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1.  Introduction 

The problems involved in making investments under risky conditions have 

been, and possibly always will be, a challenge to persons concerned with 

management processes.  It should therefore be no surprise to observe that 

management scientists and practitioners of operations research, along with 

others, should now be experiencing and responding to this challenge.  A 

variety of proposed innovations for use by management has emerged and some 

of the more recent of these innovations will be covered as they appear to 

1/ 
be of interest in this paper. 

A great deal can be (and has been) said on the subject of risk and 

how it might be identified, measured and evaluated.  It is not the purpose of 

this paper to distinguish rigorously between different categories or dimensions 

2/ 
of risk.  Rather we shall conceptualise "riuk" as emerging fron the fact chat 

some of the information which is pertinent to a decision can at best be known 

only in the form of specified probability distributions. The resulting 

possibility of deviations from any estimate of the events governed by such 

probability distributions is then the basic phenomenon which we shall suppose 

gives rise to risk. 

( Of course, more than one probability distribution may be applicable 

and a combination of these distributions may then also reqvire consideration 

1/  A good, relatively up-to-dat? survey of related topics, especially with 
reference to deterministic (non-risky) conditions for use in capital 
budgeting, may be found in H. N. Weingartner [ 76 ]. 

2/  E.g., in this paper we shall use the terms "risk" and "uncertainty" 
interchangeably and hence we will not make distinctionn such as are to 
be found in Lutz and Lutz [ 43 ] pp. 179 ff. or Hirschleifer [ 38 ] and 
[39]. 
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prior to effecting choices between investment alternatives.     This kind of 

phenomenon can supposedly be handled,  at  least in principle, by suitable 

theorcns or algorithms  in probability and  statistics.    At any rate,  given 

this assumption,  one version of a more classical approach would next    proceed 

to reduce each alternative to a single-number basis for comparison.     In more 

sophisticated analyses this might be accomplished via a "utility  function" 
i/ 

approach. Other versions proceed      through discount rate adjustisento in 

order to obtain present-value calculations which allow      for risk or 

provided "bogey rates" of internal return as well as, perhaps,  shortened (or 
2/ 

altered) payback petiod      allowances, and other such devices.     In any case 

these reductions are supposed to permit all  investment alternatives to be 

ordered on a single scale which measures their degree of attractiveness 

while making due allowance for risk. 

Some of the approaches we shall examine are also concerned with choices 

that maximize a single figure of merit.    Others are concerned with developing 

the relevant combinations of probability distributions so that these may 

themselves be used as a basis for managerial choice.    Evidently the latter 

collection of suggested approaches differs, at least by emphasis,  from those 

described  in the preceding paragraph.    The same is also true of the approaches 

we shall also describe as proceeding by reference to a single-figure-of-merit 
3/ 

optimization.       This difference is  in emphasis only, of course, but It is 

1/      Vide,  e.g. ,  Raiffa and Schleifer [ 56 ]. 

2/      In some cases, "payback plus" may be usedf-e.g., by altering the computations 
so that the recovery must include depreciation and possibly other additional 
elements as well as the original investment. 

3/      These may also be extended  to optimizations involving more than one figure 
of merit.     See,  e.g.,  [14] and  [17]. 

i 
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nonetheless Important not only as a guide for staging the analytical development 

but also as a way or ensuring managerial understanding of the choices to be 

made.  Thus, in particular, the more classical approaches emphasize the 

desirability of ascertaining the way choices should be made at the outset 

so that, e.g., managerial analysts or subordinates could then be governed 

accordingly.  The newer approaches which we shall discuss proceed in s rather 

different sequence and hence are likely to trost  the risks rnd other aspects 

of the problem so that they can be considered in explicit detail as a part of 

the model which is to be employed.  It is thus necessary then to consider the 

nature and meaning of risk and how its different dimensions might be treated 

via constraints or the criteria that enter into a composite figure of merit. 

To avoid possible misunderstanding It should be said, at this point, that 

this paper is not concerned with Issues such as whether a "present value" 

provides a better figure of merit than an "Internal rate of return" via a 

1/ 
"bogey adjustment?* or a "payback period" computation.  Indeed it will be one 

purpose of this paper to suggest that some of these Issues might be resolved-« 

or at least placed in a different perspective—if some of the new methodologies can 

moke it possible to avoid insisting on the use of one of these figures to 

the exclusion of all others.  The main emphasis in this paper, however, is on 

some of these newer methodological innovations and hence we shall be able to 

2/ 
deal with these figure-of-merit topics and related issues only by example.-' 

\J      This paper is also not concerned with problems such as data discovery 
and treatment, administration, implementation anu control aspects of 
capital budgeting. 

2/ For further discussion of this methodology in terms of its impact on 
such issues see, e.g., Byrne, Charnes, Cooper and Kortanek [ 7 ] or 
Chames and Cooper [ 11]. 
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One such set of Innovations revolves around a variety of simulation 

1/ 
approaches.  This Includes such topics as "Risk Analysis" and "Venture 

2/ 
Analysis."   Another approach Involves the use of  "Decision Trees" which has 

I/  See D. B. Hertz [M ], 

y      As in Hess and Qufgley [ 33 ]. 

3/  Vide Hespoa and Strassmann [ 35 ].  The term "decision tiees"--which was 
adapted by then from Magee [ 47 I and [ ^8 ]—seems to have had its first 
appearance in Ralffa and Schlaifer ( 56 ], chapter 1, which should be 
consulted in any ovent for discussions that relate these ideas to conotructs 
employed in the theory of games and statistical decision theory. 

4/  Sec references in the bibliography. 

M 
recently been joined to "Risk Analysis" in a set of techniques (and related 

3/ 
concepts) which have been called "Stochastic Decision Trees."   The point 

of these approaches, as will be seen, is to develop the risk aspects of 

decisions by reference to the underlying probability distributions. That is, 

it is supposed that it may be better to bring these "distributional aspects" 

of the problem into prominence explicitly rather than to suppose a prior 

analysis in which all aspects of choice have previously been attended to by 

means such as discount-rate adjustments, etc. 

i 
In addition to the already indicated approaches, another set has also 

been evolving from recent extensions of Linear Programnlng which include, inter 

alia. Stochastic Linear Progrannlrg« Linear Programming Under Uncertainty, 

and Chance Constrained Programing.   Here, too, attention has bean directed 

to dealing with the underlying probability distributions in all detail- 

in order to decide how best to combine and choose between different probabilistic 

(i.e., risk) combinations-«although contact is also made with previously 

available versions of the choice problem by means of suitably devised constraints 

and objectives. 

The latter approaches emphasize analytic or mathematical models that 

are formulated with explicitly stated optimization objectives whereas, e.g., 
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whlch such optlniratloiii «re only implicitly present.  It is not proposed 

"Risk Analysis" proceeds by reference to computer simulation models la 

to cnphasize these differences and, indeed, a very different approach will 

be taken and analytical BKxlels with explicit optimization objectives will 
more 

be supplied in all röses in order to provide ai uniform way of relating these 

approaches to one another. 

Much research remains to be done in the simulation as well as the 

optim'.ation approaches referred to above.  This might well Include ways of 

relating these simulation and optimization (and like) approaches in order 

to clarify and perhaps lend added power and flexibility to th<» whole.  Such 

work is going forward along with work on coroputei codes, analytic characterizations, 

development of algorltlms, etc.  But it lb not necessary to wait until this 

has all been accomplished.  Useful things can now be said about each of these 

topics, their possible relations and how they might be used separately or 

together in potential applications.  The letter may serve in turn to sharpen 

some of the issues for research and so on. This,at any rate,is the purpose of 

this paper. 

2.  A New Product Example of a Stochastic Decision Tree; 

To bring the points at issue into focus as quickly as possible we now 

turn to the example of Figure 1 which is adapted from Hespos and Strassmann 

[ 33 ] with the following interpretation.  U is supposed that a decision has 

1/ 
been made to introduce a new product but, as yet, there has been no 

1/  This oample is only illustrative and hence, should not be confused with 
models such as DCMDN—see f 12 ] and [ 13 !--which are (a) designed for 
actual application and (b) ne:essarlly reflect considerably more 
sophisticated concepts and machinery than can be dealt with in any detail 
in the present paper. 



! 

N 
" 

-6- 

> 
to 

n 

H 
O 

o 8 
R 

Ui H- 

8 



-7- 

detertnln«tion of whether  to introduce it nationally or regionally.     The 

relevant data and decision alternatives are supposed  to be available so 

that they can be presented  in a  form such as Figure 1. 

1/ 
Technically referred  to as a "tree,"    the diagram in this Figure may be 

interpreted as  follows.     Starting on the left a sequence of nodes and branches 

may be  followed to a terminus on the right.    Any one of several such paths 

(or routes) may be elected,  but motion along any  such path is always only in 

the direction indicated by  the arrows which are apparent on each of the 

branches.    The nodes are indicated by rectangles and circles.    Certain 

aupplcsnental  information  is also displayed and will be interpreted in the 

inmadiately  following discussion. 

Each rectangle is called a decision node.     Each decision node represents 

a place where a decision must be made by an independent decision maker.     Each 

branch  leading away from a decision node represents one of the possible 

alternative choices available to this decision maker.    At the node labelled  1, 

for instance, a decision may be made to introduce the product regionally or to 

introduce it nationally.     Suppose the former is elected.     In terms of the 

diagram this means that the branch leading to node -AT is  followed.    The latter 

is a circled node and all  such circled letters are called  chance nodes. 

YJ   A chance node represents a point  *t which the decision maker will discover 

the response of the environment (or the state of nature).     Each branch leading 

away  from a chance node represents the outcome of a set of chance factors. 

The set of outcomes can be characterized by a probability distribution indicating 

1/      Further detailed discussion of trees and related concepts may be found  in 
Chapter XIX of [  8  ].     See also  [20]  and  [28]. 

s 
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the probability that any particular outcome will occur.  These probability 

distributions are represented on Figure 1 adjacent to each chance node. 

Thus here, at node >^ for instance, a play of chance factors determines 

whether a "Small Regional Demand" or a "Urge Regional Demand" will be 

experienced. For the example here it is supposed that the former has a 

probability of occurrence of 0.3 whereas Large Regional Demand has a 0.7 

probability of occurrence. 

If we suppose that the latter occurs then a further movement is effected 

along the branch of the tree that leads into node 2.  This is a rectangle. 

Hence at this point another decision may be made—viz. , "Co National" or 

"Remain Regional." 

Suppose the choice now la "Go National." That la, suppose thi« ieclalon la 

elected at Node 2 which meana that a prior decialon to "Introduce Regionally" 

was made at node 1 after which a "Large Regional Demand" was experienced. 

Given this decision at node 2—viz. , "Go National"--node & it  then encountered 

via the branch for "Go National" leading out of 2. ^& is  a circled node. 

Hence, a play of chance la again invoked. This time, however, a terminal 

branch is encountered.  This means that the play of chance at /¥ is supposed 

to determine an amount, d.  The lattsr, as determined by chance, Is the amount 

that will be received. Measured by present worth, internal rate of return, 

or any other suitable figure of merit, this is the amount that will emerge 

as a result of the sequence of decisions and chance occurrences that led to 

the terminus where d appears In Figure 1. 

In every case the probability distributions which govern the indicated 

r 

-' 

"   , 



. 

♦ ~ 

-9- 

1/ 
chance selections are supposed  to be known.        To see whnt  this means 

suppose that the alternative course Is taken.    That  is,  start again at node 1 

and  suppose now that the decision is "Introduce Nationally".    This leads 

to node   %> .    The latter is a chance node.    No further decision node is 

encountered on this  route.     Hence a chance draw is now made to determine the 

amount      b      that will ce obtained when this route is  followed to the terminus 

at  the bottonr of F.gurts 1. 

Chance selections are always made in terms of a known probability 

distribution.    The ones that we shall employ are all shown in Figure 1. 

The probability distribution which  --»vems the choice at ä* ,  for instance, 

appears at the bottom of Figure 1 where it  is to be accorded the following 
2/ 

interpretation!    There is a 0. 3 probability of making a "loss"    of b ■ -1 

and a 0.2  probability of breaking even af b-0.    On the other hand,  there is 

a 50-50 chance (probability -  0.5) of realizing b-5.     These probabilities 

sum to unity.    Hence all other values of b have only a zero probability of 

occurrence. 

The histograms at nodes   u* , ^ and   c%   have similar interpretations 

relative to the amounts c, d and  e that will be obtained when these nodes 

are encountered.    The histogram at J"*-, however,  represents  the probability 

distribution which governs  the realization of large and  small regional demand. 

The value    0    shown on the horizontal axis  for this histogram is associated with 

"Small Regional Demand."    The value 1 is associated with "Large Regional Demand." 

Thus,  as already observed,  the probability Is 0.3 that a  zero (■ Small Regional 

1/      Vide Hespos and Strassmann [ 35 ]  as well as Hertz  [ 3A ]  and Hess and 
Quigley  [33]   for  further discussion of this    point. 

2/      As measured by any  figure of merit that may be employed. 

• 
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Demand) will occur and 0.7 that a one (- Large Regional Demand) will occur 

when node ^r™is encountered. 

Within the columns of each of the histograms certain digits are shown 

in braces.  These are simply the 10 integers 0, 1, .*., 9.  Member* from this 

set of 10 integers are assigned, as indicated in each probability distribution, 

i/ 
simply to facilitate drawing from a table of random numbers  in which each of 

these integers has an equal probability of occurrence.  For instance (0-2] 

in the bottom histogram refers to the chree integers 0, 1, 2—■which constitute 

0.3 of the totality of the integers 0 through 9. Similarly, (3-4) represents 

0.2 of this totality while [5-9] constitutes 5 of these 10 integers, and so on. 

Thus, these numbers are associated with the probability of drawing, espectively , 

b--l, b-0, and b-5. 

In Table 1, belo-, we provide a specimen drawing.  Here the nodes were 

arranged in alphabetical order and the random numbers ware assigned to each 

of these nodes as drawn.  Thus, the second random number, which is n 3, is 

assigned to &> .  It is one of the numbers {3-4}.  In this case a decision to 

market nationally would have yielded only b-0. (Sea the histogram at node <A> 

in Figure 1.) Since this is the case and since (3-4} are the two random 

numbers associated with b-0 it follows that the latter is the "b value" 

or result obtained on this occasion at rJ .  See the histogram at <&  in 

Figure 1 and the result shown in Table 1, below. 

1/  Vide, e.g. , the definition and discussion of "random number" *i  £. L. 
Köhler, A Dictionary for Accountants  [42] pp. 347-351. 
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Table 1 

Results of • Random Drtw 

Random 
Nod« No. Result 

J*- 5 •-1* 

£ 3 b-0         | 

& 0 c--l       i 

.& 8 d-5         j 
& 1 <-l          1 

♦Means "large regional denand" 

Similar remarks apply  to node   t? , -x    and  kn .     Note, however,  that  the 

random number  3 which was drawn  for /"»"-is associated with the occurrence of 

•  large regional demand.     Hence the value at  ^   is  really irrelevant and  can 

be  ignored.    To put the matter differently,  the node at ^rserves as a "switch* 

which cuts  in  (or out) part  of the diagram of Figure 1  in accordance with  the 

instruction assigned  to  the  number obtained  in any  such  random drawing.     Thus, 

in particular,  the random drawing of a 5  for /f ,  as  in Table  1, produces  the 

situation    shown  in Figure 2.    That  is branches   leading  from node ßf— to node 

£r and beyond   in Figure  1 are eliminated.    The remaining random numbers—viz. , 

those drawn  for    ä> ,   ^O'and  (£, —are then assigned  to the remaining nodes   for 

interpretations of the  kind   that have already been   indicated. 

u 

u [Ida,  e.g.,  pp.   650-656  in  [ 8    ]. 
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3.       An Aiulvtlc Representation! 

Now consider  ea;h of  the  following three possible strategies 

(1)    Introtiuce nationally 

(1) 
(11)    Introduce regionally and   If a  large regional 

demand materializes  then go national 

(111)    Introduce regionally and  If a  large regional 
demand materl&lltei  then remain regional 

The probability distributions of rewards  and  penalties  for each of  these 

strategies  Is wanted.     In the Stochastic Declon Tree approach—as  Is also 

true  In Risk and Venture Analysis—this  Is obtained via a series of  simulation 

runs.     In the case of Stochastic Decision Trees  the rules  for executing each 

such simulation are as  follows: 

(a)    Each  time a decision node is  encountered  take 
all branches  leading out  from any  such node. 

(2) (b)    Each time a chance node is encountered take only 
the one branch  (or value) designed by a chance 
(or random) drawing which  is associated with  the 
histogram at this node. 

The point of these  rules   is  to make it possible to obtain probability 

distributions  for all  relevant combinations  of decisions.     Evidently   for 

decision  (1),   In  (1) above,  one can hardly do better than simply  reproduce 

the probability distribution  for   f?    In Figure  I.     This  Is not  the case  for 

the other two decision possibilities, however,   since their outcomes  are 

Influenced by the event which occurs at ^r~on each  trial.     Thus a problem 

arises of combining the probability distribution at ^T~ with  the distributions 

at    K/> ,^07 and  Cr     in order to obtain a basis   for deciding between  the available 

alternatives. 
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Although   the Stochastic Decision Tree approach has been described  as 

proceeding via a  simulation route,  the  sense of all of this can perhaps be 

brought  together   in  the  form of an analytical model.     Here we  shall  employ 

an optimization version of such modelling possibilities because of some 

suggestive advantages  this offers  for comparison with some of the alternative 

possibilities  that we also want  to explore.     Thus we write 

? 

min. 

subject  to 

£ 
\i 

£x„ -♦-   A, 

(3) S L 

~ x. 

-   X 

VR1 

"Ml 

2r 

^+ z] 

m 0 

- 0 

- 1 

- ) 

y 

•K  z. 

+   z 

where   \   ^ {)    is   the scalar to be minimized. I.e.,  our objective is 

"min.   z" under  the indicated constraints,   in accordance with a  two-stage 

procedure of  the   following variety.     First,  at  stage one,  the values  of 
2/ 

x      and  x      are  selected. These values are necessarily  equal   to unity  in 

the present case  and  hence this  selection  is already made.     See  rule  (a)  in 

\J      This  formulation  is  suggested by  the  relations  for vector optimization 
and   functional  efficiency as set   forth  in Chapter IX of  [    8]. 

2/      See Figure   1   for their significance--viz. ,  x 
Rl 

1 means  "Introduce 

Regionally1'   and  x      means "Introduce Nationally". 

i 
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(2). Next, random draws are effected and the resulting values are then 

assigned to the random variables ^T~, *v , U' %   .-O, and &,     in these 

expressions.  After these data are all known, stage two is then invoked. 

At this second stage the values of «v, z. , z„ , and z are determined in a 
a        \       l 3 

way that minimizes -% > 0.  Evidently the minimum will always be at ^ - 0. 

Hence the values of z , z. and z may be recorded and the results assigned, 

respectively, to strategies (i), (li) and (iii) as in (1), above, at the end 

of each such trial. 

For purposes of further illustration, a series of 10 random draws has 

been made and the results arranged as In Table 2, below.   This has been 

done only for nodes /^r, Xf t AJ  and Q»  and hence only for the z« and z 

values which are associated with strategies (ii) and (iii) in (1), above. 

It was not necessary to effect any draws for (i) since we cannot do better 

than to transfer the probability distribution assigned to node w   in Figure 1. 

The latter can therefore be compared directly with the distributions obtained 

for strategies (11) and (III).  This is acompllshed by transforming the data 

of Table 2 Into histogram fom as In Figure 3 where these histograms now serve 

as approximations to the wanted probability distributions.  The point her«., 

of course, Is not the accuracy of these approximations   but rather the fact 

that the entire  probability distributions are available for considering anv 

I/  From page 28, line 1 of M. G. Kendall and B. Bablngton Smith, Tables ol 
Random Sampling Numbers In Tracts for Comiuters No. XXIV, E. S. Pearson, 
ed. (Cambridge University Pvess, 1931). 

2/  Many more trials would undoubtedly be necessary If the simulation route 
were followed as would probably be true In many practical applications. 
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of various dimensions of risk,  penalty and  reward when effecting a selection 
1/ 

between these alternatives. Thus,   in particular,   the probability distribution 

for strategy  (i)  is transferred  intact   from Figure  1 whereas  the probability 

distributions  for strategies  (ii) and  (iii) are prepared   from simulated 

combinations of  events at node  ^»   with,  respectively,  events at nodes 

&  ,   <^y and    £•> . 

1/      Additional considerations might include estimates of the probability 
that the indicated strategy choices might actually be employed, etc. 

\ 
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Table 2 

A Ten Trial Sequence of Random Number Drawg 

Node Result 
Order of 
Drawing* -PK ß      ^ & 

'2         r3 

[   1 8 1            3 

2 2 5           2 

•-1        1 5 3 5           2 

6 9 5           3 

[10 0 5           1 

f 3 I 0          0 

4 7 0          0 

a-O 3         8 8 0          0 

8 8        0 2 1           1 

9 5        1 8 0          0 

*The order of drawing  is at indicated although 
the data above have bean regrouped  into the 
cases a •!(Large Regional Demand) and a ■  0 
(Small Regional Demand). 



\ 

0. 3 

77/ 
/ '/■ 

-—- 

0.2 
—rj - ■ 

<   V, / J 
-I 

I 

-18- 

F1GURE   3 

PROBAKILITY DISTRlliUTlONS 
FOR 

THREE  STRATEGY CHOICES 

Expected Value ■  2.2 

Strategy  (i) 

0.5 

V///A 
v / / JL 

/ 

•■      * 

0.4 Expected  Value »  2.2 0.4 

f i ' / / > 

'     7 / / 
0.2 

■/< 

0 1 2 3 

Strategy  (11) 

0.4 
Expected Value =1.2 

0 1       2       3 

Strategy (ill) 

Note:     Expected  Value -  Average Value as deternlned   fron the  probablllCy 
distribution  obtained   in  these  trials- 

I 
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4.       An Approach vl« Stochastic Linear Programming; 

Certain salient points  should now be apparent.     First, no choices are 

really admitted among the decision variables during the simulations.     That 

is,  chance makes all  the choices  in (3), by reference to the data generated  in 

each trial.    Only after all  trials have been completed  is a choice then 

effected  from the three strategies specified under (1).     The latter is made 

by reference to the set of entire probability distributions that are then 

available.    Second,  specific assumptions are made about the strategy possibilities 

relative to the adaptation?  that might be made over time.    The latter,   in turn, 

also implies certain assumptions about the way  the data may be expected to 

unfold over time as each strategy  is executed, as well as how these strategies 
i/ 

might affect the probability distributions,  and  so on.     To put the matter 

differently a choice of one of  the three strategy possibilities  implies  that 

a mode of implementation is decided on  initially and that It remains  fixed 

thereafter.    This carried with it certain assumptions as to data availability 

and  so on. 

An alternative to  (3) may aid  in sharpening some of these points.     Thus, 

we now refer to Figure  1 again and  formulate a model as  in 

min.      sy 

subject to 

(i--.)^ -    «s -   0 

"RI *\\ m   l 

ly  Cf. the discussion of the DEMON model in e.g. , references f 12 ] and   {  13 J, 
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where we omit the restriction v > 0 but add  the requirement  that x 

and  K      must be non-negative integers. 

We now note that  this  last requirement means  that exactly one of x  . , 

v      will be equal  to unity and  the other one will be equal  to zero.     Thus 

if  x      -   1 then the initial decision is "Introduce Regionally" while if 

K      -   1  then the Initial decision is "Introduce Nationally." 

We continue as before in order to treat V'as a second stage variable 

except that the value of "min. /y " is now chosen only after all of the chance 

choices have been made.     This may then be interpreted as a variant of the 

approach called "Stochastic Linear Programnlng"--a name which has been accorded 

to yet another approach that has also been developed  for dealing with decisions 
1/ 

under risk—    under which  (a) an initial decision maker chooses either x      -   1 

or x      -  1, next (b)  the random elements all materialize and then (c) a final 

decision maVer chooses  the minimizing value of     t    . 

For the case    x^..  -   1,  we evidently have to consider (as before) only the 

probability distribution which  is already available at node  & in Figure 1. 
2/ 

For  the case x . >  1  the relevant data may be obtained  from Table 2    via the 

relation 

(5) mln    /y'» max {z,,  z   } 

so that,  e.g. ,   for the  first draw we have min  <, -   3, while  for the second 

U      Cf. ,  e.g. , Tintner [ 68 ]  and  [ 69 ] t Tintner,  Millham and Sengupta [ 37 ] 
and note that we are here dealing only with what   is called the 
active case In Stochastic Linear Programning. 

2J      Assuming again that  these  10 trials are sufficient,  at least  for purposes 
of illustration. 

1 
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«11 been explained before except for c^,. cp| • c
? 

and c which may be 

interpreted as benefit and penalty rates per unit use of the variables with 

which they are associated. 

As was the case for SLP, we again assume that the second stage choices 

are made only after the data are avallable--e.g., after each drawing has 

been made ab in, say, Table 1 and 2.  In fact, setting t  - c . - c? - c. - 0 

the objective becomes min E w and so in this case the preceding distributions 

for 'V (x-. - 1) and y(\-,  ■ 1) become relevant.  In principle, the model 

of (6) sets forth all relevant data, including the probability distributions, 

in explicit detail.  The choice, however, is by reference to the expected value 

minimization only.  Of course, there is no reason why the relevant probability 

distributions cannot also be presented especially when (as in the present case) 

they are already available. 

For ease of reference we present the distribution for v*(xp] " 1) and 

'i(*i\y  ■ O in Table 3.  The latter is transferred directly from Figure 1, 

but we do not transfer the former from Table 2 where the results of our 10 

trials are given.  Instead we utilize exact relations. That is, in Table 3 

we use Pr(^*l'^ x
Bi * ^) to signify "the probability of securing the indicated 

value of ^ ♦(- min^ ), given that ^x  - I." Similarly, Pr (^*|(1 - ^ )xR1 - 1) 

refers to the probability of the only other possibility when x . - 1. 

Then we compute the relevant probabilities via 

(7) Pr(^* - zl/l-x^ - 1) Pr(^xlll - I) + PrU * - z|(l-^)xR1 - 1) 

Fr((l -^)*R1 - I) - Pr(y* - z) 

1/  Naturally, both of these probabilities are identically zero when x . ■ 0. 
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The latter result Is entered In column 4 of Table 4 using Pr(>^xRi " D " 0-' 

and Pr((l - A}* - 1) - 0.3. The distribution for ft* when x^ - 1 is then 

shown   for coraparleon in the final  column of  this  table. 

Table   3 

Probability Distributions 
for 

sy - max {i-, ■-] and /y^ t 

'<\i -1> /(XNl "  l) 

Column No. Probability 

Distribution 

1   Probability 

Distribution 
1    (1) (2) (3) 0. 7x column  (2) 

plus 
0. 3x  column  (3) 

From 
Figure  1 
Node # 

• 
PrV|^xRl.   1) Pr(^|(l  -^xR1 -   1) 

-1 

0 

1 

2 

3 

U 

5 

0.00 

0.00 

0.04 

0.08 

0.38 

0.00 

0.50 

0.20 

0.50 

0. 30 

0.00 

0.00 

0.00 

0.00 

0.060 

0.150 

0.118 

0.056 

0.266 

0.000 

0.350 

0. 300 

0.200 

j 0.000 

0. 000 

O.OOO 

0.000 

|         0.500 

Total 

[Expected 
Value 

1.00                           1 1.00 I. 000 1.000 

3.84 0.10 2.718 2.200 

I 
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Referrlng to Table 3 we ob serve thet ^yi\y  - D • 2.718 while 

E -.(%.! " O a 2.2 «nd hence we might prefer the forme, to the latter on 

this expected value criterion.    But what about other aspects of these 

distributions? These would also seem to require consideration from the stand- 

point of possihle realizations of other ^ * values. 

To handle these additional aspects of the problem one might proceed to 

alter the constants in the functional of (6).  Specifically one might alter 

these constants to provide penalties and incentives for the different ,^ "* 

values and their associated probabilities of realization.  This would, in fact, 

y 
be the normal  procedure  for dealing with  such risks under LPUU. 

Another alternative would  involve  introducing further aspects of risk 

control and allowance by  inserting additional constraints.     There is no reason 

to  suppose  that  this must preclude any  recourse to adjustment  of the   functional 

constants.     That  is,  both of these approaches can be used  simultaneously  in 

LPUU and,  of course,   the approach  of LPUU can also be Joined   to  still other 
3/ 

approaches. 

To close  this  section    e now  illustrate one such additional possibility, 

and   for  this we might  introduce a constraint of the Chance Constrained 

2 
Programnlng  (-C   ) variety by writing 

Ir 1/  This would implicitly change the objective « 

max    min  E s 

"Nl^Rl  ^     J 

where ^ ■ max [z-.z ] or z.. 

2/      Vide, e.g., Dempster [24 ]. 

3/  See, e.g.( [ 7 j which represents a first instance in which ideas of LPUU 
were Joined to those of Chance Constrained Programning.  Although the 
illustration in [ M proceeds by reference to capital budgeting under 
liquidity and payback constraints this is not the only possibility.  The 
crucial development which opened the way to this is in [ 16 ] which will also 
admit of other uses as well. 
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(8) Pr(^ z) Z. o- 

Here z   is a prescribed value of   ^ ,   called a quality   level,  and  0 £ n £ I 

measures  the risks  im  I  m a) that  this  level will not  be met.     That   is  the 

choice of x  and   the  subsequent minimization of y   must  yield  a-i * < z at 

most   (1   - a) proportion of the  time.     Thus,  as  this  interpretation  is meant 

to suggest,   (8)  is  to be regaided as an additional  constraint->-i. e. , a 

Chance Constraint--which   is   to be considered   in conjunction with  all  of the 

other  constraints and  the functional   in  (6). 

Note that we are now exploring the alternative approach  to risk that is 

2 
available via C    Programming but   in a way  that  also relates  it  to the preceding 

developments.     Thus,   suppose,   for   instance,   that the quality  level   is  set at 

z ■   3.0 and   the  risk  level at a "  0.5.     This would block  the probability 

distribution  for    X'M^i  "   D  from consideration since  the probability is 

only 0.35  that a value of/*/* ^ ^ ■   5.0 or more will be achieved.     The first 

stage choice will   then be x^.  -   1.     But  something more   than only  this decision 

possibility  is also now available.     For  instance, certain risk evaluations and 

sensitivity analyses  can be executed.     E.g.,   in expected  value  terms,  an 

opportunity  cost can be imputed  to this degree of avoidance of risk at the 

indicated quality  level   in the amount 0.518 -  2.718 - 2.200.     (See the expected 

values   listed   in the  bottom row of the last  two columns  in Table  3.)    Furthermore, 

if the  risk protection value exceeded    a m 0.5 at this quality  level  (viz., 

z -   5.0)  then  there would be n^ solution.     That  is,  neither xN1  ■   1 nor 

x      -   1 would be acceptable and  then either the decision  to market  this new 

product would need  to be reversed  or else a  revision of  the risk-control 

| 
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y 
conatraint would be in order.    Note that It is by no m.ans certain that 

V 
the latfer represents r^ie only possibility.   For instance  in actual 

practice  it mav ba supposed that unless a value of z ■  .0 is actually 

attained th<-n it is really not foasibl  to try to markt t this product since 

retail outlets will no' be willing Co handle the product at 

lower volumes.  In such cases this constraint would then provide a measure 

of risk of infeasibility or inapplicability of the model for the situations 

to which it is supposed to apply.  Alternatively, it might also be used to 

control additional dimensions of opportunity cost.  It might be the case 

for example that a firm would not wish to market this product and thereby 

tie up executive and other talents unless it can achieve at least the indicated 

quality level, z, with at least the indicated probability, a» 

6.   Information Assumptions and Decision Rules; 

The introduction of chance constraints, as in (8), inmediately 

raises the issue of decision rules--^hat they are, how they might be 

characterized or prescribed, and how they might be selected.  This is so 

>ym4 

y 
2 

because  their  employments have been  a built-in   feature of C     programning 

from its  inception. 

y      See,  A.   Chames and W.   W.   Cooper [ 10 ]   for a development  relative to 
aspiration   level  theory   in social  psychology and   the "satisficlng" 
models  and  constructs  of H.   A.   Simon. 

2/       That   is,   it   is by no means  certain  that  these  aspirations would be 
revised  only because a decision  to market   the product   in one way or 
another had  already  been made. 

3/      Vide,   e.g. ,  the discussions  in  ( 12 ]  and  f 13J. 

4/       See,   e.g.,   [ 15 ]  as well  as   the  earlier references  cited   there. 
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A  full-scale development of this  topic would  require  introducing 

possibilities   for altering the probability distributions and  collecting 
y 

Information on  such alteration possibilities. A very  simple  Illustration 

will  suffice,      however,  and  to this  end  the structural aspects of the model 

are written  In  the following  form: 

(1 -^)x_ -      x.       - 
(9.1) 

Si     *   \l 

The chance constraint 

(9.2) Pr[^ t] ^ a 

is also adjoined to (9.1).  Finally the objective is formulated as: 

(9.3) max    E ^ 

As before x^    and  x      represent  first-stage decision variables which 

are constrained  to be non-negative  integers.    The same non-negative Integer 

requirement Is also imposed  on \^7  and x ..    The  latter pair may be regarded 

as a  further decomposition of the variable    x      which appeared  in all of the 

preceding models.  These  two variables—viz. ,  x.      and  x     --are now regarded as 

-     1 

1/      Cf. ,  e. g. ,  any of the refemeces  to DEMON  type models where these aspects 
of C    prograraning are developed. 

2/      Vide also Hespos and    Strassmann  [  33] ^0 mav t.  this point as a way  of 
Joining the decision tree approach of Magee  [47   ]  and  the risk analysis 
of Hertz  [34]. 
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second stage decision variables that are Introduced to represent the 

respective alternatives of "Go National' and "Remain leglonal" when node 2 

Is encountered In Figure 1. 

Using the same conventions as previously.the value xN7 " 1 means 

"Go National" and x  - 1 means "Remain Regional." The requirement 

XR1 " )Sl2 "*" XR2 in ^'D »eans that unless x  - 1 at stage 1 there 

cannot be a second stage choice since If x  - 0 then, necessarily 

^ x_t ■ 0. On the other hand, the choice xÄ, - 1 does not suffice to 
Rl Rl 

produce -^ XH, " 1*  This Is to say that the possibility of a second stage 

choice depends on a random event--vlz. , the event "Large Regional Demand" 

at Node ^vr In Figure 1.  This second stage choice must evidently then be 

delayed until knovlege of the value of ^"^«t f« •' hand.  Given ^7 x. • 1, 

however, then a second-stage decision must be made and one of the two 

available choices taken out of node 2.  I.e. , either x^.. - 1 or x  - 1 
^2 " l or XR2 

when ^ x„. - 1. 
Rl 

Hie possibilities implicit in the preceding remarks are sumnarized somewhat 

more succinctly by writing 

v  - max {O.^x  ] 

(io)        o   ™ 
x^ - max {0.*^} 

1/      We are interpreting this  in accordance with  the spirit of the Hespos- 
Strassman analysis   [33   ].     Other interpretations would allow cases  such as 

^ XR1^XN2 + XR2'   etC- 



-32- 

which can then be interpreted «a the relevant possibilities for a decision 

rule to complete a first-stage choice of x . - 1.  These can then be compared 

with each other and with the decision rule )c  - 1 in order to determine 

which is the best rule to follow. 

A decision rule must cover every contingency that may be confronted. 

That is, it muse specify the choice to l<   made at every decision node.  This 

in turn implies that the data needed to implement the decision rule must be 

at hand.  Hence provided the data on * ' XR] »re at hand by the time node 2 

is encountered, the above rules are unambiguous. 

The rules indicated under (10) evidently conform to the way Figure 1 

was interpreted and so do the choices x 
Rl 

1 and 
*K1 

1. Furthermore, the 

rules must satisfy the constraints and this is evidently the case for (9.1). 

Refer now to the data in Table A below, however, and suppose that (9.2) 

prescribes (y " 0« - and z - 3.  Evidently the rule x^. - 1, x^- ■ max {^*^'xxlt] 

does not satisfy this constraint since the column of probabilities for this 

rule gives Pr< ■ ^ *] " 0.28 which is less than the requisite a -0.5.  Hence 

this rule is eliminated and the competition reduces to x^. - 1 vs x  « 1, 

x^2 • max {O.^x . ].  Both rules satisfy all constraints in (9; but the 

latter has a higher expected value. Hence the latter rule is best among all 

of the feasible decision rules. 
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•8  circumstances may warrant.     The  resulting  statements of   flow or 

position might   then  be  reported   in  terms  of  entire probability distributions 

or by  single-number   (best)  estimates as  circumstances   -rui managerial 

convenience may  warrant.     The  approaches  covered   in  this paper  siggest   some 

of  the possibilities   that might be  employed   to  this end  either  singly  or   in 

combination.     Note,   in  conclusion,   that   this  would   then  involve  elaborations 

of  the  tree concept   so  that multiple probability distributions might   then be 
or branch 

required at any  nodej along with  specified   rules  and  relations   for  effecting 

their combinations   in  terms of  their  interlocking  relations  to each  other 

and   to  the  relevant dimensions of  risk and  profit. 
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1 

APPENDIX 

2 
Because LPUU  and  C     Progranmlng are descendents  of  ordinary   linear 

prograironing  it may  be useful  to consider   the   latter  topic,   too,   insofar 

as   this can be  done by   reference  to  the  ptoblen  of chosing an optimum decision 

rule.     For  this   purpose we might   first  proceed  by  reference  to Chance Constraints 

on  risk   formulated  as   follows.     Thus   suppose,   for   Instance,   the  constraint 

relative  to  the distribution at  £6 is   fonnulated  as 

(U.l) Nl J    Pr<b>^*Nl 

which means that the quality level z is to be maintained with risk no greater 

than 1- , of attaining z or more. 

Given that 0 < o < 1 is a stipulated constant we may see what this means 

by supposing that (11.1) refers to the probability of breaking even.  That is, 

we are supposing, say, that a level z"0 or greater is to be attained with 

probability ry.  Reference to Table 3 (or Figure 1) would then provide the 

relevant data for substitution in (3) ss In Che following expression 

(11.2) ^1 JnPr(b)"^(0,2 + 0'5)-"M 

Now we observe that this constraint can always be satisfied by choosing 

)c  ■ 0 but a value of x^. ■ 1 can be designated only if cy < 0.7. 

Evidently different quality levels might be imposed for the risks that 

might attend different paths through the tree of Figure 1.  Therefore proceeding 

somewhat more abstractly than in (11.2) we now write the remaining risk 

constraints in the form 
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5 
x^ Z   Pr(d |^f-l) ^ ^2 (ry +F. ) * x^ 6 

(12.1) 

d-r 

5 
xR2 L    Pr(e |^-1) ^ ^ (» 4 6) - : 

RL 

and also 

5 5 
xR1  F Pr(c|^- 0) Pr(.f-O) + ^2     T   Pr(d|^-1) Pr(^t-l) + 

c-t d-»z 
(12.2) 

* XR2 Pr(e^ "^ Pr(^ -D > xR1 (a + ^ ) - ^2 f> - xR2 b 

where the latter, «long with (12.1) and (11.1) are to be simultaneously 

satisfied with 

"NI 
+ XRI • 1 

(13) 

^2 + XR2 ' AyPl  *    1 ' 

As before all  decision variables  (which htve  already been explained) must 

be integer valued.     The symbol  5 , which  is nav,  refers  to a constant 
y 

which  is "sufficiently  large"      so that   in the  first constraint of  (12.1), 

say,  a choice of x^   ■   1  could not be made unless also x      -   1.      (E.g. , 

any choice of i   so that a -f 6 > 1 would  suffice. )    Because    b > 0 and  the 

left-hand member  of  each expression  in   (12.1)  is non-negative,   the choice 

x      -   1   is not precluded   in any case.     On the other hand,   reference to (12.2) 
K i 

1/      See, e.g., the discussion of regularization techniques in linear 
programming as discussed in Chapter VIII of [ 8 ]. 
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shows that xRl = 1 cannot be designated unless at least one of the choices 

~2 = 1 nr xR2 • 1 is also made. Finally, the conditions in (13), along with 

the restriction to integer choices, means that at most one of the expressions 

~2 = 1 or xR2 = 1 can hold. 

\ole nm.· observe that the constraint sets in (11) and (12) might first be 

scrutinized to see whether any of the a priori choice possibilities are to 

be deletedbecause the related linear inequalities can be fulfilled only with 

choices of the decision variables at x-0. Supposing that this eventuality 

does not e~erge we may then proceed with reference to the objective function 
!I 

which in this case may be formulated as follows: 

max ,~ = E !13 ~l + E(tijrl =0) Pre?l--•0) xRl 

(14) 

The above symbols may best be explained by writing their numerical values 

as 

F. ( ~: l-' 1 =1 ) Pr(.'l= l) = (2.2)(0.7)- 1.54 

E(..C 1- ' t •1) Pr(- '1 = 1) = (3. 6) (0. 7) - 2. 52 

E( ( j5-f--..O) Pr(J-f =0) = (0.1) (0. 3) .. 0.03 

E(;) ) = 2.20 

t-Jh re th i nd ·cated computations are made directly from the probc- hi.l irv 

~I r::trenfcld and Littauer [ 251 pp.ll7 ff. 
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dlstrlbutlons given  In Figure  1.     In short ¥.{£ J4 -l)  refers  to the probability 

distribution shown at node £ in Figure 1 while the values of E(/j .^-1) and 

f.(6  '^-0) are obtained   fron,   respectivsly,  the distributions shown at nodes 

Jb  and  <£  . 

In this case then the functional  in (14) may also be represented as 

(15) ***'# - 2'20Nl * 0,03xRl ■*■ 2,52N2 "*"   1'****R2 

with  the  indicated oMxisiication  to be undertaken with  respect  to the constraining 

relations  (11),  (12) and  (13).     Save for the second  constraint  in (13),  this 

would be an ordinary linear prograassing problsn.     The condition 

N2 ^  ^ • ^  xR1 ^    1 

iseana  that we cannot set either x,^  or x^ -  1 until after ^ has materiallred. 

On the other hand, we can choose one of these variablas to be tero in advance 

of any knowledge of the specific a that will materialise.     Reference  to (15) 

isakea  it clear that  this zero value should be  tssigned  to x _  in the present 

case and  then the further choice should be x      -  1  so  that the optimal rule  is, 

as noted  in the text, x .  ■  1,  x^.  - max    (O.^x^.]. 
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