

and the second second