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FOREWORD

This report was prepared for the Applied Mathematics Research Laboratory,

Aerospace Research Laboratories by Dr. P. R. Krishnaiah under Project 7071,

"Research in Applied Mathematics". It contains some procedures for testing

the hypothesis of equality of covariance matrices against different alternatives

when the underlying populations are multivariate normal.j. The author wishes to thank Miss Eva Brandenburg for typing the manuscript

carefully.
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ABSTRACT
In this paper, we consider the problems of tesaing for the equality ofcovariance matrices against certain alternatives when the unMerlying popu-lations are Multivariate normal. The alternative hypotheses consideredare (iM at least one cOvariance matrix is not equal to the cOv~rince matrixof the next Population, (ii) at least one covariance matrix is not equal tothe covariance matrix of the standard population and (iii) at least onecovariance matrix is not equal to the covariance matrix of another population.
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I. Introduction and Summary

In many situations, it is of interest to test for the equality of variances or

covariance matrices against certain alternatives. HArtley [61 considered

the problem of testing for the equality of variances against the alternative that

at lea&st one variance is different from the other. Gnanadesikan 131 considered

the problem of testing for the equality of variances against the alternative that

at least one variance is not equal to the standard. Recently, Krishtuitit III]

considered testing for the equality of variances against the alternative that at

least one variance is not equal to the next. In the above procedures, it was

assuimed that the underlying populations are univarfate normal. In this paper.

we consider mnultivariate generalizations of the above test procedures. The

test procedures proposed in this paper are based upon expresbing the total

hypothesis as the intersection of some elementary hypotheses and testing these

elementary hypotheses by using conditional distributions. In the two sample

case, our procedures are similar (but not equivalent) to the procedure proposed

by Roy [141; the test statistics used by him in testing some of the elementary

Itypotheses are different from those used in this paper.

2. Preliminaries and Statement of Problems

Let S i (a.iq ) denote ith sample sums of squares and cross producte (SP)

matrix and let n-+ I denotc ith sample size. Let EZ., denote top jxj left hand

I Ij
m1

corner of = (ai ) and let Si denote the top jxj left hand corner of Si fanes )r

Als, rolet S (s and let ot denote thecommon value of ore (defined below)when
ii ijtu 03 i3
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Also, let

A A
Hjl 2lj . .: j Hj" " = j

k-I 2 21 A k-I
iz l ii ii Aj2 =

ii~l

k z z k t~

A3 ji, ij ij A 3jz i'r1i,:,

In this paper, we consider the problem of testing H against AV. A and A 3 where

H: X=... =L AC U A LA ,Az= A Li AK. and
1ko 1=1 ljlj=1 1j2 j=1 zjI jjzl x

A= tA VJA
3 j=l 3jI j= 3j2

The test procedures considered in this paper are based on the following method.

We first test H1 1 against the alternative of interest. If H 1 is rejected, we declare

that H is rejected. If H is accepted, we proceed furthet and test H and HI1

holding the first variate fixed. If HI2 H21 is accepted, we proceed further and test

H31 and H32 holding the second variate fixed. We continue this proceudre until H

r r-l

is accepted or rejected. Here we note that H H is equivalent to the
j=l j1 j J2

hypothesis that

Ir kr*

We need the following known results ( see [141) in the sequel:
2

When S.. is fixed, the distribution of k. is independent of the distribution of s.2

the distribution of b. is j-variate normal witO mean vector and covariance matrix

.r-.



4 2 S I and s / 2 is distributed as X with (n.-j) degrees oft I ij i,j+l- ij+l 2

f reedorn.

3. Test for H Against A

The following lemma is needed in the seqiiel.

Lemma 4. 1

If xi,x 2 ..P . x, are distributed independently as central chi-square variates

with mi, M2 .,.. mn degrees of freedom, then

!f) (rr' /m k l m= .hFi/l- 1 (m -2)/2

f(Fj 2 . F 23 , 1,l ) jl I k 3=1 1J i i Ji1+1 k k

12 Z3 k 2l1k MM/

X . iM.

where F.= I I
Ij x.i m i

' The proof of the above lemma is given in [11].

We will first consider the problem of testing Hjc against the alternative

A Ij 1 when the first (j-1) variates are held fixed (with the understanding that

no variate is held fixed when H IlIls tested). In this case, we accept Hi, if

and only if

(4.1) ij -S F !

wwhere X.i and ij are chosen such that

(4.2) P[X < .F i 1, ,k-I H. ]=P.- z i+lI - tij I'

2 z 22
WhenH is true, s /O- .. s r are independently distributed as chi-square

ji Ij Oj' ~kj'O

4.



variates with (n, -j+l).... (n k-_j+1) degrees of freedom. So, using Lemma 4. 1,we
can write down the joint distribution of F F . Fk 1  when H is true.12f 23" " k k
We will now discuss about a procedure for testing H.2 against Alj, when HJ1
is true and when the first j variates are held fixed.

lWhen H1 is true and the first j variates are held fixed, we accept Hi2 if

and only if

(4.3) F. 5 c u=I_. i+lju ij
i = 1,,2..•, k-I

where c _Is are chosen such that
13

(4.4)1 .ju S c..; u = 1,2,.., ,j,i= 1, Z..... k- 1-Fl1 = p.,--- =- 2 -I 2u S Cj 1 jWhen H. is true~s,2  / a, 2 is distributed as a chi-square variate with
N-k j) degrees of freedom and it is distributed independently of D . for

1, i 1,2. k-1 and u = 1.2..., j. Also. when H flH is true, the joint

distribution of

(D 2j . ... Dk -1,kjl' 1 D 2 j2,D k- 1 'kj2' . D. D1  .. . D Dk -l, kjj)

is a central multivariate chi-square distribution with 1 degree of freedom and
with & as the covariance matrix of the "accompanying" multivariate normal

whe-e

2 4122 2j

~t j2 .. .. ...

5.



il VW -Oj+1,

-w-V I >

wifvw - 1(77- + * ) (s A+. a
V3i1 v+I. jii vJ1u v+1,J1n

-s jiiI IW-V I=4sji + s*v+• i ) (9s*. o w+ I. jilt

and t max. (w, v); (for the definition of the "accompanying" multivariate normal.

see [7]) . So, the joint distribution of

(Fizj . . . . . . FklkJ-.... F jj . Fk-l,.kjj

is a multivariateFdistribution with (1, N-kj) degrees of freedom and with

* • as the covariance matrix of the "accompanying" multivariate normal. For various

details on the multivariate F distribution, the reader is referred to [ 9. 101

Now, combining (4.1), (4. 2), (4. 3) and (4. 4) we use the following procedure

for testing H against AI

Accept H against AI if and only if

I3I
. F. u * il,2,.,k-I j..,2 p

ij x,i+l,j - ij

: .' {4. s)

1,2..., k-I

6.
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dI

where Xi.. Ri, and c. are chosen such that the probability of (4. 5) holding good,

p p-I
when H is true, is (I -a). But this probability is equal to n 1q. J1= qj' where

.i ",xcji ; ui l,2.... J = 1,2.... (p-l)

The optimum choice of the critical values is not known. For practical purposes,

we impose the following restrictions.

I/2p-qlq

C.!. C.

In addition, we impose the restriction that the test associated with testing HIj

is locally unbiased.

The (1-a) % simultaneous confidence intervals associated with the above test

procedure are given by

z z 2
X* S. ,.(ni-Fl) (n.- j+) 8

Ij i÷I- ijj iI ,..i+1.j
2 si ( ij (n -j+ ) giz

i = 1,Z,... k-I j=1,2,...,p
S* 2, * 4.

b iju" bil, ju- ij Vj++ ijuu i+l'Juu
(N-kj)

= 1,2.... k-I,

7.



4. Tests for H Against A and A3.I .When H is tested against A., we accept H if and only if

a._. s F b.. i = 1.2,....k-1 j = 1,p2,Ij 1k3

Fi c.. u1, ,....j j~l,2 , pikju '13

1 2 ". °, k-i

where ai., bij, cij are chosen such that

p p-I #

* .1 and

m Q.j = P[ ai. F• bi ; i = 1.2..... k-i j = 1,2,...,pIHI

Q! P[Fiku sci u 1,2. j i 1, 2,. k-I H ]

We can evaluate QI,.... Q by using the methods (or their modifications) dis-

cussed in [1, 4, 5, 8, 121 whereas 01 .... , Q' can be evaluated by using theS~p-I
methods discussed in [9, 10]. The optimum choice (in terms of increasing power
of the test) of the critical values is not known. But, for practical purposes, we

can choose them by imposing restrictions similar. to those in the previous section.

We will now propose a procedure to test H against A when the sample sizes
3

are equal to (n+ 1). According to this procedure, we accept H if and only if

A i l i515 kl; iXi'= 1 ..,

" "Fj,:. c ; i01i' = 1,2. k u _ 1...
11Ju I)p p-1

where j Jjl R! l-a
Sj



mI

i R,:R P[ l/j s, Fit :5) .; ile 1.2.....k Hljj Jf
R- P fJ :scjIi/i , 2 . ,k u,-- , l...,j t.].

Using the method discussed in [6 1. we can evaluate R ,R . In order to

evaluate R , we note that, when H is true and j is fixed, the"''p-I2

statistics F..i. are jointly distributed as a singular multivariate F distribution.
1iju

So it is complicated to obtain .axact values of W.. But, we can obtain approxi-
IJI

mate values of R! by using Bonferronis inequalities [2; p. 1001. For practical3

purposes, we can choose the critical values such that

I/zp-IR ,..zR =.R' .. "()l-a)
RI p 1 p- (

The simultzneous confidence intervals associated with the above test proce-

dures can be ob'.'ned easily.

5. General Remarks

Roy [14] proposed a procedure, based on conditional distributions, for testing

the equality of two covariance matrices. But, the lengths of the confidence intervals

associated with the procedn•-ez proposed in this paper are at least as short as

the lengths of the corresponding confidence intervals associate with the

procedure by Roy [14]. In the univariate case, the procedures proposed in this

paper for testing H against AV, A 2 and A 3 are respectively equivalent to the pro-

cedures considered by Krishnaiah [1I], Gnanadesikan [3] arid Hartley [6].
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