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COMPLEMENTARY PIVOT THEORY OP MATHEMATICAL PROGRAMMING 

by 

Richard U.  Cottle and George B. Dentzlg 

1.    Fonmilatlon.    Linear programming, quadratic programming, and 

bimatrix  (two-person, non zero-sum) games lead Co the consideration 

of  the following   Fundamental Problea;    Given a real p-vector   q 

and a real   p x p   matrix    M,  find vectors    w   and    z   which 
* 

satisfy the conditions 

(1) w ■ q + Ma, w _> 0,  a 2. 0 

(2) aw - 0 

The remainder of this section is devoted to an explanation of why 

this is so. (There are othsr fields in which this fundamental 

problem arises — see frr example [6] and [13] — but we do not treat 

them here.) Sections 2 and 3 are concerned with constructive 

procedures for solving the fundamental problem under various assumptiona 

on the data q and M. 

* 
In general, capital roraan letters denote matrices while vectors are 

denoted by lower case roman letters. Whether a vector is a row or 
a column will always be clear from the context, and consequently we 
dispense with transpose signs on vectors. In (2), for example, 
zw represents the scalar product of z(row) and w(column). The 
superscript  Indicates the transpose of the matrix to which it is 
affixed. 
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Coniidar first linear program» In the ■ymetrlc  primal-dual  form 

du« to J. von Neumann    (20). 

Prl—l lin—r proKtm:    Find a vactor   x   and minimum   t   auch that 

(3) Ax ^ b,    x ^ 0,    i • ex 

Dual linaar proara«; Find a vactor y and maximum £ auch that 

(4) yA i c« y i. o. £ • yb 

The duality theorem of linaar programming    [3]    atataa that 

min    z ■ max £   whan the primal and dual ayataba    (3)    and    (4), 

respectively, are conai&tent or — in mathematical programming 

parlance — "feasible."    Since 

_« ■ yb <_ yAx ^ ex ■ a 

for all primal-feasible x and dual-feasible y, one aeeka auch 

solutions for which 

(5) yb - ex 

The inequality constrslnts of the primal and dual problems 

can be converted to equivalent systems of equations in non-negative 

variables through the introduction of non-negative "alack" variables. 

Jointly, the systems (3) and (4) are equivalent to 

(6) Ax - v - b. 

A y + u ■ e. 

v ^ 0, x .> 0 

u _> 0, y 2. 0 

. 
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and Che linear progrannlng problem become» on« of finding vector* 

tt« v( x, y auch that 

(7) j u i i c i      I 0    '      "A1 \ / » \     u ^ 0, v ^ 0 

x >. 0, jr .> 0 

and ( by (5) ) 

(8) xu + yv - 0 

The definitions 

(9) 

establish the correapondence between (1),  (2) and (3)» (4). 

The quadratic programming problem la typically atated In the 

following manner: Find a vector x and minimum z    auch that 

(10) Ax^b, X2.0, i"cx + -T-KDX 

In this formulation, the matrix D may be assumed to be symmetric. 

The mlnimand z  is a globally convex lunction of x If and only if 

the quadratic form xDx  (or matrix 0)  la positive semi-definite, 

and when this is the case,  (10) la called the convex quadratic 

programming problem.  It la immediate that when D la the zero matrix, 

(10) reduces to the linear program (3). In this sense, the linear 

programming problem is a special case of the quadratic programming 

problem. 
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For any quadratic prograomlng problem (10)( daflna u and v 

(11) u - Ux - A y + c,  v - Ax - b 

A vector    x     yields minimum   z    only If there exists a vector    y0 

and vectors    u , v      given by    (11)    for    x - x0    satisfying 

(12) x0 ^.0, u0 ^ 0, y0 .;. 0, v0 ^ 0 

o o     n o o     n xu-0, yv-0 

These necessary conditions for a minimum in (10) are a direct 

consequence of a theorem of H. W. Kuhn and A. W. Tucker [14]. It is 

well known — and not difficult to prove from firat principles — 

that (12), known aa the Kuhn-Tucker conditions, are also sufficient 

in the caae of convex quadratic programming. By direct substitution, 

we have for any feasible vector x. 

--o   ,    o»   1      loo 
Z-S  "C(X-X)+ -y-XDx s-X DX 

u0(x - x0) + y0(v - v0) + 4-(x - x0)D(x x ) 

u0x + y0v + 4-(x - x0)D(x - x0) .> 0 

which proves the sufficiency of conditions    (12)    for a minimum in the 

convex case. 

Thus, the problem of solving a quadratic program leads to a 

aearch for solution of the system 

J 

A 
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(13) u-Dx-Ay-fc 

v ■ Ax     - b 

x >, 0, y >. 0 

u i 0, v i 0 

(14) 

Th« definition» 

xu -f yv 

(15) •Cl 
D  -A 

M - I - 
-b, (;) 

••tablish (13). (14) as a problem of th« form (1), (2). 

Dual of a convx quadratic program. From (IS) ona la lad naturally 

ii to the conaldaration of a matrix M ■ I'  J { wherein E , Ilk« D , 

ia poaitlva aaml-definlta. It la shown in [1] that tha 

Primal quadratic program; Find x and minimum i auch that 

(16) Ax + Ey .>. b,  x ^ 0,  J - ex + -«-(xDx + yEy) 

has the aaaociated 

Dual quadratic program;    Find   y   and maximum   JE    auch that 

T 1 
(17) -Dx + Ay<>c,    yi.0,    «.-by j-(xDx - yEy) 

All the results of duality in linear programming extend to theaa 

problems, and indeed they are Jointly solvable if either ia solvable. 

When E - 0,  the primal problem is Just (10) for which W. S. Dorn 

[5] first established the duality theory later extended in [1]. When 

both D and E are zero matrices, this dual pair (16), (17) 

reduces to the dual pair of linear programs (3),  (A). 

S-- 
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REMARKS, (a) Th« alnlMnd In (10) is strictly convax if and only 

If th« quadratic for« xDx la poaltlva dafInlta. Any fan«ibla atrlctly 

convax quadratic prograa has a unlqu« mlnlalxlng solution x0. 

(b) Whan D and E ara poaltlva aeal-dafInlta (tha caoa of 

convax quadratic prograaalng), ao la 

D  -A1 

A   E 

A blaatrlx (or two-parson nonsaro-aua) gaaa. r(A,B)t la glvan by 

a pair of axn aatrlcaa A and B   Ona ftrty, callad tha row 

playtr. haa ■ pura atrataglaa vhlch ara Idantlf lad with tha rowa 

of A . Tha othar party, callad tha coluan plavar. haa n pura 

atrataglaa which corraapond to tha coluana of B . If tha row playar 

uaaa hla 1th pura atratagy and the column playar uaaa his 1th 

purs strategy, than their reapectlve loasaa are dsflnsd as a   and 

b^ , reapectlvely. Ualna mixed atrataglaa 

I 
I 

I 

1 

I 

I 

i 

X - (X.(...X ) .1 0,  J X. - 1 
■   1-1 * 

n 
y ■ (yi.^-.y.) i o, J y. - 1 

n   j-i J 

their expected losses are xAy and xBy, reapectlvely.  (A component 

in a mixed atratagy la interpreted as the probability with which the 

player uaaa the corresponding pure strategy.) 

A pair (x0,yC) of mixed strstegies is a Naah [19] equilibrium 

point of r(A,B)  if 

i 
■v 

—— 
■ . . *   . 
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x Ay0 ^ xAy0  4II nixed atratcglcs x 

x0By0 «_ x0By  all mixed strattg!•• y 

It is evident (••• for example (15))  that if  (x0,y0) la an 

equlllbriua point of r(A,B), then it la also en equilibriua point 

for the game r(A' B') in which 

A' - [a1, + KJ , B' - (b^ ♦ LI 

where K end L ere arbitrary acalara. Hence there ia no loaa of 

generellty In eeeumlng that A > 0 and B > 0, end we ahall aaka thla 

aaaumption hereafter. 

Next, by letting e. denote the k-vector ell of whoae coaponenta 

ere unity, it ia eaaily ahown that (x ,y ) ia an equilibriua point 

of r(A,B)  if and only if 

(18) 

(19) 

(x0Ay0)em 1 Ay0   (A > 0) 

(xOBy0)en < B
Tx0  (B > 0) 

This characterization of an equilibrium point leada to a theorea 

which relates the equilibrium-point problem to a ayatem of the form 

(1),    (2).    For    A > 0   and    B > 0,     if    u ,v  ,x ,y      ia a aolution 

of the ayatem 

• 

" 

(20) u ■ Ay - e 

v - B x - e v 21 0,    x ^ 0 

■' 

• 
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(21) 

th«n 

xu -f yv  -  0 

(x ,y ) * 
X   • 

»     * 
y < n 

o    o, is an equilibrium point of    r(A,B).    Conversely,    if    (x ,y )     is sn 

equilibrium point of    I (A,B)    then 

*    A 
(x ,y ) o„ o x By o.   o x Ay 

is s solution of (20),  (21) . 

form (1), (2), where 

The latter system is clearly of the 

•(:)• 

-e 

-e 
M 

0       A 

T 
B       0 C) 

Notice that the assumption   A    0,    BO    precludes the possibility 

of the matrix    N   above belonging to the positive semi-definite class. 

The existence of an equilibrium point for     r{A,B)    was 

•stsblished by J. Nash    [19]    whose proof employs the Brouwer Fixed- 

Point Theorem.    Recently, an elementary constructive proof was 

discovered by C.  E.  Lemke and J. T. Howson, Jr.     [IS]. 

2.     Lemke's iterative solution of  the fundamental problem.    This 

section is concerned with the iterative technique of Lemke and Howson 

for finding equilibrium points of blmatrix games which was later 

extended by Lemke to the fundamental problem    (1),     (2).    We introduce 

8 
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first •one tarulnology common to the subject of this section and the 

next.    Consider the  system of linear equations 

(22) w ■ q + Mz 

where, for the moment,  the p-vector    q   and the    p x p   matrix   M 

are arbitrary.    Both    w   and   z   are p-vectors. 

For    1 - lt...fp    the corresponding variables    z     end   w     ere 

called complementary and each Is the complement of the other.    A 

complementary solution of    (22)    Is a pair of vectors satisfying 

(22)    and 

(23) z^ - 0 , 1,... »p 

Notice that a solution (w;z) of (1),  (2) Is a nonnegative 

complementary solution of (22). Finally, a solution of (22) will 

be called almost-complementary If It satisfies  (23) except for one 

value of 1,  say 1-6. That is,  zß )* 0, w »* 0. 

In general, the procedure assumes as given an extreme point of 

the convex set 

Z"  AzIw-q + Mz^O, z "  jz I w ..) 

which also happens to be the endpoint of an almost-complementary 

ray (unbounded edge) of Z. Each point of this ray satisfies  (23) 

but for one value of 1, say 6. It is not always easy to find such 

a starting point for an arbitrary M. Yet there are two Important 

realizations of the fundamental problem which can be so Initiated. 

. 
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The first Is Che blmatrix game case to be discussed soon; the second Is 

the case where an entire column of M is positive. The latter property 

can always be artifically induced by augmenting M with an additional 

positive column; as we shall see, this turns out to be a useful device 

for initiating the procedure with a general M. 

Each iteration corresponds to motion from an extreme point P. 

along an edge of Z all points of which are almost-complementary 

solutions of  (22).  If this edge is bounded, an adjacent extreme 

point P. ,  is reached which is either complementary or almost- 

complementary.  The process terminates if  (i)  the edge is unbounded 

(a ray),  (ii)  P    is a previously generated extreme point, or 

(iii)  PJ.I  i8 a complementary extreme point. 

Under the assumption of nondegeneracy, the extreme points of Z 

are in one-to-one correspondence with the basic feasible solutions of 

(22)  (See [3] ).  Still under this assumption, a complementary basic 

feasible solution is one in which the complement of each basic 

variable is nonbaslc. The goal is to obtain a basic feasible solution 

with such a property.  In an almost-complementary basic feasible of 

(23),  there will be exactly one index, say ß , such that both 

vfl and  z  are basic variables.  Likewise, there will be exactly one 

index, say v ,  such that both w  and z  are nonbaslc variables . 

C. van de Panne and A. Whinston  [21]  have used the appropriate 
terms basic and nonbaslc pair for 
respectively. 

{Wß ' Zß}  and  (Wv ' \] 

10 
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An almost-complementary edge is generated by holding all nonbasic 

variables at value zero and Increasing either z   or w   of the 

nonbasic pair  z  , w  . There are consequently exactly two almost- 

complementary edges associated with an almost-complementary extrem« 

point (corresponding to an almost-complementary basic feasible 

solution). 

Suppose that z  Is the nonbasic variable to be Increased. The 

values of the basic variables will change linearly with the changes 

in z  .  For sufficiently small positive values of z ,  the 

almost-complementary solution remains feasible. This Is a consequence 

of the nondegeneracy assumption.  But In order to retain feasibility, 

the values of the basic variables must be prevented from becoming 

negative. 

If the value of  z  can be made arbitrarily large without 

forcing any basic variable to become negative, then a ray is generated. 

In this event, the process terminates. However, if some basic 

variable blocks the increase of z  (i.e. vanishes for a positive 

value of z ),  then a new basic solution is obtained which is 
v 

either complementary or almost-complementary. A complementary 

solution occurs only if a member of the basic pair blocks z . 

A new almost-complementary extreme point solution is obtained if the 

blocking occurs otherwise. In the complementary case, we have the 

desired result:  a complementary basic feasible solution.  In the 

almost-complementary case, the nondegeneracy assumption guarantees 

the uniqueness of the blocking variable.  It will become nonbasic in 

11 
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place of z  and its Index becomes the new value of v . 

The complementary rule. The complement of the (now nonbaslc) blocking 

variable — or equivalently put, the other member of the "new" 

nonbaslc pair — is the next nonbasic variable to be increased. The 

procedure consists of the iteration of these steps. The generated 

sequence of almost-complementary extreme points and edges is called 

an almost-complementary path. 

THEOREM 1. Along an almost-complementary path, the only almost- 

complementary basic feasible solution which can re-occur is the 

initial one. 

PROOF: We assume that all basic feasible solutions of  (22) are 

nondegenerate.  (This can be assured by any of the standard 

lexicographic techniques  [3]  for resolving the ambiguities of 

degeneracy.)  Suppose, contrary to the assertion of the theorem, 

that the procedure generates a sequence of almost-complementary 

basic feasible solutions in which a term other than the first one 

(P  in the figure below) is repeated  (say P.).  By the nondegeneracy 

assumption, the extreme points of Z are in one-one correspondence 

with basic feasible solutions of  (22). Let P. denote the successor 

of P.  and let P.  denote the second predecessor to P.  namely 

the one along the path just before the return to P... 

2 
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The extreme points P >P2,Pk    are di8tinct and each is adjacent to 

P  along an almost-complementary edge. But there are only two such 

edges at P,. This contradiction completes the proof. 

We can immediately state the 

COROLLARY. If the almost-complementary path is initiated at the 

endpoint of an almost-complementary ray, f:he procedure must terminate 

either in a different ray or a complementary basic feasible solution. 

It is easy to show by examples that starting from an almost- 

complementary basic feasible solution which is not the endpoint of 

an almost-complementary ray, the procedure can return to the initial 

point regardless of the existence or non-existence of a solution to 

(1),  (2). 

EXAMPLE 1. The set Z associated with 

1 
-1 
3 

M 

is nonempty and bounded.  It is clear that no solution of (1) can 

also satisfy (2) since z.w. '0. Let the extreme point 

corresponding to the solution w ■ (1,0,0), z - (1,0,2) be the 

initial point of a path which begins by increasing z?. This will 

return to the initial extreme point after 4 iterations. 

EXAMPLE 2. The set Z associated with 

3 
13 
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-1 

3 

1 

0 0 0 0 

1 0 0 1 

-1 -1 -1 -1 

0 0 0 -1 

is likewise nonempty and bounded.  The corresponding fundamental 

problem  (1),  (2)  has a complementary solution w - (1,0,1,0), 

z - (0,1,0,1). Yet by starting at w - (1,2,0,1),  z - (3,0,0,0) and 

increasing z , the method generates a path which returns to its 

starting point after 4 iterations. 

Furthermore, even if the procedure is initiated from an extreme 

point at the end of an almost-complementary ray, termination in a ray 

is possible whether or not the fundamental problem has a solution. 

EXAMPLE 3.  Given the data 

1 

-1 

3 

1 

M 

0 0 0 1 

1 Ü 0 1 

1 -1 -1 1 

0 0 0 -1 

the point of  Z corresponding to w « (1,0,4,1),  z * (1,0,0,0)  is 

at the end of an almost-complementary ray,  w ■ (l,w7,4 + w^.l), 

z ■ (1 + w»,0,0,0).  Moving along the edge generated by increasing 

z9  leads to a new almost-complementary extreme point at which the 

required increase of  z  is unblocked, so that the process terminates 

14 
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In a ray, and yet the fundamental probelm Is solved by 

w - (2,0,1,0), z  - (0,1,0,1). 

EXAMPLE 4.  In the problem with 

-1 

M 

the inequalities (1) have solutions, but none of them satisfy (2). 

The point corresponding to (w;z) - (1,0;1,0) is at the end of an 

almost-complementary ray w ■ (l,w2), z ■ (w-,0). When z_ Is 

increased, it is not blocked, and the process terminates in a ray. 

Consequences of termination in a ray. In this geometrical approach 

to the fundamental problem, it is useful to interpret algebraically 

the meaning of termination in an almost-complementary ray.  This can 

be achieved by use of a standard result in linear inequality theory 

[11],  [3]. 

* * 
LEMMA.  If  (w ;z )  is an almost-complementary basic feasible 

* * 
solution of (22), and  (w ;z )  is incident to an almost-complementary 

ray, there exist p-vectors w ,z  such that 

(2A) h  ..h   h  „   h_   h,n w =Mz, w_0,  z_^0,  z j*0 

and points along the almost-complementary ray are of the form 

(25) 

and satisfy 

*    h    *    h 
(w + Aw , z + Az )   A _> 0 

15 
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(26) (w1 ■»■ AwJ)(z* + XzJ) - 0 for all X ^ 0, and all 1 »» 6 

THEOREM 2.  If M > 0,  (22) has a complementary basic feasible 

solution for any vector q. 

PROOF. Select w.,..., w  as the basic variables in (22). We may 

assume that q i. 0 for otherwise (w;z) - (q;0)  immediately solves 

the problem. A starting ray of feasible almost-complementary 

solutions Is generated by taking a sufficiently large value of 

any nonbaslc variable, say z.. Reduce z  toward zero until it 

reaches a value z. _^ 0 at which a unique basic variable (assuming 

non-degeneracy) becomes zero. An extreme point has then been 

reached. 

The procedure has been initiated in the manner described by the 

corollary above, and consequently the procedure must terminate either 

in a complementary basic feasible solution or in an almost- 

complementary ray after some basic feasible solution (w;z )  is 

reached. We now show that the latter cannot happen. For if it does, 

conditions  (24) - (26)  of the lemma obtain with  ß • 1. Since 

M ^ 0 and z _ 0,  this implies w  > 0.  Hence by  (26), 

*   h 
z, - z «■ 0 for all 1^1. Hence the only variables which change 

with A are z^    and the components of w. Therefore the final 

generated ray Is the same as the initiating ray, which contradicts the 

corollary. 

THEOREM 3. A bimatrix game  r(A,B) has an extreme equilibrium point. 

16 
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PROOF.  Initiate the algorithm by choosing the smallest positive 

value of x.,  say x ,  such that 

'  ! 

(27) - e + B3X° > 0 
n   11 — 

T T 
where B  Is the first column of B . With 

n   11 

it follows (assuming nondegeneracy) that v  has exactly one zero 

component, say the r-th.  The ray is generated by choosing as basic 

variables x.  and all the slack variables u,v except for v . 

The complement of v , namely y , is chosen as the nonbasic 

variable to increase indefinitely. For sufficiently large values of 

y ,  the basic variables are all nonnegative and the ray so generated 

is complementary except possibly x.u  might not equal 0. Letting 

y  decrease toward zero, the initial extreme point is obtained for 

some positive value of y . 

If the procedure does not terminate in an equilibrium point, then 

by the corollary, it terminates in an almost-complementary ray.  The 

latter implies the existence of a class of almost-complementary 

solutions of the form 

(28) *       ,   h\ 1 
u    + \u  \ 

m 
-. 

*       »   h v    + >v  / 
\    n 

0   A\ /x* + \xh* 

B1  0  y***" 

The notational analogy with the previously studied case   M > 0    is 
obvious. 

17 
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(29) 

(30) 

(u* + XuJ)(x* + XxJ) 

* h       * h 
(Vj + XvJ)(yj + XyJ) 

- 0 all 1 ^ 1 

•11    J 

all X  > 0 

Assume first that    xh ^ 0.    Then    vh - BTxh > 0.    By    (30), 

y^ + ^y!? " 0    for all    j    and all    X > 0.    But then   u* + Xuh - -e    < 0, 
J   j — ■ 

a contradiction. Assume next that y    + 0    and x - 0. Then 

uh - Ayh > 0. By (29), xj - 0 for all 1^1; and xj - 0 for 

h   T h * 
all i. Hence v - B x - 0 and v  is the same as v defined by 

(27) since x. must be at the smallest value in order that 

* * * * 
(u ,v ,x ,y ) be an extreme-point solution. By the nondegeneracy 

assumption, only v - 0, and v > 0 for all .1 ^ r. Hence (30) 

*    h 
implies y + Xy - 0 for all j f r.  It is now clear that the 

postulated terminating ray is the original ray. This furnishes the 

desired contradiction. The algorithm must terminate in an equilibrium 

point of the bimatrix game r(A,B). 

A modification of almost-complementary basic sets.  Consider the 

system of equations 

- 

(31) q + e  z    + Mz p o 

where    z      represents an "artifical variable" and    e      is a p-vector o        K p r 

(!,...,!).     It is clear that    (31)    always has nonnegative solutions. 

A solution of (31)     is called almost-complementary if 

z w    ■ 0    for 1 -  l,...(p    and is complementary if.  in   addition, 

z    • 0.     (See [16,   p.   685]    where a different but equivalent 
o 

18 
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definition is given.)     In this case,  let 

Z    -     / (z  ,z)   I   w - q + e z    ■♦• Mz  • 0,   z     > 0,  z > 0 } 
O UO DO O"" ~       ■* 

We consider the almost-complementary ray generated by sufficiently 

large z . The variables v.,...(«  are initially basic while 

z ls1t...lz  are nonbasic variables. For a sufficiently large value 

of z ,  say z , 
o    3       o 

w ■ q •♦• e z  »0 4   p o 

As z  decreases toward zero, the basic variables wJ decrease. An 
o i 

initial extreme point is reached when z  attains the minimum value o 

z0 for which w - q + e z -0.  If z0 - 0, then q > 0; this o npo—        o*      i— » 

is the trivial case for which no algorithm is required. If 

z > 0, some unique basic variable, say w  has reached its lower 

bound 0. Then z  becomes a basic variable in place of w  and 
o r       r 

we have w ■ r. Next, z , the complement of w , Is to be 

increased. 

The remaining steps of the procedure are now identical to those 

in the preceding algorithm. After a blocking variable becomes basic. 

Its complement is increased until either a basic variable blocks 

the increase (by attaining its lower bound 0) or else an almost- 

complementary ray is generated. There are precisely two forms of 

termination. One is in a ray as just described; the other is in the 

reduction of z  to the value 0 and hence the attainment of a o 

complementary basic feasible solution of  (31), i.e. a solution of 
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(1),  (2). 

Interest now centers on the meaning of termination in an almost- 

complementary ray solution of  (31).  For certain classes of matrices. 

the process described above terminates in an almost-complementary 

ray If and only It the original system (1)  has no solution.  In the 

remainder of thit> section, we shall amplify the preceding statement. 

If terminalion in an almost-complementary ray occurs after the 

* * * 
process readies a basic feasible solution  (w ;z ,z ) corresponding 

to an extreme point of  Z ,  then there exists a nonzero vector 

/ h h hx    ,  . 
(w ;z ,z ) such that 

o 

(32) w  ■ e z + Mz ,  (w :z ,z ) - 0 
p o o    ■" 

Moreover for every  A _ 0 , 

(33) 

*     h *    h      *    h 
(w + Aw ) - q + e (z + Xz ) + M(z + Az ) 

p o    o 

and 

(34) (w* + ^zJ)(z* + ^zj) - 0 i - l,...,p . 

h h 
The case z - 0 is ruled out, for otherwise z > 0 and then 

o 

w  - 0 because  (w ;z ,z ) ^ 0.  Now if w  > 0,  (34)  Implies 

*    h   * 
z -f Az ■ z «0.  This, in turn, implies that the ray is the 

original one which is not possible. 

Furthermore, it follows from the almost-complementarity of 

solutions along the ray that 
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(35) 
** *h        h*        hh0 Z,W   .   -   Z.V.   ■   z.w.   ■  z.w.   ■  0 i     i i 1 11        11 

Is  1,...,p  . 

The Individual equations of the system    (32)    are of the form 

(36) 
h        h  ,   y... hx w    - z    + (Mz ). 
1        o 1 Is 1 p  . 

Multlpiiatlon of     (36)    by    z^    leads, via     (35),     to 

(37) 

from which we conclude 

_   h h ,  h/w h\ 0 ■ z.z + z.(Mz"). 
1 o   1    1 

1 - l,...,p 

THEOREM 4:  Termination In a ray implies there exists a non7'»ro 

nonnegative vector z  such that 

(38) zJ(Mzh)i <. 0 1 - l,...,p 

At this Juncture, two large classes of matrices M will be 

considered.  For the first class, we show that termination in a ray 

implies the Inconsistency of the syftem (1).  For the second class, 

we will show that  termination in a ray cannot occur, so that for this 

class of matrices,  (1),  (2) always has a solution regardless of 

what q is. 

The first class mentioned above was introduced by Lemke [16]. 

These matrices, which we shall refer to as coposltlve plus, are 

required to satisfy the two conditions. 

(39) uMu • 0 for all u > 0 
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(40) (M + M )u - 0 if uMu - 0 and u _> 0 

■ 

- 

Matrices satisfying conditions  (39)  alone are known In the 

literature as coposltive (see (18),  [12].) To our knowledge, there 

is no reference other than UM  on coposltive matrices 

satisfying the condition  (40).  However, the class of such 

matrices is large and Includes 

(1)  all strictly coposltive matrices, i.e. those 

for which  uMu j^ 0 when 0 j« u ^ 0 

(11) all positive semi-definite matrices, i.e. those 

for which uMu _ 0  for all u. 

Positive matrices are obviously strictly coposltive while positive 

definite matrices are both positive semi-definite and strictly 

coposltive.  Furthermore, it is possible to "build" matrices 

satisfying  (39)  and (40) out of smaller ones.  For example, if 

M.  and M  are matrices satisfying  (39) and (40) then so is the 

block-diagonal matrix 

M 

M   0 

M, 

Moreover, if M satisfies  (39)  and (40)  and S is any skew- 

symmetric matrix (of its order), then M + S satisfies  (39)  and 

(40).  Consequently, block matrices such as 
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1 
I 

M 
M    -A 

M, 

satisfy (39) and (40) if and only if M  and M- do too. However, 

as Lemke  [16],  [17] has pointed out, the matrices encountered in the 

bimatrix game problem with A ■ 0 and B  0 need not satisfy  (40). 

The Lemke-Howson iterative procedure for bimatrix games was given 

earlier in this section.  If applied to bimatrix gairies, the 

modification just given always terminates in a ray after just one 

iteration, as can be verified by taking any example. 

The second class, consisting of matrices having positive principal 

minors, has been studied by numerous investigators; see for example, 

[2],  [4],  [8],  [9],  [10],  [22],  [24].  In the case of 

symmetric matrices, those with positive principal minors are positive 

definite-  But the equivalence breaks down in the non-symmetric 

situation.  Nonsymmetric matrices with positive principal minors need 

not be positive definite. For example, the matrix 

' 

i 
I 
I 

has positive principal minors but is indefinite and not copositive. 

However, positive definite matrices are a subset of those with 

positive principal minors.  (See, e.g.  [2].) 
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We shall make use of the fact that w - q + Mz,  (w;z) >_ 0  has 

no solution if there exists a vector v such that 

(41) vM j^ 0,  vq ♦ 0,  v _^ 0 

for otherwise,  0 ^ vw ■ vq + vMz < 0, a contradiction.  Indeed, it 

is a consequence of J. Parkas' theorem  [7]  that  (1)  has no 

solution if and only if there exists a solution of  (Al). 

THEOREM 5.  Let M be copositive plus.  If the iterative procedure 

terminates in a ray, then  (1)  has no solution. 

PROOF.  Termination in a ray means that a basic feasible solution 

* * * 
(w ;z ,z )  will be reached at which conditions  (32) - (34) 

o 

hold and also 

(42) 
„   h h   h  h .  h. h 
0«zw «zez +ZMZ 

P 0 

Since M  is copositive and z j. 0,  both terms on the right side of 

(42) are nonnegative, hence both are zero. The scalar z - 0 

because  z e  '0.  The vanishing of the quadratic form z Mz 

u h . „T h  _ 
Mz  + M z «0 

means 

But by  (32),  z «0 implies that  w = Mz _ 0, whence M z  <_ 0 

or, what is the same thing,  z M ^_  0.  Next, by  (35), 

* h   * h   * 
0»zw «zMz  "z (-MTzh) - -z1^ 

and we obtain again by  (35) 
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O-zw    »zq + zez    +z Piz 
p o 

*        h    ^     h      * zq + zez H p o 

h h       * It follows that    z q <  0    because     i  e z    > 0.    The conditions     (1) 
p o 

are therefore inconsistent because    v = z      satisfies     (Al). 

COROLLARY.     If    M    is strictly copositive,  the process  terminates 

in a complementary basic  feasible  solution of     (31). 

PROOF.     If not,   the proof of  theorem 5 would imply the existence of a 

vector    z      satisfying    z Plz    "0,     0 j* z   _^ 0    which contradicts 

the strict copositivity of    M. 

This corollary clearly generalizes    Theorem 1.    We now turn to 

the matrices    M    having positive principal minors. 

THEOREM  6.     If    M    has positive principal minors,   the process 

terminates  in a complementary basic  solution of     (31)     for any    q. 

PROOF.     We have seen that  termination in a ray inplies  the existence 

of a nonzero vector    z      satisfying the inequalities    (38).    However, 

Gale and  Nikaido     [10  ,     Theorem 2]     have shown that matrices with 

positive principal minors are characterized by the  impossibility of 

this event.     Hence  termination  in a ray is not a possible outcome 

for problems  in which    M    has positive principal minors. 

We can even improve upon  this. 

THEOREM 7.     If    M    has the property that for each of its principal 

submatrices    M,   the system 

i 

^ 

Mz ^ 0,  0 >4 z _ 0 

has no solution, then the process terminates in a complementary 

basic solution of  (31)  for any q. 
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PROOF.  Suppose the process terminates in a ray.  From the solution 

(w ;z ,z )  of the homogeneous system  (32), define the vector 

h h 
w  of components of w  for which the corresponding component 

*   h h h 
of  z  + z  is positive.  Then by  (34) Q    - 0.  Let i      be the 

vector of corresponding components in z .  Clearly  0 »* 2 .1 0» 

since 0 ^ z _ 0 and any positive component of  z   is a positive 

component of  z  by definition of w .  Let M be the corresponding 

principal submatrix of  M.  Since M is a matrix of order k j_ 1 

we may write 

Hence 

0 » w = e, z + Mz 
k o 

M2h _ 0,  0 # zh _ 0 

which is a contradiction. 

3.  The principal pivoting method.  We shall now describe an 

algorithm proposed by the authors  [4]  which predates that of Lemke. 

It evolved from a quadratic programming algorithm of P. Wolfe  [26] 

who was the first to use a type of complementary rule for pivot 

choice.  Our method is applicable to matrices M  that have positive 

principal minors (in particular to positive definite matrices) 

and after a minor modification, to positive semi-definite matrices. 

In Lemke's procedure for general M,  an artlfical variable z 

is introduced in order to obtain feasible almost-complementary 

solutions for the augmented problem.  In our approach, only variables 

of the original problem are used, but these can take on initially 
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negative as well as non-negative values. 

A major cycle of the algorithm is initiated with the complementary 

basic solution  (w;z) ■ (q;0).  If q __ 0, the procedure is immediately 

terminated.  If q J. 0,  we may assume (relabeling if necessary) 

that w1 » q < 0. An almost-complementary path is generated by 

increasing  z.. ,  the complement of the selected negative basic 

variable.  For points along the path,  z w ■ 0  for  i ^ 1. 

Step I.  Increase z.  until it is blocked by a positive basic 

variable decreasing to zero or by the negative w.  increasing to 

zero. 

Step II.  Make the blocking variable nonbasic by pivoting its 

complement into the basic set.  The major cycle is terminated if 

wi  drops out of the basic set of variables.  Otherwise, return 

to Step I. 

It will be shown that during a major cycle w1  increases to 

zero.  At this point, a new complementary basic solution Is obtained. 

However, the number of basic variables with negative values is at 

least one less than at the beginning of the major cycle.  Since there 

are at most p negative basic variables, no more than p major 

cycles are required to obtain a complementary feasible solution of 

(22).  The proof depends on certain properties of matrices invariant 

under principal pivoting. 

Principal pivot transform of a matrix.  Consider the homogeneous 

system v = Mu where M  is a square matrix.  Here the variables 

v ,. .. ,v  are basic and expressed in terms of the nonbasic variables 
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u.»....u .  Let any subset of the v.  be made nonbasic and the 
1     p       ' 1 

corresponding u  basic.  Relable the full set of basic variables 

v and the corresponding nonbasic variables u.  Let v ■ Mu 

express the new basic variables v In terms of the nonbasic ones. 

The matrix M Is called a principal pivot transform of M.  Of 

course, this transformation can be carried out only If the principal 

submatrlx of M corresponding to the set of variables z  and w 

Interchanged is nonslngular, and this will be assumed whenever 

the term Is used. 

THEOREM 8.  (Tucker  [24]).  If a square matrix M has positive 

principal minors, so does every principal pivot transform of M. 

The proof of this theorem is easily obtained Inductively by 

exchanging the roles of one complementary pair and evaluating the 

resulting principal minors In terms of those of M. 

THEOREM 9.  If a matrix M is positive definite or positive semi- 

definite so is every principal pivot transform of M. 

PROOF.  The original proof given by the authors was along the 

lines of that for the preceding theorem.  P. Wolfe has suggested the 

following elegant proof.  Consider v - Mu. After the principal 

pivot transformation, let  v ■ Mu, where u  is the new set of 

nonbasic variables-  We wish to show that  uMu ■ uv > 0 if 

uMu - uv »0.  If M is positive definite, the latter is true if 

u j* 0, and the former must hold because every pair (u ,v,)  is 

Identical with  (u ,v )  except possibly in reverse order.  Hence 

/u.v  ■ J,u.v   0.  The proof in the semi-definite case replaces the 
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Inequality    ' by _^ . 

Validity of the algorithm.    The proof given below for    p ■ 3    goes 

through for general    p.    Consider 

w. q1 + m11z1 + m12z2 + «^3 

q2 + m21z1 + m22z2 + m23Z3 

W3  " q3 + m31Zl + m32Z2 + m33Z3 

Suppose that M has positive principal mlr.ors so that the diagonal 

coefficients are all positive: 

rall > 0, m22 > 0' m33  *  0 

Suppose furthermore that some q.  Is negative, say q. < 0. Then 

the solution  (w;z) - (q,»q9»qo;0,0,0) Is complementary, but not 

feasible because a particular variable. In this case w , which 

we refer to as distinRuished is negative.  We now initiate an almost- 

complementary path by increasing the complement of the distinguished 

variable, in this case z , which we call the driving variable. 

Adjusting the basic variables, we have 

(w;z)  - (qj^ + tnj^z^ q2 + m^z^ q3 + m^z^O^.O) 

Note that the distinguished variable w..  increases strictly with 

the increase of the driving variable z.  because s.  > 0. 

Assuming nondegeneracy, we can increase z.  by a positive amount 

before it is blocked either by w. reaching zero or by a basic 
■ 

;J 
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variable that was positive and Is now turning negative. 

* 
In the former case, for some positive value z  of the 

driving variable z.» we have  w. - q. + m-.z. - 0. The solution 

2 * * 
(w;z)  - (0,q2 + n^l-V 

q3 ^ m31Zl; 0'0»0) 

Is complementary and has one less negative component. Pivoting on 

m ,  replaces w  by z. as a basic variable.  By Theorem 8, the 

matrix M In the new canonical system relabeled w • q + Mz 

has positive principal minors, allowing the entire major cycle to be 

repeated. 

In the latter case, we have some other basic variable, say 

w_ ■ q2 + m-.z  blocking when z - z. > 0.  Then clearly 

m-, < 0 and  q_  > 0.  In this case, 

(w;z)  - (miizi +  ^i»0» m3izi + «IßJ2!»0»0) 

THEOREM 10.  If the driving variable 1B blocked by a basic variable 

other than its complement, a principal pivot exchanging the 

blocking variable with its complement will permit the further Increase 

of the driving variable. 

PROOF:  Pivoting on m^. generates the canonical system 

w1 -    q1+ m11z1 + «12w2 + ™i3z3 

*2 "    q2 + m21Zl + m22W2 + m23Z3 

w3    "    q3 + m31Zl + m32w2 + m33Z3 
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The solution (w;z)  must satisfy the above since It Is an 

equivalent system. Therefore setting z. - zi»v2 " 0» z3 * 

yields 

2       -  * .  *  * 
(w;z)  - (q. + m-.z , 0,  q- + m-.z.; z.,0,0) "ll"!' 'ai'i* "i' 

i.e.,  the same almost-complementary solution.    Increasing    z. 
* 

beyond    z      yields 

(q,   + miizii  0.  qi + m    z   ^.,0,0) "in 31 I'T 

which is also almost-complementary.    The sign of    m..     is  the 

reverse of    «»oi»    since m      m ~m21^m22 

21 

0. Hence z  increases 

with increasing z  - z ; i.e., the new basic variable replacing 

w. is not blocking.  Since M has positive principal minors, 

* 
m.., • 0. Hence w.  continues to increase with increasing z. > z. . 

THEOREM 11.  The number of iterations within a major cycle is finite. 

PROOF:  There are only finitely many possible bases. No basis 

can be repeated with a larger value of z. .  To see this, suppose it 

**   * 
did for  z   * zi •  This would imply that some component of the 

solution turns negative at z ■ z  and yet is nonnegative when 

** 
z = z  .  Since the value of a component is linear in z.  we nave 

a contradiction. 

Paraphrase of the principal pivoting method. Along the almost- 

complementary path there is only one degree of freedom.  In the proof 

of the validity of the algorithm,  z.  was increasing and z. was 

shown to increase.  The same class of solutions can be generated 
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by regarding    z      as Che driving variable and the other variables 

as adjusting.     Hence within each major cycle,  the same almost- 

complementaiy path can be generated as follows.     The first edge 

is obtained by using the complement of  the distinguished variable 

as  the driving variable.     As soon as  the driving variable is 

blocked,  the following steps are Iterated: 

a) replace  the blocking variable by the driving variable and 

terminate the major cycle if  the blocking variable is 

distinguished;   if  the blocking variable  is not 

distinguished. 

b) let the complement of the blocking variable be the new 

driving variable and increase  it until a new blocking 

variable is identified; return to a). 

The paraphrase  form is used in practice. 

THEOREM 12.    The principal pivoting method terminates in a solution 

of     (1),     (2)     if    M    has positive principal miaors   (and,  in 

particular,   if    M    is positive definite). 

PROOF.    We have shown that  the completion of a major cycle occurs 

in a finite number of  steps,  and each one reduces  the total number of 

variables with negative values.    Hence  in a finite number of  steps, 

this total is reduced  to zero and a solution of  the fundamental 

problem    (1),     (2)    is obtained.    Since a positive definite matrix 

has positive principal minors,  the method applies to such matrices. 

As Indicated earlier,   the positive semidefinite case can be 

handled by using the paraphrase form of  the algorithm with a minor 

modification.     The reader will find details in     [4]. 
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