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1. Page 13: Equation (35) should read

siný ac cosO 3ý
C S 2 I[ sino) a-v c L) -v(1 - sin#)2"

2. Page 15: Equation (44) should read

S*= S** (v, aL)

Z v.cos2* sin4 9c cosO __

= H cos" 1 - sinr av + L (c - ) - si)L)

tan3. (c a L) sin (coso [3G - 2 + G cos2P] ý1
sin2 2 - G [I + sin] ) a-

+ ([1 + sinc][3 + cos2] )(aG 2 aG sinO ac
" 2 - G [I+ siný3 )v 3 ao 1 siný av

+ (c- aL I CO]) a

i- sin#}
2  av

3. Page 18: The units of Equation (52.c) should be

lb.-in./lb.

4. Page 19: Equation (56.b) should read

v = -17.48

5. Page 19: Equation (58.g) should read

t (2 s1.755

6. Page 32: Equation (32) should read

SY=-(tan $
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Introduction

In a previous report [l]* the authors proposed an analytical

formulation for the prediction of isothermal flow of an idealized cohesionless

soil subjected to mechanical load. The material was assumed to be time-

independent, isotropic, and rigid-plastic. Although, in a broad sense, the

formulation adequately represents certain aspects of the deformation character-

istics of the soil, the generality of the formulation must be reduced to a

specific relationship which can be compared with experience and experimental

results.

Such a relationship not only is useful in verifying the analytical

formulation but also provides a means for evaluating certain experimental

considerations. In the triaxial test, for example, it becomes possible to

assess the influence of the details of the loading system, the influence of

the membrane which encloses the sample, or the interplay between a con-

tinously distributed strain field and the presence of slip planes on which

the shearing concentrates.

The work presented here is an attempt to study some of the

implications of the earlier analytical formulation for the specific case

of a triaxial test. This is accomplished by assuming a definite function

to describe the loading surface and applying it to a triaxial test on an

initially homogeneous soil sample. This test is currently the most widely

used experimental technique for evaluating soil response.

The next section indicates the specific choice of the loading sur-

face adopted in this investigation and the stress-deformation rate

*Numbers in brackets designate references listed in the bibliography.
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relations associated with it. Subsequent sections deal with questions of

stability and uniqueness, and the superposition, onto a constant hydrostatic

pressure, of a compression test which is the triaxial test. Finally calcula-

ted results are given for a specific case which indicate that this formulation

is capable of predicting the type of flow which is observed in practice.

Analytical Formulation

As mentioned earlier the material under consideration is assumed to

be isotropic, initially homogeneous and to exhibit rigid-plastic, time

independent, isothermal behavior. The loading surface chosen is a Coulomb-

Mohr type which closes, in some manner, at sufficiently high hydrostatic

pressure. Figure 1 shows the Coulomb-Mohr surface in principal stress

space. A cross section of this surface perpendicular to the vector i + j +

k is of interest. The plane of this cross section is referred to as the 7T

plane and is shown in Figure 2 with the notation

1 (a + a + )
3 1 2 3

It is noted that in the ensuing development tensile stresses are taken as

positive. Figures 1 and 2 are derived [2] by hypothesizing that deformation

is initiated if the following function, considering every plane through a

point,

Iresolved shear stressi (2)
-normal stress + c

reaches a critical value denoted by tan 4. In other words, if considering

all planes through the point in question, the function (2) attains the

value tan 0 on one plane or simultaneously or more than one plane, i.e.

iresolved shear stress = tan 0 (3)
-normal stress + c

max

then the associated stress state is on the loading surface.
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Clearly, for the Coulomb-Mohr material, c and ý are the two material

parameters which determine the loading surface. It has been suggested [3]

that such a loading surface is only valid for sufficiently small values of

-a and that for larger values the surface closes. Figure 3 shows a section of

al, 029 a3 space which includes the a3 axis and is parallel to the vector 1 +

S+ k. The dotted line in this figure is the type of "cut-off" of the Coulomb-

Mohr surface which is envisioned in this work. The subsequent analytical

development is now restricted to be for stress states on the Coulomb-Mohr por-

tion of the loading surface. In this way the details of the dotted part of the

yield surface in Figure 3 may be ignored.

In this paper the symbol U will represent the internal energy per

unit mass of the soil. It is noted that in reference [E], U represented the

internal energy per unit current volume. As in [1] U is taken to be a function

of the specific volume, v. Then following the usual reasoning that the deforma-

tion rate, denoted by its principal values dl, d2, d3 and expressed in terms of

the vector d1  + d21 + d 3k, is determined or delimited by the location of the

stress point al, a2 , a3 on the loading surface, restrictions on the direction

of d11 + d 2 + dk3t may be deduced from energy considerations. Due to the pre-

sence of U(v) the often employed normality condition [4] is not directly

determined. Instead, the acceptable directions for d11 + d21 + d3k, are found

to be included in a "fan" of directions at each point. In order to predict

specific results it is necessary to chose a direction for dl1 + d2 + d3t. If

the compression test superimposed on a hydrostatic pressure is to be considered

a further complication arises in that the stress point is on an edge of the

loading surface. The deformation rate chosen here which is acceptable according

to the previously mentioned derivation [1] is the sum of a vector normal to

the loading surface and a vector parallel to 1 + + k. As the normal to the
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loading surface at an edge is not uniquely determined a linear combination of

two vectors is determined for this point. Figure 4 shows the details of the

construction. In this case the deformation rate vector for a triaxial test may

then be represented by

1 sinodl I=L-ý (AI1 + A 3) f 's'in _ + G) (4a)

d2 = + A1 (1 - G) + A2 (-G) (4b)

d3 = + A1 ( -G) + A2 (1 -G) (4c)

where A1 and A2 are arbitrary positive numbers and

au 2 sino (5)
3 ( l + s i n o ) ( a 0 - a + a ý _ )

It should be noted that when G vanishes the d11 + d21 + d3k vector lies in a

plane perpendicular to the edge of the loading surface. The advantage of the

formulation for G in Equation (5) is that as a approaches a 0 for points on the

loading surface the deformation rate vector approaches being parallel to the W

plane (i.e. - approaches constant volume flow). This is consistent with ex-

perience in soil mechanics.

Finally for a soil, similar to a metal, the yield surface changes as

the deformation ensues. The most important variable controlling the changes

appears to be the specific volume so that in the following it is assumed that

the material parameters c, 0, Co, and U are each function of v. Restrictions

on the behavior of these parameters are given in Equations (6) below. Although

the physical significance of these parameters has been indicated in Figures 1

through 4 a brief discussion of them is included for clarity. The parameter

c(v) is a measure of the cohesive strength of the material which for truly

cohesionless soils (i.e. dry sand grains) may be assumed equal to zero. O(v)
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is often called the angle of internal friction of the material and in this work

serves as a measure of the linear rate at which the Coulomb-Mohr surface diverges

from the hydrostatic axis with increasing hydrostatic pressure. The function

a (v) represents the spherical portion of a stress tensor on the loading sur-

face which would induce constant volume flow. Finally the parameter U(v) is

the internal energy per unit mass.

The following restrictions on the behavior of these parameters appear

to be physically appropriate

c(v) > 0 (6a)

ac < 0 (6b)

0 < O(v) < w/2 (6c)

S< 0 (6d)av --

a < < 0 (6e)o av -

•• >•0 (6f)

S< <t ! (6g)

The last of these restrictions coupled with restriction (6e) indicates that

even though internal energy may be returned to the system during plastic

work with increasing specific volume, its rate of return with respect to the

increasing specific volume is small compared to ao. That portion of which

is available to assist the superimposed stresses in doing plastic work while

inducing a differential change of plastic strain is denoted by a 'where a,

a material parameter, is restricted to 0 < a < 1.

Uniqueness and Stability

It has been previously shown [5] that normality of the deformation
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rate vector to the yield surface must exist to ensure certain uniqueness

properties. Since normality is not satisfied here a general lack of uniqueness

is to be expected. The question arises then as to how the actual solution

can be selected from all those deduced by the theory. That such a selection

should be possible is a result of the observation that experiments in soil

mechanics are repeatable. What is desired, then, is a means of selecting from

the predicted solutions that one which will occur in an experiment. In this

investigation of the triaxial test a lack of uniqueness of the flow field is

shown and the actual field must be chosen.

The criterion which will be used to discriminate between solutions

is determined from the way in which the rate of work changes during a pre-

scribed flow. Suppose that the external loading necessary to initiate the

flow has a distribution represented by F and that the associated velocity

field is represented by X. Now for certain .parts of the flow field (e.g.

possibly part of the boundary) the X vector is prescribed as a function of

time. After the first interval of loading during a time interval At the

displacements are, to first order terms in At, XAt. During this period the

loading distribution is changed to + FAt. Consider the quantity

d
it- F . X (7)

system

which is the time rate of change of doing work on the system. For each

solution deduced from the theory, Expression (7) can be evaluated. It is

hypothesized here that of all the possible solutions the one which minimizes

Expression (7) is the actual one.
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Triaxial Test of an Initially Homogeneous Sample

Figure 5 shows a sketch of the usual triaxial test. aL represents

the hydrostatic pressure which is assumed to be applied initially and main-

tained at a constant predetermined value. For soils aL is usually a negative

number. Subsequently a compressive stress, -Oc, is applied to the homogeneous

sample until deformation occurs. In this case take

01 = aC + aL (8a)

03 = 02 = aL (8b)

From Figure 2 these stresses are substituted into the stress state corresponding

to point A with the result that the value of aC required to initiate flow is

-C 2(c - aL) sin(9)
L 1 -sin(

The deformation rates associated with this stress state are now investigated.

Two separate solutions will be presented and examined. Alternatively a linear

combination of the two solutions could be investigated with the same result.

In any event the deformation rates are deduced from Equations (4) to be

d = d= - (A + A ) ( 1 - sin4+ (10a)z 1 1 + sin2

d = d2 = A1 (1 -G) + A 2( - G) (10b)

d = d3 = A1 ( - G) + A2(1 - G) (lOc)

The uniform height of the sample is reduced now at a constant rate Z and

the resulting flow field is to be determined.

First the case of homogeneous deformation of the sample with

symmetry about the z axis will be considered. In this case d and d are
x y

equal so that from the Equations (lO.b and 10.c)
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A1 =A 2 >0 (11)

and Equation (10.2) becomes

d 2A ( -siný +0G) (12)
z 1 1 + sino

Now rather than use A1 it is more convenient to work in terms of the con-1£

stant Z. Since d equals, in this case, •, Equation (12) yields
z

1 Z1 + sine
A =--(-,) (1si4) (13)1 2 Z 1 - sine + G [l + sine]

Now applying Equations (11) and (13) to Equations (10) gives

d =-z Z (14a)

d = d 1 ( + sine) (1 - 2G) ] (14b)x y 2 1 - sine + G (1 + sino) Z

In order to evaluate Equation (7) note that

= ( •2Z L2RR(15)fF . = (C + aL nR

system

Recalling that Z and aL are constant, Equation (15) yields

d ( - 2 *

d PJ2 + (ac + oL) 2RRiý + OL2 TZ(R2 + RR ) (16)

system

The evaluation of ;C is accomplished by differentiating aC in Equation (9)

;• si~ne_ c (C - CyL )COSO aý 17(i - sin) v (17)
oC = -2 ( 1 - inei) )

Now v is determined as follows
= (d + d + dz) v 2 sin• - 3G (1 + sine)

x y z 1 - sine + G (1 + sine) )v (18)
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The quantity k is determined by noting that d Xfor this case is equal to (R/R)

which from Equation (14.b) becomes

I1 (l + sino)(l - 2G) R (19)S- 2 [1 "- si-o + G (1 t sinSO) ]R.z

Differentiation with respect to time of Equation (19) gives forR

1 1R ( l) ( + sino)(l - 2G) }{R),()
= -- { - sins R G i+sn

2(1 2G) cos€ _o (1 + sinS)(8 - sinS) av--

(1 - sins + G [1 + sinS]) 2

(l + sinS)(3 - sino) 3-•G

3 c { a } 2] (20)

3 (1 - sins + G [1 + sino])2

Now Equations (9), (17), (19) and (20) may be used to eliminate a c Ocg , an

"R from Equation (16). Subsequent to the operation eliminate vwith Equation

(18). The result may be expressed as

d )=R2Z (?_)2 S* 21

dtF R z(1

-system

where

S* S*' (a L' V)

(c - a L) toss a + ioB
=+ 2 [{-2-a 1 sins acV}

(1 - sino)2 v 1-sis v

{2 sins - 3G (1 + sino)v+2(
(l - sino) + G (1 + sinO) L 1 ( -L)[ sins

(1 + sinO_)(l - 2G) _}] + En -2 { (1 + sino)(l - 2G)sn)
1 - sins + G (1 + sinS) L 1 - sins + G (1 + io
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1 (1 + sin4)(l - 2G) 2 (1 + sino)(l - 2G)
+2 1 - sine + G (1 + sine) + "i - sin- + G (1 + sine)

{i + 1 (1 + sino)(1 - 2G) + {2 sine - 3G (1 + sine) v
2-1 - sine + G (i + sin)} 1 - sine + G (1 + sinej v

2 (1 - 2G) cosD - (1 + sine)(3 - sine) 'G
av a

(1 - sine + G [1 + sin4KI) 2

2 (c - aL) coso ýO + sinDc 2 sine - 3G (1 + sine)

+ 3 (1 - sin)2 avv 1 - sinv + G (1 + sine)

(1 + sin4)(3 - sine) 
(2

•v .2 } (22)

(1 - sinO + G [1 + sine]) 2

S* may be regarded as a function, for a specific material, of v and aL since ,

c, U, a and consequently through Equation (5), G are considered to be specified

functions of v. When S* (aL, v) is negative then the system is unstable in the

sense of [5].

For the second deformation solution of the triaxial test a combination

of shear and lateral expansion of an inclined layer of the material is consider-

ed. The thickness of the layer is taken as H. Figure 6a indicates a plane

parallel to the layer and Figure 6b indicates the deformation state after a

small amount of motion. The velocity field with components u, u9 , uV in the

deforming region may be expressed by

V
= H (23.a)

u = H (23.b)

= 0 (23.c)

Vn and V are velocity components of the upper rigid part of the sample shown

in Figure 6b which undergoes a rigid body translation. The velocity components

TD' -. '



and are related to V and V & as follows

= V cosý - V siný (24.a)

= V siný + V cosý (24.b)

For this motion the components of the deformation rate tensor in the deforming

region are

d = 1 V (25.a)H

d = 0 (25.b)

d = 0 (25.c)

d = 1 V (25.d)
En 2H

d nc = 0 (25.e)

d Cc = 0 (25.f)

To determine how these deformation rate components may be matched with those

given by Equations (10) it is noted that the C and x axes are coincident, thus

d x must also vanish and this requirement leads to

A = G A (26)2 1 - G 1

The principal deformation rate components may then be expressed as

d = 0 (27.a)x

d = A ( 1 - 2G (27.b)
y 1 1 + G

d = - A I X 1 - sino + G) (27.c)
z - G 1 + sinO

Now the angle * in Figure 6 is determined from the condition that d nn be zero.

The Mohr strain circle for this case is shown in Figure 7. In order for d nn to

vanish it may be deduced from the circle that
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cos 24 = -2 sine + 3G (1 + sine) (28)2 - G (1 + sine)

and also that
1 2 sino - 3G (1 + sin)] (29.a)

d 1 1 - G 1 + sino

1 1 [ - (G/2)(1 + sine)]
dn& = A 1 1 -G 1 1+ sine

Combining this result with Equations (25) gives

V -A H 2 sine - 3G (1 + sine) (30.a)
& 1 - G 1 + sin-

V =A 2H 1 - (G/2)(1 + sine)] (30.b)n 1 - G 1 + sine

and introducing Equations (30) into Equations (24) yields

A H H {2 sine - 3G (1 + sine)}I cos
1 1 AG 1 + sine

_ 2 - G (1 + sine)} sin 2. siný] (31.a)
1 + sins

H {2 sine - 3G (1 + sine)},A1 1- G 1 + sinin

+ 2 - G (1 + sine) . (31.b)

1 + sine }sin 2cosp](

Expressing ' as a function of Z by use of Equations (31) gives after some

man ipulat ion

Y = (tan 3p)Z (32)

Finally the rate of change of specific volume, defined by (d + dy + d ) v, is

v. cos 2 Z

cosi H

The stress state change is more complex for this motion than it was for the

first deformation mode considered. In the present case the principal stress

directions rotate once motion begins and this must be accounted for in determining
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UT st F . X). That the principal stress directions must rotate is

explained by first noting that the existence of v implies the existence of

and G. Since Equation (28) shows that * = ' (0, G), then if 0 and G change dur-

ing the motion, * may also change. But if the same material which initially

deforms at the onset of motion is to be the only material deforming during subse-

quent motion, then ' = 0. The only way this can occur is for the principal

stress directions to rotate. Associated with this rotation rate is the develop-

ment of a shear stress rate, yz. During an actual test this shear stress rate

would have to be sustained by the testing apparatus. In the following the

apparatus is assumed capable of adopting to the required loading.

For purposes of illustration consider the change in the principal

stress directions that occurs in a small time interval At after motion begins.

Retaining only first order terms in At, the Mohr stress circle for the yz plane

is shown in Figure 8. The principal stresses after an increment of time, At,

are consequently aoC + aL + ;CAt, aL, GL, while the rate at which the principal

stresses rotate is
& .Z. (34)aC

The condition that these principal stresses continue to satisfy the yield

criterion is the same as given by Equation (17) or

= rsino ac cos* (5
-2 - + (C- )( - sin) (35)

By differentiating Equation (28) with respect to time and subsequently setting

equal to - a from Equation (34) leads to

yz sin2' = [COS# (3G - 2 + G cos2*)]
aC" 2 - G (1 + sinO)T

+ (1 + sino)(3 + cos2*) (36)
2 - G (l + sin*)
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The terms 0, U, and a 0 are functions of v so that from Equation (5) it is seen

that G may be regarded as a function of v and a or for the triaxial test v
a C

and a L + -g- so that

DG + 1 9G - (37)
ý-V ý-(Y 11C

where

3G a 2 U 2 sino (a 0 - a C /3 - a La 
IU 2

av2 3 (l + sino)(a 0 - a C /3 cy L + a av

Do 0 au 2 sino
av av 3(l + sino)(a - CY /3 - a + a aU 2

0 C L av

+ ao au 2 coso (38a)
av av 2 au

3(l + sino) (a 0 a C /3 - a L + a ýv)

DG a au 2 sino
av av - aG (38b)

3(l + sino)(a 0 - a C /3 a L + ;Ta

and

(39)
av

The external loading in this case does work on the system at a rate given by

-* , -t 2 2 a L
F . X 7rR a + nR H - -- (40)

isystem C cosý v

The quantities a L9 H, and in Equation (40) are constant and hence the

measure which determines the actual flow field becomes

TrR a Z + nR H -L + 7rR (41)
dt C cosý v yz

.system

The third term is present on the right hand side of Equation (41) since the

principal stress axes rotate once motion begins. All of the quantities appear-
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ing in Equation (41) have been evaluated except (v/v) which may be found by

differentiating Equation (33) divided by v with respect to time to obtain

0 (42)V

Equations (35), (42), (36) and (32) may now be substituted into Equation (41)

to obtain

d2 Z2 2*
F. X wRZ(T S (43)

system

where

S : S (v, a )

Z v . cos2P E-2 { sino ac cos( c-_
=H ' coo 1 - coso av L (c ( 1 -T 2 sino) _ av

tan3i (c - aL) sine (cos4 [3G - 2 + G cos2p]) a$
S"sin24 1 - sin " - G [1 + sine J av

S([i + sine][3 + cos2ý] DG 2 aG sinc
2 - G [I + sinol )(av 3 Ya coso av

{c - a L cos(
+ { 4-sin)n-2-- Tv

The function S is similar to S in that on consideration of a specified

material both functions may be determined if v and aL are known. For this

second solution the value of H, the constant layer thickness, has not yet been

specified. If S is greater than zero the largest possible value of H gives

the smallest S Therefore S can be minimized by setting

H = Z cosi - 2R sin* (45)

when S is greater than zero. Should S be less than zero then the smallest
e*

possible value of H is the one which minimizes S . Consequently

H = 0 (46)

when S is negative. The modes of motion for each of the above possibilities
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are shown in Figure 9. It should be noted also that when S is negative and

H approaches zero, S approaches an unbounded negative number. As no parameter

exists in the first soluticn such as H, which is arbitrary (0 < H < Z cos4 -

2R sini), S is bounded. Consequently when S is negative the solution depicted

in Figure 9b must be the actual solution. When S is positive then its minimum

Value must be compared to S to determine the actual mode of deformation.

Clearly, the above solutions may not be the only solutions so that the

comparisons given here really only pertain to determining which which of the

considered solutions is likely to be the actual solution.

Numerical Solution

In order to demonstrate predictions which the preceding results yield

a numerical example is presented. Several functions must be given explicitly in

order to make this evaluation. Published experimental results [6] for Leighton

Buzzard sand were used in order to select appropriate input for the calculations.

The following choices are consistent with the experimental results and theoretical

requirements of Equations (6):

c 0 (47.a)

S=o+ v (vv - v) (47.b)

o V- V) M (47.c)
0PV

aU caK { dv (47.d)

v1

where

00 > 0 (48.a)

- 0(48.b)
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v° < v < v1 (48.c)

M > 0 (48.d)

1 > K > 0 (48.e)

0 < a < 1 (48.f)

From Equations (47) and (48) it can be determined that
vI -vo

au = aKM [ - (v - v) + (v - V)In ( ) ] (49.a)
0

U KM ( .- ) (49.b)
5v v

0

a2 (vI -v )
a-- - aKM - - (49.c)

av 2 (v- v )2

0

Da0 (v -v)0-5 = + M (49.d)
v (v-v ) 2

0

From the experimental results of [6] the following magnitudes were selected for

the material parameters of Equations (48)

o = 0.686 radians = 39.40 (50.a)

DO = - 0.100 radians - lb./in.3 (50.b)

3
v = 16.08 in. /lb. (50.c)
0

vI = 19.00 in. 3 /lb. (50.d)

M = 129 lbs./in. 2  (50.e)

aK = 0.1 (50.f)

The initial homogeneous state of the sample for the calculations of the numerical

example is described by

v = 16.88 in. 3 /lb. (51.a)

aL - 50 lbs./in. 2 (51.b)
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The preliminary evaluations needed for determination of both S and S are
0 = 34.70 from Eq. (47.b) (52.a)

a0 = -343 ]bs./in. from Eq. (47.c) (52.b)

aU = + 21.5 lb.-in./in. from Eq. (49.a) (52.c)

3a
= + 592 lb. 2 /in from Eq. (49.d) (52.d)

au
* - 34.3 lb./in. 2  from Eq. (49.b) (52.e)

a2U 2 5
-a = 59.2 lb. /in. from Eq. (49.c) (52.f)av 2

22
* = -132 lbs./in. 2  from Eqs. (9), (47.a)

(52.a) (52.g)

a = -94 lbs./in. 2  from Eqs. (1), (52.g) (52.h)

G = + 0.0293 from Eqs. (5), (52.e)
(52.b), (52.h) (52.i)

a= + 0.0140 lb./in. 3  from Eqs. (38.a), (52.f)
(52.b), (52.g), (52.e)

(52.d) (52.j)

3 G 1.038 x 10-4 in.2 /lb. from Eqs. (38.b), (52.c)aa (52.b), (52.g) (52.A)

For the first mode of deformation considered

v= - 35.4 (-) from Eq. (18) (53.a)

a - 1570 (-) from Eq. (17) (53.b)
C Z

R= - 1.55 R (T) from Eq. (19) (53.c)

Z 2frmE.(0R= - 11.78 R (-) from Eq. (20) (53.d)

Substituting the above into Equation (16) yields



d_ =R2Z (ý1Z)2 (+ 88) (4dt 54

system

So that from Equation (21)

S =+ 88 (55)

For the second mode of deformation considered:

S=60.4°0 from Eq. (28) (56.a)

- 74 from Eq. (33) (56.b)

-C 77 from Eq. (35) (56.0)

S=+ 1.748 from Eq. (39) (56.d)H
0.217 from Eq. (37) (56.e)

yz=+ 142 z from Eq. (36) (57.f)

S=-1.755 from Eq. (32) (58.g)

Substituting Equations (42) and (56) into Equation (41) yields

d-YF . w R2Z(/) 1023 g)(59)

,system

so that from Equation (43)

S =-1023 (P) (60)

From the remarks previously made concerning the effect of the sign of

S ,the actua3 mode of deformation of the specimen in this numerical example is

the one shown in Figure 9b. There is of course a geometric requirement that the

height Z of the sample be large enough to allow a slip plane to form. That is,

for the second mode of deformation to occur
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Z
-- > 2 tano = 3.52 (61)R

It may be noted from the calculations that the first mode of deformation is

stable as S is positive, primarily because the rate at which the radius in-

creases is enough to offset the decreasing ao .c

The above numerical results indicate a behavior which is consistent

with observed soil tests. The reader should note that while this theory pre-

dicts a flow similar to that shown in Figure 9b, it must be noted that, in

practice, a rubber membrane surrounds the sample and that the finite size of

the grains prevents H from approaching zero. Such stabilizing effects may be

responsible for the observed experimental result that the flow shifts from

plane to plane as the motion proceeds.
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FIGURE CAPTIONS

Figure 1 - Coulomb-Mohr Loading Surface in Principal Stress Space

Figure 2 - Intersection of Coulomb-Mohr Loading Surface with w Plane

a
for a (a + a2 + a3) <c

Figure 3 - Intersection of Loading Surface and Plane in Principal Stress

Space Which Includes the a3 axis and is Parallel to the Vector

+ j + k

Figure 4 (a) - Same Section as Figure 3 showing direction for Deformation

Rate Vector, d11 + d2i + d3k

(b) - w Plane Showing the Fan of Possible Projections of d i + d2 J

+ d3k onto the Plane

Figure 5 - Triaxial Test Sample Showing Applied Stresses aC, aL and

Dimensions

Figure 6 - Deformation of Shearing Layer

Figure 7 - Mohr Strain Circle for Shearing Layer

Figure 8 - Mohr Stress Circle for Time t + At in the yz Plane for Shearing

Layer

Figure 9 - Modes of Deformation for Shearing Solution
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FIG.I COULOMB-MOHR LOADING SURFACE IN
PRINCIPAL STRESS SPACE
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FIG.2 INTERSECTION OF COULOMB-MOHR LOADING
SURFACE WITH 7T PLANE FOR

0- = - (0-, + 0-2 + 0-3) < C.
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COULOMB - MOHR SURFACE

THIS CORNER ASSOCIATED
WITH 0 -.

(PROPOSED "CUT-OFF"
OF COULOMB- MOHR
SURFACE

FIG.3 INTERSECTION OF LOADING SURFACE AND
PLANE IN PRINCIPAL STRESS SPACE WHICH
INCLUDES THE C-3_AXIS AND IS PARALLEL
TO THE VECTOR i+ j+ k.
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INTERSECTION OF
/V PERPENDICULAR PLANE

7 •WHICH CONTAINS
"• 'id + jd2 + kd3
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(b)

FIG. 4 (a) SAME AS FIG. 3 SHOWING DIRECTION FOR

DEFORMATION RATE VECTOR, id+jd2 + kd 3 ,
WHEN H, 0  <0

(b) -T7r PLANE SHOWING THE FAN OF POSSIBLE

PROJECTIONS OF id,+jd 2 + kd 3 ONTO THE

PLANE.



O-C + (-L= AXIAL STRESS

RIGHT CIRCULAR CYLINDER
RADIUS = R

z
C-L- LATERAL STRESS

TENSILE STRESS >0

O-c<O

FIG.5 TRIAXIAL TEST SAMPLE SHOWING APPLIED
STRESSES O-C , O-L AND DIMENSIONS.
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FIG.7 MOHR STRAIN CIRCLE FOR SHEARING LAYER
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FIG. 8 MOHR STRESS CIRCLE FOR TIME t +At IN
THE Jý PLANE FOR SHEARING LAYER.
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FIG. 9 MODES OF DEFORMATION FOR SHEARING
SOLUTION.


