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ABSTRACT

Extension of an earlier theory of Hertzian fracture in brittle

isotropic materials (Frank & Lawn 1967) is here made to include the case

of brittle single crystals. A criterion is first proposed for predicting

the path of a crack through an inhomogeneously stressed crystal in terms

of the surface energy anisotropy of the crystal and the stresses prior

to fracture occurring. This criterion is then applied to determine the

geometry of cracks formed in the Hertzian stress field in crystals having

the diamond structure. The computed crack geometries agree well with

observation. An analysis of the fracture mechanics of crack growth into

the crystal subsequently indicates that for a certain range of indenter

size the Hertzian crack passes through four equilibrium stages, as it

does in glass, before reaching its fully developed length. As a result

Auerbach's law holds, i.e. the critical load on the indenter necessary

to produce a fully developed Hertzian fracture is proportional to the

radius of the indenter. This law is confirmed by Hertzian fracture tests

on silicon single crystals. Finally, possible application of the

Hertzian test to the study of some mechanical properties, such as fatigue,

of brittle single crystals is indicated.



HERTZIAN FRACTURE IN SINGLE CRYSTALS

WITH THE DIAMOND STRUCTURE

1. INTRODUCTION

In recent papers (Frank & Lawn 1967, Lawn 1967) the geometry

and mechanics of Hertzian fracture in brittle, isotropic materials was

treated in detail. In particular, a derivation of the long-established

empirical Auerbach law (Auerbach 1891) was presented. This law states

that the critical load P required for a hard, spherical indenter to--c

produce a cone crack in a flat, brittle specimen is proportional to the

radius r of the indenter. Interest stems from the fact that the

theoretical analysis predicts that the constant of proportionality is

linearly dependent on y , a term often described as "the work of

fracture" which, for ideally brittle materials, is simply the free

energy required to create unit area of surface. Auerbach's law

therefore affords a simple means of measuring y in a relative manner

under conditions of stable crack growth.

The investigation of Hertzian fracture mechanisms in single

crystals with anisotropic surface energies and elastic moduli is of

interest for the following reasons. Firstly, because of recent wide-

spread activity in measurements of the y term in single crystals it

is desirable to establish the conditions (if any) under which Auerbach's

law may be applicable. For instance it was noted (Lawn 1967) that the

introduction of a sliding motion to the loaded indenter causes a

sufficiently large perturbing effect on the stress field in the specimen
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(even when the coefficient of friction between indenter and specimen

is small) to destroy the Auerbach behaviour; it might be the case

that the anisotropic nature of the specimen has a similar modifying

effect. Secondly, the phenomenon of fracture in non-isotropic

materials is itself a problem of great interest. The effect of ani-

sotropy in Y and (if important) in the elastic constants of the

specimen material on fracture is not well understood, most attention

to crack-extension problems being directed toward isotropic cases. That

crystallographic anisotropy does play a significant role in Hertzian

fracture may be deduced from the observations of Howes & Tolansky on

diamond (for a review see Howes 1965): the fracture geometry and

critical fracture load P are both very much dependent on the--c

crystallographic orientation of the diamond surface. To understand

these effects one must investigate in some detail the basic mechanisms

of crack extension in brittle materials. Difficulties arise in this more

general case which are not made evident in the studies of cracks in iso-

tropic bodies.

In the treatment which follows most of the principles will

be applicable to single crystals in general. However, crystals

possessing the diamond structure will be cited as particular examples

for study since they are nominally brittle at room temperatures and

Sis therefore determined principally by the reversible fracture

surface energy; also, as will be discussed in §3, the variation of

with crystallographic orientation is sufficiently well known. Further,

although these materials exhibit elastic anisotropy it is not large.

(The anisotropy factor 2c /(c - c ) is, using the elastic
z-44 -z-11 -12 2

constants quoted by Huntington (1958), of the order 1.3-1.5 which is
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not as large as that for most metals.) It is therefore unlikely that

anisotropy in the elastic constants will play as important a role in

determining fracture paths as will anisotropy in surface energy.

For the present it is simply pointed out that ignoring elastic ani-

sotropy will lead to considerable reduction in mathematical computation.

Finally, because of the demand for high quality semiconductor materials,

large single crystals of silicon and germanium are readily obtainable

commercially: complications due to microstructure and lattice imper-

fection do not arise.

2. CRACK EXTENSION THROUGH INHOMOGENEOUS

STRESS FIELDS IN SINGLE CRYSTALS

2.1 Criterion for Crack Extension

To predict crack paths through an inhomogeneous stress field

in any material it is necessary to consider the stress state at the

crack tip. With regard to brittle isotropic materials Frank & Lawn

(1967) began with the assumption of Griffith (1924) that a crack extends

from that place at or adjacent to its tip where the local tangential

tensile stress is a maximum. The crack increment therefore experiences

zero shear stress, and it can thereby be concluded that the crack would

tend to follow a surface delineated by the two lesser of the three

principal stresses. This "maximum crack tip stress" criterion has been

used to predict directions of extension of straight cracks in plexiglass

plates subjected to plane loading (Erdogan & Sih 1963). The implication

drawn from these studies is that such a criterion appears to be in
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accord with an energy balance criterion, (i.e.) the predicted direction

of crack growth appears to be that which releases the greatest amount

of mechanical energy.

In going over to anisotropic materials (again treating only

anisotropy in y and ignoring that in the elastic constants) it soon

becomes clear that the criterion outlined above is no longer applicable.

This may be illustrated by referring to a hypothetical example. We

consider a material which is relatively weak across one particular set

of crystallographic planes and effectively infinitely strong across all

others. (This picture applies reasonably well to "layer structures"

such as mica.) The material is supposed to contain a crack not oriented

along the plane of weakness, and is subsequently loaded until this crack

is made to extend. Since the crack can only grow along the weak plane

it follows that, when the loading is arbitrary, the location at the tip

contour where the crack extends is not that where the local tensile

stress is a maximum (except, of course, by sheer coincidence). The

incremental extension of the crack then suffers both tensile (T.) and

shear (S rg) stresses (figure 1) which may be determined by stress

analysis. For instance, using polar coordinates, we have for a plane

crack (Williams 1957)

T 1 9 2 9 3To cos {KV cos - K sing
(2r)T

(2.1)

r r 1 1  cos - {K sing + K (3cosg - 1)}rg (2r)/2 2 T

where the K terms, the stress intensity factors (fracture mechanics

notation), for a surface crack in a semi-infinite medium are given by
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1

K 2.24 1 'ca(b)db- (C

fo (c 2 -b 2 )1T 2

1 (2.2)

2.24 T ¶c T(b)dbK -ýý C fo (c 2 -b 2 )1 72

Here c is the crack length, b is the distance measured along the

ultimate crack path, and a(b) and T(b) are the prior normal and

shear stresses along the crack path. Thus in the general case of a

material having anisotropy in y we conclude that a crack will extend

at its tip in a direction other than that of maximum T, and will

subsequently be subjected to shear stresses along its path (that is,

it will no longer follow the stress trajectories). With this in mind

we are, therefore, obliged to reconsider the maximum crack tip tensile

stress criterion for fracture growth, and to take special note of any

influence the shear stress S" may have on this growth.

Up to this point we have treated the crack as though it

were a deformed cut in a pefectly elastic material. Such a model allows

one to postulate that the faces of an equilibrium crack (i.e. a crack

whose length increases with an incremental increase in load) are stress

free, an assumption greatly simplifying stress analysis. In reality,

for materials such as crystals this model is not strictly correct.

Molecular forces of cohesion act across the crack interface and modify

the stresses and strains around the crack. The effect of cohesive

forces has been discussed at length by Barenblatt (1962), and his

approach to the problem will be adopted here. This will permit us to

visualize possible effects of the shear stress S on the incremental

extension of the crack.

We consider first the contour of an equilibrium plane crack,
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shown schematically in figure 2. According to Barenblatt the crack

extends when the molecular forces of cohesion reach their highest

possible intensity at some point on the crack tip contour. Since the

cohesive forces rise to a very large maximum at an interplanar separa-

tion of about 1.5 times the equilibrium values, and diminish very

rapidly at larger separations, we may, for large enough cracks (e.g.

cracks larger than the smallest microcracks), neglect these forces on

the crack faces except at those points near the tip where the

atomicbonds are stretched to their maximum. Here the contour of the

crack can be considered to close smoothly over a characteristic

distance d (figure 2). The condition for the crack to grow, as

formulated by Barenblatt, may now be written approximately as

K = 1 F(b)db (2.3)
7j c-d V'EF

with K a stress intensity factor, and F(b) the cohesive forces

acting across the crack interface. The smooth closing of the crack

removes the stress singularity at the crack contour which appears in

the continuum mechanics solutions where cohesive forces are disregarded.

However, although d is regarded as small compared with the radius p

of the crack tip, it is substantially larger than interatomic distances,

so that the solutions of continuum mechanics may be applied over distances

of order d. It follows that the results of fracture mechanics may be

The notation used here differs from that used by Barenblatt; it follows
instead more conventional fracture mechanics notation. It should also
be pointed out that various definitions of "stress intensity factor"
appearing in the literature differ by small numerical factors.
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used to determine the stress intensity factors K in (2.3).

Actually, Barenblatt discussed only cracks extending in their

own plane (0 = 0) and under only tensile stresses along the crack path

(K = 0). Putting Q = 0, KTK = 0 in (2.2) we interpret Barenblatt's

criterion for crack growth by stating that fracture will occur when the

crack tip stresses T (r) reach a level sufficient to overcome the

cohesive forces. Now let us consider the effect of superposing a

distribution of shear stresses T(b) along the crack path: K is

now non-zero andalthough we do not alter the value of T (r) at

S = 0 we superpose a shear S ro() ahead of the crack tip. Supposing,

for the present, the existing crack plane to be one of relative weak-

ness such that the crack can only extend in this plane, we ask whether

or not the addition of the shear terms plays any role in the fracture

growth. Using the Barenblatt model we need only consider the effects

of S (r) across the atom layers over the distance d. To the

approximation of isotropic linear elasticity this stress will produce

only displacements parallel to the atom layers, and will therefore not

work against the surface energy. More detailed calculations (for

example, Tyson 1966) show, however, that with shears S (r) approach-

ing the theoretical strength of ideal materials, substantial displace-

ments normal to the shear plane may occur, and these displacements will

then be free to separate the atom layers along d and work against y.

Indeed, we might envisage that a crack could be made to extend in its

own plane under the action of pure shears along along the crack path

(i.e. K = 0, T (r) = 0), the stress level being raised until
- -0 -0-

So(r) causes sufficient normal separation across the extension

-r-o -,I ! ||i
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plane. With due regard to the complexity of the above situation we

may, in noting that shear stresses S (r) will be considerably less--ro -

effective than tensile stresses T (r) in separating atom layers

across d, conclude that so long as S to(r) < T (r) the crack will

extend when T (r) attains a sufficient intensity independent of the

superposed So (r).

We may now generalize the situation one step further by

removing the restriction that the crack must extend in its own plane.

To do this we compute the strain energy released by the stresses

working against surface energy as the crack extends from some

favoured location on the crack tip contour. At the present time

solutions for the energy release rate per unit length of crack front

G are available only for cracks extending in their own plane: we

find

G = [2rT 2 (2.4)

for plane stress (for plane strain replace E (Young's Modulus) by

E/(l - v2 ) (V = Poisson's ratio)), with a similar expression for G

in terms of S . However, for small deviations from the crack plane

It might be argued that a crack in pure shear could propagate by a
mutual sliding off of layers across the extension plane (termed
"sliding mode" in fracture mechanics nomenclature), and that the
shear stress necessary to be overcome for this mechanism to operate
might be less than that required to be overcome to actually separate
atom layers ("opening mode"). However, since the stress field around
the crack tip is strongly localized (i.e. falls off as r- 1 / 2 ) such a
mechanism would, in an otherwise perfect crystal, involve the nucle-
ation and subsequent movement of dislocations or other defects. Since
in very brittle materials such mechanisms would provide verylarge
resistance to further propagation of a crack thus formed we will dis-
count such modes and treat our materials as ideally brittle in which
surface energy is the only finite term in the resistance to fracture.
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(2.4) may be modified to the equation

G T@2[]rT 2
G = r E2r (2.5)

without much loss in accuracy (Rice, unpublished). (We drop the sub-

script in (2.5), understanding G to be equivalent to G , for reasons

which will be pointed out below.) Balancing the work done by the

stresses T (r) against the surface tension y, we have

G = 2y (2.6)

for an equilibrium crack (Griffith's condition). We then locate the

value of 0 at the crack tip which first satisfies (2.6), using

(2.5) to evaluate the @-variation of G And taking into account the

@-variation of y. We thus see that this favoured location is that

which maximizes T_2 /y. This may be considered as a modified form of

the maximuT crack tip tensile stress criterion for isotropic materials,

with T/y replacing T as the quantity to be maximized.-:.-

2.2 Calculation of the Crack Path

In the preceding section we proposed a criterion for crack

extension, subject to the provisos that the curvature ofthe crack should

not be severe (i.e. 9 should be small for each increment of crack

extension) and that S@ < T (or, K < K ). Satisfaction of these

provisos for the case of isotropic materials leads to the conclusion

already mentioned that crack paths tend to follow stress trajectories.

We will now attempt to establish a similar convenient rule for crack

paths in single crystals.
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We first note the manner in which the stress intensity

factors in (2.2) depend on the prior stresses along the crack path.

It is seen that the values of o(b) and T(b) have rapidly increasing

influence as b approaches c. Therefore, to a first approximation,

we might consider the K terms to be controlled by the prior stresses

a(c) and T(c) at the position of the existing crack tip. Imposing

now the restrictions Q small and K < K on (2.1) we have

(2) 1 /2T - a(c) very nearly, so that G in (2.5) becomes very

nearly proportional to a2 (c). It is now a question of allowing the

crack to extend in any number of directions and determining which of

these first satisfies (2.6). Thus for isotropic materials the favoured

direction will be near to that which maximizes a(c), i.e. which

corresponds to a direction of a stress trajectory. The shape of

cone cracks in glass (Frank & Lawn 1967, Lawn 1967) may be accurately

predicted from this criterion: small deviations between observed and

computed crack geometry are readily explained by the fact that the

crack tip stresses do in fact depend on the prior stresses along the

whole of the crack path, and not only those near the tip, and as a

consequence the crack extends as though it possessed a "pseudo-inertia",

tending to continue in its existing direction when the relevant stress

trajectories have excessive curvature. For anisotropic materials the

corresponding favoured direction will then be near to that which maxi-
1

mizes a 2(c)/y or o(c)/y 2. This is not quite as convenient a

criterion as the stress trajectory criterion, since one has to take

into account the variation of y, but with a high speed computer it is

not difficult to allow the crack to extend stepwise into a given crystal

whose surface energy properties are known.
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The fracture criterion (2.6) may be represented by an instruc-

tive graphical construction. However, as will be seen in §3 it will be
-i

convenient to talk about the quantity y rather than y. We there-

fore first rewrite (2.6) as

2G-I = y-1 (2.7)

for an equilibrium crack. We may represent G and y as surfaces

in reciprocal energy space. As the loading on the specimen is in-

creased from zero the G-1 surface contracts from infinity until it
-l

intersects the y surface, and the direction of extension corresponds

to the direction of the vector drawn from the origin to the intersecting

point (or line, for a plane crack). Let us now write 0(c), the prior

normal stress on a possible inclined crack increment, in terms of the

prior stresses acting on the straight-ahead increment. We have6 with

a'(c) Aefined in figure 3,

(C) = a (ccos)2Q + '(sin2 - 2T (c)cosgsing (2.8)
0o

with the subscripts referring to 9 = 0. With G a a2(c) and

G = G at 9= 0 we have

- 1o'(c) T (C)

G- 1 G-l[cos2 9 + 0(c) sin 20 - 2 0 cosgsinln]-2 (2.9)
o 0

very nearly. Figure 3 shows traces of the G surface for a plane

crack, using the crack tip as the origin in reciprocal space and with

T (c) zero.

This diagram indicates how the stress state might influence the

stability (direction-wise) of a crack. Suppose our specimen to be iso-

-itropic, so that the y surface is a circle centred on the origin.
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If a crack runs into a region in which a_(c)/a (c) > 1 it will tend to
-0- -0- -i

become unstable since the G_ surface will intersect the y surface

at a location other than directly ahead of the crack tip. As the ratio

0_(c)/a •c) becomes smaller algebraically the crack is less likely to

suffer deviations from its present course since (2.7) is satisfied most

readily for straight-ahead extensions. It follows that large compressive

stresses applied in the direction of crack propagation act as crack sta-

bilisers, a fact often exploited in cleavage experiments.

We can also see why the crack tends to follow the stress

trajectories. If the trajectory corresponding to the principal stress

a(b) begins to curve away from a previously planar path the crack, if

it proceeds along this previous plane, will enter a region in which

T (c) becomes non-zero. The effect of this shear stress will

(for c_(c)/_o(c) < 1) be to deflect the G-1 curve away from symmetry

about the straight-ahead direction, as indicated in figure 4 for the
1 -i

case ao'(c) zero. The G-1 surface then intersects the Y circle

such that the next increment of crack extension tends to become free of

shear; i.e. the shear stress T (c) acts as a restoring stress when

a crack deviates from its trajectory path.

For single crystals the construction is only slightly modified.

For the hypothetical material with one plane of weakness described in
-l

§2.1 the y surface would have a finite value at two points on a

two-dimensional diagram, and these would always be immediately ahead

and behind of an extending crack since the crack could never extend on
-i

another plane. In reality the traces of y surfaces on a given plane

in reciprocal energy space would be continuous with maxima and minima.

The crack now no longer necessarily extends in the direction of minimum



-13-

G-1 the favoured direction depending very much on the relative sharp-
-l -i

ness of the minima and maxima of the G_ and y surfaces. For

instance, if the crack propagates into a region where a'(c) a o (c)
-0 - -0 -

and T (c) - 0 we see from figure 2.3 that the maxima in y will--O

determine the direction of fracture. Under such conditions crystalline

materials would tend to fracture only along their easy cleavage planes.

In this region the superposition of a shear stress T (c) will not

introduce a pronounced minimum in the G-1 surface, and will therefore

have little effect on the fracture. On the other hand, if o'(c)
S--

becomes less than a (c) algebraically, the minimum in G-1 becomes

increasingly sharper and eventually dominant in determining the fracture

direction. Thus the crack will tend more to follow the stress trajec-

tories, as in isotropic materials, and the effect of shear stresses

T (c) will in this case be to maintain the crack path along these-o

trajectories.

3. SURFACE ENERGY REPRESENTATION

We now consider the variation of y with crystallographic

orientation in crystals having the diamond structure. The surface energy

can be calculated as half the work required to break bonds across a

separation plane. This procedure is, however, an over-simplification

since it does not allow for subsequent relaxation of the surface atoms

which undoubtedly occurs. (For instance, see the experimental observa-

tions of Lander, Gobeli and Morrison (1963) on fracture surfaces of
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silicon and germanium.) Such computations are therefore likely to

overestimate Y. From the thermochemical data of Harkins (1942) for

diamond and Honig (1957) for silicon and germanium the surface energy

of {ill} (the set of planes across which a minimum number of bonds are

required to be broken to separate the crystal into two pieces) may be

readily estimated in the approximate manner outlined above. The values

of Y.ll thus found are shown in table 1, together with values measured

by Jaccodine (1963) using a cleavage technique. Ramaseshan (1946) and

Jaccodine have listed _hkt for several other crystallographic planes

using the simple-minded broken bond calculation; table 2 shows their

results in which -k£ is expressed in units of _iii

A second estimate of the relative variation of y may be made

from observations of crystal growth habit. Diamond is most commonly

found in nature in the form of near-perfect octahedra: silicon and

germanium also tend, in conditions of equilibrium growth, to assume this

form. The faces of the octahedra correspond to {ll}1 planes, thus

indicating that these are planes of minimum surface energy. Frank (1963)

has demonstrated that the equilibrium crystal shape is the geometrical

-1limiting form of the inverse of the quantity y mapped in reciprocal

energy space. The inverse of an octahedron is a cube so that there is

a considerable advantage in considering the y 1 surface for diamond

structure materials rather than the y surface, particularly when three-

dimensional analysis is required. A vector from the centre of the cube

to a corner then represents the reciprocal of the surface energy on

planes of the {111} type. Likewise, a vector to the centre of one

of the faces corresponds to {100} planes. We can, in fact, readily

compute relative values of y for any crystallographic plane.
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As seen in table 2 these values, referred to y! 1 1 , compare well with

the bond-breaking calculations.

The above evidence is in agreement with the observation that

diamond (especially), silicon and germanium show a tendency to cleave on

{111} planes. Ramaseshan examined a number of diamond chips and noted

that the frequency of occurrence of a given crystallographic plane

decreased as its corresponding surface energy fell lower in the order

given in table 2. Thus these qualitative observations give confidence
-i

in applying the cube y model to evaluate the variation of reversible

fracture surface energy with crystallographic orientation in the diamond

structures. They also .imply that the elastic anisotropy is not suffi-

ciently great to obscure the main features predicted by the model based

on anisotropy in y alone.

4. FORMATION OF THE HERTZIAN CRACKS

One of the most striking features of a Hertzian pressure crack

in diamond (Howes and Tolansky 1955, Tolansky and Howes 1957, Lawn and

Komatsu 1966), germanium (Pugh and Samuels 1963, Johnson 1966) or silicon

(figure 5) is the near-polygonal surface trace which reflects the symmetry

of the diamond structure. From an analysis of such traces the initial

stage of crack propagation near the crystal surface appears to proceed

along favourably oriented {1111 easy-cleavage planes. However, on

examination of the crack below the crystal surface it is always found that

the path tends to deviate away from {1111 planes toward the Hertzian

cone. Figure 6, which shows a cross-sectional view of a pressure crack
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made on a (111) surface, illustrates this feature. The plane of figure 6

intersects diametrically opposite sides of the near-hexagonal trace in

figure 5: {1ll} planes inclined at 70.50 to the crystal surface extend

downward and inward from the left hand side of the trace and downward

and outward from the right hand side. Both sides of the internal crack

however, spread downward and outward, and away from the {1ll1 planes in

a non-symmetrical manner due to the asymmetry of the {1ll1 planes with

respect to the (111) crystal surface. In a similar manner the internal

crack deviates outward from the {lll} planes extending perpendicularly

into the crystal from four sides of the (irregular) hexagonal surface

trace on the (110) surface (figure 5). Thus there appears to be a

conflict between the tendency for the crack to continue to propagate along

cleavage planes and for it to follow stress trajectories of the two

lesser of the three principal stresses as in isotropic materials.

We now consider the elastic stress situation in the flat spe-

cimen beneath the spherical indenter prior to fracture occurring. Using

the same notation as used in the paper by Frank & Lawn (1967) the radius

a of the area of contact between indenter and specimen is given by

3 4k
a - E-P r (4.1)

where k = (9/16)[(l- v 2 ) + (E/E')(l - V' 2 )] ; the primes refer to the

indenter material. The greatest tensile stress in the system occurs

at the circle of contact, and is radially directed in the crystal sur-

face; its magnitude is

1-2v

m 2 ' Yr .2)

•?--•L
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where

P
p 0 - (4.3)

wra

is the mean pressure between sphere and specimen. The general stress

field in an isotropic specimen is given by the equations of Huber (1904)

and Hamilton & Goodman (1966).

In examining the growth of a Hertzian fracture in glass it

was concluded that in most instances the crack initiates at or very close

to the circle of contact and runs around this circle, but with a some-

what exaggerated radius of curvature because of the "pseudo-inertia"

mentioned in §2, producing first a shallow surface ring crack eccentric

relative to the circle of contact. The hypothesis that the surface

ring forms before subsequent downward extension into the material was

based on the knowledge that the prior stresses acting across the ultimate

crack surface barely decrease from the value a at the starting point--m

as one follows the surface trace and that, in marked contrast, they drop

off extremely rapidly (to a m/16 in a distance of a/50) along the

downward crack path. Although in the present case of interest the

surface traces deviate further from the circle of contact than their

counterparts in glass the weight of the above argument is barely lessened;

one may therefore infer that the crack initiates at one point and runs

around both sides in an unstable manner to complete itself on the

opposite side. (This conclusion has some experimental support (Howes &

Tolansky 1955).) One may then consider the downward propagation of the

surface crack.

This model of crack formation permits one to reduce the problem

of Hertzian crack formation to two plane problems. Firstly, in considering
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the surface crack we need only consider the stressfield at or very near

to the surface of the specimen, since these stresses are shallow.

In the limit of an infinitely shallow surface ring we have conditions

of plane stress operating: in view of the argument presented in the

previous paragraph this approximation would appear to be satisfactory.

Secondly, with regard to the subsequent downward extension of the crack

we may, so long as c is not comparable with a, consider the crack

to be propagating under conditions of plane strain. Certain complicating

features in this second stage of crack growth may arise to lessen the

effectiveness of the plane strain approximation; these will be discussed

briefly in §4.2.

With plane stress or plane strain operative the application

of the graphical construction outlined §2.2 for determining crack paths

becomes straightforward. For plane stress the G-1 surface is a right

prism with axis parallel to the crack edge. We need only in this case
-l -l

consider the projection of the G-1 and y surfaces on to the plane

normal to the crack edge: for the diamond structure materials the
-i

projection of the y cube will be polygonal in shape. The plane

strain case is slightly more complicated. Here the shape of the G-1

surface will depend on the relative magnitude of the principal stress

acting out of the plane normal to the crack edge (hereafter referred

to as the "normal plane"). If this normal stress is compressive, as it

is for the case of the downward propagating crack, the G- surface

possesses a convexity (with respect to the origin at the crack tip)

in the plane of the crack itself. (This fact can be derived from

figure 3.) We assume that this convexity is sufficient that the G-1

-1and Y surfaces intersect on the normal plane containing the origin
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in reciprocal space. With this assumption we need only consider the
-l

trace of the G-1 and y surfaces on the above normal plane.

We now consider the two stages of crack formation in turn.

For simplicity the effects of "pseudo-inertia" will be neglected:

its presence will lead only to a slight eccentricity of the computed

crack geometry with respect to the axis perpendicular to the centre

of contact.

4.1 The Surface Crack

It was argued above that the surface crack forms under plane

stress conditions, for which we will have to consider the projections
-i

of the y surface on to the plane of the crystal specimen surface.

For three common surface orientations this projection is shown in

figure 7. The crack is shown progressing in a favored direction (below).

Its tip is at the centre of reciprocal energy space.

The procedure for calculating the path of the surface crack

begins with a sub-microscopic flaw located at the circle of contact,

where the tensile stresses are greatest. The most favorable location

on this circle of contact is then chosen as the likely starting point

for the crack. This location may be deduced from figure 7 as that whose

tangent to the circle of contact corresponds in direction with that of

the maximum reciprocal lattice vector. The crack is then allowed to

extend stepwise, each increment of extension following the direction of

maximum a (c)/y computed at the location of the crack tip, until the

crack has extended around to the opposite side of the circle of contact.

(By the symmetry of the problem the crack is taken to extend simultaneously



-20-

around both sides of the circle.) The effects of curvature of the crack

are minimised by taking sufficiently small increments of crack growth.

The graphical construction in §2.2 is useful for providing

visual insight into probable crack behaviour. The surface crack pro-

pagates in a region of free surface outside the circle of contact where

the two principal stresses are always equal and opposite. Thus 0'(c)
- -

is compressive, and is equal to -a (c) always, so that the G-1 surface

is convex, as in figure 3. Thus by mere inspection of the nature of

the G_- and y-1 surfaces it may be seen that the vertices of the

latter will correspond to favoured but not dominant directions of crack

growth. As the crack propagates from the circle of contact along a

favoured direction and thus deviates from the stress trajectory (in this

case coincident with the circle of contact) it experiences an increasing

shear stress T (c) which tends to restore the crack back toward the

circle. The computed crack paths (figure 8) are consistent with this

description; they show a compromise between propagation in the directions
-i

corresponding to the y vertices and propagation around the circle

of contact. These traces compare favourably with those illustrated in

figure 5.

4.2 The Downward-extending Crack

Since the tensile stresses attain their maximum at the circle

of contact it seems reasonable to presume that the downward-extension

of the crack begins near there. Consequently we will consider cross-

sections of the crystal passing through the axis of symmetry and through

the favoured starting points of the surface crack. Since plane strain
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is assumed to apply to such cross-sectional planes we consider their

-i
intersection with the y surface (figure 9). The direction of

initial extension downward may be evaluated by noting that at the circle

of contact a'(c) is zero. Thus the crack begins in a region of
S--

uniaxial tension which, according to figure 3, corresponds to a quite

convex G-1 surface whose minimum is located perpendicularly beneath

the circle of contact.

The procedure for computing the crack paths is carried out

as for the surface crack. However, in the case of the downward-extending

crack it is found that the crack rapidly moves from the region of

0'(c) = 0 to a region where a'(c)-- - 10o(c) , and it experiences a
0-o- -o

stress state of the second type for most of its journey within the

crystal. We see from figure 3 that this corresponds to a very pointed

G-1 surface, so that the crack path is very much dictated by the stress

trajectory pattern and not so much by the maxima and minima in the Y -1

surface. This explains the experimental observation that the downward

crack profile tends to resemble that of the conventional cone crack in

glass. Because all Hertzian cracks in the diamond structure crystals

assume much the same form well below the surface the entire computed

crack paths are not included in figure 10; only the more interesting

region down to a very small distance below the surface, where the tran-

sition between the two stress regimes occurs, is illustrated. (For

comparison purposes traces of the stress trajectory surface and of {lll1

planes are included.) It is difficult to compare the computations in

figure 10 with experiment because of the small distances characterising

the transition region, but the prediction that for the (111) surface

orientation the internal cracks begin on the inclined {lll planes, and
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as the energy release rate for a surface crack in a semi-infinite

medium. Although our downward extending cracks are curved the form of

(5.1) will not be in error, only the numerical constants will suffer

from inaccuracy. We now make use of the geometrical similarity of the

Hertz elastic problem by expressing stresses in terms of PO and

lengths in terms of a. Thus we will find it convenient to re-define

K in (2.2) in terms of the dimensionless quantity

1c/a

K 2.24 (c)2 c /Po d(b/a) (5.2)
it a 0 (c2/a2__b2/a2)i/ 2

1

so that we have K a 2 K , which yields

G = _(- v2 )p2 a K2 (5.3)
E 0

Eliminating PO and a from (5.3) using (4.3) and (4.1) we have

G = 3P(1 - V2 ) K2  . (5.4)47rkr

In writing G > 2y as the condition that a crack should

extend we must take note of the fact that a curved crack will, during

the course of its growth, experience a wide range of y. We will

subsequently find it advantageous to write y = Ylll(y/Y1 1 1 ) so that

for an equilibrium crack

3P(l - V2 ) K2 = 2y•_(.. ) (5.5)
47rkr ill Yll

The quantities K_2 and y/1_111 may be determined numerically at any

point along the crack path. Collecting these into one term

_ 1 y (5.6)
K2 Ylll
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rapidly (particularly the crack on the left hand side in figure 10)

depart from these planes just below the surface, is in accord with the

example shown in figure 6.

So far we have assumed that the internal cracks extend down-

ward in a perfectly smooth manner. However, the observation of fracture

irregularities at the internal fracture interfaces in diamond by Howes

& Tolansky indicate that there is mutual interference from the extensions

from adjacent sides of the surface traces. Presumably there is difficulty

in accommodating any relative shape change of different sections of the

crack as it penetrates into regions of different stress state. This

effect may be envisaged by considering the crack profile for the (111)

surface orientation. Alternate sides of the hexagonal surface trace

will extend downward along geometrically different paths as shown in

figure 6: this will necessarily give rise to conflict in the regions

common to the alternate sides. However, as will be seen in the next

section, the mechanics of the downward extending crack are critically

determined by its behaviour down to a depth of about 0.1 a, where such

secondary effects should have little influence.

5. MECHANICS OF FRACTURE

5.1 Theoretical

From (2.1) and (2.5) we may write, for e small and K < K

and for conditions of plane strain,

G =f (1 - V2 )K2  (5.1)
E
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and writing

3(1 - v2) p87rky ill r

we arrive at the following as the condition that a crack should extend:

D < H . (5.8)

.It is to be noted that 0 depends only on the geometry of the

cracks for a crystal of given surface orientation. Figure 11 shows 0

as a function of relative length along the downward crack paths partially

illustrated in figure 10, together with the isotropic case for comparison.

(In the case of the (111) surface orientation only the crack shown on

the right hand side of figure 10 is represented in figure 11 since its

value of 0 is the smaller and, as will be seen below, it is this

parameter which determines the critical loading condition.) The quantity

H, on the other hand, is independent of crack length and is thus rep-

resentable in figure 11 as a horizontal line whose height is proportional

to the load exerted by the indenter on the specimen. A crack of given

length is then in equilibrium when the H line is raised to intersect

the value of 0 appropriate to this length. Different branches of the

0 curves, distinguished by the labels c , C 1 , 2 , and c3 in figure 11,-0 --O

then represent different types of crack equilibrium. These branches

have been discussed in detail previously by Frank & Lawn (1967) (for a

more general discussion of crack stability in the equilibrium sense

reference in again made to the paper by Barenblatt (1962) ). It is

sufficient to say here that the equilibrium is stable or unstable according

to whether or not d$/dc is positive or negative.
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The appearance of the maximum in each of the curves in figure 11

is the main feature of interest since it is this which is responsible

for the existence of Auerbach's law. In §4 we assumed the initial stage

of crack growth to begin from a sub-microscopic flaw at the circle of

contact. Writing the depth of this crack in the downward-extending

direction as cf we represent the flaw by a point (cf/a , H) in

figure 11. At zero load this point is located at infinity on the c/a

axis (since cf/a is proportional to P-1 /3 ): as the load on the in-

denter is applied the point migrates along a curve of the form (c /a) H
nf is

= constant (H being proportional to P) in the direction of the

arrows in figure 11 until it intersects the 0 curve. We consider this

intersection to occur somewhere between c and c . If it occurs--O

on the c branch an incremental increase in load will cause the crack-o

to proceed unstabiy toward the a, branch at constant load (i.e. along

the H line). When the stable al branch is reached (or if intersection

first occurs there) further gradual increases in load will be required

to raise H and thus permit the crack to grow along the $ curve in

a stable manner until c > c (or, H > * ). This final stage in which

the crack is "pushed over the hill" to proceed at constant load to

represents the development of the visible Hertzian crack. From (5.8)

and (5.7) and figure 11 we see that the condition for this to happen

may be written

r- > ~ v2)0 4 x 10 5ky 1 1 1  (5.9)r 3(l -v2il

This establishes Auerbach's law P /r = constant and specifies that

the Auerbach constant is proportional to 1iii"
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5.2 Experimental

Some indentation tests were performed on silicon with a view

to investigating the Auerbach law. All specimens tested were cut from

vity 1.5 ohm cm , dislocation density <500 cm ) purchased from Texas

Instruments. The specimens, at least 2 cm thick, were shaped with

major surface orientations within 10 of (100), (111) or (110) planes.

The tests were carried out on an Instron testing machine, using sintered

tungsten carbide Brinell balls as indenters; the crosshead was driven
--l .

at a speed of 0.005 cm sec in all experiments described in this section.

Because of the difficulty in determining the precise instant of fracture

in the opaque silicon a systematic series of indentations, with maximum

load as variable, was made on each specimen with five balls. The spe-

cimens were then etched in a solution of 90% HNO 3 + 10% HF, thereby

revealing which indentations had produced fully developed Hertzian

fractures. The critical load P could, under favourable conditions--c

of specimen preparation (see below), be determined to within about ±5%,

an uncertainty which accounts for nearly all the scatter in the results

presented below.

The first experiments were made on specimens prepared care-

fully by using 0.3 Um alumina powder as a final mechanical polish and

by following with a light chemical polish. The measured critical load

for a given indenter on these specimens showed a scatter of up to 100%.

This was attributed to a lack of sizeable flaws in the range c f<_o ,f-

the condition necessary for Auerbach's law to be established. The

specimen surfaces were then abraded with No. 600 SiC paper: according
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to Stickler & Booker (1963) such treatment introduces an abundance

of surface cracks down to a depth of about 10 pm. From figure 11 the

condition for Auerbach's law to be established now becomes approximately
5x1-3 s1- 3 -1

5x10- a 0-cm (10 a . Eliminating P from (4.1) and (5.9)

and substituting the resulting expression for a into this condition

we arrive at upper and lower limits of indenter radius within which

Auerbach's law might be expected to hold: inserting -11 1 ~ 1.4 x 103

-2 012 -2
ergs cm and E - 1.3 x 10 dynes cm- for silicon and k - 0.8

for tungsten carbide indenter on silicon we thus have 5 x 10-2 cm < r 4 5 cm

approximately. This embraces the range of indenter size used in these

experiments. The abrading procedure, apart from increasing the flaw

size, also increases the flaw density, thereby improving the liklihood

of initiating the Hertzian crack at the most favourable location on the

circle of contact, as was assumed in §4. The results obtained with spe-

cimens prepared in this way are shown in figure 12 in which P /r is

plotted as a function of r. Within the experimental scatter it is

seen that Auerbach's law is indeed satisfied for the three surface

orientations, so that we may identify P with P . (The full lines--C

drawn through the points represent mean values of P /r.) It is noted

that P /r increases in the order (111) , (110) , (100) ; this does

not correlate exactly with the order (111) , (100) , (110) predicted

by figure 11, but in view of the numerical uncertainty in the theore-

tical treatment and the experimental scatter this is not surprising.

Another experiment was performed in order to test the effect

of varying the flaw size af . From figure 11 it is seen that flaw size

should have no effect on P /r so long it falls within the limits c
--o

and c . Indentations made on specimens abraded with No. 320 SiC paper
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(which, according to Stickler & Booker, would introduce surface cracks

down to about 20 Um) showed no systematic deviation from the results

in figure 12. This therefore confirms that the Auerbach constant is

independent of the flaw size, so that no stringent surface preparation

of samples, other than ensuring that an adequate amount of flaws are

present, is necessary in the Hertzian fracture test.

6. DISCUSSION

The geometry and mechanics of Hertzian cracks in diamond

structure materials have been computed on the assumption that the aniso-

tropy in surface energy dominates over that in the elastic constants.

All essential features of the observed crack behaviour are accounted for

by the computations, although the effects of crystallographic fracture

appear to be slightly under-estimated, especially in diamond where the

surface traces are more strictly polygonal than indicated in figure 8.

A more formal treatment of the problem, for instance by applying the

fracture mechanics analysis of Sih, Paris & Irwin (1965) to the

Hertzian stress field in an anisotropic material (Willis 1966), might

be expected to give more exact correspondence between theory and

observation. However, these two above papers reveal that even for

cubic crystals the mathematics involved would be formidable, and in

view of the fact that other approximations (e.g. neglecting effects

of crack curvature, considering the crack to grow under plane condi-

tions, etc.) contribute to the uncertainty in the treatment the more

refined calculations are not considered warranted here.
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The theoretical prediction that Auerbach's law should hold for

diamond structure crystals has been confirmed in experiments on three

major surface orientations of silicon. Therefore, because the approach

to the Auerbach condition 0 = H is one of stable crack growth along

Li ' measurement of the Auerbach constant P /r in (5.9) affords a

convenient means for determining the reversible fracture surface energy

y. However, due to the approximations made in the theoretical, treatment

any such determination of the absolute value of y will be unreliable,

but relative values may, in principle, be measured with the same degree

of accuracy as the Auerbach constant. This raises the possibility of

using the Hertzian test to investigate certain mechanical properties

of brittle crystals. For instance the strength of a given material

may be readily measured as a function of temperature (providing no

significant change in elastic anisotropy occurs), environmental atmos-

phere, irradiation dosage, impurity content, loading conditions etc.

And the Hertzian fracture test has the advantage that the Auerbach

condition is independent of flaw statistics, so that small specimens

requiring no stringent preparation other than ensuring a reasonably

flat, flaw-abundant surface may be used. Some preliminary experiments

aimed at investigating the fatigue properties of brittle crystals

indeed indicate that the strength of silicon is dependent on the number

of loading cycles.

Having stated that y should be accurately measureable in

a relative sense it is tempting to take values of the Auerbach

constant for diamond, silicon and germanium and observe how well they

compare with the y values listed in table 1. Unfortunately data is

not available for germanium but Howes (1959, 1962) has accumulated results
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of scattered tests on diamond. Only for the (lll) surface of diamond

are there sufficient data to indicate that Auerbach's law holds

within limits of experimental scatter. In table 3 mean values of

P /kr from Howes' data are compared with values for silicon. It is

seen that diamond is characterised by a considerably wider variation in

values of the Auerbach constant for the three surface orientations than

would be expected from figure 11. (It has already been pointed out

that diamond also deviates the most from theoretical expectation insofar

as crack geometry is concerned.) We may, however, conclude that the

generally larger values of P /kr for diamond are commensurate with the

larger value of y for this material as compared with silicon.
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TABLE 1

Surface energy for {1}il plane (ergs cm -2)

Calculated Measured

Di 5700

Si 1410 1230

Ge 1150 1060



TABLE 2

Values of Aki'-/lll for some crystallographic

planes in crystals with the diamond structure

Plane Calculation Model
(bonds broken) (y-cube)

11 1.000 1.000

221 1.154 1.155

110 1.225 1.225

211 1.415 1.414

210 1.550 1.549

100 1.732 1.732



TABLE 3

S~-1
P /kr (kg cm ) for diamond (Howes 1959, 1962) and silicon

(100) (111) (110)

Di 617 90 175

Si 68 54 60



FIGURE CAPTIONS

1. Local tensile stress T and shear stress S acting on incre---rO

mental area of plane crack.

2. Schematic representation of equilibrium crack tip contour.

(See text.)

3. Forms of the G-1 surface for plane crack. (a) shows stress state

at ultimate location of crack tip prior to fracture occurring.

T (c) is zero. (b) shows traces of G surface. Subscripts

are dropped here for convenience. Scale is such that G-I = G-1
-- -- O

for 0 = 0.

4. Forms of the G_ surface for plane crack. (a) shows prior

stress state at crack tip. a '(c) is zero. (b) shows traces of

G-1 surface.

5. Traces of Hertzian cracks on (100), (111), (110) surfaces of silicon.

Specimens abraded, indented, etched and viewed in normally reflected

light. (Some abrasion scratches are still visible.) r = 0.64 cm,

a = 0.05 cm. Incompleted traces are due to specimen surface not

being perfectly normal to line of application of load.

6. Cross-sectional profile of Hertzian crack made on (111) surface of

silicon. Direction normally outward from plane of diagram is [01Y].

Specimen sawn through crack, abraded, lightly etched and viewed in

obliquely reflected light. r = 1.27 cm, a = 0.07 cm.



7. Projection of -- 1 cube on to plane of (100), (111), (110) crystal

surfaces. The crack orientations shown indicate favoured directions

of crack initiation on the circle of contact.

8. Calculated traces of Hertzian cracks on (100), (111), (110)

surfaces. The traces circumscribe the circle of contact since no

allowance is made for the pseudo-inertia of the crack.

9. Trace of Y cube on to cross-sectional planes (011), (Ol),

(T12) corresponding to (100), (111), (110) crystal surface

orientations respectively. Broken lines indicate traces of the

crystal surfaces. The crack orientation shown indicates initial

direction of downward extension of crack. (Extension in direction

of vertices corresponds to fracture on {illl} planes.)

10. Downward extension of cracks (full lines) from (100), (111), (110)

surface orientations. Planes of diagram as for figure 9. Extension

to depth 0.005 a below surface shown. Light lines are traces of

stress trajectory surface, broken lines are traces of {111} planes.

(The right hand side crack trace for the (111) surface orientation

coincides with the {1111 plane trace down to the depth shown.)

11. Parameter 0 as a function of relative crack length c/a for

(100), (111), (110) surface orientations, with isotropic case

included for comparison. Computed on basis of v = 1/3.

12. P /r as function of r for (100), (111), (110) surface orientations

of silicon.
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