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FOREWORD 

This report describes research carried out under Contract No. 

Nonr U7U7(00) during the period December I96U to June 1965. The 

Investigation includes a numerical analysis of the neutral gas structure 

of ionospheric rocket plumes including diffusive affects and a principally 

analytic study of the ion and electron distribution. The prograr/i for the 

numerical evaluation of the neutral plume structure had been under 

deveicptnent previously under Contract AFl9(628)-43bO, ARPA Order No. 363 

and this was continued concurrently with the present study. Although it 

is not really possible to isolate the two efforts, the present study 

has been principally concerned with the incorporation of diffusive effects 

and with the evaluaMon of the effects of the geomagnetic field on the 

ion distribution. 

Because no description of the numerical procedure is presently 

available, w» give, in this report., a fairly detailed description of both 

the inviscid and viscous calculations. Much of the work on the neutral 

flow structure will be reported subsequently under Contracts No. 

AF19(628)-3269 and AF19(628)-4360. 

Personnel who have spent an appreciable fraction of their time on 

this study include J. R. Bart-hel, T. J. Brainerd, R. S. Janda, M. S. 

Schoonover, and J, A. L. Thomson. The Project Scientist is J. A. L. 

Thomson. The technical monitor is Morton Cooper, Fluid Dynamics, Office 

of Naval Research. 

Figures 11-1 to II-9 are classified Confidential and are submitted 

as a separate addendum to this report: GD/C-DBE65-O23 (Addendum), 

m^im-f 
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ABSTRACT 

A calculation of the flow field in the vicinity of a 

liquid-fueled rocket travelling through the ionosphere is 

described.    A finite difference program is used to obtain 

both inviscid and viscous approximations to the exhaust and 

air flow field.    The subsonic nose region is treated by an 

approximate procedure.    Viscous effects are included in the 

so-called merged layer regime.    The viscous effects are 

treated by a modification of a procedure used by Cheng for 

the nose region of a blunt body in hypersonic,  low Reynolds 

nuraoer flow.    Numerical calculations of the neutral flow 

field in the viscous layer approximation are presented for 

the flow at 1Ö0 km. 

The influence of the geomagnetic field on the motion of 

the ions is significant at altitudes above about 150 km. 

Simplified geometries are used to study the ion motion.    At 

low altitudes (below about 150 km) the ions move with the 

neutrals.    At high altitudes (above 250 km) the ions are more 

or less constrained by the geomagnetic field to a one-dimensional 

motion along the field lines except in a region relatively close 

to the fissile where the density is sufficiently high to sweep the 

^.ons across the field lines.    The model of the high altitude  ion 

motion is essentially that proposed previously by Lighthill (i960). 

The mechanisms describing the motion of the  ioni:  across öhe field 

lines are examined In various limiting cases. 
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I. Introduction 

At high altitudes the static pressure of the exhaust gases at the 

exit plane of a rocket engine nozzle is considerably greater than that of 

the ambient atmosphere. The exhaust g&ses therefore expand greatly upon 

leaving the nozzle. This expansion and the resulting interaction with 

the atmosphere results in the characteristic high-altitude missile "plume". 

As the vehicle and plume move through the atmosphere, the ambient 

medium is displaced in much the same way that it would be by a solid body 

having the shape and dimensions of the plume. The  disturbance of the 

external medium and particularly of the ambient electrons by the passage 

of the rocket, is the principal object of the investigation described here. 

If viscous effects were negligible, it would be possible to describe 

the external flow exactly as that around a solid body having the same size 

and shape as the plume. However, the plume size and shape are not known 

a priori, and must be described by a method which treats both the internal 

and external flow in considerable detail. The  Inclusion of transport 

effects makes the flow near the exhauat-air boundary considerably different 

from the flow about a solid body, since finitt tangential velocities at 

the boundary and diffusion across the boundary must be considered in the 

case of the plume at high altitudes. 

The altitude range of interest in the present study is 100 to 300 KM. 

The following generalizations about the exhaust-ambient flow field apply 

in this altitude range: 

1)  The free stream is supersonic (Mi K)t  partially dissociated, and 

weakly ionized. , 
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2) Tue flow field is tinae-dependent due to atmospheric strrtification 

and vehicle acceleration. 

3) The flow field may not be axialiy Gyiranetric for non-vortical. 

trajectories due to atmospheric stratification. 

k)      The Reynolds and Knudsen numbers lie in ranges where viscous and 

mixing exTects are important^ especially in the nose region and 

along the plume boundary. 

t>)  The ion-neutrax and ion-ion mean free paths ax'e large enough that 

the geomagnetic field may strongly perturb the ion and electron 

density profiles. 

6)  The mean free path is large compared with missile dimensions, 

f^ that the relative disturbance of the free stream by the 

missile itself is small. 

The  approach we use to determine the neutral flow field is discussed 

in detail in Section iv. In general the approach is to use finite difference 

procedures to obtain numerical solutions of the appropriate inviscid and 

viscous equations of motion. Inviscid calculations of the air and Jet flow 

are carried out first. Some features of the plume, such as the overall size 

and shape, appear to be quite well described by the inviscid equations. 

Significant viscous effects are confined more to the detailed form of the 

density and temperature distributions. A brief preliminary discussion of the 

magnitude and importance of the viscous effects is given in Section 11-^. 

Since the cyclotron frequencies of the ions and electrons in earth's 

magnetic field may be large compared to the collision frequencies, the 

geomagnetic field is expected to have a significant influence on ^he ion 

motion. The ionization level, however, is sufficiently low that the motion 

of the neutral particles is essentially unaffected by the presence of the 

i-: 
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ions. The neutral flow field, therefore, may be evaluated without rtgard 

to the magnetic field. The ion motion may be evaluated subsequently, 

treating the motion of the neutral gas as imoun. Most of the analysiß in 

the present fitudy is directed towards establishing a model for the ion 

motion that may te used to evaluate the electron distribution in the 

neighborhood of the vehicle. The major uncertainty lies in the deter- 

minatirn of the ion motion across the mag: etic field lines. Inhomogeneities 

in t'ie ambient ionosphere, asymmetrical ion and neutral flow distributions, 

the finite time dependence of the neutral flow may all enhance the rate of 

diffusion of iona across the field. TLe motion of the .Ions is studied in 

a number of limiting cases in Section V.   A summary description of 

the ion motion is given in Section HI and of the neutral motion in 

Section II. 

1-3 
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t II.    SUMMARY CiT HÜBLEHT METHOD USED FOR CALCUIM'INC} THE NEUTRAL FLOW 

9 

Il-l, General Description 

The high altitude plume may be divided into three region«: the 

undiäturbed air and jet streao« and the interaction region (see Figuret^*» The 

inner boundary of the interaction region represents the greatest penetra- 

tion into the plume of the influence of the external environment. Itis 

inner limit of the interaction region is the Jet shock. Inside of this 

shock the Jet flow is identical to the flow into a vacuum. In the inter- 

action region the exhaust gas flow is separated from the perturbed air 

flow by a slip surface (when diffusion is negligible). The outer boundary 

of the interaction region is the air sho.'k. At high altitudes, where much 

of the interaction region is thin i spared to the overall flow field 

dlmenßionß, it is convenient to think vf the undisturbed Jet flow and the 

undisturbed stir flov as two equivalent regions separated by the inter- 

action layer. These undisturbed flrvs may be determined independently 

(the Jet flow by evaluating the expansion into a vacuum) and then used as 

boundary conditions for a calculation of the Interaction region. In this 

approach the Important characteristic dliienalons during the calculation 

are those of the interaction region itself rather than the less appropriate 

(arid often very different) _'adlal dimension of the Jet. 

In the present calculation the interaction region is analyzed in 

various approximations: first, t-irictly inviscid flow and second, flow 

with viscous effects included in the so-called thin layer approximation. 

The supersonic portion of the Inviscid flow is computed "exactly" using 

finite difference techniques. At low altitudes the air shock ic attached 

to the nozzle edge (neglecting perturbing Influences of the vehicle) and 

the elr flow is entirely supersonic (described by hyperbolic equations). 

At sufficiently high altitudes the air shock detaches, creating a subsonic 

region (described by elliptic equations) at the bow of the plume. In 

addition to exhibiting the usual problems associated with the numerical 

calculation of elliptic regions this portion jf the flow is difficult to 

define for other reasons. First, FigureXrik indicates that, at high altitudes, 

the nose region will be merged (i.e., at no point in the flow is the InvlBcid 

approximatlCA useful). Some treatments of such a recion are available * 

if 

I 
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but it is not clear that Bophletlcated treatnient is appropriate at preeent.      %i 

Since meet of the exhaust ''low Is directed backwarda only a snail mass 

fractlor. of the total exhaost flow determines the structure of the nose 

region. This flow may therefore be strongly Influenced by the boundary 

layer within the nozzle and by the additional minor mass flows associated 

with the normal operation of a missile: vernier engine exhausts, gas 

generator exhausts, etc. Thus, a detailed analysis of this reg'.on that 

ignores these effects may not b'S warranted. 

Because of the small masa flows involved, it is expected that this 

region will not have a major Influence on the downstream flow. Thus, 

relatively crude approximate techniques provide rn adequate description 

of the subsonic region. The procedures used for this purpose are outlined 

la 8ectionlV-2. Calculations of the invlscld flow at altitudes up to ISO km 

indicate that the invlscld approximations of the exhaust plumes of typical 

upper stage vehicles Lave relatively sharp noses at all altitudes. Although 

the turning angle of the flow at the nozzle lip increases monotonlcally 

with increasing altitude and may appreciably exceed 90° for some nozzles 

at very high altitudes, the Jet-air boundary inclination decreases rapidly 

with Increasing distance from the nozzle for the first several tens of 

nozzle diameters, »or the 30:1 engine (shown in figure 11-10) at l8o km 

altitude, less than uue per cent of the air flow intercepted by the maxi- 

mum cross sectional area of the exhaust plume enters the air shock layer 

at points where the boundary inclination exceeds ^5°. Under these con- 

d.' tlous we expect rather small detachment distances and small subsonic 

regions (see Figure II-7). 

Hozzle boundary layers, gas generator discharges, and vernier engine 

mass flows, in addition to the general merged layer effects in the subsonic 

region, all have a tendency to make the nose of the plume more blunt. A 

rough estimate of the importance of these mass flows and of thä assumptions 

made in the calculation of the subsonic region may be obtained as follurfs: 

The peripheral mass flows typically constitute one to three per cent of 

the total exl aust gas m^as flow. In Figure 11-7> we UOYW ir"Hcated the 

positions along the Jet shock at which various fractions (e) of the total 

exhaust gas flow have been entrained by the Jet shock layer. We expect 

that the location and structure of the shock layers In the region close to 

II-2 
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the nose, where less than five per cent of the tot&l flow has been 

entrained, will deviate appreciably from those of the actual vehicle 

because of the neglect of these minor mess flows. Far downstream, the 

shock layer structure will be less affected. In Figures 11-12 and 11-13 

we have indicated, at the dividing streamline, the annular width {Ae) which 

contains five per cent of the exhaust mass flow. In the downstream region 

it is apparent that this width is small compared to the total width of the 

mixing region (as would be expected for a merged Jet shock layer). Here, 

we expect that the major structure of the flow will not be strongly 

affected by these minor mass flowf*. 

In Pigurei H-ll, 12, 13, we also indicate the annular widths (A ) required 

to contain a mass flux of air equal to that which passes through the sub- 

sonic and transonic region (M^i?). In the present numerical calculations, 

diffusion in this region is not accounted for. This will cause appreciable 

errors down to a point where the air mass flux in the mixing region con- 

siderabxy exceeds that passing through this ncse region. Reference to 

these figures indicates that the effects cf neglecting the diffusion la 

the subsonic and transonic regions will not Introduce much error in the 

-•valuation of most of the downstream flow (for this particular nozzle and 

at thst,* high altitudes). In other words, even though the collision 

frequency aM the diffusion rate In the subsonic region are sufficiently 

high to result in a completely merged nose shock layer, the amount of mass 

involved -»G small compared to the total amount of air mixed with exhaust 

gases thrcughout much of the flow field. When the additional peripheral 

mass flows are included or when smaller area ratio nozzles are considered, 

the plume tends to become more blunt-nosed. This will increase the size 

and Importance of the diffusive phenooena occurring In the subfionlc region. 

At present, we do not have any quantitative estimates of how important these 

effects will be for configurations markedly different from the rather specific 

on«! considered here. 

:i 
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II-2    Results of the Present Calculations of the Neutral Flow 

In Figures II-A to II-Ö ve  show the results of  inviscid calculations 

of the shock locations and the contours of constant air density    at three 

altitudes  (100,  lib»   and l80 km).    The two lower altitudes had been 

calculated previously and correspond to the flow resulting from the 

25;1 nozzle labeled #L in Figure II-10.    The flow at l80 km altitude 

was evaluated for a different nozzle (labeled "50:1-Nonuniform"  in 

Figure 11-10).    However, the Jet mass flew angular distributions are 

similar for the two nozzles and little difference  is expected between 

them.    In Figure II-9,  we show the  shock locations and air density 

contours at l8o km evaluaced in the viscous layer approximation. 

Reference to this figure  shows that there  is surprisingly little cnange 

in the shock locations resulting from the effects of diffusion.    In 

Figures 11-11 to 11-15 we show radial distributions of density,  pressure 

and temperature on three different orthogonal surfaces at l8ö km 

(labeled 1.   2,  and 3 in Figure 11-2^.    In Figures 11-16 and II-l?,  we show 

temperature and density histories along two streamlines (a and b in 

Figure II-1).    A number of qualitative conclusions may be drawn from an 

examination of these figures: 

(i)    Strong transverse gradients in both pressure and density exist 

across the Jet and air shock layers. 

(2) In the inviscid approximation,  the density in the Jet layer is 

very much higher than in the air layer although the pressure 

is lower.    There  is a slight entropy layer in the air flow 

along the bound»ry but it is not marked. 

(3) In the viscous layer approximation,  the Jet shock layer appears 

merged throughout  the flow.    The width of the mixing layer  Is 

comi   rable to the width of the air shock layer ooly near the 

bow of the plume. 

At low altitud'S,  the electron density distribution may be assumed 

proportional to the air density. 

FiguresII-2 to II-9 are presented in an addendum to this report 

(GD/C-DBF65-023(Addendum)). 
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{h)    The effects of diffusion have surprisingly little influence 

on the air density profile although the exhaust gas profile 

is markedly changed. This observation suggests a model of 

the process which imagines the Jet ao a cold solid body 

whose surface is evaporating. 

(5) The cooling effect of the exhaust gases in the mixing layer 

largely eliminates the high temperature entropy layer. 

(6) The pressure gradients at the Jet and air shocks are 

sufficiently large that the shock profiles are not properly 

matched to the interior flow, A more accurate treatment 

would have to include the effects of shocii. ci-vature on the 

shock profiles. 

(7) The nose of the plume is relatively sharp and the subsonic 

region small, 

(8) The Mach disc formed by the reflection of the Jet shock from 

the axis is small compared to the overall Jet dimensions, 

A preliminary attempt to evaluate the far field motion-at high 

altitudes has been carried out in the small disturbance approximation. 

In this approximation only radial motions are considered important and 

the problem is reduced to obtaining em equivalent one -dimensional 

unsteady solution of the Navier-Stokes equations, 1 .e numerical calcu- 

lation procedure used is similar in the type of approximations made to 

that used for the two-dimensional flow.  Results have b^en obtained for 

one very high altitude case (290 km for a typical sustainer mass flow) and 

these are shown in Figures 11-18 to 11-21. 

'this case is a limiting case ^U -* ») of the two-dimensional steady 

flow and could be calculated with that numerical program. This limit 

results in several simplifications in the analysis and a separate 

program was written- 

f i 
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The present results have been calculated for specific vehicles at 

specific altitudes. For these highly under expanded Jets the results may 

be scaled to other altitudes, velocities and mass flows under certain 

conditions. The high altitude scaling laws are discussed, in part, in 

References 3 and ^ . Three different cases may be distinguished. In order 

of decreasing generality they are: the near field inviscid flow when the 

free stream is hyp61"8011^! the overall inviscid flow, and the flow field 

when viscous effects are important. All of the scaling laws depend on 

the fact that, at these high altitudes, the undisturbed flow ic source-like 

(p ~ f(cp) r" ) and the Jet shock may be considered very strong at almost all 

points in the flow. 

a) The inviscid near field when IT » 1. 

In this case the bow portion of the flow field has a characteristic 

dimension R given by 

R = V™ VT/p V2 

where m is the rocket exhaust mass flow, V its limiting velocity (VT = V2h ü J       C 

where h is the stagnation enthalpy per gram), and p^ and V^ the free stream 

properties. When the flow structure is evaluated in terms of the dimension- 

less coordin&te (r/R, X/R), the shape of the flow field is independent of 

altitude, velocity and mass flow and depends only on the angular distri- 

bution of the vacuum flow(f{cp)) and the specific heat ratios of the Jet 

and air streams. Here the Jet and air densities and enthalpies may be 

represented in the universal forms 

t 

»a = P- fK^; V V ^V 

t 
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ha = V- f2 (^J V V f ^O 

^rC^^a^^vv^O 

b) The inviscid flow for finite values of M^ 

The scaling law Just discussed applies to that portion in the ^lume 

where the air shock may be considered strong. Far downstream the air 

shock deviates appreciably from this limit. For the flow field at l80 Ian 

nowhere in the flow is this condition adequately satisfied. In this case 

the flow structure also depends explicitly on the value of the free stream 

Mach number M^. It is expected that this second scaling law will be useful 

at most, ionospher-' z altitudes for correlating phenomena such as size and 

shape that do not depend on the detailed structure of the shock layers. 

c) The flow with viscous effects 

When phenomena which depend on the detailed shock layer structure are 

to be considered, the effects of diffusion may be important. Here, in 

addition to the free stream Mach number M^, the flow structure may be scaled 

from one altitude to another only if the velocity ratio V /v^ and the 

Knudsen number Tproportional to ^A Vj PaJ^a  ) are ^J* constant. 

II-7 
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11 -3.   Method Used for Evaluating the lüvlscld Flow Field In the Present Study 

A finite difference approximation of the inviscid equations of motion 

la used to evaluate the supersonic portion of the flow field-  In this 

numerical calculation toe equations of motion are expressed in a curvilinear 

coordinate system composed of the streamlines and the associated orthogonal 

surfaces (potential surfaces In irrotational flow). Of the four differential 

equations of motion for two-dimensional steady inviscid flow, three may be 

integrated directly to give the mass, total enthalpy and entropy conserva- 

tion equations. These integrated equations plus the differential form of 

the lateral momentum equation (which determines the streamline curvature) 

are used to evaluate the flow. Data are evaluated on successive orthogonal 

surfaces. 

The streamline coordinate system was chosen for the finite difference 

formulation for several reasons. First, in the limiting case of very large 

Mach number, where characteristics programs have difficulty because the 

characteristics often do not intersect in e diverging flow unless the mesh 

spacing is very small, the streamtube procedure reduces to the condition 

*'        the streamline curvature is zero and the solution is obtained trivially. 

Second, by using the integrated conservation equations, it can be assured 

that these are rigorously satisfied no matter what mesh spacing is used. 

Third, because we are following fluid elements^ chemical reactions or internal 

relaxations may be easily incorporated. Also slip lines are treated without 

difficulty. Fourth, because of ehe marching procedure used, lateral diffu- 

sion, heat and momentum transfer can be included without excessive difficulty 

in the thin layer approximation. 

II-8 



In the formulation cf the finite dl^e/ence pi'ocedure, an effort has 

been made to retain a physically meaningful interpretation even when the 

mesh sizes are sufficiently large that the relation between derivatives 

and finite differences is somewhat obscure.    For this purpose a streamline 

or lagranglan coordinate systems offers several advantages over an Eulerian 

coordinate system for the evaluation of hypersonic flow fields even though 

it is often more complex and less efficient in terms of computing time pe1- 

mesh point.    For example, in the computation of the invi^cid flow, the 

integrated forms of the continuity, parallel momentum and energy equations 

are used so that these are rigorously satisfied no matter how large a step 

size is used.    Truncation errors are limited to the lateral momentum 

equation: 

dcp _      _1_ djp 

pu     J (1) 

This equation for the streamline curvature is treated as follows: Each 

streamtube is characterized by pressure p and a gas velocity |u|. These 

are related to the streamtube area by the integral energy, momentum and 

mass relations. The curvature f |* J  of the streamline separating the 

adjacent streamtubes 1 and 2 is evaluated from the relation 

where r and r are the radii of the midpoints of the two streamtubes 

measured along a surface orthogonal to the streamlines, and m and m0 the 

(constant) mass flows in these tubss. Thus reasonably accurate evaluPtions 

of the flow can be obtained even when the values of the various flow quantities 

II-9 



vary considerably from tube to tube. This is particularly useful in the 

high altitude Jet shock layer, where t^ total pressure may vary by orders of 

magnitude and the density by a factor of 5 to 10 across the shock layer 

while the cu/.-vature and flow velocity are virtually constant. For this 

case Eq. (2)would give accurate results even if the entire shock layer 

were represented as ono tube. Since the computation time is inversely 

proportional to the square of the tube width and appreciable computing times 

are involved, even on the 7090, it is important to make the mesh size as 

large as possible. 

In thr? present calculations relatively simple marching procedures 

have been used (at present the method is essentially second order Runge- 

Kutta). Thus truncation errors can arise when flow variations parallel 

to the streamline are large. Although the procedures can be readily 

improved to be considerably more accurate (i.e., fourth order Runge-Kutta) 

the longitudinal flow variations generally encountered are usually quite 

small compared to the marching rate permitted by the stability of the 

difference scheme so  that the present, calculations appear to be stability 

limited rathnr than accuracy limited. 

An attempt has been made to incorporate the lateral diffusion inJ" the 

calculation in a manner similar to the centrifugal momentuiu transport. Here 

more   difficulties are encountered. The diffusion effects art Incorpo- 

rated by evaluating diffusion fluxes of heat, momentum and specie at the 

surface of each streamVube. Truncation error»enter into relation between 

the fluxes and the differences of enthalpy, velocity and concentration in 

adjacent streamtubes. However, the calculation is arranged so that gain of 

( 
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heat, momentum or specie by one tube are exactly balanced by losses in 

adjacent tubes. Thus, ,5o long as the longitudinal variations of the flov 

quantities are small compared to the stepping rate, most of the truncation 

errors can be thought as being equivalent to using slightly erroneous 

effective difiusion coefficients. 

Since the missile is acce' ^rating and the atmosphere is not uniform 

the actual plume expansion is not a steady phenomenon. However, the 

exhaust-a:?r velocity difference far downstream, where this time dependence 

is expected to have a significant effect, is smaller than the missile 

velocity. Thus an approximate account of this effect for a vertical tra- 

jectory may be obtained by assuming that the flow disturbance at a given 

altitude is the same as that for a rocket moving through a uniform atmos- 

phere at constant velocity. Here the values of the density and missile 

•elocity must be taken equal to those corresponding to the altitude of 

interest. (This is really equivalent to a small disturbance ipproximatiou 

far from the vehicle.) 

Because of atmospheric stratification, the disturbance created by a 

vehicle traveling on a non-rertical trajectory will not be axial.ly symmetric. 

An approximate account of this effect may be obtained if it can be assumed 

that the azirauthal flow velocities are j.egligible. In this approximation 

the flow distribution at a given azimuthal angle will be the same as that 

in an "equivalent axisymmetric flow" in which the atmospheric density varia- 

tion with radial displacement is assumed to be the same as t\       ^n the real 

atmosphere in the given azimuthal direction. In other words, for a hori- 

zontal trajectory, the stream density and Mach riUmber are assumed to vary 
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with radial displacement. For an exponential atmoephere the "r-qnivalent 

axisymmetric free streaii:'' should iiive a density which varies with radial 

displacement from the axi;. according to 

, x     -rcos e^H 

where 6 i. the azlmuthal angle of interest, ^ the local scale height and 

p the local ambient atmospheric density on the plume axis. Since the 

finite difference formalism is the same for uniform as for nonuniform 

external flows this method is easily implemented. 

* 
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II-;*'    Method Used for Evaluating tte Vlscoua Flow Field 

S 
Probstein and Kemp    classify different types of viscous flows into 

seven regliaes: boundary layer, vorticity interaction, viscous layer, 

incipient merged layer, fully merged layer, first order collision theory 

and free molecular flow regimes. In ti>e first three regimes the shock is 

treated as a diacontinuity obeying the classical Rankine-Kugoniot relations. 

Ii the fourth (incipient merged layer) the shock structure has to be included. 

Here suggested treatments are either to use the complete Navier-Stokes 

equations to describe both the shock profile and the viscous interior as 

one continuous pattern, or tc treat the shock as a discontinuity and modify 

the Hugoniot relations so that the tangential shear stress and the enthalpy 

flux conducted into the shock are properly acco^mted for. Cheug has used 

this latter approach successfully to treat the hypersonic blunt body problem. 

In treating rarefied gas flow» a ver: useful approximation that is 

often introduced is the so-called thin layer assumption. Basically the 

assumption says that, in the coordinate system chosen to evaluate the solu- 

tion, the viscous stresses and heat conduction are detentined by tne velocity 

and enthalpy gradients in a direction known a priori, such as parallel to one 

of the coordinate axes. In many applications, such as the blunt body shock 

l"iyer or the nypersonic slender body flow in the small disturbance approxi- 

mation, this may be satisfied if the shock radius of curvature is much greater 

than the lateral dimensions of the fl.tw. It is expected that this condition 

applies to the interaction region of the plume as long as the free stream 

Mach number is sufficiently high. 

We have incorporated viscous effects into the numerical calculation 

using the thin layer approximatlor. Using this approach In the Incipient 
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merged layer regime,  Cheng has developed an ele( jit treatment of the hyper- 

sonic  blunt-bodj  problem at  J.OW densities,     '    The same  aophistication of 

solution  is presently possible for the high altitude jet.    A complete evalua- 

lion of the jet flow fJ.eld would proceed ar3 follows:      first,   the flow is 

evaluated in the  inviscid approximation,  where the  supersonic region is 

treated exactly and the  bubsonic  region approximately.    Second,  viscous and 

heat  transport terms are  included in the viscous layer approximation for the 

supersonic flow (i.e.,   th?  shocks are still  treated as discontinuous a,,d 

obey  the classical Hugoniot relations).    The third step is to treat the 

supersonic flow assuming it   is merged.    Here Cheng's two-layer approach is 

appropriate.    This amounts to replacing the Hugoniot relations by modified 

forms which allow the stagnation enthalpy and the tangential veloci-uy to 

vary through the shock.    At the  sajne time the  shock profile  itself (shock 

transition zone) may be treated independently in the thin layer approxima- 

tion.    Here the  shock is assumed to be locally fipproximated by a plane 

shock whose profile may be evaluated by a direct  integration of the one- 

dimensici ?J  Javier-Stokes equations,   using the local conditions evaluated 

at the edge of tue merged layer as Initial conditions.    This profile is then 

"tacked" on to the merged layer calculations.    This  is essentially the 

approximation in which Cheng treats the blunt-body problem.    The equations 

are detailed in  Section IV-3a>b,c. 

Up to this point an approximate  inviscid description of tue  subsonic- 

region such as that detailed in  Section IV-2c  is used. 

The logical fourth step ir this procedure would be to use Cheng's method 

to evaluate  the  subsonic and transonic region.    Tue only difference from Cheng's 

During the present  study,   calculations have been carried out only in the first 
two approximatiors. 
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procedure would be that instead of a solid boundary for the inaennost stream- 

line, a boundary condition would have to be used which would .join the elliptic 

air region to the hyperbolic Jet region. A merged layer calculation would be 

used for the flow inside this dividing streamline. Diffusion of heat, 

momentum and species o.cross the dividing streamline would be allowed for. 

The equations and method for this step are detailed in SecLion IV-jd. 

During the present ctudy it wan found that the centrifugal pressure 

gradients across both the jet and the air shock layer were large (see 

Fig. II-1^ throughout most of the flow. Except for a small region near the 

nose of the p] ne the pressure gradient In the air shock layer at 180 km 

altitude is not very much sme.ller in absolute value than the peak gradient 

within the shock transition zone itse"1*"  (Fige. II-i],12anä 13). Conse- 

quently it is expected that the curvature of the shock front will have an 

appreciable influence on the shock profile and it will be necessary to 

include this effect in order to get a consistent ful]y merged layer calcu- 

lation. A self consistent procedure has not yet been formulated for this 

purpose. Because the shock layer tangential shear stress and the stagnation 

enthalpy flux are relatively small near the shock interface, except near the 

nose of the plume wlierc the deflection angles are large, it ic  expected that 

the influence of the shock curvatuie (really of the curvature of the stream- 

lines behind the shock) on the shock profile will be the dominant source of 

differences between a viscous layer calculation and a truly merged layer 

calculation. Expressed 1? other words, the difficulty is that, in the air 

shock transition zone, the streamline curvature and pressure gradient are 

of opposite sii-;n to those in the shock layer and a plane shock approximation 

results in a discontinuity in these quantities. In practice this means that 
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the peak pressurv, density and streamline deflection calculated for a plane 

shock will not be achieved in the actual flow. The detailed calculations 

to date have been limited to the viscous layer approximation. The density 

contours shown in Figures II-j to 8 in the neighborhood of the shock inter- 

face were determined by fairing the shock layer profile smoothly into a 

shock transition zone profile calculatevl assuming zero shock curva^'re. 

For the jet shock this difficulty is less apparent since the curvatures 

in the transition zone and in the shock layer have the same sign. In this 

cese, it would be consistent tc locate the shock interface at the point in 

the shock transition profile where the streamline curvature matched the 

value in the shock layer. However, the viscous layer calculations carried 

out during this study have not included this sophistication and it has been 

assumed that the nom-T-l pressure and density jumps were achieved across the 

shock. The errors induced are expected to be relatively small, perhaps 

equivalent to a shift in the position of the interaction layer by an amount 

somewhft less than the width of the shock transition zone. 
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III. Tile Effeüt of the Geomagnetic Field 

ITI-1. ilenor^l Description 

The ultimate purpose of the present study is to detennine the electron 

density distribution in the vicinity of a powered-rocket in the ionosphere. 

Sincej throughout much of the altitude range of interest#the larmor radius 

of both ions and electrons may be considerably smaller than a mean free 

path, the geomagnetic field may considerably influence their motion. 

Lighthill    has considered the disturbance that would be induced by the 

passage of a satellite through the ionosphere and concluded that the 

perturbation produced would be primarily a one-dimensional motion of the 

Ions parallel to the magnetic field. Although we are concerned with a 

somewhat wider range of altitudes, the neutral wind created by the passage 

of a rocket provides a similar but much stronger perturbation to the ion 

fluid. 

It is known that the motion of a plasma in a magnetic field can be 

quite sensitive to the boundary conditions imposed. The effects are primarily 

due to the long range of the electromagnetic body forces. In our initial 

studies we have limited ourselves to two simplified approaches. The first 

is to consider sufficiently simple geometries for both the neutral flow field 

and the electromagnetic field that it is possible to obtain "exact" numerical 

solutions to the non-linear equations of motion. The second Is to consider 

approximations of aquations of motion that will allow consideration of more 

general symmetries and allow at least a semi-quantitative evaJLuation of the 

importance of properties of the neutral flow and the plasma (such as non- 

uniform distributions) that it is difficult to include in the detailed 

solutiors. 

; 
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For a detailed solution, we have ohosan to c; .sider first the case 

of a cylindrically syirauetric neutral motion In an axial magnetic field. 

T^ie büslc a priori ftesumptlon that is made is that the xevei of lonization 

is sufficiently low that the motion of the neutral species is completely 

unaffected by the presence of ehe ionized species.  In this cane  the 

neutral motion may be calculated without regard Lo the presence of the ionic 

species. The ion motion may then be determined by considering the ion fluid 

as a fully ionized plasma which moves under the influence of a strong body 

force (the net momentom transfer from the prespecified neutral wind to 

the ionized fluid) in addition to the electromagnetic field and its own 

pressure gradients. In addition, appreciable heat transfer to the ion fluid 

may take place as a result of the viscous stresses genex'ated between the 

ions and the neutrals. 

The condition for the neutral fluid to be independent of the ion 

motion can be estimated as follows. Suppose that the magnetic field is 

sufficiently strong that u « V, Then the force exerted on the ions by 

the neutrals per unit mass of the neutrals is given by 

f 
Thus the neutral velocity will be appreciably reduced by this drag in a 

time of the order 

t » P/Pc^ 
Pi 

Tlius, for frequencies less than -5- v■, the neutral and ionized species move 

together as a single fluid. This frequency does not vary very strongly with 

altitude and at l80 km altitude is of the order of 10"-' sec' . Tims, for the 

much shorter time of present interest, we may ignore the influence of the ions 

Here u and V are the radial components of the ion and neutral velocity, 
respectively. The ion mass density is Pi, the neutral density is p and the 
ion-neutral collision frequency is v^. 
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on the neutrals. 

If there were no magnetic field present, the ions would be prettv much 

swept along with the neutrals. When the magnetic field is considered, we 

must allow for the possibility that the ion motion across the field lines 

may be strongly hindered, A rou^h picture of the phenomena involved may 

be obtained by considering the expansion of a cylindrically symmetric 

neutral volume of gas into the ionosphere when the magnetic field i« aligned 

parallel to the axis of symmetry. If the outward velocity of the neutrals 

is  V and the ion velocity is u , then the force per unit volume exerted by 

the neutrals on the ions due to the ion slip will be of the order 

where v.  is a quantity of the order of the ion-neutral collision frequency 

(and may also depend on V). This force will cause an azimuthal drift of 

the ions and electrons. For a weakly ionized gas, this force, even when 

exerted over a depth of several kilometers, is small compared to the magnetic 

pressure B /8n, For example, if n. - 10 cm , v   =10 see' , V-u = 2 x 

10 cm/sec over a 5 km distance, then the force per unit area is of the order 

-5       2 
of 3 x 10  dynes/cm for an ion mass of 16. Thus a alight gradient in the 

magnetic field (.0002 gauss/km) is sufficient to balance this viscous stress. 

Let us first consider the case when the ion mass and electron maoS are 

equal, as are their interactions with the neutral fluid. Here, because of the 

symmetry, we may conclude that no charge separation will tend to occur. Thus 

both the axial and the radial electric field vanish identically. The azimuthal 

drift velocity will be of the order 

^ eB 
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/vain,  due  to eoIlls'üiiG with neutrals,   there will be ari azimuthal drag 

Torcc of the order 

Tims,  the outward drift velocity will be 

or 

where u'  = eB/m.c. 
c.    ' i 

Tlius strong hindrance of t^o  motion across the field lines is expected 

when v.  < m  (~ 2k0  sec  for B = O.U gauss Eunc» an ion mass of 16). 
1-1     c. 

i 

When tne ion and electron masses are unequaJ ,  radial x'ields due to 

charge separation may occrr.    These may >.onsiderably  influence the motion. 

A very slignt   afference between the  ion and the electron density can create 

large electric fields.    Thus we expecc  that n   =" n    to a goo5 approximation. 

This  condition  implies  that  the  ions and electrons will move radially with 

the same velocities.      This strong coupling of the two motions  results  in 

aighly distorted Larmor urbits.     If the  ions wer^ acted on by a velocity- 

independent  radial force and the collision frequency were small,  the two 

orbits would be azimuthally drifti'ig ellipses having a ratio of seni-minor 

to semi-major axis of ,/ — .    The electron orbit   .ould be elongated in the 
i 

azimuthal direction whereas the 'on orbit in elcigated in tl  radial 

This  conclusion depends specifically on the assumption that neither the neutral 

irotion V nor the plasma properties va.iy in the direction of the magnetic field. 

As is shown in Section V-3 this requirement c._n be approximated in practice only 

if tne flow field dimensions are extraordinarily large. 
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In  this case  it can be sho\»ri that the outward drift velocity has 

the form 

AAr    x »v» 
^JS V*w     V (2) 

^V,n ^   usu 

where w„ is  the    ..ybnd    Larmor frequency  (a),, = üü    Utf     ) and v is a 
K K Cj   c en 

i e 
quantity cf the order of the electron-neutral collision frequency. Thus 

wnen the negative ion (electron) macs is t:mall, t'n°  coupling to the magnetic 

i'ield is strenger. Taking 
R 

V JSrf ,/  — V .       ,   w 
en        v  m      in 

e find that appreciable ion slip 

will occur when v.      <   (m./n  ) ■     uu,     (=" 3100 sec      for m    = 16).     In Table III-l 

we give  the ion-neutral collision frequency in the euubient io*   sphere at 

various altitudes  assuming v.      ^ 6 x 10    ""   n    where n    is  the neutral nmeber in a a 

density.    Also in Table Ill-i we  indicate the collision frequency that might 

be expected behind a moderate strength shock  (taken to be « 10 times  tl.at  in 

the ambient).     It will be shown later that,  because of the finite extent of 

^he neutr»! flow  in the direction of the magnetic field,  the appropriate 

coupling parameter Is v      /tu     .    Reference to Table III-l then shows that 

appreciable slip effects will occur at altitudes above 120 km in the  less 

dense parts of the flow field and at altitudes above 150 km even ^n the 

denser part"= of the flow f-'eld. 

Table III -1 
1/k 

m. 
Altitude 

km 

n   (< 
av 3D"3) Vin 

ambient 

(sec"  ) 

shock (see    ) 

(—)     u> vm  '        c^ 
e            i 

100 8 x 10^ kOOO kQOOO 2k0 3100 

120 3 x IO11 180 1800 

150 k x io10 2k 21+0 

200 8 y. 109 U.Ö '48 

250 3 x 10* 1.6 16 

3C0 1 x IO9 0.6 6 
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The discussion given in the preceding section indicate^; that, at high 

altitudes, L  geomagnetic field strongly hinders the transverse motion of 

the ions in the less dense portions of the flow field. The neutral flow, 

which is essentially independent of the presence of the magnetic field, 

acts as a driving wind which stresses and heats the ion fluid. When the 

suppression of the transverse motion of the ions is strong, the ions move 

one-dimensionaily along the magnetic field lines under the influence of 

this three-dimensional wind. Except in the region of the neutral flow 

where there are strong density gradients (shock fronts), the characteristic 

times for the motion are lonD compared to the time between ion-neutral 

collisions. In this approximation it is expected that the ion and electron 

temperature and pressure distributions will be reasonably Isotropie and 

Maxwellj.an (see Section III-3 although the individual virtues for the ion 

and electron temperatures may differ considerably ^oth from the neutral 

gas temperature and from each other. 

Also when the motion of the. ions across the magnetic field is strongly 

suppressed, the lateral transport of heat and momentum is markedly reduced. 

In this situation the problem of evaluating the three-dimensional electron 

density distributions may be reduced to a number of independent one- 

dimensional flow problems once the underlying neutral flow field has been 

evaluated. Here the magnetic field acts simply to confine the ionized 

fluid to essentially rigid, friction!ess channels. The ionised gas then 

executes a one-dimensional motion under the influence of the momentum and 

heat input from the predetermined neutral wind. In this motion the electro- 

magnetic fields play no role (except for ambipolar diffusion effects). 

At high altitudes we expect that this model of the motion will apply to 

[Il-b 



much of  the flow field.    Close to  Lhe vehicle,  however,  will always be 

a region where the gas density is sufficiently high to ensure that  the 

ioi. i from the ambient  ionosphere are  swept along with the neutral exhaust 

gases regardless of the magnetic field.    For typical vehicles it  is 

expected that  this region may he of  the order 01  a kilometer in diameter. 

This model of the perturbations induced in the  ionosphere by the 

passage of the vehicle was first proposed by Lighthi3_lA     '  to describe 

the perturbation to the F-region electron density di.-tribution created 

by the passage of a satellite.    The only differ:.tee lies in the magnitude 

of the effect and the nature of the  source,    Lighthill was primarily 

concerned with the far field disturbance  induced by a relatively small 

body travelling In the u-   =r regions of the F layer.    In our case,  the 

source of the disturbance,   the neutral wind,   is distributed over a large 

volume and is expanding at a speed somewhat greater than the local sound 

speed.    Thus thq acoustic type of motion induced in the  ionized fluid will 

occupy roughly the same volume as the neutral flow field although the 

velocities and density distribution of the  ions may b2 - arkedly dif*.rent 

from those of the neutrals. 

Since the ion motion is essertially one-dimensional,  there  is little 

geometrical "attenuation" of the disturbances induced in the  ion fluid as 

compared to the l/r or l/r' attenuation of the neutral flow.    Thus,   if there 

were negligible viscous dissipation of the motion,  the disturbance generated 

in the  ion fluid could travel long distances while retaining significant 

emplitude.    However,  this effect  is not expected in the present case  since 

the ion velocity is strongly coupJ.ed to the component of the neutral flow 

velocity parallel to the magnetic field,    A disturbance  in the ion fluid 

which propagates  into a region where the neutral flow velocity is small 

would be damped within a few ion-neutral mean free paths, 
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Some non-acoustic types of disturbances may propagate beyond the 

confines of the neutral disturbance. The high thermaJ. conductivity of the 

electron gas will cause the heat generated by the friction between the 

neutral wind and the electron gas to be spread throughout a volume which 

may be much larger than that of the neutral flow field. The effect is 

similar to the broad thermal layer in the electron gas which occurs in front 

of a shock, travelling through a fully or partially ionized gas. (Jaffrin (<-J) 

Probstein and Jaffrin (j) ). In the present case it is expected that 

these conduction lengths will be considerably larger than the dimension 

of the neutral flow field for most altitudes of interest. This, together 

with the fact that the mechanism of thermal energy transfer from the 

neutrals to the electrons is rather inefficient because of the small electron- 

neutral mass ratio, implies that the electron :eraperature will not be signi- 

ficantly altered by the friction of the neutral wind. Because of this 

high conductivity, compression or expansion of the ionized fluid is also 

not expected to alter the electron temperature appreciably. Thus it appears 

that the electron gas may be considered isothermal with a temperature equal 

to that of  the ambient ionosphere. 

Although the high thermal conductivity of the electron gas parallel to 

the magnetic field dees not appear to give rise to any effects outside the 

region of the neutral flow, significant effects ma- arise as a result, of 

the correspondingly nigh parallel electrical conductivity. Since the 

accelerations imparted to the positive ions due to their interaction with 

the neutral wind are generally different from those given to the electrons, 

charge separation will tend to occur within the confines of the neutral 

flow field. Because of the high longitudinal conductivity, these charges 

will spread rapidly along the field lines until they are eventually 
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neutralized by the  small cross field, leakage current.    It  is expected that 

this  spx-eading constitutes an Alfv^n motion guided along the field lines 

in a manner related to the magnetoaydrodynaroic whistler mode.    However, 

the  characteristic frequencies of this disturbance are considerably smaller 

theu.  ohe collision frequency.    Thus the motion will be more diffusive than 

wave-li^e. 

Since the velocities associated with the neutral flow are very much 

less than the Alfv^n speed (the Mach number based on the Alfven spoed is 

of the order of 0.01),  the amplitude of the disturbance will be  small. 

The nature of these far field disturbances is discussed further in 

Section V-6.    A preliminary estimate of the disturbance expected in the 

steady state for an axially symmetric neutral flow in an aligned field 

indicates that the perturbation to the electron density beyond the confines 

of the neutral flc-' may be of the order 

where f is the reduction factor defined in Section V-3» This probably is 

too small to be noticeable. In a transverse magnetic field, larger effects 

are expected. Also the time-dependence of the Alfven motion and/or inhorao- 

geneities in the density of the ambient ionosphere may give more pronounced 

effects, especially when the collision frequency is small. Further analysis 

will be required to evaluate the level of the field motion. 

In this connection it  is  interesting to note that Drell,  Foley 

( k) and Ruderman have recently discussed a similar problem.       '    They were 

concerned rfith the  interaction between a large  satellite and the  ionosphere 

and invoke an Alfven type of motion radiated by the  satellite to account 

Sjr its observed drag.    Except for the fact that collisions are less 
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iinport.ajit in their cade because of the much higher altitude and that 

the source (ECHO i) Ls small and of fixed size, the phenomena are quite 

closely related:  in both cases the source acts as a battery which 

driveö currents aion^ the eondueting field lines. Thes^ authors expect 

a pertux-bation in the electron density as large as 15^ to be propagated 

along the field liner, up t,o several hundred kilometers from the satellite. 

The present analysis has not been carried sufficiently far to give any 

read, indication whether or not any perturbation approaching this magnitude 

may be induced by the wind created by a large rocket. 
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rig. III-la. Cylindrically Symmetrie 

plasma In an axial field. 

Insulating planes 

Fig. III-lb. Insulating planes preventing 

the flow of  -azimuthal currents. 

i^S^v ^HUit 

Conducting field lines 

Fig.  III-lc. Finite  length axially symmetric plasma  in an axial field. 
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Ion motion 
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Neutral motion 

Fig. III-2.  Relative motion of ions and neutrals at various inclinations 

of trajectory to magnetic field. 
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Him of the sweeping region 
v 

Sweeping Region 

(*«<^X 

Region of  high 

electron density 

Compression Region 

Electron Hole 

Fig.lII-3' Sc'neaatic representation of the ion distribution 

according to the simple model (transverse magnetic field), 
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IV-, Detailed. Description of the Neutral Flow 

IV-1. Background 

During recent years an extensive literature dealing with the 

»-3 
structure of high altitude rocket plumes has developed. Experimental 

measurements, "exact" numerical methods and approximate analytical 

methods have been used. For example, schlieren and shadowgraph techniques 

have been u' ed to study underexpanded jets expending into still atmospheres 

by Latvala, *' Wilcox et al.,' D'Attorre and Harshoa-ger.  Because of 

experimental difficulties laboratory data are generally limited to exit 

to ambient pressure ratios less 1000 and in most cases less than 100. 

These are much lass than the values for a missile at ionospheric altitud j. 

The laboratory data for jets in highly supersonic streams is meager. 

Rosenberg has used photo^aphic techniques to define tae outline of the 

plume at high altitude during « number of missile launches. From his data 

he has determined an approximate size and shape of the plume boundary (as 

\ 9 
defined by its luminosity;. Hill and Babert have obtained approximate 

correlation of Rosenberg's datE. using blast wave theory. 

Ko attempt at a complete review of the existent teclniques will be 

iO 
made here     in view of the several studies presently availaole. Adamson 

has reviewed much of the unclassified literature on the inviscid aerodynamic 

II 
structure of the rocket exhaust plume. Rosner gives a more recent detailed 

survey of the state of the art for predicting plume structure at various 

altitudes with and without viscous effects. In general, reliable procedures 

.ire available for certain portions of the plume but not for others. The 

expansion into vacuum when the nozzle flow is reasonably uniform has been 

treated by a number of people using ■uhe method of cVvracterist. f^ for the 
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i'low close to t\\e  nozzle and an asymptctic analysis for the source-like 

flow at great distances. In the presence of a low but finite pressure free 

streamj a complex sncck structure develops. Upstream of the point where 

the Jet shock returns to the axis the flow lias a simple structure and has 

been treated by both exact and approximate methods. The reflection of the 

jet shock from the axis of symmetry typical"^' results in the formation of 

a shock triple point and a Mach disc. The flow downstream of this point 

contains both supersonic and subsonic regions. Little detailed analysis 

has been successfully applied to this region for highly 'anderexpanded jets. 

The analytic techniques may be divided into three categories: linea- 

rized methods, epproximate methods and "exact" or detailed numerical methods 

for obtaining solution of the equations without approximation. The 

linearized theorle.= Eire concerned with small degrees of under and over- 

expansion and are not of primary interest to the present problem. The 

approximate methods attempt to obtain information about the plume structure, 

such as boundary and shock locations or the far downstream average properties 

without requiring a detailed calculation of the entire flow field. The 

'9 
boundary location procedures are reviewed in detail by Adamson. In general 

the approximations involve a method fox specifying a jet pressure and a 

stream pressure at the boundary and demanding equality of these pressures. 

Newtonian or Prandtl Meyer expansion approxiü'-ttions have been used to specify 

these pressures.     These procedures appear to be capable of predicting, 

withir a reasonable approximation, the boundary location not too far from 

the nozzle, but the approximations typically worsen downstream. Hill and 

9 
Habert have been able to obtain reasonable correlation of the high altitude 
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\1 
plume shape using blast wave tbeory. Thomson has used an asymptotic analysis 

to correlate the properties of the far dovnstream pressure equilibrated jet 

to the nose shape. Alden, Hill and Habert treat the shock layer as thin 

and obtain a universal plume shape at high altitudes for hypersonic free 

streams. Axhini uses an inviscid two shock layer formulatioii for the very 

high altitude jet which includes centrifugal relief. He also assumes thin 

shock layers and a hypersonic free stream. It is expected that these approxi- 

mate techniques will yield useful information about the gross plume structure 

but how accurately they represent the detailed profiles is questionable. 

The basic difficulty with many of the approximate techniques that have 

been developed is that the validity of the various approximations is difficult 

to ascertain a priori. In many cases a detailed assessment of the accuracy 

of the appruximationo has also not been made a posteriori, often because the 

results sometimes appear to agree well with certain features of observed 

plume shapes or more detailed numerical calculations of the plume shape. The 

difficulty, of course, is that the agreement is often limited to one quantity, 

such as shape. A classic example is that of the blast wave similarity 

approximation of a cylindrical or spherical explosion. Here the location 

of the shock front is well described by the approximate theory long after 

the similarity approximations break     When the details of the internal 

structure are compared, however, disparities often appear. For the present 

problem the detailed structure is ol primary interest. For this purpose it 

appears that an "exact" numerical solution is required in order to obtain 

reliable information. 

Several numerical programs, using the method-of-characteristics, have 

been developed. SCHOB of tliese are isentropic programs and are most useful 
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for nozzle or VBcuum expansion calculations or for nearly balanced nuzzle:: 

where the shocks are weak. Others treat the air and Jet i. vic:k us non- 

isentropic discontinuities assuming the air shock is attached to ti.e nozzle 

lip. When the free streair is hyper^ouic and the air shock detaches, creating 

a subsonic region, the Jet flow alone may be evaluated by using the Newtonian 

approximation to specify the bourdary pressure. When the Newtonian approxi- 

mation is valid the jet flow may be computed first,yielding a blunt body 

ta 
contour around which the air flow may be evaluated subsequently. In 

the present problem the shock may be detached so that the Newtonian approxi- 

mation is useful at the forward part of the plume, bv,t the Mach numbers are 

not high enough that this is a gcod approximation for the downstream portion 

of the plume. At present there does not appear to exist a complete "exact" 

numerical procedure for treating this problem. 

There are very few treatments of a highly underexpanded jet including 

diffusion effects. Vasiliu lias formulated the problem in the boundary layer 

19 
approximation ^very thin mixing layer). However, the procedure is an implicit 

one and is awkward to apply. Some calculations have been carried out for a 

turbulent thin boundary layer along the plume boundary. In any case, the 

strong lateral gradients that occur at high altitude make the boundary layer 

approximation suspev-C. 

The approach used in the present study is a combination of procedures 

that have been developed for axisymmetric jet flows and for hype^aonic flows 

over solid bodies. In the following paragraphs we discuss some of the 

characteristics of the available procedures as they pertain to the present 

problem. 

Within the limits of continu1»! theory the Navier-Stokes equations are 

usually assumed to provide a reasonable description of moderately rarefied 

flow fields. Questions exist concerning the validity of these equations 
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for the structure of very strong shocks but at present no sulcahle al.eruative 

lias been presented. Many äifferent useful methods have been developed for 

obtaining exact or approximate solutions to thc-sri equations for various 

bo'indary conditions. One powerful tool has been the use of the similarity 

assumption. The similarity technique assumes that a separation of variables 

is poBsible in the differential equation and the boundary conditions. With 

this assumption the partial differential equation is reduced to two sets of 

ordinary differential equations which may be integrated by standard techniques. 

In general similarity üiay be obtained only for certain types of boundary 

conditions. The similarity technique has proved a powerful tool for 

treating the hypersonic flow over slender bodies. Here, when the small 

disturbance approximations are valid, (6 « 1 and M^ 6« 1 where 6 is a 

characteristic body slope and M the free stream biach number) solutions 

to an equivalent unsteady one dimensional flow may be sought.   Similar 

2i-a3 
solutions 

as power of the axial distance 

are obtained for flows over bodies where radius r, varies 
b 

rb - ex . 

2 
Here n - 1 is the wedge or cone, and :—^■— < a < 1 yields convex bodies. 

Here y = 0 for planar bodies and y = 1 for axisymmetrio bodies. The special 

case n - ■=—— yields the so-called blast wave solutions corresponding to the 

one dimensional unsteady problem of an intense energy release along the 

axis of symmetry at t - 0. For axially symmetric; bodies the blast wave 

solution uo,. 'sponds to a parabolic body (n = l/2). Blast wave theory has 

Q 
been used' to correlate empirical data for the plume shape at high altitude. 

The ease of application of the theory Justifies its application for obtaining 

order of magnitude results. In order to use blast wave theory for the flow 
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over a peTftlolic body the effect of the blunt nose, where  ohe  slender bod^ 

24,25 
assumption fails, must be cousidered. It ha^ been shown       that nose 

blunting of otherwise slender bodies can have a disproportionately large 

effect on the flow field about the body. Here the crong and highly curved 

shock at the nose of the body produces a strong gradient in the entropy near 

the body surface. Blast wave theory may possibly be used for the flow far 

from the body if an approximate account of the entropy layer is included 

(see Sychev  and 'JaMiva ' ). When the similarity assumption may not be 

invoked th, partial differential equations must be treated directly. 

Normally this means a numerical proctdure is .v-vuired. 

^jroerical Methods for Inviscid Flow 

Supersonic r"* ow 

One of the most useful lüebhods for obtaining numerical solutions of 

the partial differential equptions for supertionic flow has proven to be 

the method of characteristics. Pro]- ly ubed this method yields an "exact" 

solution. In the high Mach number regions of the plume flow, however, 

difficulties arise in the "•'Dp Heat ion of this method in a numerical procedure. 

Since the characteristic lines make an angle 

the charncteristic grid is elongated in the streamwise direction when the 

Mach number is xarge. As a result, errors will be magnified in the stream 

direction and the inaccuracies in locating the interaction of characteristics 

will be large. To overcome these Inaccuracies, small grids (i.e., small in 

the direction transverse to the streamlines) would be necessary. 

In the plume problem, this shortcoming of the method of characteristics 

"becomes serious many nozzle exit diameters from the nozzle exit. Fortunately, 

the regions in which the characteristic angles are small are regions in 

which ether methods (e.g., finite-difference techniques) become quite useful. 
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Under the heading of finite-difference techniques we include all numerical 

methods for direct numerical integration of the partial differential equation 

other than the method of characteristics. Easlcally two typjfc' may be dis- 

tirguished: those that use a prescribed set of mesh points and «.hose that 

include the determination of the location of the mesh points in the calculation. 

The distinguishing property of supersonic flows is that the differential 

equations are of the hyperbolic type. Consequently, finite difference 

marching techniques may be directly applied. 

Subsonic Flow; 

Nose Region Solutions for the External Shock Layer 

The metnods discussed so far are inapplicable in the nose region of 

the stream shock layer where the flow is subsonic. Here the elliptic nature 

of the equations prevents the direct application of finite difference marching 

techniques. For the present problem the subsonic region is expected to be 

small and to exert a relatively minor influence on the overall flow field. 

In order to obtain the initial values for the calculation in the supersonic 

region, however, an estimate of the subsonic flow in the nose region is required. 

The evaluation of the hypersonic flow over a blunt body has been 

studied extensively during recent years and several methods for inviscid flow 

28 IS 
are available, including the Newtonian solution,  ' the thin-layer approxi- 

mat ion, ■ '  the integral relations method, ^*# and the various numerical* 

M      MS' 3fr 
methods of Swigart,\ Van Dyke," Garabedian and Lieberstein,    etc. 

Since the free stream is hypersonic, the "ewtonlan approximatioi may be 

used to specify the pressure on the jet boundary in the subsonic nose region. 

This provides an appropriate boundary condition for the solution of the Jet 

flow in the inviscid approximation. Given this boundary one of the various 

approximation procedures may then be used to estimate the subsonic flow. 
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IV-2. The  In/iscid Flow Field Evaluation 

IV"2a, Finite Difference Procedure Used for Ihn  Supersonic Flow 

The momentum equation for invlscld steady flow is 

(u • grad) u ■ - — grad p . 
P 

The energy equation Is 

-» 1 -«2 
u • grad (h + "I u ) - 0 , 

and the continuity equation Is 

dlv pu ■ 0 . 

The equation of state Is p ■■ pRT . 

The momentum equation may be rewritten In the fo. m 

(1) 

(2) 

(3) 

2 an .  öu -*   grad p 
u i- + u r— n ■ - * 1- 

os    os       p (M 

where u ■ un, n Is a unit vector parallel to the streamline and s Is the 

distance along the streamline. For two-dimensional flow we may write 

and 

u^H + i ^E 
?.5   p  ÖS 

u
2 |se + i |E « o . 

ds  p dy 

(5) 

(6) 

Here cp Is the angular Inclination of the streamlins and y is the distance 

along the surface normal tj the streamline. Equation (6) may be rewritten as 

-1 II+ i <"+1''2)-''• (7) 

where the entropy S is given by S • R [i^ ip/p^)j/iy-l)   . 

Thus the flow is isentropic along streamlines. 
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Here h r. —2_ ^x. Equations 2, 3, 7,  may be integrated along streamlines 
y ' 

co give 

(Ö) 

h + -. u ■ constant 

p/p^ ■ ccnstant 

puA ^ constant 

P * ($2 

Here A is the area of an individual str^amuube. The remaining equation 

is the centrifugal equation: 

(9) 

u2    2 
where we have set •»— ■ -yM , 

P   / 

The finite difference approximation is carried out as follows. The flow 

is divided into a finlt^ number of streamtubes. Initial duta is fed in along 

an orthogonal surface. The initial data consists of the local strearatube 

properties and the coordinates of the dividing streamlines, on the input 

surface. The calculation proceeds by predicting the flow properties on a 

new orthogonal surface using the flow data on the previous surface plus the 

boundary condition at each edge of the surface. The curvature «(K,!''- of the 

streamline K at the point where it intersects the surface L Is evaluated from 

the lateral pressure gradient determined from the pressures in the adjacent 

streamtubes (K, K + 1) and (K - 1, K) on the surface L (see Figure IV-]). This 

curvature is used to extend the streamline K to the surface L + 1. This 

procedure is repeated for each streamline in the flow. From the thus 

determined -treamtube areas on the surface L + 1 the fluid dynamic properties 

for each tube are then evaluated from the three conservatic equations. 
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It Is known that the straightforward application of the marching 

procedure described above  is unconditionally unsteble.    However,  it may 

be rendered   .table by the following pnx-eiure.    Having determined the fluid 

properties: on the  surface L - 1=     he curvature K'  (k, L + l)  of the  stream- 

lijie K at ^he surface L + 1 is evaluated from the pressure gradients on 

this surface.    Then the surface L + 1 is recalcuxated using for the mean 

curvature of the streaialine K between the s'xrface L and L + 1 the expression 

H - (l-a) K(K. L)  +o H' (K,L+I). 

Pertiu-bation theory (acoustic approximation) shows that this procedure 

is stv-Cle vhen o > 1/2.. is unstabl- whan « < 1/2 and is neutrally stable 

when a. - l/2. In addition to this restriction the step length between 

the surfaces L and L + 1 must be chosen to be leas than the value jf tne 

separation between the streamlines K and K ± 1 multiplied by a number jf 
r-~ 1 

the order cf J vt- 1.    Calculations w^.th various test flows show that when 

a > l/2, perturbations (sounü wavsr.) are damped.    In practical calculations 

it is usually convenient and sometimes necessary to choose a slightly 

greater than l/2 in order to smooth cut perturbations. 

As presently programmed, the procedure mai^hes through an axisymmetric 

or planar f;.-*w generating the orthogonal surf-"es.    On each surface it 

calculates the flow between two boundaii&s.    These boundaries may be of 

various t/pes;    a shock,  a solid, or a free (^retsure given as a function 

of boundary inclination) boundary.    The shocK. boundary condition uses tne 

Ranklne-Hugoniot relations to connect tue interior ^"low to the external 

flow.    The external flow /uay '»e non-unifonn and nm - be given in analytic 

or tabular form.    The input tabular data, is required to be in the  spme form 

J    the data the program calculate.3. 

r/-io 
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in the evaluation of the high altitude flow field, vc flrut calculate 

the undisturbed flow into a vacuum.    This calculation is carried sufficiently 

far from the nozzle that an analytic extrapolation l-o infinity may be carried 

out.    it is convenient to represent this flow in an analytic form to be used 

as the flow into which the Jet-intercepting shock propagates.    A procedure 

for doing this is outlined in Section lV-?.b. 

i 
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IV-2b,    Representation Of    ho Undisturbed Jet Flow 

Tlie flow into a Vicuum is relatively easily calculated and thiere 
4 

are a number of fonrulations available. Here viscoud effects (excep4 for 

nozzle and combustion chamber boundary layers) are expected to be snail. 

In Figure xy-2  we show the streamlines calculated with the    te 

difference streamtube prugraxn for the 50:1 sustainer engine expanding 

into vacuum. In this particular calculation, the flow was pre-- •:* ,.... "rorn 

expanding more than 85 by an artificial wall. At the present ta f  the 

program is not set up to calculate a flow which turns through more than 

o 
90 . Although this type of flow car. be allowed for with relatively minor 

changes, it is not anticipated that this will be necessary. For this nozzle 

the mass flow which, in a vacuum expansion, turns through more than even 

o 
00 is  small fraction of tha total flow (less than 1%).    Thus, in this 

ca-.e, we do not expect this large angle flow to have much effect on the 

downstream flow. Also, in practice, this portion of the flow will be 

largely nozzle boundary layer flow and is not well defined at present 

(Fig, TV'k),    (The flow that turns more thar. 60° is confined to an annulus 

less than 1 mm thick at the nozzle lip») 

For the finite difference calculation, it is convenient to express 

the undisturbed flow in an analytic form. Since the flow distribution is 

singular at the nozzle lip, the zero pressure streamline and the point at 

infinity, it is convenient to choose an analytic form that gives the correct 

limiting form of the flow at these singular points» A useful form is the 

following Taylor series representation of the densr.y: 
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7I(y"l) Lan)n ^ cOSl^n * - ^ 2; e (i) 

where 

0    is the exit ^lane density a.   the nozzle edge, 

T|     = rj      r'+yx-y-J 

d    = tan      r/x 

fl = the turning angle for the zero pressure streamline, and 
00 

x is measured froui the  intercept of the r,. ~o pressure line with tlie axis. 

This form gives the correct dependence c    £ far from the nozzle  (p ~ r    ; 
2/v-l 

and the correct dependence on 6 close to the zero pressure line (p ~ (8^- ö) ). 

The coefficients a      may be evaluated as follows: 
mn 

Let M max 

<•■>)"  I a      T) mn   ' (2) 

m 

Then 

an(r,) 
Kv iprj J    ft 

\   2 

e 
cos: nin +1) |- de-        (3) 

The quantities r {rf may be evaluated numerically at variou- values of T? 

from trie vacuum flow field calculation.    The values of the a^ may then be 

found by standard least squares fit procedures.    Standard computer routines 

are available for this latter fit. 

A procedure sLnilar to this has been used previously and was found 

to be a good fit to the flow throughout most of the field with a 28 term 

series. 
I 
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In addition to tJe  density we alao need the flow inclination angle 

cp. Here an appropriate representation is: 

M' 
max 

^e[^ I   ^nmcos|(.-i)| (M 
iii=0 

The same procedure as that outlined above may be used here. In Figs. 

IV-3 and k,  we show the comparison between the numerical calculation of 

the density profile and streamline locations and the analytic representa- 

tion obtained with a oxb polynomial-Fourier representation. 

The outer parts of the vacuuin flow field are appreciably affected by 

the peripneral mass flows associated with the rocket and by the turbulent 

boundary layer within the nozzle. In Fig. IV-5 we show the effect of the 

boundary layer on the vacuum flow for the 50:1 engine. (The boundary 

layer was calculated using a Von Karman-Pchlhausen method.) In Fig. 

IV-o we show the effect of '-he  sonic exit exhausterator which surrounds 

the 2^:1 engine. About 3^ of the total mass flow is released through this 

exhausterator. 

In the far field, the flow from any nozzle becomes source-like (o '^ R ). 

In Fig. IV-T, we show the mass flow angular distribution for a number of 

different nozzles. In the far field limit the analytic representation is 

2  (Zl1-) 
a Fourier series representation of R p!   2 '.    In the present calculation 

we have typically used a 5 or o term sum.    For approximate purposes,   it 

often suffices to use a one-term representation: 

dm 
cos 2 e 

2 
• -1 (5) 

IV-14 

ii nim.iit ■ mmv 

\ 



In Fig. IV~6 we compare the detailed mass flow distributiins for various 

nozzles with this simple form. In Table IV-1 we list the corresponding 

values of the parameter a. Reference to this figure indicates this 

form gives a reasonable representation of the density distribution 

obtained (within a factor of 2). The advantage of using this form is 

that it may be evaluated for any nozzle without requiring a detailed 

numerical evaluation of the vacuum flow. Mirels and Mullens have suggested 

ffl.    Either 
00 I 

/ 2 a similar approximation:    vl - (9/6 )       instead of cos 

formula t;lves a reasonable rough representation of the numerical 

calculations. 

In Figure   II-10 we  show the far field distributions for three nozzles; 

the 50:1 nonuniform exit nozzle and two 25:1 nozzles, #1 and #2,    Nozzle 

#2 represents the fax field fZ.ow for the S-h engine whose exJ.t plane pres- 

sure profile is shown in Fig. IV-9.    This distribution, denoted Nozzle 

#1, was intended to represent this flow but, due to a mistake in the 

analytic fit procedure, the fax field flow distribution actually was 

incorrectly computed at large angles to the axis.    To a certain extent 

the errors are of a nature similar to a boundary layer effect.    Unfortunatfl^, 

this flow distribution was used to evaluate the flow fields at 100 and 

135 km«    The effects on the external flow fields axe expected to be 

relatively small and confined to the bow region of the plume.    Thus we do 

not know exactly what shape nozzle the flow labeled #1 corresponds to. 

Howe-'ir,  differences In the flow are probably less than the absolute 

accuracy of the overall calculation. 

The two nozzles shown in Fig. H-IO have a sufficiently non-uniform exit 
plane profile that a precise calculation would predict a signiileant Mach 
disc shock structure near the nozzle exit.    In the present calculation 
this difficulty was circumvented by choosing the mesh size large enough 
that no shock structure was apparent.    The resulting errors are expected 
to be confined principally to the flow near the axis. 

I -' 
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IV-2c.    APPROXIMATE TREATOEMT OF THE HOSE IHVIftCID SHOCK LAYER 

The  inviscid flov a^oiind a blunt body moving at hypersonic  speeds has 

37 
been treated extensively. Hayes and Probsteiu  give an excellent review of 

most of Ihe  techniques used. For the present problem the subsonic region 

is not expected to exert, a major influence on ehe downstream flow. For high 

area ratio nozzles, trie air shock mcy remain attached (i.e., no subsonic region) 

to rather high altitudes. Thus, at least for the initial evaluations, it 

is not expected that a sophisticated treatment of this region is necessary. 

Of the several procedures available those that assume a simple relation 

for the pressure distribution more or less a priori and use the conservation 

laws to roughly define the subsonic region are particularly suitable to be 

used with the marching .echnique used here for the supersonic flow. Here 

the evaluation of the subsonic calculation may essentially be reduced to 

a boundary condition at air-exhaust dividing streamline. One procedure 

that will be considered is outlined in the following paragraphs. 

Here the thin layer approximation is used to estimate the pressure 

gradients normal to the boundary streamline. In this appro'imation and away 

from the stagnation point the pressure at a height y above (i.e., normal to) 

the boundary is 

p(y) PB + 
K r pu2dy (1) 

where K is the bcundary curvature. Assuming that the streamlines are approxi- 

nately parallel to the surface, the mass flux per unit area is given by 

2Gp 
pu - - - 

;,    Lilts  mttus   iiUA  pex    UIIJLL   a.i ce 

(2) 

Here G is h/RT and p    i^ the total pressure for a given streajnline.    This 
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totfil pressure may toe expressed in terms of tlie shc^k inclination at the 

point where the streamline enters the bov shock.    Mass conservation requires 

that 
dy= P«, u

m 
R ^AP" (3) 

vhei-e R is the radial displacement of the streamline at the point where 

it enteis the shock. Thus we may write 

y - y(R) = 

p u u 1/G 1/Gi 
-1/2 

"2G" 

and 
'im HM 

Also the local radial displacement of the streamline is 

R'd R' 

r = r + y cos 9 

W 

(5) 

(6) 

where tan 9 = dr /dz, 
B 

At ecch station the shock location is determined hy solving 

RS = rB + y^V C0S e (7) 

where y(R ) is given by Equation k, 
o 

In order to evaluate the pressure p. the boundary pressure p must be 
B 

evaluated in the Newtonian approxin.ation,    A somewhat improved value may 

be obtained by requiring that the pressure behind the shock computed from 

Equation    (5)        agree with the value obtained from the Rankine-Hugoniot 

relations; hcvsv^r,  this has not been incorporated in the present calculation, 

This procedure is not valid near the symmetry axis.    However, the effect 

on the downstream flow involved in using   it into tbo axis is expected to be 

small.    To start the calculation, we need a value for the shock stand-off 
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distance that is compatible with the above procedure. If the Newtonian 

form for the boundary pressure close to the axis is assumed, and the Jet 

flow evaluated using this boundary pressure, then an average radius of 

curvature R for the nose may be defined. The boundary curvature should 
o 

be averaged over radii of the order of the expected stand-off distance f- 

Assuming that p/p ^ 1 and that 6/p_ «  1, Equation k,   in the limit of 

R/R « 1, may be reduced to the form 

0 u u 
OD    00    p] 

For  hypersonic flow 

» - ^)    FW ^V 

--i^h/^v 

(8) 

(9) 

These  relations give a stand-off distance that  is compatible with the 

procedure described by Equations 4 to 7» 

In practice,  however,  a simpler procedure  is more convenient:    the 

stand-off distance  is first assumed zero and the entropy gain through the 

shock calculated from the slope of the line Joining the axis starting point 

and the first  shock point given by Equation 1 (unless this inclination 

exceeds $0 ).    If this latter condition occurs,  the entropy gain is set 

equal to that for a normal shock. 

In using this procedure,   it was found that the  shock front tended to 

be unstable.    The method was altered to a mixed marching-relaxation 

procedure in which the flow is calculated a number of times.    The stream- 

line total pressure p    and the  streamline curvature K(r,z)   (assumed now 

to vary linearly across the  shock layer) for the  (N-t-l)th iteration are 

evaluate-^ from the Nth iteration.    For the first  iteration,   U =  shock slope 
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is assumed to be the same as the boundary slope and the streamline curva- 

ture x,o  be the same as the local boundary curvature. This procedure 

appears to converge within j, or h  iterations when used with typical 

boundaries. It may be convergent only in an asymptotic sense in that 

it is not clear that small irregularities in the boundary contour do not 

result in an  increasingly fluctuating shock profile. However, in the 

present calculations, the amplification factor is sufficiently small that 

it does not cause any difficulty. (See Figure IV-10). 
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IV-?d.   The Mach Disc Region 

It  is w«ll known that, the reflection of the Jet  saock from the 

symmetry axis  is of the  irregular type wit .1 triple a^ock point and Mach 

It 
disc formation. The detailed solution for this Iransonic flow inquires 

the solution of a set of mixed elliptic-hyperbolic equations. Various 

approximate criteria have oeen suggested to determine the Mach disc 

location in a simple fashion. Of these, that suggested by Bowyer, 

40 
D'Attorre an1. Yoshihara seems to give the best agreement with experiment. 

Here the inclinations of the Mach disc and the reflected shock are calcu- 

lated at each point along the jet shock using the condition tnat the 

pressure and flow direction downstream of the triple point are the same 

for streamlines passing on either side of the triple point. The actual 

triple point is supposed to occur at the station where the Mach disc is 

locally normal to the incoming flow. In other words, the flow passing Just 

inside the triple point is aMamed to suffer only a slight deflection 

(see Figure IV-U). 

it shock 

Reflected shock. 

Slip line 

Fig.  IV-11.   Mach Disc Geometry 
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When, as in the high altitude jet, the Mach number in front of the 

shock is high (~ 100), this criterion for the triple point formation may 

be expressed rather simply. In this hypersonic limit, it may be shown 

that the Mach uisc would form when the wave angle of the jet shi. ck reaches 

a critical value (0 ) which depends only on the specific heat ratio: 

f ^TCT (! - e(e*) ] -1' sin 2e* - (y+1 -2 si"2 Q*) J pi z(e*) - i 

where 

Z(e*) = (i - >Ü2_ sin2 e*| /  i + ^ s^*i 
^i?       /'I    y+1      I 

and 
.o 

e{e ) = £Ti)    sil1   e ' 

For y  = 1.3, 6 takes the vilue 19.2 , For {y^l)/{y-l) »  1, Q^ may be 

approximated by the much simpler expression 

* 
For y  = 1.3. this approximate relation yields a value of 6 close to the 

/   o. 
exact one (20.T )• 

The Mach numbers in the neighborhood of the Mach disc indicate the 

nature of the flow in this region.    Behind the incident shock, the Mach 

number is 7,3,   behind the reflected shock,  4.64,  and behind the Mach disc, 

0.32.    The pressure behind the Mach disc is about 20^ above the ambient 

value. 
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We cvcpect  that  this criterion (the Mach disc  locally normal to the 

flow)  will somewhat overeaLimate  itö size.    Since the subsonic  flow must 

contract  in order to lower it.s pressure,  the sureeunline passing just below 

the triple point  should be deflected slightly inwards.    If the  slip line 

o 
vere renuired io tiave a downward inclination of only 0e5  i   the Mach disc 

radiu . would ba reduced by about i*0^.    Although D'Attorre    nd Harshbarger 

have compared the locally normal criterion to a variety of experimental 

dat a and conclude  that  t:<e triple point occurs close to this condition, 

the sensitivity of the size of the disc to the particular criterion chosen 

would make a more detailed ?i.udy of the flow in this region desirable. 

In any case,   tue disc diameter appeal's to be  sufficiently small in the 

present cases treated t^at its presence can probably he  jgncrad for most 

practical purposes.    Reference to Figures H-l and II-2 show.:  that,  at 

l80 km and M     - ^.j,  the  'Use diameter is less than one-tenth the maximum 

Jet diameter.    For these highly underexpanded Jets,   the  scaling laws  show 

that the diameter of the Mach disc  (for a given nozzle) depends only on 

the values of the specific heat   ratios and the value of the free  stream 

Mach number (»M ).    Since U.j tends to be >_ lower limit  to the Mach number 

during suntainer flight,   the Mach disc will be even less  important  it 

other altitudes (see Figures II-w    and  6), 

These conclusions are  subject  to  the qualification that ths vacuum 

flow near the axis is properly represented.    For highly non-uniform nozzles 

the near axis flow r^ay be  improperly evaluated in the present calculation 

due to the  smearing out of the Mach disc  structure near the nozzle exit 

plaae,    A more re' \istic evaluation of this part of  the flow would be 

required to evaluate  in detail th<~   '.nfluence of the nozzle non-uniformities 

on the down.tream Mach disc  structure. 
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IV-3.  Viscous Effects 

Since the altitude range of interest for the preser. . study is 100 

to 300 km, the viscous and non-continuum effects may have a significant 

Jafluence on certain region'; of the flow ^ield. Ihe free stream mean- 

free-path, for instance, is  about the length cf a typical vehicle (20E) 

at 135 km altitude. "Dius the vehicle itself it in free-molecular flow 

over most of the altitude range. The  Reynolds number and Knudsen 

number based upon free stream conditions and the plume nose radius vary 

over quite large ranges. 

Tho photographic measurements o^ Rosenberg and his coworkers 

indicate that the outline of the visible plume is roughly parabolic in 

shape and, at an altitude of about IßO km, the radius of curvature of the 

nose region for an Atlas or Titan vehicle is about 1 km. For a vehicle 

velocity of h  km/sec at this altitude the Reynolds number based on the 

free stream velocity and density, the plume nose radius BM the viscosity 

at the stagnation temperature (>- OOOO*^ for no shock induced dissociation) 

is of the order of 30.  (Here •'* have assumed a square root variation of 

viscosity with temperature). 

Cheng u*iS treated the evaluation of the flow field in the nose region 

a 
of a hypersonic solid blunt body at low Reynolds number.    He has developed 

a chin two layer model for this calculation in which the evaluation of  the 

shock layer is carried cut Independently of the evaluation of the  "shock 

transition" region and the two profiles matched at their common boundary. 

At very high Reynolds numbers the  "shock transition" region roüy be 

identified as the shock itself and the shock layer as the inviscid flow 
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behind it.    A'   low Reynolds number  (merged flow) the separation is a 

mathemtical artifice. 

In Fig. x-3 we have reproduced Cheng's Figure 5«3 in which he compares 

the thin two   layer evaluation of the flow with that obtained by Levinfky 

and Yoshitiara along the synmetry axis.    Except for the wall boundary 

conditions, the flow conditions 3,1    similar to those expected at about 

180 km altitude for nose regions of the plume of an Atlas or Titan vehicle. 

Reference to   Fig.I-^ and to Fig. 1-3 shows that viscous effects will be 

quite important in the nose region of the plume.    Although, as Cheng points 

out, the good agreement between the two calculations is not an indication of 

the absolut» accuracy of Cheng's method, it does give us confidence in 

extending the thin two layer procedure to the evaluation of the flow field 

inducea by the  rocket. 

The importance of viscous effects far from the nose region is more 

difficult  ho evaluate.    In the following paragraphs we go into some 

detail to get an estimate of the magnitude of the effect since this pretty 

well determines  the approach requirea for the numerioal calculations. 

One lüeasure of the importance of the viscous effects  is the  ratio 6.0/6 > 

where 6_ is a boundary layer thickness ^ud 6 is the thickness of the air 
o 

shock layer assuming inviscid flow, xf p(r) anr1 u(r) are mean values for 

the density and velocity across the layer at the point where the boundary 

is displaced radius r from the axis, then 

6      1 P»U- 

P u 

In order to estimate the value of 6/r we note that, in the supersonic 

Y+l    11 
portion of the flow,  u varies between *.'■*—*■ u    and u    where u    is the F - y+l    mm m 
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limiting velocity (~ u    for hypersonic flow).    For y = l.h,  O.hl < u/u^ < 1. 

The mean density may be estimatsd as follows.    The density at any 

point in the inviscid air layer may be written in the form 

P = PS(P/PS)VV (1) 

where p is the local pressure and the subscript s refers to conditions on 

the given streamline just behind the air shock.    When the air shock is 

strong (i.e..,  when M    sir 9» 1 where tan ^„(^ dr/dz)  is the boundary 

slope) 
?       2 

p   ~ o u    sin 9^ 

and 

Ps Ä ^1 p« (2) 

Rosenberg's field observations        indicate that the plume boundary is 

roughly parabolic: 

rB(z) ~/2irr (3) 

where R. is the nose radius. Thus^, at the station z,  the shock layer 

pressure is of the order 

p~ 9^1/ (i * r"/K)' (*) 

As a mean value of the initial pressure p we choose the value 
s 

p3 ~ wC1 + i (r/RN)2)- (5) 

This is the value of p for the median streamline (on a mass flow basis). 

Thus, in the supersonic region (roughly r > R ), 

| * P/P8 ^ | (6) 

or 3.65 ^ p/p ^ ^.9 for y = 1.^. 
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Near the  sonic line,  therefore,   pu ~ ^.0  o u    whereas far downstreeun 
' ' oo   on 

öü ~ 3»6 o u . These values apply only to the region where the shock is 

strong. When M^ sin Q    *• 1, the shock will begin to diverge from the 

exhaust plume and the shock layer width wi1! begin to grow linearly with 

distance downstream. Also here the parabolic form of the boundary shape 

will become a poor approximation. Assuming a parabolic shape so long as 

dr /dz > 1/M • we estimate the value of the boundary radius at the point 
B       * 

where the shock begins to diverge from the exhaust plume as 

r' ~ M R . 
3) p 

Thus we expect the preceding approxltnations to be useful for boundary radii 

lying between R    and MR. ^ n oo n 

Choosing an average value of 2,8 p u    for cu we obtain as a rough 

estimate of the air shock layer thickness the value 

6 ~ C,2r 

for 1 £ r/R   s M .    In the downstream supersonic portion of the shock layer 
'   n       * 

we may roughly expect the boundary layer thickness  io grow according to 

i.e.,  for a parabolic plume 6^. ~ r,    Thais the ratio of boundary layer thick- 

ness to shock la^er thickness (6^/6) appears to be roughly independent of 

radius for R    i r ä M R  ,    For r > M R ,  however,  we may expect the ratio n <*> n »n' ' 

of the boundary layer width to the shock-boundary separation distance to 

decrease roughly according to 

V6 ~ ;1/2. 

Another measure of the importance of viscous effects is the ratio of 

the shock transition zone thickness to the shock layer width. For a normal 
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shock a measure of the shock thickness is 

^3 = 

V -Y 
2 1 

(dv/dy) max 
(7) 

1 2 
For Pr = Le = 1, h + ^ v is constant through the shock and dv/dy is 

maximum at the sonic point. In this case the shock thickness may be 

expressed in the form 

A .     -^~ -^ i -5— I  . (8) 1      plvl y+1 IMJVL 

Here p.    is the viscosity at the sonic point and M,   » v,^    Urtiere a    is the 

sound speed when M = 1.    For an oblique shock having a wave angle 6, 

(assuming p, ~/T) the shock width may be expressed in the form 

•■    l 

AS~C 
V 2 OB 

sin    6 

M    sin 6 so m (9) 

Htre 

M,   = 
M    sin 9 

OD 

V1 + y^ (^ sin2 e_1)' 
and C is a constant dependent on the free stream conditions (c = ^-r- ( I vY 

In a Mach 8 free streaa with y  = 1,40, the shock transition widths and 

the sh ck layer widths are compared in the following table for a parabolic 

shock (tan 8 = dr/dz ~ R /R): 

** 

For air with y = 1.4, C = 5.8 x 10"vp cm -rfhere p is in gms/cra^ 

(at 180 km, C ~ 10    cm). 
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R/Hn 
• 

At I80 km with R = 1 km 
n 

1^ sin e 

8,0 

«x 6 
km 

AS     /ASv 
km    ^T' 

0 2.71 .16 .10    0.62t 

1.0 5.69 2.27 .2 ,22          0,62 

2.0 3.58 2.07 .1» .15    0.38 

k.O 1.9^ 1,60 .8 .29    0.37 

Thus it appears that the ratio of shock transition width to shock layer 

width varies relatively slowly in the strong shock region (1 s P./R < M ). 
'   n        oo' 

In the outer region (R/Rn > Mj, where the shock is weak, the shock 

width h    increases proportional to -%— .    In other words, when the shock 
M -1 

1 ■L 

is weak,  Ag ~ ^r where Ap is the pressure Jump across the shock.   Far from 

the exhaust gas structure,  the wave is expected to develop an N-wave form. 

The strength of the trailing shock of the N-wave depends on the extent to 

which the boundary pressure drops below ambient.    The amplitude of the 

wave,  neglecting the viscous effects, decreases according to 

AP ~ R-^k 

whereas the characteristic width of the wave form increases as R1/^ 

(Whitham,  1952; Bethe, 1948).    Thus the shock thickness varies as R3/4 

and the ratio of shock thickness to N-wave width increases as /R?    At 

sufficiently large radii, therefore, the N-wave structure will be engulfed 

by the shock transition region.    At larger radii the wave appears as . 

smooth acoustic pulse traveling at the local sound sp;ed.    If the viscous 

For the nose region, we estimate Ö as 0,16 R    (see Section IV-2c). 
n * ' 
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attenuation were negligible, the wave shape would be maintained and the 

amplitude would decay as R-1'2. However, because of the viscosity, the 

wave is both distorted and attenuated. Since the attenuation depends 

strongly on wavenumber, the change of the wave shape is best examined by 

considering its Fourier components„ 

For weak sound waves the viscous equation of motion may be written 

in the form 

where 6 is the local displacement. For 5 = 60 e  '   we have the 

(10) 

dispersion relation; 

c k -H*1^)- (n) 

Assuming the viscous term is small, we may write 

— o 3pc o 

where k    = uu/c.    Thus the absorption coefficient is 
o 

L-1 = V^/3pc = V(2IT)
2
/3PCX 

(12) 

(13) 

where X    is the wavelength of the disturbance.    An examination of the  geometry of 
o 

N-wave formation Indicates that an N-wave wavelength (X0) of the order 

of M   K. may be expected.    The numerical calculations of the flow at ißo 

km for M    = M indicate that an estimate of about U times MJR^ is more 
CD " 

realistic.    At l80 km this correspords to about 20 km for a typical Atlas 

or Titan vehicle.  Implying an N-wave damping distance of about 100 km. 
(9) 

Since considerations of the scaling of the plume shape with altitude 

(see also Section II-2) Indicate that the term p^R^ is expected to vary 
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iitale with altitude,   the N-wave dumping distance  is also roughly independent 

of altitude.    Note  that these considerations really only app1v to  a vertical 

trajectory where atmospheric stratification effects are not too important., 

At these altitudes the atmospheric scale height  is about ^0 km.    For non- 

vertical trajectories the mode of decay of the N-wave  is more complicated. 

The motion in the horizontal plane will be roughly similar to that in a 

nor-stratified atmospher    but propagation in  ehe vertical direction will 

be distorted by the atmospheric  stratification.    In any case,  at very high 

altitudes where  the plume dimensions become appreciable compared to the 

N-wave damping length, N-wave formation is not expected.    At the lower 

altitudes with which we are primarily concerned,  a disturbance will propa- 

gate away from the plume but the high frequency components will be largely 

absorbed within a few tens of kilometers from the plume axis.    Only the 

low frequency components will persist to large radii. 
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IV-Sa. THE SUFERSQMC MERGED LAYER CALCUIATION 

In the two layer flow model the flow field is divided into two 

regions: the shock layer and the shock transition zone. Following Cheng, 

we denote the interface separating these regions as the "shock interface." 

In general the shock layer is the region between the air shock transition 

zone and the jet shock transition zone. We first consider the equations 

of motion in the shock layer. 

The "basic assumption (equivalent to the thin layer assumption) is 

that heat, momentum or species diffusion parallel to the streamlines may 

be neglected compared with the lateral transport (i.e., rr » r-)- With 

this assumption the Navier-Stokes equations may be reduced to the form: 

div pu = 0 (1) 

äu . 1 öp _ 1 ö z' öu\ 

Equation 2-2 may be written in the form 

1 as   as    p ay v* ayy ^ 

When the viscous effects are significant only the continuity equation may 

be directly integrated along streamlines: 

puA = constant. (6) 
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Equations 3j *+) bj f-nd  6 plus the equation of state form a convenient set 

for the finite difference procedu e. Here the marching procedure is to be 

carried out in a manner similar to tiie invibcid mse except that Eqp. 3 

and 5 '-re used to evaiuate the change of the stagnation enthalpy and the 

entropy along streamlinef. 

For the present problem ve will assume, at least initially, that the 

diffusion may be described in terms of a single binary diffusion coefficient. 

With this nsGumption the continuity equaticn for each species is 

ds   p 5y ^.Pr dy 7  p V fy 

where c,. is the mass fraction of the ith species and ui    the mass rate of 
t i 

formation of the ith species per unit volume per second due to chemical 

reaction. In the present study chemical reactions are expected to have a 

negligible influence on the flow field, so that setting w. = 0 is expected 

to be a reasonable approximation. Wich these approximations Equation 7 is 

decoupled from the other flow equations and thus may be used to determine 

the species distribution, but is not  required to determine the total 

density and temperature distribution. This is strictly true only when the 

local mean molecular weight does not vary through the mixing layer. How- 

ever, since the purpose of monitoring the species diffusion is primarily to 

determine the mean specific heat and the air partial density, this approxi- 

mation is considered to be a reasonable first approach. 
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IV-3b. THE MODIFIED RAMINE-HU30NI0T RELATIONS 

The shock transition zone equations (given in the following seccion) 

when evaluated at the shock interface, yield a modified '-.et of R&rJcine- 

Hugor-iot equations whioh are to be used as the boundary conditions for 

the calculation of thr shock layer. When the extomal flow is a uniform 

stream having a density p^, a pressure p^, velocity U^ and stagnation 

enthalpy H^, these modified equations have the form; 

p«u»sin *[u2c0s^ " y?) ■u«cos *]= - [a "i^C" co^Y ■ ^Oj 

P2   "   Pco  +   P«  Uco   Sin   *[U2   Sin^   ■   ^    '   U«   Bin   ♦] 

= ^'|Usin(t.cp)^ 

and 

(1) 

(2) 

(3) 

2 

P« \ ^ i\ - HJ = - UI (H + (^ - V*+ r 8in2(*" ^)\     w 

P« "a,   Sin   f   ^   P2   U2   8ifl(t   "   92)- (5) 

Here tan ty  is the slope of the shock interface and the subscript 2 refers to 

conditions in the shock layer evaluated at the shock interface. For a non- 

uniform str0-  such as the internal Jet flow, appropriately modified 

equations a>   jquired. In the transport terms of these equations some 

factors of the order of cos(i|f - cp ) have been set equal to unity (here 

^ - cpp is the angle between the shock and the local f  am'-ine direction). 

Thus these equations are useful for shock angles such that the angle ( t-c)0 

is small. This latter condition is not too restrictive in the downstream 

IV-33 

t T 



flow when the free  stream It. hypersonic  since,  for example,   for y = 1,4 

and M^  = 6.0,  V  - o0 is less than 19    when the Mach number uehind the  shock 

is greater than l.j. 

When \i  is set enual to zero  in Equations 1 to 5,   they rt.iuce to the 

normal Hugoniot relations. 
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IV-3c. THE SHOCK TRANSITION ZOHE CALCUIATIOH 

The basic approximation made in the two layer model is that diffusion 

fluxes are significant only in one direction, which is essentially speci- 

fied to be one of the coordinate directions. In the supersonic shock 

layer this direction is assumed to be the orthogonal to the streamlines. 

In the shock transition region "Mie appropriate direction is norral to 

the shock interface. In order -chat a reasonable approximation be obtained 

these two directions should differ by only a small angle at the matching 

boundary, the shock interface. In the nose region the shock layer co- 

ordinates are chosen as the normals to the body surface and the associated 

orthogonal surfaces. The small angle condition requires that the shock and 

the body surface be approximately concentric. This will normally be satis- 

fied in hypersonic flow. In the downstream supersonic flow we require that, 

at the shock interface, the streamline normal makes only a small angle with 

the interface normal. This condition is usually approximated in hypersonic 

flow. Par downstream, where the shock is weak, the angle between these two 

normals approaches (M ) . In the intermediate region where M^ sin^t » 1 

but f is not too large U is the wave angle of the shock) this difference 

angle is of the order of ^~. Thus the two-layer approximation is expected 

to be useful for hypersonic fl^w for small values of (Y-1)/2. 

For the shock transition region, Cheng chooses a coordinate sys-oem in 

which y ^ 0 corresponds to the shock interface. Here gradients parallel to 

the rdiock interface are to be neglected. With these approximations we may 

■ write (Cheng's Equ ition (5.7)) 

^(p V) = 0 (1) 
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c v 3y " äy ^ ^ (2) 

(3) 

(M 

Here v is the velocity normal to the shock interface and y the distance 

along the normal. 

The free stream boundary conditions are: P, = P » D-, = o , h, = h 
" ^X     oo    1     *    J,     "o 

ul = ^oo COs ^ h^^  vi = ^oo s^n ^ where tan ty  the local slope of the shock 

interface. 

Integrating these equations across the shock transition zone we get 

for arbitrary strength shocks the relations 

P v = p1 v1 

p f o. iviv = t^¥ upi + pivi£ 

du pi vi u ^ äT 0i vi "i 

* r 

(5) 

(6) 

(7) 

(3) 

This set of ordinary differential equations may be directly integrated to 

give the shock transition zone structure. Here the method would be to 

start at the shock Interface with the values of the flow parameters that 

were obtained from the shock layer calculation and integrate outwards along 

the normal to the shock interface. 
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When the Prandtl number has the particular value 3/4 these equations 

may he reduced to a single quadrature. Since expected values are of this 

order (0.70-0.72), ve ha/e utilized this approximation to evaluate the 

shock profiles. 
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IV-3ci. THE NOSE MERGED LAYER 

This is the problem that Cheng treats for the rose region of a blunt 

body. The shock transition zone equations are those given in Section IV-3c 

and are the same as for the downstream portion of the flow. There are 

two essential differences in the shock layer calculation between the nose 

region and the downstream region. First, in the nose region il is assumed 

that the diffusive fluxes occur in the direction parxllel to the local 

normal drawn out from the body surface instead of being normal to the local 

streamline direction. Second, since the flow equations are elliptic in 

the subsonic region, the momentum equations are altered to convert the 

equations to a set of parabolic equations. The resulting Let of equations 

(given by Hayes and Probstein  ) is 

ax 

|£ - D K  U V + dx     c 

j&P u r) 4.^(pvr) =0 
W H) 

/    du .  ckA  ö/" äuA . . 

ay pKcu +^u- + v¥^=_^-; 

r„ m,    m     h r   d,h u2 2 2; 

(3) 

(^ 

Here u is the x component of velocity, v the y component, y the distance 

along the outward normal and x tbe distance along a surface parallel to 

the body surface. K = K (x) is the curvature of the body surface (of the 

dividing streamline in the jet case).  In the case of the jet we would take 

one of the streamlines which originate at the nozzle lip as the dividing 
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streamline.    For the flow Inside th^s streamline we use the sutcrbonic 

formalism of Sec. iv-äi and the above formalism for the flow outside this 

region.    An appropriate matching condition is required at the dividing 

strearoline:    equal pressure,  equal and parallel velocity and equal 

transverse fluxes,    ^rom this boundary condition would come the equation 

that specified K (x). 

Since the symmetry axis contains a singular point,  the stagnation 

point,  a method for starting the marching process is required.    For the 

blunt body problem, Cheng expands the equations in a Taylor series about 

x = 0 and solves for tts zeroth and first order terms.    A sianilar procedure 

may be possible for the jet. 

An alternate approach is to solve the inviscid Jet flow assuming the 

dividing streamline pressure is that given by Newtonian theory.    Then, 

using the thus determined nose rp'.ius for the exhaust plume,  obtain the 

starting conditions for the marching process usin6 Cheng's expansion 

procedure. 

The change-over from the subsonic nose calculation to the supersonic 

downstream caluLation does not have to be made right at the sonic point. 

It should be made downstream at a point where the angle between the shock 

and the adjacent   internal streamline is small but not so far downstream 

that the streamline curvature varies significantly across the shock layer. 

-        i 
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IV-je.     Small Disturbance Approximation 

An approximation which has proved very useful in the  treatment of 

the flow around hypersonic slender bodies is the so-called small disturbance 

approxiinatlon.    Here  it  is assumed that the  steady two-dimensional axi- 

symnietric flow about  the body Is equivalent  to     a   one-dimensional unsteady 

flow that would be  seen by an observer at  rest  in the ambient atmosphere. 

The requirement for the validity of tnis approximation is that the perturba- 

tions  in the axial component of the velocity be negligibly small.    If a 

characteristic deflection angle for the flow is T,   then the perturbation 

in the axial component of the velocity is of the order of u{l - cos T)  or 
2 

^- .    In order that this velocity perturbation induce only a slight pressure 

variation,   it should be s-nall compared to the local sound speed.    In other 

words,  the  small  d: "turbance approximation will prove useful when 

MT
2
 « 1 

where T is a characteristic Tlow inclination. The free stream Mach numbers 

experienced by a typical missile traveling through the ionosphere range 

between k  and 12. Thus we expect that the small disturbance approximation 

will prove useful when the flow inclinations are less than about 5 degrees. 

In air the shock wave from a vehicle traveling at a Mach number of 5 will 

give rise to a deflection of less than 5 degrees at distances downstream 

where the pressure Jump across the shock is less than a factor of 2. Thus 

the small disturbance approximation will be strictly valid only for the far 

field part of the flow. For the near field the more complicated two-dimensional 

steady equations are required. 
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The one-dimensional flew equations may be written in the form; 

Dt " dt  J ^y [ y Pr L^y + 2 3     öy J (i) 

Du    öp  1 ö  / 4 J du DDt =-^ + T^ [ 3y^^ (2) 

1 D£ , . _1 5(uyJ) 
o Dt J   dj 

(3) 

where 

and 

H = h + ^ u 

P^pJH-^ 

(M 

(5) 

Here J = 0 for planar, J = 1 for axially synunetric, and J = 2 for 

spherically symmetric flows. These equations may be recast in a form 

more convenient for numerical evaluation! 

Dh    p 
Dt  c - R 

P S/^ "KV! ^ (6) 

Du _ _ 1 öp + _1_  p 
Dt ' ' o §y   -J §y 

(7) 

^ (pyJ Ay) = o 

81 = ° 

(8) 

(9) 
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where 

3 ^ ^ iy 

q      Pr y    ^ 

oh/c 

Here y   is   the mass point coordinate    and Ay tne  spacing between two 

adjacent points.    These equations have been programmed for the IBM 7090. 

Representative flow distributions calculated for a simulated sustainer 

engine at 290 km altitude are  shown in Figures 

IV-U2 

V 



The Air-Jet Mixing Iayer_- Boundary Layer Apprcxlmation 

At sufficiently low altitudes the mixing layer at the Jet-air 

interface will remain thin compared to the shock layer thickness if it 

remains laminar. In order to estimate the impürtan^e of the viscous 

dissipation at the Jet-air interface a much simplified model has Deen 

used to evaluate the mixing layer profile at low altitudes. Although the 

mixing layer is unstable to become turbulent, it is expected that th«? 

time required for transition to take place will be long compared to the 

flow time (through the major part of the Jet) at least at the higher 

altitudes. 

In order to obtain an easily applied analysis two approximations 

have been made: first; that the mixing layer remains sufficiently thin 

that the variation of the in'riscid flow field properties across the 

mixing layer is negligible; second, that the rate of change of the 

inviscid flow field with distance downstream is sufficiently slow that 

the mixing layer profile may be assumed to be self-preserving. In this 

approximation it can be shown that the air-Jet mixing layer profile is 

equivalent to that between two parallel and uniform streams. It turns 

out, however, that even for the lower altitudes of our interest neither 

of these two approximations may be expected to be very good - particularly 

the former.  In Figure IV-1 we show density, pressure, and temperature 

distribution in the neighborhood of the boundary calculated for the 25:1 

engine   at 135 km altitude assuming no viscous transfer. Also la 

Figure IV-1 we show the self-preserving mixing layer profile calculated 

assuming that the conditions at the Jet-air boundary were maintained 
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across the mixing layer. Reference to this figure shows that, especially 

in the Jet shock layer, the inviscid pressure and density both vary 

strongly acroas the mixing layer. 

Because of the strong variation of the temperature and density 

across the Jet shock layer the calculated self-preserving profile cannot 

be expected to bo too meaningful. Techniques -re available -which will 

allow, in an approximate manner, for some variations in the fiee stream 

flow outside the mixing layer. However, since it appears that, at least 

above 135 km altitude, the Jet shock layer may be compJetely merged, 

it appears that, at the very least, a viscous layer ci iculation will 

be required to evaluate the entire shock layer. 

Thus, for the present, it does not appear too useful to try and 

refine this mixing layer calculation in the boundary layer approximation. 

Tne description of the analysis of the mixing layer keeping the self- 

preserving assumption will be reported subsequently. In brief the 

procedure is to treat the equivalent mixing layer between two uniform 

free streams. Here the equations admit a similerity solution in the 

classical compressible boundary laj'er approximation. The Von Karman- 

Rjhlhausen method is used to obtain an approximation of the solution to 

these equations. The procedure has been programmed for the IBM 7090 

computer. 

15ie basic conclusion of this analysis is that the Jet shock layer 

will be otrongly affected by the diffusive fluxes. In our present 

description of the electron distribution, the neutral density distribution 

within the Jet region may exert a strong influence on the electron 

distribution. Thus it appears necessary to obtain a considerably more 

sophisticated description of the Jet flow than that resulting from a 

simple self-preserving boundary layer approach. 
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IV-3g. Evaluation of the Initial Flow Distribution at Very High Altitudes In the 

ColllGicaleBS "pproxiffiatlon 

'Hhe  mixing layer calculations carried out at 135 km altitude indicate 

that the Jet shock layer may be completely merged even at this relatively 

low altitude. Although at chis altitude the shock widths are relatively 

thin compared to the ehock layer thicknesses, this will not be the case 

at very high altitudes. At sufficiently high altitudes that the shock 

layer width is comparable to a mean free path, the flow will be poorly 

described by the continuum equations. This situation is approa.ched in the 

bow region at altitudes above 200 km. 

An alternate approach to a complete continuum calculation is to coinjuLe 

the early non-continuum part of the flow assuming zero interaction of the 

exhaust gases with the ambient atmosphere (cross sections for collisions 

between exhaust molecules and air moleculee vanish), and then, at some 

more or less aroitrary time, start a one-fluid continuum calculation. This 

is a particularly useful procedure at high altitudes from a numerical point 

of view, since a large amount of computing time is normally required to 

compute the flow close to the vehicle when the continuum equations are used 

throughout. 

We first of all consider this collisionless approximation of the initial 

flow in the small disturbance approximation. The small disturbance approxi- 

mation gives a useful descrip ^on of the flow field when the axial gradio^tc 

of the various flow properties are small compared to the radial gradients 

and may be neglected. If, in addition, the variation of the axial component 

of the velocity is small across the entire flow field, a Oalilean transformation 
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may be used to transform the steady state two dimensional flow to a one 

dimensional unsteady flow problem. We restrict the present discussiun to 

this case. 

Suppose the vehicle velocity relative to the atmosphere is V . We 

assume therefore that the axial component of the exhaust gas velocity 

relative to the vehicle is also V . At high altitudes V is therefore 
m m 

related to the enthalpy release in the combustion chamber by Lhe expression 

V - v^lT (1) 
Si c 

where h is in units of ergs per gran. At very high altitudes the exhaust 

flow close to vehicle is source-like. Thus we may write (see Section iv-2h) 

(2) 

o 
m f(cp) nip cp 

V r2 
m 

where 

cp = tan" r/z , (3) 

and 

2ir \     Acp) sin 9 ip = 1  , (2+) 

o 

r is the r.idial displacement from the symmeti^ axis and z tuJ axial distance 

(? w V t). The radial component, v, of the velocity is V sin cp. If m is 

the total exhaust mass flov rate, then m/V is the mass deposited per unit 

length along +he Irajectrry. The fraction of the exhaust flow that has a 

radial velocity between v and v + dv is given by, approximately. 

iäE.p.lM 
m dv 

2ff ^Aan cp (5) 
m 
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where tin. w = v/V . 

For the vacuum expaiis^on the radial velocity us a function of radius 

and tit'se  is 

v = r/t (6) 

The exhaust gas density as a function of radiui; and time is (for R < V t) 

3 2 
m 

(7) 

where cp = sin'     (fTT")«    A useful approximation for f(cp) is a (cos £_ cp/G I '    for 

cp < 9^ (see Section IV-2b) where 9^ is the limiting expansion angle.    In 

this small disturbance approjdjnation 9    is assumed less than unity. 

In order to ir'tiate a continuum calculation^ we require the mean 

fluid properties to be specified in terms of a one fluid model.    The mean 

fluid velocity will be given by 

v = Pe
Ve/LPa+,V (8^ 

where p    is the arobitnt density. 

The fluid density is given by 

P = pe+pa (9) 

and the enthalpy by 

h = CPaha * I Pe< - I P v ] - (10) 

In Fig. IV-13, we show the collisionless approximation to the flow field at 

an altitude c* about 290 km. 

This model gives an accurate descrfptiou of the flow only when the 
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mean free path for exhaust-air collisions at all points in the flow field 

is larger than the flow field dimension. Although this condition is not 

even approached in the rocket flow field at any altitude of interest, never- 

theless this approximation provides a useful representation of certain 

aspects of the flow while retaining a very simple analytic stricture. In 

the remainder of this section we examine the validity of the collisionless 

approximation. 

It should be emphasized at thib point that, in these approximations, we 

are primarily concerned with the early part of the flow (i.e., the bow region 

of the plume). As will be apparent in the ensuing discussion, the specific 

criterion is that the exhaust gas  density on the axis of symmetry be much 

lexger than that of the ambient atmosphere. In order to get a better under- 

standing of the approximptions Involved we will first consider another 

simplified but more accurate description of the early part of the flow. 

Here we assumt that, in the region where collisions of ambient molecules 

with exhaust molecules occur, the exhaust gas density is much larger than 

the ambient gas density. As long as the effect of the ambient atmosphere 

is small, the exhaust gas density rises from zero at the edge of the vacuum 

plume with a high power (rrr)  of the distance from the edge  (see Section IV-2b), 

Close to this edge the exhaust gas temperature is near zero and the velocity 

attains its limiting value, V . In a coordinate system moving with the 

exhaust gas the ambient atmosphere appears to impinge on the stationary 

exhaust molecules with a velocity V . 
m 

Let us consider first the sequence of events which occur during the 

expfJision when the molecular weight of the atmospheric species is much larger 
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than that of tue exhaust ga^es. This would apply to a rocket exhausting 

pure hydrogen, for example. In this case the atmospheric molecules penetrate 

deeply into the exhaust gases losing small amounts of momentum and energy 

at each collision. The fractional energy loss per collision is of the order 

e, where e is twice the mass ratio^end the average scattering angle is c/2. 

The kinetic energy is reduced by an order of magnitude after about 1.2/c 

collisions. The  rms scattering angle at this point is of the order •/e/2 

radians. Thus, when the exhaust molecules are light, the atmospheric 

molecules penetrate the exhaust in essentially straight lines and come to 

rest with respect to the exhaust molecules after a few collisions. The 

kinetic energy is dissipated in heating the exhaust. Until such time that 

the fractional concentration of atmospheric molecules becomes significant, 

the increase jn the exhaust gas temperature is slight. Because of the strong 

rate of increase of exhaust gas density with distance, the tonbarding 

molecules will all be stopped at roughly the same depth. Thus, in this 

model, we expect a snowplow action in which ambient mo1.cules are swept 

up into a thin layer located some distance from the plume edge Initially, 

the density of ions in this laye." increases at a constant rate. "Diis process 

will continue until the deposited energy raises the temperature of the mixture 

sufficiently to cause an expansion of the gas into the oncoming flow. This 

constitutes the development of the shock layer. A non-continuum transient 

period now follows sis the shock layer becomes fully developed. In the fully 

developed state we expect that the peak electron density will be limited 

to the value cor spending to a strong shock. Thus, according to this 

model the electron density may go through a maximum as the flow develops. 
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Thin maximum value may or may not exceed the value expected behind a strong 

shock. 

•ßie opposite situation obtaina in the other limiting case when the 

molecular weight of the atmospheric molecules is much smaller than that of 

the exhaust gasea. Here again there is little energy transfer per collision 

but the average scattering angle is large. The incoming molecules emerge 

fror, the exhaust gas structure after a few collisions with essentially the 

same energy with which they entered but are traveling in random directions. 

In this approximation the exhaust gas acts like a rigid,diffusely reflecting, 

adiabatic wall. The atmospheric shock layer will be established in front 

of it in a few coJlision times. In this limit, the electron density is 

expected to rise smoothly to its maximum value. 

In cases of practical interest the molecular weights of the exhaust 

gas and of the ambient atmosphere are comparable. Thus we expect a state 

intermediate between the two models described above. Since the structure of 

the sheck layer is considerably different in these two limiting models, it 

would appear that a fairly detailed description of this non-continuum regime 

is required to obtain a reasonably accurate description of the flow. Attempts 

in this direction have not, in general, met with much success. The  approach 

usually invoked is to assume that the continuum Navler-Stokes equations 

apply throughout the flow. In this case, even though the distribution 

functions are not Jfexwellian, a one-fluid model is used in which a unique 

temperature and stream velocity is assigned to each point in the flow. 

The collisionless approximation (defined by Eqs. 8, 9,  and 10). 

is equivalent, near the plume edge, to a one-fluid approximation of the 

heavy atmospheric molecule case. However, this simple prescription fails 
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in the neighborhood of the thin layer where most of the atmospheric 

molt'naes collect. Rough ejaculations of the density of atmospheric 

Ejolecules in this layer indicate that the fractional concentration of air 

here is of the or^er 

where e is the fractional energy loss per collision (c ca 2 m/M), y  is 

the specific heat ratio, R the exhaust gas radius, X the mean free path 
a 

in the ambient atmosphere, n the number density in the ambient and n 

the number density o* the axis of symmetry. This expression is useful when 

both (>'+1)/(Y-1) and the density ratio nc /n have large values. For our 

conditions we expect values of the density ratio between xO and unity. 

For Y ■ I'^t  and e ^0.3, for example, the fractional concentration in the 

deposition layer is then of the order 0.1 to 0.5 times (B/X^r' • Dius 

we expect the collisionless approximation to be useful so long as the radius 

of the vacuum boundary is smaller than the mean free path in the ambient 

atmosphere. At later times in the expansion the heating of the exhaust gases 

by the entrained atmosphere will result in the development of an appreciable 

ahock layer structure. 

This procedure has beeu used to provide initial profiles for a small 

disturbance calculation of the flow field at very high altitude (290 km). 

In a small disturbance approximation, the flow is assumed identical to an 
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unsteady cylindrically Symmetrie viscous expansion. A solution Of the one- 

dimensionai unsteady Navier-Stokes equations has been obtained numerically 

using a finite difference procedure. The density, velocity and pressure 

distribution at various times are shown in Figs. II-1Ö, 19, and 20. The 

calculation was initiated 0.6 seconds after the exhaust gas was expelled 

from the nozzle and used the colliaionless representation as the initial 

ätate. At this time the radius of the exhaust plume was about 2  km. Since 

the mean free path at this altitude is about 1.5 km, the collisionless 

approximation is expected to be unreliable after this time. In Fig. 11-21 vre 

have plotted, versus time, the radiu^ of the cylinder containing a mass 

equal to that of the exhaust products. Also shown in Fig. 11-21 is the locus 

of the points of equal exhaust-air mass fraction. The dividing streamline, 

which bounds a mass equal to that of the exhaust gases, expands rapidly for 

20 seconds at which time it, e.ttains its maximum value of about 15 km. After 

this, it contracts slightly, reaching a minimum of 13 km at 50 seconds. After 

kk  seconds, the exhaust gases are so diluted with air that nowhere does the 

fractional air concentration drop below 50^. 

Although the collisionless representation is not expected to be valid 

when the plume radius is greater than the ambient mean free path, it apparently 

gives a rough approximation of some features of the flow field throughout the 

early part of the expansion even when the radius considerably exceeds the mean 

free path. In Fig. 11-22 we have plotted the velocity and density profiles at 

3.2 and 6.5 seconds. References to this figure show that the collisionless 

approximation gives quite a reasonable, although smoothed out, representation 

of the velocity profile even at these relatively late times. Tfc3 density 
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distribution is less well represented, especially in the shock layer region. 

Nevertheless, since the gross features of the flow are reasonably well 

reproduced, the very simple analytic form of this approximation makes it 

quite useful for eliciting qualitative and sem^-quantitative information 

about the interaction of the ionized species with the neutral wind during 

the early part of the expansion. 

So far we have only considered a cylindrical expansion. It is 

expected that similar agreement (and lack of agreement) may be expected 

in the more generell axially symmetric case. Even the general three 

dimensional problem of a rocket traveling in a stratified atmosphere is 

trivially formulated in this collisionless approximation. 
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IV-ih. Kinetic Effects 

■Rie calculations carried out at l80 km indicate that the high tempera- 

ture region ie  confined to p, small volume in the bow rtgion of the plume. 

Although the stagnation temperature of the air streeun is relatively high 

(~ 6500oK at 180 km altitude) the cooling of the air stream by the outward 

diffusion of the cold exhaust gases maintains the gases at relatively low 

temperatures. The high temperature, low density entropy layer that would 

exist adjacent to the Jet boundary if the diffusive effects were negligible, 

does not occur at these altitudes (see Figure 11-12). 

In Figures II-lb and 17 we show the tempera-* ■ —e and density histories 

along two characteristic streamlines, ühe streamline locations are shown 

In Figure II-i. Reference to these figures indicates that, even for fluid 

elements wulch enter the air shock layer relatively close tc the stagnation 

point, the temperature exceeds 20000K for less than a second. Since the 

collision frequency in the nose region is less than 100 sec  only reactions 

having fairly high rate coefficients and low activation energies can be 

Important. 

At this altitude the atmosphere is compared primarily of N^, and 0. 

Reference •♦*♦ gives the mole fractions of N-, 0 and Op as 0.55, 0.39 and 0.06 

respectively. Even the most likely lonization reaction between the air con- 

stituents 

Ng + 0 - NO -i N 

followed by 

N + 0 - K0+ + e 

vill produce a negligible increase in the electron density. The mixing of 

the exhaust constituents with the ambient atomic oxygen may produce signifi- 

cant reaction. 
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Molecular hydrogen present in the exhaust gases will react with atomic 

oxygen according to 

au + 0 •* CH ♦ H 

12  -3000'R/T  3 
Kaskan and Browne recommend p reaction rate of 3*3 x 10   e     /  "" oo'VnsolB-sec • 

Thus, along streamline a (see Figure II-l)the fraction of the hydrogen that reacts 

with atomic oxygen is estimated to be one or two per cent. 

Observations by Rosenberg indicate the CH radical is present in the 

exhaust products of Atlas and Titan I vehicles» It may form part of one of 

the products discharged from the ges generators. Since these products will be 

concentrated at the periphery of the plume, we may characterize their environ- 

ment as similar to that on streamline a. CH can give rise to ionization via the 

reaction 

CH + 0 - CHO !• e, 

This reaction is considered to be  a source of chemionization in hydrocaiiion 

12  3. 
flames. Calcote gives a value of about 2 x 10  cm /mole-sec for the rate 

coefficient. 

This value implies that 10 to 20 per cent of the available CH radicals 

will yield free electrons. The concentration of CH in the exhaust gases in not 

known. In the Atlas engine about three per cent of the total mass flow is 

diverted through the gas generators. Since this portion of fuel flow is burnt 

at very rich conditions it is expected that a variety of hydrocarbons will be 

present. If more than one per cent of this mass flow results in the CH radical, 

the resulting contribution to the electron content of the flow field may be 

significant at this altitude. This source of ionization will be more important 

at lower altitudes and less at higher altitudes. However, it is difficult to 

determine its absolute importance without a more precise definition of the 

exhaust composition. 
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Uiasa quotes a value for the  rate constant of acetelyne with atomi^ 

oxygen at low temperaturtö of 2 x lo" 3 crri /sec.    Foi  this value,  we wou}H 

expect about 1^ of the available acetylene to react along streamline a. 

Since only a fraction of the flow will be hydrocarbons and only a fraction 

Of those  that do react, with atomic oxygen will yield CH,  this source of 

chemiiontzation may not be of major importance. 

a 
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V.  THE EFFECT OF THE (gOMACfflETIC FIETJ) 

V-l Ion Dlatrlbutlon at Early Time - Simple MD-.el 

The discussion in Section III-2 indicates that the ion-neutral mean 

paxh may be appreciably smaller than the neutral-neutral valu». In this 

section we develop a very simple model of the ion motion that is useful 

when these two mean fret paths are widely different. We consider here 

only the early time motion of a cylindrically symmetric neutral flow In 

a longitudinal or transverse magnetic field. 

In Section IV-3g the usefulness of the collislonless approximation of 

the neutral motion was discussed. Ttxer^y.  it was indicated that this approxi- 

mation was a useful, although crude, representation of a one-fluid model 

of the neutral wind during the initial stages o" the expansion. The time 

histories of the density and velocity distributions for a typical high 

altitude expansion are shown in Pigs. IV-13 and ill-. 

Significant variations in the neutral flow cai. only occur over 

distances greater than a r.eutral-neutral rean free path. When the ion-neutral 

mean free path is much smaller than the neutral-neutral value, we may assume 

that the ion motion equiliorates with the local velocity of the neutral 

wind. To a first approximation, we expect that the ion velocity component 

parallel to the field lines thus will remain close to that of the neutral 

wind 

The perpendicular component will reach a quasi-steady diffusion value. As 

discussed in Section IiI-1 we would normally expect the velocity across the 

field lines to be of the order 

(2) 

V-l 



^-*, 

BLANK PAGE 

I 
t 

i 

P mm mmmmmm 

v 



for a finite length flow field. 

Here we assume that the ion pressui« gradients are not important and 

that polarization electric fields do not give rise to dominating effects 

(such as anomalouB diffusion). Using the collisionless approximation for 

the flew field (Figs. IV-13 and Ik)  to specify V. , V and v as a function of 

position and time ve have evaluated the ion density distributions corresponding 

to the ion velocity field given by Eqs. 1 and 2.  Here both a longitudinal 

and a transverse magnetic field have been considered. The density distributions 

at various times are shown in Pigs. III-^, 5, and 6. Ion densities along a 

line parallel to B and along a line perpendicular to B are shown. In the 

calculation v was set equal to 6 x lo"   sec" and u) = 2kO  sec' where 

n is the number density of the neutral wind. 

The  calculation was initiated at a time t = 0 assuming an initial 

uniform ion density dibtribution. A schematic representation of the resulting 

three dimensional ion density distribution is shown in Pig. III-3. 

"in a previous progress report the calculation was carried out for a cylindrically 
synanetric neutral flow, in which case the radial electric field due to charge 
separation resulted in a much lowar perpendicular diffusion velocity (corres- 
ponding to the value given in Eq. III-2 instead of l). Por the flow fields of 
practical interest, Eq. V-2 is considered more suitable. 
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V-2.     Linearized Approximation for Gen3ral C Jinetry 

In the linearized approximation the equations of motion may be written 

in 

(1) 

the form (see Section V-^) 

«b-t A^« \ r) (2) 

Here a. ajid a are the accelerations of th« charged particles induced by 

the neutra1. "v.'ind." In terms of the momentum velocity u, defined by 

and the current velocity v, defined by 

these equations may be rec- «;t in the form 

(3) 

CO 

V 
(5) 

and 

ß^d- « S ^ (ä - (»-O^)K^ -l.p
v(^^v>xc.K^).(6) 

The linearized form of Pois^on's equation may be written in the form 

/ ^v) S O. 

Here we have used the notation 

V-3 

(7) 

(8) 

I 
a» =E ■ -: 

-. - - 
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2rt a  ai-t* 

(a) 

IV v^-v- 
In the general case the driving forces v x-epresonted by the accelerations a, 

and a-,, include the ion proscure gradients, and the ion-ion and ion-electron 

interactions in addition to the neutral-ion interactions. 

At high altitudes where the ion-ion collision frequencies are comparable 

to the ion-neutral values and/or at lato times when the neutral drag forces 

are small, these contributions to the acceleration terms can be 

significant and should be included. At. the lower altitudes and/or at early 

times, the neutral interfxtions are expected to dominate (see Section III). 

Fbr the present we will neglect these ion-ion contributions aid assume that 

the terms a, and a^ are known functions of position and time. 

Even with these rather considerable simplifications, it is difficult to 

obtain detailed information concerning the reaction of the ion fluid to the 

neutral wind except in rather slmule geometries. Thus we expect that a 

mathematical model suitable for computation of an actual flow field may be 

a drastic simplification of the general case. In order to gain an understanding 

of the importance of which features of the neutral flow and neutral-ion interaction 

which must be included in such a model we coniiider various limiting cases. 

In Section   the dispersion relations for the plasma are given and 

Ihe various charactaristic frequencies and propagation modes discussed. In 

Section   the nature of the high and moderate frequency response of the 

plisma to the neutral wind is discussed in the linearized approximation for 

some simple geometries. In Section V-4 we consider- the solution of the non- 

linear equations of motion, again for seme simple geometries only. 
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In addition to the equations of motion. Eqs. 5> 6 and 7, we need 

the two Maxwell equations 

and 

The frequencies we are concerned with are well below the plasma frequency 

U) . In this case it is usually valid to neglect the displacement current 

term £ in Eq.lO.   ihis is of considerable advantage since it materially 

reduces the complexity of both the analysis and the numerical evaluations. 

However, when polarization charges are important it is then necessary to 

introduce Poisson's equation (the divergence of Eq. 10 ) explicitly: 

(9) 

(10) 

Thus Eq, 10 becomes 

CAA*4 ü£. u»J v7cv . (ii) 

The approximation of the magnetic field resulting from Eq. 11 is one which 

is determined solely by a divergence-free current and thus cannot be used 

to deduce the charge distribution. For this we need the additional equation 

7- Equatlcnc 5, 6, 7, 9 and 11 form a complete set from which 

solutions for the electromagnetic field (£,  iu^), the electric current 

velocity (v), and the mass velocity (u) may be obtained in terms of the 

driving forces a^ and a2. In the general case a, and iL depend on the ion 

pressure gradients in addition to the neutral-ion interactions. When these 

are important we nee    ..ntroduce the continuity equation for the ion fluid. 

This may be written in the (linearized) form 

p  4 f iw« •€> (12) 

l i : 
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t- 

where p is the mase density of the ionized species. Aiso required are 

energy equations for the ion and electron temperatures T. and T . 
i    e 

For the low frequencies of our principal interest (tu ;C v ,v ) it 

will usually be suTiciently accurate to assume that both the pressures 

and the temperatures are isotropic (Pj. « .^ , Tj. - T- ). Ch the other 

hand, because of the large ion-electron mass ratio,it is generally 

necessary to allow for differing values for the ion and electron 

temperatures. 

For the present we will consider only the approximation in which the 

driving frequencies are sufficiently low and the neutral drag terms 

sufficiently strong that the pressure gradient, tenns r. ~ nr ^ "l.-B.nt, 

i.e., that the dr^-ing terms sL and %> it.  be considered known a priori- 

Thih  is formally equivalent to a cold plasma approximation (T. = T^ = 0). 

As discussed in Section III-2 two limiting mode1« are of primcipal 

interest; the id«nvical particle model (IFM) (v10 a 0. v, « v„f m = m . 
iü     J.   i..      1        e 

a« = 0, or =1) and the zero electron mass model (ZEM) (r /m,  = 0, or = 0). 

For the identiceJ. particle :..'odel the governing equations become 

i s Är>.cäc H.'S, -v,« A*. 

% *   t * ^Ä^ - v.'vr 

^i^   *     (t **?*)/* 

(13) 

(Ik) 

(15) 

df4 =  -  ouAe (16) 

The elementary single species magnetohydrodynamic equations result 

- 
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froüi this model when it is assumed that the current and the electric field 

reach quasi-steady state values (v ~~ 0, t ~ 0), TMs state is approached 

vhen the driving frequencies are small compared to both the plasma frequency 

(U and the cyclotron frequency u) . In this approximation the electric field 
P c 

is given by 

€ .   * v- v*^ (17) 

and the equations of motion may be reduced to the form 

and 

(18) 

ä - 

ÜJC e  CtA-Jj (v-«^) + in: ^lCÄ (19) 

Historically, these equations (or the more general higher frequency ones 

using Eq.ll+ ) have proven quite useful for describing many aspects of the 

motion of a finitely conducting plasma in a magnetic field. Tlie forms given 

in Eq. 16 and 19 contain the description of damped Alfven wave motion and 

diffusion of the magnetic field through the ionized fluid. The symmetry in 

the motion of the positive and negative ions in the identical particle 

model may be expected to allow the formulation and solution of problems for 

which it is difficult to reduce the non-identical particle equations to 

a tractable form. This applies also to the equivalent non-linear relations. 

Of course, this model can only be expected to describe some of the 

aspects of the motion of a real plasma in which the positive and negative 

ion are different. 

- - 
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A second model which exhibits many of the features of the actual 

motion which are lost in the identical particle approximation is that obtained 

when the electron mans is allowed to approach zero. In this case (ZEM) the 

current equation (Kq.i^ ) reduces to the form 

JT = - (u-v-)x wft 
(20) 

The remaining equations are  imchanged. I^ this model the conductivity 

paraUel to the field lines is infinite (i.e., I =0). The plasma motion 

is, in general, more complicated in this model than in the identical particle 

model because of the lack of symmetry. The electrans, now having negligible 

inertia, respond instantly to the ion motion but their motion is typically 

very different from the positive ion motion. In the absence of electric 

fields the electrons move strictly along the magnetic field lines. 

If it is known that polarization charges are not important then, for 

frequencies small compared to the plasma frequency^ the displacement current 

in Eq, 15 may be neglected and the linearized equations recast in the form 

& «   —v (otu^w^x wc    4.   a,  - V(1A (21) 

and 

"V >-» 
öc *  C^U^(ÄxÄt) - -^C^c'^) 

ft**^^c   .(22) 

Some aspects of the difference between these two models are readily seen in 

the corresponding dispersion relations. These are tabulated in Table V-l 

for propagation parallel to the field lines and for propagation perpendicular 

to them. If the cyclotron frequency is much larger them both the collision 

frequency and the characteristic frequency of the driving forces, the 

I 
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dispersion relations for the two models anj identical. In this case the 

magnetic forceeare sufficiently strong that both the positive and the 

negative ions are coDstrainsd to motion along the field lines and the 

difference between the two aiod.-^s vanishes. 

Differem -.s  between the two models may also be seen 3n the steady 

state apprc.ximatio" by examir.lng the dependence of the mss velocity on the 

electric field. The mass velocity Ü may be expressed in terms of the 

electric field £ ana the driving acceleration term a . For the identical 

particle model Eqs.l8 and ly may be combined to yield (when u = O): 

(83) 

Eic zerv electron aisss model yields the expresKlon 

(A\ ICH it¥ ?«) x 5u ^ s.. v. 
V. {2k) 

OJie factors of 2 appearing in Eq. 23 are due to the normalization of the 

electric and magnetic fields given in Eq. 8.   2 C and 2 UJ correspond to 

the sejae electric and magnetic fields in the identical particle mcdel as 

do f uad mc  in the zero electron mass model. In Eq. 24 two tore- appear 

which do not occur in the identical particle model. These difr'ereiic'js have 

obvious physical interpretations. First, when a radial driving force a is 

applied to an asia-iy symmetric aligned field configuratiOii, the two ions 

drift in opposite azunuthal directions wit^i the same speed. Only when the 

V-iO 



particles have the same mass does this motion give rise to a vanishing 

angular momentum of the plasma, corresponding to the first acceleration 

term in Eq. 2h.      Second, the application of a radial electric field gives 

rise to opposing radial diffusion velocities for the two ions, in this 

case, when the particles are identica?., the .et radial mass flux vanishes, 

as indicated by the absence of a term proportional to ^ in Eq. 23-  In 

the zero electron mass model only the positive ions heve a non-vanishing 

radial velocity. 

_-- 
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V-3  Quasi-Steady Linearized Approximation 

In this section we exaaine the nature of the solutions of the linearized 

equations of motion in a steady state approximation in which we assume the 

driving forces are time-dndeperdervt. We are particularly interested in 

evaluating the effects of the polarization electric fields induced by various 

types of neutral winds and those due to the charge separation resulting from 

the mass difference of the positive and negative ions. We will first consider 

the identical particle model and then the non-identical one. 

V-3a Identical Particle Model 

When the ions are identical except for the sign of the charge the 

equations of motion become 

m • 'üK^Ot.  -»-a,   -v,*3k (1) 

d/%   *   € •»  äX^CU,. - »>.v/4 (2) 

S7'( €* ^f*^ Ä   o  . (3) 

We assume that the neutral-ion interaction is also independent of the 

sign of the charge (^ = 0). In the steady state approximation these equations 

become 

ö- s (v.1 ♦ flL^c + &'^>^y((^i * ^^ (5) 

and 

<i^(u^v-) « O 

co^fl- £ s C 

(6) 

(7/ 
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Actually it is not consictent to set curl £ = 0 for the general problem 

we want to consider, since the neutral flows of interest are those that 

tend to expand the plasma. The induced emf due to a finite dB/dt gives 

rise to a drift velocity u which in turn allows the field li^es to move 

with the plasma. However, here we are primarily interested in the effects 

of the polarization fields. Since the equations are linear we may solve for 

these two motions separately - first those for which curl £ = 0 and second 

those for which div g = 0 and then superpose the results. In this section 

we are concerned only with tUe former case. Thus we may derive the 

electric field from a potential cp: 

Throughout the present analysis we assume that the magnetic field 

is c nstant and aligned in the z direction. The component of the current 

velocity v parallel to the magnetic field may be derived from Eq. 5 : 

Using Eqs. 5 and 8, Sq. 6 may, after some manipulation, be reduced 

to the form 

(9) 
i 

where K is defined by 

oif ^ 

Out ^ *V* 

Si^ce the neutral drag term has only r and z components, the right- 

hand side of Eq.9 may be written in the form 

V-13 
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where a1 is the radial competent of the drag term. Thus, when the 

neutral flow and the plasma properties are axiaJly symmetric the polari- 

zatior electric fields vanish. In this case the analysis described in 

Section y-b may be applied to the motion. 

An azimuthal variation in either the ion density or the neutral 

drag may result in a non-zero charge density. The resulting electric 

fields may cotsiderably alter the ion motion from that expected in the 

absence of polarization fields. 

Substitution of Eq.  p into k    yields the following expression for 

the momentum velocity u: 

Ml) r 
(10) 

As expected, the motion parallel to the magnetic field is unaffected. The 

motion perpendicular to the field lines is the sum of the diffusion term u 

in the direction of the driving force and a term due to the polarization 

fields Ug. In the general case there will also be a term due to the induced 

field which we are not considering here. Thus the velocity in Eq. 10 is 

ref.ily the velocity relative to the field lines. The diffusion term is 

the same as that given in SectionIII-1. (Note that the Larmor frequency in 

Eq.io is defined in terms of (n^ + ine) whereas in Section III-l it is defined 

in terms of m. only). 

In this section we want to examine the polarization term iL. First 

V~lk 
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(LI) 

we note that 

Thus the motion Induced by the polarization fields (7 x f = o) is 

Incompressible (div u = 0). 

We now want to examine the nature of solutions of Eq. 9 in the 

special case when the azimuthal variations of both the electron density 

(i.e., w ) and the perpendicular acceleration are small. Before pro- 

ceeding to this, however, it will prove convenient to express the results 

of this section in terms of the current density J and the parallel and 

perpendicular conductivities, CL and a . The current parallel to the 

magnetic field is given by 

A 
4**«?«/^ • (12) 

Thus, since the conductivity is defined by the relation er - eJ/nt, the 

conductivity parallel to the field is given by 

(13) 

From Eq. 5 the current perpendicular to the field lines is 

oj - ^e^c/^c^ 

fx • entvc (C ^ ^)/c(^^/4) . {ik) i 

Thus, the perpendicular conductivity is given by 

91     * 4«X*l*/**^(»+  4i-£/teM (15) 
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The condition that div ^ = 0 in the stefady state (Eq. u ) may he 

now expressed in the form 

(16) 

According to this relation the force exerted by the neutrals on the 

ions in the direction perpendicular to the magnetic field may be thought 

of as inducing a current J across the field: 

J #  «1 Ä» *««,/* (IT) 

Since the total current mußt be divergence-free these wind-induced 

currents cause polarization electric fields to be set up in order to 

create additional currents %(= C^, ^ + ^ ^|   ) 8uch that 

div (Jn + J ) = 0 (18) 

The solution of Eq. 9 in the general case is difficult because of 

the anisotropy of the conductivity. However, when both the magnetic field 

and the collision frequency are constant, the anisotropic roisson's 

equation resulting from Eq. 9 may be reduced to the more familiar Iso- 

tropie form by a simple transformation of coordinates. To accomplish this 

we first Introduce the potential cp (£ = ^cp) with the z axis aligned 

parallel to B. 

By transformirg fron the real space coordinates (r, 9, a) to a set 

(r, 9, z') in which the coordinate parallel to the magnetic field is 

shrunk by the factor v'^ Tojj  , Eq. 9 may be reduced to the Isotropie 

form 

v'.^v*)  « -^'.(«I*"*./*.) . (19) 
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Here V is the gradient operator in the r, 9, z' coordinates and 

(20) 

In order to gain a better understanding of the nature of the solu- 

tions to Eq.19   we now limit ourselves tc the case in which the frac- 

tional azimuthal variations in the ion density (i.e.,  in q. ) and in the 

perpendicular acceleration (t    ) are both small.    Then, retaining only 

the first order terms in these quantities, we may reduce Eq. 19 to tte 

form 

v'V = - ^k **K ^ 
w. r l{**£)- ^r.^) (21) 

where ne is the mean value of the ion density (averaged over the azimu- 

thal angle) or 

Since solutions to the inhomogeneous laplace eqiiation are familiar 

and relatively easy to visualize, it is useful to interpret Eq. 21 as 

Poisson's equation for the (psuedo-) electric field i' f - £'= v'cp) due 

to a (psuedo-) charge distribution p', defined by 

(22) 

- 
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The psuedo-field E  is related to the  real electric field E by 

and 

E 
r 

*■" E 
r 

t;e — 

A' E z 
~" E' z 

(23) 

This psuedo-charge distribution. , p , may be thought of as a superposition 

of a number of charged rings, on each of which jr and ^ are constant and on 

each of which the total charge is zero, at each point the charge density 

is proportional to the magnetic field strength (wj, to the drag term 

C'a    lv    ■ due to the neutral wind (this drag term is roughly of the order 

of the perpendicular component of the velocity of the neutrals across the 

field lines) and to the fractional variation of the product n a, . 

Azimuthal variations in n or a, may result irom random inhomo- 
e    jj^ 

geneities in the neutral wind or in the ambient ion density and from 

atmospheric stratification of the neutral or the ambient iou density. 

Quite large variations in these quantities may be expected as the flcv: 

develops if the axis of symmetry of the neutral flow is not aligned with 

the magnetic field. In general, we expect non-zero values of P whenever 

the neutral wind velocity across the field lines is significantly different 

fron zero. 

In order to obtain a feeling for the resultant motion of the ion fluid 

let us consider first ths special case in which the neutral flow field is 

axially syametric with the axis of symmetry parallel to the magnetic field 

fa a /Ö9 = 0) and in which the ratios of the characteristic longitudinal 
V  I»' 
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dimensions (parallel to the field) to the lateral dimensions for both 

the neutral flow and for the ion density inhomogeneities are much 

larger than ^^7ä_. At high altitudes in the ionosphere this require- 

ment is expected to be difficult to meet in practical situations because 

of the typically large ratios that usually obtain for c^ /<^ (see 

Table V-2).  However, the simplicity of this case warrants its treat- 

ment firstt 

Since, in this case, the characteristic longitudinal dimension is 

large compared to the lateral dimensions, even in the r , 3 , a coordinate 

system, the resultant potential distribution in this coordinate system, 

as well as in the real space coordinate system, is approximately two- 

dimensional (r, 0 only). 

Let us ask what happens to randomly distributed inhomogeneiti'ss in 

the ion density. The total electric field at any point may be thought 

of as a superposition of contributions from individual irregularities. 

Suppose that the ion density distribution may be represented as a sum of 

contributions of the form, for example 

^t" *** I» 
[ - (*- *)>;] {2k) 

*The present discussion has been based on the assumption of equal masses 
for the positive and negative ions. However, it is shown later that the 
appropriate parameter for non-equal masses is still the ratio of the two 

conductivities. 
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Direction of the wind 

Fig..V-la.    ifodial Neutral wind interacting with plasma inhomogeneities. 

Diffusion Velocity 

OÖ 

Fig. V-lb Resulting diffusion of the inhomogenleties. 
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and that the characteristic dimensions (r ) of the irregularities are 
0i 

small compared to those of the neutral flow field. As a result of the 

variations in n in the direction of a, x Ü) . polarization charge 
e i   c' 

distributions will be set up (see Fig. V-l). The resultant electric 

field near the center of an irregularity (r ^ r.) will be of the order 

P 

(25) 

where £"is the field due to all the other irregularities. Since these 

are randomly distributed we expect £"=■ 0. Equation 25 will approximately 

represent the electric field in the imrjediate vicinity of the irregularity 

only. Ifce drift ve.'locity induced by this field will he of the order 

tt »  S««c -,  K (26) 

Thus, regions in which the ion density is greater than the average tend to 

move in the direction of the neutral wind and those having a lower denctty 

move against the wind (l ^e that the velocity is not sensitive to the 

dimensions of the inhomogeneity, nor to the value of the magnetic field). 

Since this motion is incompressible (Eq. 11^the motion is simply a 

rearrangement of the plasma, the regions of higher density being blown 

outward in the direction of the neutral wind. A mean radial velocity, 

; 

I i 
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u , may be evaluated from 

?5.ü, «   T^^4'^ (27) 

Thus  the mean outward velocity is given by 

Ü, «   ^i M • (28) 

The fact that the drift velocity is independent of the magnetic field 

cannot be trie in the 1; nit of B -• 0. T5ie restrictions on Bq. 26 are that 

the charactjristic dimensions of the inhomogeneities be small compared 

to that of the neutral flow field but large compared to t.  larmor radius. 

Hius when the Larmor radius is comparable to tkc  flow field dimensions 

Eq. 28 fails. When the characteristic dimension of the inhomogeüeity is 

comparable to that of the neutral flow field the raeon  outward velocity 

cannot be obtained from Eq. 28 . Tne general nature of the  motion in 

this case, however, should he similar; the high density regions moving 

with the wind, the low dei^sity regions gainst it. 

Equations 10 and 28 thus show that there are two modes by which the 

plasma may diffuse across the field lines. In the first, the diffusion 

velocity is given by 

^  ' 
KM 
i* 

(£9) 
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This is normal diffusion in which the diffusion velocity decreases with 

increasing magnetic field as B" for strong fields. In the second, the 

diffusion velocity is 

(30) AA, 

This is  the so-called anomalous diffusion and is due to varying polariza- 

tion electric fields set up as a result of inhomogeneities in the plasma 

densityv    In this case of cylindrical symmetry it is independent of B so 

I'-.ug as the Larmor radius is sufficiently small. 

We will now examine the case wMch we expect to he more realistic, in 

which the longitudinal dimensions of the neutral flow tieId and of the 

inhomogensixies are small compared to Ja«  /a.   times  their lateral dimen- 

sions.    In the r, O, z    space the ragions of non-zero charge density are 

thus disc-shaped, the thickness in the direction of the field being much 

less than the radial dimension.    The magnitode of the charge density is 

the same as v.^fore hut now the volume is much reduced.    Thus we expect 

weaker electric fields and reduced diffusion velocities.    In order to esti- 

mate the magnitude of the reduction wc compare the value of the radial 

electric fie2d on the mid-plane of disc of thickness i and radius R to ■Mie 

value expected for infinite cylinder of the same radius.    Rough calculations 

indicate that b. reduction factor of the order of 

(31) 

is expected vhen R» i.    If the actual longitudinal dimension is L, then 

we expect the radial electric field to be reduced by a factor of the orde->- 

X   ^ A a. « 2R N 

*- K0 + ^) 
♦  L I^A. where p - - / Ä , 

RVa,, 
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Fig. V-2a Charge distributions in the real and transformed space. 
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Fig. V"2>; Electric field distribution in the real and transformed space. 
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In the r, 9, z coordinates this radial field vill be relatively uniform 

(within a factor of 2 to k)  for jz'j s R« In real space, therefore^ the 

radial field is more or less uniform for M s !a R. In other words, 

the high conuuctivity along the f^jld lines causes the charge distribution 

to spread out more or less uniformly along the field lines over a width 

^»H. 

We now consider what happens to a field-aligned inhomogeneJty in the 

plasma whose  length is L and v^.dth is R,    Here we assume tlmt the neutral 

flow also has at least the length L.    The drift velocity induced by the 

electric field will be of the order 

u, .. % 4 (»♦ ^W     '33, 
This drift motion will be present not only in the 

V " AT1" aeity {\i\  s l/2) but also beyond it (out to z =- 7 -=- R).    Within 

where 0 

inhomogene 

thu inhomogeneit.y, where the drift velocity is correlated with the ion 

density, this motion results in a mean diffusion velocity across the field 

lines given by 

(3^) 

Beyond the inhomogeneityr L < z < ./-■ R ), the electric fields cause the 

same type of incanpressible rearrangement of the plasma but, because the 

drift velocity is uncorrelated with the ion density, no mean transport of 

ions occurs. 

In this case, where the longitudinal extent of the inhomogeneities is 

not too large, the anomalous diffusion velocity varies as B" for strong 

fields and is dependent on both the degree of inhomogeneity in the ion 

r 
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cLensity and the ratio of length to width of the individual irregularities. 

In general we would expect tht irregularities in the ambient ionosphere 

to be field-aligned but we do not presently have estimates of their strength 

or shape. 

In Table V-2, we have listed estimates for the magnetic field dependent 

factors for the normal diffusion and the anomalous diffusion velocities as 

a function of altitude. For the normal diffusion term the factor listed is 

the ratio of the diffusion velocity to the velocity that would obtain in the 

absence of the magnetic field. The same quantity is listed for the anomalous 

diffusion velocity in the special cases when the parameter y  has the values 

1 or 10. Here y  is defined as 

C-rO |(1 + ^l0 
Values for this quantity between ?, and 10 might be expected to be induced by 

a neutral flow field whose longitudinal dimensions are of the oräer of 10 

times its lateral dimensions (a typical configuration) and whose axis of 

symmetry is not aligned with the magnetic field. In this case we would 
,- A n  2 

expect values for'. J   of the order of unity to arise as a result of 
e 

the predominantly one-dimensional motion of the plasma along the field lines. 

Although the preceeding analysis is not valid for such strong variations in 

the p.lasma density we assume th*1 effects will be qualitatively similar. 

Also, when the neutral flow axis and magnetic field do not coincide, polari- 

zation fields will develop due to the second term in Eq. 21: this has been 

ignored here. 

Subject to these approximations we would expect values of y of  the 

order of unity when the neutral flow axis is perpendicular to the magnetic 
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field and of the order of 10 when the flow axis is close to but not 

precisely aligned with the field. When the ang1e between the flovr axis 

and the field is less than the width to length ratio of the neutral flow 

it is wit clear what order of magnitude might be expected for (A ne/ne T* 

Table 1-2. Steady state ratios of diffusion velocity to the values expected 

for zero magnetic field 

Anomalous d Li f fusion Normal Diffusion Longitudinal 
Spreading 

Ratio 
Vq^/q, 

Altitude y = 1 y = 10 Ambient Shock Ambient 

km 

100 0.T0 1.0 1.0 l.U 

120 .06 O.oU 0.98 17 

150 .008 .08 0.01 0.5 125 

200 (.0015) (.015) 0.000U O.Qk (670) 

250 (.0006) (.006) 0.00006 0.006 (1700) 

300 (.0002) (.0C2) 0.000006 0.00O6 (5000) 

- 
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In Table V-2 we also list ehe spreading ratio, -Ja-   fa.,  -  tlie ratio of 

the distance along the field lines that the polarization charges a-e spread 

to the lateral dimensions of the flow in the steady state. Above 200 tan 

altitude the values are of the order of 500 o. greater. These very high 

values are not expected co be obtained in practice for two reasons. First, 

since the lateral flow dimensions at 200 km altitude are of the order of a 

few kilometers, this ratio corresponds to spreading distances of the order 

of thousands of kilometers. Over these distances along thi field lines the 

collision frequencies cannot be assumed to remain even approximately constant. 

As the field lines penetrate to lower altitudes the perpendicular conductivity 

increases^effectively tending to neutralize the charge distributions more 

rapidly. In the other direction, as the field lines climb to higher alti- 

tudes, the cross conductivity decreases, reducing the leakage current. This 

altitude effect predominantly determines the manner in which the charges are 

finally neutralized far from the neutral flow perturbation but is not expected 

to have much influence on the electric fields in the immediate neighborhood 

of the neutral disturbance. 

A more important effect is the result of the fact that the neutral flow 

is not a steady-state phenomena and, under thest high altitude conditions, 

the quati-steady approximation may fail as far as the anomalous diffusion is 

concerned. The argument is as follows: We visualize the neutral motion as 

a primarily lateral expansion with characteristic expansion velocity V and 

starting at time t = 0. Due to various plasma or neutral flow inhomo- 

geneities or to positive-negative ion asymmetries (see Section  ), charge 

separation occurs within the confines of the reutral flow field. Because of 

the high conductivity along the field lines there is a tendency for these 
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charges to spread out rapidly in tb° direction of the field. We expect 

that this spreading is accomplished as a disturbance propagating a*- the 

Alfven speed C. along the field lines. The nature of this Alfvln motion 

is discussed in Section V-o, Thus the maximum extent over which the charges 

may be srsread by the time t is C.t. Since, at this time., the lateral flow 

dimensions are of the order of Vt we expect that the maximum value of the 

spreading ratio is C /v. During the initial expansion of the neutral flow 

we expect values of \r between 1 and k  km/sec (say a mean value of 2 km/sec). 

Thus, maximum spreading ratios during the first several seconds of the 

motion are expected to be of the order of 100. (Here we are referring only 

to the spreading of disturbances whose lateral dimensions are comparable 

to those of the neutral flow field. Smaller disturbances will attain their 

quasi-stsady state values more quickly.) 

According to the above argument we expect that the appropriate values 

for the anomalous diffusion velocities above an altitude of 150 km are not 

as low as those shown in Table V-2 but may remain more comparable to the 

values at 150 km. Thus it appears that below aoout 200 km the normal diffu- 

sion mechanism can account for most of the rotion across the field lines in 

the region of the neutral flow. Above about 200 km the electric fields due 

to polarization charges may contribute much of the cross field motion. The 

relative importance of each mechanism depends on several parameters (shock 

strengths and velocities, ambient ion density, angle between trajectory and 

magnetic field, degree of inhomogeneity, etc.) so fiat these values can only 

be expected to be indicative. More detailed examination of specific situa- 

tions will be required to get quantitative results. 

i - 
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The present considerations  indicate that at some altitude between 120 

and 150 km the ffiotlon of the ions across the magnetic field begins to he 

apprec iahly reduced below th^ neutral velocity.    Above 20C km altitude the 

lateral velocity of the ions snay be expected to be between 1 and lOjt of the 

neutral velocity during the first few seconds or tens of seconds of the 

neutral motion. 

At late times, when the neutral density is comparable to the ambient 

density and the polarization fields have ,-eached their quasi-steady values, 

the cross-field motion will be even further suppressed. 
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V-Jb. Linearized Steady State Approximation for Non-Identical Ions 

When the positive and negative ions do net have Identical properties, 

charge separations can result from this asyunetry. In this section we 

develop ti.j steady state equations in the approximation that the electron 

mass is small compared to the ion mass. For small values of m /m., Eqs. V-2-5 

and 6 may be recast in the form (for u = v = 0) 

£ » (*«5\ + *.  ♦f'-v.^jA (i) 

and 

?.-(|-*),a. ^«^^(wj*^^,  -%^Vi 
• (2) 

Here we have defined a source term Ap according to 

(i) 

This term represents a current source smd is non-iero in general because 

of the asymmetry between the interactions of neutrals with the ions and 

neutrals with the electrons. 

Equation 2 may be rewritten to express the current velocity v In 

terms of the driving forces: 

where ? is an effective electric field defined by 

Here 

^P 

{k) 

(5) 

(6) 

i- i 
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(7) 

and 

\ ^^rM^\ - (8) 
The steady state condition that dlv 3=0 and curl £=0 yield an equation 

for the electric potential due to the polarization charges: 

- <4W G  (9) 

where the source function (* is defined by 

As was done in Section V-3a we assume first that the ratio of the parallel 

conductivity a. to the perpendicular (Pedersen) conductivity op is 

independent of position. We also, as before, transform to the space 

r , 6 , z in which 

r = r 

e' = 9 (ii) 

If 
If V represents the gradient operator in the r , 9 , z space,we may 

rewrite Eq.   in the form 

7'(a;vV) +^'«p «v^)   =-v^       (12) 
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If we assume that the spatial variations in the Pedersen and Hall 

conluctivities are small, then the first order approximation to the 

potential equation becomes: 

V'f =- (^-fAHUv^j ^l- (13) 
When both the plasma and the driving neutral-ion interaction are axially 

Symmetrie (we always assume that the driving forces have r and z components 

only), Eq.13 reduces to the form: 

2     2 
Throughout most of the i' nosphere the term ß v v /tu is small compared 

to unity (see Table III-1>* in this case  _ "^'l^P , and 

Of Ä U) 

MTC 

V, 

\4 (?*M<.f 
(15) 

The ratio of perpendicular to parallel conductivities is given by 

^ 

% 

f ^ H. 
uC* ♦ v,1- 

(16) 

Since we expect va.'ues for Xg to be smaller than those for a. by a factc 

of the order of Jm /m.,  the source function G in Eq. 10 is approximately 

This assumption is made throughout the remainder of this section. 
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represented by 

Q ^ ^( «. 
%) - S\\ (IT) 

For the axially symmetric case, the po1 ential equation then tak.-s the 

form: 

v'  f . -^ OLMJ ( ^ «fi,. - 
«f v? s^ .). (18) 

•Rie first trrrn on the right-hand side of Eq. ,18 results from the fact 

that the ions move more easily across the field lines than do the electrons. 

The second term is independent of the magnetic field and is a result of the 

difference between the acceleration- imparted by the neutrals to the ions 

and to the «  ;rons. 

The drift motion due to f i, radial variation? of the driving term a, 

may be evaluated as follows. Due to this ' "i, the electric field has 

value, wi+ain the confines of the neutral flow field, of the order of 

where f is the reduction factor (defined in Sectionlll-3a due to the spreading 

of the charge distriuution along the field linet• 

i « -f (i+  -L f) 

Using Eqs.l,2and J+ we mpy roughly evaluate the magnitude of the outward 

drift velocity. Neglecting terms of the order wm /in., compared to unity, we have 

U.0J!+ 
«... "t  . # 

tf 
+ £x .^ • <i£)-%]feb 4 (19) 
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We may estimate the outward drift to be 

% .-  -JiL. ^( \-i +0(*^/>'')J-     (») 

Thus, when the reduction of the polarization field by onisotropic 

conduction along the field lines is considerable, (f « l)  the outward drift 

motion is determined by the ions alone and has the same value as in ehe 

identical particle model (Section V-3a). For cylindrical symmetry, 

however, there is no conduction along the field lines (f=l).  In this 

case the outward drift velocity, although only evaluated by Eq. 

to order of magnitude, is much smaller (c.f. Eq. Ill-1-2) due to the fact 

that the electrons now have to be dragged across the field lines. 

When the variations of the plasma density in space are appreciable, 

additional polarization fields will arise. As was shown in Section V-3a 

these can result in an appreciable increase in the rate of diffusion of 

the plasmc exross the field lines. We will not attempt a detailed 

evaluation of these motions here but simply identify the terms giving 

rise to the drift motion. This case is somewhat different than when the 

ions are identical since here a polarization field exists evan when the 

plasma is uniform. 

In the linear approximation we may separate the electric field into 

two terms €0(=^P0) and. £,(=-: Vcp.;. iL is the field that would exist in a 

uniform plasma and g, is the contribution due to variations in the plasma 

density and (azimuthal only) in the neutral flow. Here cp may be evaluated 

from 

,Z(f       •   - V'^  + S V. fC (21) 
«V 
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■Rie potential due to the variations in plasma density is determined by 

The first terra in Eq. 21 is the only one appearing in the identical ion 

model (Eq. 9  ). The other terms result from the fact that the positive 

and negative ions are different. The first two terms in Eq. 21 give rise 

to electric fields which cause predominantly radial drift motions. The 

third and fourth term result in predominantly azimuthal drifts and the 

last term does not give rise to ~. drift motion (to a first approximation). 

More detailed considerations similar to those in Section v-^a  would be 

required to evaluate the effect of these additional terms. In any case 

it is clear that the electrons affect the plasma motion primarily through 

the polarization fields, and that the importance of the electron-neutral 

and electron-ion interactions depends on the extent to which the electrons 

can neutralize the polarization charges by conduction along the field lines. 

In general, this question can only be answered by considering the geometry 

and time dependence of the specific problem of interet'' in some detail. 

In the following paragraphs we restate this conclusion in more general 

terms. 

The first term on the right-hand side of Bj. 21 is the (pseudo) charge 

density that results from the fact that the electrons are more strongly 

bound to the field lines than are the ions. In the cylindrically symmetric 

case, the charge neutral condition requires that the radial velocities of 

ions and electrons be approximately equal. Rather strong radial fields must 

then be set up to pull the electrons across the field lines with the ions. 
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When the flow dimension in the direction parallel to the field is 

not too large, the electrons do not necessarily have to move with the 

ions.  In this case, when no azimuthal polarization electric fields are 

present, the motion across the field lines is primarily of the ions only. 

The electrons move relatively freely along the field lines in an attempt 

to maintain their density approximately equal to the ion density. 

When the distance the electrons have to move to compensate for a 

given lateral ion motion is not too large (i.e., small compared to JCL/CU 

times the ion displacement), the forces required to move the electrons 

are small compared to those required for the ions. Since, in the absence 

of an externelly applied electric field, the driving forces exerted on the 

electrons are small compared to those exerted on the ions, the motion of 

the plasma is largely controlled by the properties of the heavy ions and 

their interactions with the neutrals and is insensitive to the electronic 

properties. However, in certain situations the electrons can have a 

considerably stronger influence on the plasma motion than simply the mass 

ratio would indicate. For example, when the symmetry of the neutral flow 

field is such that the electric fields induced by the ion motion are 

nearly perpendicular to the magnetic field lines, relatively large 

electric fields have to be set up in order to get significant motion of 

the electrons. Also, when the distances the electrons have to travel in 

order to compensate for a given ion motion are much xarger than the ion 

displacements, the electrons must be accelerated to considerably higher 

velocities than do the ions. These effects will tend to increase the 

influence of the electronic properties on the motion of the plasma. 
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Formulation of the Nonlinear Equations for oimplifled Q- "etries 

In the region of the iorosphere under consideration, neutral particles 

k 
are about 10 times more numerous than charged particles. On the other 

hand, the Lärmor cyclotron frequency of each charged species is considerably 

higher than its collision frequency.  In this situation, since the earth's 

magnetic field is rather weaH, a one-fluid hydrodynamic calculation of the 

motion of the uc-utral particles may be carried out without regari to the 

currents or ponderomotive forces which this motion induces. The ions and 

electrons, however, describe a number of Larmor cycles in the geomagnetic 

field between collisions, and their motion is therefore strongly affected 

by the magnetic field. The following simple example provides some Insight 

into the situation. 

Consider a charged particle with charge q = ±e, immersed in a uniform 

magnetic field and a bath of neutral particles. If collisions are infre- 

quent compared with the rate of Larmor gyration in the magnetic field, we 

may view the collision as a displacement of the guiding center of the 

particle. A collision will move the guiding center by at most 2 rL 

(r - mVC/e^, is the Larmor radius). We expect the average "drift" velocity 

0 (B field out of paper) 

Fig. 1 Ion in a Iveutral-Farticle Bath 
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of the  guiding center to be  of the order of  {u/ui  ) V   ,  where f   is  the 

collision frequency with the neutrals.    The collisions will predominantly 

o-cur in tlie portion of the  cycle when the  ion  is moving against the 

neutral stream, and the  collisions will tend to make the particle drift to 

the right  (ill Fig.   l)  if it  is positively charged and to the  left  if it is 

negative.    A  calculation of the drift motion,  taking averages over all 

collisions  (Appendix II), will reveal that  the  lateral average velocity 

(in the direction q V    X B)  is uu {i/2 + Cif)      V  , and the drift parallel 
iv L L ) 

to V is at the speed v  \U    + at)" V«. The drift velocity lb always per- 

pendicular to the direction from which the neutrals appear to come, but to 

the ion in  its drifting motion the apparent direction of the neutral stream 

changes] hence the component parallel to V arises. The above simple pic- 

ture neglects electric fields. 

Since the sign of the component of drift motion perpendicular to V,. is 
H 

dependent on the sign of the charge, an electric current will arise.    This 

current will cause a change in B (though slight), and the time-rate of this 

change will induce an electric field, according to Ampere's law.    This 

electric field will bring about an additional drift of the charged particles, 

according to the well-known expression 

Vd = c E X B/B^  , 

which is independent of charge.    The simple picture of figure  1 will hold if 

we perform a Lorentz transformation to the frame of reference in which E = 0 

—• 
if E does not vary significantly over a larmor radius. 

In the following sections, we will undertake a detailed solution of the 

ion and electron motion, including the influence of the magnetic and induced 
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electric fields and the neutral flow field, in the vicinity of a missile 

traversing the ionosphere. The philosophy will be to understand one 

simple geometry, namely that of cylindrically Symmetrie neutral flow with 

the geomagnetic field along the axis of symmetry. We will also discuss 

preliminary attempts to apply these results to more general neutral flow 

fields, for example the spherically symmetric motion of the neutral gas 

in a uniform magnetic field. 

In the analysis, it will he assumed that ions and electrons collide 

only with neutrals. This approximation will be Justified on the basis of 

the relative number densities and cross sections. It will also be shown 

that the relative change of the geomagnetic field induced by the flow is 

very small. Any ionization or reccmbination occurring during characteristic 

flow times will be neglected, ar v,hey have little bearing on the plasma 

motion and are very difficult to include. 

A number of other simplifications arise from the large time scale 

peculiar to the flows under consideration. For example, since the mean free 

time and mean free path of the neutrals are of the order of 0.1 to 1 sec and 

1 km, the passage of the neutral flow past a point in t^ace excites plasma 

oscillations (whose frequency is of the order of 10 mc/sec) only very weakly. 

In addition to these effects, it is expected that the electron motion 

is coupled to the ion motion through the magnetic field, effectively 

limiting the speed at which divergence-free current disturbances in the 

electron fluid can propagate through the plasma. This limiting velocity 

is expected to be of the order of the ion Alfven speed. 
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Basic Equations 

The motion Is governed by the following equations (using c. g. s. 

Gaussian units)  , with subscripts i and e referring to ions (of various 

species) and electrons: ^ 

V« 8  «   e/t    +*"$ 

^ ^ \7- (>*'• Vi)   *0 

(i) 

(2) 

(3) 

(5) 

^^Y ?5^ ^'^y) - ~V*1% + iM^B+Vi*) +**& (6) 

^fft^« 
C^^v,.^^ ^V-15-c^(e^>^^ 

The collision integral for momentum exchange of the Jth species with all 

other specie, i.:1 

% 'IÄ k- %) i- <*> fa) <L I ?-V ^ ^ (8) 

where C, is the velocity of a single particle of the kth species and f is 

the velocity distribution function for the kth species. C represents the 

velocity after a collision. The momentum transfer cross section used here 

is defined as 
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a = 21T J fr(9)(l-cos 9 ) 5ln 9 dB 0 

V is tbs mean velocity of the Jth species andlp is its pressure Censor. 

We will consider only cases vhere there la a single ion rpecieE, for sim- 

plicity. The energy-conservation equation is omitted since, in all cases 

considered, the pressure gradient term in Eqs. (6) and (7) will be neglected 

in comparison with the momentum-exchange integrals I., I . In this approxi- 

mation Eqs. (l) to (7) form a closed system. No chemicdl reactions have 

been included. However, charge exchange between an ion and a parent atom 

(same species), which is the dominant charge-transfer process, will be 

included as part of the momentum-exchange integral, since for such a pair 

the resi'l*'' of charge-exchange and momentirn-exchange are equivalent. 

ForKidable difficulties arise in the evaluation of the collision inte- 

gral in (8). The distribution functions f , f, can hardly be called 

Maxwellian with any confidence since we must allow for the possibility of 

qui^e large ion "slip" relative to the neutrals; a three-fluid model using 

Maxwellian distributions could be used as a good approximation in the event 

that the fluid were in quasi-equilibrium. However, the criterion for the 

validity of this approach is not clear when the mean relative velocities 

are not small compared with thermal velocities. It would be very inaccurate 

to approximate the f 's with ö-func^ions, since the thermal velocity of the 

molecules si-1 ions behind the shock is of the same order as the velocity of 

propagation of the shock into the undisturbed surrounding. 

Even if the f 's were known, or is usually not a convenient function of 

the relative speed of the interacting particlet. The integration of Eq. (8) 

See Section III-2. 
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-n 
is quite complicated even if we ass\ime Gome  r     potential law between 

particles. Therefore we will simply lump all of the oacertain factors in 

the integral in (8) into a collision frequency., v}  which we may assume to 

he constant to a reasonable approximation: 

V" T.. ** vow(v\0 •j        «-.       •»    '»W V v*i    \ J do) 

{u .,   is proportional to the density n  .) 

Equation (10)  is exact for an interaction potential which varies as 

r"  ,  (the so-called "Maxwellian-molecule" force  lew).    In this case a 

Veil* ^€?S   £LS      V ) rel   , and the  integrations  over arbitrary f ^  f    beccxße trivial. 

2 -k Dalgarno    has shown that the r      interaction potential is a rather good 

approximation for ion-neutral encounterr at low energies (~ 1 eV).    For 

hard-sphere potentials (n = », T    independent of energy), Zhdanov    has 

shown that for the quasi-equilibrium case j   (V^  - V. ^ « V-pHg^jaTj ^^ 

collision integral I again takes the form shown in (10). 

Since a large part of the subsequent analysis will involve the simple 

case of flow which is cylindrically symmetric about the geomagnetic field 

direction, we now obtain the form of Eqs.   (l) to (j) in this speoial case. 

In cylindrical coordinates, with 55" = jTr ~ 0
J 

an!i dropping V«iR 

(12) 

(13) 
I 
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(16) 

(17) 

V^* i |L
r(T^u0"o (u) 

^3 ^ ^ ^CTN^C) * o (i5) 

W   *  u'W - "^   a   «;{e« " U-^) ' Vi01        (1B) 

V| + u^ + u^  ..&(E,. u^) - 4^       (19) 

Here u, v are radial and azimuthal components cf velocity.    The neutrals 

have only a radial velocity VL.    All species of neutrals art. assumed to 

have the same mean velocity, when averaged over a few collision times or 

mean free paths.    Since E    = 0, there being no motion along the z-direction, 

the r & 9   components of Eq.  (l) yield öß/ät = 0, öBQ/H = 0;  hence 

B    = Bn  = 0 for all time, 
r        tj 

We have elected to work with the equations of motion of the  ions and 

electrons,  since it is more direct than to think of such motion in terms of 

an    '"Ohm's  law" which jncludes Hall currect and ion slip.    The Ohm's  law 

approach results in a simplification only if a steady state is assumed.    It 

is shown subsequently     that E.J.  (n) and (7)  lead to the usual form of the 

generalized Ohm's  law in a steady,  uniform state. 
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Before proceeding to numerical calculations, we will learn what we 

can from a linearized approximation to th? governing equations. We will 

consider the general axiully symmetric case, since the assumption of 

cylindrical symmetry is needlessly restrictive in the linearized approxi- 

mation and since we will want to discuss more general axial symmetry later. 

The object of the present section is to determine the accuracy of 

several levels of simplicity in the governing equations. This is done in 

the hope that it will be possible to neglect te'tos which are related to 

high-frequency oscillations of the plasma, and thus make possible numerical 

calculations with reasonably long time steps. For example, if n - 10 cm , 

T   -1 
the plasma angular frequency is 5'5 x 10 sec  , whereas we will be con- 

cerned with flow times of the order of one second. 

Assuming a constant density of neutrals, n^, constant ion and electron 

collision frequencies with neutrals, v .  and v   , and treating ve, v 

(n - n ),  {xi.   - xi.   )  and (B - B ) aa first-order quantities and neglecting 
e   eo '  i   ic' o 

^•jpwe obtain from Eqs. (l) to (?) in the axially symmetric case the 

following equations (with cylindrical coordinates and d/ä9 = 0): 

(20) 

(21) 

1    £   (**•) (22) 
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JOB* ^   ****.. (u  .uÄN -*. ^11' 

r— " —* « ! (-g. -lu) -v *  Z 

5t 

{2h) 

(25) 

(26) 

Taking i-N; curl of Eqs. (23) to (25) and d/St of (26) to U8), we 

obtain 

- l-r^    \Ii  g,4Tr€^ SLA.  X t    ^^ 

(28) 

(29) 

(30) 

(31) 

t ^(4 1" ^1) * ' ^ ^-^)-^ '33) 
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Thus ^  is uncoupled,   as are a.   and a ,   and there  remain 9 scalar equations 
1       G 

in the unknowns v ,v , and E. 
i e 

The plasma motion May be viewed as  a forced oscillation with a forcing 

function V ^t) independently prescribed, 1 problems of concern here, 

significant variations of the flow field require significant fractions of 

one second to take place; thus we expect the Fourier components of V (t^ 

at tne plasma frequency to be small. An important simplification will 

therefore be the assumption that r^ - n , whxch, as we shall sec, elimi- r i   e7 

nates the unimportant high frequency oscillations. In thii analysis 

we restrict ourselves to the condition that the radial and longitudinal 

motions of the positive and negative ions are identical. This result 

follows from the assumption n = n when the particles are identical in 

general or when the driving interactions have cylindrical symmetry if 

the partirxes have different masses. In the general axially symmetric 

coniLguraLion for differing particles, longitudinal electron currents may 

radically axter the coupling of the ions with the magnetic field. However, 

fc - the present analysis, we are concerned with examining the non-linear 

I; 

effects and we shall make the assumption that u = u u and w    = w.,   a w 
e        i 

(Eqs, 23j  30) in order to get a tractable first approach,    This permits only 

azimuthal currents,   which do not change the Coulomb E-field,    In order that 

this model be self-consistent,   it becomes ne.essary to drop Eqs,  (33)  a^d 

(35)j and to determine E , E    by the requirements that u    = uJ  and w    = w^ x    /7 r      z eiei 

in ^he r,  z components of Eqs,  (31)  and (32).    We then have four coupled 

equations (assuming v    = 0,  a non-rotating neutral flow field): 

(36) 
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lu addition, there are the uncoupled equations: 

(37) 

(38) 

*£  . - ^. CB« - "-Is) - ^ ^ !3Q) 

In the identical particle mode], the electrons and ions have equal 

masses, and equal but opposite charges. In this case (from (38) 

and (39))j v. = v = v, and one more dependent variable is eliminated. 

Furthermore, substituting Eqs. (37) and {ko)  into (4l) and {k2)  this limit 

yields E  = E = 0, We obtain a similar form of the equations when '      r    z 

m ^ m , by introducing the varitblea: 

V * Vi + ^«^/^l (1,3) 

Then, from (38) and (39), 

iko) 

ihl) 

>2) 
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^(^-^) -iV- (H-^) (H) 

^ ,    ^ IHt-^Jv  - v/^ 'bt /m 
(^5) 

where m - m,  + m . y      - (m.v    +    mi/, )/ui and 1/      - (m.y^  +    m f   )/m. 
i        e/e ie oi' i ii ee 

From (^5)j we esxiTiate v to be of the order of 

Since we expect v /v. * (ic./ra,)2> the term involving v in {kh) is smaller 

than the term involving v by (m /m.)2. Thus for m « m. , eq .ation {hk) 

takes the form: 

^^.^-^•w- 
(46) 

Equation (kS)  has the same form as does the combination of (38) and (39) for 

ions of equal mass and opposite charge. The resulting simplification w.ll 

be used extensively. 

We now have three models of the linearized problem, which we wish to 

compare in detail. These are represented by: 

a) Equations (31) to (35)^ the general problem, which we shall be 

able to handle only for cylindrical symmetry. 

b) The "electrical neutrality" model, n = n , which employs 

Eqs. (36) to (39), and Wi.ich holds for arbitrary axial symmetry 

for identical particles in general and for non-identical particles 
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when it  can he shown that  tht       and j^ motions are  the same. 

c)    The  "very unequal mass" model (  m   « m    and    n    = n  ).  in which 
e    i     i   e 

Eqs. (38) and (39) are replaced by (46), and which has the same 

mathematical form as the "equal mass" model; it also permits 

a formal axial symmetry. 

We now wish to express the equation for the electric field in terms 

of a source function. To do this, we first perform a Fourier-transformation 

in time of the equations governing each model.  In each of the three models, 

we substitute into Eq. (34) from the other pertinent equations to obtain a 

differential equation in space for the transform t, which has the form 

where 

v*« + a f |<*(.„i. ijj . R iV) uN t?, w) 

The functions A(w) and k^co) are sha-n below for each model. 

(a)    General Case (cylindrical symmetry). 

k    = £.   ^   tu,wf 
u»t c1 

I >+f-^- tu)iwe 
%{*£) 

(^) 

P Cu>) - 
tw^Xtc-nf, 

U>i 

twu^ $% ^^HV^H] 
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(b) Electrical Neutrality (axial symmetry) 

kv = "c1 
^^   ^ 
cü- e1 O^O (50) 

ftCu»)   ^ 
O^JWtJS&s 

^SH 

(c) "Very unequal masses" (axial symmetry) 

•' H 

(51) 

(52) 

ftc^--   ^^c^>   A*     K:'       ^ 
^l  ^-toa  1 + 3 

(53) 

co        tu     ~ 
e     _  i    ? 

■e  i; ■u' gi ' J/,-la> ' % " ^^fc' g  gi 
e        i 

Here we have used the notation g 

and g', g! mean that v  , v.  are replaced by y , v    in the expressions for 
G i G 1 G X 

ge> gj.«    Also, a| = l«rneo?7me, C0e = e3o/me  , 'ji± = eBo /mi  , and we 

denote OL ^Jw.us* as the "hybrid"  larmor frequency. 
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V-ht   Aualyslü of  the Noniiiieai' EguLitions Toi' Cylindrical Gecacebry 

In the numerical analysis, we will be restricted  to the cylindrrlcally 

symmetric case except; for several simple examples discussed in Section 

For simplicity we will again take IL., U.  and u    as  constants,  but here we 

will include the nonlinear t^rms  in the equations. 

The equations employed are Eqs.   {lh) to  (22).    We know  that the 

equations are hyperbolic  in nature and therefore that solutions may be 

obtained by marching forward in time.    This is shown by combining Eqs.   (l) 

to (?) to obtain: 

In the cylindrically symmetric case at hand, for one ion species present, 

this equation takes the form (for the azimuthal component): 

1(1 ^(/Ee))  -- 'ill 2/*.vc.*ccfe)4l £%.._ 
^fW ^rV        V c> 'Vkl   v '     c    ^t    (oT) 

The treatment of the equations numerically is ccasiderably different, 

lepending on whether or not the displacement current term in Eq. (6") is 

neglected. To gain insight into this question, we refer to the linearized 

approximations studied in the preceding section. Requiring all the dependent 

variables to vary as exp(iKr - iwt^  and taking the limit of large Kr, we 

find that the dispersion relations for the three models considered are 

given, respectively, by Eqs. (1*8), (50) and (52). 
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For 0)" « üL, K is given by Eq. (62). For aj~ ui,, and co" » v ,u   , 

from (48), 

*s c k ^-i   *£   U 
ui w»   _^(u.^.W,V)+«5«f 

(68) 

given the  index of refraction. 

-- - 
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From   Eq.   (")♦     we  see  that  if we  use Model '';■•.",  usclllatory solution? 

are possible for W-^üJL,«*)   ^uL + aJUV,, and in a narrow band 

uip - a) 40p ~uiL "•'ut + W,«     (We have used  the fact that uf/uf, <<  -•) 

On the other land,   if we use the dispersion relations  (50) and (5^)i 

again neglecting collisions, we obtain 

**     X       \* (69) 

We find oscillatory solutions for OJ ^-ak and UJ ~ u^D. If the displacement 

current is neglected ("l" in Eqs. (68) and {-?/<),  all solutions are expo- 

nentially decaying for tj > oLU in Models (b) and (c) (electrically neutral 

nlasma), although there remains a narrow band of oscillatory solutions near 

ü; = Uip In Model (a). 

Thus if we employ the assumption of electrical neutrality and neglect 

the displacement current, only the frequencies cü^ iüp are significantly 

misrepresented. Since, as we have shown in Section , phenomena of interest 

occur at characteristic frequencies far below OL,, we may neglect the displace- 

ment current with very little error. For example, for tu « U^, (66) or (69) 

yields n^ * 5 * 10° for n «w lO'/cnr and B = 0.3 gauss (typical values in 

the ionosphere). 

It proves very convenient to omit the displacement current in performing 

numerical computations. If we do so, we cannot arbitrarily specify the 

electric field at some initial time, but rather we must calculate it from 

MUC'e-))s Mtte (TO) 

v-si+ 

I 
■   I 

     KftM 

v 



where, HS In Section V-; , v ■- vi 

equatiuns are obtained by the '-..rguments use 

v . öettim; u, : u   a, the remaining 
e i   e 

d to obtain Eq. ('»').  We find 

** 

rt 

(71) 

Combining Eqs. (19) and (20). and approximating the centrifugal term by 

/W; 

we find 

**y   f 1^.0. 

To close the  system, we use Eqs.  {lh) and (l8): 

(73) 

(7M 
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Sample Calculation 

The procedure outlined in th«* preceding section tos been incorporated 

into a n'imerical program for the evaluation of the current distribution and 

plasma motion induced by a cylindrical neutral wind. The principal objec- 

tive is to be able to study the non-linear motion of the plasma during the 

early stages of the expansion of a dense cloud of gas when the collision 

frequencies are moderately large. We expect the maximum field disturbances 

to occur when the neutral ion collision frequencies are comparable to the 

>n cyclotron frequencies. The calculation is set up to take a neutral 

wind calculated in the small disturbance approximation and will evaluate 

the plasma motion in a parallel magnetic field under the influence of this 

driving force. In attempting to treat the neutral flow field corresponding 

to a vacuum expansion, difficulties were experienced because of the severe 

ion density gradients that result at the edge of the sweeping region in this 

situation (see Fig, Ill-k). 

This problem lias not been adequately resolved to date. A simpler but 

rather hypothetical situation has been treated. Here the neutral flow 

velocity was chosen to have a form similar to that obtained in the colli- 

sionless representation but the ion-neutral collision frequency was taken 

to be constant. Specifically the neutral radial velocity was assumed to 

have the form 
A(r/R - 1) 

V=(r/t)/fl + e    0    ^ 

where R - V t and A is typically a number between 5 and 10. Typical results 
o   o 

are shown in Figures V-3 to V-6. In this example the calculation was started 

after the; neutral flow had reached a certain size (i.e., the interaction 
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between the ions and the neutrals was switched on suddenly after the 

neutral flow had developed).    The current distribution aod electric and 

magnetic fields undergo a transient stage as the quasi-steady solution is 

approached.    Ti.'s  sudden transient motion generates an Alfv^n wave which 

propagates away from the source of the disturbance as a compression pulse 

In the magnetic field.    (See Figure V-3..)    Of course this pulse is solely 

due to the switching on of the interaction and has n? real physical 

counterpart. 
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r.?l Ationsiiip of Fresent Model  to General Ohm's Law 

Neglecting pressure gradients,  we may write the electron and ion 

momentiun equations (6) and (7), employing (1C), as follows: 

v>* eM ^w+^^&o 
as a I unction of V and V,T, we obtain 

where 
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(75) 

(76) 

In the  steady uniform state,  the left-hand sides of the above equations 

vanish.    It  is simple to      ow that the remaining terms lead to the 

customary staad; -. v,av.e Ohm's Lav Tor a weakly ionized gas,   including 

Hall effect and ion slip.    To do this,  we  introduce the notation; 

tr s   ^ - ^ (77) 

Equations (75)      and      (76) may be written (with d/dt =0): 

<dtji3 + mMt iK/'"J + 6i'V ***** tr^o (78) 

(79) 

Noting that J  = en V/c..  and substitutir.\g for ? in   (7°) from (78) (80) 

(90) 



This is completely equivalent t- the -well-known result  (e.g.,  Ref, 11, 

appendix),  where the result ib given as 

c •' 
and, to dorainam. terms (and using our own notation). 

The foxlowing useful expressions for the particle drift velocities 

in the steady uniform state are obtained from   (75) aad (76) in the 

same manner, with subscripts  |   ^nd J. ^ferring to components parallel 

and perpendicule-   to B  : 

\-t tl v* 

(91) 

(92) 

(93) 
*     > 

j. 

* *i 
e*8 

/v^y 
It is usually convenient to rewrite Equation (91; in terms of the Hall 

and Padersen conductivities, a. and o , Here 

(9M 

(95) 

j^s(kVlii}-s(v^).|+^ (96) 
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where   th'-'  conductivities  are  given by 

^    - 
(r( H grXB^y 

? '       (>    r>tf^^(^o-B)V 

^  s 
KS <r 

(H rXtf)   + CK(rB^ 

(97) 

V-60 



V-5. Numerical Values of Cross Sections and Collision Frequencies 

We consider first the encounters between ions and neutrals< Following 

Dalgarno,  ' the interaction potential at large separations is 

<f>(r) ' --fcVr" 
and the corresponding momentum-exchange cross section, defined by Eq. (9)* 

(i) 

flu r 
(2) 

.-1 
where a is the polarizability of the neutral atom, u = mm (m.+ m )      is i a i  a 

the reduced mass, and V is the relative speed of the ion and neutral 

particle. The collision frequency is thus independent of temperature or 

relative velocity: v». 
yu « 2.2iTrnA(oie)^)   . (3) 

At the lower altitudes of interest,,   say 150 km, the ions and neutrals 

are mostly diatomic.^  ^    Taking them to be Np, 0,,, Np, Op and NO , the 

reduced mass and polarizability vary only slightly between the various 

possible ion-neutral pairs,  and we find 

y   & *»/a"'Sv -/ [diatomic mole Giles 
and ions] 

(U) 

where n    is now the total nu-ber density of neutrals,  and we have used 

-21+       H 
e = 1.5 * 10        cm-. 

At the higher altitudes of interest, say 300 km, the ions and neutrals 

are mostly monatomic:^ '' N, 0, N , 0 (mostly 0 and 0 ). Again n '  and 

a are very insensitive to the choice of pairs, and we find 

-10. *   s:S.t, *t* ^   *^ 
-^ [monatomic molecules 

and ions] (5) 
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Since V i^  in  the  raiifte  1 to  j kin/sec,   we are dealing witli cros^  sections 

-lb of the order of 2 to b  x 10     '   cm   . 

There  is  in addition an effective momentum exchange between  ions and 

neutrai.s brought about by charge exchange.    This  is much more complicated, 

inasmuch as  there  is often an exchange between unlike particles.    However, 

exchange between unlike particles appears to be unimportant  for the following 

reasons. 

Following the discussion by Hasted^ ', c\ is a maximum when the relative 
c 

velocity corresponds roughly to resonance: 

Q 

where the 3.ength parameter a ^ 7 x 10  cm and AE is the energy difference 

between the two ionization states. For V <<: V  . o obeys approximately res'     c        .J      " j 

the rexation 

Oe   t2   <£(****)  <tof>(-*■!**I/*iv) (7) 

Urtiere r  (max)  is usually of the order of 10~      cm  . 

For the  species N,  0,  N.-,,  0o,  NO,  there are ten possible different. 

charge-exchange reactions  involving unlike particles (each reaction is two- 

way).    The largest   |AE|   is oeV,  for (NO1", N0)  or (NO,  N ),  and the  smallest 

]AEJ   is 0.6p eV,  for (0  ,  N?)  or (0, IIJ.    Thus the  smallest resonance- 

7 velocity V    ,  is that for O.bp eV,  whicn is 1,2 x 10    cm/sec.    W0 consider res 

only velocities of at most  several km/sec,  which by   (7)  lead  to a    several 

orders of magnitude lower than c ,  for unlike particles. 

For charge-exchange  interaction between an ion and a parent molecule, 

V        =0.    The only such interaction we need consider is  (0,  C'),   since they 

are the only like-pair in which the  ion and molecule are both dominant  in 

the total number density of ions and molecules respectively,  this occurring 
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abcve roughly l8o km.^^ The experimental measurements of Stebbings, 

(9) 
Smith and Erhardtv ' indicate that the following empirical formula holds 

from about 0.1 eV to 10" eV: 

f      « [SJS'*td   - 6^1 *tü* Jy &J c** 
where ^ iö the energy of the primary particle  in eV.    For V = 10    cm/sec 

(0.08 eV), a   «s ^  x 10    y cm    (to within probably a factor of 3). 

For the  sample calculations,  which are performed for the vicinity of 

200 km,  we therefore tpJce 

(8) 

(9) 

Electron-neutral momentum exchange cross sections may be obtained from the 

tables of Ruf,  5 which indicate that the cross sections at relevant energies 

-15      2 1/2 
are all of the order 10        cm „    Thus v    is of the order (m^/m ) '     v. for 

e * i' e'    1 

equilibrium and v ~ v. for cold electrons and ions moving relative to the 

neutrals. The same result is obtained if one employs the model of Moiseiwitsch , 

which is equivalent to Eqs. (l)  to (3)  for the Low energies under considera- 

tion. Again we obtain, independently of considerations of temperature or 

relative veloc it ie s: 

*€*    *     (***  /2 ***)    H' 
or 

*^  JA      *** >4« «   to 
.  tt5**? t acc4*i 

(10) 
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