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COMPLEMENTARY PIVOT THEORY OF MATHEMATICAL PROGRAMMING
by

Richard W, Cottle and George B. Dantzig

l, Formulation. Linear programming, quadratic programming, and

bimatrix (two-person, non zero-sum) games lead to the consideration
of the following Fundamental Problem: Given a real p-vector q
and a real p x p matrix M, find vectors w and z which

®
satisfy the conditions
(1) we=gq+ Mz, w>0,z2>0
(2) zw = 0

The remainder of this section is devoted to an explanation of why

this is so. (There are othzr fields in which this fundamental

problem arises -- see frr example [6) and [13]) -- but we do not treat
them here.) Sections 2 and 3 are concerned with constructive
procedures for solving the fundamental problem under various assumptions

on the data q and M.

*In general, capital roman letters denote matrices while vectors are
denoted by lower case roman letters. Whether a vector is a row or

a column will always be clear from the context, and consequently we
dispense with transpose signs on vectors. In (2), for example,

zZw represents the scalar product of z(row) and w(column). The
superscript = indicates the transpose of the matrix to which it is
affixed.
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Consider first linear programs in the symmetric primal-dual form

due to J. von Neumann [20].

Primal linear program: Find a vector x and minimum 2z such that
3) Ax > b, x>0, z=cx

Dual linesr program: Find a vector y and maximum 2z such that
(4) yA<cy y20, g=yb

The duality theorem of linear programming (3] states that
min z = max z when the primal and dual systems (3) and (4),
respectively, are consistent or -- in mathematical programming

parlance -- "feasible." Since
2= yb< yAx < ex =z

for all primal-feasible x and dual-feasible y, one seeks such

solutions for which
(5) yb = cx

The inequality constraints of the primal and dual problems
can be converted to equivalent systems of equations in non-negative
variables through the introduction of non-negative ''slack" variables.

Jointly, the systems (3) and (4) are equivalent to

(6) Ax - v = b, v>0, x>0
T
Ay +u=c, u>0, y2>0
2
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and the linear programming problem becomes one of finding vectors

u, v, %, y such that
T

(7) u c o . A x u>20,v20

v -b A 0 y x>0,y20

and ( by (5) )

(8) xu+yvs0

The definitions

SR IR N A N R

establish the correspondence between (1), (2) and (3), (4).

The guadratic programming problem is typically stated in the

following manner: Find a vector x and minimum z such that

(10) AX>b, x>0, ;-cx-i-—;xDx

In this formulation, the matrix D may be assumed to be symmetric.

The minimand z 1s a globally convex f{unction of x 1if and only if
the quadratic form xDx (or matrix D) 1is positive semi-definite,

and when this is the case, (10) is called the convex gquadratic
programming problem. It is immediate that when D 1is the zero matrix,
(10) reduces to the linear program (3). In this sense, the linear
programming problem is a special case of the quadratic programming

problem.
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For any quadratic programming problem (10), define u and v

by
(11) ueDpbDx - Ary +c, "VveaAx - b

A vector x° yields minimum z only if there exists a vector y°

and vectors u°. v given by (11) for x = x° satisfying

(12) xo_"__O. u°;0. y°_>.0.v

These necessary conditions for a minimum in (10) are a direct
consequence of a theorem of H., W. Kuhn and A. W. Tucker ([14). It is
well known -- and not difficult to prove from first principles --
that (12), known as the Kuhn-Tucker conditions, are also sufficient
in the case of convex quadratic programming. By direct substitution,

we have for any feasible vector x,

z-20= cix - xo) + -%—xDx - -%—xonxo

- uo(x - xo) + yo(v - vo) + -%—(x - xo)D(x - xo)
- uox + yov + -%-(x - xo)D(x - xo) 20

which proves the sufficiency of conditions (12) for a minimum in the
convex case.
Thus, the problem of solving a quadratic program leads to a

search for solution of the system
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(13) uesDx =A'y +¢c x>0,y20
vV = Ax -b u>20,v>0
(14) xu +yvs 0

The definitions

a =)o) 7))

establish (13), (14) as a problem of the form (1), (2).

Dual of a convex quadratic program. From (15) one is led naturally
T

to the consideration of a matrix M = (2 -: ) vherein E , like D ,

is positive semi-definite. It is shown in [1] that the

Primal quadratic program: Find x and minimum z such that

(16) Ax + By 2b, x20, I=cx+—(xDx+yky)

has the associated

Dual quadratic program: Find y and maximum 2 such that
T 1
(17) “-Dx +A'y<c, y20, g-by-T(xDx-yEy)

All the results of duality in linear programming extend to these
problems, and indeed they are jointly solvable if either is solvable.
When E = 0, the primal problem is just (10) for which W. S. Dorn
[5] first established the duality theory later extended in [1]. When
both D and E are zero matrices, this dual pair (16), (17)

reduces to the dual pair of linear programs (3), (4).
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REMARKS. (a) The minimand in (10) 1is strictly convex if and only
if the quadratic form xDx {is positive definite. Any fegeible strictly
convex nuadratic program has a unique minimizing solution x°.
(b) When D and E are positive semi-definite (the case of
convex quadratic programming), so is
M=
A E
A bimstrix (or two-person nonzero-sum) game, [l(A,B), is given by
a pair of mxn matrices A and B . One party, called the rovw
playsr, has m pure strategies which are identified with the rows
of A . The other party, called the column player, has n pure
strategies which correspond to the columns of B . If the row player

uses his ith pure strategy and the column player uses his jth

pure strategy, then their respective losses are defined as .11 and

byy » rvespectively. Using mixed strstegise

o
X ® (x,...x) 20, Jx =1
1 L q=1 1

n
y.(’.auo.y)lo.zy-l
1 n je1 h |
their expected losses are xAy and xBy, respectively. (A component
in a mixed strategy is interpreted as the probability with which the
player uses the corresponding pure strategy.)
A pair (xo,yc) of mixed strategies is a Nash ([19]) equilibrium

point of TI(A,B) 1if
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x°Ay° < My° dall mixed strategies x
x°l!y° b x°ly all mixed strategies y
It is evident (see for example [15]) that if (x°,y°) s an E'
equilibrium point of T[(A,B), then it is also an equilibrium point i
for the game ['(A° B°) 1in which '
;
A-[|14+K]. B-(bu+l.] :
vhere K and L are arbitrary scalars. Hence there is no loss of !
generality in assuming that A > 0 and B > 0, and ve shall make this
assumption hereafter.
Next, by letting e, denote the k-vector all of whose components ’l
are unity, it is easily shown that (xo.yo) is an equilibrium point
of l(A,B) 1f and only if
(18} ay)e < ay®  (A>0)
(19) °sy%e_<8'x° (B> 0) Y
This characterization of an equilibrium point leads to a theorem
which relates the equilibrium-point problem to a system of the form
x &
(1), (2). For A>0 and B> 0, 1if u*,v*.x »Y 1is a solution
of the system
(20) u-Ay-em u>0, y20
b
T )
veBx-e v>0, x>0 1 T
: -’.‘/ i
b ¢ ‘J
7 \“
'y
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(21) Xu+yveoO
then
o 0 x* :
(x"yy) = rY ’ z
x e y e
o n

is an equilibrium point of T(A,B). Conversely, 1if (x°,y°) is an

equilibrium point of [ (A,B) then

o

o
® 0N x y
(x ,y)= ’
xoByo onyo

is a sclution of (20), (21) . The latter system is clearly of the

form (1), (2), where
u -e (0] A X
we y Q= m' M= T y 2Z =
v -en B 0 y

Notice that the assumption A >0, B > 0 precludes the possibility
of the matrix M above belonging to the positive semi-definite class.

The existence of an equilibrium point for T[(A,B) was
established by J. Nash [19] whose proof employs the Brouwer Fixed-
Point Theorem. Recently, an elementary constructive proof was

discovered by C. E. Lemke and J. T. Howson, Jr. [15].

2. Lemke's iterative solution of the fundamental problem. This
section is concerned with the iterative technique of Lemke and Howson
for finding equilibrium points of bimatrix games which was later

extended by Lemke to the fundamental problem (1), (2). We introduce




first some teruinology common to the subject of this section and the

next, Consider the system of linear equations

(22) we=gq+ Mz

where, for the moment, the p-vector q and the p x p matrix M
are arbitrary. Both w and z are p-vectors.

For i1 =1,,,.,p the corresponding variables z, and w, are
called complementary and each is the complement of the other. A
complementary solution of (22) 1is a pair of vectors satisfying

(22) and

(23) zw, = 0, i=1,...,p

Notice that a solution (w;z) of (1), (2) is a nonnegative
complementary solution of (22). Finally, a solution of (22) will
be called almost-complementary if it satisfies (23) except for one
value of i, say 1 = B. That is, zg ¢ 0, Vg $ 0.

In general, the procedure assumes as given an extreme point of

the convex set

Z= {z|w-q+Mz;0,z_>_0}

which also happens to be the endpoint of an almost-complementary

ray (unbounded edge) of Z. Each point of this ray satisfies (23)
but for one value of 1, say 8. It is not always easy to find such
a starting point for an arbitrary M. Yet there are two important

realizations of the fundamental problem which can be so initiated.

"Q
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The first is the bimatrix game csse to be discussed soon; the second is
the case where au entire column of M 1is positive. The latter property
can always be artifically induced by augmenting M with an additional
positive column; as we shall see, this turns out to be a useful device
for initiating the procedure with a general M,

Each iteration corresponds to motion from an extreme point Pi
along an edge of Z all points of which are almost-complementary
solutions of (22). If this edge is bounded, an adjacent extreme
point P1+l 18 reached which is either complementary or almost-
complementary. The process terminates if (i) the edge is unbounded
(a ray), (i1) Pi+1 is a previously generated extreme point, or

(111) Pi+1 is a complementary extreme point.

Under the assumption of nondegeneracy, the extreme points of Z

are in one-to-one correspondence with the basic feasible solutions of

(22) (See [3] ). sStill under this assumption, a complementary basic

feasible solution is one in which the complement of each basic

variable is nonbasic. The goal is to obtain a basic feasible solution
with such a property. In an almost-complementary basic feasible of
(23), there will be exactly one index, say B8 , such that both

e and z, are basic variables. Likewise, there will be exactly one

*
index, say v , such that both v and z, are nonbasic variables .

*

C. van de Panne and A. Whinston [21] have used the appropriate
terms basic and nonbasic pair for {wB 0 28} and {wv ; zv}
respectively.

10
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An almost-complementary edge is generated by holding all nonbasic
variables at value zero and increasing either z, or w, of the
nonbasic pair zZ 0, W, . There are consequently exactly two almost-
complementary edges associated with an almost-complementary extreme

point (corresponding to an almost-complementary basic feasible

solution).

Suppose that z, is the nonbasic variable to be increased. The
values of the basic variables will change linearly with the changes
in z, - For sufficiently small positive values of Z, the
almost-complementary solution remains feasible. This is a consequence
of the nondegeneracy assumption. But in order to retain feasibility,
the values of the basic variables must be prevented from becoming
negative.

If the value of z, can be made arbitrarily large without
forcing any basic variable to become negative, then a ray is generated.
In this event, the process terminates. However, if some basic
variable blocks the increase of z, (1.e. vanishes for a positive
value of zv), then a new basic solution is obtained which is
either complementary or almost-complementary. A complementary
solution occurs only if a member of the basic pair blocks z, .

A new almost-complementary extreme point solution is obtained if the
blocking occurs otherwise. In the complementary case, we have the
desired result: a complementary basic feasible solution. In the
almost-complementary case, the nondegeneracy assumption gua;antees

the uniqueness of the blocking variable. It will become nonbasic in

11
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place of z, and its index becomes the new value of v .

The complementary rule. The complement of the (now nonbasic) blocking
variable -- or equivalently put, the other member of the ''new"
nonbasic pair -- is the next nonbasic variable to be increased. The
procedure consists of the iteration of these steps. The generated
sequence of almost-complementary extreme points and edges is called
an almost-complementary path.

THEOREM 1. Along an almost-complementary path, the only almost-
complementary basic feasible solution which can re-occur is the
initial one.

PROOF: We assume that all basic feasible solutions of (22) are
nondegenerate. (This can be assured by any of the standard
lexicographic techniques [3] for resolving the ambiguities of
degeneracy.) Suppose, contrary to the assertion of the theorem,

that the procedure generates a sequence of almost-complementary

basic feasible solutions in which a term other than the first one

(Po in the figure below) 1is repeated (say Pl). By the nondegeneracy
assumption, the extreme points of Z are in one-one correspondence
with basic feasible solutions of (22). Let P, denote the successor

2

of P1 and let Pk denote the second predecessor to P1 namely

the one along the path just before the return to Pl'
-.'
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The extreme points Po'PZ’Pk are distinct and each is adjacent to

P1 along an almost-complementary edge. But there are only two such

edges at Pl' This contradiction completes the proof. :

We can immediately state the
COROLLARY. If the almost-complementary path is initiated at the
endpoint of an almost-complementary ray, :he procedure must terminate
either in a different ray or a compleumentary basic feasible solution.

It i3 easy to show by examples that starting from an almost-
complementary basic feasible solution which is not the endpoint of
an almost-complementary ray, the procedure can return to the initial
point regardless of the existence or non-existence of a solution to
1, (@.

EXAMPLE 1. The set Z associated with

1 0o 0 0

q= -1 M=]1 0 0

3 -1 -1 =1
is nonempty and bounded. It is clear that no solution of (1) can i
also satisfy (2) since z.w >0. Let the extreme point {

11
corresponding to the solution w = (1,0,0), z = (1,0,2) be the

initial point of a path which begins by increasing Z,. This will
return to the initial extreme point after 4 iterations.

EXAMPLE 2. The set Z associated with

e

13
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(1 (00 0o o)
-1 10 0 1
| 3 » M= 0 a1
ey (0 0 o -1

is likewise nonempty and bounded. The corresponding fundamental
problem (1), (2) has a complementary solution w = (1,0,1,0),
z = (0,1,0,1). Yet by starting at w = (1,2,0,1), =z = (3,0,0,0) and
increasing Y the method generates a path which returns to its
starting point after 4 iterations.

Furthermore, even if the procedure is initiated from an extreme
point at the end of an almost-complementary ray, termination in a ray
is possible whether or not the fundamental problem has a solution.

EXAMPLE 3. Given the data

(')

0 0 o0 1

-1 ’ 1 0 0 1
a=1 3 =11 -1 -1 1
1 -
oy 0 0 0 -1

the point of Z corresponding to w = (1,0,4,1), =z = (1,0,0,0) 1is
at the end of an almost-complementary ray, w = (l,w2,4 + wz,l),

z=(l +w,,0,0,0). Moving along the edge generated by increasing

2’

z, leads to a new almost-complementary extreme point at which the

required increase of z, is unblocked, so that the process terminates

14
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in a ray, and yet the fundamental probelm is solved by
w=(2,0,1,0), z = (0,1,0,1).

EXAMPLE 4. In the problem with

1 0 0
-1 1 =1

the inequalities (1) have solutions, but none of them satisfy (2).
The point corresponding to (w;z) = (1,0;1,0) 1is at the end of an
almost-complementary ray w = (l,wz), z = (w2,0). When z, is
increased, it is not blocked, and the process terminates in a ray.

Consequences of termination in a ray. In this geometrical approach

to the fundamental problem, it is useful to interpret algebraically

the meaning of termination in an almost-complementary ray. This can

be achieved by use of a standard result in linear inequality theory
(11], (3].

LEMMA. If (w*;z*) is an almost-complementary basic feasible

solution of (22), and (w*;z*) is incident to an almost-complementary

ray, there exist p-vectors wh,zh such that

(24) wh = Mzh, wh > 0, zh > 0, zh $#0

and points along the almost-complementary ray are of the form

* *
(25) (w + Awh , 2 + th) A>0

and satisfy

15
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(26) (wy + W) (z" +Az}) =0 for all A > 0, and all 1 # B8

THEOREM 2. If M > 0, (22) huas a complementary basic feasible
solution for any vector q.

PROOF. Select Wiseoos wp as the basic variables in (22). We may
assume that q i_O for otherwise (w;z) = (q;0) immediately solves
the problem, A starting ray of feasible almost-complementary
solutions is generated by taking a sufficiently large value of

Reduce 2 toward zero until it

any nonbasic variable, say z 1

1.

reaches a value zoil 0 at which a unique basic variable (assuming

1
non-degeneracy) becomes zero. An extreme point has then been
reached.

The procedure has been initiated in the manner described by the
corollary above, and consequently the procedure must terminate either
in a complementary basic feasible solution or in an almost-
complementary ray after some basic feasible solution (w;z*) is
reached. We now show that the latter cannot happen. For if it does,
conditions (24) - (26) of the lemma obtain with B8 = 1. Since
M > 0 and zh _ 0, this implies wh > 0. Hence by (26),

*

z, = z? =0 for all i # 1. Hence the only variables which change

with ) are z, and the components of w. Therefore the final
generated ray is the same as the initiating ray, which contradicts the
corollary.

THEOREM 3. A bimatrix game T (A,B) has an extreme equilibrium point.

16




PROOF. Initiate the algorithm by choosing the smallest positive -

value of x say xi, such that

1’

3

(27) Ve g + B{x

>0
n -

0
1

where Bi is the first column of BT. With

v° = - @ + BTx
n 1

o
1

it follows (assuming nondegeneracy) that v® has exactly one zero
component, say the r-th. The ray is generated by choosing as basic
variables Xy and all the slack variables u,v except for Ve

The complement of Vs namely Yo is chosen as the nonbasic
variable to increase indefinitely., For sufficiently large values of
Yes the basic variables are all nonnegative and the ray so generated

is complementary except possibly x might not equal 0. Letting

1"1
Y, decrease toward zero, the initial extreme point is obtained for
some positive value of Yo

If the procedure does not terminate in an equilibrium point, then l
by the corollary, it terminates in an almost-complementary ray. The | 1

latter implies the existence of a class of almost-complementary

*
solutions of the form

*
(28) u + lu -e Y A X + Ax

i

*
The notational analogy with the previously studied case M > 0 1is
obvious.

17
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] h *® h
(29) (ui + Aui)(xi + Axi) 0 all i ¢ 1

all A >0

3
(30) (vy + xv;‘) (y; + Ay

h

P =0 al

Assume first that xh # 0. Then vh = BTxh > 0. By (30),

* ®
yj + Ay? = 0 for all j and all X > 0. But then u + Auh - - <0,
a contradiction., Assume next that yh $# 0 and xh = 0, Then

*
WP e ay® > 0. By (29), x, =0 for all 1#1; and xti‘-o for

all 1. Hence vh - BTxh = 0 and v* is the same as v defined by
(27) since X, must be at the smallest value in order that
(u*,v*,x*,y*) be an extreme-point solution. By the nondegeneracy
assumption, only v: = 0, and v; >0 for all j % r, Hence (30)
implies y; + Ay? = 0 for all j ¥ r. It is now clear that the
postulated terminating ray is the original ray. This furnishes the
desired contradiction. The algorithm must terminate in an equilibrium
point of the bimatrix game T (A,B).

A modification of almost-complementary basic sets. Consider the

system of equations
(31) w=gq + epzo + Mz

where 2z  represents an "artifical variable' aud ep is a p-vector
(1,...,1). It is clear that (31) always has nonnegative solutions.
A solution of (31) 1is called almost-complementary if

zw, = O for 1 =1,...,p and is complementary if, in. addition,

2 = 0. (See [16, p. 685] where a different but equivalent

18
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definition is given.) 1In this case, let
Zo- {(zo.z) |w-q+epzo+Mz;0. zolo.zLO}

We consider the almost-complementary ray generated by sufficiently
large z . The variables wl....,wp are initially basic while

2 ,zl,...,zp are nonbasic variables. For a sufficiently large value

w+-q+ez+>0
po

As z, decreases toward zero, the basic variables v decrease. An
initial extreme point is reached when z, attains the minimum value
o

z° for which w = q+ez -0, If z =0, then q > 0; this
0 po-— o =

is the trivial case for which no algorithm is required. If

2% > 0, some unique basic variable, say v, has reached its lower

)
bcund 0. Then z, becomes a basic variable in place of v, and

we have v = r, Next, Z ., the complement of LA is to be
increased.

The remaining steps of the procedure are now identical to those
in the preceding algorithm, After a blocking variable tecomes basic,
its complement is increased until either a basic variable blocks
the increase (by attaining its lower bound O) or else an almost-
complementary ray is generated. There are precisely two forms of
termination. One is in a ray as just described; the other is in the

reduction of z to the value 0 and hence the attainment of a

complementary basic feasible solution of (31), i.e. a solution of

19
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1), (2).
Interest now centers on the meaning of termination in an almost-

complementary ray solution of (31). For certain classes of matrices,

the process described above terminates in an almost-complementary

ray if and only if the original system (1) has no solution. In the

remainder of this section, we shall arplify the preceding statement.

If termination in an almost-complementary ray occurs after the
process reaches a basic feasible solution (w*;z:.z*) corresponding
to an extreme point of Zo, then there exists a nonzero vector

h 1
(wh;zo.z‘) such that

(32) wh = epzh + Mzh, (wh;z:,zh) >0

Moreover for every 1 - 0,

(33)
d h * h * h
(w + 2w ) q + ep(zo + Azo) + M(z + Az)
and
* h,, * h
(34) (wi + Azi)(z1 + Azi) =0 1i=1,...,p .

The case zh = 0 is ruled out, for otherwise 22 > 0 and then

wh -~ 0 because (wh;zz.zh) # 0. Now if wh > 0, (34) 1implies

* *
z + th =z = 0. This, in turn, implies that the ray is the
original one which is not possible.

Furthermore, it follows from the almost-complementarity of

solutions along the ray that

20
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= 2

X & * h h
1 -4 u

(35) Z W, =2ZwW =2z w* hh . 0 i=1,...,p .
i" 1 s i 11 ’ i
The individual equations of the system (32) are of the form

(36) w'i‘-zg+(mh)1 18 1,000,p -

Multiplication of (36) by zh leads, via (35), to

i

. ,hh . hooh .
(37) 0 2,2 + zi(Mz )i i=1,...,p

from which we conclude
THEOREM 4: Termination in a ray implies there exists a nonzero

nonnegative vector zh such that

(38) z*i‘(Mzh)i <0 1= 1,000,p

At this juncture, two large classes of matrices M will be
considered. For the first class, we show that termization in a ray

implies the inconsistency of the system (1). For the second class,

we will show that termination in a ray cannot occur, so that for this
class of matrices, (1), (2) always has a solution regardless of

what q 1is.

The first class mentioned above was introduced by Lemke [16].
These matrices, which we shall refer to as copositive plus, are

required to satisfy the two conditionms.

(39) uMu -~ 0 for all u >0

21




(40) M+M)u=0 1f uMu=0andu> 0

Matrices satisfying conditions (39) alone are known in the
literature as copositive (see (18], [12]).) To our knowledge, there
is no reference other than [16] on copositive matrices

satisfying the condition (40). However, the class of such

matrices is large and includes

(i) all strictly copositive matrices, i.e. those

for which uMu > O when 0 ¢ u > 0
(ii) all positive semi-definite matrices, i.e. those

for which uMu - O for all u.

Positive matrices are obviously strictly copositive while positive
definite matrices are both positive semi-definite and strictly
copositive. Furthermore, it is possible to "build'" matrices
satisfying (39) and (40) out of smaller ones. For example, if
Ml and M2 are matrices satisfying (39) and (40) then so 1is the

block-diagonal matrix

M 0
0 M2

Moreover, 1f M satisfies (39) and (40) and S 1is any skew-
symmetric matrix (of its order), then M + S satisfies (39) and

(40). Consequently, block matrices such as
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satisfy (39) and (40) 1if and only if M1 and MZ do too. However,
as Lemke [16], [17] has pointed out, the matrices encountered in the
bimatrix game problem with A - 0 and B - 0 need not satisfy (40).
The Lemke-Howson iterative procedure for bimatrix games was given
earlier in this section. 1If applied to bimatrix games, the
modification just given always terminates in a ray after just one
iteration, as can be verified by taking any example.

The second class, consisting of matrices having positive principal
minors, has been studied by numerous investigators; see for example,
(2], (4], (8], (9}, [(10], ([22]), [24]. In the case of
symmetric matrices, those with positive principal minors are positive
definite. But the equivalence breaks down in the non-symmetric

situation. Nonsymmetric matrices with positive principal minors need

not be positive definite. For example, the matrix

has positive principal minors but is indefinite and not copositive.
However, positive definite matrices are a subset of those with

positive principal minors. (See, e.g. [2].)
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We shall make use of the fact that w = q + Mz, (w;z) > 0  has

no solution if there exists a vector v such that

(41) VM <0, vq<O0, v_-0

»
—

for otherwise, 0 < vw = vq + vMz < 0, a contradiction. Indeed, it
is a consequence of J. Farkas' theorem [7] that (1) has no
solution if and only if there exists a solution of (41).

THEOREM 5. Let M be copositive plus. If the iterative procedure
terminates in a ray, then (1) has no solution,

PROOF. Termination in a ray means that a basic feasible solution

X Kk k
)

(w 12,92 will be reached at which conditions (32) - (34)

hold and also

(42) 0= zhwh = zheng + thzh

Since M 18 copositive and zh _ 0, both terms on the right side of

(42) are nonnegative, hence both are zero. The scalar zh = (

o
h hM h
because z ep > 0. The vanishing of the quadratic form 2z Mz  means

Mzh + MTzh = 0

But by (32), z: = 0 implies that wh = Mzh _ 0, whence MTzh <0

or, what is the same thing, th = 0. Next, by (35),
* * * *
0=2 wh = z Mzh = 2z (-MTzh) = -thz

and we obtain again by (35)
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* * * *
0= zhw = th + zhe z_ + thz = th + zhe z
po po

*
It follows that th < 0 because :zhepz° > 0., The conditions (1)

are therefore inconsistent because v = zh satisfies (41).

COROLLARY. If M 1is strictly copositive, the process terminates
in a complementary basic feasible solution of (31).
PROOF. If not, the proof of theorem 5 would imply the existence of a
vector zh satisfying thzh =0, 0¢ zh > 0 which contradicts
the strict copositivity of M.

This corollary clearly generalizes Theorem 1. We now turn to
the matrices M having positive principal minors.
TEEOREM 6. If M has positive principal minors, the process
terminates in a complementary basic solution of (31) for any q.
PROOF. We have seen that termination in a ray inplies the existence
of a nonzero vector zh satisfying the inequalities (38). However,
Gale and Nikaido [10 , Theorem 2] have shown that matrices with
positive principal minors are characterized by the impossibility of
this event. Hence termination i1n a ray is not a possible outcome
for problems in which M has positive principal minors.

We can even improve upon this.
THEOREM 7. If M has the property that for each of its principal

submatrices M, the system

has no solution, then the process terminates in a complementary
basic solution of (31) for any q.
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PROOF. Suppose the process terminates in a ray. From the solution

(wh;z:,zh) of the homogeneous system (32), define the vector

ﬁh of components of wh for which the corresponding component

of z* + zh is positive. Then by (34) Wh = 0, Let zh be the
vector of corresponding components 1n zh. Clearly O # zh > 0,
since O # zh ~ 0 and any positive component of zh is a positive
component of ih by definition of wh. Let M be the corresponding

principal submatrix of M. Since M is a matrix of order k 21

we may write

Hence

which is a contradiction.

3. The principal pivoting method. We shall now describe an

algorithm proposed by the authors (4] which predates that of Lemke.
It evolved from a quadratic programming algorithm of P. Wolfe [26]
who was the first to use a type of complementary rule for pivot
choice. Our method is applicable to matrices M that have positive
principal minors (in particular to positive definite matrices)
and after a minor modification, to positive semi-definite matrices.
In Lemke's procedure for gemeral M, an artifical variable z,
is introduced in order to obtain feasible almost-complementary
solutions for the augmented problem. 1n our approach, only variables

of the original problem are used, but these can take on initially
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negative as well as non-negative values.
A major cycle of the algorithm is initiated with the complementary
basic solution (w;z) = (q;0). If q _ 0, the procedure is immediately

terminated. If q ! O, we may assume (relabeling if necessary)

that w) = q) ¢ 0. An almost-complementary path is generated by
increasing 2y the complement of the selected negative basic
variable. For points along the path, 2w, = 0 for 1 # 1.

Step I. Increase 2 until it is blocked by a positive basic
variable decreasing to zero or by the negative Wy increasing to
zero.

Step II. Make the blocking variable nonbasic by pivoting its
complement into the basic set. The major cycle is terminated if
wy drops out of the basic set of variables. Otherwise, return
to Step I.

It will be shown that during a major cycle vy increases to
zero. At this point, a new complementary basic solution is obtained.
However, the number of basic variables with negative values 1is at
least one less than at the beginning of the major cycle. Since there
are at most p negative basic variables, no more than p major
cycles are required to obtain a complementary feasible solution of
(22). The proof depends on certain properties of matrices invariant
under principal pivoting.

Principal pivot transform of a matrix. Consider the homogeneous

system v = Mu where M 1is a square matrix. Here the variables

v .,vp are basic and expressed in terms of the nonbasic variables

1*ce
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ul....,up. Let any subset of the vy be made nonbasic and the

corresponding u, basic. Relable the full set of basic variables
v and the corresponding nonbasic variables u. Let v =Mu

express the new basic variables v 1in terms of the nonbasic ones.

The matrix M is called a principal pivot transform of M. Of

course, this transformation can be carried out only if the principal
submatrix of M corresponding to the set of variables z, and vy
interchanged is nonsingular, and this will be assumed whenever

the term is used.

THEOREM 8. (Tucker [24])). If a square matrix M has positive
principal minors, so does every principal pivot transform of M.

The proof of this theorem is easily obtained inductively by
exchanging the roles of one complementary pair and evaluating the
resulting principal minors in terms of those of M,

THEOREM 9. If a matrix M 1is positive definite or positive semi-
definite so is every principal pivot transform of M,

PROOF. The original proof given by the authors was along the

lines of that for the preceding theorem. P. Wolfe has suggested the
following elegant proof. Consider v = Mu, After the principal
pivot transformation, let vV = ﬁa, where u 1s the new set of
nonbasic variables. We wish to show that uMu = uv > 0 {f

uMu = uv > 0. If M 1is positive definite, the latter is true if

u # 0, and the former must hold because every pair (Gi,;i) is
identical with (ui,vi) except possibly in reverse order. Hence

;Gi;i = Zuivi 0. The proof in the semi-definite case replaces the
i
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inequality > by - .

Validity of the algorithm.

through for general
Y1
Suppose that M has

coefficients are all

m

Suppose furthermore that some 9y is negative, say q < 0. Then
the solution (w;z) = (ql,qz,q3;0,0,0) is complementary, but not

feasible because a particular variable, in this case Wy

p. Consider

9

= q3 +m

positive principal mirors so that the diagonal

positive:

>0, m

22> 0

m33

we refer to as distinguished 1s negative.

+ mllzl

q * my2

311

The proof given below for p = 3 goes

+ m,,2

+m

z. +m

>0

We now initiate an almost-

1272

2272

3222 + m,,2

+ m1323

+m,.2

2373

3373

which

complementary path by increasing the complement of the distinguished

variable, in this case

21,

Adjusting the basic variables, we have

1
(w;z) = (q1 + m 1210 9 + my12ys 95 + m3lzl,0,0,0)

Note that the distinguished variable vy

the increase of the driving variable

Assuming nondegeneracy, we can increase

before it is blocked

%
Z

either by Wy

29

because

1

reaching zero or by a basic .

which we call the driving variable.

increases strictly with

1

by a positive zmount

>O' 1




variable that was positlve and is now turning negative.
*
In the former case, for some positive value z1 of the

*
driving variable z)» we have v, T q + m,2 " 0. The solution
(w; - 0 + 5 : 0,0,0
w’z) ( lq2 m2121’ Q3 + m3lzl’ | A ] )

is complementary and has one less negative component. Pivoting on

m replaces Wy by z) asa basic variable. By Theorem 8, the

11’
matrix M in the new canonical system relabeled W= a + Mz

has positive principal minors, allowing the entire major cycle to be

repeated.

In the latter case, we have some other basic variable, say

]

blocking when z, =2 » 0, Then clearly

< 0 and q 0. In this case,

V) "y tmy2y

™1

2 * * *
(w;z)" = (mllz1 + ql,O, ma121 + q3;zl,0,0)

THEOREM 10. If the driving variable is blocked by a basic variable
other than its complement, a principal pivot exchanging the

blocking variable with its complement will permit the further increase
of the driving variable.

PROOF: Pivoting on m generates the canonical system

22
) = aptmpyz) mpu, gz,
) - q) + My z) +myyu, +mygzy
Wym o dy +myz) b mgu) +omygz,
30
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The solution (w;z)2 must satisfy the above since it is an
"
equivalent system. Therefore setting Z) = Z),W, " 0, zy " 0

ylelds
2 - % - %k ®
(w;z)" = (q1 + m 2y 0, 4, + m3lzl; 21.0.0)

i.e., the same almost-complementary solution. Increasing z,

*
beyond z, ylelds

(al + 511’1' 0, 63 + m31z1;z1.0,0)

which is also almost-complementary. The sign of 521 is the

reverse of m since m =-m,./m > 0., Hence zz increases

21’ 21 21" 22
*
with increasing Z, vz i.e., the new basic variable replacing
, 1s not blocking. Since M has positive principal minors,
- *
my 0. Hence vy continues to increase with increasing zy >z .

THEOREM 11. The number of iterations within a major cycle is finite.
PROOF: There are only finitely many possible bases. No basis

can be repeated with a larger value of 2 To see this, suppose it

1.
*k
This would imply that some component of the

*
did for z1 > z1 .

*
solution turns negative at z, = z. and yet is nonnegative when

1 1

Since the value of a component is linear in z, we have

*k
21 zl .

a contradiction.

Paraphrase of the principal pivoting method. Along the almost-

complementary path there is only one degree of freedom. In the proof

of the validity of the algorithm, 2z, was increasing and 2z, was

1 2

shown to increase. The same class of solutions can be generated
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by regarding z, as the driving variable and the other variables
as adjusting. Hence within each major cycle, the same almost-
complementary path can be generated as follows. The first edge
is obtained by using the complement of the distinguished variable
as the driving variable. As soon as the drivipng variable is
blocked, the following steps are iterated:

a) replace the blocking variable by the driving variable and
terminate the major cycle if the blocking variable is
distinguished; 1if the blocking variable is not
distinguished.

b) let the complement of the blocking variable be the new
driving variable and increase it until a new blocking
variable is identified; return to a).

The paraphrase form is used in practice,

THEOREM 12. The principal pivoting method terminates in a solution

of (1), (2) 1if M has positive principal minors (and, in

particular, 1if M 1is positive definite).

PROOF. We have shown that the completion of a major cycle occurs |

in a finite number of steps, and each one reduces the total number of

variables with negative values. Hence in a finite number of steps, ,
! this total is reduced to zero and a solution of the fundamental

problem (1), (2) 1is obtained. Since a positive definite matrix ’

has positive principal minors, the method applies to such matrices. l

As indicated earlier, the positive semidefinite case can be
handled by using the paraphrase form of the algorithm with a minor l
modification. The reader will find details in [4]. .
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