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SOME CRITICAL ISSUES AND PROBLEMS 
IN CLUSTER ANALYSIS 

Samuel B. Lyerly 

Although this paper is the first on the program, it is in no 
sense a "key-note address" or an introduction to the presentations that 
will follow.  It is mainly an attempt to propose some questions that I 
and several others have been concerned about and for which we hope to get 
from this meeting some useful insights, if not definitive answers—if not 
from the papers, perhaps from the informal discussions for which we have 
budgeted a liberal proportion of time. 

V/e all know that many problems in cluster analysis are common to 
various fields, including the several represented here; and if I lapse 
into the language of psychology from time to time I am sure that you will 
have no trouble making appropriate translations. And if some of my remarks 
seem critical of certain work that has been done, I am sure that you will 
understand that I am referring to others who are not present in this room. 

I think it is well for us to remind ourselves that even in this 
enlightened decade "typological" concepts are controversial with many of 
our colleagues in the behavioral sciences. Back in my undergraduate 
days in psychology the prevailing doctrine was that individual differences 
are essentially quantitative rather than qualitative (and, if you used an 
appropriate measuring instrument and followed the instructions in the 
manual, they should all be "normally distributed"). Even unmistakedly 
aberrant behavior, when it could not be linked to some physical injury 
or disease or to a genetic origin, was likely to be regarded as an extreme 
manifestation of some "normal" dimension of behavior.  In recent years, 
however, there seems to have developed a growing suspicion that there may 
be ways of assigning people to groups or types or diagnostic categories 
in such a way that knowing a person's classification will significantly 
aid professional workers in helping him in medical, vocational, educational, 
or other situations.  I am sure that if we did not share this point of 
view, or were not members of this "type," we would not be here today. 

The first big question, and one which I am sure will receive a 
certain amount of attention during these several days, is: "What is a 
cluster?" For human populations I have seen no definition that can be 
unequivocably translated into operational procedures and few if any which 
seem to have satisfied even those investigators who have proposed and 
used them. A typical statement is that a cluster (type, group, species) 
is composed of individuals (objects, specimens, activities) such that every 
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member of the cluster is in some relevant sense "closer to" other members 
of his group than he is to members of other groups. As a definition, a 
statement such as this is of course circular and permits of various inter- 
pretations, depending upon the investigator's purpose, the nature of the 
data he happens to have, at hand, and the computer program that he has been 
able to borrow.  In a t/pical study in the social sciences one does not 
know at the outset whether any types or clusters exist (by whatever defi- 
nition); how many clusters to expect, if any; what proportion of the sample 
can be comfortably assigned to one or another of the clusters that may be 
discovered; or what kind of statistical conclusion or probability statement 
can be made to reflect one's degree of confidence in the findings. There 
is often no preliminary statement of a clear model, either substantive or 
structural, that the investigator is seeking to confirm.  In many psy- 
chological studies seeking clusters we may get useful hints about an 
implied theoretical model or about certain likely hypotheses by studying 
the list of variables the investigator has chosen to analyse. But this 
is not always a clear guide, since variables seem to be chosen frequently 
because of availability or for even more obscure reasons. So I hope to 
leave this conference feeling a little more secure about the cluster 
concept--what a cluster is, how to recognize one when I see one, what 
advances are being made toward operational, objective methods of cluster 
ident ification. 

My second area of concern has to do with the choice of variables 
to be used in a cluster analysis. As I implied a moment ago, ideally 
the variables should be specified by the investigator's initial hypothesis 
or model, but in the typical "exploratory" study this is not always the 
case. Sometimes there does not appear to have been a clear understanding 
of the nature and characteristics of some of the variables employed. 
Occasionally sets of variables from quite dissimilar domains have been 
brought together in attempts to seek clusters within a common set of 
dimensions. Some research programs have taken what seems to me to be a 
sensible course (at least in those areas of psychology in which such a 
course is applicable): Variables are selected which are relevant in terms 
of the investigator's theory and whose characteristics or "meanings" are 
well understood from previous work (e.g., validity studies, factor analysis, 
or the like).  I understand that in some fields, such as biological taxonomy, 
there are some fairly explicit models and that the selection of variables 
to be used in classification can thereby be more rationally determined. 
I hope that Professor Sokal will enlighten us on this. 

Related to the selection of variables is the problem of their 
distributional form, and the associated problem of the metric properties 
of the data. Some investigators insist or prefer that only normal (or 
normalized) variables be used. Others do not hesitate to use nonnormal 
data, dichotomies, or orthogonal "dummy" components of multichotomous 
data. There is more than a matter of taste involved here. Are certain 
relevant data in the domain "inherently" nonnormal or qualitative? V/hat 
are the scalar properties of a given variable? Considering the selective 
and/or haphazard conditions under which many of our human samples are 
drawn (in schools, hospitals, etc.) and the adventitious origins of many 
of the observations behavioral scientists use, how can we reasonably 
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expect or demand any particular distribution forms? One great advantage 
of normality (in particular, mult ivariate normality, which isn't easy to 
come by) is that it facilitates various statistical manipulations and 
permits certain significance tests. But cluster analysis is a long way 
from becoming a statistical method and in the meantime there are probably 
some more pressing problems deserving priority than the matter of whether 
distributions conform to the normal or any other standard shape. 

One of the more critical problems in cluster analysis and related 
techniques is the choice of an interperson index, since the process usually 
«tarts with a table or matrix of n x n numbers, each representing com- 
parisons of each individual in a sample of n with every other individual. 
These indices, as you know, are typically one of two kinds: measures of 
similarity (correlations, covarlances, cross-products, "per cent agreement") 
or measures of dissimi lar ity ("S-ucl idian" or some other index of "distance") 
You are all familiar with these indices and their major characteristics. 
The point I want to make is that some investigators seem to have made their 
choice of index on the grounds of convenience or familiarity without recog- 
nizing that different indices can give rise to quite different cluster 
confiqurat ions.  It is not necessary at this time or in this company to 
elaborate or document this statement. I shall be interested, however, to 
learn from some of our participants their reasons for choosing the indices 
they have used and their experiences and recommendations. 

Incidentally, in a hasty and incomplete survey of the social 
science literature covering the past five or six years, I have found that 
the distance type of index is now leading the correlational type by about 
two to one.  I think there may be several reasons for this:  (1) Distemce 
measures have received more respectful attention from statisticians, who 
have as you know developed some elaborate distance-based models for use 
in the closely related classification-decision problems.  (2) Correlational 
indices ("Q" measures) have certain metric problems and seem to suffer from 
particular ambiguities from the sampling-significance point of view. 
(3) The use of the correlation coefficient involves the controversial 
"level" concept, which has not always been squarely faced.  (My own feeling 
is that "level," which is an average, can be removed or ignored only when 
it is demonstrablv irrelevant to the investigator's purpose and when it 
has a clear meaning in its own right, e.g., the mean or total score derived 
from a battery such as the Wechsler subtests.  It follows, then, that the 
variables must be from the same domain, must all "point in the same direc- 
tion" so far as their general behavioral significance is concerned, and 
hence be positively correlated.) 

I shall pass over seve al related technical matters such as the 

appropriate dimensionality of ^ne's space; whether the dimensions should 
be orthogonal or correlated; the questions of standardizing, weighting, 
etc., with the suggestion that perhaps we are not yet ready for decisions 
on some of them.  Perhaps we need more experience with various empirical 
approaches which aspire no higher than the descriptive and the topological. 

The area which has received the most attention recently, with the 
increasing availability of electronic computers, concerns the efficient 
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manipulation of data according to some routine or program designed to locate 
clusters if they exist and to assign each assignable member of the sample 
to his appropriate group. 

With a matrix of interpersonal similarity or dissimilarity measures, 
there are two general nethods of attack that have been used. The older, 
and still the most frequent, involves the locating of pairs of individuals 
who are "closest" to form the nuclei for types or clusters, then examining 
other individuals or pairs to be added to existing groups or to form 
tentative new groups. Various sequences or "rules" have been adopted and 
various criteria for inclusion, exclusion, or reassignment—some planned 
objectively (and hence adcptable to computer methods) and others dependent 
upon the investigator's judgment at various points in the process. The 
rules are essentially arbitrary and there are usually a number of individuals 
left unassigned to any group. This may be called the "synthetic" approach 
to the clustering process.  (A British writer has recently called it the 
"agglomerative" method.) 

The other major approach, which has been attempted more frequently 
in recent years, is what might be called the "analytic" method (or 
"divisive," in the term of our British colleague).  Instead of beginning 
with n individuals, each a "cluster of order one," and successively com- 
bining pairs and larger groups until all or most have been assigned accord- 
ing to some rule of "belongingness," the investigator begins with the 
entire sample as one cluster and asks "How can I divide these into two 
groups, each of which is more homogeneous with respect to some criterion 
or standard than is the total sample and more homogeneous on the average 
than would be the case if any other partitioning into two groups were 
made?" The criterion may be something like minimizing within-groups sums 
of squares or maximizing between-groups differences. 

Next, having divided the original sample into two groups according 
to the criterion (which, if carried out completely, involves examining 
each of the possible (2-"' - I) partitions), the investigator may analyze 
each of them and search for ways to divide them into further subgroups. 
This sequence of steps may be continued and the results tested at each 
stage (although an "exact" test of an appropriate null hypothesis for 
such a procedure is not known). 

The result of this series of operations will ordinarily be an 
hierarchical "tree" configuration of groups, consisting of a "trunk" 
(the original undifferentiated sample), one or more orders of "limbs" and 
"branches," and finally the "twigs" (the ultimate smallest groups which 
cannot be further subdivided). The configuration need not be symmetric. 
Some ultimate categories may be at the limb or branch level. 

Two characteristics of the "analytic" approach in comparison with 
the "synthetic" are:  (I) it is more "objective" and hence more readily 
programmed for computers (at least in the forms in which recent investi- 
gators have used these methods, though not necessarily in general); and 
(2) it assures that every individual is assigned to one of the ultimate 
groups, provided some quasi-statistical criterion is used to terminate the 
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process (such as a predetermined within-groups sum of squares or a minimum 
number of cases in the ultimate categories). 

Obviously, if cither the synthetic or the analytic procedure is 
allowed to proceed unchecked by any rule of "when to stop," the Sorcerer's 
Apprentice will take charge. The synthetic approach will ultimately 
assign everyone to a single type, and the analytic will finally split the 
entire group into n classes, each containing one person. 

Most of the attempts at empirical clustering have been step-wise 
and/or iterative procedures. A solution which has some obvious appeal is 
that the investigator form every possible arrangement and test each such 
arrangement against the criterion he has chosen.  In other words, he would 
divide his subjects into every possible set of 2 groups, 3 groups, etc., 
and test every such set of partitions. This could be considered a frontal 
attack, avoiding some of the theoretical objections to the synthetic or 
analytic approaches.  The difficulty with this idea is that with samples 
of even moderate size the problem is beyond the ability of even the fastest 
and most capacious modern computer to handle.  The number of ways of clas- 
sifying n individuals into £ groups is n.'/rl times the coefficient of xn 

in the expansion of the generating function (ex - I)r.  For a sample of 
16, which is certainly as small as most investigators would want to use, 
the total number of arrangements is more than 10 billion! Hence the need 
for short-cuts, approximations, and iterative approaches to the clustering 
problem. 

In order to have more time for discussions, which we all hope will 
be a very fruitful part of this conference, I shall not continue along 
these lines at this time. My concluding summary remarks (and I have written 
some down) will be postponed until tha end of the conference if anyone wantj 
to hear them.  I'll be very much interested in whether and to what extent 
I'll want to change them by that time. 
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Methods of Clutter or Typologlcel Anelyels 

Maurice Lorr 

Catholic Univeralty 

The purpose of this report is to review and examine available nathoda of 
typological or cluster analyaia. To atatiaticiana these techniques deal with 
what is known as the mixture problem. The mixture problem is concerned with s 
sample regarded as composed of individuals from several different populations. 
Neither the number of populations nor their nature are known a priori. It is 
also not known which individuals come from which populations. A general solution 
requires estimating both the number of populations present as well ss the para- 
meters of the different populations. Since the problem is very difficult, exceed* 
Xagly little work of a probabilistic nature haa been done. 

Through usage, cluster analysis has come to refer to procedures applied for 
two different purposes. One reference is to procedures for identifying types, 
that is to say, homogeneous, mutually exclusive subsets of Individuals, cases, 
objects or sampling units within a matrix of data. This proceas may be called 
typological analysis. In its second meaning, cluster analysis refers to procedures 
for grouping attributea, traita or characteristics. Here two different objectives 
may be diatinguished. In one caae the aim is data reduction or parsimony; a 
smaller aet of measures are used to represent the larger set with a minimal loss 
of information. The second aim is to have each oubset reflect some hypothetical 
dimension. Hie proceas may thus be called dimensional analyaia. The concern here 
is with procedures for determining types not known a priori. 

The Utility of Typologies 

What are some of the practical and scientific uses of typologies? It is 
obvious that a type facilitates conmunication. The unique pattern of type charac- 
teristics make members of a type easily recognised, remembered, underatood and 
differentiated from non-menbers in a given domain. To label a person s psychopath 
or a schizoid immediately suggests a broad pattern of traits and to-be-expected 
behavior. A second related advantage la that type membership may provide enhanced 
predictions to outside criteria particularly if relations among varlates are strongly 
nonlinear. A sample of persons of identical or homogeneous profile will tend to 
be more homogeneous es to criterion-relevsnt behsvlor thsn the mixed population 
(Toops, 1948). The integrity of the Individual la preserved in the type concept 
since the entire score profile is considered simultaneously. Usually his scores 
are considered singly and in isolation. The improvement in predictive eccuracy 
takes place through the operation of higher order dependencies and through the 
utilization of any interactions should they exist. In linesr regression equations 
the predicted Y acores are simple weighted additive sums of the predictor scores 
in which the weights are constants. Interactive effects, like the simultaneous 
presence of say, two high scores and two low scores, are Ignored. The possibilities 
of such conflgural relations have been shown by Mechl (19t0), Horst (1956), and by 
Lobin and Osburn (1957). For example, two dichotomous items may be totally unre- 
lated to a dichotomous criterion (such as schizophrenic vs normal) when scored 
singly. Yet, when scored for their Joint presence or abaence, these two items 
may provide near perfect prediction to the criterion. 

A taxonomy of natural occurring types represents an Important achievement in 
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its own right.    If there are discrete, qualitatively distinct subtypes present and 
demonstrable,  then this knowledge reflects and increased understanding of the domain. 
The taxonomy may have much systematic import and generality.    It may facilitate 
the discovery of lava not observable within mixed samples.    The subgroups may 
provide or; suggest information relative to connton structure, conmon processes, and 
common antecedents much as they do in biology. 

In opposition to the general purpose typing approach just described, the propo- 
nents of the single purpose approach argue that there is no single meaningful way 
to classify people.    It all depends on one's purpose.    Persons similar in one set of 
variables are not necessarily more similar than persons in general on another set 
of variables.    A particular classification is meaningful only in so far as it is 
related to a broader class of variables one desires to predict or control.    In 
this approach some mathematical function of the profile elements is found or con- 
structed which «ill b<!St predict the external criterion.    Emphasis is on the criter- 
ion relevancy of the type characteristics and not on the nature of the profile. 
Finally it is argued that multiple linear or curvilinear regression is more efficient 
than prediction from knowledge of type membership. 

It is true that there are numerous ways of classifying people in a given 
domain depending upon one's aims.    However,  the presumption in the mixture problem 
is that tvo or more natural subgroups exist.    If they exist,  they are likely to 
have arisen or developed because of survival value, or because of a conjunction 
of natural laws.    In contrast the classification schemes and configural scores tied 
to external criteria represent technological advances lacking scientific generality. 
Each new decision and each particular situation calls for another empirical search 
for a criterion-relevant pattern.    While useful for a while these cook-book patterns 
are soon outdated as new criteria or potential predictors appear.    The argument 
against special-purpose types is comparable to that offered in support of the 
development, of psychological tests as instruments of psychological theory (Loevinger, 
1957; Cattail,  1946).    Just as criterion-oriented psychometrics and particularized 
validation are devoid of scientific interest,  so are single-purpose classification 
schemes. 

Structural Models 

Before examing specific procedures for finding subsets of entities the problem 
of structural models requires consideration.    The overall problem is one of devel- 
oping a fruitful means for representing the data.    Cluster-search procedures should 
determine rather than impose structure on a body of data.    If,  for example points 
are uniformly distributed in space no clusters should be found.    Indeed empirical 
data suggest that clusters may vary greatly in shape.    In three-dimensional space, 
they may be spheroid,  serpentine, amoeboid or cloud-like.    Thus it should be 
evident that quite different cluster-search methods sre needed to ascertain different 
structures and different objectives.    There should be no arbitrary partitioning or 
chopping up of space. 

Cluster-Search Techniques 

The cluster-search procedures may be classified for purposes of description 
and discussion into the following categories;   (a) factor analysis,   (b) multi- 
dimensional scaling (c) minimizing within-cluster variation,  (d) successive cluster 
build-up,  (e)  linkage analysis and (f) hierarchical analysis 
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A. The Method of Factor Analysis 

Factor analysis of the N by N matrix of Interperson similarities followed by 
a rotation to simple structure has been a common procedure for Identifying types. 
Stephenson (1936), Tryon (1955), Boss (1957), Brovermsn (19f.l), Nunnally (1962), 
Overall (1964) and many others have recommended this procedure. The Indices of 
resemblance may be correlations, normalised crossproducts of scores, squared 
distances, or simply crossproducts of raw scores. 

Factor analysis Is deemed inappropriate because the method is designed to 
isolste dimensions and not clusters of entitles. There is no reason why clusters 
defined by two or more dimensiont may not be more numerous than dimensions. The 
rotational process also is inappropriate for the task of isolating mutually exclu- 
sive subgroups. The usual rotational process tends to disroeniber clusters or to 
miss them altogether. If a cluster should happen to fall between two factors, 
each type-factor will be defined by persons on the margins of the cluster. 
Also factoring tends to yield a multiple classification of persons since most 
persons will correlate significantly with several type-factors, and relatively 
few with one feetor. 

When correlations, covarlances and normalized crossproducts are factored, 
all unrotated factors are bipolar and such bipolsrity cannot be completely removed 
(Ross, 1963). Thus persons with opposite score profiles will emerge with high 
but opposite loadings on the same factor. Each type-factor is, therefore, 
defining two types rather than one. Thus, the number of type-factors defined 
cannot be the same as the number of types. 

The most cogent general argument advanced against the use of factor analysis 
of similarity indices between persons Is that it does not yield new information. 
The number of factors resulting from a direct R-analysls of measures and an 
obverse Q-analysis of persons will be the same (Hurt, 1937; Harris, 1955; Slater, 
1958; Ross, 1963; Ryder, 1964). If variables have been standardised over subjects, 
a principal component analysis of sums of score profile crossproducts yields 
exactly the same results as an analysis of correlations among variables. 

Lazarfeld's latent class model (1950) as further extended by Gibson.(1959) 
also calls for a factor analysis. The technique operetes on the Interrelations 
of dlchotomous attributes. Manifest Joint frequencies are accounted for by a set 
of Q mutually exclusive end exhaustive subgroups (latent classes). The model 
assumes that each subgroup or latent class is homogeneous In whatever underlying 
dimensions are necessary to account for the observed interrelations. Stated 
otherwise, there Is withln-ciass Independence between pairs of tests. The 
number of latent classes is determined by a fsctor analysis of the lower order 
Joint occurence matrix. 

One question that pan be raised Is how conflgural information from higher 
order Joint occurrences can affect this solution. Lunnenborg (1959) has argued 
that the Independence of items effectively precludes the possibility of conflgural 
information unless the latter Is present In the sets of items prior to the 
determination of latent classes. Another limitation to the method is that it appears 
to be confined to varlates of relatively small dimensionality—uaually one or two. 
Most typing problems in psychology Involve at  least six or more dimensions. 
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Although there is nothing in the development of the model equations that restricts 
the number of dimensions, empirical examples involving more seem not to have 
been published.  Other obstacles are that latent class sizes must be estimated or 
known in advance. 

B.  Minimizing Wlthir Cluster Variation 

One procedure, often proposed, is to subdivide the N profiles in K-space 
into Q mutually exclusive subsets in such a way that each is as compact and homo- 
geneous as possible. Compactness is achieved by requiring the average of all 
distances between profiles within each subset shall be a minimum.  This technique 
nas been variously labeled a "mininum variance partition" and a "minimun. squared 
error technique." 

One of the first of such efforts was reported by Inorndike (1953).  His 
procedure begins by assuming that the two pre tiles which are the greatest distance 
apart fall into different s^bgro^ps  A third subgroup is established with a 
profile which is furthest away from either of the other two  Each cluster is 
built up by adding that profile nearest the pivot defining the cluster. A 
profile is added to each cluster in turn until all specimens are assigned.  This 
yields sets of clusters of equal size  Profiles found closer to members of 
another cluster than to their ovm are re-assigned until further shifts do not reduce 
within-cluster distances.  Increases in the number of clusters are made in the same 
manner until the average within-cluster distances relative to the number of clusters 
stabilize. While the procedure is comparatively objective it has some limitations, 
a few of which will be mentioned  For instance the goal of assigning speciioens 
so that the average within-cluster distances are at a minimum involves a fair 
degree of trial and error and no criterion for optimal termination  There are 
no limits set in assigning profiles close to two clusters; every profile is allo- 
cated to a cluster.  There also appears to be no justification for assigning «very 
profile to a cluster, not for seeeking subgroups of equal size.  Finally the 
number of groups must be specified in advanced. 

Zubin, Fleiss, and Burdock '1963) have proposed a procedure for fractionating 
a population into homogeneous subgroups that resembles Ihrondike's.  First the 
matrix of D^'s is scanned and the largest entry identified.  The two profiles 
Involved, say X and Y, then form the foci of two subgroups  About each of these 
foci separately is cluttered each profile whose b*  from the focus is less than 
the fifth centile of all the sq.ared distances.  Ihese two clusters are taken as 
nuclei. Then about each of these nuclei are clustered profiles whose average 
D from members of the nucleus is less than the tenth centile of all distances. 
The criterion of inclusion may be relaxed still further until every profile in 
the sample has been assigned to one of the Subgroups. A profile that satisfies 
a criterion for both clusters is assigned to the group to which it is closer. 
The subgroups are then tested by chi square for homogeneity  If the clusters 
are not yet homogeneous, the next step is to identify that trio of profiles 
mutually furthest apart from one another than any other triplet.  Profiles are 
again clustered about each of these foci and the homogeneity of the resulting 
subgroups is tested.  Ihis procedure is continued eitner until all groups are homo- 
geneous or the number of groups ro be found is ao great as to be meaningless.  The 
procedure assumes normality in the underlying grojps^ independent measures, and 
equal covarlance matrices.  Ihe metrod tends to g^ard against the detection of 



' 

2.05 

spurious clusters since It allows  for the possibility that  the population 
studied  is homogeneous  to begin with. 

Forgy (1965) has delineated  some of the  shortcomings of the minimum variation 
technique.    As an illustration he cites data  from the field of astronomy reported 
by Hertzsprung and Russell.    When stars are  plotted by absolute  luminosity and 
temperature  two "natural" groups of stars are evident.     The  so called  "main 
sequence" stars appear as a flat S pattern while the "red giants" group together 
in a compact cluster.    A minimum variance partition of such a sample could cut 
right across these groups since such a partition would produce a smaller within- 
group sum of squares.    Thus the method tends  toward the arbitrary partitioning 
of space  into "efficient" subsets.     It is unsuited for the recovery of natural 
subgroups differing in configuration. 

C.    Successive Cluster Buildup 

In this technique either a single pair of profiles  (usually the closest pair) 
or a profile with greatest variance  is selected as a nucleus  for the cluster. 
Other profiles are assigned to the cluster on the basis of a definition of simila- 
rity which sets a limit or threshold for inclusion.    The method does not need to 
specify the number of clusters to be determined in advance. 

McQultty (1961,   1963) has developed several procedure«,  called typal analysis, 
representative of successive cluster buildup.     He defines a type as a category of 
N people such that everyone in the category is more like each of the other N-l 
persona than he is  like any other person in any other category.    The method starts 
with a table of similarity indices between people.    The indices of every column 
are then arranged  in rank order and submatrices are built that satisfy the 
definitions of type.    A submatrix satisfying the definition of type contains no 
rank larger than the number of persons in the type.    Suppose a type consists of 
persons A and B,  A being most  like A and second most like B,  and B  in turn being 
most like B and second most like A.     Then the  submatrix constitutes a  type if it 
contains no rank larger than the number of cases.    This process continues until 
all persons of the original matrix have been chosen in order of their similarity to 
A.    The problem is  to select from the full matrix of indices all of the submatrices 
which fulfill the definition of a  type.     The advantages claimed for Che method 
are that  (a)   it can reject an hypothesis of types;  (b)   it reports exceptions to 
a type.     If typal analysis fails  to vield  types  it is possible to relax the 
definition and permit  inclusion of persons with slightly higher ranks  than are 
permitted by the usual definition. 

Sawrey,  Keller,  and Conger  (1960) also have designed a cluster buildup 
procedure which uses the distances   (D2's) between each and every profile.    First 
an arbitrary maximum D    is set as a definition of "similarity."    Then with each 
profile are   listed all other profiles in the matrix whose distance  is   less than the 
maximum.     The profile with the  largest number of other profiles similar to it  is 
selected to form a potential nucleus group.   The profile selected and all those 
similar to  it are crossed out from the table.     The profile with the next highest 
number of similar profiles  is  then selected  to become the  second potential nucleus 
group.     Again the associated  list of profiles  is crossed out  from the  table.     The 
process  is repeated until only profiles having no similar profiles remain.    Next 
a minimum value  is  set  for the definition of  "dissimilarity" and a matrix of the 
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selected profile Indices Is prepared. The columns of the matrix are summed and 
dissimilar pivot profiles are selected.  Selection proceeds'from the profile 
having the largest sum to the profile having the smallest sum. As a profile Is 
selected all other profiles which are not dissimilar to It (I.e., «hose distance 
from the selected profile Is less than the maximum) are eliminated from the matrix. 
The selected profiles are all at least the minimum distance from each other. 
The centrold of each nucleus group (the selected profile and associated list) Is 
determined. Each remaining profile Is added to a nucleus group If Its distance 
la less than the limit of dissimilarity from any member of the nucleus group. 
Several maximum limits may be set for adding In additional profiles to existing 
groups. Only an upper limit Is used to form the nucleus groups. Although dis- 
tances among members of a cluster may vary greatly, these are Ignored.  Several 
maxims would appear needed to define similarity since a subgroup whose members 
are more widely separated from each other and from other groups will remain 
unrecognized. 

Saundera and Schucman (1962) have developed a procedure, called syndrome 
analysis, that satisfies McQultty's definition of type but operates on squared 
dlstsnces between profiles, it begins by regarding every Individual In the sample 
as a cluster of order one. First, all pairs that are mutually closest to each 
other are Identified. Then all triplets whose members are closest to each other 
are found.  Clusters of higher order are Identified by the same process until 
no more clusters appear by this process.  A list of "closed clusters" is examined 
to eliminate those which are contained in larger closed clusters that came to 
light later In the process. The resulting list of non-overlapping closed clusters 
are regarded as "nodes" for the given matrix.  The third step Is to characterize 
the nodes. This may Involve finding the mean profile of members of each node, 
or it may Involve construction of the withln-node-variance-covarlance matrix of 
test scores. The latent roots and vectors of the matrix may provide the necessary 
coefficients for partialling out intra-node variability preparatory to iteration 
of the procedure. Once membership has been established the resulting subset is 
called a syndrome. 

Several cluster-search procedures similar to those just described have been 
developed by Lorr and his associates (Lorr, et al, 1962; Lorr and Radhakrlshnan, 
1967). The procedure begins by finding a profile near the center of a cluster. 
The profile with the maximum variance of squared correlations (or congruency 
coefficients) with all others is selected as pivot. To the pivot are added suc- 
cessively the two profiles with the highest average correlation with all profiles 
correlating above CL with the pivot.  The limit C* may be set at the value at 
which a correlation coefficient based on K Independent variates is significant at 
p less than .05.  The matrix is searched and the profile added that correlates 
highest on the average with those already in the cluster.  The process continues 
until no other profiles can be found that correlate on the average above C^. 
Next an upper limit C.. is set to define dissimilarity and to prevent cluster overlap. 
A suitable value Is a correlation coefficient: significant at p less than .10. Any 
coefficient in the residual matrix that correlates on the average C-i; or higher 
with the first cluster is deleted.  The second cluster is generated in the same 
manner as the first from the matrix of remaining profiles.  The deletion of profiles 
correlating above C. with a newly formed cluster does not exclude profiles corre- 
lating above C.. with preceeding clusters. Accordingly, cluster members that 
correlate on the average above C,T with the last generated cluster are also deleted. 

\ 
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The final steps consist in determining (a) the mean correlations within and 
between clusters; (b) the mean standard score profile of each cluster. The 
computer program can handle 150 profiles at one time. 

Like McQuitty's typal analysis, the procedure proposed by Gengerelll (1963) 
is based on a definition of a subgroup.  Consider a population of N persons each 
measured on K variates. Let each person be represented as a point in K-dlmenslonal 
space. Then a subgroup is defined as an aggregate of points in the test space such 
that the distance between any two points in the set is less than the distance 
between any point in the set and any point outside of it.  Suppose N persons as 
points are distributed in three-dimensional space as two spheres, A and B.  Two 
subsets will exist only if the two spheres are separated by a distance greater 
than the diameter of the larger sphere.  The method begins with an N by N matrix 
of squared distances. A frequency distribution is made of distances between all 
possible pairs.  The existence of one or more discontinuities in the distribution of 
distances indicates that a population consists of two or more subsets.  The first 
point of discontinuity in the distributions, D , provides a criterion for deter- 
mining the point of separation between two subsets.  A subset is then defined as 
the aggregate of points (persons) who are mutually no farther apart one from another 
than Dc.  The existence of subsets in a population is thus associated with multimod- 
ality in the distribution of inter-point distances.  Computer programs and empirical 
tests are as yet not available. 

Bonner (1964) has been responsible for several programs for clustering 
binary attributes, one of which has been generalized to continuous data (Pettit, 
1964). One program is based on a type definition resembling McQuitty's.  The 
goal is to find clusters where all members are similar to each other and no non- 
member is similar to all members.  The algorithm picks a random "center" and 
builds a cluster around this through use of an arbitrary threshold T. Profiles 
more similar to the center than T are considered to be in the crude cluster. 
The typical member of the cluster is computed and compared with the expected 
number of clusters rarer than this to be found in an uncorrelated population. 
Then by means of a process of "hill climbing" a better cluster is achieved. All 
profiles are used as cluster centers. 

Rogers and Tanimoto (1960) have reported a computer program for the classi- 
fication of plants. Their variables are binary and a simple similarity coefficient 
is used. After a matrix of similarity coefficients has been obtained a value 

Ri is computed as a  measure of the number of nonzero similarity coefficients 
possessed by a given individual.  Next computed is a quantity H. which is the 
product of all the similarity coefficients of j with others.  Ail persons are 
then grouped in a table in order of descending""value of R..  The person having 
the highest Rj and the highest H, is considered the prime mode.  The problem is 
to find a criterion to determine the number of persons who go into a cluster. 
To do this a second node Is found.  The radius around the first node must be such 
as not to  include the second node.  At this point the similarity coefficients are 
converted into distances defined as D.  equals -log2 S. ..  These distances permit 
visualization of taxonomic similarity.  Finally a measure of cluster inhomogeneity 
is computed.  The method has proved to be fairly effective in isolating subsets 
when the variables are truly qualitative categories. 

Cattell and Coulter (1966) have developed a procedure that represents a 
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variant of cluster buildup. Given a matrix of similarity indices the next 
step is to establish several arbitrary limits as definitions of similarity. 
The matrix of similarities is then converted into an "incidence" matrix of 
ones and zeros. If an index exceeds the limit it is categorized as a unit to 
designate a linkage; otherwise it is categorized as a zero. Next a "phenomenal 
cluster" is defined as a set of profiles each of which is linked to every other. 
Spatially this means that all points fall within a hypersphere. A Boolean algo- 
rithm, based on what has been called "ramifying linkage method", sorts the data 
into phenomenal clusters. 

D. Linkage Analysis 

Linkage analysis classifies profiles into clusters such that every profile 
in a cluster is more like some other profile in that cluster than it is like any 
other profile in any other cluster (McQuitty, 1957). This method is especially 
useful in determining elongated, serpentine or amoeboid clusters. Profiles are 
continuously connected with one another through intermediate profiles thus main- 
taining any specified level of similarity. Linkage analysis has also been much 
applied to generate hierarchies which will be considered later. 

McQuitty (1957, 1964) has been among the first to develop linkage analysis 
which is perhaps the simplest of the cluster methods.  The analysis starts with 
a matrix of similarity indices. First the highest entry in each column (a linkage) 
is found, and then the highest entry in the matrix is identified. The highest 
entry (ab) represents a reciprocal pair in the sense that members are mutually 
closest to each other. One member of the pair (b) may also be the highest entry 
in some other columns, say c and d. Then c and d also constitute members of the 
cluster. If none of the profiles, a, b, c and d is highest in any other column 
the cluster is complete. The highest remaining entry in the matrix is then used 
to build the next cluster. Analagously, additional clusters are determined. 

Cattell and Coulter (1966) also employ a procedure akin to linkage analysis 
to identify strung-out clusters. Instead of beginning with individual profiles 
they first identify a.I possible phenomenal clusters, (hyperspheres). The amount 
of overlap of the phenomenal clusters is recorded in a  matrix which is then con- 
verted, through application of a limit, into an incidence matrix of units and zeros. 
This latter matrix is subjected to their search procedure which identifies all 
mutually exclusive chains of continuously related profiles. 

Needham (1961) and Parker-Rhodes (1961) use linkage analysis with binary 
data. The distance between all pairs of profiles is determined. A limit or cut- 
ting score is set to define similarity and applied to ehe matrix which is reduced 
to a matrix of zeros and ones. Columns of the matrix are then compared pair-wise 
to determine the number of agreements or intersections between them. The resulting 
subsets, called "clumps", are defined as members more like each other and less* 
like non-nvp^bers than numbers of the universe picked at random. 

The method of single linkage has also been suggested by Sneath (1957) and 
applied to taxonomic problems In biology (Sokal and Sneath, 1963). They point 
out that in avoiding overlapping clusters data may, in fact, be distorted to 
yield discrete clusters. When single linkages are permitted then complicated 
serpentine clusters may be formed. More will be said under the topic of hierarchical 
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clusters. 

E. Multidimensional Scaling 

Metric and nonmetric multidimensional scaling represents another possible as 
yet untried approach to cluster identification. Given an N by N matrix of inter- 
person similarities some of the standard routines developed by Torgerson (1958), 
Shepherd (1962), Kruskal (1964) and Lingoes (1965, 1966) could be applied. In 
these procedures, individual profiles would be treated as points in space of 
unknown dimensionality. The problem would be to determine the dimensionality 
of the space and the location of the points in space. In the final solution 
distances between points in the space correspond to some monotonic function of 
the similarity of the corresponding profiles.  The Guttman-Llngoes procedures are 
designed for the treatment of categorical qualitative data but are also adapted 
for use with quantitative data. 

F. Hierarchic Cluster Analysis 

Discussion, thus far, has been restricted to techniques for finding unordered 
qualitative classes or so-called natural clusters.  Some of the procedures described 
have also been applied or extended to the problem of establishing discrete clusters 
each subdivided into subclasses.  While there is some question in regard to the 
range of application of such methods to psychological problems, their use in bio- 
logy is widespread.  Sokal and Sneath (1963) assert that biological classification 
should be constructed by nested overlapping categories (p. 192).  Thus some of 
the procedures for constructing hierarchic structures will be reviewed briefly. 

Sneath's (1957) single linkage procedure is followed for the first sets. 
Then the criteria of admission (threes <Ids) are gradually lowered from an initial 
high similarity value to low similarly values.  Thus a single link between any 
member of two clusters permits the establishment of a more Inclusive cluster. 

McQuitty has been responsible for numerous procedures for hierarchical class- 
ification (1954, 1960, 1964). Agreement analysis classifies objects into succes- 
sive levels such as species, genera, and families. The first species is the two 
objects with the highest agreement score, the second species are the two objects 
with the next highest score.  Species are then classified into more inclusive 
groups analogous to the way in which Individuals were classified.  Hierarchical 
linkage analysis seeks to classify individuals into categories such that every 
member of every category has a maximal number of common characteristics and a minimal 
number of categories are required. Later modifications have led to what is called 
hierarchical classification by reciprocal pairs and by typal analysis. 

Ward (1963) and Ward and Hook (1963) have developed a very efficient minimum- 
within-group distance procedure for hierarchical grouping of profiles.  Each 
larger group is a unique combination of the next subordinate subgroup. The 
technique operates on an N by N matrix of profile distances. Clusters are built 
up by adding cases which increase the mean within squared distance least.  Clust- 
ering starts with N groups of one and ends with one group of N. Initially the 
matrix is scanned to find the pair of profiles with the smallest distance, these 
are combined to form a cluster of two. The distances of the remaining profiles 
from this cluster centroid are then computed. The process continues by reducing 
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the number of clusters from N (the original number) to N-l, N-2,...etc. at each 
stage the withln-groups sums of squares is minimized.  In addition they utilise 
an "objective function" which reflects the investigators purpose to guide the 
process. 

The Ward technique assumes nothing sbout the underlying structure of the groups 
or their distributions. In fact it can partition any collection of profiles 
whether or not it contains "natural" groups. The multivariate distribution may 
even be multivariate normal and thus unimodsl. They offer no statistical test as 
to ho« many groups are present. It is also likely that the nature of the gtoups 
established may depend on chance variations in data. Many similar comments 
can be made relative to the McQuitty techniques although they tend to be set- 
theoretic in form. On the other hand it can be argued that these procedures 
are in fact quite uaeful. They group Jobs so as to reduce cross-training time, 
they facilitate retrieval of information, and they increase predictive efficiency. 

Edwards and Cavalli-Sforza (1965) also apply the minimum-within-cluster 
sums of squares technique to construct hierarchic arrangements of clusters. The 
profiles are divided into the two most compact clusters, and the process is 
repeated sequentially so that a tree diagram ia formed. The advantage of a tree 
representation is thst it can be mapped on paper in two dimensions. Beginning 
at the base of the tree the first bifurcation represents the first split of 
profiles into two clusters. Each branch is split again aa the two clusters are 
resolved into two more, and the process continued until individual points are 
reached. 
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A review of clustering methods in biological taxonomy 

Robert R. Sokal 

The University of Kansas 

Introduction 

If I interpret my task this morning correctly, it is to present to an 
audience composed largely of psychologists and other social scientists a 
review of the clustering methods which biological taxonomists have employed 
in recent years.    There has bean considerable activity in this field which, 
as many of you know, has come to oe called numerical taxonomy,    although we 
biologists are newcomers in this field compared to the social scientists 
we have managed to accumulate a variety of methods in relatively few years. 
So, I could, in fact,  report on a substantial number of different clustering 
approaches.    However, I shall only sketch in scant outlines, since with one 
or two minor exceptions the techniques in biology are fundamentally akin to 
those of the social sciences (Ball, 1963),  and theie seems little point in 
reintroducing you to methods long familiar buv disguised in biological garb. 

You have undoubtedly oeen struck by the wide generality of your 
approaches across other disciplines of science.    But it is important not to 
be overly impressed by this phenomenon.    There are, in fact, fundamental 
differences, not in the mechanics of cluster analysis, but in the philosophical 
assumptions accompanying its use, which differ markedly among the various 
fields of application.    And I hope to spend the greater part of my time 
explaining to you the bases of these assumptions in biology to permit you 
to contrast these with the assumptions upon which you have been basing your 
work.    I feel that such an approach should be of interest to you.    Through 
an appreciation of the differences in approach in clustering philosophy in 
other sciences I have gained more insight into my own research field and 
possibly similar benefits may accrue to you from such a comparative approach. 

Principles of taxonomy 

Before we proceed we should define taxon as meaning a taxonomic group 
or class of any nature and rank.    Operational taxonomic units (OTU's) are 
the lowest ranking taxa in a given study.    They are the basic units that 
are to be grouped into higher ranking taxa.    A character is a property or 
feature which varies from one OTü to another.    It is coded into distinguish- 
able states.    Thus hairiness of a leaf is a character.    Slight, medium and 
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he?vy may be the three states in which this character occurs among the OTu's 
to bn classified,    A possible source of confusion is the difference between 
the terms -classification" and "identification."   Where a set of unordered 
objects has been grouped on the basis of like properties,  biologists call 
this "classification."   Once a classification has been established,  the 
allocation of additional unidentified objects to the correct class is 
generally known as -'identification."    5ome mathematicians and philosophies 
would also call this second process -classification,-' but I am principally 
concerned väth classification in the biologist's sense. 

Fundamental criteria of a classification have been defined by Williams 
and Dale (I965) who state that for a grouping of OTli's to be considered a 
classification thres requirements must be met (paraphrased for biological 
taxonomy):    (1) Within every taxon containing more than one OTU there must 
be, for every OTJ,  at least another OTU with which it shares minimally one 
relevant character state.    (2) hembership in the taxon may not itself be a 
relevant character.     (3) Every OTU in any one taxon must differ in at 
least one relevant character state from every OTU in every other taxon. 
We must also distinguish between taxa (plural of taxon) and categories. 
Taxa are actual groupings observed in nature,  regardless of the basis on 
which the grouping has been done.    They are allocated to categories which 
are the hierarchic levels in a classificatory scheme.    Thus Homo sapiens. 
carnivores or mammals are taxa, while species, genera or families are 
categories. 

Most classifications are internal (Williams and Dale, 1965) by which 
:.s meant that the classification is based upon criteria entirely inherent 
'..Ithin the data that are to be classified.    By contrast,  there are external 
classificatory procedures in which certain reference taxa are employed in 
aiding in the classification.    An example in point is the non-Linnean 
tr:rory of DuPraw (196^) which employs discriminant functions including 
both known and unknown specimens mapped in a two-dimensional space by 
discriminant analysis. 

While classifications in psychology and the social sciences need not 
always b^ hierarchically structured,  the principal purpose of biological 
numerical taxonomy is to group organisms into a hierarchic system of 
biological  tar.a.    Thtre pre two million different species of living organisms 
in thu WGi'ld.    Thnou rast be grouped if only for convenience of creating 
ordar in a chaos of names and forms,  but also because a sound taxonomic 
system will reveal much that is useful and of interest about the evolutionary 
niechanisr'3 that have given rise to the diversity of kinds of organisms 
existing in tho •■•orld today.    The principle of biological evolution is 
fundamental to en understanding of the nature of biological taxa and the 
discontinuities cnong them.    This is reflected in the commonly accepted 
belief that there is just one "natural-* system which, if only found, would 
be the obvious classification of the group under study.    Traditionally 
this natural classification has always been an evolutionary one.    Presumably 
the organisms constituting a taxon are related by common descent.    If we 
could only go back in the fossil record of a natural group, we would find 
a common ancestor for them before encountering a common ancestor for these 
forrs rnd those in another taxon of equal rank.    However, it has been 
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enphasized in recent years that there are at least two fundamental kinds of 
relationships among taxonomic units,  phenetic relationships which are based 
on overall similarity in terms of the characteristics which are measured, 
and cladistic relationships based on common descent as described above. 
Most conventionally stated taxonomic relationships contain an undefined 
mixture of the two (Sokal and Camin,  1965).    Naturalness in a phenetic 
sense is understood to mean maximal overall similarity within a taxon as 
contrasted with substantial differences from other taxa. 

Thus,  in attempting to set up a natural system we have to say whether 
it is natural in a phenetic or a cladistic sense,    host of the work in 
numerical taxonoity so far has dealt with phenetic systems,  taxonomies based 
on overall similarity which may or may not reflect closeness of evolutionary 
relationship.    These systems are of general utility.    Phenetic taxa in a 
natural system should be cohesive and have a high predictive value for 
characters other than those upon which the taxonomy has been based.    This 
brings up the problem of character selection, which does not loom as large 
in sociology and psychology, because only characters of interest are chosen. 
Thus, if we want to classify individuals on the basis of their attitudes to 
drinking, we might only classify them on responses related to this variable, 
but would not necessarily classify them on their physiology, their attitudes 
to art, or their driving habits.    The question is whether there are natural 
taxa of personality types rather than different, partially intersecting 
facets of the personality.    In biology we wish to represent as fairly and 
exhaustively as we can the genetic structure of the individual populations 
under study,  and this leads to serious problems of character selection as 
we shall see. 

Fundamental to the establishment of any taxonomy is the decision on 
whether taxa are to be monothetic or polythetic.    A monothetic group is 
defined by the possession of a unique set of features,  and classification 
on monothetic principles is a series of successive logical divisions into 
ever smaller subsets sharing one or more states of a character.    By contrast, 
a polythetic classification places together organisms that have the greatest 
nuinber of shared features.    Wo single feature is either essential to group 
membership or is sufficient to make an organism a member of this group. 

Jimilarity coefficients 

Any consideration of clustering methods must concern itself with the 
nature of the data to be clustered,    A few of the methods extract structure 
directly from the original data matrix,  which is a rectangular matrix whose 
columns are operational taxonomic units (the OTJ's to be clustered)  and whose 
rows are the characters on the basis of which the clustering proceeds.    The 
characters are coded numerically into a number of states or as a continuous 
function.    In the majority of cases we first compute from the data matrix 
a matrix of similarity coefficients, which expresses the pair-wise relation- 
ships among all the OTU's of the study.    These coefficients of similarity 
are of three basic kinds—coefficients of association, which in some way 
express the measure of agreement in character states that actually exists 

N 
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between any pair of QTU's as a proportion of the total amount of agreenent 
that could exist; correlation coefficients among OTU's, based on the 
characters of the data matrix (this is the conventional Q-type analysis of 
the psychologists); and a measure of Euclidian distance between OTJ's in a 
character-space.    For purposes of this discussion 1 shall confine myself to 
a discussion of correlation and distance coefficients with which I have had 
most experience.   Many of the association coefficients can be transformed 
to distances or functions thereof.    An important consideration first pointed ' 
out by Williams and Dale (1965) is that while studies of the relationships 
among OTU's, whether measured as correlations or as distances have both 
been termed Q-studies following the lead of the psychoraetricians, there is 
a profound difference between these,    a matrix of correlations between 
pairs of OTU's represents angles among OTU's in a space whose dimensions 
represent the OTU's.    Thus, there are maximally as many dimensions as there 
are OTU's.    On the other hand, a distance matrix among pairs of OTU's, while 
also a Q-study, shows distances among OTU's imbedded in a character space. 
That is, the dimensions of the hyperspace represent the separate 
characters, or, seen in the three-dimensional representations of OTU's which 
we have been preparing for purposes of study and analysis, these three 
dimensions represent linear combinations of the characters (three eigen- 
vectors corresponding to the three largest eigenvalues of the character 
correlation matrix).    Conversely, correlations among characters would 
represent angles in a character space.    Distances among characters are not 
generally computed, but if they were, they would be imbedded in a space 
whose dimensions were the individuals of the study.    Williams and Dale 
(1965) have called the character space an A-space (from attribute space) 
while the space whose dimensions represent the OTU's has been called an 
I-space (from individual space). 

Several characteristics of the similarity coefficients profoundly 
affect the clustering methods.    The similarity function should be metric, 
that is, it should meet the requirements of symmetry, the triangle inequality, 
and should be non-zero for nonidentical elements and zero for identical 
ones.    Most coefficients proposed in numerical taxonomy have been metric. 
Some semimetric and asymmetric similarity coefficients have been proposed 
in numerical taxonomy and in some instances such as immunological similarity 
may be Justified.    However, such coefficients greatly complicate the 
clustering and analysis of the OTU's. 

; 

General considerations of the relations among the similarity coefficients 
are in order.    For instance, since the taxonomic relations resulting from the 
cluster analysis are to be in the nature of universals, it is important that 
one-to-one relations between these coefficients be established, although, of 
course, these coefficients cannot be linear functions of each other; other- 
wise, there would be little point in preferring one over the other.    One 
would at least hope that monotonicity of the similarity function is retained. 
In fact, however, it can be easi.y demonstrated that the various similarity 
functions so far employed in numerical taxonomy are not jointly monotonic. 
Decisions,  therefore, have to be taken upon the choice of coefficients, based 
partly on the model of the type of similarity which it is desired to portray 
and partly on the mathematical properties of the coefficients. 

. aO 0*& 
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Another important consideration of a classification is stressed by 
Williams and Dale (1965).    It is not necessarily true that a given similarity 
function used to set up a classification at the lower hierarchic level will 
decrease (or increase) monotonically as we ascend the hierarchy,    nn example 
of this is the Spearman's sums of variables 'method which frequently leads to 
reversals in the value of the correlation coefficient when clusters join, 
as noted by Sokal and Michener (1938).     furthermore, in certain types of 
approaches the consequential nested hierarchies are not retained and several 
members of a subset at a low hierarchic level may split up to become 
members of different sets at a higher hierarchic level.    Juch relationships 
have been observed,  among others,  by Rubin (1966) in his optimal taxonony 
program. 

One decision that must be made is whether a similarity index is to be 
constructed which will indicate what is most similar to the human observer 
or whether such an index can measure what might be described as the 
intrinsic similarity between two objects based on their component parts, 
this latter similarity not necessarily congruent with the one  apparent to 
the observer. 

Clustering methods 

The three main clustering methods employed in biology have been the 
methods described as linkage methods oy Sokal and Sneath (I963).    In all of 
these methods the criterion for joining is gradually lowered from an initial, 
high similarity value at which all OTJ's are represented by a disjoint 
partition (single OTU's in a subset)  to low similarity values at which the 
classification is represented by a conjoint partition (all OTU's are in the 
same taxon).    Singln linkage described by Jneath (1957)  permits a single 
linkage between an OTU and a cluster or between two clusters to establish a 
new, more inclusive cluster.    While two clusters may be linked by the single 
linl.age technique on the basis of a single bond, many of the members of the 
two clusters may be quite far removed from each other.    To overcome this 
difficulty,  5neath has recommended recalculating mean similarity values 
both within and between groups (see Sokal and Sncath, 1963.  page 181). 
Wirth, Estabrook and Rogers (1966)  use graph theoretical techniques and 
representation to carry out what is essentially a single linkage mtthod. 
Clustering by complete linkage requires that a given OTU or  a cluster 
joining another cluster at a certain similarity coefficient S.   must have 
relations at that level or above with every member of the cluster to be 
joined.    This yields compact and conservative clusters compared to the long, 
strung-out classifications of single linkage.    The average linkage method 
calculates average similarities of clusters with prospective joiners and 
since its initial development by Sokal and hichener U958)  classifications 
based on it and on its various modifications have demonstrated higher 
cophenetic correlations with the original similarity coefficients than 
classifications based on other clustering methods. 

Lockhart and Hartman (19^3)  have developed a technique for successively 
subdividing large numbers of bacterial species into groups by monothetic 
criteria.    Their results were,  in effect,  similar to those obtained by 
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polythetic methoda. The method by Camin and ookal (1965) for clustering 
0TU>s in preparation for cladistic analysis is another modified method, 
ieveral studies are now available comparing different methods of clustering 
(see Lange, dtenhouse and Offler, 1965; kVilliams, Lambert and Lance, 1966; 
and Jokal and Iiichcner, 196?). Without discussing these studies in detail, 
we can summarize them by stating that different similarity coefficients as 
well as different clustering operations yield appreciably different 
phenograms from the same data. Jokal and ilichener (196?) conclude that 
•As to clustering procedures all the different methods tried produce 
somewhat differf»nt results. . . .

•‘It is becoming clear that the procedures for clustering OTU's will 
need considorc.ble scrutiny and improvement if the aim of achieving stability 
in classification is to be realized, oach of the methods of clustering 
so far tends to birs the resulting clusters in certain ways. Thus, for 
example, the vlighted pair-gi-oup method with arithmetic averages assumes 
that OTU's occur in nested, dendritic clusters. It will best cluster OTU's 
from a similarity matrix which does in fact have such phenetic relation­
ships aiid it will tend to impose dendritic relationships upon data that are 
not markedly dendritic. The degree to which the phenogran reflects the 
similarity matrix (cophenetic correlation) must indicate the degree to 
which the clusteiing method represents the underlying structure among the 
OTU’s. It is therefore important to investigate this structure by a variety 
o'* techniques and to ascertain the nature of the phenetic constellations 
of OTU’s in different taxonomic groups. Given an understanding of the 
phenetic structure of a taxonomic group, it should be possible to reconnend 
?n appropriate clustering method for it. No one clustering method is likely 
to serve well in every instance. To give an extreme example, members of a 
continuous dine clearly would not be appropriately clustered by any of the 
aver-gc linkage methods -

A major unresolved problem of cluster analysis in biology is the fact 
that few, if any, clustering methods have been devised which do not in some 
way bias the resulting classification. The average linkage method will 
attempt to give best results with hyperspheroidal clusters separated by 
substantial gaps, single linkage does well with strung-out data, and so 
forth. Koreover, these clustering methods tend to bias the resulting 
structures the direction implied by the clustering procedure. It is, 
therefore, rf ce isi.rterable importance to try to establish general clustering 
procodu-.-os uuo: 2 algorithm would vary depending on the scatter and distribution 
of the CTU’*: be clr.starcd. Thus, if the OTU’s are in fact spheroidally
clustered t! e aveiage linkage procedure might well be used. If, on the other 
hand, more coB.ple:. shapes such as hypeserpentines, hyperdumbells, hyper- 
dougimuts, c.- oven hypei'rj.2urs-de-lys are closer to a representation of the 
essential distribu ion of the points in hyperspace, then the clustering 
prograr. .-hoild adjust itself to such patterns. iJuch self-adjusting programs 
are still not extensively developed, but it seems to me that we shall not 
be representing nature faithfully, nor learn much about the forces that have 
resulted in the phenetic patterns being observed, 'unless we produce programs 
of this sort. Rohlf (1967) has developed a clustering procedure which 
depai’tc from the conv2ntional hyperspheroid by allowing hyperellipsoid 
clusters, reau:hing out farther in some directions away from the center thar. 
in others

t
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To avoid the distortions necessary by the two-dimensional representation 
of phenograns, numerical taxonomists have recently turned increasingly to 
other means of representation of taxonjmic relationships.    Among the most 
popular is the three-dimensional plotting of OTü's either as models or in 
two-dimensional perspectives.    In such plots,  the dimensions usually represent 
the largest three eigenvectors from the character correlations and are thus 
linear combinations of the characters.    It has been our experience that the 
first three factors usually extract 50-70 per cent of the overall variance. 
However,  the cophenetic correlations  (see below)  between distances in the 
resulting three-space and the original similarity matrix are always above 
0.90.    ouch representation leaves,  of course,  the actual categorization 
unresolved,  and methods will have to be developed for handling such problems. 
Most recently Rohlf (196?)  has developed a method for representing taxa in 
stereograms which give the illusion of three-dimensional projection when 
examined with stereoscopic glasses. 

öome other considerations 

An important question related to choice of characters is how many and 
which characters to chose to establish a stable natural classification. 
Numerical taxonomists have maintained that as the number of characters 
employed increases an asymptote of information is reached,  and that equal 
increments in numbers of characters employed will provide decreasing 
perturbations of the  taxonomy.    This seems obvious from a statistical point 
of view if we can conceive of the characters as  randomly selected from an 
infinite population of possible characteristics measuring similarity among 
a given pair of OTU's.    Experiments are under way to test this hypothesis, 
and we are not yet in a position to render final judgment upon it.    This 
line of argument leads,  however,  to a position where each sample of characters 
in a taxonomic study is considered equivalent to every other sample of 
characters, both from the point of view of importance (the assumption of 
equal weighting of characters in expressing similarity)  as well as from the 
point of view of providing equivalent information about similarities.    This 
latter point is important,  because it assumes that regardless of what sets 
of characters we chose,  be these external or internal morphological characters 
as well as biochemical or physiological characters, we should be able to 
obtain identical taxonomies.    Investigations of this hypothesis of non- 
specificity by Rohlf (1963)  and hichener and Jokal (1966)  have shown that 
different sets of characters will yield similar but not identical 
classifications, measures of the replicability of the classification 
yielding cophenetic correlations between 0.^2 and 0,85. 

Results from these studies as well as from another study in which 
independent investigators reclassified identical sets of objects lead to the 
recognition of what Rohlf has called the uncertainty principle in taxonony. 
This simply states that it is impossible to reclassify by conventional or 
numerical means the same set of organisms and obtain comparable results 
beyond a certain degree of replicability.    The resemblance among successive 
classifications may be very great (cophenetic correlations on the order of 
O.83).    On the other hand,  the uncertainty may be considerably greater.    Our 
experience in this field has not yet been sufficient to indicate between 
which bounds  this  uncertainty may lie. 
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On what criterion can a classification be judged?   In the early days of 
numerical taxonomy,  the success of a numerical classification was generally 
judged by the similarity of the outcome to those classifications established 
by conventional means.    As the subject developed,  there seemed no inherent 
reason why the traditional, somewhat intuitive,  classifications should be 
considered as the final arbiter,  and attempts were made to develop internally 
sufficient criteria for the goodness of a classification.    Two main approaches 
have been followed.    Jokal and Rohlf (1962)  have used the method of coplienetic 
correlation which consists of correlating the original similarity matrix with 
so-called cophenetic values which are the values of similarity implied by the 
structure of a given classificatory phenogram.    Phonograms are two-dimensional 
representations of taxonomic structure in terms of trees with the axis 
parallel to the stem of the tree representing phonetic similarity.    Because 
phenograms collapse multidimensional relationships into two dimensions,  there 
is appreciable distortion of the original relationships as shown in the 
similarity matrix.    The goodness of a classification can now be measured as 
magnitude of the correlation between a phonogram and the original similarity 
matrix.    It is,  of course, desired that the phenogram represent as much as 
possible the phonetic similarity as shown in the similarity matrix.    Of two 
taxonomic representations based on the same similarity matrix,  that with the 
higher cophenetic correlation is to be preferred,    A method recently 
developed by Rohlf (196?) permits the moving of some of the branches by a 
trial-and-error basis into positions yielding higher cophenetic correlations. 
However,  this procedure is not yet practical for very large matrices, 
except on exceedingly fast computers, 

Hubin (1966) has approached the subject from the general point of view 
of establishing a stability function for a given classification,  which is 
to be a measure of the homogeneity within groups and the inhomogeneity among 
groups at a given hierarchic level.    Once such a function can be defined, 
one obviously wishes to maximize it,  that is,  one wishes to arrange the OTJ's 
within a classification in such a way that the function becomes maximized. 
Since any given classificatory procedure will not result in maximization of 
the function,  rearrangement of the OTIPs among the classes to yield an 
improved classification can be attempted by  a variety of algorithms.    Rubin's 
hill-climbing algorithm proceeds to follow up improvements of his stability 
criterion.    In fact,  once such a criterion for stability or goodness of a 
classification is accepted,  then almost any randomly chosen classification 
of objcc:s can be successively improved by a series of iterative steps 
yielding successively higher criteria. 

Of .special interest are some types of self-adjusting clustering methods 
which have been described in the literature.    These include conceptually 
simple, but computationally complex methods such as curves derived from 
scattered points which represent the essential trends of these points 
(Sneath, 1966).    Other techniques seek by some method of cluster analysis 
to classify a series of OTl^s and subsequently,  using each OTU as an improve- 
ment of the previous classification,  allocating it to previously established 
classes unless it would seriously disagree with the established classificatory 
scheme (Omstein,  1965).    This scheme is essentially a "learning" classification 
program improving its performance for a given set of data after having 
initially classified a certain number. 

r 
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A Mutual  Development of  Theory and Method   in 
Objective Analysis of Personality Structure 

Louis  L.   McQuitty 

Michigan State University 

In September of  1963   I  summarised my approaches up to that  time under 
the  title "A Mutual  Development of Some  Typological   Theories and Pattern- 
Analytic Mcthod!*"(McQuitty,   1967). 

I wish now to review more recent  developments   in my approaches.     These 
are a continuation of  the earlier approaches and are  introduced here by 
summarizing my position  in both theory and methods  as of  the close of my 
earlier review paper. 

A Brief  flcvicw 

General 

My general approach is to develop methods of analysis out of theories 
of personality structure. Applications of methods to data serve as hypotheses 
for testing theory.  They lead to the revision of theory and the development 
of new methods.  Through this approach, I attempt to develop both better 
theory and improved methods. 

My theoretical position as of September 1965 was as follows: 

i 
"(I)  Tvery person is an 'imperfect' type as distinct from a 'pure' 

type; only 'imperfect' types exist in reality, and 'pure' types 
exist only in theory. 

(2) There are fewer 'pure' types than 'imperfect' types; each 'pure' 
type is represented in reality by two or more 'imperfect' types. 

(3) The characteristics of 'pure' types are approached but never 
quite realized by classifying 'imperfect' types into internally- 
consistent categories, and determining their common characteristics. 
The validity of representation of a 'pure' type generally increases 
as the number of 'imperfect' types representing it increases. 

(*»)  'Hierarchical' types include all of the types realized In 
classifying 'imperfect' types into larger and larger, internally- 
consistent categories; they are the types intermediate between 
those of reality and theory, 'imperfect' and 'pure' " (McQuitty, 1966a). 

A category of persons is said to exemplify a statistical type if everyone 
in the category is more like every other person in the category than he is 
like any person in any other category. 

In converting the theory of types to a method of aMlysis, persons are 
described by patterns of characteristics which they possess.  An index is 
computed showing the degree of relationship of every person to every other 
person in terms of common characteristics and the results are assembled in a 
matrix.  The matrix reports an index of similarity of every person to every 
other person. 

r 
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In accordance with the definition of typ^s, the matrix is searched for 
internally-consistent submatrices. A submotrix of two persons Is internally 
consistent if Individual \_  is most \'\c   Individual j and j is in turn most 
like _i_.  Internally-consistent submai 'ces of highe7 order" arc defined analogously. 

Internally-consistent submatrices of any size can be isolated by the methods 
of Reciprocal Pairs or Rank Order Typal Analysis, as described elsewhere (McQuitt-y, 
196^ and 1966a). 

Each internally-consistent submatrix defines a hierarchical type. Eoch 
hierarchical type has the characteristics which arc '-.ommor to its members.  Each 
hierarchical type is assumed to be a better representative of a purt type than Is 
any one of the imperfect types with which it is compared. 

The imperfect types of the internally-consistent submatrix are replaced 
in the original matrix by the hierarchical type, and the analysis proceeds In this 
fashion until all persons are classified into one of two major hierarchical types 
as shown in Figure 1. 

Insert Figure 1 about here 
An 11 lustration 

An example, using Hierarchical Analysis by Reciprocal Pairs, will help clarify 
the general approach.  The method was applied to a matrix of agreement scores between 
industrial companies which had been analyzed many times in terms of other pattern 
analytic methods.  The agreement scores for these companies are shown in Table I. 

Insert Table 1 about here 

Variables A and B represent two construction companies, C and 0 trucking companies, 
E and F grain processing and metal products respectively, and G and H garment 
companies with female employees only; the other six companies employed male employees 
only.  The companies were assessed in terms of 32 variables. Each variable was 
dichotomized at the median and two companies agreed on a variable if they were both 
either above or below the median, but not if one was above and the other below the 
median.  The agreement score (Zubin, 1938) is the number of items on which the two 
companies agree. 

The reciprocal pairs of Table 1 arc underlined.  They are for Pairs AB, CO, 
EF, and GH. Company A, for example, has Company B most like it, and Company B in 
turn has Company A most like it, thus fulfilling the requirements of reciprocity 
as used here. 

Companies A and B have in common 29 of the 32 characteristics on which they 
were assessed.  These two companies arc collapsed into a single hierarchical type AB 
and are characterized by their 29 common characteristic^.  In a similar fashion 
members of the other three reciprocal pairs are collapsed into three Hierarchical Types, 
CD, EF, and GH, described by 26, 21, and 2^, common characteristics respectively. 

The agreement score of every hierarchical type with every other hierarchical 
type is computed and the results are reported in Table 2.   Table 2 is analyzed in 

Insert Table 2 about here 

the same fashion as Table 1.  Results of the analysis of the two tables are shown 
in Figure I. 

. 
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Puri fyi nq the Data 

Hierarchical Classification by Reciprocal Pairs attempts to purify the data in 
relation to types as the analysis proceeds (McQuitty, 1966a).  Lower level types are 
assumed to be more imperfect than higher level types.  Consequently, when any two 
imperfect types such as E and F of Figure I are combined into a single higher type, 
EF, this latter type is assumed to possess only the characteristics which the two 
imperfect types, E and F, have in common. 

The above assumption was applied to the agreement scores of Table I and produced 
the classification reported in Figure I. 

That Hierarchical Classification by Reciprocal Pairs does in fact sometimes 
purify the data can be illustrated by comparing the results from it with analogous 
results from Rank Order Typal Analysis. 

Rank Order Typal Analysis makes no effort to purify data as it proceeds. 

The first step in Rank Order Typal Analysis is to convert the data of Table I, 
for example, into ranks within columns, where the highest rank of each column is 
assumed to be the entry r.. for the reliability of each person with himself. 

ii 

The ranks within columns of the data of Table I arc shown in Table 3.  This 

Insert Table 3 about here 

latter table shows in Column C, for example, that C is assumed to be most like C and 
is therefore assigned a rank of 1.  The other ranks are assigned in terms of the 
relative size of the agreement scores in Table I.  Company D has the largest agree- 
ment score with C (except for C with itself) and is therefore assigned a rank of 2. 
Other ranks are assigned in an analogous fashion. 

A Rank Order Analysis of Table 3, as reported earlier (McQuitty, 1963) produces 
the results shown in Figure jL  

Insert Figure 2 about here 

'nation of Table 3 shows that Company E is most like F and in turn has 
F most i :. The two companies form a type as shown in Figure 2. The analogous 
result is     for Companies G and H. 

The classifications differ, however, from those obtained with Hierarchical 
Classification by Reciprocal Pairs.  Companies E, F, G, and H do not form a type 
in Rank Order Typal Analysis but they do form a type in Hierarchical Classification 

by Reciproca1 Pai rs . 

The difference in the two approaches is emphasized by comparing Table 2 with 

Table 3- 

Using Rank Order Typal Analysis, Table 3 shows that Companies E, F, G, and H 
do not form an internally-consistent category in being like one another.  If they 
did, there would be no rank larger than four, the number of cases in the submatrix 

EFGH by EFr,H. 

On the other hand, when the four companies E, F, G, and H arc first classified 
into two hierarchical types, EF and GH, and arc thereby purified in the method of 

i 
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Hierarchical Classification by Reciprocal Pairs, they then yield an internally- 
consistent pair of hierarchical types as shown in Table 2; this justifies their 
classification into a hierarchical type, EFGH. 

In this example. Hierarchical Classification purified the data as it proceeded 
in the analysis. 

Some Limitations of Hierarchical 
Classification by Reciprocal Pairs 

Although Hierarchical Classification has many advantages as outlined elsewhere 

(HcQuitty, 196^, 1965, 1966a, 1966b, 196?) it has certain limitations. 

The initial classification begins at the bottom of the hierarchical system 
and depends primarily on only a few of all of the indices of association in a matrix. 
Mistakes might occur early in the analysis as a result of using only a few relatively 
unreliable indices and might have serious consequences for the subsequent classifica- 
tions . 

Two Approaches toward a Solution 

There are two possible attacks on these problems.  One approach is to attempt 
to increase the reliability and validity of the few indices on which the classifica- 
tion decisions depend. 

Another attack on the problem is to attempt to develop a method which starts 
at the top of the hierarchical system, uses all indices,and builds downward.  Such 
an approach might divide the original matrix into two submatrices and then continue 
by dividing the successive submatrices until a structure such as represented in 
Figure 1 is built from the top down. 

A Joint Solution 

General Description 

In attempting first to solve only the first problem, viz., to increase the 
validity of the few indices on which the classifications depend, I discovered an 
approach which solves both this problem and the one of using all indices in each 
decision.  The new method divides the large matrix into submatrices and then divides 
successively each submatrix using in each case all of the indices of the matrix or 
submatrix on which the operations are performed. Each time before making a division, 
the method takes steps designed to increase the reliability and validity of all indices 

Detailed Description 

The method is now described in more detail in the order in which it was 
developed. 
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Increasing the Validity of Indices.  In attempting to increase the 
reliability and validity of the r^ •    in an N by N matrix of indices between 
people, the correlation was computed between corresponding entries of the 
columns j_ and j.  This approach gave an index of the extent to which i and 
j varied jointly in relation to the other N-2 variables of the matrixT  In 
other words, the relationship between i and j is estimated by computing the 
extent to which they arc jointly like Ti-2  oTFTer variables.  The new index 
is called an intercolumnar correlation, and is designated I. 

In testing the validity of the intercolumnar correlations, as compared 

with agreement scores, intercolumnar scores were computed for the agreement 
scores of Table I. 

The Pearsonian Coefficient was used in computing the intercolumnar 
correlations between columns of agreement scores. 

In testing the validity of the intercolumnar correlations, they were 
Ijattern analyzed and compared with previous pattern analyses of agreement 
scores.  Rank Order Typal Analysis of intcrcolumnar coefficients gave the 
same results as Hierarchical Analysis by Reciprocal Pairs. 

The computation of intcrcolumnar correlations from agreement scores 
purified the data in a fashion somewhat similar to Hierarchical Classifica- 
tion by Reciprocal Pairs; the two approaches produced identical classifica- 
tions. 

Based on both other pattern analytic analyses of the data and known 
characteristics of the companies, the Rank Order Typal Analysis of the 
intcrcolumnar coefficients produced a more valid picture of the structure 
than did the Rank Order Typal Analysis of the agreement scores. 

Seeking the Nature of the Improvement.  To seek the nature of the error 
being corrected by (a) intcrcolumnar correlations and (b) Hierarchical 
Classification by Reciprocal Pairs seemed worthwhile. 

"■" - ♦ 
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As a first step in this direction, Pcarsonian Coefficients between the 
several companies were computed on the basis of the original 32 scales for 
the eight companies, to yield the matrix shown in Table 4. 

Insert Table k  about here 

This table was converted to ranks within columns and produced the same 
results exactly as did the ranks within columns of the intercolumnar correlation 
of agreement scores.  The ranks for both approaches are shown in Table 5- 

Insert Table 5 about here 

An inspection of this table shows that a Rank Order Typal Analysis of 
it will yield the same classification as obtained by (a) Hierarchical 
Classification by Reciprocal Pairs when applied to the agreement scores and 
(b) Rank Order Typal Analysis of Intercolumnar Correlations of Agreement 
Scores (Figure I). 

In summary, both (a) the computation of intercolumnar correlations, 
and (b) Hierarchical Classification by Reciprocal Pairs corrected errors 
introduced when the data were dichotomized and agreement scores computed 
to represent the data. 

The above results support the hypothesis that intercolumnar correlations 
of agreement scores between people are more valid for the isolation of types 
than are the agreement scores themselves. 

A Statistical Method Generated by a Hypothesis 

The Hypothesis 

The above hypothesis was used to generate another hypothesis.  If the 
first intercolumnar correlations of original indices of a matrix enhance the 
emergence of types then possibly the next and subsequent computations of 
intercolumnar correlations would facilitate still farther the appearance 
of types if they are present but hidden in the original indices.  It is 
therefore hypothesized for further study that iteration of intercolumnar 
correlations generates the emergence of types in a matrix of interassociations 
between people if types are present but hidden in the original matrix. 

Testing the Hypothesis 

First Test. The same set of data was used in testing this hypothesis.  The 
standing of the eight companies on the 32 scales was used in lieu of dichotomized 

I r -- 
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data.  The Pcarsonian Cocffiticnl of corrclalion for every company with every ether 
company was computed.  The results are reported in Table k. 

The intercolumnar Pearsonian Coefficient of correlation was then computed for 
every column with every other column of Table k,   to yield the first intercolumnar 
matrix.  The process was repeated on the first and subsequent intercolumnar matrices 
until in the fifth matrix all entries became either plus one or minus one as shown 

in Table 6.   
Insert Table 6 about here 

Table 6 reflects two typos, ABCD ond EFGH, each defined by a submatrix in 

which all entries arc plus one. 

The above procedure was applied to variables of each submatrix, using in each 
case the original entries of correlation reported in Table k. Again each submatrix 
was divided into two smaller submatriccs of plus one entries. The process isolated 
Types AB and CD in the third intercolumnar table of Submatrix ABCD and Types EF and 
GH in the fourth intercolumnar table of Submatrix EFGH. 

The original correlations and the three submatrices of intercolumnar correla- 
tions for Variables A, B, C, and D are shown in Table 7. 

* Insert Table 7 about here ... 

The above   Iterative   Intcrcolumnar  Correlational   Analysis  produced  the  same 
types  as did both   (a)   the Hierarchical   Classification by Reciprocal  Pairs  and   (b) 
the  Rank Order  Typal Analysis of  the  first   intcrcolumnar correlations  from agree- 
ment  scores.     The  results  for  the  three analyses  are  shown   in  Figure  I. 

Second  Test.    As a more crucial   test of  the ability of   Iterative   Intcrcolumnar 
Correlational  Analysis  to yield types   if operative   in  the data,   the method was 
applied  to a set of data which earlier proved relatively  resistant  to pattern- 
analytic methods.     The data are particularly difficult  to pattern-analyze because 
they   include many  ties   in crucial   agreement scores. 

"The  data were generated by  requesting a subject   to react   to the pictures of 
20 art objects,   by using adjectives which might  describe  them   (^0 adjectives were 
used).     For each art object   the  subject  went  through  the entire   list of  adjectives 
before proceeding  to the  next object.     The  subject   responded by  saying,   in effect, 
that  the adjective  is descriptive of  the object;   that   it  is  not descriptive;  or  that 
she  could  not  decide whether or  not   it   is  descriptive.     If  the  subject's   initial 
response   to a picture was  positive,   she   then endorsed one of  three alternative 
answers:     (1)     'I   like   the  characteristic described by  this  adjective,1   (2)   'I   do 
not   like   it,1   (3)   '1  can't   decide whether or not   1   1ike   it.'    ... 

"An agreement score   (Zubin,   1938)  was  computed  for every object with every 
other object.     Suppose   that   there were   six adjectives and  two objects and   that   the 
subject  reported  the  following  reactions; 

Adjectives I 2 3^56 

Object A Yes,   Like Yes,   Dislike Yes,   ? No No Yes,Dislike 
Object  D Yes,  Like ? Yes,   ? Yes,   Like No Yes,Dislike 

' - ■ 
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The  agreement   score  between A end B  for   these  six adjectives would  be   four,   the 
agreement being on   I terns   1,   3.   5,   and 6 only. 

"Similar  computations   across  all   ':0  adjectives  and  among all   20 objects 
yielded   the 20 x  20 matrix of   agreement  scores   shown   in"  Table 8   (McQuitty,   Price, 
and  Clark,   1967).   

Insert   Table  8  about  here 

Table 9   reports   the   first  matrix  of   intercolumnar  correlations  and  Table   10 
reports   the  fifth matrix of   intercolumnar correlations,   viz.,   the  first   table   in 
which all  entries  were either  plus or minus  one,   to yield  Types   CFIMPANQEKS and 
JTRGBOHDL.   

Insert Tables 9 ond 10 about here 

Figure 3 shown the results from the complclc analysis of the data by Iterative 
Intercolumnar Correlational Analysis.  These results show that the current method can 

Insert Figure 3 about here 

analyze with ease one set of data which has proven difficult for most methods because 
the data involves tied values crucial for several required decisions. 

General Evaluation,  tvery classificatory decision in the iterative method is 
based on all of the indices of the matrix being analyzed as compared with primarily 
only one index in the reciprocal pairs method.  It is, therefore, hypothesized to be 
both more reliable and valid than the latter method.  These points need further 
study. 

A Mathematical Proof 

There is a more sophisticated approach to substantiating the hypothesis that 
Iterative Intercolumnar Correlational Analysis will isolate types if operative in 
the data, viz. , to prove it mathematically. 

The Generation of Plus One Intercolumnar Correlations.  In the development of 
the proof, a type is defined as a category of people of such a nature that everyone 
in the category has a group of common characteristics, and anyone not in the category 
does not possess all of these characteristics. 

Assume now that we have a matrix of interassociations between people based on 
test item responses which assess typal membership with validity better than chance. 
Assume also that any variance in the responses to the test which is not attributable 
to typal membership is governed by chance alone. 

Let: 
1) i and j be any two individuals of the same type. 
2) x., x?, x-   x  be any N individuals with no one of them specified in 

any way as to typal membership. 

The coefficients of correlation between these variables are indicated in 
Table II.   

Insert  Table   II  about here 

5— 
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Let: 
N be infinitely lorgc, so large thai chance variation is ignored, 
3)  r . ■ r  .;r .   -  r     . ,   r    .   =  r     .   — r .   =  r 

V   V   X2,   ;;2J  -S X3J      II'    V 

^4)  Let I..'   = the intercolumnar correlation between I and j, i.e., the 
U correlation between corresponding entries of columns i and j 

of Tablo II. 

If the entries for Columns i and j of Table II were known, the intercolumnar 
coefficient could be computed by substituting the entries of Columns i and j in a 
regular formula for computing the Pearsonian r. 

Analogously, the symbols of Columns i and j can be substituted in a raw score 
formula for computing r.  This new formula is then the intercolumnar coefficient 

I..'  .  This new formula can be simplified by substituting either the r .    for the 
1 j x ' s 1 

corresponding r ,  .or the r .  . for the corresponding r .  . (from Equation 3). 

5)  In the first case I..    =1, except when r  . - r  .=r  .  =r 
1 j x 1    x 1    x 1      XI 

and in the latter case except for equality among all r , 
x  5  j 

The  above conditions  would  occur   if  and  only   if  either  all   x's   belong   to  the 
same types or  all  x's  had  nothing   in  common with cither   i   or j.     The proof   is  developed 
i n  dctai I   el sewhcre   (McQui t ty ,   ■■'■"•'■   ) . 

The  proof means   that   Iterative   Intercolumnar  Correlational  Analysis  can   isolate 
the   types   reflected   in  a matrix  of   interassociat ion between people provided   the 
assumptions  out of which   the  proof  developed are  satisfied.     Whether or  not   they are 
satisfied  by  the data   is   indicated  by applying   the method   to  the data.      If   the   types 
are   isolated,  a search   for   the  common characteristics  of   the members  of each   type 
will   determine whether or not   the  assumptions   have  been   satisfied.     A cross  valida- 
tional   study   is   required   to   investigate  the  stability of   the   types. 

The  Generation  of  Minus   One   Intercolumnar  Correlations.    Another  proof must  be 
added   to   the above developments   if   the   Isolated   types  arc   to be easily   recognized. 
The  additional  proof must  show  that   iteration  of   indices   for variables   not   in   the 
same   type will  not move   them  to plus  one as   a   limit. 

Let: 

Individuals  w and  v  be  any   two   individuals   of  "opposite'  types.      Two   types 
are  "opposite"   if   they  have  no common characteristics;   each   type has   its  own 
characteristics and   lacks all   of   the characteristics of   the other   type.      In data 
where absent  characteristics  arc   relatively meaningless   from  the point  of  vieiv of 
the   theory  being applied,  a more  appropriate   term would be   independent   rather   than 
"oppos i to"   types, 

In   th i s  case : 

6)r        =-r       ;   r =-r        ;r        =-r —   r 
x.u x,v       x„u x-v       xnu x.v x.,u  = -r 

I 12 2 3 3 N xv 
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As  before,  by  substituting   in a   raw  score   formula   for   the   computation of  the 
Pcarsonian Coefficient   and  simplifying,   the   result  shows   that   the   intercolumnar 
correlation   for   two   individuals  of  "opposite"  types   (over  IJ other   individuals  not 
all  of   the  same   type)   equals  minus   one. 

The  above proofs   show that   two   individuals  of   the  same   type will   yield a plus 
one and   two   individuals  of "opposite"   types  will   yield a minus  one   intercolumnar 
correlation when computed over any  fl   individuals  of more   than  one   type. 

The  Generation  of   I ntercolumnar   r's   ( -i-l  )>  - 1.     Any   two   individuals,  not  of 
the same   type  and not  of  "opposite"   types  will   yield an   intercolumnar  correlation 
of   less   than  plus one  and greater   than minus  one when computed over any M   individuals. 
This   is   because data of   this kind  cannot   satisfy cither  Equation  3 or  6;   the   first  of 
these equations must  be  satisfied   if  the   intercolumnar correlation   is   to be plus one 
and   the  second  equation must  be  satisfied   if   it   is   to  be  minus  one. 

The  above  developments  show   that   the   intercolumnar correlation between any   two 
individuals   is   less   than plus one  and greater  than minus  one,   if computed over other 
individuals  all   of  the   same   type,   and  also when  cemputed over   individuals  of different 
types,  except when   the   two  individuals  arc  cither of   the   same  or opposite   types. 
When  the   two   individuals  are of   the  same   type,   the   intcrcolumnar correlation   is  plus 
one,  and   it   is  minus  one when  they are of opposite   types. 

The Reverse  Proofs 

The   reference article  (McQuitty, 
reversed   to show: 

■)   shows  also  that   the  proofs   can be 

1. If   the   intcrcolumnar  correlation  between   two   individuals   i   and j   is plus 

one,   then  they belong   to   the  same   type. 
2. If  the   intcrcolumnar correlation between  two   individuals  x and ^  is minus 

one,   then  they belong  to "opposite"  types, where  "opposite"is  defined  to 
mean  that each  type has  characteristics of  its own and each   lacks all   the 
characteristics  possessed by   the other;   there   is  no overlap of  the  typal 
character isti cs. 

3. If   the   intcrcolumnar  correlation  between  two   individuals,  m and  n   is   less 
than plus  one  and greater   than minus  one,   then m and n have  not  been 
proven  to be members  of cither a  single   type or of  "opposite"   types. 

The above  developments  show  that   iterative   intcrcolumnar  analysis  can be used 
to  isolate   types,  as  already  illustrated   in   this    paper with   real   data. 

Further  elaborations of   Intcrcolumnar  Correlational   Analysis  are   reported 
elsewhere  (McQuitty,   ■'•■:-•:t  and *VnV*  ). 

Suggested Advantages  of   the Method 

Suggested advantages of  the method arc:     (I)   it   is   rapid,   simple   to program 
for a computer,   and  can  be applied   to   large  sets  of data when electronic  computers 
are used;   (2)   the method uses all  available,  pertinent data;   (3)   the analysis 
proceeds  by  first  dividing a matrix  of  associations  between people   (or other 
objects)   into major submatrices  and   then  redividing  these and subsequent  submatrices 
into smaller  and  smaller   submatrices  until   all   types  arc  defined  by submatrices; 

•v 
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(^)   the method   implicitly  hypothesizes   internally  consistent   types   in  data  and 
cither  substantiates  or   fails   to  substantiate   the  hypothesis;   (5)   the   raw  data   is 
required  to be   internally  consistent  within  only   broad chance   limits;   (6)   the method 
yields  a  simple   structure   (if   the hypothesis  of   internally  consistent   lypes   is 
substantiated)   where   simple   structure   is   defined   to mean  correlations  of  plus  one 
between  all   members   of  every   type,   and   less   than  plus  one  down   to  and   including minus 
one  between   types. 

Limitations  of   the  Method 

Even   iterative   Intercolumnar Correlational   Analysis, with  all   of   its   suggested 
advantages,   does   nol   solve  all  of  the  problems   in   the   isolation  of   types. 

One particularly difficult  problem   is   the   fact   that   indices  of  association 
between people  vary with   the   test   items   used   in  assessing   them.     Consequently,   the 
types   into which people  classify vary with   Lhc   test   items  used   in  assessing   the 
people. 

The   Problem of   the   Single  Response   by   the   Single  Subject 

In an effort   to solve   this  probiem,   I   have  addressed myself   first   to a 
simpler  and more   fundamental   problem,   the  problem  of   interpreting  a  single   response 
by  a  single   subject. 

"One  of   the  problems   of   interpreting  a   response   to an   item  of   a   test   is   that   it 
can  be assigned  various  meanings  depending  on  both who gives   it   and   the  other 
responses   (to other   items)  with which   it  occurs. 

"A single   response with variable meanings   can  be  found   to have  stability   in 
psychological   space   if   it  can be assigned   to a  combination of   responses which has 
stability.     The   response   can,  however,   still   have  a  kind of  variabliIity,   for   it 
might  be assigned   to  several   combinations   of   responses,  and each of  them might 
have stabi1i ty. 

"In other words,   I   attempt   to account   for   the  variability of meaning of  a 
response by assigning   it   to several   combinations  of   responses,   each  of which has 
stability   in   theoretical   psychological   space. 

"The   tern psychologi ca I   space   is   used   to emphasize   the possibility   that 
identical   responses(objectively)  might  prove   to  have  various  psychological   meanings. 

Inter-   and   1ntra-IndividuaI   Differential   Validity 

"Elsewhere,   1   have   used  the   term differential   validity   to   refer   to  the 
possibility   that  a   response might assess  different  attributes   in different   persons 

(McQuitty,   1959). 

"Differential   validity   is   involved   (as   illustrated   in  Figure  h)  when  a     given 
Response _i_  is   endorsed  along with  Responses  j,   k,   and   1   by one  category  of   subjects, 

Insert  Figure  •':   about  here 

A,   to   indicate   Type  X  and   the   same  objective  Response,   i,   is  endorsed  along with 
Responses   r,   s,   and   1   by  another  category of  subjects,   B,   to   indicate   Type  Y.     In 
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the  first  case,  endorsement  of   Response   i    indicates   Type     X  and   in   the   latter case, 
Response _[   indicates   Type Y, 

"The present  paper  refines   further   the  concept  of  differential   validity by 
introducing   two  forms of   it,   inter-   and   intra-individua1. 

"Inter-differcntial   validity   is  now used  to mean what  we   intended originally 
by differential   validity,  as  summarized  above. 

"We   recognize  now  the possibility  that   a  response may  be  applied  in a  typological 
theory   to assist   in assessing various  attributes   in  the   same   individual,  depending 
upon  the other combination of   responses  with which  it   is   interpreted. 

"In   introducing  intra-differential   validity,   let  us  suppose   (as   illustrated   in 
Figure k)   that  a   third category of  subjects,   C,   is  formed by combining  the members  of 
each Categories A and D;   they are portrayed  by  the common  Responses _[ and jy' and 
they   indicate   Type  Z. 

"A type (such as X, Y, or Z) is defined by all of the common ways in which the 
members of the type behave. Consequently, each Type X, Y, and Z, would differ from 
each of  the other   two types. 

"From a  typological  point  of  view   (which classifies   people   in   terms of combina- 
tions of  responses),  Response J^ with  Responses j, k,  and   I,   indie«   es  Type X;   i  with 
£,  s^  and J_  indicate^  Type Y,  and j_ with J^ only  indicates   Type Z.     Response j_ would 
have  various  meanings v/ithin  the  same   individual  depending on   the  combination of other 
responses with which   it   is   interpreted.     This   is what we mean by   intra-differential 
validity,   a  single   response assessing various attributes   in   the  same   individual 
depending on  the other  responses with which   it   is   interpreted." 

The  Problem of a Set of  Responses by a Single   Individual 

"A  set  of   responses  by an   individual   to the   items  of   a  test   invites  scientific 
explanation and understanding  in  the  same  fashion as does   the  single  response  to a 
single   item.     A set of  responses  has  additional  attractive  characteristics;   (I)   the 
set can be used  to assist  in assigning meaning  to  individual   responses,  and  (2)   the 
set of  responses  can possibly be assigned  to  sub-sets which have  relatively stable 
meanings. 

"The problem  is   to devise methods   fo -   isolating all   of   the major and meaningful 
sub-sets   in which  the  responses  of  an   individual   to a  theoretically meaningful   test 
can be assigned. 

"In  summary,  a  response may possibly  have different  assessment   indicants  for 
each major and meaningful  combination of  responses to which   it  can be assigned. 

Two  Solutions 

"Two kinds  of pattern analyses   (or  factor analyses)  of  the  responses by a single 
individual  can be  recognized:     (a)   individual   based,  and   (b)  group  based. 

Individual   Based 

"In  the  first   instance,   the   investigator gathers  data   in such a  fashion  that 
he can compute an   index of  the   interrelation of every response by a  subject  to every 
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other response by that subject, without the use of a reference group. 

"The following test items from a study now in progress fulfill the above 
requirement and illustrate the kind of data required for one kind of a statistical 
analysis of a single individual, viz., an individually based approach: 

yes no ? 
yes no 7 

yes no ? 
yes no ? 

Quest ion Answer Alternatives 

The word angel suggests love 
The word angel suggests hate 
The word devil suggests love 
The word devi I suggests hate 

"Other questions of the same kind follow with only the emotion (love, hate, etc.) 
changing as we move from one question to another.  With this kind of an approach it 
is possible to compute an index of the extent to which an individual responded to 
angel in the same way as he did to devi1. 

"Using many words (in the same fashion as illustrated above for angel and dev iI) 
one can compute a matrix of interassociations between selected concepts over selected 
emotions.  The matrix can be pattern analyzed (or factor analyzed) by any one of the 
many available methods.  Examples of the above approach arc found in studies by 

Schubert (1965) and McQuitty, Price, and Clark (1967)." (HcQuitty, •'« ). 

The above described test and its method of analysis both grew out of a theory 
of the nature of both mental illness and mental health. The approach Is described 
elsewhere (McQuitty, Abeles, and Clark, study in progress). 

Group Based 

"Assumpt ions.    A series of assumptions  suggests and justifies a  solution to 
the problem of   isolating  the major patterns  of   responses of a  s i nqle   individual  to  the 
items of a  test,  as   these are  reflected   in  the  responses of  a group of subjects. 

"We assume   that every  individual   is an   imperfect  representative of one or more 
pure types.     If  two or more   imperfect   representatives of  the same pure  type are 
considered jointly,   they give a better picture of  the pure  type  than any one of 
them separately. 

"If an   individual   is  representative of £ pure types,  then   in order  to give a 
comprehensive,   typological  picture of  the   individual, he must  be  treated jointly with 
at   least one other  representative of each of  these pure   types. 

"If a set of  responses by an   individual   is   to be understood  from a group-based 
typological   point  of view,   then we   require a classification of   the   individual with 
one or more members of each  type  represented   in  the set of  responses  by  the single 
individual.     The classification  is  more helpful   if  it specifies   the  responses which 
classify the  individual   into each of  the  types  he  represents. 

"Method. The goals implied above can be easily realized by any one of many 
pattern-analytic methods (McQuitty, 1967), provided only that a simple operation 
be   introduced at   the  beginning of   the  analysis. 

"Suppose   that we wish  to study   the pattern of  responses  of   Individual  A  to  the 
items of  Test  X.     One approach  is  to administer   the  test  to   100 other   individuals. 
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representing a universe which is meaningful in an effort to understand Individual A. 

"The novel operation required by the approach of thio paper is as follows: 
Pair the pattern of responses of Individual A with those of each of the 100 other 
individuals to yield Pairs:  Al, A2, A3 --- A100.  Specify new patterns for each 
of the 100 pairs, by taking the common responses of each pair.  For example, if the 
responses by Individual A and Individual 20 were ao shown in Table 12 , then Pattern 
A-20 (for Individuals A and 20 treated jointly) would be + on Items 1, - on 2, - on 5» 
+ on 6, + on 7, and - on 9! with Itemb 3, ^, and 8 omitted because Individuals A and 
20 disagree on each of these latter three items. 

Insert Table 12 about here 

I I lust rat i on 

"In order to illustrate the isolation of major response patterns for a single 
individual, we have chosen to analyze the course selections in psychology by a single 
individual in relation to the course selections in psychology by the 135 other majors 
in that discipline, who graduated at Michigan State University during the academic years 

1961-62 and 1962-63. 

"During his four years of college, the one subject chosen for analysis (Code ^83) 
registered in and obtained grades in" (McQuitty, * ) 17 psychology courses on the 
quarter system.  In addition to the above courses, the 135 other students majoring 
in psychology completed and received grades in one or more of 23 other quarter-length 
courses. 

"The purpose is to classify the course selections by Subject A into their major, 
meaningful patterns, using the course selections by the other 135 students of the 
study as the source of information which enables us to accomplish the task, 

"Individual //83 is first paired with each of the 135 other individuals of the 
study to yield Pairs 83-1, 83-2, 83-3 --- 83-136 (omitting 83-83).  Then the courses 
selected jointly by the members of each pair are determined to yield patterns 83-• i 
83-2, 83-3 —- 83-136 (omitting 83-83). 

"An agreement score is computed between every pattern with every other pattern. 
For example, if Patterns 83-1 and 83-2 include the course selections shown in 
Table 13, then their agreement score for these five courses would be 3, the number 

Insert Table 13 about here 

of courses which occur in each of the ,wo patterns (specifically courses 2, 8 and 16), 

"Using the agreement scores, a matrix was prepared to show the agreement score 
of every pattern with every other pattern. 

"Single Hierarchical Analysis by Reciprocal Pairs was applied to pattern analyze 
the Matrix (McQuitty, 1966a).  Five individuals were chosen at random from the above 
group of 136 subjects, and the results from each of them were analyzed separately 
by the above methods. 
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"Four of the five individuals analyzed yielded four and only four clusters. 
The other individual (Code ^83) produced five clusters.  We elected to describe 
results from this individual in detail because he shows less interrelation with 
the other 135 individuals (in tcrmi; of the number of clusters):  if his results 
arc meaningful, then those of the others arc likely also to be meaningful. 

"The results for Individual 03 are shown in Figures 5-9 and Tables 1^; - 18. 
Figure 5 portrays Clusters 1 and 2.  Figures 6 and 7 report Clusters 3 and k 
respectively, and Figures 8 and 9 each report approximately one-half of Cluster 5. 

Insert Figures 5-9 and Tables 1^: - 18 about here 

"In the first stop of the analysis of the matrix. Individual 6t joined 
Individual 130 as shown in Cluster 2, Figure 5.  Individual 5 joined Individual 39 
(Cluster 5, Figure 8) and Individual 21 joined Individual 125 (Cluster 5, Figure 9). 
The members of each pair agreed in having selected 11 courses in common, but not 
common from pair to pair. 

"Since only course selections used by Individual 83 were included in the 
analysis. Individual 03 '^ included in each of the above pairs and in every other 
combination of individuals as shown by the intersection of lines throughout the 
f igurcs. 

"Table lU, for example, lists certain courses (titles and code numbers) 
involved in Cluster 1.  The body of the table shows courses which are common to each 
major intersection point; Courses 2, 5, 0, and 28 were selected by Subjects 35, 36, 
129, and MJ to yield Intersection Point A, as shown in Figure 5, and Table Ut. 
Intersection points involving more than five courses (but relatively few students) 
were omitted.  Courses are reported in the tables for all of the intersection points 
which are labeled by capital letters in the figures.  The other tables are interpreted 
in an analogous fashion. 

"In addition to intersection points reflecting patterns of course selection, 
whenever a scries of points is joined by a straight line parallel to the base line, 
all subjects of the points thus connected selected a single pattern of courses. 

"One individual, Code //68, failed to appear in the analysis.  He took only one 
course at Michigan State University in common with Individual 83.  He transferred to 
MSU after having received credit in psychology courses elsewhere;  the records do 
not show the specific MSU courses for which he received credit upon transfer.  He 
was not an appropriate member of a universe in terms of which to study Individual 83. 
We left such individuals in the study because there were only a few  of them and we 
wished to indicate that they would not have a major effect. 

Interprctat i on 

"Clusters 2, 3, and k  appear to be more meaningful than Clusters 1 and 5- 
Cluster 2 portrays a central interest in personality-clinical as related to 
psychology in business.  Cluster 3 reflects an interest in individual differences 
in personality.  Cluster k  seems to be concerned primarily with understanding the 

sr • " \ t 
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dynamics ol the dcvclopiny individual.  Cluster 5 seems to be concerned •primari ly 
with the understanding of personality from a more general point of view as contrasted 
with a more dynamic, developmcntoi point of view in Cluster 4. 

"Cluster 1 appears to encompass personality from an experimental point of view; 
Course 8, '.earning and Motivation  is an experimental course. 

"Individual 83 appears to center hij interest in personality or courses 
related thereto.  This point is further substantiated by referring back to the 
courses which the subject did not select; they are less concerned with personality 
than arc the courses which he selected. 

"We conclude that the clusters are in general meaningful, and that  the method 
has possible values as indicated further by the following development of the method. 

Differential Pattern Analys i s 

"The method can be expanded to do for patterns what item analysis does for items. 
Item analysis selects the items most highly related to a criterion. Analogously, 
our method can be expanded to select the combination of patterns which differentiate 
in a fashion most similar to an outside criterion.  The expanded method is called 
Differential Pattern Analysis. 

"Suppose, for example, that our problem were to isolate the major patterns 
v.viich would best differentiate fifty mental patients from fifty normals on a test 
of 100 items.  In this case, we would proceed for each subject (patients and normals), 
in the scime fashion as we did above for Subject 83; we would determine the major 
patterns for esch patient in terms of other patients and for each normal in terms of 
other normals.  This step would yield a set of patterns derived from patients and 
another set derived from norTnls. 

"Using both patient patterns and normal patterns, we would compute the agree- 
ment score of every pattern with every other pattern and place them in a matrix. 
V/e would then seloct those patterns uniquely characteristic of either patients or 
normals, A pattern analysis oT the matrix would facilitate this operation. 

"A cross validation would be required to determine the ultimate value of the 
selected patterns for obtaining the desired differentiation between patients and 
normals .. . 

Tho Variability of Categories into which People Classify 

"A further consideration of the above methods emphasizes an important and 
fundamental problem:  The categories of persons with which any given person can 
be classified is a fünetion of both the test items in terms of which the person 
is assessed and ihe group of persons with whom he is compared."  (McQuitty, "'>' ). 

Summary 

To understand a single  response by a single   individual   is  a  fundamental  problem. 
This problem emphasizes  that we must decide  from  theory or some other point of view 
both   (a)  with what other  responses   it   it  helpful   to  interpret  the given  response 
ond   (b)  with what other  individuals is   it  helpful   to  interpret  the  behavior of  the 
given   individual.     The effectiveness of our  interpretation of the single  response 

- 
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by the single individual depends on the validity of our choices in selecting other 
responses and other individuals with which to compare those of the single individual 

Once the above decisions have been consummated with high validity, then the 
r.ot'.-^s of this paper and other similar methods are helpful in isolating meaning- 
ful personality structures. 

Two especially effective methods of pattern-analysis are described in this 
p-per.  Both methods begin with 3 matrix of interassociations between people (or 
other objects).  One method searches for internally consistent submatriccs.  These 
ore usually small, each consisting of only a few individuals.  They are initial 
indicators of statistical types, which are relatively hidden in the data.  They 
ere analyzed in a fashion which clarifies their appearance and develops them into 
larger types.  Through this procedure a hierarchical classification of statistical 
types is constructed from the bottom up. 

By way of contrast, Intercolumnar Correlational Analysis builds the hierarchical 
structure from top down.  It divides a matrix into two .or more submatrices, at 
least one of which represents a statistical type.  It continues by dividing and 
redividing submatrices until at the bottom every person is represented as an 
individual type.  This method has the advantage of using all indices of every 
matrix or submatrix in making its classifications, while crucial decisions in the 
above method are based primarily on only a few indices. 

•• 
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Footnotes 

Throughout this paper, quotations are included which refer to tables and 
figures. Whenever necessary, in order to make the code number correspond 
to the order in which tables and figures appear in th''. paper they have 
been changed within the quotation. 

Appreciation is expressed to Multivariate Behavioral Research for 
permission to quote from McQuitty, Louis L., Group Based Pattern Analysis 
of the Single Individual, in press (Letter from the Editor, Or. Desmond 
S. Cartwright, to the author, dated 16 February 1967) 
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Tahle   1 

Agreement Scores  between  Companies''- 

A B c D E F G H 

A 22 16 16 14 6 11 7 

B 22 17 17 13 6 8 10 

C 16 17 26 10 8 9 13 

D 16 17 26 10 12 11 11 

E ]k 13 10 10 ii 17 13 

F 6 6 8 12 11 19 17 

G 11 8 9 11 17 19 Hi 

H 7 10 13 11 13 17 lit 

"Data from Mdluitty,   195^ 

TT 
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Table 2 

Agreement  Scores between Hierarchical   Types 

AB CO EF GH 

AB Ji k 5 

CD Ji k 6 

EF k k JO 

GH 5 6 JO 

-». 
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Table 3 

Agreement Scores of Table 1 Converted to Ranks within Columns 

A B C D E F G H 

A I 2 4 4 *♦ 7i 5i 8 

B 2 1 3 3 5i 7i 8 7 

C 3i 3i 1 2 7^ 6 7 H 
0 3i 3i 2 I 7i 5 5i 6 

E 5 5 6 8 I 2 4 H 
F 8 8 8 5 2 1 3 3 

G 6 7 7 6i 3 ? 1 2 

H 7 6 5 6* 5i k 2 1 

1 ( 0& 
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Table •'+ 

Pearsonian Coefficients of Correlation betwaen the Companies 

Based on Raw Scores 

B C D E F G H 

A +1.0000 +0.8530 -0.0590 -0.1^10 -0.3260 -0A850 -0.4880 -0.3310 

8 +O.S.:o +1.0000 -0.1170 -0.0030 -0.U360 -0.5230 -0.5380 -0.^170 

C -0.0S90 -0.1170 +1.0000 +9.56^0 -0.2060 -0.^520 -0.3010 -0.2420 

0 -0.1410 -0.0030 +0.5040 +1.0000 -0.3960 -0.26fi0 -0.2940 -0.2920 

E -0.3260 -0.4360 -0.2060 -0.3960 J.-1.0000 +0.4600 -0.0150 -0.0450 

F -0.4880 -0.5230 -0.4520 -0.2660 +0.4600 +1.0000 +0.1810 +0.0850 

G -0.4880 -0.5380 -0.3010 -0.2940 -n.0150 +0.1810 +1.0000 +0.4610 

H -0.5310 -0.417° -0.2421 -0.292.) -0.0450 -0.0350 +0. ISIO +1.0000 
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Table 5 

The Pearsonlan Coefficients of Table k Converted 

to Ranks within Columns 

A B C D E F G H 

A 1 2 3 k 6 7 7 8 

B 1 it 3 8 8 8 7 

C 4 1 2 5 6 6 5 

D 3 2 1 7 5 5 6 

C 6 5 8 1 2 4 k 

F 7 8 5 2 1 3 3 

G 8 7 7 3 3 1 2 

H 8 5 6 6 it 4 2 1 

: Vr 
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Table 6 

Fifth Intercolumnar Matrix of Table k 

A B C 0 E F G H 

A +1 +1 +1 +1 -1 -1 -1 a | 

B +1 + 1 + 1 +1 •> | w | -1 « 1 

C +1 +1 +1 +1 -1 -1 -1 -1 

0 +1 +1 +1 +1 -1 -1 -1 -1 

E ■► | -1 -1 -1 4-1 +1 +1 + 1 

F -1 -I -1 ••1 + 1 +1 +1 +1 

G * | -I w I w | + 1 +1 +1 + 1 

H -1 -1 -1 -1 + | +1 +1 +1 
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Table 7 

The Emergence of Types AB and CD 

B 

A +1.0000 -tO.8530 -O.O59O -0.1410 

B +0.8530 +1.0000 -0.1170 -0.0030 

C -O.O59O -O.II7O +1.0000 +0.5640 

D -0.1410 -0.0030 +0.5640 +1.0000 

Original Correlations 

B 

A +1.0000 +0 9696 -0.9122 -0.9587 

B +0.9696 +1.0000 -0.9650 -0.8885 

C -0.9122 -0.9650 +1.0000 40.7632 

0 -O.9587 -O.G885 +0.7632 +1.0000 

First Intercolumnar 

Matrix 

8 B 

A +1.0000 +0.9987 -0.9936 -0.9970 

B +0.9987 +1.0000 -0.9979 -0.9920 

C -0.9936 -0.9979 +1.0000 +0.9819 

D -0.9970 -0.9920 +0.9819 +1.0000 

Second Intercolumnar 

Matrix 

A +1.0000 +1.0000 -1.0000 -1.0000 

B +1.0000 +1.0000 -1.0000 -1.0000 

C -1.0000 -1.0000 +1.0000 +0.9999 

D -1.0000 -1.0000 +0.9999 +1.0000 

Third Intercolumnar 

Matrix 

m 
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Table II 

A Portion of a Hypothetical N by N Matrix of 

Correlation Coefficients between People 

"T^ j 

Both In the ( i 
same type 

Each in 
any type 

ix, 

J*, 

>vr 
V 

V 
v 
v 

'>': 

*  r ., for example, denotes the mean of all r  's. 

r   r 
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Table   12 

Tie Derivation of Pattern A-20 from those of   Individuals A and 20 

Items I 5 8 

Individual A 

Individual 20 

Pattern A-20 

+ 

+ 

+ 

+ + - 

+ + + 

+   + 

-i- 
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Table   I3 

Hypothetical   Data   Illustrating   the  Computation of 

Agreement Scores  between  Patterns 

Code      2 3 7 8 16 

Pattern 83-1 

Pattern 83-2 

yes  yes  no   yes  yes 

yes   no  yes  yes  yes 

v: 

■ < '. , 
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Table 14 

Common Course Selection in Cluster 1, Figure 5 

Intersection Points 
A B 

2 

5 

8 

28 

5 

8 

28 

Courses   In  Cluster   1,   Figure  5: 
Personality,  Experimental 

2-General 
5-Personali ty 

8-Learning & Motivation 
28-Abnormal 
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Table 15 

Common Course Selection in Cluster 2, Figure 5 

Intersection Points 

D    E     F     G H 

2 

3 

I* 

5 

6 

3 

5 

6 

5 

6 

5 

6 

28 

2? 

Courses in Cluster 2, Figure 5: 
Personality-Clinical, as Related to Business 

2-General 6-Business &• Personnel 
3-Principles of Behavior 8-Learning & Motivation 
4-Elern. Quan. Problems 28-Abnormal 
5-Personality 29-Survey of Clinical 

. 
f   }■> 
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Table 16 

Common Course Selection in Cluster 3, Figure £ 

Intersection Points 
I     J     K    L     M     N     0 

2 2 27 3 3 

15 27 28 6 6 

27 28 8 27 

28 27 28 

29 28 

27    3   27 

1»   29 

27 

29 

Courses   in Cluster 3,  Figure 6: 
individual  Differences  in Personality 

2-Genera] 8-Learning & Motivation 
3-Princlples of Behavior 15-Infancy & Preschool 
4-Elem. Quon. Problems 27-Tests & Measurement 
6-Business & Personnel        28-Abnormal 

29-Survey of Clinical 
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Table   17 

Common Course Selection  in Cluster k,  Figurt   J 

0. R 
Intersection 

S   T   U 
Points 
V   vl X Y 

3 3 15 3 15 15   6 15 k 

3 15 25 15 16  15 28 13 

15 25 16 28  16 15 

"5 28 28 28 

30 

Courses in 
Dynamics o 

Cluster k, 
F the Deve 

Figure 7: 
opinq Individua 1 

3-Principles of Behavior 
Jf-Elem.  Quan.  Problems 
6-Business & Personnel 
8-Learning & Motivation 

13-Social Movements 

15-Infancy & Preschool 
I6-Middle Childhood 
25-Modern Viewpoints 
28-Abncrmel 
30-dynamic Theories 
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Common Cour.-^  SpleciifT   ip  Cluster ,.     FigiTfi  8 f   9 

C.'.iie?   in  Clust1   '  CJ .   ri ,'.-e 8  S ^ :     i ■Tsono" i rv • "icnar.jl 

Z-Ge,''..rt! I3-to;;,-:   Movement 
3-PrInciples oi   Bch^vio,- l5-.f.fjncy  6- Preichcci 
^-Eiem. Quan.   Problems 16-MicJJ.Ie  Childhood 
5-Personal i ty 23-Hur.ian  Lcarr.i-ig 
8-Learning &   'lotivaticn 28-Abnor',. ' 

25-SiJrvev " . ; n r •,   1 

l.iterseciion  "»oints 
'.    A       CB    CC     OD       EL       FF      HG      HH       I i       JJ      KK      LL      f'M       NN 

3  3  3 3 2 3 2 2 ■» 3 3 ** 
^ 3 3 

i*  3  8 8 3 3 3 3 5 5 28 i) 1. 5 

3 .. 23 4 5 5 5 28 15 2D 15 13 

6    28 5 15 23 8 2°. 28 

-^ 
> is 28 28 29 

28 
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Hierarchical  Types 

Imperfect Types ABC 

ABCD EEfiH 

A A 
Fig.   1       Types of Companies   In Terms of Some Union-Management 

Characteristics 3 
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A  A 
Fig. 2 Hierarchical Classification of Companies by 

Rank Order Typal Analysis of Agreement See res 
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Agreement  Scores,   i.e.,  Number of Common Responses 
for the Silverware Patterns Grouped at each  Intersection 
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Ct-.tecor/ A1   B .     .   ,     , 
>  Responses  i,  j,k,   •- 

:ts      j Subject 
l-^lyp»  /,x 

\ 

Jatogory Ü 

Subjects 
Responses   i,   r ,s,   &   l-:>»Typn  Y / 

\ Category  C» -, 
N 3    '      ) responses   i   and   l^i>i 

Fig.  h Illustrating   iV'O Kinds of  Diffor?ntial   Validity 

; 
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Number of Courses Taken by the Clusters of Student! 
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Prlnciplti of Behavioral Taxonomy and the Mathanatical 

Baals of the Taxonooe Computer Program 

Raymond B. Cattcll 

Univtnity of Illinois 

and Malcolm A. Coulter 

National Institute for Personnel Research 
Johannesburg, Union of South Africa 

1. Two Concepts of Type: Homostat and Segregate 

Placing people in types is an ancient pastime; but one still far from 
being fully understood in respect of both conceptual aims and methods of 
analysis. Por example, the reciprocal relation of typing to the description 
end prediction by ettributes and dimensions, discussed in the earlier Q- 
technlque controversies (Burt, 1937; Cattell, 1951; Stephenson, 1936), yet 
remains to be properly worked out. To this day, the conceptual basis for 
types has remained crude compared to that developed clearly for attributea 
(by surface and source trelts (Cattell, 1946), as defined in modern statistical 
models (Burt, 1950; Borst, 1963; Thurstone, 1947; Tucker, 1964)). 

Elsewhere (Cattell, 1957), a list has been given of the rank and riotous 
vorbei usages of "type". Such use as in Jung (1923), and many others who 
define types aa the arbitrarily cut extremes of any bipolar continuous dimen- 
sion, we shell set aalde ea more aptly handled by direct measurements on bi- 
polar source traits. What we wlah to designate aa a type is the formal entity 
central to much psychological and biological classification, embodied in the 
laat by the concept of e taxon, e.g., species, genus, family, etc. (In 
paychology, we need not necessarily adopt the biologist's further concern with 
"dendrograms," i.e., the arrangement in cleaaificatory hiererchies.) Types 
eppear in paychology aa groupings by occupational skill, complexes of attitude 
In political groupa, pathological syndromes, and by certain genetically deter- 
mined patterns of behaviour. 

Psychomstrlca has, in its main developments, ignored this granulation of 
Ita populatlona in favor of a simplified »orId of homogeneous norme1 distribu- 
tions of characterlatlca and linear relations between them. Over the normal 
ranges of behaviour, the approximation has been good enough to permit the 
effective prediction of individual difference by meana of broad personality 
feetors. But es reaeerch broadens, the realities of more complex natural 
distributions dornend to be considered. Considerstions of efficiency require 
thet our models begin more explicitly to encompass types, snd the non-linear 
relations and pettern effects which go with them. 

We shall, therefore, begin with the central, if initially over-simplified, 
definition of e type ea the most representative pattern in a group of individuals 
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located tgr a high r«UtiT« ftr«qu«ncy — a aodt — in th« dlttribution of 
in aultldiapnaional apaoe. This dafinition will ba aada won Btrix^mt aa va 
parooaad. The principle poaaibilitiea are illuatratad for one and two diMnaiona 
by Figure It 

(li.aert Figure 1 here) 

Figure 1 ia intended to oring out thatt (l) non-noraal, aultlaodal 
groupinge can eaaily exist in a «ultivarlate distribution aran whan the dlatri* 
bution projected en any one of tie diaahaiona ia virtually noxaali (2) all > 
»odea are relative aa to denaity, ao thati aa at Aif A2I B^» 82» C,, 0,1 and 
DX, D2 in Figure 1, one can have "typea within typea"! and (3) that thire arte 
really two distinct possible definitions of type, one hinging on (a) high atttnal 
aiailarity of aaaberai i.e., all coning within a cirounacribed diatanoe of on« 
another aa illuatratad by those lying in the dotted circlee 1» 2| 3, and k9  and 
(b) forming part of a group in which, though eome nwbera nay extend to reaote 
distances fTon others, each ia leaa remote from another neober of that group 
than fTon individuals outside the group, e.g., aa shown by the typee B and C. 
Thus, persons in the regions A, C^, and Bj eonatitute two typea, 1 and 2, 
according to definition (a), idieraaa they fall into three typea, A, C}, and B«f 
according to definition (b). 

A definition with Euclidean or Boolean rigour for theae two oonoepte will 
be given later, but on the taaporarily adequate basis already given, we shall 
refer to them respectively by the ten» hoooetat, naaning Ha aet of people 
atanding at closely similar poaitiona in apaoe", and aegregate, implying Na aet 
consisting of people continuously related through other people in the aet and 
iaolated from thoae outside, but not neoeaaarily aimil.w in poaition, i.e., 
not of high homogeneity". Readers may find it oonvanient, aa we have in our 
own laboratory discussions, to designate than "atat" and "ait" respectively. 

A glance at paat psychological work on typea e.g.. HoQuitty'o pattern 
analysis (I963)» that of Kunnally (1962), Orarall (1964)» «nd of oureelvea with 
the pattern similarity coefficient (39^9, 1950, 1952)» ehowa that attention has 
hitherto been operationally directed ezcluaivaly to homoatats, despite the con- 
cept of aegregatea having aometimea been obvioualy preeent in the writer's mind. 

2. The Most Promising Model, ftrom a Solantifie Standpoint 

— 
The main aims in research on types aret (l) To produce a methodology 

for operationally locating and identifying segregates and homostata. (2) To 
develop mathamatioo-atatiatioal formulae, based on improved models of type, for 
utilising test remits for predictive purposes and for investigating laws which 
may arise from the peculiar nature of typea. 

Briefly to anticipate what this cecond step may comprise, we would point 
out that Aristotelian classification permits predictions of ths kinds "This is 
a dog; therefore it may bite") or "Thia ia a aohisophroniof therefore the 
proepeot of remissions is not high." In other wordn, a classification by 
variables of one kind may permit prediction on others not included in the 
diet a observations. As will be brought out later, the use of types need not 

I 
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•Cop with this Arlstotelean, caeegorical formulation.    It will lead rather to 
CIM rocognitlon that In nuaerical data, the relation of a "test" to a "criterion" 
■ay be very/ different «Ithln species from that obtaining between species.    Thua, 
Che relation of two variables could be ncu-llnear across all individuals in the 
total genus, yet exactly linear within each species.    The use of distinct in- 
and between-type dimensions Instead simply of a single set of broad dimensions 
•croas a genus demsnds that before data Is fed to the computer, one has to con- 
sult an encyclopedia (to recognize, by appropriate properties, each individual1* 
belonging to a particular species).    The reward, however, of this classificatory 
labour is likely to be a more accurate prediction from the individual's scores, 
or Che discovery of clearer laws for the segregated types, obscured In the mix- 
Cure of species In the genus. 

As we proceed to more precise concepts for both discovering and using 
types, it is necessary (since particular exemplifications in, for example, 
soology, psychology, astronomy, mineralogy are likely to differ) to define the 
breadth of our approach.    Our aim Is to be comprehensive (our association with 
Sokal and Sneath (1963) and TSades (1964) In applications to entomology has been 
encouraging and enlightening in this respect) and we believe that the psycholo- 
gist, before he devotes his  Ingenuity to statistics, would do well to take a 
philosophical pause, for he needs to develop a plausible scientific (not merely 
a statistical) model of types, based on speculation as to how and why they arise. 
Briefly, our theory is that types arise from three causes:    (1) Adaptive Success, 
beceuse of special value in the combination (survival value in biology,  utility 
of human artefacts),  (2) Combinations Required by Natural Law, where a pattern 
repeats Itself modally because It Is required by * particular combination of 
natural laws, e.g., crystalline forms, cloud types,  solar systems, and (3) Blo- 
soclal Gravitation.    This supposes that once the beginnings of a type exist 
there will be a tendency by Imitation for Individuals to gravitate towards Its 
controld.    This occurs socially In fashions and fads and biologically in species 
formation.    (Sewall Wright's  "genetic drift" has relations to the latter.) 
Obviously, psychology has types of all three kinds:    the skill and personality 
patterns of different occupations are examples of functional adaptations; the 
behevlour pattern of delirium tremens or Huntington's chorea have no adaptive 
value end occur simply as Inevitable patterns from laws of neurological break- 
down, etc., cultural and racial types relate to the third source. 

All three sources Indicated by this theory of type origins would result 
in some combinations of parameters being represented by high (modal) frequencies 
while other zones (combinations) In the coordinate system, which theoretically 
might be filled, remain empty of Individuals,    parenthetically. It will be men- 
tioned that In functional adaptations dependent en either evolution or human 
invention,  the additional possibility must be considered that some zones are 
unoccupied not because they necessarily represent a r^n-functional combination, 
but because for some reason they cannot be, or have not yet been reached.    In 
biology,  the intermediate mutatlonal steps necessary to reeching some advan- 
tageous end pattern may be chemically unstable or biologically lethal.    The 
giraffe's neck had time to grow gradually as his forelegs grew, so that he 
achieved the advantages of height without losing his capacity to drink; but 
other useful biological combinations might be too much of a "tour de force." 
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The matrix of scientific ntcesfltiei out of which typos are born «111 
prtsuwbly b« indicated In some degree by the varying textures, dendrograme 
(hierarchies) and cluster sises emerging, as discussed in Section 8 below. 
However, both for adaptive types and natural law types, there is reason to 
expect thst: (1) there will ariae an unusually high frequency of casea in 
which sons particular range of scores on paraaetar x is aaaociated with a 
special range on parameter y, because this is functionally useful and is pre- 
served end multlpl-ed. Secondary pairs of optimum ranges will generally elao 
exist, but apart from theae modes, instances of individuals with other coebi- 
nations will be rere; (2) among individuals st these modes some entirely new 
organs and therefore dimensions may appear which are not present in the general 
"population" (and, therefore, the distribution of these for the general popu- 
letlon would have an extensive positive skew. For example, among the types on 
the tee teble, only teapots distribute on the "length of spout" variable); 
(3) e cless which we may csll "across species" variables may be practically 
normally diatributed over mentrra of the whole genus despite many "species type" 
aegregatlons, while the class of "within species" vsrisbles will, aa stated, be 
bedly akewed. Theae type concepts thus imply the recognition of three classes 
of variables, with greateat relevence, respectively within apeclea, between 
apecies, and across the whole population of the genus; end (4) by reason of 
information in these variables, one will in general expect to have to complete 
the deacription of type segregation and distribution by reference to "higher 
order" structures, briefly indicated here by the terms textures end hierarchiea. 

Some slowness in coming to gripe with the necesssry concepts in this 
field must probably be ascribed to certain habits of mind, which favour aiapli- 
fied mathematical abstractlona even when they feil to describe end do honour to 
the intrinsic irregularity of the date. Analytical geometera are not easily at 
hone with topologists, and here even topologiata themselves are being forced to 
face the intractable specificlty of detail elsewhere feced only by topogrsphers.' 
The problem is very close to that of deacribing the actual cloud maaaee at a 
given moment in en n-dimenaional aky. Even when this goal ia acaitted, most 
people begin by thinking of diacrete cululua clouds neatly apaced in a sunner 
sky, but are forced at the end to come to terma with the ultimate in irregular 
•saaea •• an October storm-wrack. Those who develop geometrical modele and 
statistical procedurea have no alternative but to brace themselves for this 
degree of complexity if they wish to describe the variety of human belnga in a 
society or what actually happens in biological evolution. 

3. Two Alternative Principles for Locating State 

Anyone who hea followed the history of paychologists' sttenpts to handle 
the type concept, with Q-aort, D2, discriminant functions, Holclnger'e B 
coefficient letent cless analysis, etc., must admit that little of theoretical 
or precticel paychological Importence ties yet emercod, end he may Juetlflebly 
wonder whether the toola end concepta have been adequate. For example, paychia- 
trist's syndrome groupings, despite some epplicetion of correlstion methods by 
Degen (1952), Huffman (aee Cattell), Lorr (1962), Wlttenbom (1951), end others 
continue to take their euthority from subjective clinical Impreaaiona, while In 
social paychology and releted ereee. It is herd to point to any theory which 
hes erieen from e statistically adequate demonetretion of typea. 
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El«twh«r* (Cattail t 19^1» 1952a)» appaala bar« bt«ii aod« for.reoofftitloa 

la elaaaifyinc individual» tgr raaaaMaaea Mthodai (1) Q-aort1 la TlUatad 

Q-aartt prlnolpalljr propa^atad h» Hogara (1951)» la a rank oorralation Taraion 
of «bit aaj ha oallad a ^>bar (Q-) tadmi^ua. It la iaportaat alaarly to dla- 
tlafulab (^>taohnlfaa (aoaatioaa oallad Q^-taohaiqua) which atopa at Ending 
eorralütion aluatara» froa trua (^tachniqua» whloh la a full factor analytic 
taohniqua (tha tranapoaa of R-taohniqua) aiaad at obtaining diaanaiona. Sinea 
Q-taohaiqua dapanda on tha oorralation ooaffloiant, ona cannot, for tha ahora 
raaaona, afraa with ita othaxviaa oaraful and precis« uaa in tha extensiv« 
taxonoadc work of Sokal and Sftaath (1965)* Typea are not faotora. (i-technlqua, 
on tht other hand, yialda typea and will do ao without throwing away important 
«Tidenoe if it uaea r iaatead of r. Incidentally, for brevity we shall, refer 
to the square aatrix^with the ease people at top and aide, which la a cc 
baflnnlni of all tha above reaaablenca aethoda of typing, as a "Q matrix.•' 

ao loag aa variablea rather than faotora arm uaed, and without a principle for 
•aaplinf variablea* For indices of reaaablaaoa are completely unatable and 
■aaalafLaaa without either reaolving variablea into faotora or taking thsrn in 
a atratified aaaplet (2) uaa of tha oorralation ooeffioient givea aialeadlng 
raaultt, for It throve away indiapanaable infoimation, recording only the ahapa 
aiailarlty of two profllee without reference to level or accentuation (Cattail, 
195l)l (5) Bolaingar'a B coefficient (Hblainger aal Harwn, 19^1) dlaragarda tha 
dlffarenue between nuelaar and phenomenal oluater etruotura whloh la discussed 
below» {k)  lc.t«nt olaaa (aometiaee called latent -etruoture") (Usanfeld, I960)» 
though a atatistioally clearly developed method, doea not meet the need for a 
parametric treatment of the aaalgmant of ladividuala to olaaaeai (5) the multi- 
ple dlaorimlna.it function la not a means of finding typea, but only of giving 
«■phaaia, rlgiolty, «ad apparent preciaion to groupinga initially diaoovared by 
other and uaualJy mere subjective methoda. 

Ihoad with theae inadaquaolea of preaant type concepta and aaarch methoda, 
erne recognisea the poaaible need for a radical re-orientation. Thia la reached 
flret by raaMslBg that the idea of type hidea two very diatinct oonoipta — 
amtitlea which we call atata and alte -- and, eecondly, by recognising two 
diatinct methodological approachee to locating theae in nature. The implicit 
definition of a stat (or "homoatat") above can be aharpaned now to a eat of 
ladividuala within which the mutual reeaablance of all pairs exceeds a certain 
value, algnifioantly higher than that obtaining between pairs in tha population 
at random. Although a segregate (or "aitM) is differ«*, we ahall find that 
tha atat ia a neceeaary concept in reaching it, ao tha location of atata la 
firat treated here end the operational definition of alta ia deferred. 

To locate a atat, one of two broadly different approachee era open to 
w.t  aa followat 

(l) The Inter-Id Relation Method. Thia starte with people (or other 
individual pattexne)2 aa reference point a in a apace defined by coordinatea 
oorreeponding to the faotora, etc., by which individuals are measured. 
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2 
Soae general term ia badly needed for the indlriduale who provide MM with the 

diaenslons (in factor analysis) or types ultlaately erkraoted» Although the 
peyohologist coomonly thinks of people, thess entitles (eaoh defined as a 
pattern), even in psychology, oust also Include such things as groups, pro- 
cesses, culture patterns, etc. Since a set of finaly defined and inter-related 
terns for all elsoents in the basic data relation aatrlx has been adopted In 
the new Handbook of Multivariate Experimental Psychology (Cattell, 1966)* I am 
proposing to use here consistently ths term Id for any and all entities of this 
kind. That is to say, a Q-matrix is defined as bordered hy Ids and having In 
Its cells scalar quantities expressing the relation between Ids. Incidentally, 
this usage of id is so remote from the other usage in psychology, if psycho- 
analysis is to be so» that no comparison can exist. 

It calculates ths distance of each person from every other, locating first ths 
dense "plexuses" of people, and secondarily, the position of the centroids of 
such groups. Most simply, a square matrix (a "Q matrix") is set up bordered 
by the same set of people on the two sides. Into ths cells are entered the 
quantities which express ths similarities of the members of the pairs defined 
eaoh by a row and a column. Methods can then be developed to find the dusters 
of people constituting stats, and latsr, aits. 

(2) The Density-ln-Spacs or "Cartet Count" Method. Here, one begins 
with ids placed in position in a coordinate system by a matrix of scores on 
the coordinates. Convenient Intervals are then taken on these coordinates to 
dsflns "cartete" — which, in a two-dimensional map, would be squares fixed 
by boundaries of latitude and of longitude, k computer program can then be 
written to count the number of Ida in each such square ("hyper-cube" or, most 
generally, "cartet," If we may suggest such a term (after Desoartee)) for such 
a rectangular aubspace in a lattice of Cartesian products, fixing a "signifi- 
cantly high density" count by relation to the average total density, one could 
first set aside stats, and, by secondary process disousssd below, alte. Seme 
experiments would be necessary regarding ths size of the component subsets of 
Cartesian products in order to best bring out the modal groupings in relation 
to the general texture of the domain. 

One must recognize from the beginning, however, that the "cart et-count" 
method will soon rsach a number of cartete to be counted that could be onerous 
even for an electronic computer. The difficulty ia illustrated by the fact 
that with only 16 dlmenaions, and Intervale restricted to just 6 in number 
(3 plus and 3 minus) subtending eaoh one standard score, for each coordinate 
the total number of hypercubes (oartets) which would have to have their con- 
tents examined by counting Is 616 . 2,830,000,000,000 (approx.). On ths other 
hand, the number of resemblance entries to be examined in a Q-matrix, by the 
inter-id method ((l) above), also inoreaaes exponentially and ia fairly for- 
midable with four or five hundred people. Typing prooedurea, with any adequate 
aample of ids, are necessarily and characteristically going to be demanding of 
computer time. In practice, with the cartet count approach, one might often 
be content to use only two coarse score Intervale per coordinate scale, but In 
a 16 element profile (which is probably fairly typical of psychological nseds). 

-?— 
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th« oub« count would still have to cover 2  ■ 2i*0,000 counts. 

In this article, vs shall concentrate on the inter-id approach sines the 
oartet count procedure is obvious. Hers, ons nssds first to find a suitable 
index of ressnblance between any two ids, presuming each to be already measured 
en a profile of dinenaions. For this, and allied purposes, ths profile simi- 
larity index, r«, has been developed (Cattail, 1949) as bain« free of the draw- 
backs of r, of nshalanobis' I) (1936), and of some other at tines popular indices. 

The profile similarity coefficient, r , has the fozmulat 

2k,-  JMl* 

2«% * :*:d2 

a) 

where k is ths number of profile elements) each d is the difference, in 
standard scores, of the two people concerned, on any one profile element, and 
k. is ths median X2 value for k degreea of freedom.   At k-20, ^-19.5371 so 
tnat above, say, 20 profile elements thsrs is not much argument for using kg 
instead of a simple k in the first part of the numerator and denominator. 
The former will exactly divide the possible rp*s into equal numbers of positive 
and negative values, but the former will give a zero sum of negative and posi- 

ühe advantages of this r. over the Mshalanobis (1936) distance 
arst 

tive rp'a. 
function, D, 

(1) That it gives comparable values from study to study in comparing two 
ids, regardless of the different metrics and numbers of profile elements.   This 
it doss because (a) all coordinate values are in standard score, not different 
units for each, and (b) the formula allows for differences in the number of 
coordinates (profile elements) in evaluating the "distance."   Moreover, it 
behaves very similarly to the familiar correlation coefficient, registering 0 
where the relation between two people is no bsttsr than chance, +1.0 when they 
are perfectly alike, and -1.0 where they are ae unlike as possible.    By con- 
trast, one never knows what the meaning of a particular D value is without an 
elaborate consideration of additional circumstantial facts or the making of 
additional calculations. 

(2) Sines different investigations in the same domain often differ some- 
what in the number of dimensions they employ, both of the above features (1(a) 
and 1(b)) hslp in surveys attempting to integrate conclusions about types. 

(3) A significance test has been worked out by Horn (1961) for r. and 
other properties are under investigation.    This and other developments of ths 
index promise reasonable prospects of programs making it negotiable in further 
srsas. 

Cta the other hand, unlike D, rp does not have simple Euclidean distance 
properties.    The relation of r. to D (when the latter is put in standard scores 
form) is shown in Figure 2.    11 will be seen that in the central range, it is 

• 
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•pproxlmattly lln««r and the rtlation if still cloMr to linaarity for the 
ipacial r« derivativa, tnt  propoaad balow. Howavar, non-luelidaan apacaa, 
if properly understood, can be as uaafully aanipulatad as luclidean and the 
taaptation of convenience offered by the use of faailiar apace mat be rejected 
if the Euclidean rapresantation, D, does not also give the greater psychologi- 
cal convenience, e.g., in vocational selection, etc., which is provided by the 
use of rn. 

p 

(Insert Figure 2 here) 

With this crystallization of an acceptable acana by which the sinilarity 
of ida, i.e., of people, itinulus situations, groups, processes,^ etc., 

^Parenthetically, to ward off any incorrect eaauaption of forasl narrowneaa in 
our approach, let it be noted that the «hole treatnsnt of similarity by ettri- 
butes aa propoaad here includes application to proceaaea aa «ell as structures. 
A psychiatrist, for exemple, nay aay that his aasignaent of an individual to 
the syndrome type "Schizophrenie" includes observations on the course of onaat 
itaelf, and the notion of e malign outcome. Such proceaa attributes can, of 
course, be included along «ith structured, "immediate" msaaurea in the desig- 
nation of a specific profile of maaauras. (Mian tp  ia used thus to locate 
types of processes rather than typaa of paraona, cartein time sequence infor- 
mation, distinguishing a configuration Uattell, 19S7, p. 396) from a profile, 
must be included.) The procedure can also be uaed for grouping proceaaea aa 
such, aa discussed in detail elsewhere (Cattail, 1966). 

meaaured can be meaaured, uaing a profile of dismnaiona, let us turn to the 
next problem. Thia concerna the uaa of auch an index in the id-relation 
procedure for finding types. 

4. Defining State in (a) Generel Purpoae Dimensions 

snd (b) Speciel Criterion Functions 

It ia part of the conceptuel inadequacy of the epproachas hitherto mad« 
by scientists to the type concept -- even in see» of the b«at technical work, 
as of that by McQuitty (196?) or Sokal and Sneeth (1963) — that operations 
have been art up to find a homoatat without recognising that it «ill not heve 
any uniqueness of center snd boundery, for such uniqueness is cherecterlstlc 
only of a aegregate. Thia arbitrariness snd subjectivity of the stat, not 
only in «idth but eleo in position end even «ith en exact index of similerity, 
cen be most quickly realized by e two dimensional example, aa in Figure 1. 

The investigator has Co begin «ith soms choice of similarity level ss 
"significant" or "outstanding"; and though a retionale ie given below for 
computing e finally objective boundery value for r_, the limit of belonging 
muat initially be erbitrary and tentative. Defining e stat by the property 
that every individual in it muat reaedble every other above thia limit means 
that in Figure 1 (neglecting the slight deperture of rp from en Euclidean 
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distance) all people within a circle of diameter equal Co rp are in Che aane 
•tat. If Che rp limit is well chosen, Che majority of such circles drawn over 
■uch of Che graph vill each enclose less Chan two people. Only «hare Chare 
la a dense modal accumulation will more Chan two people, i.e., a type, he 
"laaaoed" as, for example, at 1, 2, 3, and 4. 

However, we muse note (a) that somecimss, aa at 2, individuals in two 
diacinct aics will be caught in one scac, and (b) that, as in 3 and 4, Cwo 
correctly defined stats will nevertheless overlap.  In fact. Chare could be 
a whole aeries of stats in e dense area, each including many ids and differenC 
only in Che inclusion of one dlffcr-'.nt person from iCs neighboring stat. This 
can readily be seen if we imagine, say, 50 persons evenly following in Che 
given coordinate space in a long row, wich a circle diameter choaen Co include, 
say, 3 persons at a time and finishing with 48 3-stat8. 

Furthernore, when we pursue in Section 6 below, the operational atepa 
for locating stats from Q matrices filled with similarity indices, i.e., for 
going from the algebraic to the geometrical view here briefly invoked, it 
will be found Chat the psychologist needs two distinct concepts of stats, 
which are there named and defined as nuclear and phenomenal stats. Never- 
theless, despite these complications and uncertainties of ultimate inference, 
the recording of stats has both direct value in itself and ancillary value 
elao in providing a basis for proceeding to aits. With this foretaste of the 
problem of discovering stats, to which we shall return, ue must pause a 
moment to solve a prior problem, one which stsnds squarely in the way of our 
progress, namely, an uncertainty about the very meaning of similarity. For 
in spite of the apparent precision of our rn coefficient of profile similarity, 
it will become apparent that we cannot use it in all situations we might 
encounter until we have corrected it  to less restrictive assumptions. In 
fact, we must pause briefly in this section to make some almost philosophical 
inquiries about the purpose and setting of its use. 

The design of r_ has cleared ic of giving accidental and unknown 
weighes Co differenC profile constituents, but ic has lefc ic wich the 
rigid assumption Chat all dimensions receive exactly equal nominal weight — 
and this may not fit all purposes. 

As was pointed out in the original logic for rp (Cattail, 1949) both 
the philosopher and the man in the street have always been haunted by a 
diatinction between the character of the object in itself ("das Ding sn sich" 
of Kant) end what it does or is useful for. (Perhaps even Hume's "primary" 
and "secondary," or the theologian's "grace" and "works" might be relsted to 
this distinction.) Certainly in Che operation of psychological prediction, 
we constantly and confidently make a distinction between traits or "predictora" 
and predicted performances or "criteria." Viewing this from the stsndpoint 
of type distributions, it is eaay Co aee that the nodal groupings we would 
gee on cercain criteria will differ from those we would get on Che total 
profile of craits. By the same token, for a barber, a brush, a comb, and a 
pair of aciasors belong in Che same class, while a screwdriver and s boctle 
opener do noc. But by the urgent drinker, Che boctle opener, the screw- 
driver and the scissors are seen ss promising members of a class to which 
bruah and comb do not belong. 

■^   J 
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The present writers, in basic personality research, do not accent the 
psychofltetrist's differentiation of test and criterion as having any fundaaental 
statue. But the difference between the total personality profile of behaviour 
extracted tralta and a single "criterion" (or any other) perfornance is real 
enough. The latter is always sow quite specific aithenatical function of the 
former. On auch a specific function, the modal ststs (or sits) «ill be 
peculiar, to that derived variable, i.e., different from the distribution on 
other functions or in the k-dinenslonal treit profile space. This is the 
mathematical expression of the statement thst "all clsssiflcstlons art aub- 
Jectlve, depending on the purpose of the classifier." Indeed, it is the 
general profile classification which now begins to look doubtful and subjective 
compared to that on the concrete criterion and we find ourselves ssking, 
"What do we mean when we telk about 'the thing in itaelf?" By «hat right, 
for example, did we start by giving equal weight to measures on the k dimen- 
sions of the profile In the rp calculation. The feet that our Initial concept 
of shape comes from the physics1 world (Newtonian, at that) fools us in the 
wider contact, for we are naturally accustomed to giving equal weight to 
height, length, and breadth measures. What the psychologist really haa to 
deal with la a sevete case of Einstein's world, with dimensions variously and 
severely contractible. 

The only firm bssis for a system of weights for dimensions, as pointed 
out by Burt (1937), by the present writer (1946, 1957) end by Kaiser and 
Geffrey (1965), la a concept of a population or universe of behavioural 
variables, from which the dimensions derive. A rlgourous snd operational 
basis for dimension weights in the personality realm haa long been available 
in Cattell's personality sphere concept (Cattail, 1946; Cattail and Warburton, 
1967). Employing equal weights for the k elements of the profile used in r* 
is therefore Justified only if one has demonstrsted that these dimensions 
spprosch a certain relation to the personality sphere. Thst relation ia that 
the squared loadings of each factor over the peraonality sphere of variables 
sum to the same value as for all other factora (or, aince in practice one 
must work with a random or a stratified, that they approach equality within 
the limits of error). At the present stsge of knowledge, shout primary 
personality factors, it seems quite unlikely that they will show such equality. 
Consequently, we shsll undertake in the following section to generalise the 
coefficient of profile similarity, r», to meet ths need for unequal weighting, 
as well ss to sdd other needed flexibilities. 

5. Varieties Within the Family of Profile Similarity Coefficients 

From the preceding eectlon, it becomes evident thet the comonly 
used profile similarity coefficient, r , is really one of a special case: 
one of many possible formulae within e family of coefficients. There could, 
for example, be weights snd polynomial expressions for calculating similarity 
(or "distance") with respect to ell kinds of relations to criteria and 
particular combinations of criteria. The ordinary rp is s special case from 
these in operating with a lineer combination of squared differences which 
gives equal weight to ell dimensions. Furthermore, its quadratic form 
apeciflcally eaaumes a non-linear, parabolic relation of Individual traita 
to criteria. This means that in evaluating the extent to which en individual 
belongs to s clinical syndrome "type" (or to take enother example, hia 

^T 
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"•djaftacnt" to th« id«*l, ftabl« prof lit of ehot« In •  given occupation), It 
(a) ponallstf «qually for under and overshooting th« criterion value and 
(b) doea ao In teraa of the aquare of the deviation Involved. 

Obvloualy, aodlflcatlona could be made In the almllarlty foraula to fit 
all klnda of aaainptlona about the relation of trait to perfonwnce, which 
could be expraaaed In varloua polynomials relating profile factor acoree to 
the criterion. Indeed, one Inatance of modifying the rp Index which nay be 
briefly aantloned, becauae It la actually more conalatent with the widely 
paycheloglcally uaed linear factor specification equation than la rp, la what 
we ahall diatingulah aa the coefficient of linear alnllarity, rfl. In this, 
the algna of the d'a, atandard acore dlfferencea of two persons on the 
aucceaelon of factora, are preaerved In the addition and the coefficient will 
Indicate not only the degree of almllarlty of two peraona, but alao which 
la poaltlve (higher) relative to the other. It la defined by where there 

2k^*b -> bd 

•P1P2      

2k) b + > bd 

(2) 

are k profile elements, the b'a are the factor weights and the d'a the 
dlfferencea on the fectora, peraon p alwaya being aubracted from peraon p.. 

The expreaalon, r-, will preserve conalatency with the familiar linear 
apcclflcatlon equation, but the slmllarltlea thua calculated will loae any 
relation to an Euclidean distance. Yet another member of the profile almllarlty 
family, and one which aucceeda In approaching Euclidean dlatance properties 
even better than r (aee Figure 2), la «hat we may call the coefficient of 
nearneaa, rn, defined aa follower* 

rn >     V        V -~ (3) 
PlP2 s/'n+JTS 

Strictly the expected value ofJSi1  la JlM  (1 - MUk + l/32k2 + I R
3 

  V—     v 128 

♦ ,,, ); but y2k la a cloae enough approximation if k la not too email. 

The greater conformity of rn to Euclidean apace (I.e., to e generalised 
D) la ahown In the grapha of Figure 2. Like all members of the r family, rn 
haa a numerically Unadlate meaning aa a almllarlty coefficient in that It 
ylelda 0 when the relatlonahip la an average, random value; it reachea +1.0 
for exact likeness; and approachea -1.0 for maximum dissimilarity. 
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What recoontnds It leas than tp i« that ita dlatributlon akeva «ort, approach- 
ing -1.0 vary a lowly.    At a 5 sigma difference on every elnnent it la atill 
only approxinataly -0.6.    Ihia alownaaa to approach -1.0 may axpraaa a 
nacaaaary truth namely that in any ordinary biological or aocial population 
extreme oppoaitaa are much more rare than individuala «ho cloaely reaeafcla 
each othara.    Ihia inference, aa wall aa certain other propartica of rn and 
rp warn ua that in averaging and in other manipulationa of pattern almllarity 
coefficienta wa need to watch certain pitfalla.    Since there haa bean practi- 
cally no reported experience with rn, wheraaa rp haa been appreciably triad 
out, our further diacuaaion will keep to the latter, conaidering the further 
iaauea of weighting and obliquity only in regard to the generalised rq formula. 

Publiahed uses of r- to date have uaed the apeclfic, non-generalised 
form, which haa two main aaaomptiona:    (1) that the factor meaaurementa are 
orthogonal, and (2) that the elementa  (factora) are to be given equal «eight. 
Yet moat known peraonality and ability source traits stand obliquely to one 
another ao that assigning nominal weights to itena would not give equal 
statistics 1 weights.    And often we wish to give them known unequal weighta, 
which, incidentally,  icnlles also that we are giving certain weighta to the 
higher atrata (Cattail,  1965) factora arising from the oblique  factora. 

Probably it would be correct to aay that most paychologiata Implicitly 
assume in comparing personalities that they went to give equal «eight to each 
and every behaviour in reel life,  i.e.,  to consider the realm of crlte.-lon 
performance aa the basis for perspective.    If ao, they should recognise that 
to achieve this goal it will nevertheless be necessary to give unequal weighta 
to the factora.    Unequal weighta are necessary becauae in predicting verlebles 
constituting a atratified aanpling of the universe of behaviour we ere likely 
to find some factors more "inportant" than othara.   A preciae expression 
(granted an available defined total population of variables) for the differing 
iqporr.ance of individual factora can be obtained from estimatea of the mean 
variance contribution of eech factor across the population of variablea, i.e., 
by the root average squared 5uma of the factor loadings for the given factor 
(the "latent root" in the orthogonal caae) ea follows: 

IXaO 
•  V 

«f i   »i ag b2 i« . <«> 
, n 

where bjx is the loading of variable x on factor J. 

Other rationales for weighting may be proposed, but regardleaa of their 
nature we ahall need e generalized rn for rny obliquity and any weight.    Let 
us begin with the essential form behind equation (1), namely, 

"?c  "    dxy 
rpxy      =      i    ■      wi      » 

«k - ^V (5) 



' 

5.13 
2 

«tar« d xy la the «quarcd dictance apart of two people, x and y,  in a k 
dlaanaional Euclidean apace and C ^ la the expected dlatance for k dlaenalona. 
But d2xy can no longer be ■imply Jak .    (or, in matrix notation, 

j :i( J« - Jy)z 

'''(xy) *d(xy)* ror  w* mut now t-'1* into •ccount the correlationa, rfifj 
between the aource tralta (factora) J and I,  and other«, which we may  - 
write aa the uaual matrix Rf, and we i-uat also Include the weighta assigned 
to the factora, which we will write Into the k by k diagonal matrix 0^. Then: 

d2 (xy) - «^(xy) D2w Rf D
2w 2d(xy)      ^6) 

The expected value of d2(xy) is no longer 2k, but is: 
1   »    •   i 

E^ - trace  (D2 L' D w Rf D
2« L DJ)   (7) 

where D la the diagonal matrix of latent roots of id(xy) ^'d/ \ 
matrix of the esaociated latent roota. txy' 

and L the 

If one wiahea to revert to the special caae ao far employed -- the 
orthogonal, equal weight rp •> it la easily done by inserting r - 0 and 
w : 1 in the above. The computing convenience of the orthogonal approxi- 
mation we have been using (acceptable when only minor obliquities exiat) 
la thua very substantial and attractive; for the user of the oblique formula 
la compelled to work out efresh for each caae the complex expreesion 
z,(«y) B2* Rf D  z(xy)> To employ the simple (orthogonal) approximation, 
on tne other hand, it auf flees only to enter a nomog-aph with the individual 

dz value (Table in Cettell and Eber, 1966).  However, with the help of a 
computer program, baaed on (7), the uae of the exact oblique formula, even 
with quite large nuobera of individual caeea, preaents no real problem. 

The formula for the profile neerneaa coefficient — (3) above, uaing 
d'a without signs, inateed of d2 — when correspondingly adapted to specific 
aource trait obliquities end weightings becomes: 

Hera, to a firat approximation: 

.1^1 

Ek - (E'd(xy) D
2,, Rf D

2„ 2d(xy))^  (8) 

Bfc + (Z'* D2M R* n ZA )i k  l <*(xy) ü « "« D w Äd(xy) j 

Ek - (trace (DJ L D2, R£ D
2w L DJ))^ (9) 

The distribution and significance limits for rn, corresponding to 
those obtained for rp (Horn, 1961) remain to be worked out, ao the further 
ataps and applications we now propose to follow are best considered to 

loy v 
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6. THE OPERATIOMAL DEPINITION OP PHENOHEMAL AMD NOCIEAR 

CLUSTERS (OR CLIQUES) IN AN INCIDENCE MATRIX 

With tht «bovt treataent of the problem of caleuUting siailerlty 
(a reciprocal function of dlatance) ea auch, for any two Ida, «a ere ready 
for the operation« In finding type«. In the flrat atep from this alnllerlty 
value, be It tp,  rn, D or eoy other conalatent concept -- towerd cleaalfylnf 
people In types one muat introduce e limiting value — erbltrery or natural — 
in order to ahlft from a quantitative or parametric to a qualltetive or 
categorlcel treatment. At aone point one muat end by epeeklng of people ea 
"in" or "out" of a type, though degreea of belonging may elao be uaed later. 

Although we muat never loae eight of the metric origin nf the cutting 
point, end the wey in which it« choice can affect the grouping, yet we now 
propoae to convert the Q matrix of rp'a into an "incidence natrix". Therein, 
if e certein limiting positive rp value la exceeded in the original Q matrix 
a unity la entered, to deaignate a linkage, whereea If rp la not positive, or 
la below thi« significance e aero Is entered in the cell to show that the two 
people ere unrelated. There will thua be no negetlve values, but only O'a 
and positive unities in the incidence matrix.' 

This is perhaps the piece to point out that the reciprocity of R- end Q- 
technlquc practices breaks down in one important respect: one cen meaningfully 
reflect tests but not people. Consequently, one cannot meaningfully reflect 
rp coefficients signs (to make them poaitive) by reflecting one of the two 
people. It is true thet conceptually we may do so, end tbet we recognise e 
special logical affinity of oppoaltea, es when we tslk In one breeth of engela 
and devils, snd theology insists thet Lucifer had to be e feilen angel. But 
what la the opnosite of a chair? Oppoaltea to exiatx^g object« may be 
mathematically conceivable, by logical flat, but not conalatent or conceiveble 
in acientific properties. Certeinly for most objects opposites simply do not 
exist in sny actual world of date. So, like D'Artegnon, we may saaert "Le 
diable eat mort" without becoming atheist«.' In short. In the whole process 
of mapping similars we are not required to consider opposites, snd certeinly 
we sre not permitted to make reflections in Q-mstrlx id entries. Parenthe- 
tically, with correletions of persons, reflecting even e test upsets the 
inter-person similarity value, es pointed out by Cattell (1952a) in the eerly 
discussions of Q-technique, end illustrated pointedly in e recent paper by 
Howard end Diesenheus (1965). 

Once the ebstrsction of the Incidence matrix is reeched, with "links" 
tsklng the piece of similarity values, both the scientific model end the 
computer program we are developing for it teke on broader reference end 
utility. In most respects they apply both to the personality and cultural 
psychologist's (ea well as the biologist's) need to find typee end to the 
sociologists need for an objective besis for locsting cliques snd communics- 
tion networks (Cattell, 1963). These elms formally express themselves In 
finding whet we have called ststs (not segregates). Within stets themselves, 

i 
_—__————-  5- 
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however, two distinct sub-concepts are now needed: phenomenal clusters 
(or stats) end nuclear clusters (or stats). A phenomenal cluster (henceforth 
p-cluster for short) coxresponds to what is perhaps the simplest operational 
definition of a hooostat as a homogeneous set of ids. It is defined as a set 
Of ids each of which is linked to every other (and which does not exclude any 
other id similarly linked to the set). Spatially this means that all fall 
within a hypersphere of diameter fixed by the similarity coefficient level 
accepted as a link. The word "phenomenal" is used because such a cluster is 
directly obvious and given in the data relations, whereas a nuclear cluster 
(henceforth n-oluster) as we shall see in a moment, has a less direct defini* 
tion, because it requires an extra operation of abstraction. 

Obviously the number and the nature of the p-clusters found in given 
data will alter with the id from which search is started and with the cutting 
pBlnt on rp which Is used as a similarity limit, i.e., translates as a link 
in the incidence matrix. Different groupings will appear as the limit is 
dropped, just as the sand bars in an estuary change shape with the tide. 
lOBe typologists both in psychology and Mology, have been frankly arbitrary, 
setting some value xYom +0.5 to +0.8 as a iimit according to "judgement". 
Since arbitrariness of this degree is unsatisfactory, two possibilities of 
objectivity nerd to be considered. First, one may shift the decision to a 
decision on the number of types one expects to find, which is the inverse 
of the average size of a type, in terms of percentage of the total population 
included, (if cne visualises a two-space filled with adjoining circles, now 
large, now smallt he will see what the alternatives mean.)  This remains on 
a completely arbitrary basis, but it is one which can be referred more directly 
to the goals of systematics in the given field than can the r« value per se. 
Secondly, one can take a cutting point dictated by the distribution of the 
distances in the ids themselves in the sample. For example, in a sample of 
100 a critical distance might be chosen such that most ids will stand as 
isolates. (Or, in general, most clusters will contain only 1 per cent of 
the population.) This recognizes the relativity of types, e.g., that a 
hundred people shoulder to shoulder counts as a crowd in TWe Square or 
Picadilly, but six people within sight of one another indicates a group if 
found in the Sa.iara. In the last resort this encounters the same arbitrary 
decision as the first method: "What fraction of your population do you want 
to include in types?" However, it does suggest an initial objective operation, 
namely, to take as the cut off point the mean of the positive r-'s in the 
matrix, or to take the mean of the rp's from random normal deviates for k 
profile elements. This latter, incidentally, will not be exactly zero, but 
it will make roughly half the links significant. Table 1 shows values thus 
generated, to illustrate their dependence on the number of elements. 

(Insert Table 1 here) 

Table 1 answers the question sometimes raisedt "If we take n times as 
■fey psople randomly distributed in the same space will not the average 
distance of each person from every other be correspondingly reduced?" 
Here Mahalancbis' D will be more susceptible to sampling, but rp scarcely at 
all, as Table 1 shows, for although there will be an increase in the total 
number of similar people there will be a corresponding increase of those who 
are dissimilar, i.e., mutually correlating 0 to -1.0. However, for a given 
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Halt of admitsion by rs Co a hoooatat more people «111, of courac, bt includad 
in abaolute teraa, if td« population atructure rtaaina the aane, with a larta 
than a amall aaoplt. Sanpllng lava for atata and aita raoain to be vorkad 
out, but to a cloaa approximation oultiplying the sample alte by n «ill 
multiply the number in any given diameter of «tat by n. Conae^uently all 
type atructure statements should at some stage be converted to percentagea 
and further analysis pursued on that baaia. 

Granted an agreed criticel cutting point on r«, leading to a linkage 
Q-matrlx, by «hat systematic operations can one derive the p-cluaters? 
A Boolean algorithm for this purpose «ill be deacribed in the next section, 
but here «e have still to complete the conceptual distinction of phenomenal 
and nuclear cluatera and ao for the moment tie ahall take a amall example in 
Figure 3 in which the phenomenal cluster ia obvious from Table 2. In fact 
three instances of p-cluatera are illustrated topologically in Figure 3, 
namely, abefg; abed h; abode i. 

(Inaert Figure 3 here) 

It «ill be noticed, however, that the first two p-cluaters overlap «1th 
reapect to Ida a and b. That ia to say, a and b are linked in all neceaaary 
«aye for a p-cluater «ith e, f and g on the one hand and c, d and h on the 
other; but c, d and h are not linked «ith f, g and a. the term nuclear 
cluatera, or n-cluater ia therefore given to a, b. If one no« conaiders the 
third p-cluater (No. 2) in Figure 3(1), he «ill note that the nuclear cluater 
concept cen get complicated, to the extent that "ordere" of nuclear cluatera 
must be introduced, according to the number of p-cluater overlapa Involved. 
Thus c and d are in a two p-cluater n-cluater, but a and b are auatained by 
a three p-cluater overlap. An n-cluater finishes by being more than the 
definition of a aimple atat: it la a atat «1th additional "atructural" 
propertiea. 

(Inaert Table 2 here) 

As inatencea (i) and (11) in Figure 3 suggest, the atructural varietlea 
of n-cluatera according to the associated form of relation of p-cluaters can 
be very diverae. And aince the deacrlption of a population aample in terms 
of p-cluatera alone may vary (as pointed out, by our tides and sandbanka 
analogy, showing groupings to alter according to the cut off level on r»), 
the n-cluater deacrlption «ill also change «ith the critical cut-off value. 
Consequently, to approach an adequate deacrlption of a domain it la desirable 
to preaent groupings at each of several, aay, three standard levele (for 
«hich experience suggests rp ■ 0.2, 0.5 and 0.8), «a a cartographer presents 
contour liaea only at standard levels. For convenience these levels may need 
adjuating to the parametric properties of the given data aa in our analogy 
of the Sahara and Times Square. On the othet hand. If certain standard rp 
levela could be agreed upon in type research generally, it would advan- 
tageoualy permit comparisons of various domains for «hat in our introduction 
«e briefly celled texture. Texture cen no« be given more apecifically the 
meaning of the number of p-cluaters, of various percentage sizes, at various 
cutting levels, plus the n-cluater sices at various numbers of p-cluster 
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overlaps, etc. With tnls r lanco at the number of sunr.irizing statements 
required, ccr introductory Dteteae^t cbor.t the InapproptiGtencs? of hoping 
for a sirplc, single, bollcü-dcvn csthematical statement uhen mapping clouds 
in k-dimenoionn will be nore self evident: we are dealing with topography. 

7. THE B00L2AK C/JGTL . SE-'.^CH ALGORITHM FOR FÜIDING STATS 

Let us now consider the logical end computational requirements in 
proeeedirg fron a  given incidence rotvix, ns in Tablo 2, to a statement 
about stats (as n- and T- clusters) t'ich as  is suncarized visually in 
Figure 2. It is tH? c-rp which will provide the basis of the Taxonone 
computer program, '.•or finding clust^ra In correlation icatrices, Cattell 
(1952; originally prop^jc.' the vonifyi-..» llnhfige method algorithm, but 
subsequent use showed the need for rn .iddltional step, and we now cell the 
revised method tV Bioloar r/.vs-cx anarch  method. 

It still bctns vith the raj-lfyln* lir^age moth.! '':ich proceeds from 
the origit.cl Q mt.i:: (hiLceiorih Qo "o.* the basic iwtr.'.x, to distinguish 
it frou subsequent ds^i-^tivet, onälogccaly to V;, Vj, Vn» e-c., in factor 
analysis). Herein c-o w-rks sequentially through the given links for one 
person after Pncihar, i.e., cniunn b*- colii;.-n or row by row in Table 2, at 
each step deleting any ids net directly linked to those found In the earlier 
columns. It will be found thai in this coirparatlvely simple example the 
ramifying llnka^: raethod aTcr>= leads reliably to tho clurcers ahown in 
Figure 2. However, for the sake of illustrating certain higher derivativen 
we shall tvrn to a new but still jmall example presented by Table 3, to 
Illustrate the need for the full Poolean procecs. Beginning with the inci- 
dence matrix cmong ten ids in 00, the process (and the subsequent computer 
program first scars colu.-.n 1 crd thus notes the set of persons related to 
person 1, namely, perscus 5 and 7. It proceeds next to column 5 and notes 
that person 5 is related to person 7; so 1, 5 and 7 form a cluster. 

(Insert Table 3 here) 

Incidentally, in setting up the Qo matrix a triangular form is 
sufficient, for if ids 1 and J are related, then the (1,J) and the (J,i) 
elements of Q0 are 1, but computationally it is more convenient to use the 
«hole matrix, recognizing, however, that this may result in our finding the 
same cluster twice. 

From Q0 our aim is to produce a matrix G} (for "grouping matrix") 
giving an initial statement of existing clusters according to the ramifying 
linkage method. As we encounter each link in column 1 we must decide if the 
id (person) concerned is also linked directly with other persons having 
links in that colu.nn. To decide this we must see If for every entry of 
unity above hi",  there exists a corresponding entry of unity in hia row 
(or equlvalently, column) of Q0.  (The method as originally described by 
Cattell required comparison with all unit entries below the one being 
considered, a logically equivalent procedure though "lightly less efficient 
for computing.) So, in Q0 of Table 3, we see that 5 is linked to 1, then 
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going down the colon to eh« ntxt unit entry «• find that 7 alto balongt to 
tha group sinca «ban we look along the 7 roo there ia one unity in coluan 5, 
i.e., a link of the two paraona already included in tha group. Coluan I, 
for a contingent group, ia therefore atartad in vatrix Cj. 

coluan 
anJ II 

Going next to coluan 2 of Q0 ve find paraona 2 and 6 for* a group, froai 
3 that 3 and 7 form a group, and thaaa are entered in Cj aa eoluana IZ 

III. Coluan 4 containa a a ingle unity and need not be eonaidarad. Work- 
ing down colunn 5 we include 1 end 5, but on exaaining paraon 6 we find a 
aato in the firat coluan of row 6, ao 6 doaa not belong in tha group and tha 
unity corraaponding to paraon 6 in Gi ia changed to aero. 7 ia related to 1 
and 5, and ao ia included.' However, the group now found ia identical to 
group 1 and ao we do not include it in Gi. Similarly, we work through colunna 
6 to 10, finding in all the five diatinct groUpa liatad in Table 3 ea tha 
eoluana of Gj.6 

6. Two pointa auat be noted about the ramifying linkage method. Flratly, 
aona of the cluatera initially found may be aubaata Of ether cluitera. Thia 
praaanta no problem. Secondly, due to the aequentlal nature of the procedure, 
not all cluatera aay initially be found, at leaat where certain unuaual con- 
figuratio—5 exiat. (Thia ia the reaaon for the next atep from the Cj matrix.) 
Xtma in Table 3(a) the group conaiating of paraona 5, 6 and 7 ia not found. 
We do not include phenomenal cluatera of only one paraon, which correapond 
to a coluan with only a diagonal eleaent that ia non-aero, e.g., eoluana 4 
and 8 of Table 3, Qo. 

Actually, the ramifying linkage method ia beat regarded aa a firat 
atep, in the way that taking out a firat factor caaa to be regarded ea only 
the firat atep in a multiple fector enalyaia. Indeed, the formal alailarity 
to factor analytic atepa ia apprecieble, for our procedure ia to aet down e 
firat phenomenal cluater matrix, Gx, froa the ramifying linkage "extraction" 
proceaa, and make therefrom e product matrix, Qj, which, aubtracted froa Q0, 
leavea a firat reaidual, (fe. Thua, atep 2 in Table 3 iat 

Ql = Cx . G'x , (10) 

where the prime denotea a tranapoae and the period denotea Boolean matrix 
multiplication, i.e., a matrix multiplication with arithaatic addition and 
multiplication replaced by logical addition ('or') and multiplication ('and*). 

If Gx ahould contain all p-cluatera, then we auat have 

Qo   s   Qx 

aince a link (other than a diagonal one) in Qo indicatea that two paraona 
are releted, end ao they auat appear together in at leaat one phenomenal 

▼ 
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cluster. UM optration Cj • G'^ simply dtttrmlnca vhich persona appaar 
tofathar in phanonanal cluatara. Tabla 3(2) givaa Q| for the axaapla. 
Zaro'a in ?.l corraapondlng Co unitlaa In Q0 hava baan danotad by x'af 
Indicating that in this caaa not all phanoaanal cluatara hava baan found. 
Ho« tha na« "raaidual" incidence matrix, Q2, la foraad fron the x'a of Qx, 
plus any aleaant in their colusna (a) that waa unity in Q0, and (b) for 
which there ia alao an x in ita row of Qi« Such an aleaant night fora a 
phanoaanal cluatar with the x'a and ao needs to be Included. Table 3(3) 
givaa tha ^2 for the example. Uaing the ramifying linkage method we now 
find additional phanoaanal cluatara — in this caaa one. No. VI — which 
«a include with thoae already found to form Gj* 

Than, 

and 

Q2 : Gj * G'2 (11) 

Q2 

if all phanoaanal cluatara have been found. We proceed in thia way until 
we find a Gn auch that Qn = Qn-1, except possibly for some diagonal 
eleaanta. In the example, Table 3, Q3 - Q2 except for the (4,4) and (8,8) 
elements, ao Gj containa all the phenomenal cluatara in Q0. 

8. PROCEEDING FROM STATS TO AITS, 

TO DENDROGKAMS AND TO TEXTURES 

By adding a simple search and counting procedure which will liat the 
overlapa aaong the p-clustera for the algorithm Just described, the find- 
ings up to thia atage can be systematically recorded, ea briefly indicated 
above. They will finally appear aa a print-out of (a) p-cluatera and 
(b) n-clustara. To be coa^rehenaive of possibly needed information these 
lists will in detail comprise: 

(1) For p-clusterax (1) a liatinc of actual id maobers, (ii) arranged 
in order of aise from 2 membership upward, (iii) attachment of identifying 
nuabera to cluatara, and (iv) expreaaion of aise in percentagea of aaaa and 
calculation of the distribution by cluater frequency, aa shown in Tsble 4. 

(Insert Table / here) 

(2) For n-cluatera: (1) a liating of actual id aedbera, (ii) attach- 
aant of identifying nuobers to cluatar, (iii) arrangement in thia caaa in a 
two-wry table, by size (expressed as percentage) and by number of p-clostera 
involved in the overlap, (iv) a diatribution analysis on both of these. For 
the data of Table 2 thia ia shown in Table 5. 

(Inaert Table 5 here) 
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To conplste the general »tatement at the stet level, these two tablet 
t be repeated for whatever number of cutting levels on r. one feel« to be 

necessary, probably three as indicated above. 

The investigator «ill «ant to know how far he cen make inferences froa 
this sample result (our present taxonome program handles 140 caaes) to the 
population. It should be noted that stats are subject to the particularity 
of the sacple in two senses, first the ordinary sampling sense end secondly 
by the dependence of the center and boundaries of the state upon the id with 
which one begins. As to the former, since no theoretical mathematical 
atatistical treatment is yet available investigators had best develop esti- 
mates of standard errou for sf^Mrr, hy Mc-..:c Cirlo methods. As to the 
latter, which will become clearer as we discuss aits, the problem arises 
from the fact that the center and boundary of a stat depends upon the id 
with which we happen to start the process. 

The final list of stats will escape any bias from this source on the 
alternative "cartet" procedure, and it will do so in the id-similarity 
procedure here too, because all possible commencement points have been 
included. But it does so at the cost of generating e possibly bewildering 
number of overlapping stats in the p-cluster list above. For the number of 
p-clusters, namely ( g ) where x is the number encircled at the given dis- 
tance diameter, could decidedly exceed the original number of ids' Tables 4 
and 5 are for a small example: with one of moderate sice the investigator 
may well esk whether the procedure «es intended to produce deta reduction' 

To use the stat lists the investigator will need to look at the 
distribution and ask whet fraction of the population he wants in types. Be 
must also remember that a large cluster really msans a dense cluster, since 
ell p-cluster diameters are the seme. Possibly he will went to use the 
non-overlapping highest density clusters which cover at leest 60 per cent 
of the populetion. Or again he may «ant n-clusters simultaneously ebove a 
certain density (size) and a certein p-cluster overlap frequency. For 
example, by rejecting from List 1 (Tsble 4) ell p-clusters «ith fewer Ids 
then ere ahown by the two or three largest orders, one would get Just two 
types (dotted circles) in A, Figure 4, end two or three at the heart of B. 
The decision must depend upon texture, end here texture begins to assume a 
definable meaning. It resides in the evidence of the p- and n-clusters In 
the stet list (Tebles 4 and 5) as to how people ere distributed between 
small snd large clusters, how much overlap occurs respectively with small 
and large, snd whether any hierarchical, dendritic structure is epparent. 

Let us now turn to loceting aits (segregates). We ere bound to 
begin with stats, yet utilizing this information Is like seeking to locate 
the objects in a large picture in a darkened room with a flashlight throw- 
ing only a small circle of light. The circles — the p-cluster stats — 
will pick up the object only piecemeal and a method will be necessary to 
put the pieces together. 

Consider a simplified case as in Figure 4, with people spaced es 
shown, yielding two dense segregates A and B on an otherwise "dilute" field. 

 r 
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l«t ut atsuoK Murch is made wich three levels of r cut off, namely, 40.8, 
40.5 end 40.3 corresponding, in tuo-dimenslcnal space, approximately to 
circles of the sixes shown. The first will give practically no p-clusters 
In the field, since only in the A end B clumps will it span two cases. The 
lowest cutting point (+0.3), on the other hand will bring every one of the 
ids into one cluster or another, as illustrated by the span of its circle at 
the top left. If we followed through with this, as we have with the middle 
value circles (0.5), the whole space would be covered with circles repre- 
senting p-clusters, though the n-clusters would only appear where the A and 
B segretates stand. 

(Insert Figvre A here) 

At this point the question mi^ht be raised whether an n-cluster is 
not conceptually equivalent to an ait,  but the answer must be no. For If 
an n-cluster is confined to what is common to p-clusters of a certain sice 
it cannot itself exceed that size — and en extended alt will comnonly 
need to do so. Nevertheless, and incidentally, one sees many instances in 
the literature where investigators have adopted stat search procedures 
despite their conceptualization of their problem clearly indicating that 
they are looking for aits. It will help to clarify this point to observe 
that In Figure 4 the alts are the masses A and B. In this case it happens 
that by confining oneself to the larger state, i.e., those at the ton of 
Tables 4 end 5, one finds in this case the heart of these two segregated 
masses. But it will not always be so, as a glance at a chain, as in 
Figure 3(11) will remind us. There the nuclear clusters are not central. 
It must also be remembered that a larger number of people collected In a 
stat by the above operations Is not an indication that it is large (in the 
sense of covering lerge areas of behavior) but only that people are very 
dense in the given region -- which is possibly quite small. Always it 
must be borne in mind that in a very extended alt the last members may have 
negligible, sero or even negative resemblance to the first. For example, 
it might be said of a certain religious group X that it has a tremendous 
range of values and practices, so that despite continuity and coherence in 
the ehe in of resemblance of members an extreme X may be more like a member 
of another religion, Y, than like members at the other wing of his own 
religion. This statement is Illustrated by B3 and Cj members being, in 
Figure 1, in the same stat. No. 2, but in different alts. Despite this 
lack of homogeneity present in the stat the recognition of alts is Important 
In many aspects of social, educational and clinical psychology. 

The operstion we have devised for objectively locating segregates 
consists of first finding stats and then setting up a stat contiguity matrix, 
vary similar to the Q matrix of linkage among ids, except that it now 
represents linkage (interpreted as a sufficient degree of overlap) among 
p-cluaters. Before this Qc (relations among clusters) matrix can be set 
up, one must settle, from the evidence on the general texture of the 
domain given by the equivelents of Tables 4 and 5 above, on: (1) the 
cutting limit of rp; (2) the densities (numbers of ids in a stat) to be 
accepted (clusters of only 2 and 3 persons would normally be rejected as 
too unstable); and (3) the amount of overlap to be accepted as evidence 
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of linkage (on« id might be too subject to sampling variation; an overlap of 
2, 3 or more seems more appropriate). 

The taxonome program as now set up accepts its instructions on these 
limits from values inserted for the particular problem by the experimenter 
and then presents a Qc incidence matrix among p-clusters. But from that 
point on, the search made in Qc is quite different from the Boolean Cluater 
Search Algorithm used in Q0 for finding stats. No« we are no longer interested 
in mslntaining the condition that every member (a member now being itself a 
cluster) shall be linked with every other. Instead we are interested in 
segregating all the Ids (clusters) which are continuously connected with one 
another through any intermediate ids maintaining the stipulated degree of 
resenblance. The procedure now requires that we go down a column of Q-, find 
the other ids (in this case clusters) linked to it, and then pursue ell its 
connections, and so on for further additions to the family. Thus even the 
shape of an octopus would be recognized by this procedure, provided the 
tentecles at no point get ao thin as to preclude visible overlap — by the 
stat size which means "visibility". This we nay  call continuous connectedness 
analysis. The further issues of texture tactics and boundaries presented by 
such problems as this last will be discussed in a moment, but first the main 
"Segregate Search" procedure will be described. 

(Insert Table 6 here) 

Again the program employs Boolean algebra concepts. The investigator 
(or, in our program, the computer) proceeds systematically from column 1 down 
the other columns of an incidence matrix, Qc. This is derived from the data 
of the earlier (individual person) example, summarized in Tables 4 snd 5, vis 
s pre-incidence matrix, (a), in Table 6, which gives the numbers Involved In 
the cluster overlaps. Proceeding down the first column of the Qc matrix one 
accrues the Ida in the rows corresponding to the incidence signs. At each 
such id one runs across the row and accumulates new colums where incidence 
signs occur, following these likewise across rows which are not null. Thus 
in Table 6(b), columns 1, 2 and 3 begin to form a segregate but the inter- 
section of this with 4, 5 and 6 is null. Starting again with 4 one finishes 
with 4, 5 and 6. Illustrated in Boolean terms, if the columns were ss In 
(s) the Boolean product would be zero, and we should proceed no further. 
In (b) on the other hand, it is not null, so we proceed to Boolean addition 
to form the new segregate, shown in the last column of Table 7. 

(Insert Table 7 here) 

Obviously, the detail in the picture of segregates will, as in a photo- 
graph depend on the size of the grain. A glance at Figure 5 will show nhat 
if the smallest circle (r. • 0.8) were used the isthmus between the two parts 
of the dumbell shaped A segregate would not appear; chough, on the other hand, 
a gain would result from certain fringe persons around A and B being dropped 
who perhaps could be said not really to belong. 

It may be asked why the search for aits is not carried out by applying 
weht we have called the continuous conncetedness analysis (Table 7) directly 

IPW 
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to restabUncet of Indlviduala In the manner Chat the Boolean Cluster Search 
haa been used for natrix Qo (Table 3), or Table 2. Our answer la that a 
•ingle individual la altogether too elender a datum, in view of sanpling error, 
upon which to rest connectedness. Thus, at the cluster search atage the 
eliaination of aaaller, e.g., two-man, clusters fron List 1 (Table 4) ia 
likely to take care of sampling error "artefacts" in the original data, 
whereas it would be difficult to eliminate one man threada in the continuous 
connectedneaa analysis. Accordingly it haa seemed better to locate atata and 
then uae theae aa units in recognising the continuous connectedneaa sought 
in aits. However, more could be said, and certainly more needa to be done in 
the «ay of experiment upon the effects of adjuating the slate of atat diameter 
to the texture of the domain, when aeeking aita. 

9. TRIAL OF TAXONOME ON REAL DATA AND ?lkSV.TZS 

A description of the technical flow chart of the computer program built 
by ua on the above principles ia set out elaewhere (Cattail and Coulter. 
This journal, p.   ). It ia to be hoped that others, in experimenting with 
ita use, will develop waya of finding the beat parameters in the program 
suitable for varioua tcxturea and kinds of data. Here we report only on two 
•ufficiently diverae practical examples to ahow that Taxonoma vor^a to a 
reaaonable degree. A trial of the algorithm, but by deak computer, waa made 
by Cattell (1930) soon after deviaing rp, on an example of general intereat, 
namely, the claaaifying of national culture patterns into types of "civili- 
cationa," to check on Toynbee's speculations. Using a twelve factor profile 
for each of 69 countriea Cattell obtained some ten phenomenal cluatera 
centering on two nuclear cluatera. Pour of the former ere set out in Table 8 
for illustration. 

(Inaert Table 8 here) 

It will be aeen that theae blindly statistically obtained atats make 
•enae in terma of the uaual aocio-hiatorico-anthropological evaluations. 
Thus encouraged, we proceeded (albeit with too many interruptiona) to the 
present taxonome, which ia now being tried by ua on a number of plaamodea. 
(Plaamodes hrve been defined (Cattell, 1966) aa arrangements of specific 
numerical values to fit a mathematico-theoretical model. They are uaeful 
for gaining new insights into the working of a model and for trying out 
computer programs intended to analyse data according to auch a model.) 

While waiting to complete atudies on strategically choaen plaamodea we 
decided to try a nuraery model, uaing aa data 29 veaaela from "Jane*a 
Fighting Ships" (1964-65) representing four diatinct types of craft — 
aircraft carriera (5), destroyers (4), submarines (10) and frigatea (10). 
Twelve measures were uaed in the profile of each, for the r_ calculations: 
(1) displacement; (2) length; (3) beam; armament in number of, (4) light, 
(3) medium, (6) heavy and (7) very heavy guns, (8) the complement, 
(9) maximum speed, (10) submersiblllry, (11) continuity of deck construction, 
and (12) whether no, some or many al-craft were carried. 

(Inaert Table 9 here) 
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The Incidence matrix (Table 9(a)) iuggcata to the ay« that the break- 
down into four claaaea «ill be reasonably good, but the actual p-cluater 
output (Table 9(b)) indicates 9 cluatera. Three of these are clearly the 
destroyers, aubnarines and frigates, but the aircraft carrlera have broken 
into 3 p-cluaters which, later, however, yield a single cuelear cluster. 

Further, more conplete applications, which cannot be described in this 
introductory paper, are being reported elsewhere. 
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10.  SIM1ARY 

(1) The most useful general concept of a type requires that It be 
defined aa the central profile In a hlghj "nodal" frequency (unusually high 
density) of individuals in a multi-dimensional distribution. 

(2) Two sub-concepts can be operationally distinguished within the 
notion of type so defined: (a) the atat (for honostat) — a homogeneous 
group in which each meober stsnds at less than a given distance (the same 
for all) from all other menbers, and (b) the ait i'.cr  segregate) — a 
continuous but not homogeneous group in which each IMT.1

 ^r is nearer to at 
least one other member than he la to Ida outaide the group. 

(3) State (homostats) and aita (segregates) can be found by either 
"inter-id relation" or "density in space" (cartet count) methods, the former 
being pursued here. This requires s measure of similarity (the opposite of 
diatance apart in the given space) for every pair of ids (i.e., persons, 
groups, processes, etc.). Ressons are given for preferring as a aimilarlty 
index the family of profile similarity coefficients (r., rn, r8, etc.) to the 
correlation coefficient, Mahalanobis' D, or other coefficients sometimes 
proposed for this purpose. 

(4) Similarity can be considered either in regard to (a) some specific 
criterion performance or averaged group of performances. This leads to 
classification of ids by their effects or works, or to (b) general purpose 
dimensions, resting on the concept of sampling a personality sphere or a 
population of variables. This implies claaaification according to the 
"thing in Itself". 

(5) In the last resort these need the same mathematical treatment, since 
oven the "thing in itself" concept implies some weighting in the personality 
sphere. Formulae are presented for inter-id similarity indices based on the 
principal useful alternative assumptions, e.g., regarding linear and parabolic 
relations to criteria, and generalizing the original profile similarity 
coefficient r to any correlations among profile elements and any weights. 

(6) The discovery of stats begins with a Q-matrix of rp's among Ida. 
At each of two or three cutting points for rp this is converted to an 
incidence matrix. A Boolean algorithm, based or. what was called the 
"ramifying linkage method", objectively sorts the data into phenomenal 
clusters. An operational distinction has to be made between phenomenal (p-) 
clusters and nuclear (n-) clusters which have quite different properties. 
The conclusion of the search for stats consists of one list:  of phenomenal 
clusters, by size and apecific members, and one list of nuclear clusters, 
by size, number of overlapping clusters involved, and specific members. 
These lists, which give the "texture" of the domain, can be voluminous and 
require that the investigator select an Importance level to reduce the 
number of concepts to be handled. 

(7) The discovery of aits (segregates) begins with a Qc matrix of over- 
lap among phenomenal clustera which la converted to an icidence "contiguity" 
matrix and operated upon by a Boolean analysis for continuous connections. 
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Experiment it needed to find the best rules for sice of stets to be used 
in seeking sits. 

(8) The concepts end principles of analysis hsve been incorporated 
in a computer program (for the IBM 7094 initially) which hes been shewn to 
work on two concrete examples, though experiment on others, edjusting the 
parameters optimally, .»specially to minimize sampling effects, reoMins to 
be done. Unless a theoretical mathematical-statistical solution Is soon 
found, Monte Carlo methods should be employed to establish «ample inference 
limits in this field. 

(9) Over and above the finding oi particular stats and alts a seerch 
for types the taxonome method aims to describe the texture of a domain. We 
have referred to texture by the analogy of the meteorologist's use of cumulus, 
alto-stratus, etc., to describe cloud formations. Segregetes cen appeer as 
small or large, even or unevenly spaced, massed or in chains, etc. Opera- 
tionally, texture will broadly be defined by comparisons of structure at 
different cutting levels, by the ratio of nuclear to phenomenal clusters, by 
the degree of compactness' of alts, snd by the amount of hierarchical structure 

An index of compactness cen be obtained by dividing the totel number of ties 
(incidence matrix) involved in a segregate by the totel number possible •• 
nC2 where n is the number of ids Involved in the segregate. 

discernible among them, as in the biologists' dendrograms. The ascertaining 
of the last has not been described in detail, but clearly Involves s "second- 
stratum" repetition of the type search carried out upon the patterns repre- 
senting the central tendencies in the type groupings first found. 

(10) The empirical search for types will naturally need to proceed 
hand in hand with inductive and deductive theory development on the origins, 
interections and natural history of types. A theory of three sources of 
type structures is stated and one of them suggests that the use of type 
concepts in psychology is likely to become tied to the development of non- 
linear specification equations. 

The writers gratefully acknowledge that this investigation wes supported 
in pert by Public Health Service Research Grant No. MR 1733-09. They ere 
indebted elso to Professor Peter Schoenemsnn for help end advice on the early 
stages of the program. 
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Tabl« 1. Valuta from Dlttribution of Random r.'i Obtained by 
Monte Carlo Htthods 

(Using normal distribution on each element of proflit.) 

Algebraic Mean 

M/k 10 

25 .188 .135 .052 
50 .174 .047 .011 
75 .114 .046 .017 

100 .100 .031 .011 

Mean of Positive Valuta Only 

N/k      2      6      10 

25 .501 .307 .223 
50 .479 .263 .197 
75 .450 .263 .202 

100 .449 .257 .199 

n 
o 

bit 2.    Incidence Matrix for 15 People 

bcdtfghljklmno 

1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 
1 1 1 1 

1 1 1 
1 1 1 
1 1 1 

1 1 1 
1 1 1 1 

1   1 
1  1 

1 

1   1 
1 
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Table 3.    Process Sequences in the Boolean Algoritha for 
Phenomenal Cluster Search 

123456789    10 

(1) 

1 0 0 0 1    0 1 0 0 0 
0 1 0 0 0    1 0 0 0 0 
0 0 1 0 0   0 1 0 0 0 
0 0 0 1 0    0 0 0 0 0 
I 0 0 0 1   1 1 0 0 0 
0 1 0 0 1   1 1 0 0 0 
1 0 1 0 1  1 1 0 1 0 
0 0 0 0 0    0 0 1 0 0 
0 0 0 0 0   0 1 0 1 1 

10 0 0 0 0 0   0 0 0 1 1 

I II III IV V 123456789    10 123456789 10 

1 
2 
3 

5 
6 
7 
8 
9 

10 

I 
0 
0 
0 
1 
0 
1 
0 
0 
0 

0 
1 
0 
0 
0 
1 
0 
0 
0 
0 

0 
0 
1 
0 
0 
0 
1 
0 
0 
0 

0 
0 
0 
0 
0 
0 
1 
0 
1 
0 

0 
0 
0 
0 
0 
0 
0 
0 
1 
1 

I 
II 

III 
IV 

I 
0 
0 
0 

0 
1 
0 
0 

0 
0 
1 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
1 
0 
0 

1 
0 
1 
1 

0 
0 
0 
0 

0 
0 
0 
1 

0 
0 
0 
0 

V0000000011 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

C'l 

(b) 
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123456789    10 

(3) 

0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 1 1 0 0 0 
0 0 0 0 1 1 1 0 0 0 
0 0 0 0 1 1 1 0 0 0 

8 0 0 0 0 0 0 0 1 0 0 
9 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 

(c) 

I IX III IV V VI 123456789    10 

1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 0 0 0 

(4) 5 1 0 0 0 0 1 
0 1 0 0 0 1 
1 0 1 1 0 1 
0 0 0 0 0 0 
0 0 0 1 1 0 

10 0 0 0 0 1 0 

1 0 0 0 1 0 1 0 0 0 
0 1 0 0 0 1 0 0 0 0 
0 0 1 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 
1 0 0 0 1 1 1 0 0 0 
0 1 0 0 1 1 1 0 0 0 
1 0 1 0 1 1 1 0 1 0 
0 0 0 0 0 0 0 X 0 0 
0 0 0 0 0 0 1 0 1 1 

10 0 0 0 0 0 0 0 0 1 1 

(d) 
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TabU 4.    FhanotaBBal Cluatara Dltcovarad 
3.32 

Raw     Idantlfylng 
81z« Nunbar 

(2) 

(1) 

(4) 

(5) 

Mona 

Inatancaa 

a   b   c   d   o   1 

abcfg(3)abcdh 

k   1   a   o 

J    k   n (6)    1   m   o 

Sit«, at 
Fareantat« 
of Saapla 

Prc^uancy 
Olatrlbtttlott 

60 16 2/3 

50 S3 1/3 

40 16 2/3 

30 33 1/3 

20 0 

* 

Slsa 

4 

3 

2 

1 

Tabl« 5.    Account of Nuclear Cluatara 

Fhanoaanal Cluatara Involvad 
2 3 4 

a b c d 

a a b 

c d; k n; ot ab 

a 

Site, aa 
Parcantaga 
.of Saapla 

2         3 

Praquancy 
Diatribution 

2               3 

40 16 2/3 

30 16 2/3 

20        20 50             100 

10 16 2/3 
i 



s 

I 

5.33 

T»bl« 6.    Finding Segregate! by the Contlnuoui Conncctednets Algorithm 

(a) PhenooKMl Clutter Contiguity Matrix, Q 

Phenomena 1 
Cluster 
Identifying 1 2 3 A 5 6 
Nunbera (6) (5) (5) (4) (3) (3) 

1 (6) G 3 4 0 0 0 
2 (5) 3 5 3 0 0 0 
3 (5) 4 3 5 0 0 0 
k  (4) 0 0 0 4 2 2 
5 (3) 0 0 0 2 3 0 
6 (3) 0 0 0 2 0 3 

Entries state the count of overlap of persons. 

(b) Incidence Matrix among Phenomenal Clusters 

Phenomenal 
Cluster PQ 
Idnetifying 
Nunbera 1 2 3 4 5 6 

1 1 I 1 0 0 0 
2 1 1 1 0 0 0 
3 1 1 1 0 0 0 
4 0 0 0 1 1 1 
5 0 0 0 1 1 0 
6 0 0 0 1 0 1 

Converted to Incidence Matrix for 2 overlap and above. 

(c) Segregates Discovered by Segregate Search Algorithm Applied to (b), 

Sl    S2 

1 1     0 
2 10 
3 10 Sx-ebcdefghi 
4 0     1 
5 01 S.    sjklmno 
6 0     1 
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Table 7.    Boolean Algorithm for Continuous Connacttdneat Search 

(■) (b) (c) 

0 1 0 0 0 0 0 0 0 
1 0 0 1 1 1 1 1 1 
1 . 0 « 0 1 • 0 z  0 1 + 0 ■ 1 
0 1 0 0 1 0 0 I 1 
0 1 0 0 1 0 0 1 1 

Table 8.    Nuclear Types Found Among Nations by Culture Pattern 

t    Evaluations 
P 

Eastern European 

Czechoslovakia 
Estonia 
Lithuania 
Austria 

Mohaonedan 

Afghanistan 
Iraq 
Turkey 
Arabia 
Egypt 

Scandinavian 

Denmark 
Sweden 
Norway 
Svitcerlend 

Conmonwealth Oriental 

New Zealand Indie 
Australia China 
Netherlands Tibet 
Belgium 
Canada 

! 
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1 
2 
3 
4 
5 

6 
7 
8 
9 

Table 9. p-ClufCtr Starch Stag« of Taxonoat Illuatrated on Jane'a Fighting Shlpa 

* 2 3 4 5 • 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

Carriers Destroy, Submarlnet Frigates 

10 111 
0 1110 
11110 
11111 
10 0 11 

1111 
1111 
1111 
1111 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
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p-Cluttert after One Cycle 

123456789 

I 0 0 0 0 0 1 1 0 0 
2 0 0 0 0 0 0 0 1 0 
3 0 0 0 0 0 1 0 1 0 
4 0 0 0 0 0 1 1 1 0 
5 0 0 0 0 1 0 1 0 0 
6 0 0 0 1 0 0 0 0 0 
7 0 0 0 1 1 0 0 0 0 
8 0 0 0 1 1 0 0 0 0 
9 0 0 0 1 0 0 0 0 0 
10 0 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 1 
13 0 0 0 0 0 0 0 0 
U 0 0 0 0 0 0 0 0 
IS 0 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 0 
17 0 1 0 0 0 0 0 1 
18 0 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 0 
20 0 1 0 0 0 0 0 0 
21 0 0 0 0 0 0 0 0 
22 0 1 0 0 0 0 0 0 
23 0 0 0 0 0 0 0 0 
24 0 0 0 0 0 0 0 0 
25 0 0 0 0 0 0 0 0 
26 0 0 0 0 0 0 0 0 
27 0 1 0 0 0 0 0 0 
28 0 0 0 0 0 0 0 0 
29 0 1 0 0 0 0 0 1 

10   1110   0    0   0 

I 
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THE RCCOCNITION OF TYPES AS MODAL DENSI 

{*)   UUHDIMEWStOWAL 

Y (e) Bi- OK MULTI-OINCNSIONAL 

DISTRIBUTION ON X 

-. 
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DlAMAM  2 

RccnoüPiic AND REDUCTION or MODAL 

TYPCS WNCN Steine Bf.ftcr (CKITCRION) FUNCTION! 

ANC utco 

PCNtONALITV 
FACTOR A 

CNITCNION 
FUNCTION 2 

;. Tm4 

/»«*!*,!»  FACTOR B 

;'.%'•• 

Y HISTOONAM DRAWN or CRITCRION FUNCTION I tNOwt TWO MOOIO (TYRCS) 

RCRLACIN« THE rIVf MOOIt (TYRCS) ON TNC RROriLC ILIHCNTt TNCMtfLVft. 

TNC RROJCCTIONN ON CRITERIOM FUNCTION 2 ARC TOO OONRCCX TO NI RCADICY DRAWN. I 
I  
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Cowparaclve Cluat.«r Analysis of Variables and Individuals: 
Holringex* AbHltles and tbs

Robert C., Tryon
Onlverslty of California, Berkeley

The first objective In comparative cluster analysis Is to 

describe the slmSlarity of the dimensions dlnrov^red In different 

groups This problem le known a» the comparative dlnenstonal 
aailyjtid of variablae . or "factor-matehlnc"• Ih domain of 
the Intellectual abilities, for nxsofile, one may discover' In a 

middle-''lass suburban r^'JP of children that the 2k Hoi?.Inj^er 

tesT.d of dlver.-e epeciric abilities (Holrincer and Swineford,
1939) oan be aooounted for oy foror "basio" general abilities, or 

fantors. Verbal, Space (Form), Speed, and Memory, symbolised as 

V, S, F and HcAre these dimensions Identical with those found in 

a lower-class school of children of factory workers? Aa HIPI 

exanplex Are the seven general dliaanslons of Introversion, Body. 
Suspicion, Tension, Depression, Resentment and Autism found in a 

group of psyohlatx'le patients the same onss discovered In e 

group cf normals?
TtUs problem has a direct, sliqple solution when ipproacbed 

by the logic and proeeduraa of eluater analysis based upon domain 

s^mpllng prlnelplea and lneon>or Ated proceduz'ally In the BC TRY 

Computer i'>yatem of clucter and factor .'analysis (Tryon and Bailey.
Since dimensional analysi.^ requires as basi.' date the 

1 niercorrelatione between tne variables In the groups, y.u might 

reasonably ask this question: How can one compute the correlations 
between variables of different groups of subjecte? The answer Is
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..iigt  In comparative dltaanelonal analysis all that is needed are 
the factor coefficients of tho dltnenslonn vrtthin each group 
(nheoe boln^j referred to in factor analysis as the "rotated 
oblique factor coefi'lclents").     These factorial findings within 
the difforont groups are directly compared across the groups by 
the runparativt clttiter analysis programs called C0MP1 and C0MP2 
of the  BC THY Uyaterao 

The second general objertive is that of comparing the 
typologies of two or more groups of individuals,    fcfhen,  for 
example» wd score the Factory and the Suburban subjects on the 
^our general abilities,  V, S, P and M, we can objectively sort 
the children in each group Into different types based upon the 
pntterns of their scores  on V, F,  S,  and ML     These person-clusters 
(nr profile types^ in the two groups can differ in two ways.    First, 
even  though the same kinds  of profile types may appear in the two 
groups,   those that occur with high frequency in one group may be 
rare in the other group«    We may refer to this type of typological 
similarity across groups as the sitalLarity of thelr'*fre.iuoacy- 
patterns'Vm a common typology.»    oecond^  the kinds of type«* in the 
two groups may be different;  those that compose one group may not 
natch  the types of the other group.    In the DC TRY System^  the 
programs expressly designed to perform the comparative typology 
of groups are the components OTYPE,  OSTAT and BUCO. 

The plan of this paper is as follows: The comparison of the 
dimensions of different groups (COMP) and of their typologies  (0C0HP) 
will first be made for the case of the Holzinger study of the 
abilities of two groups,  the Factory and the Suburban children. 
Under exactly ehe same format of analysis you will then find the 
COMP and 0C0MP analysis of the Patient and the Normal groups in 
a study of MMPI item-clusters«    Our interest in these two studies 
is as much substentative as proceduralf because they refer to two 
important problems in cognitive and personality psychology 
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The Study of ^bilitiaa: Tlio HolzloQer froblaa

Conparative dlmetiaional analysis ("cmtehlnR factore" or COUP analysis)

The ktj. varlable.Sc — i n the ilolzln^er problem, 301 gra>,e achoo] 

chillrer. w*^re rreri 2Ii eeparato testu of specific Theflo
taa.'^ ire listed in Tablo^l.. whe.-’o you will ooto that they are 

grouped under the five domalnr. of Spatlil, Verbal, Speed, Motaory 
and Mathematical. Most of these testa may be recognized as forms 

timt are Inrludod today in tost batteries of ”Intelligenit!e'', such 

as, for oxatiple the WISC ana WAIS batteries from vhicli the Verbal, 
Verformance and Pull Scale iQo ere detertoined (Anaataai, 1961,
Chapter 12)„

The grotq>a.—The total group of children, here called the 
Inclusive group, were children from two Chicago grade schools.
The authors (Holzlnger and Swineford, 1939, po6) describe them 

as follows; "The children in the Pasteur School came largely from 

the homes of workers in near-by factories< Many of the parents 

were foreign-born,...using their native language at bome....Both 

parents ware \merlcan-born in 29 per cent of the cases, while in 

l|8 per cent, both were foreign-born,” The second school was the 

Orant-Whlte school in the suburb of Forest Park, 111 In this 

group "....both parents were Amerloan-bom in 72 par cent of the 
oases while both were foretgn-bom In only 15 per cent. Almost 

100 per cent of the children ware bom in the suburb in which the 

school waa located."
The Inclusive Croup can therefore be thougot of as being 

eonpoaed of two ecological groups. The 156 from the Pasteur 

School will be here called the Factory Children, the ll;5 fi^ the 

Grant-White School, the Suburban Children. The data frm this 
last Suburban group have been made famous as a basic data-sot In 

factor analysis hlatox^, being known as "The Hoisinger-iorman 
Problora" (Harman, I960). The Inolusive Croup has other aubgmup 

structures, notable nex groups end grade groups. Furthermore, 
the Suburban Children were erganizei into two types of classrooms, 
"homogeneous groups" and random classes.
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Dicrienfllonal aaaiyBis of tha 2lj. variables in the Incluaive 
üroup, --A diract comparison of tie dimensionc  of the 2i± variables 
in the Faotory and üuburban Children and of their separate 
typologl^ai structures can only be made whan the definers of their 
dlneiwions are the saune.    The first objective»  theraforep   la  to 
decide on the number of dimensions on which the subgroup conparisons 
are to be made, and on a common set of definers of each dimension. 
A full-cycle key oluoter analysis of the 21; variables (Tryon & 
Bailey,   1965, Table 1,  Section B) was performed on tha Inclusive 
group    from which it was discovered that after four dimensions 
were extracted from the Intorcorrel^ions among the 24 tests, 
their residuals were trivial.    Many different varieties of factor 
finalynis  have been performed on the correlations  of the Suburbaa 
Children,   all of which also find four salient dimensions  (Harmon,, 
I960), 

The defining variables of each of the four dimensions are 
nhown by superscripts  attached to the names  of the variablen  in 

about Table •!«    Thus,  under the Spatial category all four of the spatial 
here testa  are marked with super "f",  indicating that  each is a deflner 

of one dimension,  the P dimension, measuring form (or space) 
perception»    Analagously,  four "v" testa define the V or  Verbal» 
four "s" the S or Speed,  and five "m" the M or Memory dimensions . 
No fifth dimension was required for the mathematics tests. 

Dimensions V, 3,  Ft and M are thus designated as the "basic*1 

general dimensions of the 2I4. abilities, on which the comparative 
dimensional and typological analyses of subgroups are performed. 
Details on the dimensional analysis of the Inclusive group are 
not given here for two reasons: They have been recently published 
elnewhere  (Tryon,   1966b),  and they are so similar to those of the 
Factory Children which age given below (see Pigo^l, bottom) that 
no useful purpose is served by presenting them. 

Dimensional analysis of the Zh. variables in the Factory 
Childreno-«To discover the cluster structure of the tests in the 
Factory Chil<irenfl a full-cycle key-cluster solution of this 
group's intercorrelations among the 24 tests was "preset" on the 
definers of the four basic dimensions found In the Inclusive Group. 

- 
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Lbout
i«r«

Tho results are shown pictorlally in Pig,* I, the bottom spherical 

plot, which Is n dirfict trarlng «'f the printout of the dlagran in 

progrart SPAN (SPhericel ANalyals) of the BC TRY system. The 

surface separation of any two tests on this sphere Is a function 

of the correlation betueen them (technically, of their "Inter- 
donfialn”, or "conmon-fertor cori*ela*'ioQ'’). Two t'^nts that corro* 

late unity nave 3upei*iaiposed points, two th«»t correlate eero are 

90® apart, represented in ?ig.*l by the distances between the 

throe boxes that form the spherical triangle; the boxes represent 
the subset of tiiree Independent dimensions derived by factox*lng 

on residuals.
Note in H'lc,*! that tr.e five Verbal testa oluAter 

together at lower left in the coofiguratlon, the x'our ^ipeed tents 

laare loosely at lower right, the four Form tests at the top. Tbe 
six Konory teats are marked by ”.C”, denoting that they all 

projuotlotoa fourth dimension which cannot be snown alnoe 
It projoitc at rl(^t angles to the three depicted in Pig.*‘-1. Note, 
however, that the five taaihematical teats art depicted in theoe 

three dlmenslonr<, and that they are all "dependent" on V, S, ? and 

M In the sensa of being predictable from the four; a point proved 

In H recent paper (Tryoti, 196?b)
For readers In whom tne thought may lurk tiiat this clear 

cluster structure Is due to "proletting" on the definors of the 
Ineluslvs group, it is regrettable that space does not permit 

showing the conflgurstlon recovered by a purely blind empirical 
key-cluster fartorl.ng of the F-ictory ooirrelatioa matrix. To do 

ao would, however b« redundant because the empirically-derived 

configuration differs only trivially fx'om that ohown ^n this 

preset solution. The same corf j gxxration also reriulta froia an 

orthodox prlnolpal-axes solution pluc varimex or quartlmax 

rotation, also available in tbe BC TRY F^yotem. Indeed, the sane 

configuration Is necessarily the same for all varieties of 
factoring on a given set of dimensions that resuiL In trivial 

rasiduslj.

Dimensional analysis of tbo variables In the Suburban 

Children. - ♦App'*ylne the sane dimensional procedoro to the
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correlation matrix of the Suburban Children gives,  as a result, 
the conflcu^ation shown in the top SPAN diagram of Pigo -1,    At 
lower  loffc In the confißumtion la the same Verbal cluster as 
in the Factory ^roupj  at  lower right Speed,  at the top Space, 
and the Metrory cluster also projects into a fourth dimension; 
the mathematical abilities once again deploy centrally as 
dependent  variables predictable from the V,  S, F,  and M dimensions 
Clearly the cluster structure of the Suburban Children closely 
resembles that of the Factory.,    One obvioua difference Is  that, 
though the cluster groups are about the same, they are,  as groups, 
more separatod from each other in the Factory than in the Suburban 
Chlldren:  that is,   less correlated with  (oblique to)  each otherc 

Conrpqrison of the dimensions within each group separately 
(CCMP1)..-«A metric description of the within-group structures is 
provided by a program that computes the correlations between the 
ability clusters defined as oblique dimensions,  computed by the 
CSA {Cluster Structure Analysis) program of the BC TRY System, 

Table <'       The values of these correlations are given in Table 2,   sectlor  A, 
IK re where you see the correlation matrix of the V, S,  P,  and M 

dimensions.    These correlations are known In factor analysis as the 
"correlations between rotated oblique factors"£ or their "common 
factor correlations"^    In cluster analysis they are called "inter- 
domaln"correlat;ions, where each cluster is conceptualized as a 
domain score, C^  on many variables collinear with the observed 
definers of the~cluster (Tryon,  1959,  equation 2I4.).    Thus*  the 
domain score,  C   .  on the Verbal cluster is a hypothetical score 
on many variables collinear with the obaerved aet, Vw,  V^,  V-, 
Vg,  and VQB shown in the SPAN diagram.     (The term "collinear" 
means projecting to the same degree on the same vector from the 
origin of the sphere») 

The inter-domain correlations,  listed in Table-2 under the 
columns headed rcc are computed from the raw correlation matrix 
using the well-known formula for the "correlation of sums"»    As 
you look through the rcc values you find precise metric  expres- 
sions of the degree of similarity of the four basic ability- 
dimensions, V( S, F and M„ in the Suburban and Factory Children» 
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For o.raraple,   the inte.v-domain x»      between the Verbal and Speed 
diinerv'Ionn io  aoen to  be   d} ar3 "oI|2,   reuper.tlvely;  that  13^  the 
two diuionsionB liave almost exactly the same degree of flitolliirlty 
In the two groups.     But bet^aen the other dimensions  you will 
find  that the ra  are genernily higher for the Suburban than for 
the Factory children^   a fact, already roon visually In the SPAN 
diagrams of Via ' 1.,    The r,,,, values aro thus  a metric statement 
of siMilarity that  in displayed visually on the spheresb 

In the lower sections of Table 2.   you will find other 
metric proparties of the  four basic ability dimensions>    The 
"generolity" of each,,  given in section C,  is  the degree to which 
oach dlraenalon accounts for all the raw intor-ro among the 3l\. 
ibilitieso     In both groups  »he Verbal dimension la the most 
feneral» but in the Factory group the other three dimensions oro 
morH specific than in the Suburban.    Of special interest to the 
^ypologlsal analysis  is  the reliability coefficient of the raw 
scorRs on the four dimensions«    In section D*,  the reliability of 
V is    9», but of the other three,  only of the order  ,7 or „8., 
(The formula for reliability is known as  alpha,  though a better 
term is the Variance Form (Tryon.  1957).) 

Direct comparative analyaia of the dimensiona across groups 
(C0MP2)Q»-To this point we have assessed the similarity of the 
V, S, P and M dimensiona of the Factory and Suburban Children by 
the subjective process of cross-referencing their separate configu- 
rations in Fig.4* 1>  and by comparing their withln-group rcc values 
in Table 2, procedures that are indirect and inferential!    Can we 
directly compare their dimensions? 

Fig«  2 Fig» 2 displays the direct comparison achieved by the program 
»tout caMP2 of the BC TRY System.    In this SPAN diagram» traced from the uers 

printout, you will note that the Verbal dimension of the Suburban 
Children,  labelled V«  (for the OW school) and that of the Factory 
Children,,  labelled V«  (for Pasteur)  are tightly clustered at  lower 
leftv  meaning that they are quite similar.    At lower right are 
the two points representing the Speed dimensions of the two 
schools; at the top you see their two Space dimensions,  and 
extending Into the fourth dimension are their two Memory 
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dinonoiona, Thia cluster inxnicture therofore directly oonqparM 

la one diaijram the oimJ J^ity of the two-dlcienalonal •tructures 

that vje only indirectly obnervad above by crosa-rafaranolngo
The direct Index oi* the uir.ilarity or any two dlaenalona 

acropff different croups Is the "index of slDiilarity" of the two 

G menciono (or ’I'actoro")* called the cos a between then. For 

two ditaenyiotis n groi^p uo ) O is equivalent to the Inter-
doinain oorj-elation, bub it la estimated not from the raw
correlation matriX;;. as is r^Q^ but from the obli.qao factor 

coefficients of the two diraonnions. Tho pi*oof that cob Q between 
two dicucnnionn -r’ithln a group is r^^ l.i given in Table 2, section 

A; there you will find in the col am ns labelled "Ooe this index 
of sltullarlty (coapatea by (.OllPl') r.et ooeido the Tq^ value 

(computed by program C3A). You will find eiiat the two indicoa 

are virtually idontical in every case.
But si TVS e tho Blmilarity index, cos O, ia oooputed only 

from factor coofflclcuts, it ran be, of course, calculated for 

dlmensioa'^ across different groups. These similarity values are 

given in Table 2. section B. Thay toll the camo story metrically 

that is shown pictorially in tho spherical configuration of 

Pig.*2. On the upper left to lower right diagonal you see the 

index <jf similarity of V in the Pactory and in the Suburban 

Children, then of g F. and K. '^or axaisple, that between the 

Verbal dimensions in the two groups is =96e between the two 

Speeds it is .89, between Poms .92, between Memories .83.
For tho technically-minded reader I include in Appendix A 

the logic and fomulation of cos ^ as an index of dimensional 
alnilarlty. Briefly, tho reasoning by idiich we dealgnate two 

dimensions as identical is based on the universal logic by which 

ws conceive any two entities as being the same, namaly, that 
they show the same pattern of observations in relation to a coosioa 

set of other "referont entities". For exanple, the Verbal 
dimensions in tho two groups arc virtually idontical because 

their patterns of factor coefficients (the observations) on the 

constant set of 2I4. referent abilities aro virtually identical.
The index of pattern similarity of any two entitles on a coaaion 

set of referent entitles is P, called the index of proportionaUty.
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or cc 1 linearity,  described in du tail in Appendix A for the case 
of pattern similarity of the factor coefficionta of any two 
dlmenalons.    Tho value of the index of aimiiarity„  ooa £t  of any 
two dltnenaiona  in different groupo is a slnple quadratic function 
of P,  as dhown in Appendix A 

To sum upx   we find in i'lg.  2,  and from the metric values ia 
Table 2 that the four baalc dimonsiona Vf S, P, and M in the two 
groups are highly olmilar,.    But  in the Factory Children they are 
ooioewhat more independent of each other than in the Suburban,, 
•fhy?    An environmental explanation is that the parents of the 
Suburban Children atreaa acholaotic achievouent,  implementing 
their ambition by puahinc i-heir "protaioing" children in all 
abilities,   letting their loaa promiaing children fend for them- 
selven.     Conaintent with this theory, we find that it is 
precisely In the Suburban Children that the scholastic institution 
of nhomC(;oneous,, clasaificatlon is eraployedp  namely, the sorting 
of aheop and goata into different ciaaaroomßu    In the Factory 
fyouji,  children generally ajre left to fend for themselves. 

But there is an alternative genetic explanation: There 
probably is more stringent aaaortative mating on abilities among 
Suburban parents.    Thia sort of aexual selection would generate 
a higher correlation among all abilities in the Suburban group 
than in the Factory, where aaaortative mating would be more random. 
A syatematic  treatment of auch environmental vs. genetic "correla- 
tion-producing11 agencies In the case of abilities is presented 
elsewhere (Tryon,  1935>  1939). 

Comparative typological analysis in the Holzinger Prtfblem (OOOMP 
analysis), 

When we allocate children having the same patterns of scores 
on the basic abilities,,  V, Sf F and M, to O-types, 4» we find the 
same typological structure of these O-types in the Factory and 
Suburban groups? 

Similarity of frequency-pat terns of the frro goflBJ 25 £&S 
oowaon typology of the Incluaive group,. —-The first of two ways of 
determining the typological similarity of two groups is to discover 

iMtm, .-«•ata*. 
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the decree to which they ahow the same frequency of cases falling 

in the common typology of the Inclusive Group«  You will find this 

Tabled   common set of 0-types in Table '3 under the general beading at 

about    leftj "Inclusive typology".  (How these types are determined will 
hf',r*     he described latbr ) Look at the first type* labelled Hlr con- 

niating of II4 children whose pattern of cluster scores on basic 

abilitiea» V, S, P, and M in U.Q,  36, k)\.s  37. respectively. Thee« 

are mean standard Z-scoren on a scale whose mean for the 301 

children in the Inclusive Group is £0, and sigma 10. Underlined 

scores of ^0 (-1 QIGDIA) or below are termed "Low1* In the column 

bended "Descriptive name1', those 60 (+1 slgma) or above are 

called "hi^h". For thin HI type you will therefore find It 

described in the table as "Low Speed and Memory"» 

As you look down the column of types from HI through H15 

to the class called Unique you see in the adjacent frequency column 

thaXt  some typos have a high frequency^ like H9« the Average type, 

with 38 children in ltB others with low frequency, like H2,, the 

Low Verbal and Memory type, with only eight caaes in it. Our 

logic of typological similarity of the Factory and Suburban 

Children la simply this: If both groups show the same frequency 

pattern on these common 16 Inclusive classes, then they have the 

same typological structure, but to the degree that their 

frequenoies in these 16 classes differ from each other their 

typologies are obviously different. 

Before examining the findings, I will briefly review bow 

the typology of the Inclusive group la determined, a matter 

published In some detail in a recent paper (Tryon, 1967a)» The 

cluster scores of each of the 301 children are first computed by 

program PACS (Factor And Cluster Scores) by the BC TRY System«. 

For example, their scores on V Verbal are the mean of their 

standard scores on the four defining variables of V (listed in 

Table Dp reatandardi^ed on a scale of mean 50, slgma 10„ The 

program OTYPE Inputs the 301 cluater acoros and completely 

objectively allocates them to the 16 classes given in Table -3. 

Tho  principles of classification, called the Condensation Method, 

are quito sinqple: All 301 scores are located as points in the 

cluster score space of the four dimensions defined by tbe V, S, 
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i*. uw*- M •rjv’, uov.a j tha Ajcllda<ui ilLntancos bctuaan
thti. t'l •»''-cuta; ifio* with die* ar»«! batvoaa

'hf-L ifi 'r-,.. ir. a t'/b, bjeo».-r] uni ii» iu uhls 

iutc 'lic ' -'.yp*. A'Cli 4* p OST.Aa (C'ajAt:t -jl'ATlattr.a)*
♦■h,n coc.p .♦ ..n ► ae*.': /-tcoroo • * the udi vM«AJr. In • luster;
(;•. veil in ‘.‘ ii/l# er' fttt;'*. il'.'w :ite;i an Indox Cl’ hotac^onea ly, 
pr t'tp n Es of till .:l».at(?T* (For doCAl3;i» lioe Tryon* i;67a).

»iOu *-r ihM srullei'lfcy of the frequoac;-•patterns of the 

i>r/ u»ii '•’ib'i f^reupe Fr r*j tjie ttJTAT pr.’ntout ment:* oned 

j'.i’t ii>c*»-, 1 is :i *k-ttv to courtt h’>e iv'•y children In
♦'•■.•.•li ; ,roup fal ’ iohc» *he 1'^ cls»3 <»»., f.-vBi eUicb t h'? peicon^age 

f.«ninr'. 1.1,0 epcfc u j ’fl l« eceipui.od. These perermt;«Kes ere
in Tr.M'?*’•- uninr tne gen*'i*nl heading ’Pectrry ▼», .Suburban"* 

i'lv; l.'fltea vnlu»»a in the tw;> rol'’tww labelled "p^," and ”p^" ere 
Vh» crL'.loaa. r>’o<^uofcj'putt*.!nc rf the leo groups. on the be«la 

o? Mblah thft'p 1 ypolojjlos.l simila rity in deter,«lnod. The overall 

index Of' HiriiJarlty. given just t nlov the table, la the hoho 
Carorel l'.dex of proportlonsiJty. P, discussed serller;. the 

f i'or wuii'h 1 prlntcj^ hel <u the tablev If /on lnspo«'t tliie
forr.uJfc;, you .rii' diacervar rbet \t tv<o groi^s hare exactly "be sene 

lro.'\u*jn'y-peTterna. i.e.» then the index ?, la uni'.y (1 00)
But if theli' patterns are ufterVf dlffei’ent, that is, if the 

o-.eufrorice oP each tyre In one gfO^P natohed vlr.h tha absence 

(£ ~ ( I la hhe ether group* Ibea the index* P, le sere. I bare 

worked oui the wulue of P fop th^ two ecologieal groups of 

childiou below ti e -able, idiere you wllJ find It to be P * .75* 
denoting a ccnsldoreb^a asioniit oi typologleal sin I lari ty of tha 

two ^oups.
or groatcr IntHprst^ hewevor, are the epeeifle type 

dlffe>’eiKes between the two groups- These values ere listed 

unler "Liff” in Tablo^-3. Seeauan the sanpUng arror of such 

dlft’c'*oni.as can bo iarga^ it is deairabla to indicate which of 

these tiH'r>rc«5ca l» unlike y to ocear by chenee ac tbe st»H>ng 
confiOe'wo lovol of £< 001. Fortunately, wc are worldng with 

siostll values of per cen^r which .ceep the error down. Biq>r-ssolOB 
the per ceota as propcrtlona* £• v® noi e that the seen proportion 

In the l6 classes is ^’,/lb — 1,00/16 » ,06, Since oost of the
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proport.lona   of Ibn types  in  both groups are not  too grently 
different  fron „06,, v;e will norapute the ntLadard error of a 
differer.ce  between two  true proportioua  of   »06,   uping the  well- 
known formula for thia  error printed at  the bottom of the  table^ 
and worked  out  /'or- the  Ns  of  the   two ßroupo.      Ft  cotoec   to     3       We 
may  therefore set, a per cen). of  3 aa tho  lower bound at and above 
which any difference in  almoat  surely nou-obance. 

You will find all  dlfferencen above 3  indicated by an (S)  for 
Suburban or  an  (?)   for factory,   depending on which  group baa  the 

highest per cent      For example^   note that the  largest difference 
between per cent.^  la   12 in type Hß,   Low  verbal.     For  thia difference 
the  greatest  per cent   fruquency   ir<   1.,   in the  Factory   group       Next 
corner  hlOj   Hi   Veroal»   moat  c iaracterint,lr.  of   the Suburban ^i'Oup: 

Theae  two Verbat types  therefore represent  the greatest ty)jological 
difference  between  the  two groups       If you  look through  the other 
significant  dlffereDCea  you will discover that,  the ouburbnn rroup 

falle  more heavily into  Low Memory  (HI)   ^-nd  Low Speed  (H?)    whereas 
the Factory Children occur more froquentLy in the Hi Memory  (Hl^) 

and Hi  Speed   (HDD   types„     Verbal    Memory and Speed therefore moat 
markedly differentiate  the typological differences  between Factory 
and Suburban children. 

Since  sax differences  in abilitieaare of  universal intereat, 
I  have also presented the data for determining the  typological 
similarity of the Boy vat   Girl subgroups,   in the far right columna 
of Table'3o    Prom their columns of per cents  in the  16 claa^ea,   the 
index of altnilarity for the sex groups, worked out below the  tablej. 
is  seen to be P =   „Sf),   somewhat higher than for the Factory anu 

Suburban groupso    If you  examine in detail the  significant differ- 
ences v   you will find that boys more frequently fall into Low Speedp 

Low Memoryt   and Low Verbal ty^sa,  the girls  being,,  conversely,   in 
the Hi  types  in the abilities.     On the other hand    girls fall more 
frequently  Into Low Form  (Space)   typos,,  boys  into Hi  Form.    Thin 
finding on  the  Verbal  favoring girln,   the Form   (or  Spa^o)   favoring 
boy a  has  b^en confirmed  In many studies,  but   Low Speed nnd Low 

Memory   in boy:   is  a loan wolJ   known finding. 
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Si PI 11 xjiry Of etai: lrlcal\y-*derl vad typolfigiefl of the r^otTpa.—» 
The abova analysis Inl’orran us oi’ differonco;’. betwien Factory and 

Subui'ban Childi en only on the aincle coimaou typology of tne 

Inclusive group* But for fuller information, we need tc discover 
enr.»rlo»aiy the typology of r.nch group independently of the other,
>ind to ro'iii.nro di^'ortly thi^lr tvio typolo.'loa. The prooodures for 

<iu Ing so a.co availatlo in px’ogranxs of tho BC THY System* On the 

15:6 Factory Children separately we objectively determine their 

typology by the O'iTPE and OSTAT programs described above. You will 
find Itfl VJ clsTsca In Tables'll.., where under "Factory Children" they 

a • » lAnl*;v'. a.', utj.o.t Fi down througJi FU+ to Unique- Their Z-score 
profile valu«9 and descriptive oar'ic:i t>j*e also givon* You will also 

find their bor*ogeneicy, or R ooeffinionts that dr^'cribn how "tight" 

each 0-typo in in its 2-scorea on tho four dimensions. This coef­
ficient has been described In detail elsewhere (Tryon, 19$5» 196?a) 
and with special emphasis in a recent paper on the prediction of 

•'cot'iM-" aiurioutea of C-typos (Tryon, 1967h0. Suffice here to 

Say that an U value of J .00 weans that all Indl'/idunls in an 0-type 

have exa.tly the aaioe scores on each of the four dlmenaionOi 
whereas an ^ of .00 oeann that the scopcj are aa variable in all 

four d’moralono as in tho full supply of all 301 ohildron.
In rlmUaJ* feshion the separately worked-out typology of the 

Suburban Chiior^n Ij given at tho right in Tabled* where you will 

find the 13 ciassiea of these children listed from 81 through 312 

to Unique.
You can gat a general Impression of tho typological einllarity 

of t;he twe gprups by cotriDarlug the deaeriptive names of the two and 
by noting from th^se nar.os vrhlch types are present in both groupa 

and which onaa are present in one but absent In the other,
We need a more precise coBg>arisH>n of the different typologies, 

To achlovo such preclalon'we project all the 26 types of both groups 

(I4 (•’ type:» ’ilus 12 S typ^s) into the same analysis, from which we 
get exact values of the :jltallarltios and dlfforencea between then. 
The prorodures ^'>r doing so »«•••! ca’led "KUro-unalyeia" In the BC 
TRY fiysteri The 'ogic of t ..lulyr-i'- 1m r ilte "Imp.ic: ^ach type 

ia .’onnid.i’o*' t. ' te an ebstrect "individual" plotoud at* a point 
in the lujtor .score sui-.e of V, S, F, and M where its locus Is

$
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determined by Its four Z-acoroa listed in Table 14..    Program EUCO 
jotriputos the Euclidean dletanoe between each pair of types, and 
prints these values in a pair-c 005p aria on matrix from which one can 
read off precisely the degree of similarity between any two types. 

Space limitations do not permit printing this Euclidean dis- 
tance matrix here,,    In its stead, however,  I present a pictorial 
representation of the distances between the types in the form of 
the SPAN diagram given in Pig.^3.    To secure this diagram, the EUCO 
matrix is first transformed to a correlation matrix by correlating 
columns of EUCO values, then running this r-matrix through a standard 
key cluster analysisk  ending in the SPAN diagram of Flg»^3. 

The configuration on the SPAN sphere describes the similarltlaa 
and differences between the Factoxy and Suburban O-types,    The 
circles represent the U4. Factory 0-types, the squares the 12 
Suburbanc    I Also Include in this analysis the 15 Inclusive H-types 
from Table 3.    The sizes of the circles and squares and the length 
of the underline of the H-types are proportional to the frequency 
of each type.     Note that the four dimensions, V, S, P,  and M are 
also plotted, these being secured by inputting model abstract 
"Individuals" whose four Z-score values are especially selected to 
enable one to plot the dimension lines as score axes. 

The large super-cluster at left center consists of types all 
in the "LOW" region, meaning that generally they have Z-scores 
below the mean on all four dimensions»    Note, however,  that this 
super-cluster breaks off Into two general subclusters.    The upper 
one consists largely of Suburban types Sly S2, S3, fairly well 
represented by the Inclusive types HI, H^, H3 and H6, whereas the 
lower subc luster consists largely of P, or Factory types, which 
with SI4., are well-represented by Inclusive types H2, H5> and H7. 
Prom these facts we discern the similarities and differences 
between the types In this general region of low scoring, noting 
especially that there are real differences In the typologies of the 
two groups in this region.    I leave to the Interested reader a 
detailed study of the rest of the configuration.    The scores of 
0-types can be approximated by reading off projections on the four 
score axesj,  but more accurately by reading the actual values and 
descriptions given in Tableau and*!^    Types represented by broken 
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circles and squareo lie Into the fourth dimension. 
Generallyj  h study of the configuration reveals findings 

siuiilar to those found from the similarity of the frequency-patterns» 
namelyr  that Verbal(, Memory and Speed most markedly differentiate the 
Factory and Suburban groups.    For example, note at the top of the 
diagram that Hi Verbal ia represented only by a Suburban type, S7« 
Low Verbal through the southern hemisphere is heavily dominated by 
Factory types. 

A final» salient question is this one: How well do the 1$ 
Inclusive O-types representatively sample the 26 different types 
in both ecological groups of children?    This question is important 
because in the practical usage of the typology of abilities, these 
would be the types usually used for the classifications of indivi- 
duals«    The answer is provided by noting whether one or more of the 
15 H-types lie in all regions occupied by the 26 Factory and 
Suburban types.    By inspecting the SPAN diagram and by comparing 
the F and S types of Tabled with the H types of Table*3 you will 
note that the 1$ H-types fairly cover the ground. 

The Study of the HMFI 

Comparative dimensional analysis (CCMP analysis) 

The second study selected for comparative dimensional and 
typological analysis is that of the responses to the items of the 
MMPI by  Kortnals vs.  Patients. 

The item-variables.—The variables are 118 items of the MMPI 
drawn from t'ie full item supply of 566 to which the subjects re« 
sponded.    The 118 were those shown in a previous study to be the 
most salient set (Tryon, 1966b).    The method used In the prior 
study is called the BIONV procedures of the BC TRY System, a 
method that enables one to perform cluster or factor analyses 
unrestricted by the number of variables or number of subjects. 
The subjects were the Inclusive Group consisting of the Normal 
and the Patient groups. 

The groups.—The Normals wore 90 Armed Service Officers 

• ■ 
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matched for age and education agalfiat 220 Patients.    The latter were 
outpatients of a VA Mental Health Clinic,  consisting of 70 diagnosed 
Schizophrenics fill with a history of hospitalization within the 
previoua 6 years^ and 150 dlrnenosed Anxieties none with a history of 
any hospltalizatlon for psychiatric disorder. 

hsre 

Dimensional analysis of the 11Ö it en» variables in the 
Inoluaive groupr,-»Recall frotn the Holzinger study that a comparative 
dltnensional analysis of two groups, here the Normals and Patients, 
can only he perfomed when the subjects ore measured on the same 
dimensions defined by the same variables? usually those discovered 
In   i dimensional analyBis of the Inclusive group.    This analysis 
revealed^our "basic" MMPI Itom-cluators: I Introversion, B Body, 
S Suspicion, and T Tension,,    The defining items of these four 

Tablo 5 dimensions are those whose item-numbers are listed in Table 5p 
hbcut      section A«    T do not present a more detailed description of these 

items Oecnuse it would be too voluminous; but a paraphrasing of them 
is given in the previous study (Tryon,  1966b, Table 2), and the 
exact contonts are given in MMPI booklets, generally availably to 
most readersu    You will note in Table 5 that each item-cluster 
consists of a "Pull Form " find a "Short Porra11.    The cenpe.rs.ttv» 
dimensional analysis presented in this section was performed on 
the scores of subjects on the Short Forms, and it also includes 
the Short Form Items of the other three "dependent" item-clusters, 
D Depression, R Resentments and A Autism, whose item-numbers are 
also given in Table £, section B. 

The dimensional analysis of the Inclusive Group from which the 
four basic and three dependent dimensions were derived cannot be 
presented here because it is fully explicated in the prior publica- 
tion.    However;, the results of it are so similar to those given 
below on the Patient Group (See Flg.l|.9 top diagram), that no point 
would be served in giving the findings here.    In sum, it was found 
that seven dimensions were required to account for the intercorrela- 
tions among the 118 items , but that the first three basic dimensions. 
Introversion, Body, Suspicion, were the most nearly independent 
clusters  (as Pig» Jj. shows); only four pools of small residuals 
remained in the matrices of the four D, R, A, and T clusters« 
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Since the last of these« T Tension, had the greatest generality 
of the remaining four, it was decided to add T to I, B, and S as 
the final set of basic four dimensions of the MHPI« 

•bout 
here 

Dimensional analysla of the 116 Item-variables In the Patient 

Groups—A full cycle key cluster solution of the Intercorrelatlona 

between the 118 Items In the Patient group resulted In the cluster 

structure depicted In Pig,-^, top diagram. This factoring process 

was npresetn on the four basic dimensions defined by the Items of 

I, B, S, and To la the tight cluster at lower left In the configu- 

ration the symbols plotted as nIn and enclosed in a broken line are 

15> of the 17 Introversion Items that define this cluster. The 

remaining two lie nearby in the direction of the two arrows. In 

another tight cluster over at lower right are 16 Body, or B, items; 

the 17th item was dropped from the analysis because of trivial oommu- 
p 

nallty (h <«1). At the top you will find the Suspicion cluster. 

The remaining four clusters. Depression,, Resentment, Autism,, and 

Tension He within the framework of the three ls  D, 3 clusters. 

Clearly the total configuration for the Patient group shows an 

excellent cluster structure; it is virtually the same as that 

found previously in the total Inclusive group (Tryon, 1966b,. Pig. 1). 

Dimensional analysis of the llG item-variables in the Normal 

Group.—A radically different dimensional structure emerges In the 

Normals, shown in the SPAN diagram of Pig. -1;, lower« The dramatic 

change is in the Body cluster which was so sharply evident in the 

Patient group. It Is absent as a distinct cluster among Normale! 

And so are the Depression or Autism clusters. But Introversion and 

Suspicion do appear as fairly independent Item groups. Tension and 

Resentment also remain but move into a grand arc bounded by Intro- 

version and Suspicion. It appears as if only Introversion and 

Suspicion are the dominant and distinctive dimensions of Normals 

in the MMPI item-clusters. 

Comparison of the dimensions within each group separately 

(COMP 1) --Precise numerical statements about the seven item- 

Table 6 dusters in each of the two groups are given in Table 6, section A 
about 
here 

— 
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(analagoufi to Table 2 in the Holsioger Problem), and sections C 
and D,    The relationships between the seven domains represented 
as dlmenaionn  (or "oblique factors") arc given in section A by the 
inter-domain PCG values; tho&a for the Patients are above the 
lined-olf diagonal» those for Normals below«    Recall that these 
"correlations between oblique factors" are merely abstract metric 
deecriptlona of the complex relationships depicted in the SPAM 
diacram: and though they are more precise numerical statements 
compared to the verbal statements about the configuration« they are 
more difficult to conceptually organize.    And they can be misleading* 
I must leave to the reader a detailed examination of this complex 
table of relationships« suggesting that he cross-reference his study 
of it by simultaneously referring to the visual configuration in 

Several obvious points may, however, be mentioned hare.    In 
both groups the Introversion and Suspicion dimensions are the most 
independents and Tension is most positively correlated with all 
the other dimensions.    But the Body dimension is radically different 
in the two groups^ fairly specific in the Patients but rather general 
in the Normals, Indeed correlating .90 with AutismS    But this 
generality of the Body dimension is misleading in the Normal group, 
because from the configuration we know that Body is not a cluster- 
defined dimension in Normals but a mere sampling of heterogeneous 
items from their whole sphere of items.    It is an omnibus grab-bag 
of items in the Normal«  Just AS is Autism,  so their high correlation 
is merely due to both being similar hodgepodges. 

Direct comparative analysis of the dimensions across groups 
(COMP 2)o—When we project the dimensions of the two groups into the 
same C0MP2 analysis, we see directly and clearly the relations among 
the dimensions both within but especially across the two groups. 

Plgo6'5      They are pictorially displayed in the single SPAN diagram of Pig.'S 
here (analogous to Figo 2 of the Holzlager Problem).    The      sharply 

differentiated and spread out dimensions of the Patients, denoted 
by the subscript "P" attached to the seven dimensions, I, B, S, D, 
R, A, T» confirms the within-group cluster structure of their items 
as previously depicted in the upper sphere of Fig. I4..    In contrast. 

i  
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the wlthin-gi'oup structure of the dlnonBione of the Normals, 
indicated by the subscript  "N'V confirms the narrowj,  essentially 
tuo-dimensional band rangiuG from Introversion to Suspicion. 

Consider» now« the eimilarity of the dimensions across the 
two groups as objectively measured by the cos g values, given in 
Tabled,,  section B,  especially those down the upper left to lower 
rieht diaconal.    The most similar dimensions across the groups are 
Introversion (aTi)e Suspicion (.71^)» Resentment  (.60), and Tension 
:.73)e    The least similar is Body (.1|9), a different kind of 
dimension in the trio croups- 

Attention is again drawn to the correspondence between the 
index of dimensional oimllarity, cos fr«  and the inter-domain 
("common factor") correlations, r^^, given as paired values in 
oeotion A of Tablo 6 (analogous to section A of Table*-2 in the 
ioleincer study),    They show a close correspondence only for tight 
clusters I, S, R and T«      Thus  it is that in the comparative 
dimensional analysis of variables, the COMP 2 analysis accurately 
reveals the decreo of eimilarity only of those dimensions defined 
by tight  (highly collinear) clusters, a matter developed in 
technical Appendix A. 

Comparative typological analysis in the MMPI Problem (0C0MP analysis). 
The comparative typological objective is to discover the degree 

to which 0-types of Individuals,  formed by classifying together 
Individuals having the same pattern of Z-scores on the four basic 
MMPI dimensions, Iv B. S» T, have the same structure in the Patient 
and Normal Groups      In this snalysis, each person was scored by 
his Full Form    scores on I, B, S, and T.. 

Similarity of freouency-patterna of the two groups on the 
conaon typology of the Inclusive Qroup«—In the typological analysis 
of the Inclusive group by program OTYFE (Iteration I.).  I reported 
previously that U; 0-types emerged (Tryon,  1967a).    These are listed 

Table'7 as types Ml to MII4. in Table?,  under "inclusive typology", where you 
J*/j        will find their frequencies v Z-scorss on I, B, S« T,  and descriptive 

names.    When the Normal and Patient subjects are sorted to these 
114. Inclusive O-typos,  the percentages of cases falling into them are 
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the values listed In the "^ in each group" coluane. As a point of 

special intereaty I separated the Patient group into its two 

component diagnostic groupsp Anxieties and Schizophrenics. 

The overall similarity of the typology of the three groups 

in relation to each other is given by their P values at the foot 

of the table (anal^ous to the presentation in the Holzinger Problem 

given in Tabled). Normals vs. Anxieties show a P • .17* indicating 

virtually no similarity in their typological structures. Curiously, 

there is a mild typological similarity of Normals and Schizophrenics, 

whose P =■ ol^lo The typologies of the Anxieties and Schizophrenics, 

in contrast, bear considerable resemblance, having a P " «73o 

But the details of their diTferences, given in the column 

headed "Differences", are of great interesto Note that the Normals 

are almost exclusively concentrated in types Ml, M2, and M3, 

described generally as Extrovert, Healthy, and Relaxed, with a few 

in M8, the Suspicious. The Anxieties excell in the Somatic types, 

M7P mD  MIO, M13, M14, thus being persons most preoccupied by body 
disturbances. The Schizophrenics, compared to the Anxieties, 

behave typologically somewhat, like Normals, excepting that they 

fall heavily in the Introvert type. Mil. 

Similarity of empirically-derived typologies of ^ho fsraupst— 

Puller information on the differences between the 0-types of the 

Normal and Patient Groups comes from direct comparison of their 

typologies as these are empirically derived separately by the 

OTYPE and OS TAT programs but projected then into the sane compara- 

Cable^Ö tive analysis« In Tablets, left, you will find that, when the 

^Q°ut   typology of the Normals is worked out independently» they fall lobe 

Hi types, Nl to N14, with no unique individuals. In the right 

sector of the table, you will discover that the Patients were 

allocated to 12 0-types, PI to P13. 

As you look through the descriptive names of the Normal and 

Patient 0-types, you may be astonished to discover that there is 

no overlap of their 27 types except for the Average and the 

Trusting 0-types tf but that even in these the Normals have only a 

handful of cases whereas they are abundant in the Patient group» 

In sum, one finds that Patients are clearly distinguished 
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from NorraalB in their objectively-derived patterns of MMPI  ocoreB0 

Thin findUnß goeo directly to the question of the validity of the 
MMPI  in dl.'»tlnc:u;l3hinc patients from normal persons«    Our findinc 
hare definitely d onions trat es the validity of the MMPI items iu 
dif^or^ntiating Normals from PatientSj,  provided the item-oluator 
scores on In  Bp S and T are used (and not the hodgepodge in the 
usual unclustered onales)  and provided the objective typology 
described in these pages is used as the classificatory scheme. 

When the ?7 typeni are projected into the same EOCO-analyeis 
fse«* tho treatment of HUCO-analysls in the Holzinger Problem)  along 
with the 1J|. Inclusive O-types, the grossly different typological 
structure of the Normals and Patients stands out boldlyo    This fact 
is clearly evident in the spherical representation of tho types 

Pip, ,^6       given in Pig^f)  (analogous to Pig.^3 of the Holzinger Problem).,    The 
about Normal types^  symbolized by "N" and placed in circlesr  are virtually 

all located in a aupor-clustor at the loft in the "LOW" score rangos 
on all dimeayionso    Tho Patient types,   symbolized by "P'1 placed in 
squaresj  ttre lai-gely in the ouper-clustorat the right or "HIOH" 
region of tho configuration.,    This separation confirms^  of course; 
tho finding of the previous section, but the SPAN configuration 
provides a more differentiated deiicription. 

Finally» observe the locus of the Inclusive types»  symbolized 
by "M" and underlined.    You xd.ll discover that these 14 types are 
located in all regions of this typological space where there are 
Normal and Patient types.    This fact means that as a system of 
classifying individuals« normal or mentally-ill»  the 14 Inclusive 
types3  expounded on in more detail in an earlier paper (Tryon^ 
19^7aK satisfactorily cover   the ground. 

Appendix A»    Logic of cos 0 as an index of similarity between any 

Wo begin by noting that within a group the index of similarity 
of any two dimensions,  C.  and C.,  is the inter-domain correlation^ 

11       ^Cj  ^^ij/^ii^jj» 
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where 2r. . is the sum over the natrix of raw ra aoroaa darinara of 

the tvo dimensions, and Zr*. and 2rj. are sums over the raw rt 

within definers of eaoh dimension« This is the old "correlation 

of nums" formula (Tryon, 1959» equation 24). 

But this formula oannot be used in computing dimensional 

similarity acrons different groups sinoe there are no raw rs 

between variables in different groups. But we do have the oblique 

factor coefficients of the n variables on dimensions C. and Cj in 

different groups. Adjoining the matrices of factor coefficients 

of the twc (or more) groups9 we can compute the index of propor- 

tionality» P.., between factor coefficients of all pairs of dimen* 

sions within and across groups. This index is (Hurt, 19I4.Ö5 Tucker 

195ly Wrigley & Meuhaus, 1955» Tryon, 1959): 

p 

W      hi ' ^TO^vCj /J^J**^ 1 
oblique 

where r ~ and r « are the vectors ofAfactor coeffiwienta of C. 

and C-l with a little algebra it oan be shov i that when 

the definers of any dimension have raw correlations tbät are 

perfectly collinear (are of rank 1), then we can so' 7$ for r„ c 
i 

■ 

within a group using only the value of P^j.    The equation | 

is (Tryon,  1962): 
f a" 

(3)      rc c    -     1 "^ij        - 00. O. 
1 J PiJ 

Expression (3) is called eos 4» because its magnitude is tt* 

cosine of the central angle between C^ and Cj when these dimensions 

are expressed as points on the hypersphere (the SPAN diagrams), such 

as that of Figs. 1 and 2, that la, whether or not they are dimensions 

within a group or across groups. The value of 00s £ givus exactly 

' 



the valu« of r-c only when (1) the matrix of correlations between 

the de-Tinera of each diiaension are of rank 1 and (2) when the 

adjoined vectoro of tneir faccor coefficlenta include as rows only 

the definlnc variables of the two diuienoions.    Otherwlee, cos £ is 

only nn approximation to rcc.     Program C0MP2 of the BC TW System 

computoB coa g for condition (2)0 
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Table   6,1 The 2^. V&piablea oi" the Holzlngor Problem 

-i-» ■ -«J. .. 

Spatial Tests 

PI Vis Jviaual  ^icure Completions 
fUli Cub Imllaritlefl 

.Pfti-er Porn Board 
Pij. iX)7. ^IiOrongo Shope liotations 

Verbal Testti 

/5 

79 

INF Tchjneic,al Information 
OMT ^Paro^rap^ Comprehension 
a NT ^ont'-nco Gcttqpletlon 
WCL   W:.rö (Uac^lficatlon 
WMN vWord leaning  (Vooabulary) 

Sposd Teats 

310 ADD "Addition 
Sll COD 0Codo Substitution 
SL2 CNT "Counting Uroapa of Dots 
S13 SCC "Stralßht or Curved 

Capitals Diacrimlnation 

Motnory Teats 

Mli^ WRO "Vord Roco^nition 
Ml? NRO "Number Recocnition 
1116 PRG '"Plßure Recopmltion 
Ml? WN    "Object -Numbor« Recall 
MIß NP    "Number Figure Recall. 
M19 W      Figure Word Recall 

Mathematical-Ability Teats 

N20 DED   Deduction 
N21 FOZ    Numerical Puzzles 
N22 RSN   Problem Reasoning 
N23 SER   Series Completion 
N?4 ART   Woody-McCall Mixed 

Fundamentals» Form I 

■■ r».   - -   vrr* 

A definer of F(3paü«) 
v A deflner of V(Verbal) 
8 A dsfiner of S(Speed) 
m A dsfiner of M(Metaory) 
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Table 6.2 Slndlarlty of the Four Basic Holzlnger Abilities, 
V, S, P, M,Within and Between the Suburban and 
Factory Oroups,. 

vrr is the intcr-domain r,"correlation between CC oblique factors" frcm the correlation of 
sums of rs a 

Cos Q is the estimated rcc from the index of 
proportionality.,      w 
P, of the factor coefficienta 

A      Similarity of cluster dimensions within each group a.b 

V Suburban 
Verbal factory 

S Suburban 
Speed Factory 

PoriTi Suburban 
(Spice) Pactory 

M Suburbe.n 
Memory Factory 

h     similarity of 

unities 

.1$    .U3 
*k2    .k3 

.58 

.35 
.58 
.37 

.I4.6    .lt.7 

.14    ol4 

S 
JJB,W.4_ 

*k3    "W 
»kZ   .43 

Unities 

.53    .51 
c29    .28 

.56   .5. 

.39 \ 

rCG CoB^ 

.35 .37 

.53 .51 

.29    .28 

Unities 

.60    .56 

.27    .26 

N 
Meaoyy 

.14 .14 

.56 .54 

.39 .36 

.60 .56 

.27 .26 

!    unities 

cluster dimensions between groups (Cos £ only) 

PbftflL 

1 Vr Verbal 

iSf Speed 
Factory I p^ porm (Space) 

jMj« Memory 

C  Generality of each dimension (reproducibility of rs).0 

F
.   ** 

.46 .32 

.42 .48 
z3l .39 
.41 £1 

Suburban 
Factory 

.51 

.50 
.37 
.27 

«47 
.28 

.40 

.18 

&<    Reliability coefficient  (alpha) of cluster score on each dimension 0 

Suburban 
Factory 

.90 

.90 
.76 
.73 

VQQ from USA 

Cos» from C0MP1 

From CSA 
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Table 6.3 sitnlltPity of Proquenoy Pattorrw of Factory 
v3    Suburban Children on the Common Inclusive 
Typology in the Holzinger Probletnu 

"'""-'               -      "*"                      '"    "   '            ■■ _UII1   1    llll ••« r^.:-r-..---r=r-T-: r-.vr r-rr.^r n»ff.rw-g 

}lU3 

V" 

Factory 
Suburbf 

each group 
Pact Sub 

L P^    Pa H 

ve. 
m 

Boys ve 
Olrla 

Inc 
JFroq 

Types 

Hl      IU 

ivo   typology 

Z-sc.roa 
S       P       M 

jib    /|ii    _3Z 

Dosorlptlve 
nan« 

Lou Speed & Memory 

% in 
- Difiw^«».V» 

_         pb.p* 

Dlff 

k      61 -2 6     2 6(B) 

H2        8 2ä )+7     i+q     21 Low Verbal * Memory 5     0 5(p; 
-6(8; 

3      2 1 

H3      31 kQ 50   ü8   ^6 Low Memory k    10 10     5 5(B) 

liJ4.        9 SO i9    3^    UÖ Low Spoed & Porm 2      k -2 2     1; 2 

H5      13 i6 UP    J6    U5 Low Verbal & Porm 5     k 1 2      6 -U(o) 
H6   ; 20 50 50  ^e   14.6 Low Porm 6      7 -1 5      6 -3U) 
:n   I 19 k7 ^7    UO     ^0 Low Speed 3    10 -7(S] 6     5 3(B) 
UO 23 3i kl   11   5k Low Verbal 13      1 12(F1 9      6 3(B) 

U9 30 51 51  ue   51 Average 13    12 1 10   15 -5(0) 
H10 22 ^ 50  53   1+7 Hi Verbal 3    12 9(SJ 7     8 -1 

Hll 23 U7 6£    51    52 Hi Speed 11      1* 7(F) 6     9 -3(0) 

H12 lh a 6^   59    56 Hi Verbal & Speed 3      6 ••3(s; 3      6 -3(0) 

H13 27 52 51   ii   49 Hi Porm 9      9 0 13     5 e.(B) 

U14 23 52 49    51    6^ Hi Memory 9      6 3(F] 5   10 -5(0} 

HIS 8 57 63    5i|    67 Hi Speed & Memory 3      3 0 2     3 -1 

unique 19 Unique 7      6 1 7     6 1 

N 301 100 100 100 100 

N 156 IhS 11*6 155 

aItei •»tl on I-, of OTYPE Prom OTYPE and 08TAT 

SimlUrit f frequency patter mi of Factory and Suburl »an cb ildren 

pf8 " 2PfPa/l^p7l^P?"  617/(826 ifSio - „75 

Similarity of frequeory patteroa of Boys and »irle 
Pb    - 66V ^792   fiST" .35 

oÄganicance 
For m ■ 16 types, the mean proportion la them la p* ■   06, whence: 

3o. - 3(10»^rq:Ti7N~;""i/in) » 30/r,o6)(f9H)(Vl?6 * l/U^/« 3, a r a 
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Tuble 6*4 Within -group TypoiogiöB of the Puctory and 
Suourban Chlldran in the Hol/lng<p Problem, 

)e|Fi 

Factory Children Suburban Children 

Profile level 
Typ d i'r e<iftl^_he^gftr«tlfe5L 

Tv   a   p  M i I ; 

Doacrlptlve 
name 

U> 

Fl 

F2 

P3 

l*S 

P6 

P7 

P10 |    4 

Pll j 1? 

P12 1   5 
j 

P13 | 23 

?14 I    9 

Ünlq l   u 

7» J<L ». A IT   RT  Low V0rtal, 

i ^ c-j c . ii     «'»'Low Verbal 
liO b2 3c ik  'ö7|   &MeiBory 

57 $0 57 J^O'  06| Low Memory 

18 |ia i|5 i2 US '07 

18 

IJ 

ü 

l+ß SU iifi 1^1.91 
I 

$3 ^6 US 461„89 
i 

U2 57 li? 51! 87 

58 55 51 551-07 

kl 6^ 48 46 

52 70 55 $0 

e83 

,91 

N 5b 

Btfi. 

1^0 48 62 51|.77 

61 ^ ^2 53 .75 

43 50 53 59 .82 

52 51 48 66 .79 

i 
äs. J\JLJ%M 

Low Form 

Low Form 

Hi Speed 

Bi Speed 

Hi Pom 

Hi Verbal« 
Speed & Form 

Type 

SI 

S2 

S3 

S4 

S5 

S6 

37 

36 

39 

310 

311 

312 

tlaiq 

Hi Memory 

Profile level 
Fr eq|.AnsLv. ^nö^tnftltix 

V   S    P   Ml   ff 

,86 

.92 

,87 

.86 

94 

.93 

8 

13 

14 

17 

4 

21 

16 

10 

6 

15 

12 

3 

6 

145 

Eta 

51 35 48 .36 

48 51 43 3 

50 43 36 45 

45 36 Jj.6 49 

26 40 44 50 

51 51 49 49 

66 51 53 491 .92 

52 62 49 53 ,86 

66 62 59 57 .35 

52 49 63 50 ,8t 

56 53 52 6^ .85 

68 50 62 69| .94 

^7 .91 87 .90 

Deacrlptive 
name 

Low Speed 9b 
Memory 

Low Memory 

Low Form 

Low Speed 

Low Verbal 

Hi Verbal 

HI Speed 

Hi Verbal 
ft Speed 

Hi Form 

lIi MOTory 

HI Verbal, 
Form ft Keaovy 

Pro«* ^T«,T 
Itei»atiuti  I2 of OTYPB 

. 
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Table 6.5 Defining Itera»  of the Seven Item-Cluatere of the MMPI 

The four baalo  Item-cluaterr 
I:    Introversion 

(Pull F^orni, 26 Items, rol.  ,93; Short Porn,  let 1? items» 
rel0   .91) 

377       180          86 52       292        138      -1^05 
- 57     -371       171 -309     - 79     -353      ^82 

321       267      -514-7 -^79       317        301^ 
 MX 172 -521       509     -261i ^9  
B:    Body eynptoma 

TFUII Porra,  33 items, rel»   .92; Short Perm, 1st 17 it 
rel.   .89) 

-243 62 kl        125        161      - 36 -160      -330 14 
109     -175 1*4-68       $lik      -163        191     -    2 
108     -230     - 55 10 72      - 51 -153     - 18 

 ^Sfi m i3 23 -    3      -IPJ 263_^Si2  
5:    Suspicion and niatrust 

(Pull Form.  25 items, rol.   .85; Short Form, 1st 17 items, 
rel. .63) 

k04   436   368   I4J4.7   406    89   455 
507 
383 

T: Tension, worry and fears 
(Pull Porn, 36 items, rel. ,92; Short Form, 1st 17 it 
rel. .88) 

555  238 43  U2i8 338 439 158  322  -131 
431  506 -242   166 -407 335 303  360   365 
337   543 340   499 182 102 13    22   494 

 217  M2 -152  166 _ . 32 MX, a88^__J5.l 492. 
Bo The three remaining "dependent" Iten-olusters 

D: Depression and apathy 
(Pun Form, 28 items, rel. .942 Short Form, Ist 17 it 
rel. ,91) 142 

76  .379   418   414  397    84 - 88 
-1O7   4Ö7  - 8   396  526 357 - 46 
236   41   549    61   361 168 104 
 2fil 219 17 4U___m_U9  
R:    Resentment and aggression 

(Full Perm, 21 items,  rel.  .87; Short Form, Ist 16 items, 
rel. .82) 

94   375   536   145  416   1443 
336   ,59   130   lEB   382 
468   381   234   28   106 

_ ^3.99 97   129   162   Hi? 
A*    Autism and disruptive thoughts 

(Full Forte,  23 icess, rel. 86; Short Form,  Isr. 17 items, 
rel.   ,81) 

559       |i25       560 31*2         33         40 
241      511     -329 374      359         31 

15      545       100 459      389       134 
349       358       345 297       356 
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T<ibla ^*6 Similarity of tho Sevon MNPl Itevi'Clastor DimenaionB 
'Within and Betve^n the Noianal and Patient Groups.

r^„ to the inter-donuiIn r, "correlation batwean 
—^ oblique I'actora" from the correlation of 

suoB of rs ^

Cos O is the estimated r-,« from the Index of 
proportionality*
Pj of the factor ooaffielents ”

Ao Sjmilarity of itAm-clustar dimensions within each groiq)

I Introversion 
B Body 
S Susploion 
D UepresMion 

Hesentinent 
A AutiS'd 
? TerisJ .-n

J.ntvpy_
■ >y: CosG

-;2 .1+6 
,«)7 c06
.76 ,60 
o3? .32
oSl .45 
.59 ,h

B
_Bpdy„.

r^C Cos«

s
-SUSP I c.

CosG

12 .13
cr\A

.61 

.56 .43 

.64 .52 

.90 ,69 

.72 .53

55“h\t

.31 .31 
.34

43 .3T 
.76 ,69 
.77 .70 
,50 ,i|8

PPPXL<9.M_ Rppp.ijt.

.71 .69 

.32 .31 

.08 .37 
M\i_ 

.76

.72 

.72

.65

.59

.59

^cc
.47 .46
.37 .37 
,66 .62 
.66 .65

.67.71 .63

A
Autism 
'CC

Lj. APJI, 
^**CC

.33 .38 

.50 -49 

.65 .61 
57 .55

50 .49
.63 .60
.59 .57
.78 .76 
.79 .77

Jinulaxity of itom'^clustar dimensions between groups (Cos O only)
Patients

Ip «p ®p “p •V p
Ijj Introversion Oi .20 .22 .53 .42 .38 .49w

/ft
Bji Body .33 .47 .32 .49 .51 ,50

0 Suspicion .35 .30 .28 .60 c57 .46
R
li

Ojj Depression .56 .31 .43 .61 .65 o58 .59n
t.

Resentment .33 .31 .64 ,48 .80 .57 ,62
4
L Ajf Autism .35 .42 .61 .45 ,60 .69 .60

Tjj Tension ,48 ,41 .53 .52 .70 .57

C, Generality of each dlmsnalon (reprodueibility of rs) ^

Normals .38 .51 .lj3 .53 .52 .52 ,46
Patients .31 .19 .24 .52 .42 ,36 .W 1

D. Beliabillty coefficient (alpha) of cluster score on each dimension ^

•St *§3 ‘12 .80 .76 .75
087 083 .88 ,79 c79 .61

Normals
Patients

.81

.90

r^Q from CSA 

Cos^ from CGHP2 

From CSA
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Table 6»7    Slinllarity of the Proqueney Patterns of Normals and 
Patlontc on the Common Inoluaive Typology In the 
MMPI Problem. 

Inclusive typology % in 
eaob gr 

JtomAnx . 
Pn   PIL 

oup Differences 
Type PTeJ 

B      S T Descriptive 3chiz N-A N-C I A-3 

—   1 

H2 

M3 ; 

24 

21 46 
40 
22 

48 
48 k2 

£xtro-Healthy 

-Helajced 
Healthy-Relaxod 

?0 

39 
16 

1 

1 
1 

6 

3 
7 

19(M) 

38(N) 

15(M) 

14(H) 
36(N) 
9(N) 

-5(s) 
-2 
-6(S) 

Mi^ 31 46 47 i6 46 Trusting 5 15 6 -10(A) -1 9(A) 
M5 17 i2 50 50 47 Extrovert 3 5 10 -2 -7(S) -5(S) 
M6 '-''4 50 50 50 50 Average 3 11 7 -8(A) -4(S) 4(A) 
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INSTITUTE

RK. CALIFORNIA

A OOMPARISON OF TWO TEC31NIQUES FOR FINDING THE MINIMIM 

SUM-SQUARED ERROR PARTITION

by Geoffrey H. Ball 
Senior Research Engineer

Stanford Research Institute 
Menlo Park, California

1 INTRODUCTION

TWO difficult problems associated with cluster-seeking techniques 
are the comparison of cluster-seeking techniques and problems in Inter­
preting the results of running cluster-seeking techniques on data.

In this paper, two techniques for finding minimum squared-error 
clusters are described and two recent results related to these techniques 
are discussed. Some sets of data for examination and evaluation of 
cluster-seeking techniques are given and the two techniques--ISODATA and 
the Slngleton-Kautz algorithm—are compared. In addition, some useful 
graphical presentations for showing the structure of a body of data are 
presented. Methods that we have found helpful for Interpreting experi­
mental results are also discussed.
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1   I 

* 
Formally, 

W =  [w     ] where 

iJ" i-1   « Rg <.i    gR   S m.1 Ul   mit     Ng Ul    *il   N m=1 Ul 
mj-t' 

Other symbols used are: th 

G. the number of clusters, N  the number of data points in the g 
K 

G 
cluster, and N ■ £ . N . the total number of data points. 

g=l  S 

** 
See Friedman and Rubin (1966) for a more detailed discussion of these 
matrices. 
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II TECHNIQUES  FOR FINDING  MINIMUM SQUARED ERROR  CLUSTERS 

Before describing  the Singleton-Kautz algorithm and the ISODATA 
algorithm,  we discuss  briefly  the partitioning of a  data set  into minimum 
squared error   (MSE)   clusters.     By partitioning we mean the assignment  of 
each  data point   to one and only one of   k  subsets.     In MSE partitions  we wish 
to  find  the assignments   of   the data points   to   the  k subsets  or clusters 
that  minimize the squared error.     This squared error consists  of  the sum 
of   the distances,   taken over all  the data  points,   from  the data   point   to 
the point  that   lies at  the mean of  the cluster  to which  the data  point 
is  assigned. 

A convenient  representation of  squared error  is by using the sum of 
the products matrices  T,  W.   and B.*    The within-sum-of-products  matrix W 
is a  constant multiple of   the pooled covariance matrix  of  data points. 
It   is  obtained by subtracting its associated cluster average point  from 
each  data sample and  then calculating N  times   the covariance matrix  for 
this   reduced set  of  points,   where N  is   the number of   data  samples.     The 
between-sum-of-products  matrix B gives   the amount  and direction of   the 
deviation of  the cluster centers  from  the overall  mean,   weighted by   the 
number of  data  points   in each cluster.     The sum T =   (W + B)   is  a constant 
matrix  independent  of  the partitioning of  the data  points. 

G      N N N 

wiJ= S.1 Li (xgik- SK £ \i0 ■ (xgjk- SK ^ \>0 
th th ,    L.     ith 

where x     ,   is   from the  g       group and  is  the J       component  of  the v 
gJ't 

data point,   and B =  Lb..] where 

MM N 
G G G m i        8 G m 

b    - I . N  (±    £      x  ..- = £      £      x ,.)   (i    E      x,-lLL      x.). 



The  eigenvalues  and corresponding  eigenvectors  of  W     B  play a  central 
role   in discriminant  analysis.     Any  function of   the eigenvalues and  the 
corresponding eigenvectors   of W~   B  is   invariant  under   linear  transforma- 
tions   of   the   data.     Useful   functions   of   these  eigenvalues   are:     the 
product   of   the eigenvalue-,   the maximum  eigenvalue,   and   the  sum of   the 
eigenvalues. 

Another simple  function of   these matrices   is  the sum  of  the diagonal 
elements.     This  can be  represented  symbolically by using  the "trace" 
operator,   which  is  a   linear operator.     From T - W   +  B we get   trace 
T -   trace W  +   trace B.     The  trace of  a matrix  also  is   the sum of  the 
eigenvalues   of   that  matrix. 

From   this  equation we  can see  that   for a  given  set of   data,   minimiza- 
tion of   trace W results   in  the maximization of   trace B. Trace T,   as we 
have  previously noted,   is  constant   for a   fixed  data  set  with  respect   to 
modifications  of  the  partitioning of   the data  set.     Note that   trace T 
is   not   invariant with   respect   to  linear  transformations. The MSE  parti- 
tion  of  a  data set   is   the  partition of  the data  set   that minimizes   trace 

W. 

Another  important   function of   the W matrix   is   the Mahalanobis   type of 
distance,   which can be written as 

1   (x-y)w'I(x-y)', 
N 

where x   is   one point  of   the  data  set  and y  is   another  point.     This 
distance   is  also invariant with  respect  to linear  transformations of   the 
data  set.     It   is  not   invariant,   of   course,   to  new   groupings  of  the data 
since,   in  general,   this  changes W     .     The matrix W  can be viewed as a 
linear  transformation of   the original  data,   since   the Mahalanobis  type 
distance between x  and y can be  rewritten as 

-i -4 -i -i (u   -   v)    (u   -   v) '   =   (xW       -   yW   z)    (xW   2   -   yW   z)'. 

Note that this is the Euclidean distance between u and v, where u and v 
are obtained by linear transformation by W  from x and y, respectively. 
The difficulty lies in the necessity to compute W"1 for each partition 
of the data to be evaluated in the minimization, since W changes when 
the partition changes.  We discuss below this minimization of the sum of 
the Mahalanobis type distances while simultaneously changing W as the 
partition is altered. 

Or. Richard Singleton has shown that for a MSE partition it is 
necessary (but not sufficient) that the hyperplane that is the perpendicular 
bisector of the line connecting any two cluster means cannot intersect the 
convex hulls of those two clusters.  (This requires that the convex hull 

of one cluster not intersect the convex hull of another cluster.) 

* The minimum volume convex body sufficient to contain all of the data 
points in one cluster.  If the volume is zero (i.e., the data is linearly 
dependent), then minimize the volume in the linear subspace of highest 
dimensionality in which the volume is non-zero. 
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It  follow.;   from   this   condition  that  a   partition can be a  stable MSE 
partition only  if   the means of   the  respective clusters  are  such  that   the 
above condition  is   satisfied.     As  we  describe  below,   the  ISODATA   procedure 
uses  this  condition  to  seek an MSE  partition by  reassigning  patterns   that 
do not  meet   that   condition  to  that   cluster having  the closest   cluster 
center.     The use of   the  perpendicular bisector can be generalized  to 
distances  measured using  the Mahalanobis   type  distance. 

The Singleton-Kautz Algorithm 

TTie Singleton-Kautz algorithm was  developed by Dr.   Richard K. ^ 
Singleton  and  Dr.   William  Kautz  of  Stanford  Research   Institute   in   1965. 
This  algorithm seeks   explicitly   to minimize  trace W.     The algorithm uses 
the  following  steps   to   perform   this   minimization. 

(1) All  data  points are assigned   to a  single partition. 

(2) The  data   point   farthest   from   the  single  cluster  mean   is 
assigned  to a  second cluster. 

(3) All   data   points  are sequentially   tested  to determine   if  a 
reassignment   to the second cluster will   reduce the sum-squared 
error   (SSE).      (Fortunately  the  computation requires  only   the 
evaluation of   the change  resulting from  the  reassignment.) 

(4) When it   is   no  longer possible to  reduce the SSE by  reassigning 
any  single     data  point  to a  differen.  cluster,   then   the  number 
of  clusters   is  increased by  one and  the process   is  repeated. 
For data  sets  of  200 points  experience  indicates   that  about 
four cycles   through  the data  point   lead to  the situation  in 
which  no single data  point   reassignment  will   result   in a   reduc- 
tion of   the  SSE.     For  larger  numbers  of data  points   the  number 
of  cycles  may   increase considerably.      (See discussion of   this 
point   in Sec.   V,   below.) 

^or similar  techniques   see also Forgy   (1966)   and Friedman & Rubin   (1966). 
The quantity calculated  for  the cluster  to which data  point  x     is  assigned 

NG       D G 2 th 
is r- L       (x   -  S /     )     where N     is   the  number oi   data  points   the G 

V   1   1-'1        i        i   NG G 

G th th 
cluster;S     is   the sum  of   the  1       coordinate of  all  points   in the G 
cluster  excluding  x   .      This  quantity   is   compared with 

NH    D        H   2 
r, r • , (*.- Sy„ )  for clusters H and the data point moved 
H H 

if the former exceeds the latter. 
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(5) The number of clusters is increased to some maximum number of 
clusters. Tliis maximum number is set by the person using the 
program. 

(6) When the limit is reached then the cycle is reversed and the 
number of clusters is changed by reducing the number of clusters 
by combining those two clusters that minimally increase the SSE. 
After combining those two clusters, the cycle described above 
is then used to attempt to further decrease the SSE.  If the 
SSE found on this stage through the cycle is smaller than the 
SSE found in any previous stage, then the partition obtained 
on this now clustering Is substituted for the partitioning 
found the previous time. 

(7) This increasing and decreasing of the number of clusters is 
continued until it is not possible to reduce the SSE further. 
At this point the process terminates. 

Critical steps in this process are the selection of thy data point 
used to initiate a new cluster, the ordering of data points,  and the 
choice of those two clusters that arc to become combined when the number 
of clusters is reduced.  These comments can be summarized by saying that 
the choice of the starting [joints for the iterative hlll-cllmbing to an 
MSE partition determines whether the partition obtained is the minimum 
among all local minimum squared error partitions of the data set. 

The ISODATA Algorithm 

The name ISODATA (see Ball and Hall, 1965, or Ball and Hall, 1966) 
applies to a variety of similar cluster-seeking techniques.**  The defining 
characteristics of those techniques arc; 

(1) the iterative nature of the algorithm 

(2) the partitioning of all the da^a points Into subsets without 
changing the cluster averages, such that data points are 
assigned to the closest previously obtained cluster average, 

(3) the combining of pairs of clusters into a single cluster, 

(4) the splitting of single clusters into a pair of clusters. 

* 
These data points could be, but at present are not, randomly reordered 

after each sequence of evaluations in order to reduce any sequential 
effects of taking the patterns one at a time in a particular order. 

* See also Sebestyen and Edic (196-1), Sobestyen(1966) , MacQueen (1966), 
and Stark (1962) for similar techniques. 
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Figure  7.1  shows  a  pictorial   flow  diagram of  ISODATA.     The  patti-rns 
are sorted,   one by one,   on  the basis  of   a measure of  distance  from a 
set of   initial  cluster points.     Each  pattern goes  into that   subset  having 
the cluster point   to which  it   is  closest. 

After all   patterns  have been  sorted   into one of   the clusters   the 
average  of   each  of   these  subsets  of   patterns   is   computed and   for  each 
subset  the standard deviation   in each dimension are determined.     "Oiese 
vr.lues are  then passed into  the Cluster Information Hopper. 

The  individual   sample points   in small  clustcrs(those with  fewer  than 
0    elements   are  considered  small)   are   removed  from  the data   set,   and  set 
aside  for  special   examination.     Splitting or   lumping of   clusters   takes 
place  next.     Splitting  takes   place   if   the conditions  described  below   are 
met.     Lumping occurs   between  the NCLST  closest  pairs  of  cluster centers 
that  are   less   than Ö    apart  where  NCLST   is  a   control   parameter.     The 
process  control   parameters,   NCLST,   0. and ©   ,   as well as  others,   are 
supplied by  the data analyst. 

After  each   lumping of   splitting,   the updated set  of  average  points 
is used as   the  set  of  cluster points   for  the next   iteration.     Several 
statistics   of   the data  structure are  calculated and printed out. 

The  partitioning can be and  has  been done with  respect  to a variety 
of measures   of  similarities  of  data  points   to cluster averages.     The 
measures  of  similarity  used  thus   far are: 

(1) Normalized dot   products   between data  points   {xl  and cluster 
averages   (m],   where  the  normalization  is with  respect  to the 
magnitudes  ol   the means   and  the tjata  points.     This   can be 
expressed as   (x   •   m)/ | | (x) | | ' | | (m) | |   =  cos   (<x ,   in) , 

(2) The dot  product  between  the  data  point  and  the cluster averages. 
This  can be written as   x   •   in =     |x| |' | |m| | cos   (<x ,m) . 

(3) Euclidean distance  squared.     This  can be written as 

||x-m||     =x,x-2x-m   +   m-m=   (x-m)(x-m)' 

(4) Mahalanobii  distance,  which   includes  Euclidean distance as a 
special  case,   which can be written as   (x -  m)  W       (x  - m)', 
where W   is  the pooled covariance matrix,   or  the  sum-of-products- 
within matrix. 

As would be  expected,   these  different  measures of  similarity   result 
in different   clusterings  of  a  given set  of  data  points.     As  can be seen 
from  the various  equations  describing   these measures  of  similarities, 
there is also considerable similarity between  them.     The  normalized dot 
product  measures    listances  only  in angles  between vectors.     For  this 
reason  it   is quite  sensitive  to  the selection of   the origin with  respect 
to which  these angles  are  to  be measured.     The dot  product   is   not  only 
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sensitive to the selection ol nrigln, but it is also sensitive to the 
magnitude of   the vectm ciata |)oints and cluster averages as well.  The 
Euclidean distance d<>«' in>i tlopend on the choice of origin and can be 
viewed as using an additive normalization of the dot product measure of 
similarity to m; ke It independent of the origin.  Euclidean distance is 
invariant with respect to orthogonal transformations (i.e., rotations) 
of the data.  Th»- Mahalanobis distance is sensitive to the covariance 
of the data points around the various cluster centers and is invariant 
with respect to linear transformations of tf e  data, as well as invariant 
to the position of the origin. 

The division of a single cluster into two clusters in ISODATA, which 
wo call splitting, involves first the evaluation of the desirability of 
dividing the cluster into two clusters, and secondly, a procedure for 
doing this splitting.  In the original ISODATA algorithm, splitting was 
performed by setting an arbitrary process control parameter 0 and then 
evaluating each cluster on the basis of whether the maximum standard 
deviation along any of the dimensions for each of the clusters exceeded 
0   .     If 0 was exceeded, the cluste." »as split.  Certain problems result 
*hen this is done.  In particular, it is possible to select the value of 
9  such that a cluster is split and then at a later time the two result- 
in« clusters recomblned because the distance between the means of the 
two resulting clusters was too small relative to the value of the para- 
meter 0  that controls when two clusters are to be recomblned.  The 
dependence of the evaluation only on one dimension was also felt to be 
inadequate. 

A nev procedure now programmed with the ISODATA algorithm performs 
a trial splitting for each of the clusters.  This new splitting criterion 
functions as follows: 

(1) Find that one dimension among the original coordinates of the 
data having the largest standard deviation about the mean of 
the cluster. 

(2) Sort the data into two subsets--a subset consisting of all 
patterns having a value larger than the mean in that one 
coordinate, and a subset consisting of all patterns having 
values smaller than the mean in that one coordinate.  (Note 
that a comparison of one component of the data vector with the 
threshold is all that is required for this step.) 

CO  Find the means of these two subsets. 

(4) Use the magnitude of the vector difference between these two 
means as an approximation to the distance that would exist 
between the two cluster centers resulting from the split.  (It 
is an approximation because the effect of the patterns in the 
other clusters 1  not taken into account.) 

(5) Compare this magnitude with the threshold (1.1)0 and split 
the cluster if that threshold is exceeded. The threshold 0 
is the parameter that determir.es when two clusters are to be 
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combined into a single cluster (lumping). The  advantage of 
the neu splitting criterion is that it is now a global splitting 
criterion in the sense that one measures the distance between 
the new cluster means after splitting using all of the dimensions 
rather than Just evaluating the cluster on the basis of the 
largest standard deviation in any one dimension.  It has the 
further advantage that it will make~possible, although this 
has not yet been Implemented, the selection of that cluster 
that will maximally decrease the squared error when split. 
This will be useful if the ISODATA algorithm is to be used to 
trace out the curve of MSE versus the number of clusters, as 
is done in the Singlcton-Kautz algorithm. 

"Die recombining or lumping of two clusters depends on measuring 
the Euclidean distance between all pairs of cluster averages and com- 
paring this distance with a threshold 0   In the past, all clusters 
having inter-pair distances greater than « have been recombined.  In 
the future it may be desirable to combine that single pair of clusters 
that minimally increases the squared error.  This would be simple to do 
because the sum-squared error is a function only of the overall mean, 
the two cluster means that are being considered for recombination, and 
the number of patterns in each cluster.  If this were done, it would 
result in the complete elimination of the process parameters that have 
been used to control the ISODATA process.  In certain cases it seems that 
removal of these parameters from consideration would be useful.  In other 
situations, when uc wish only to use the magnitude of the distance between 
the cluster centers to determine the number of clusters, it may bo 
desirable to retain 0 . 

Output From Computer Programs 

Given that we have performed the clustering of a body of data, there 
remains the question of what particular fact about that clustering we 
wish the computer to print out for our further examination.  We have 
found that the averages of the clusters, a list of the date points in 
each cluster, the distances between cluster centers and some statistics 
on the within-cluster spread versus the between-cluster spread are 
particularly helpful. 
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Ill     NEW   INFORMATION RELATING TO MSE CLUSTER-SEEKING  TECHNIQUES 

Two  recent  results  are: 

(1) That  the curve of   the MSE versus  the number of  cljsters  is  not 
convex   but   that   it   is    'star-shaped,"   which   is  a weakened   form 
of  convexity. 

(2) That  the  ISODATA algorithm will  converge  to a  partition that   is 
not a   local   minimum. 

The Shape of  the MSE  Curve 

Dr.   Richard Singleton has  been able  to show     that  the curve dis- 
playing  the MSE versus   the  number K of  clusters  is   not  convex.     The 
counterexample he obtained   is   shown in Fig.   7.2.     He has  been able  to 
show,   however,   that while  the curve is  not  convex with  respect  to all 
possible  pairs of  points,   it   exhibits  convexity with  respect  to  those 
pairs  of  points having as  one member of  the  pair either K =  1 or K = N, 
where N  is   the number of  data  points.     This  form of  weak convexity has  been 
described  previously and  labeled "star-shaped."     (See Bruckner and Ostrow, 
1962,   lor a  further discussion of  star-shapecness.) 

It   is  worth  noting that,   at   least   in appearance,   the weakening of 
the convexity of   this  curve  to star-shaped form does   not  appear to allow 
the MSE  vs.   K curve  to be very  non-convex.     In the future we hope  to 
use the star-shapedness  of  the MSE vs.   K curve  in evaluating an empiric- 
ally obtained MSE vJ .   K curve.     We would  test  the star-shapedness  of 
the curve and when,   for a particular value of K,   the MSE   (K)   violates 
this  star-shaped  condition,   we would attempt  to find a  new partition 
such  that   the curve becomes  star-shaped. 

Convergence to Non-Locax Minima 

The  representation of  a  one-dimensional  data  set  as  a  contour-map- 
of-SSE   (0   ,  0 )  allows  us   to  investigate the  dynamics  of  a "simple"   ISODATA 
process   (one without  splitting or lumping).     This  plot  is  shown in 
Fig.   7.3.     This  representation gives  the value of  the sum of  the squared 
error as  a  function of   the position of  two thresholds  placed along  the 
real  line  for the  data  suown  in Fig.   7.4.     In using  this  representation 
we use  the  knowledge  that  the convex hulls  of  an MSE  partition cannot 
intersect.     The  tracks   shown on  the contour  plot  show  how   this  "simple" 
ISODATA  algorithm  shifted  thresholds  from  iteration  to  iteration.     In 
"simple"   ISODATA wo used cluster averages  obtained  from one iteration  to 
define  the  threshold  positions   for the next   iteration,  which  in turn 
defined  the cluster averages   for  that  iteration.     We see that  this 
"settling  process"   i oes   not   always   find  even a  local  minimum of   the sum- 
squared error surface  nut  that   it  may   (owing,   we believe,   primarily  to 
the discreteness   of   the data)   stop on a "shelf"   in  the SSE  function 
fairly  remote from a   local  minimum point  of   the sum  squared error surface. 

* 
R.   Singleton,   internal  SRI   memorandum,   June   1966. 
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The  contour plot  also  illustrates   the existence  for   this   data set 
of   two minima   of   the  sum-    juared  error   function   for   three  clusters. 
Using  the   plot,   we  have  obtained  examples   having   all   four   combinations 
of one or  two minima   for   two clusters   and one or   two minima   for   three 
clusters.     At   a   future   time  we expect   to use   this   plot   to  help us 
further   in  examining   the   relationship  between   the  Singleton-Kaut?. 
algorithm  and   ISODATA.* 

* The normal Singleton-Kautz algorithm run on this data and it did 
find the MSE partition. We will run the regular ISODATA program on 
this data shortly and we will give the results in the final version 
of   this  paper. 
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IV  DATA SETS 

In this section we describe sets of data so constructed that we 
believe that they will brinK out the^sensitivities of cluster-seeking 
techniques that are applied to them.   These data sets can, we believe, 
test the power of cluster-seeking techniques to suggest structure in 
data.  These data sets should also be useful in interpreting the results 
of clustering, since similar results on data of known structure might 
indicate a similarity in data structure between this data and data of 
unknown structure. 

We have designed data sets to embody many conventional assumptions 
regarding data.  In the first several sets of data it is most convenient 
to describe these assumptions in statistical terms. 

Data Set I consists of a mixture of normal distributions of varying 
means, with each distribution having as covariance matrix the same 
scalar multiple of the identity matrix.  (See Fig. 7.5) 

Data Set 2 has the same mean values as Data Set 1, with the 
covariance matrices being the same for all clusters but no longer 
diagonal.  (See Fig. 7.6) 

Data Set 3 uses the mean values of Data Set 1 with different 
covariance matrices for each cluster.  (See Fig. 7.7) 

Data Sets 4 and 5 have characteristics similar to Data Set 3. 
Variation in a few dimensions of each cluster is low, but there is very 
high variation in the other dimensions.   These data sets are meant to 
relate to data in which some measurements are very important under some 
conditions while other measurements are very important under other con- 
ditions.  Cluster-seeking techniques ultimately should be able to 
Isolate each underlying distribution by finding those dimensions that 
are of small variability.  (This data can be viewed as measuring the 
technique's ability to cluster data points and variables simultaneously.) 
(See Fig. 7.8) 

Data Set 6 tests for the cluster-seeking technique's ability to 
deal with variations in the sire of clusters in different regions. 
(See Fig. 7.9) 

Data Set 7 tests sensitivity to local variations in the data 
structure.  In this data set the small blob of data points Isolated 
from the main string by a region of practically zero pattern density 
Is the important feature of the data.  Minimum squared error partitions 
assuming identical covariance matrices for all distributions will, in 
general, not find the small group until the large group has been broken 
down into many small groups.  (See Fig. 7.10) 

Data Set H tests sensitivity for overlapping mixtures of Gaussian 
distributions.  (See Fig. 7.11) 

* At this time only Data Sets 1,2,3,7,12,16,18,19, and 20 exist as a 
set of data points.  The other data sets will be generated in the near 
future. 
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Data Set   9 should be sensitive  to cluster-seeking  techniques   that 
look   for non-linear,   essentially one-dimensional  data  embedded   in a 
high-dimensional   space with  mixed data   populations.     An example of  a 
process   that might   generate   this  kind of  data might   be data  derived 
from a  particular word  in the English   language spoken  many  times   by each 
of   ten different   speakers.     If measurements are made on  this  word over 
a  number of   instants  of   time,   the word   itself  can be viewed as  a   trajectory 
in some data  space.     Since  there is   no  guarantee  that  even the same 
speaker,   speaking  the same word,   will   say   it   in the same »ay,   particularly 
If  one attempts   to vary  the  environmental   conditions  under which words 
are  spoken,   it   is  helpful   to  be able  to break apart  words   that   are spoken 
differently and  yet  still  be able  to combine words   that  are spoken very 
similarly.      (See Fig.   7.12) 

Data Set   10 should be sensitive  to  those techniques   that  seek  to 
isolate  patterns   into clusters,   based  primarily  on  the absence of 
patterns  between clusters   rather  than on variability within clusters. 
(See Fig.   7   13) 

Data  Set   11   examines   the sensitivities  of  techniques   to  particular 
kinds  of  constraints  placed on  the data.     In this   case,   the constraint   is 
that   the data all   lie on a  spherical   hypershcll. 

Data  Set   12  consists  of   uniformly  distributed   random data.     It  pro- 
vides  a  good test   for the sensitivity of   techniques   to  structure within 
data.      If   it   is   not   easy   to   tell   from   the  output   of   a   program   the 
difference between uniformly   random data  and the clustered data  of Data 
Set   1,   then we would have  to assume  that   the particular  technique being 
tested uould  probably be extremely difficult  to  interpret without   further 
information being  provided by  the  program.     (See Fig.   7.14) 

Data  Set   13   is a collection of  Gaussian distributions  whose means 
lie  in a  two-dimensional  space and with  data points   in a  three-dimensional 
space.     The  data   points  have been  rotated so that   they   He  in a   three- 
dimensional  subspace of  a  six-dimensional  space.     This  data set   provides 
a means   for evaluating our ability  to  interpret   results   from high  dimen- 
sional  datn  when  that data  can be exactly characterized   in a  lower dimen- 
sional   sp^^c. 

Data Set  14  is very similar  to  the preceding one,   but  instead of a 
simple  rotation  into a higher dimensional  space,   a  non-linear  transfor- 
mation was used so that  linear techniques  like principal components will 
not   help much.      (See Fig.   7.15) 

Data  Set   15  consists  of   data  generated from complicated models  plus 
noise"!   in order to see  if we can recover hints as   to  the  nature of  the 
model.     These data  sets  are  probably closer to those  obtained  from a 
scientific experiment  in which we have only a vague  idea as  to the 
underlying processes and wish  to use  the cluster-seeking  technique  to 
suggest   what   the  underlying  processes  might  be. 
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Data  Set   16 consists  of   onc-dlmensional   data menttonedearlier  that   is 
^nown   to  have  certain  characteristics  *ith   respect   to minimum squared 
error   (See FIR.   7.4).      It  has   been added  so   that  studies   can be made  of 
the dynamic  process   by which  various  cluster-seeking  techniques   arrive at 
a  particular  partition of   the  data. 

Data   Set   17  consists  of   five-dimensional   data  for which an attempt 
has  been made   to minimize the  information  obtained  from a  marginal   dis- 
tribution  along  any  dimension  or  pair of   dimensions   in a   scatter plot   and 
so situated  that   a  principal  components  analysis gives   little  information. 
The data   itself   is  »ell-clustered   in the sense  that   for each  cluster, 
within cluster  deviations are very  small  with   respect   to  the distance 
between a   cluster  and   its  closest   neighbor. 

Data  Set   1H   is   the historic  Fisher-Kendall   data  set   describing   four 
measurements   made  on   three  species   ol   Iris.      This  data   is   included   to  aid 
the  comparisons   between  techniques   that   have  been developed  over a   con- 
siderable   period  of   time,   since  this  data   set   has  been  used by  a  number 
of  experimenters.      It   is,   however,   a   fairly   simple set   of  data. 

Data  Set   19  is   a   large  body  of   data   consisting of   20  measurements  on 
1000  data   points,   provided by  Dr.   Bernard Glueck of   the   Institute  for 
Living.     This  data  does  not  have  well-known structure and  is  probably 
rather  complicated       It   is  a   test   not   only  of   our ability   to  interpret   the 
data,   but   it   also  provides  a   good  evaluation  of   the   technique's   capabili- 
ties  with   respect   to   large data  sets  of   real   data with  relatively  high 
numbers   of   dimensions. 

Data  Set   20  consists  of   122  measurements   made on  97  species   of  bees, 
by Michener and  Sokal,   and has  been  Included   to  provide a   data  set   in 
which   the   number ol   measurements   exceeds   the  number of   dimensions. 

It   is   hoped   that   these  data   sets  will   provide a  sufficient   experi- 
mental   exercising of   a  proposed  cluster-seeking  technique  to  provide  a 
reasonably   good understanding of   the  capabilities  of   this   technique. 

Due   to   the   large  number  of   data  sets  we  discuss   only  Data  Sets   1, 
2,   and  3   in comparing   the Singleton-Kautz  algorithm and   ISODATA. 
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V COMPARISON  OF TECHNIQUES 

The comparison  of   the   t*o  techniques   is  divided  into a  section 
dealing  with   verbal   and  graphical   comparisons,   a   second  stating  analyti- 
cal   differences   and  similarities,   and  a   third  dealing  with  experimental 
results. 

Assumptions.     The  Singleton-Kautz  Algorithm  and   ISODATA   assume   that 
a  disjoint   partition   of   the data  set   with relatively  homogeneous data 
points  being  p' iced   in   the same  partition  is  useful.     Homogeneity  is 
measured by  a  "distance"   to a cluster average.     They  assume   that   the 
particular distance measure   that   they use  is   valid.     Particular varia- 
tions  of   these   techniques   are obtained   in   the  case of   the Singleton- 
Kaut/.  algorithm by modifying  the  criterion  against   which   improvement   in 
the  partitioning  is   measured,   and   in   the  ISODATA   technique  by  modifying 
the measure  of  similarity,   and  by  modifying   the  procedure  by  which 
clusters   are  split  and   lumped.     Global  or   local   evaluating  criteria  can 
be  used  with   ISODATA   to   further   constrain   the   solution   obtained.     No 
explicit  distributional   assumptions   arc made   in  either of   these  techniques 
However,   it   is   assumed   that   the  distance measure  or  the criterion used 
is  adequate   to  reflect   the structure of  the data  accurately. 

Economies  of Description       These cluster-seeking  techniques  describe 
those situations most   economically   in  which   isolated clusters  of data 
exist   with  dimensional   variation   that   is  high   in   the sense   that   the 
covariance  matrix of   the  means  of   these clusters   is  of  rank nearly equal 
to   that   of   the  data space.     These   techniques   are not   particularly effi- 
cient   in  describing  relatively  uniform random variability   that  occurs 
within  a   low-order  linear  subspace  of   the original   data space.     For 
these situations  the   factor-analytic   techniques   that   look  at   these   linear 
subspaces  seem more   appropriate.     They can,   however,   still   be used  in 
these situations  to  provide empirical  data categories.     The  cluster- 
seeking   techniques   try   to group patterns so  that   the  average  squared 
distance  from cluster moans   is not  significant.     Factor-analytic 
techniques  seek  to place   the data   in  a   lower dimensional   space  and   then 
retain   the   full  variability of   the  data within   that   lower dimensional 
space. 

Limi tat ions.    These  cluster-seeking  techniques,   when  using either  a 
criterion  or  a measure of  similarity  corresponding   to Euclidean  distance, 
are sensitive   to changes   in  scaling,   although  they  are not   sensitive  to 
rotations  of   the data or   the  position of  the  origin.     Changes   in  the data 
set   that   affect normalizations  based on   the  data sets,   such  as   the 
standard deviation about   a mean,   may  modify   the  clustering obtained. 
When   the   ISODATA  technique   is  used  with  the  Mahalanobis   distance  it   is 
relatively   Insensitive   to   the  scaling of  the  data.     The  results of using 
these   techniques  are   frequently  difficult   to  interpret   because  these 
results   have   a   large  number of  degrees  of  freedom.     Therefore,   any  simple 
Interpretation  usually could arise   from a great   variety  of  data seti"! 
Hence   these   techniques,   when used   to obtain   too a simple  description 
may  provide   little  interpretive  discrimination  between  data sets. 
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(Thi^   same  criticism holds   for  most   techniques  based solely on   the  co- 
varlPnce matrix).     Complex descriptions   that   more  accurately  reflect 
details  of   the  data  are apt   to be confusing. 

Im ,ir lain es .     The Smgleton-Kautz  algorithm  Is   invariant   vkith 
respect   10 orthogonal   transformations   and   translations   of   the  data.     The 
ISOÜATA   ttchnlque  usinj; Euclidean   distance   is   also   invariant   with   respect 
to orthogoi.al   rotations  of   the  data  and  translations  of   the origin  of  the 
data       If   the  Mahalanobls  distance   is  used,   then  ISODATA   is   largely 
invariant   »i(h   respect   to   linear   transformations   as   well   as  with   respect 
to   translations   of   the data.      These   techniques  both   tend   to produce 
different   results   il   individual   data  points   are deleted   from  the  data 
set,   particularly   if   these  data  points   are  "outliers"   or  "wildshots." 

It   is  well   to  reiterate   that   different   kinds   of   data may  be   invari- 
:ui t   uith  respect   to  the clustering procedure  in  that   the clustering 
procedure may  not   be  sensitive   to  the  ways   that   these  data  sets   vary. 
If   the  paitic'.tlar   variability   is   important,   then  a   technique  has   to be 
develop»d   tlat   is   sensitive   to   this   variation       For  example,   if  scale  is 
important   an I   th^re   Is  some  natural   way  of   definiiiK   the  scale,   or  where 
there   Is   a  desire   to weight   certain  variables  more   heavily,   then 
invanaiue  with  respect   to scale  would not   be a  desirable   feature   for 
a   technique 

Extrusion-,   to  Different   Problems.      ISODATA appears   to be more 
directly extendable  to the clustering of   points  around   line segments or 
planar  sections.      At   this   time  an   algorithm  is  being  programmed*   to 
cluster points  around line segments.     This  algorithm uses   the  following 
notions   that   exist   in   the   ISODATA algorithm. 

(1) The  creation  of  new  cluster  centers   (the  cluster centers   arc 
now   line  segments). 

(2) The  evaluation  of   the usefulness   of  a  given   line  segment. 

(3) The   iterative  shifting  ol   the   line segment   to place   it   In 
"better'"   position. 

(I)     The  combination  of   those   line   segments   that   can  be  combined 
without   greatly   reducing   the   information   we   lave  regarding 
the  structure  of   the  data. 

When   we   have   completed   programming   this   algorithm  we   »111    investi- 
gate   the  desirability  and   the   feasibility   of  clustering   data  around 
triangular   planar  sections.     This   would  enable us   to  approximate  mix- 
tures   of non-linear   two  parameter  surfaces   that   are  embedded   in   a 
hypers pace .  

James  Eusebio  ol   SRI   has   done  all   of   the  programming  and  much  of   the 
work constructing  this   algorithm. 
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Goals.  These cluster-seekinK techniques have as their goal the 
determination of structure in data.  They are sensitive to density- 
variations in the data in the original high dimensional space.  Both 
techniques can be used on any kind of data (including nominal data that 
is jorrectly encoded).  Interpretations uust correspond to the assump- 
tions given above that were made in developing the techniques and 
whether these assumptions are being met by the data. 

Analytical Comparison.  These techniques minimize a criterion sub- 
ject to certain constraints.  The Singleton-Kaut/ algorithm explicitly 
evaluates and minimizes SSE as a global criterion.  It is constrained in 
this minimization to make reassignments of single data points.  It per- 
forms this minimization by hill climbing (or really, valley descending) 
from a variety of starting positions and then selecting for one cluster 
up to KMAX clusters the lowest value of SSE found in the various tries 
as the overall minimum. 

The ISODATA technique tends toward implicit minimization of SSE by 
requiring that a stable partition meet the necessary condition given 
above   Its settling procedure is not as powerful as the single move 
minimization, as can be seen in Fig. 7 16.  For the data of this figure 
either threshold satisfies the conditions for a stable ISODATA partition. 
Only the optimum threshold Sj satisfies the stopping criterion of the 
• ingle move algorithm.  The ISODATA technique is constrained to find that 
minimum squared-error partition that keens the minimum distance between 
the means of all pairs of clusters greater than ec.. 

The computation time for the "inner loop" of the Singleton-Kautz 
Algorithm and for the "inner loop" of the ISODATA program using Euclidean 
distance as its measure of similarity is approximately equal.  The ques- 
tion of convergence per iteration remains to be examined as does the 
effect of large nui.ibers of data samples and of high dimensionality of 
the data. 

Experimentally on 225 two-dimensional data points we have observed 
that the Singleton-Kaut/ algorithm finds a partition of the data that 
has a SSE that is about 10 per cent lower than that of the partition 
found bv ISODATA.  We do have Instances, however, when ISODATA has found 
a lower SSE for this same type of data.  Perhaps more importantly, for 
many applications, we have recently noticed that the Singleton-Kautz rl- 
gorlthm required 15 iterations through 1000 slx-dlmenslonal data samples 
before it found a single move minimum lor SSE.  We plan to examine this 
question further by making a detailed comparison of the iteration by 
Iteration reduction by these two algorithms of SSE on a variety o:   data 
sets.  This has not yet been done as it requires some modification of the 
Singleton-Kautz. program to allow the two programs to start from the same 
partition of the data.  The evidence thus far Is that the Singleton- 
Kautz. algorithm generally finds a lower value of SSE than does ISODATA. 

If a more complicated distance function is used, such as a sum of 
the Mahalanobis type distances, then the necessity for the Singleton-Kautz. 
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alRorlthm   to  Invert   a  matrix   after  each  data  sample   Increases   the  compu- 
tation  of   Its  "inner   loop." 

Since   ISODATA  does   not   chanRe  W"^  until   all   of   the   patterns   have 
been   resorted,   ISODATA   should   have   lower  running   times   with   the 
Mahalanobls   type  of   measure  of  similarity. 

Experimental Comparisons. The experimental comparisons described 
in this paper »ere confined to Data Sets 1, 2, and 3. The results are 
summan/ed   In  Tables   I,   II   and   11 land  Figs.    7.17  and  7.1h. 

For Data Set 1 the Sln^leton-Kaut/ Algorithm and ISODATA produced 
Identical   clusterings   pattern   for   pattern. 

TABLE   I   -   EXPERIMENTAL RUNS ON   DATA SET   1 

Sing let on-Kaut/ ISODATA Data   Means 

2,8 
7,7   and  8,6 

9,1 
3,2 

<^ Identical 6,3 

1.9 7   9 
7.C 6.5 
9.1 1.1 
2.9 2.1 
6.0 3.0 
1.0 4.3 
4. 1 8.9 
5. 1 5.1 

SSE 139.69 

to Slngleton-Kautz 1,4 
4,9 
5.5 

139.69 

For   Data Set   2   the  clt :terlngs   were  quite  similar,   ulth only   two 
out   of   ten  cluster  centers   being   very  different. 

TABLE   II   -   EXPERIMENTAL RUNS   ON   DATA  SET  2 

Sing If ton-Kaut / ISODATA Data  Means 

■J . h 9.4 5.0 9.5 1,9 
H. J 6,9 9.0,6.7   and   7.5,7.3 h,6;   7,7 
9.2 1.3 9.1 1.2 9,1 

4.9,2.2  and   6.7,3.4 5.4, 3.2 6,3 
2.1, 1.7 2.5, 1.7 3,2 
1.7, 7.7 2.2, 8.2 2,8 
3.3, 4.7 2.0, 5.4 
-.1, 3.8 -.4, 3.4 
8.4, 5.7 6.5, 5.5 

SSE  296.27 333.26 
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For   Data  Set   3   t*o  cluster  centers   are  markedly  different   in   those 
regions   having   fe*   data   points. 

TABLE   III   -  EXPERIMENTAL RUNS  ON   DATA  SET 3 

Singleton - Kau t z ISODATA Data  Means 

1.6 8.4 1.6 8.4 2,8 
5.2 8.3 5.1 8.3 
5.1 3.5 5.0 3.7 
1.4 3.8 .75 3.5 1.4 

11.7 .7 11.9 .5 
8.2 5.9 8. 1 e.o 8,6 
7.2 2.0 7.5 2.2 
2.3 5.2 3.4 5.4 
2.1 . 1 4.5 .85 
-.« 2. 1 

1. 1 -.2 

SSE 380.55 411.19 

The Singleton-Kautz  algorithm   (SKA)   found  a   lower-valued SSE 
partition   for   Data Sets  2 and 3   than   ISOIUTA.     The positions   of   the 
clusters   were  almost   the same  in  most   Instances.     ISODATA quickly got 
a  reasonably  good  partition   for  these data sets   but  was  very slow  in 
improving   it.     SKA  found a reasonable  partition   almost  as   rapidly  for 
these data sets  and   improved  it  rapidly.     SKA  is  considerably easier 
to run,   since   it  systematically  provides   values   for minimum SSE  for all 
numbers  of  clusters  up  to KMAX.     However,   in   runs  on other data  that 
had a  considerable number of  wildshots   and was  of  higher dimension, 
ISODATA proved   to be easier  to  interpret   and  run since   it   was  not  as 
affected  by   the wildshots.     That   is,   ISODATA rapidly  increased   the 
number of clusters  until   the «ildshots  were   isolated.     In   this   latter 
application,   ISODATA  was  more  effective. 

The  statistics  of   the data  that   the   two  programs   provide  as  output 
are almost   identical. 
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VI        INTERPRETING EXPERIMENTAL  RESULTS 

In   this  section   *e  discuss 

(1) An  analytical   technique   for examining  the  amount  of structure 
In  data. 

(2) The »ays   that   graphs   can usefully  aid  In   Interpreting experi- 
mental   results. 

(3) An   interactive  computer system  for  analyzing multlvariale  data. 

Random Reshuffling  of   the Components  of   Data  Points   as  a Non- 
Parametnc   Test   of  Structure   In   Data 

Dr.   James   MacQueen   (1966)   has  suggested   that   the   random  rearrange- 
ment   of   the values   associated  with each  component  of   the  set  of  data 
vectors   is  a »ay   In uhlch a  non-parametric   test  of  the  amount  of  struc- 
ture   In   the original   data can  be made.     More  precisely,   consider an 
ordered set of data  points   In  which each data  point   Is   a  row In a data 
matrix  and each variable  has   Its  values   In  a  column  in   the data matrix. 
First,   the data  Is  clustered using  the original  data points  and some 
measure--for example,   SSE--   Is   made of   the   reduction   In   variability 
around   local   cluster means   resulting  from  the  clustering.     Next,   each 
column  of   the data matrix   Is   Independently,   randomly  rearranged.     This 
causes   the values   of  each  variable   for   the  data  points   to be  randomly 
associated with   the  values  of  other  variables   fram other data  points, 
which  tests   if   the  specific  associations   found  in   the  data are   important. 
The effect  of   this   is   to create  a more or  less  uniform distribution  of 
data  points  within   the   rectangular  hyper-paralleleplped   that  contains 
all   of   the data points.     If   the disorganization   (measured by SSE)   increases 
perceptibly on  repeated  trials  of clustering  of   the  reshuffled  data,   then 
It  can  be said  that   statistically  the original   data was  more structured 
than  would be expected on   the  basis  of  chance.     In  other words,   if   the 
value  of  SSE   for   the  original   data  is   at   the  extreme   lower end of   all   of 
the  sample values   oi   MSE obtained by   this   random reorganization  of   the 
data,   one  could say,   with  some  statistical   confidence,   that   the original 
data  was  structured. 

This  seems   an  exceptionally   important   concept   in   the evaluation  of 
the   results  of  cluster-seeking   techniques.      Its  primary  disadvantage   lies 
In   the   recomputatlon   required,   since   first   you  must   randomize   the  data 
points   and second   you   recluster  all  of   the   randomized  data.     As   t'ne  cost 
of  computer analysis   is   further  reduced,   this   disadvantage   id   reduced, 
particularly  since  an   interpretation   that   the  data  has   structure  may  be 
greatly   strengthened   by   this   test. 

Graphical   Presentat ions 

In  using  graphs   to  aid   in   the  analysis   of  data,   several   points 
seem  particularly   Important.      These  graphs   should   include  presentation 

7. 19 



of residuals and means of limiting the subset of variables and/or data 
points plotted, or allow use of special symbols. Five such graphs are 
described* In the following: 

(1)  In any projection of a set of data points down onto a lower 
dimensional space it seems important to know the amount of the 
residual variation remaining that is not shown in the plot 
itself.  Such a plot is shown in Fig. 7.19, in which the data 
is plotted with respect to a line in the hyperspace.  Points 
are plotted with respect to two coordinates, one their distance 
along the line in terms of the perpendicular projection down 
onto the line, and, secondly, the distance they lie from the 
line measured perpendicularly. 

(') We can project high dimensional data down onto an arbitrary 
plane. The distance perpendicular to that plane, i.e., the 
residual variation, is indicated in the plot by the size of 
the symbol.  (See Fig. 7.20.) 

(3) The "metroglyph" suggested by Edgar Anderson (1957) shows 
either a small, medium, or large amount of residual for three 
additional variables.  This symbolology can be grasped quite 
quickly by eye.  A metroglyph is shown in Fig. 7.21. 

(4) We can project data points down onto an arbitrary plane without 
indicating the residuals.  If this is done, however, it seems 
important to position this plane or the line meaningfully and 
to restrict those points that are plotted on this graph to 
those having small residual variation.  (See Fig. 7.22.) 

(5) The graph of MSE(K) vs. K is extremely useful for MSB cluster- 
ing algorithms.  In Fig. 7.23 we show the difference in this 
curve between Data Set 1, clustered data, and Data Set 12, 
uniformly random data. 

An Interactive Computer System xor Analyzing Multivariate Data 

In a project presently underway at Stanford Research Institute** we 
are making use of an interactive computer to give us considerable con- 
venience in selecting and modifying the point of view from which we 

* For a discussion of a wider variety of multivariate plots see Ball (1967) 

♦♦ David Hall of SRI and the writer have done the planning on this pro- 
ject together.  Mr. Hall and Dan Wolf have done the computer system 
design and the programming.  The project is supported by Air Force 
Contract AF 30(Ü02)-119C under the technical cognizance of the 
Information Processing Branch of Rome Air Development Center. 
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examine our data.  Parts of the computer system are shown in Fig. 7.24. 
We will have available data manipulation programs that would allow us to 
modify the scaling or the variables actually used in describing a data 
set, and statistical routines including principal components and the like. 
Eventually, we will have available statistical routines for testing 
hypotheses.  We have cluster-seeking techniques for finding good place 
within the data to look, and a section in which it would be possible to 
create data artificially in order to test a particular model or to 
generate data from a model with which experimental data can be compared. 
Perhaps most importantly we will have a large variety of graphical 
presentations that will allow a person to explore the data points as 

nearly as possible in their proper perspective in the hyperspace in 
which they lie.  It is our intention that we will be able to do this 
with considerable convenience.  If this occurs, we expect to be able to 
far surpass what the human being is able to do with .1 series of two- 
dimensional plots, since we will be able to guide the computer into those 
positions that will give us the most "information." 
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VII  CONCLUSIONS 

For systematic analysis of relatively clean data, where the finding 
of the MSE partition for small numbers of clusters is a reasonable goal, 
the Singlcton-Kautz algorithm appears to find partitions that have lower 
values of SSE than ISODATA.  From past experience with other data, 
ISODATA appears to be superior for noisy data, where the goal is quick 
isolation of the principal modes of the data with exclusion of outliers. 

The program implementing the Singleton-Kautz algorithm is easier to 
use in a batch-processing computer.  We feel that ISODATA may prove 
easier to use in an interactive computer in which the Judgment of the 
operator is used in lumping, splitting and evaluating clusters. 

The relative speed of convergence of the two algorithms to an MSE 
partition apparently depends to a greater degree than we had expected on 
number of patterns and number of dimensions.  This aspect of the compari- 
son must await further experimental investigation. 

For finding partitions that minimize the sum of Mahalanobis type 
distances it appears at this time that ISODATA would be computationally 
more rapid. 

Interpretation of the results of these clusterings is by no means 
easy.  Several different ways of presenting the data are described and 
an interactive display-oriented computer system for analyzing multi- 
variate data is discussed. 

At this time we see the two most important goals of cluster-seeking 
techniques as being: 

(1) To describe the data as simply as possible, consonant with the 
user's need for accuracy. 

(2) The evaluation of the degree to which structure exists in a 
body of data. 
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Rotatlnp, Prlnclpul Axe» Into Approximately MutunJly 
Fxclunlvc CateKorle« 

Kobert C.  Ilydtr 
Oil Id Research Brnncli 

l.aClonel Institut, of Mental llenltli 

If one coniilderH th< history of personal lev rest'nrch anti thntiuht over 
the past sixty years or so, there svems to bo a Rencr.il trend for terns tlt.tl 
have originally designated categories to «vcntually become labels for ^Imunnlnns. 
The category customarily bfcomes dlnlnished In meanlnp t' mcrelv üaslgnatt 
extreme scoring cases on the dimension. Hysterics become hlfli scoring cams 
on a scale of hysteria, neurotics are those scoring Mr i on neurotlrlsn, 
extraverts score high in extraversion, and so on. AC least where category or 
type means what Cattell calls a homoiitat.  I.e., a collection of object» with 

similar attributes, this is likely to be the course of events for must typologlea. 
Science tends to move toward greater precision. The idea of catepory is 
intrinsically binary, and hence usually involves throwing Information away. 
Therefore, where Mtu.it ions permit, ves-no category concepts tend to drift toward 
contlnua, to permit more precise measurement potentialities. 

Even ehe following progression is possible. An inventigator factors a 
group of variables and obtains, say, seven dimensions,  t .ich subject is then 
represented by a profile of seven factor scores. The investigator uses the 
factor scores as a basis for clustering individuals, and obtains U categories 
of subjects.  In later work with this category system he becomes dissatisfied 
with the crudity of simply labeling a subject as in or out of a category, ard 
so speaks, say, of the precise distance a subject is from the centroid of t.ie 
category. But a subject has a distance from the centroid of each category 
so now ea'ii subject is represented by a profile of 14 distances. Thus aclt-ncc 
advance». 

While it is convenient snd useful to measure continue, there are ofren 
situational and conceptual restraints which lead to retaining binary distinction». 
It is not customary for example, although perhaps it should be, to admit a 
student half-way to college, or to partly hire a person, or to asslen a man to 
a position between two job categories, or to be semi-married, or to have a piece 
of furniture that Is si .tewhere between a couch and a desk.  In personality work, 
direct observation or conceptualization may conflict with the idea of a continuum. 
Many scores are possible on most measures of psychotic ism; but a number of 
clinicians continue to maintain that being moderately psychotic is like beinx 
moderately pregnant. 

In general, for personality work, the idea of a type or a syndrome is useful 
for those who must try to comprehend individual cases, or who want to put some 
flesh and blood reality into the psychometricians abatractions. This way it is 
possible to imagine how various attributes may fit together as an organic unity, 
and to engage in some meaningful gestalt completion of a pattern that may be 
exhibited only in fragments.  Sine« Mrs. Jones looks a bit like a classical 
hysteric in the way she presently acts, should we not keep an eye out for other 
parts of the pattern? Will »he also exhibit conversion symptom», la belle 
difference, or even fugue? A practical example of the use of the syndrome idea 
is to be found in Kennedy (1965). A decision is made as to whether a child fits 
one or another type of school phobia, and then the therapist make» explicit and 
direct use of his educated guesses as to various, so far unrevealeü, aspects of 
the child's behavior. 
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There Is no problem in uslnf: •Hmcnnions for neasiirenent nury'osca wlille 
rontlnulnr; to think in terms «>f cnter.nriGS, syndromes or tvpes. as lone, as only 
one ditnension is considered at a tine. Types can simpiv refer to portions of 
tiie dimension's rant;e. for example, a type mlj'lit be deriyed by any means 
wiintsoever, amt individuals scaled on a dimension of distance from ttic centroid 
of the type, or perhaps acrordinp to tlie prubahilitv that they belonr in the 
type, in which case the type laliel would refer to low distance scores or his.h 
probability values. there is, however, a practical prolilcm where a number of 
different dimensions are used simultaneously. Since it is convenient to tiiink 
of types as mutually exclusive, it is no lonp.cr possible slnply to translate 
type' into 'extreme score. One deals instead with profiles of scores, and 

talks shout a particular score profile .is beinc such and such a tyoe, with such 
and such a set of miscellaneous attributes. However, with even a moderate 
number of variables, t'ne number of possible profiles becomes crest, even if 
the number of popular profiles is not so great. Apart from the nunber of
profiles, the situation is sloppy and Inconvenient from the point of view of
a human user. »lhv should a syndrome be defined In terms of three or five or
seven variables if it can be defined in terms of one? The Intent of the
procedure to be described here is to reduce tills slnnpincss, to trv and make the 
case with several variables similar to that with one variable. That is. In 
the ideal situation, no matter how many variables are used a category remains 
defined as an extreme score on one and only one dimension, even as categories 
remain mutually exclusive, lo put It another wav, the attempt la to .lugglc 
things in such a way that all, or as many aa posslhle. of the score profiles 
are simple, single spike profiles.

Ihc procedure is as follows. Take an N observations bv T variables 
data matrix M, atandardixed for convenience in such a wav that is dlrcctl”
P. the T bv T matrix of product moment correlations airong variables. In general.

where

>« - X

X’X - T,
Y'Y - £

and '' is a uiagonal matrix. Principal axes om-rations .ire usec. lo obtain a 
n.atrix of loadings, Y \ , and one of scores,

Customary procedure at this point would eitlier ho to leave tiio axes 
unrotatod, or to rotat" V \ In such a wav as to yield simple structure .imonr 
viriablec. "ihc present sug ostlon Is inst >a-. t<' retat< a, the "-atrl;- of factor 
scores, in such a vtay as to yield simple structure among sublects. Ideally, 
the rerultlng matrix, sav slioulc! be one whore each sublect h.is approximately
zero scttres on all .11; ••nr;ions out one, l.e., all ernflloa shotil;! ho sln;>lt spike 
in form.

In the eyamplos to ho prosontot'. orthomoral rot.it Ion ves e- t loyed, using 
normal izoJ thiartimax pn-eci uros and thus m.-ixl-.l/-. l»n- tie likelihood tb.il •*ach 
nbsorv.1tion will h.ivo as fev» as possible scorov t’>-t ar< as extre:..- .i.s posslhir. 
A is therefore a square ortlionorr..il. irfiogonal rotation scorns roascmahln In 
vli-w of tiic intent of Ibis score or urofUr rol.^Unn (c.l. lyi't-r, l'’t>4). Tint
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Is,   there  1« no WäV  enrl>  subtcct  r./in iiNve no more  thfln one nonzero «core without 
XA  hplnK  nrthor.nnnl .     Since 

(XA) ' (XA) • A'X'XA 
- A'A 
- I 

t its cor.ilitlon !■. fulfilled by orthoponfll rotntion. 

It In posdlhli? fnr XA to be ortboponal while the colurorm of XA are not. 
nnrorrelwted, as when score« for tach dliTicniilon «re either «ome poRitlve value 
or sero.  More cateKorles «to r^pres^nted per dimenRlon, however, If dimensloni 
are bipolar, with po«ltlve «core values, negative «core values and zero score 
values, n situation that is guaranteed by the indicated standardization of M. 

If 
1' H - 0* ; 

0' 
1' 
i' 

M - 
H Y 

0' 
j. 

r X - 0' 
r XA - 0 1 

and 
(XA)' (XA) - I 

is directly the correlation roatr.x ainong profile rotated scores.  If 
1' M jt 0* 

then possibly 

1' XA / 0* 
but 

(XA)' (XA) - I 
still holds. 

The rotated factor matrix F corresponding to the profile rotation 

XA 1« found by talcing 
F (XA)' - M' 
F - M'XA 

- Y U  X'XA 
- Y \ A 

so that one car obtain F hv either postmultiplylng M' by XA or if A la known, 
po«rmultiplying Y X by A.  In either case the result is a matrix of factor 
loadings so rotated as to maximize the likelihood of sir pie factor score profiles. 

As part of continuing research on the first years of marriage (Raush, 
(Joodrici» and Campbell, 1963; Coodrich and Ryder, 1966; Ryder and Flint, 1966; 
Kyder and Goodrich, 1966; Ryder, 1966), a great deal of information was gathered 
concerning a small group of suburban mludle-class newlywed couples: N varied 
from 4 i to 49 couples as a function of missing data.  Since many more variables were 
Masurtd than there were couples, an intensive effort was made to reduce the 
number of variables to a manageable size.  Whnt we did was to consider all the 
variables from a given technique or kind of technique, such as interview codes, 
questionnaires, or objective testing, and cluster them on a more or less ad hoc 
ha«is.  The resulting clusters were then factored.  The factors from these 
several techniques were then Jointly factored in a final synthesis factoring 
which was based on only lr) variables (the 15 being previously extracted 
factors).  This iterative factoring procedure also was intended to reduce the 
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1 i ki’l liiof'd of mctiioii f^ictors, which custoniirily npoonr wiMiii from soviiral
sources .iro jointly fnctoreo (<.artwri:*lit, r irtner, and Fishc . 19*; 3 Cortwrir^lit, 
ami votli, lO'i?; Torsytl.e anh Fai rwcather, 19ol Cihson, Snyder.'nn«'. I’ny. IVII 
Mchols am', heck, 19(0).

Our factor <lata, and onr factor score dat.a. tl.us include three princir.al 
conpoiients bafieii on an objective test cal Icii the ('.qlor :'at rh in>: _'l est (C bT) 
((ajodrich .and boomer, r;vder and Ooodrich, J'if b ’'v ler, Ibbo), four based
on a content analysis of interview r.Mteri.'l, four base-, on ratings of interviews, 
and four based on the synthesis analysis. There were also four factors based 
on questionnaire material: but complications in their cKtraction and coirnosition 
make it convenient to nvpass t(iem In the present discussion.

factor scores for these various analyses were computed with and without 
profile rotation to pot at least a rouph idea of whether profile rotation 
increases the number of single spike profiles. In order to talk about spikes, 
it was necessarv to define some convention as to what was an extreme score.
It was decided to use that cuttlnp, point which would hvpothetically permit 
perfect differentiation between two sets of scores. Procedure was ns follows:

1) Two sets of factor scores, from the same principal components 
analysts, were tabulated in a frequency distribution of absolute 
scores, pooling between analyses and among axes.

2) The cutting point for extreme was located so as to leave (as 
closely as possible) N extreme scores overall, where N was as 
usual the number of observations.

If all profiles were either slnple spike or no spike, there could then 
be perfect, l.e., all single snike, representation of the scores using profile 
rotation, and no spiked profiles for the other set of scores (or vice versa).

Consider first the analysis of content codes from our interviews with 
the n€*wlywed couples. Ten to 12 hours of interviewing per couple were subjected 
to a detailed content analysis, the data from which were summarized in 37 clusters 
of codings. Four principal components were computed both for the unrotated 
axes and for profile rotated data. The frequency distributions of numbers of 
spikes are given in Table I for unrotated and for profile rotated data.

It can be seen that there was a modest trend toward more single 
spike profiles with profile rotation. For tbe content analvsis data alone, a 
check was made on the effects of conventional varit..ax rotation of factor loadings. 
Kcstilts for the corresponding factor scores, using tiie same cutting point, are 
given in Table 2.

Note that the number of single spike profiles is the same for unrotated 
data and data rotated in the usual manner.
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Tables 3 and A compare unrotated and profile rotated scores for Interview 
rntlnRs and for the CMT, respectively. Notice that for CT data the trend toward 
more single spike profiles with profile rotation Is reduced to the vanlshlnR 
point, and that the trend vanishes entirely for interview rating data.

The one reinslnlnK principal components analysis combines data from 
these other several sources, plus puestlonnalres, l.e.. It Is the synthesis 
analysis. Results for this are given In Table 5, and are a shade more 
encouraging.

On the assumption that there might be an Interest In the qualitative 
changes that might derive from profile rotation, factor loadings for the 
synthesis analysis are given In Table 6. These are expressed not In terms of 
the first order factors that went Into the synthesis analysis, but In terms of 
some of the variables on which those first order analyses were based. Variables 
Included in Table 6 are Chose irhlch loaded ^ |.30\ on at leaat one factor 
from each rotation. The most striking difference between the two sets of 
factor loadings seems to be that profile rotation tends to bring the evaluative 
variables together In Che same factor more Chan Is Che case for the unrotated 
factors.

The upshot of these various analyses Is fairly disappointing. There Is 
a slight tendency for profile rotation to increase the number of single spike 
profiles, at least for this sample: but ao slight as to make it doubtful that a 
reasonable Increment In single spike profiles la a dependable consequence of 
profile rotation. The trends have seemed so slight as to make It absurd to 
try and dignify them with Inferential statistics. On the other hand these slight 
trends, combined with anomalies of these analyses (too small a sample and too 
many variables), are enough to keep alive Che anticipation that with a larger 
sample and a cleaner set of variables the trends would prove to be nonchance 
auu of a magnitude to make profile rotation worthwhile. It should be noted In 
passing that the total frequencies of spikes are determined by the procedure 
for setting cutting points for extreme scores. Juggling the cutting points 
around Co ad hoc optima could lead to a much greater number of alngle spike 
profiles, and to a greater (or lesser) advantage for profile rotation. At any 
rate, data is now being collected on a far larger sample, and there should be 
more definitive Information In due course.
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Table 1 

Unrotated and Profile Rotated Factor Scored 
Baaed on Interview Content AnalyBls 

Spike» per Prof1le 

0) 

1) 
2) 
3) 
4) 

Unrota.ted 

29 
18 
2 
n 
o 

QHfrtl.aan Profile Rotated 

2i, 
23 
2 
0 
0 

Note: N • 49, four axes extracted from 37 variables. 

Table 2 

Scores corresponding to Varlmax Rotation of factor Loadings 
Based on Interview Content Analysis 

f 
Sjikes per Profile 

0) 26 
1) 18 
2) 4 
3) 0 
A) 0 

Note:  N - 48, four axes extracted from 37 variables. 

Table 3 

Unrotated and Profile Rotated Factor Scores 
Based on ?1 Rated Interview Variables 

QuartImax Profile Rotated 

31 
15 
3 
0 
0 

Spikes per Profile Unrotated 

0) 28 
1) 17 
2) 3 
3) 1 
4) 0 

Note: N • 49, four axes extracted. 
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Table 4 

Unrotated and Profile Rotated Factor Scores 
Baaed on 17 CMT Variables 

Spikes per Pi roflle Unrotated       Quartlmax Profile Rotated 

0) 30                    29 

1) 16                    18 

2) 2                     1 

3) 0                     0 

Note: N - 48, three axes extracted. 

Table 5 

Unrotated and Profile Rotated Factor Scores 
Based on Synthesis Analysis 

Spikes per Profile Unrotsted 

0) 31 
1) 13 
2) 4 
3) 0 
A) 0 

Qusrtlmax Profile Rotated 

27 
19 
1 
1 
0 

Note:  :; • 48, four axes extracted fron 15 variables 
that were themselves factors. 

«JUKET 
■ 



• 

IQ 
K '■: z: ~. r. 

< c  c 

*-• a> ui 
Q. T3   "3 
OB   -3   -O 

M.    M- 
r»   3   3 
c n n 
■\    t   s 

►^0   0 
3    11 

c a. o. 
o o 
c e 
er o- 

M   < 

a, ^ 

er 
o  ►- 
3 ra 

a< 3 
n r> 
rr >- 
0 C 
i a 

o 
-^ o 

3 

Bt < 
O 
3* rf 

3" 
1 0 
o w 
rt n 
0) 
r» ^ 
H- 0 
O 1) 
3 a 

i n 
"1 

o 
i 

v>   in 

i  i it  n 

o   3 
3    < 
0 0 
1 »- 
r»  < 

(t 
O    3 

3 
n   r» 
o 
3    M. 
rr   3 
k 
n üb 
rr   0 
w.   er 

C   &i 

rr   r» 
3"  H- 

< 

is      r 
r. ^-       .Vl 

0 

er 

n 

C 
n 

s 
3"       1* rt 

►* C «• 9 
a. -a i  3 
• f • -0 
3   t ^- 9» 

h- rr 
^ 3- 

r«l < II «4 

«l »•• 

O 1 
Bi in 
rr c 
i— M 

< 
Oi •—• 
c 
k 

3 

i= 

3 
B 
1 

&i  it 
3    M 

3 

IV 

Al  &l 

i i    i 
<»    O^    ^1   NJ   H- 
^   C-   KJ   vC   UJ 

T)   ^-   K>   Ul   O 
(«J   -J   H^   W   NJ 

I       I I 
Ui r-1  v>J  O  ^/i 
*• Ln N- »J O 

3   0 
3.  3 

<   O 

c 
C   rr 
0>   3- 
►-   ft 

^2 
M 

• i    i 

■z. zz. r. 

►* 79 
n 3" 
c 
^ 0 
rr n 
►-• n 
ft c 
!/l "O 

C rr 

-1   3 
3   0 
r •    .'3 
ft ►•■   i< 

:4 

1 

3" ft 
ft    01 

a - 
r er o 

"• 3 ■-^  r» ft 
0*   M. 
a o — 
►*    3 H- 

3"  3   »—►-►-. 
01 ft   0 

3   3 
VI 

o 
1    >* 
ft 

3" 
«♦i 0 
1 c 
r* Ifl 
ft ft 
3 pr 
O. ft 
(A ft 

3 

3 

I i 
^i   O  -vj  o.   7 
O ►- C *» OJ 

I 

• ■ 

-r 
k 
n 
rr 
0 
1 
A 

3" 
ft H 

0) 
W B" 

■< H 
1 1    1 III            1 3 ft 

M \J> \J\ fo  O   O  M  ►- M Is rt 
X> <T  O* *•  OJ  W  N>  N) 

R 

3 
ft 
M 

• 

9 

N> M  U 
1      1      1 

^- (T O K- o UI 
ft la & 

00 >C  *- C  O  vO  ^O  M 0> 

I    I    I 
O   l—   3   KJ   NJ 
k^J  U»  LJ  i—'  3^ 

1   1 
o *> 1                 i 

L^ ^- h- tn — 
<T   «O O  O  3  «« ho 

§ 

I    I 

O   3   f^ ►- *- 

I 
r j 

I     I 

'JO  3 

I I 
o C3 '-J rj M 
^n CO "vi ~J oJ 

MW 

lk 
\1 

1         1 
CJ ^ o o ^ C o i 

O •* — -»J u; 00 a~ ^O wn 

I   I 
Ul   ►-   ^   NJ 
K)   *»   LJ   ^/l 

KO   X 
i 

,-3 

:3 
1 
^ ui ui C H- K) UI 

1      1 

^   »   vC   sO   vO M vC »  N> 

I I 
N)   Ui   Ul   C 
00   Ui   <>   ^ 

UI   ft 
I 
l_ 

o o o «- o 
ui f- UJ O ui 

1 
UI c 1    1 

1— <— 

1    1    1    1 
ui ^- uj rj ro «« OJ o *> «- H- «> oo cj 



"•.Öl 

CLUSTER ANALYSIS AND THE SEARCH FOR "JTRUCTURE UUDERLYING 

INDIVIDUAL DIFTEREHCES IN PSYCHOLOGICAL PHEMOtlLWA * 

Ledyard R Tucker 
University of Illinois 

R^nearch on technique« for investigation of individual differeuro« in pay- 
choJ.ogical phenomena is related in several ways to the subject of this confer- 
ence: cluster analysis of multivariate data. A first and major relation is to 
one of the important possible motivations for cluster analysis. This relation 
involves the general formulation of the research project at the University oi 
Illinois on techniques for investigation of individual differences in psycho 1  - 
ical phenomena. Further relations involve some common technical problems and 
solutions. 

Consideration of differences between individuals in psychological phenom- 
ena has had a long history dating back, undoubtedly, to the first thoughts of 
man in description of the behavior of other men. These considerations have cca- 
tinued and have entered the science of psychology at various points such as in 
the studies of the "personal equations" initiated by the astronomer Bessel, in 
the proposal of body types by Kretchmer, in the development of differential psy- 
chology as furthered by Galton. A variety of techniques have been developed 
for the study of the structure of individual differences in measurable attri- 
butes of individuals. Refinements and extensions of these techniques as well 
as the development of newer techniques are in progress for improving these Stu- 
die   Even so, much of this work does not bear directly on some cencral prob 
lern; in psychology and in relations between variables for single individuals. 
A first approximation in the description of this latter area is to describe i' 
as a jrobination of traditional experimental psychology and differential psyci- 
ology. 

^onbach, in his presidential address to the American Psychological Asso 
iation in 1957, gave an excellent historical review and discussion of the con- 
trast between experimental psychology and what he called correlational psychol- 
ogy which we may identify as differential psychology. He refers to the two dis- 
ciplines of psychology as "two historic streams of method, thought, and affil- 
iation which run through the last century of our science". He further noted 
that there has been recognition of the distinctions between these streams and 
that statements of hope» to bring them together have been made since the ti-ne 
of Wundt. For example, Cronhach stated that "Dashiell optimistically forecaic 
a confluence of these streams, but that confluence is still in the making" rrd 
"Hull sought general laws just as did Wundt, but he added that organismic iac- 
tors can and must be accounted for. He proposed to do this by changing the 
constants of his equation with each individual. This is a bold plan, but one 
which has not yet been implemented in even a limited way." A further comment 
by Cronbach which is quite relevant to this report is, "Tucker, though, has at 
least drawn blueprints of a method for deriving Hull's own individual parame- 
ters by factor analysis." I wish to aud, hurriedly, that Cronbach is only 
partly correct in this reference to my work, which is not based on the Hulliar 
learning curves; but, this work is concerned with the development of individ- 
ual parameters as indicated by Cronbach. Further, this work includes the study 

* This paper is based on research jointly supported by the University of Illi- 
nois and the Office of Naval Research under contracts Nonr 1'3«*(39) and NC00H4- 
-66-C0010A03 . 
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of possible structural relations amonp, parameters for individuals in a popu- 
lation. The confluence of experimental psychology and differential psychol- 
ogy is realized by an expansion of the concepts of psychological laws to in- 
volve individual parameters coupled with an extension of differential psych- 
ology to description of individual differences in these parameterst and thus 
in the psychological laws. 

Study of parameters of a functional relation of a dependent variable to 
an independent variable, of which the study of learning functions is an exam- 
ple, is but one phase in the search for structure of individual differences 
underlying psychological phenomena. Work has progressed on developments in 
other areas of this general area of problems. Procedures have been investi- 
gated for description of individual differences in psychological scaling, both 
unidimensional scaling involving judgments in relation to named attributes 
such as preference or value, and multidimensional scaling. Closely related 
procedures have been investigated for the study of individual differences in 
judgments of similarity between pairs of stimuli, such as adjectives usad to 
describe personality attributes. These techniques involve multivariate pro- 
cedures closely related to factor analysis. A further development is the ex- 
tension of factor analysis to consideration of data characterized by three 
modes of classification such as by individuals, traits measured, and occasion 
of measurement. Another example of three mode data would be the extent of 
reaction of individuals on several variables of reaction in several stimulus 
situations. The relation of pattern of reaction over variables for different 
stimulus conditions may be dependent on the individual who may be described 
by a group of parameters. Study of these individual parameters is involved 
in the search for structure of individual differences in psychological phen- 
omena. 

Some of the issues involved in the study of individual characteristics 
in psychological phenomena may be clarified by the following four attributes 
for description of scientific endeavors in psychology. 

A. Behaviors studied: single or multiple. 

B. Measures obtained: single or multiple. 

C. Values of the measures for individuals or within-individuals 
relations between measures for several variables. 

D. Individual differences: none, structured, chaotic. 

The behaviors studied cover a wide range of activities of subjects, both in 
natural observational situations and experimental situations, such as conver- 
sation with other individuals, response to particular stimuli, performance on 
a given task, etc. The measures also cover a wide range of possibilities so 
that one or more measures may be obtained from any one behavior. For example, 
responses of subjects in a word association experiment may be measured by lat- 
ency of response, galvanic skin reaction, and rareness of response word. Any 
one of these measures or several of them may be recorded for each response of 
a subject. 

Attribute C is related to the common contrast made between S-R and R-R 
studies, but involves a basically distinct contrast. Many studies involve 
observation of the value of a single response measure from each of a number 
of behaviors for each subject and then study the relations between these mea- 
sures over a group of subjects; these studies are classifiable as R-R studies 
and are examples of studies of the values of measures for individuals. It is 

I r -■ 
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possible to obtain several response measures for eacli behavior of a rabj^t in 
some category of behavior, such as a word association experiment, and to atuo 
the relation between the response measures over a number of behaviors for the 
same subject. These studies are classifiable as R-R studies but are studies 
of the within-individual relations between measures. Many studies classifi- 
able as S-R studies involve within-individual relations between variables: a 
stimulus variable and a response variable. An extension of this class of stu 
dies may be denoted as S-(R^( R2) for which two measures of response are ob- 
tained for each value of a stimulus situation and the relations studied of 
these response variables to the stimulus variable and to each other. 

Attribute D concerns the focus of experiments and assumptions made con- 
cerning differences between individuals in the phenomena being studied. Dif- 
ferential psychological studies emphasize the individual differences and ten' 
to assume a structure in these differences. Many studies in experimental psy- 
chology minimize the differences between individuals, assuming either that 
there are no such differences or that the differences are chaotic and represent 
chance discrepancies from general laws of relations. 

Using these attributes, many studies in differential psychology could be 
described as: 

A. multiple behaviors studied, 

B. single measure obtained for each behavior, 

C. value of each measure, 

D. structure of individual differences in these observations. 

In contrast, many studies in experimental psychology could be described as: 

A. single behavior studied, 

B. multiple measures obtained, 

C. within-individual relations, 

D. assumption of no or chaotic individual differences. 

A comparison of the search for individual differences in psychological phen- 
omena with these two contrasting profiles is profitable. This project em- 
phasizes: 

A. either single or multiple behaviors, 

B. multiple measure . obtained for each behavior, 

C. within-individual t lations, 

D. structure of individual differences in these relations. 

This profile of attribute values has some similarity to each of the preceding 
profiles, but it is not a compromise between them. It goes beyond either of 
these types of studies and encompasses a number of very interesting and impor- 
tant problems. The motivation for this search for individual differences in 
psychological phenomena is not just to merge the two disciplines but is to 
solve problems not encompassed by either discipline. 

A most interesting possibility in the structure of individual difference; 
of within-individual relations between variables is that there exist clusters 
of individuals such that the within-individual relations are the same for all 
individuals in each such cluster and differ from cluster to cluster.  If such 
clustering of individuals is the case, even within a reasonable approximation 

■ -—-- 



n 

10. ou 

to the actual structure of individual differences, the study of witlu.n-indiv- 
idual relations and the application of knowledge gained can be increased con 
siderably in precision. Theories of learning, for example, could be construc- 
ted such that special cases would be applicable for each cluster of individ- 
uals. Thes« special case learning theories would fit the learning behavior 
of individuals >etter than a learning theory that ignored individual differ- 
ences. If the e are cluster of individuals in the relations between abnorma 
psychological behavior and tieatment, then the description of the effects of 
treatments could be increased in precision. Further, being able to place any 
mental patient within a cluster of individuals would aid materially with sel- 
ection of treatments to lead to desirable behavior changes.  It might be the 
case that seemingly conflicting theories of personality refer to different 
clusters of individuals in the dynamics of personality behavior and are spec- 
ial cases of a more general, but flexible, theory of personality which takes 
on different forms for the several clusters of individuals. 

Before discussing cases of individual differences in within-individual 
relations some consideration will be given to work on personalizing regression 
ecr.imation of criteria variables from selected predictor variables. Ghiselli 
(1956, 1960a) reported on work on the prediction of predictability in which he 
developed tests to predict the absolute values of errors of estimate in the 
regression of a criterion variable on a predictor variable. In terms of the 
errors of estimate, he could place individuals in two categories: one with low 
absolute errors of estimate and the other with high errors of estimate. By 
constructing a new measure using item analysis procedures he was able to appro- 
ximate the placement of individuals in these classes. This constitutes a sim- 
ple case of categorizing individuals as to the relation between a criterion 
variable and a predictor variable. 

In a second activity, Ghiselli (1960b) worked on the differentiation be- 
tween tests as to the accuracy with which they predict a criterion for a given 
individual. In this case two predictor variables were considered separately 
and errors of estimation were obtained for each predictor in a regression with 
the criterion variable. The absolute values of these errors of prediction 
were used and categories were established according to which error of predic- 
tion was larger in absolute value. Again, a new measure was constructed by 
item analysis procedures to a;proximate the placement of individuals in the 
categories. This is a most interesting possibility for the categorization of 
individuals according to the relations between variables. A point to note is 
that the individuals do not form homogeneous groups as to either the predictor 
variables or the criterion variables. The categories are related to the re- 
lations between the criterion variable and the predictor variables. 

The work by Ghiselli is related to the study by Frederiksen and Melville 
(195U) on differential predictability of test scores and to Saunders1 work 
(1955, 1956) on moderator variables. More recently, Cleary (1966) has pro- 
posed a technique for investigation of the possibility of developing systems 
of individualized regression weights in estimation of a battery of criteria 
from a battery of predictor variables. Given scores x j of persons p = 1, 

2, 3, ..., P on predictor variables j = 1, 2, 3, ..., J and y .  of the 

persons on criterion variables k = 1, 2, 3, ..., K the personalized linear1 

regression equation can be written as 

1)      yu = Iw.»i*.i+«i- 'pk    J pjk pj   pk 

1 
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wh«ra w ..  ar« the p«rsonaliz«d rcßression weights and e , arm  ♦•h«» errors 

of estimate. The personalized regression weights are defined by 

2)      wPjk 
s [ Vmjk 

for dimensions m '• 1, 2( 3t ... ( M of a regression weight space and where 
b   are coefficients for the persons and a .,  are coefficients for combin- 
pm r m]K 
ations of predictors j and criteria k . This system degenerates to the 
usual regression system when there is one dimension and all b   are unity. 

pm 
Otherwise, this system provides for individual differences in the regression 
weights within the limits of the number of dimensions utilized. To obtain 
non-trivial solutions the number of dimensions must be fewer than the number 
of criterion variables. Note that determination of the coefficients in this 
system depends only on knowledge of the predictor and criterion variable sco- 
res.  In an experimental application of this system to a case involving five 
criteria, two batteries of five predictors, and two samples of individuals 
Cleary found that the use of two dimensions in the regression weight space 
for each battery of predictors markedly reduced the sum of squared errors of 
estimate and that the a ..  coefficients were very stable when determined 

separately from the two samples. The person coefficients b   had one stable 
pm 

dimension when determined for each sample separately from the two batteries of 
predictors. While the person coefficients b   are determined in this model 

from knowledge of both the predictor and criterion scores, which makes use of 
the model questionable in applied situations, approximations to these coeffic- 
ients may be obtained from measures developed by test construction and item 
analysis techniques. A very interesting possibility is that the individuals 
might be distributed in a number of clusters according to the values of their 
coefficients b  . If this .ere the case, categories might be established 

such that different regression systems were appropriate for the different cat- 
egories. Such categorization would be extremely important in that it would 
indicate the existence of sub-populations of people for which different laws 
of relations existed between measures of behavior. Knowledge of these differ- 
ences in laws of relation would add materially to our knowledge of psycholog- 
ical phenomena. 

Extensive and critical studies should be conducted es  to the possibility 
of the clustering of individuals as to within-individual relations between var- 
iables. For an example of such studies consider the area of color perception. 
Illustrative data for such a study is given in Table 1. These data are ficti- 
tious, being constructed to present a simpler version of results obtained by 
Helm and Tucker (1962); these data, however, represent fairly faithfully some 
of the major aspects of the results obtained by Helm and Tucker from real data. 
In the real data. Helm obtained measures of judged interpoint distances between 
stimulus objects for each pair of such objects using the method of triad-ntio 
judgments. These measures were obtained separately for each subject. The sti- 
mulus objects used by Helm were ten hexagonal tiles, 2 inches across, each 
painted with a different color, such that the ten colors were of the same lig 
ness and saturation and formed an equally spaced circle of hues. The data in 
Table 1 are interpoint distances for pairs of eight color stimuli and si.: in- 
dividual subjects. A major attribute of the fictitious data in Table 1 is that 
it is constructed so that the model for studying individual differences in 

. 
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multidimensi. .ial scaling (Tucker and Messick, 1963) fits pprfectly. One of the 
technical problems to be discussed subsequently in this paper concerns the fi • 
ting of the model to real data involving discrepancies of the model from the 
observed data. Individuals 1, 2, and 3 have normal color vision while indiv- 
iduals t, 5, and 6 have progressively weaker color vision. This distribution 
of subjects as to color vision has relatively too few individuals with normal 
color visic-n but seems to represent fairly well the progression of color we^k 
subjects as appearing in the Helm and Tucker results. There is an unresolved 
question as to the distribution of relative extents of weakness in colov visv^ 
in the population. 

Let us compare the color judgment data of the Helm and Tucker study with 
the frar attributes of studies discussed earlier. A series of behaviors ex- 
ists for each subject: the judgments of relative differences of pairs of stir - 
uli in triads of stimuli. Two measures are obtained for each behavior: the 
judged ratios of relative differences between stimuli in the two less differ- 
ent pairs of stimuli to the relative differences between stimuli in the most 
different pair in a triad of stimuli. These data have been analysed for each 
subject to relative interpoint distances between stimuli in each pair of stim- 
uli from the set of stimuli used in the study. These relative interpoint dis- 
tances could be analysed for each subject to uncover a multidimensional scaling 
of the perceptual space for that subject, a step that was performed by Keim. 
These multidimensional scalings constitute within-individual relations among 
the measures. Analysis of t^e matrix of relative interpoint distances, such 
as in Table 1, by the Tucker and Messick model for individual differences in 
multidimensional scaling is an investigation of the structure of individual 
differences in these within-individual relations. Thus, this study illustrates 
the profile of attribute values for the search for individual differences in 
psychological phenomena. 

Analysis of the individual interpoint distances for the structure of the 
individual differences takes these interpoint distances as input data and forrs 
a matrix, which is designated X and is illustrated in Table 1, with a row 
for each pair of stimuli and a column for each individual. This analysis pro- 
ceeds to determine what is called here the characteristic components of the 
matrix X by a technique based on the theorem by Carl Eckart and Gale Young 
(1936) on the approximation of a matrix by another of lower rank. This tech- 
nique is closely related to the method of principal components proposed by Har- 
old Hotelling (1933). For the sake of clarity, discussion of several tcchnicel 
points is being postponed to following presentation of the analysis technique 
as applied to the data in Table 1. Steps in the analysis are outlined below, 

A. Compute the matrix product X'X which contains the sums of squares 
of entries in the columns of X as diagonal entries and sums of products of 
pairs of entries in each pair of columns as off-diagonal entries. 

B. Determine a scaling constant k2 by dividing the number of individ- 
uals by the sum of the diagonal entries in X'X (this sum equals the sum of 
squares of the entries in X ) . 

C. Multiply X'X by the scaling constant k2 , 
D. Determine the characteristic roots and unit length vectors of k2X,X . 

Let the roots be designated by y 2 and be arranged in descending order, and 

let the corresponding vectors be designated by V . The roots for the ill '"- 
HI 

trative example are listed at the left of Table 2. 
E. Select the r largest roots (a point to be discussed) and form the 

matrix Z containing as row vectors y V  for the selected roots. The m^crlx 
mm 

Z , in transposed form, for the example is given in the middle of Table 2. The 

r 
i 
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entries in this matrix are t. J scores of the individuals on the aelertnd char- 
acteristic components. 

F. Determine the matrix B of loadings of stimulus paiio on charartoi- 
istic components by 

3)      B = XZ'UZ')'1  . 

Each column vector, B  may be determined by 
m 

U)       B  a XZ'Y'
2
 = XV y"1 

• m     m m      m m 

where Z  is the m'th row vector of Z and V  is the m'th characteris- 
i n m 

tic vector written as a column vector. The matrix B for the example is at 
the right of Table 2. 

G. Construct an r dimensional space corresponding to the matrix Z i1 
which each individual, i , is represented by a point having coordinates z . 

on the m orthogonal, coordinate axes. For the example, this space is two 
dimensional and is presented in Figure 1 with a solid point for each of the 
individuals. The configuration of points in this space represents the struc- 
ture of the individual characteristics underlying the psychological phenomenon 
of color vision as this phenomenon is reflected in the judgments made for the 
selected group of stimuli. 

H. Inspect the configuration of points in the space constructed in step 
6 for interesting characteristics such as clusters of Individuals. In the ex- 
ample, the three normal subjects are colinear from the origin and can be tho* PIV 
of as constituting a cluster. The three individuals having weakness in coloi 
perception do not form a cluster but have points located at varying distances 
from the cluster of points for indiviuuals having normal color vision. These 
distances correspond to the extent of deficiency in color vision of these in- 
dividuals. Results of this inspection may be described, in part, by selectior 
of points in the space that may be considered as conceptual, or idealized in- 
dividuals which represent interesting locations in the configuration of points 
for the actual individuals. In the example, two idealized individuals were 
selected: one to represent the individual having normal color vision and the 
other beyond the most severely color-weak observed individual so as to, pos- 
sibly, represent an individual who is totally color blind. These are ideal- 
ized individuals A and B and are indicated in Figure 1 by open circles. 

I. Construct a matrix ZM of scores of idealized individuals on char- 
acteristic components containing the coordinates of the points for the selec- 
ted idealized individuals. This matrix has a column for each idealized 1:/,1" 
vidual and a row for each characteristic component. For the example, tae nat- 
rix Z* , in transpose form, is given at the left of Table 3. 

J. Determine the matrix X*    of interpoint distances between pairs of 
stimuli for the idealized individuals by 

5)      X* = BZft . 

This matrix for the example is given on the right of Table 3. 
K. Using the interpoint distances in each column of X* , separately 

by column, perform a multidimensional scaling to obtain the perceptual spnee 
for each idealized individual. These two spaces resulting from the multiü:.- 
mensional scaling for the two idealized individuals in the example are given 
in Figure 2. The space for idealized individual A which represents normal 

b 
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color vision is two dimensional and has a circular configuration of points for 
the selected color stimuli. This is the expected result. The perceptual sp' " 
for idealized individual B is also two dimensional, but has the stimuli in a 
semi-circle such that would be produced by folding the circle for normal color 
vision on an axis from Y to B. This was an unexpected result found by HelTi 
in his multidimensional scaling of individual interpoint distances and which 
appeared in the analysis by Helm and Tucker. The expectation was that the Ions 
of color vision would result in a one dimensional perceptual space. This ap- 
pears not to be the case. Th?se results raise several interesting conjectures 
which could be investigated experimentally as to the perception of color by 
color-blind individuals. However, discussion of these conjectures here would 
take us too far afield from the major theme of this paper. 

The format of analysis outlined in the preceding paragraphs is of quite 
wide applicability for a variety of types of data. One important requirement 
is that the data for each subject be measures of a single dependent variable 
for various values of independent variables. In the preceding example, the 
independent variable was the set of colored stimulus pairs formed by the Car- 
tesian product of the set of colored stimuli with itself, excluding identical 
pairs. The dependent variable was the judged interpoint distances. In the 
generalized format, the observations of the dependent variable for each indiv- 
idual would be recorded in a column or the matrix X . Each row of X would 
be for some particular values of the independent variables. Steps A through 
J would be conducted as described while step K would be altered to a form ap- 
propriate to study of the relation of the dependent variable to the indepen- 
dent variables. For another example consider a study of the learning of some 
task. The independent variable would be the series of trials or learning per 
iod«.  fhe dependent variable would be a measure of the performance of a sub- 
ject on each trial. There would be a row of matrix X for each trial and a 
column for each individual with entries being the measures of performance. The 
matrix X* obtained in step J would contain measures of performance for ideal- 
ized individuals on the trials so that the series of entries in each column cf 
Xft could be used to develop a learning curve for the corresponding idealized 
individual. Another exar-le could be the study of preferences among pairs of 
stimuli for which the dependent variable was ratings of relative preference. 
Results could yield a preference scale for each idealized individual. Still 
another example could involve semantic differential ratings of concepts on bi- 
polar adjective scales. Each row of matrix X would be for a pairing of a 
concept with a bipolar scale. Step K would involve the determination of the 
connotativo semantic space for each idealized individual. 

There are several technical matters involved in the analysis which warrant 
consideration in this report. The measures of the dependent variable should 
be such as to support a study of the relation of the dependent variable to the 
independent variables for each individual. Further, these measurements for the 
dependent variable should be interpretable as on either an interval scale or a 
ratio scale for each individual. In case the measures are on an interval scalp 
with a meaningless origin, the origin for each individual should be set at tha 
mean for the individual so that deviations from the mean for the individual are 
used in the analysis. This step converts the interval scale measurements to n 
type of ratio scale measurements of discrepancies fron; the individual mean. 
Necessity for a ratio class of measurement lies in the model underlying the an- 
alysis of steps A through J. 

Characteristic component analysis as used here is related to factor anal- 
ysis, especially to obverse factor analysis for which factors among people ara 
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determined.    There are, however, several important distinct foaturen.    Consi- 
der the statistical model for regular factor analysis as given in equation«} 
(6) and (C). 
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For each individual sampled from some population there is a random variable 

vector of dimensionality (r t n) where there are r common factors 

and n unique factors. Tntrlos in this vector are the factor scores for the 
individual. The factor matrix (A | U) is a transformation on the factor 
score vector to yield the ra.iom variable vectox  x of observed scores on ti 

n variables. In the population, the random variable vector  ■ j of factor 

ii 
o i 

scores has a density function with mean vector    i      and a covariance matr; 

im 
\0 . The density function for the random variable x of observed scores 

has a mean vector of p and covariance matrix I . The relation of the mem 
vector for observed scores to the mean vector for factor scores is given in 
equation (7) 

7) 
1 ^ 

iA   | U)  |—j   , 

and the relation of the covariance matrix of the observed scores to the covai 
iance matrix of factor scores is given in equation (8) 

8) (A I U) 
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From a random sample of individuals, the vector of sample means x    is an est- 
imate of the vector u  ; and the covariance matrix S is an estimate of 7.  . 
Factor analytic methods produce estimates A and 0 of the population trans- 
formation parameters A and U . A second set of methods are used of obtain 
estimates of the factor scores; these methods include such procedures as re- 
gression estimates and Bartlett's (1936) procedure to minimize the uniquenesses 
Guttman (19S5) has pointed out the insolubility of the factor score problem. 

Obverse factor analysis interchanges the role of the individual and the 
attribute measured in the mo' ■! for factor analysis. Any attribute measured 
is considered as sampled from a population of attributes and is associated 
with random variable vectors having entries for the individuals. In this case 
the individuals are taken as fixed so that the factor scores of the individ- 
uals are parameters of the model and are estimated by the analysis. For this 
case, the loadings of the variables are inaccessible in the same sense as the 
factor scores were inaccessible. 

Since the search for individual differences in psychological phenomena 
requires both the loadings of the attributes measured and the factor scores, 
neither the direct factor analysis model nor the obverse model is appropriate. 
A third model is employed. 

The two major aspects of the factor analytic model for the present dis- 
cussion are the assumption of unique factors and the assumption that the in- 
dividuals or attributes measured are sample.elements from a population. In 
contrast, the model for characteristic component analysis does not include 
unique factors and assumes that the individuals and attributes measured are 
the equivalent of fixed effects. The model for this analysis is given in 
equation (9) 

r 
9)      x.. *  y b. z . t €.. 

* nil *u 1 
where c is a random variable wi.h mean = 0 and standard deviation = o.. , 

and is independent for each ji combination. Exclusion of the unique factor 
aspect of the factor analytic model implies that the group of variables, j , 
cover the domain so that particular variables are not dependent on specific 
influences. Postulation of iidividuals as fixed effects is necessary to en- 
able estimation of both the ö. 's and the r. .'s as parameters of the mc^d. 
Such estimates are needed for the complete procedure involving the individual 
space, selection of idealized individuals, and estimation of observations for 
these idealized individuals. The procedure described provides a least squares 
fitting of the model to the data. Also, in case the o.. are constant fo; all 

ji combinations, the procedure is a maximum likelihood estimation as indicated 
by Young (19<4l). In care the o..  s  co.d. where the a. are known for the 

variables and 6. are known for the individuals, a slightly more complex pro- 

cedure should be used. As noted by Anderson and Rubin (1956), it is necessary 
that the a. and 0. be known. 

Determination of the number r of dimensions to be used in the analysis 
for any particular body of data is an unsolved problem quite analogous to the 
number of factors problem. Several properties of the series of roots y2    nay 

m 
be noted in this context as yielding some guides to the selection of thu numb' r 
of dimensions to be used. First, all roots arc non-negative. Second, the sun 

- • f 



. 10. : 

of squares of th« trrors of      proximation of t^e data from the model Tor -iny 
"ivan numbar of dimensions chosen la given by the sum of the remaining roc. s. 
THrd, the SUT of squares of the approximations to the data is ^iven by the 
sum of the roots for the dimensio::» used in the approximatioi.,    Thus( one oor- 
sibility ia to use as many dimensions as necessary to obtain some desired r'e- 
rree of goodness of fit of the model to the data.    Cumulative sums of th^ root^ 
will aid in d« termining the number of dimensions necessary.    A second possi- 
bility is to inspect the series of roots for some break in the relation between 
root size and root number.    For this criterion, one postulates that the indiv- 
idual space would be of some small dimensionality except for the discrepancies 
involved in making the observations.    Then, there should be two laws of form- 
ation for the scries of roots, one for the dimensions relevant to the individ- 
ual space and a second for the discrepancies.    If this be the case, there shc-ild 
be a break in the relation between root size and root number.    Such changes in 
form of relation have been observed.    Further, for some bodies of data, there 
appeared to be a linear relation between root size and root number for a lat -n 
number of roots beyond a small numbar of initial roots which were lar -er than 
would be expected from this linear relation.    At present, this inspection or 
the series of roots seems to be the best procedure available. 

A single dependent variable has been involved in the discussion to this 
point; however, the extension of factor analysis to a model for three mode fac- 
tor analysis permits the investigation of cases when measures are made on sev- 
eral dependent variables  for each pattern of values of the independent vari- 
ables.    For an example of this class of data consider the complex tracking 
task investigated by Parker and Fleishman (1960).    The subject was to control 
a dot on a cathode ray oscillograph using a control stick and rudder pedals 
as in a stand:  d aircraft cc trol system.    Movement of the dot was introduced 
electronically and the subject's task was to keep the dot centered on the o-,- 
cillograph as well as to avoiw sideslip which was indicated by a separate moi r. 
Measures were obtained of horizontal error, vertical error, sideslip error, 
and time-on-target for each of a number of stages of practice.    The study by 
Parker and Fleishman involved 203 individuals, 10 stages of practice, and \he 
four dependent variables listed above.    These may be interpreted as the three 
modes for identification of the data as defined by Tucker (196U, 1956).    The 
model for three mode factor analysis that would be appropriate in the present 
context would be an extension from equation (9)  (present use of letters is not 
to be confused with previous use): 

H      P      Q 
10) XJJ^    ::      1      1      I a,  b. c.   c_        ♦    c... 

ijk m=l p«l qil xm 3P k(lS,pq ijk 

Thf; observed data are denoted by x. .. which are entries in a three mode r.""- 

rix X with rows for individuals, columns for stages of practice, and strr*- 
for dependent variable.  Parameters of the model are contai'ied in the two mo'e 
matrices A , B , and C plus the three mode matrix G . The matrix A 
has rows for observed individuals and columns for idealized individuals; mat- 
rix B has rows for observed stages of practice and columns for idealize ' 
stages of practice; matrix C has rows for observed dependent variables anC 
columns for idealized dependent variables.  Matrix G is called the cor« m3:- 
rix and has measures of the idealized dependent variables at the idealize.. 
stages of practice for the idealized individuals,  hgain, c is a random var- 
iable with mean = 0 and  t-an-.ard deviation = o. .. . Analysis methods r.re ron- 

1]K 
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siderable extensions of the type outlinad earlier. The major aspect of this 
analysis especially relevant for this conference involves the study of th». 
mctrix A for clusters of individuals.  If such clusters existf then the re- 
lations of the dependent variables on the independent variables would br, the 
same for individuals in each cluster and different for individuals from dif- 
ferent clusters. 

Major emphasis has been placed on the categorization of individuals as 
to the relations between variables. To attempt to establish categories ac- 
cording to the values of measures such that all individuals within a category 
can be considered as replicates and for which there would be the same expec- 
tation as to other measures seems to be an unrealistic and hopeless endeavor. 
If categories can be established as to the relations between measures, the in- 
dividuals within a category could differ while the same dynamic laws applied. 
These categories would be especially interesting and relevant in scientific 
knowledge as well as in application to many problems. 
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Table 1 

Matrix X of Individual Interpoint Distances 

Fictitious Color Judgment Data* 

Jtimulus Individuals 
Pairs 1 2 3 4 5 6 

a-b 8 7 8 8 10 8 
a-c 1U I 13 16 16 18 16 
a-d 18 17 20 18 19 11 
a-e 20 18 22 18 16 U 
a-f 18 17 20 18 19 11 
a-g 1«» 13 16 16 18 16 
a-h 8 7 8 8 10 8 

b-c 8 7 8 8 10 8 
b-d lU 13 16 13 11 3 
b-e 18 17 20 18 19 11 
b-f 20 18 22 21 23 17 
b-g 18 17 20 20 2U 20 
b-h 1U 13 16 16 18 16 

c-d 6 7 8 8 10 8 
c-e m 13 16 16 18 16 
c-f 18 17 20 20 24 20 
c-g 20 18 22 22 26 22 
c-h 18 17 20 20 2U 20 

d-e 8 7 8 8 10 8 
d-f m 13 16 16 18 16 
d-g 18 17 20 20 2»* 20 
d-h 20 18 22 21 23 17 

e-f 8 7 8 8 10 8 
e-g m 13 16 16 18 16 
e-h 18 17 20 18 19 11 

f-g e 7 8 8 10 8 
f-h ik 13 16 13 11 3 

g-h 8 7 8 8 10 8 

Stimulus colors: a • . Red e - Green 
b • - Orange f - Blue- -Green 
c • - Yellow g - Blue 
d • - Yellow-Green  h - Purple 

* Designed in accord with results reported by Helm 
and Tucker (1962). 
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Table 2 

Characteristic Components Analysis of Matrix X 

Characteristic  Scores of Individuals on     Loadings of Stimulus Pairs on 
Roots of     Characteristic Components      Characteristic Components 

(l^X'X)*     Individual     I    II     Stimulus Pair   I II 

I  5.915           1        .97  -.09        a-b       8.U 5.L 

II   .085            2         .88  -.08         a"^      ^•5 *?•? 
a-d      17.U -17.6 

III  0.000           3       1.07  -.10        a-e      16.7 -U2.7 

IV  0.000           H                  1.02  -.02        a"f      J"'^ '*M? 
a-g      15.5 10.3 

V  0.000           5       l.m   .07        a-h       8.U 5.6 

VI  0.000 6        .85   .2U 
b-c 8.U 5.6 
b-d 11.8 -30.2 
b-e 17.U -17.6 
b-f 20.4 - 2.2 
b-g 20.2 13.5 
b-h 15.5 10.3 

c-d 8.U 5.6 
c-e 15.5 10.3 
c-f 20.2 13.5 
c-g 21.9 14.6 
c-h 20.2 13.5 

d-e 8.1 5.0 
d-f 15.5 10,3 
d-g 20.2 13.r. 
d-h 20.4 - 2.2 

e-f 8.4 5.6 
e-g 15.5 10.3 
e-h 17.4 -17.6 

f-g 8.4 5,b 
f-h 11.8 -30.? 

g-h 8.4 5.6 

* W2 = k/ = N / Trace (X'X) 
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Tab]e 3 

Interpoint Distances for Idealized Individuals 

Scores of Idealized Individuals on 
Characteristic Components 

Interpoint Distances for 
Idealized Individuals 

Idealized 
Individual I II 

A .97 -.09 

3 .73 .28 

Stimulus 
Pairs A _B 

a-b 8 8 
a-c m 14 
a-d 18 9 
a-e 20 0 
a-f 18 8 
a-g m 14 
a-h 8 8 

b-c 8 8 
b-d 14 0 
b-e 18 a 
b-f 20 14 
b-g 18 18 
b-h 14 14 

c-d 8 8 
c-e 14 14 
c-f 18 18 
c-g 20 20 
c-h 18 18 

d-e 8 8 
d-f 14 14 
d-g 18 18 
d-h 20 14 

e-f 8 8 
e-g 14 14 
e-h 18 8 

f-g 8 8 
f-h 14 0 

g-h 

T 
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THE MAXOF CLUSTERING MODEL1 

Raymond E.  Ch^istal 
Air Force Personnel Research Laboratory 

and 

Joe H. Ward, Jr. 
Southwest Educational Development Laboratory 

This paper describes a highly flexible technique for clustering 
people or things into categories.  If a complete hierarchical structure 
is desired, such as the establishment of a biological taxonomy, then 
the MAXOF Clustering Model will yield an optimum solution in terms of a 
criterion established by the investigator. If the desire is to cluster 
a large number of people or things into mutually exclusive categories, 
then an optimum solution in the strictest mathematical sense is not 
feasible—even with modern high-speed computers. However, the MAXO^ 
Clustering Model yields a near-optimum solution which has passed the test 
of customer satisfaction. 

In using the MAXOF Model, the investigator must make three major 
decisions. First, he must define a way of expressing the similarity 
among the things or people to be clustered. The model makes no demands 
on the form of this overlap function. It can be correlation coefficients, 
co-variances, cross-training times, distance functions or measures of the 
homogeneity of regression equations. Any function is legitimate which can 
be quantified, and which serves the investigator's purpose. Second, the 
investigator must define an objective function which is to be maximized 
during the clustering process. For example, the investigator may wish to 
maximize the average intercorrelation among items within clusters—or to 
minimize the average squared distance (d^ ) between items within clusters. 
Again, there is no restriction on the form of the objective function, except 
that it be feasible to compute.  Third, the investigator must decide on the 
appropriate number of clusters to report.  Problems associated with this 
decision will be discussed in detail. 

The MAXOF Clustering Model takes its name from the concept of MAXimizing 
an Objective Function, which is its most unique and useful characteristic. 
The model was first described by Joe H. Ward, Jr., in a paper published in 
March 196l, under the title "Hierarchical Grouping to Maximize Pay-Off," 
(Ward, 196l). R. A. Bottenberg and F. E. Christal described in detail a 
specific application of the model in a paper published this same month 
entitled "An Iterative Technique for flustering Criteria Which Retains 
Optimum Predictive Efficiency," (Bottnberg & Christal, 196l). Since 196l, 



the MAXOF Clustering Mode] has been applied to many operational problems, 
with gratifying results. The major purpose of this paper is to describe 
the model in sufficient detail for readers to determine its applicability 
to their own problems of interest. For this reason, stress will be given 
to a discussion of the basic concepts underlying the model, and to a 
description of previous applications of the model to actual problems. 
Readers interested in more detail may obtain copies of the references or 
write directly to one of the authors. 

GENESIS 

It all began when Hq USAF asked for development of an improved method 
for grouping Jobs into specialty clusters. Let's expand on this for a 
moment. The basic management unit in the Air Force is the Air Force 
Specialty. Every Job in the Air Force has been assigned a specialty code 
number by a local manpower officer. Every man in the Air Force also has 
been assigned a specialty code number, indicating that he is primarily 
trained to perform Jobs in that specialty. 

Enlisted personnel in the Air Force change Jobs on an average of once 
every two years, and can be moved freely from any Job to any other Job 
having the same specialty number. When an airman changes Jobs, a major 
cost to the Air Force is the amount of time required for him to reach the 
same level of proficie.:?y in his new Job as he had attained in the Job from 
which he was transferred.  If Jobs within specialties are not homogeneous, 
the Air Force pays in two ways. First, it must continually support a large 
and expensive retraining program; and second, at any point in time, large 
numbers of men will not have reached proficiency in their current assignment. 

It seems clear that Jobs should be grouped into specialties in a 
manner which minimizes the overall cross-training time among Jobs within 
specialties. 

Suppose we had the cross-training times among a thousand Air Force 
Jobs. How would we go about clustering them into specialties so as to 
minimize the average cross-training time among Jobs within specialties? 

The first urge is to transform the data into a matrix of intercorrelations 
or d^'s, for common clustering techniques usually require one of these data 
forms as input. But why distort reality? If the goal is to minimize cross- 
training times among Jobs within clusters, then our input matrix should be 
cross-training time values. 
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Having settled on the nature of the input matrix, we now turn our 
attention to the problem of clustering the Jobs into specialties so as to 
meet our objective.

But hold on! As stated, our objective is met before any clustering 
takes place. If each Job is considered to be a separate specialty, then 
the average cross-training time among Jobs within specialties is zero. 
Furthermore, as the number of clusters (specialties) is reduced, this 
value must Increase to the extent that Jobs are not identical.

Yet the whole purpose of clustering Jobs in the first place is to 
provide flexibility to management. The Air Force could not possibly 
maintain separate training courses for every Job. Nor could it move 
personnel to meet changing priorities unless Jobs and individuals are 
clustered into a limited ntanber of management categories.

It is clear that the larger the number of specialties (management 
categories), the smaller will be the average cross-training value. At 
the same time, it also is clear that the smaller the number of specialties, 
the easier and less expensive it will be to manage the p>ersonnel system.

What is needed is an optimum solution for every possible number of 
clusters; then management can decide on the correct number to implement 
by weighing retraining costs against the cost of mamaging a given number 
of classification categories (specialties).

But how do we obtain an optimum solution for every possible number of 
clusters? The most direct way would be to have the omputer evaluate 
every possible configuration at every possible level. For example, at 
the 50 cluster level, the computer would systematically evaluate every 
possible way of assigning the 1,000 Jobs into 50 specialties. It would 
then report that particular configuration which yields the smallest 
average cross-training time among Jobs within clusters. The same approach 
would be taken at the U9 cluster level, and so on. Is such an approach 
feasible? Definitely not. All the computers in the world, working in 
perfect harmony, could not uegin to provide the solution in a lifetime.
(See letter in Appendix)!

Another approach must be found—one which approximates an optimum 
solution, but which is feasible to compute.

It is at this point that the concept of systematically collapsing 
clusters so as to maximize an objective function comes to mind. The 
concept is extremely simple, and can be described in terms of its applica­

tion to the Job-grouping problem.
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First we must define our objective function, which in this case, is 
the average cross-training time among Jobs within clusters (specialties). 
We begin with each of the 1,000 Jobs in a separate cluster. At this stage 
the value of the objective function is zero. Next we have the computer 
evaluate every possible way of reducing the numbe of clusters from 1,000 
to 999. For each of the U99,500 alternatives we can compute the average 
cross-training time among Jobs within clusters. 

It turns out that the computer will cluster the two Jobs having the 
smallest average cross-training time. At the next stage we have the 
computer evaluate every possible way of reducing the number of clusters 
from 999 to 998, through collapsing two of the existing clusters into a 
single cluster.  It may do this by placing one of the 998 ungrouped Jobs 
in the same specialty as the first pair clustered, so that we end up with 

a three-Job cluster. Or, it may cluster a second pair of similar Jobs, so 
that we end up with two clusters containing two Jobs and with each of the 
remaining 996 clusters containing a single Job. All U98,501 possible con- 
figurations are evaluated, and that one is selected which yields the smallest 
value of our objective function. This process of reducing the number of 
clusters by one at each stage is continued, until all Jobs are in a single 
cluster.  In each instance all possible alternatives involving the collapse 
of two existing clusters are considered, and that alternative is accepted 
which is evaluated as "best" by the objective function. 

Thus, we end up with a solution for each possible number of clusters. 
We also have exact information concerning the average cross-training time 
among Jobs within specialties at each stage, which can be weighed against 
management costs in order to arrive at a Judgment concerning the optimum 
number of specialty clusters to maintain. 

We were anxious to try this new approach, but unfortunately we did 
not have a matrix of cross-training times among Jobs. However, within a 
few months Dr Marion E. Hook (Hook & Masser, 1962) had gathered rank-order 
estimates of the time required for cross-training among 98 existing airman 
specialties. A complete hierarchical clustering of these data was obtained 
using the MAX0F model. 

Since the 98 specialties had been selected from kO  career fields, we 
were in a position to compare results of the MAX0F clustering solution at 
the ho  group stage with the career field membership of these specialties. 
We found the average cross-training time within groups identified by the 
MAX0F Model to be markedly smaller than average cross-training time within 

the official career field groups. We were encouraged with the results, since 
the clustering techuique appeared to operate as predicted. 
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IDENTIFYING JOB TYPES 

It wasn't long before we found another application of the grouping 
technique which proved to have considerable pay-off to the Air Force. 
The Personnel Research Laboratory had been asked to develop improved 
methods for collecting, analyzing, and reporting information describing 
enlisted and officer Jobs. 

We spent the first year studying various Job analysis techniques and 
Air Force needs for Job information. The greatest problem was concerned 
with how to collect information in a form so that it could be quantified 
and subjected to machine analysis. 

Eventually it became clear that a task inventory procedure had greatest 
potential for staisfying our requirements. Since that decision was made, 
we have conducted a series of studies concerning how task inventories should 
be constructed and administered, and how the resulting information should 
be analyzed and reported. 

Our procedures for constructing inventories are relatively straight- 
forward.  In the enlisted area, for example, the instrument is simply a 
list of all the significant tasks performed by individuals working in a 
single promotion career ladder. That is, it consists of the tasks per- 
formed by airmen working at the apprentice. Journeyman, supervisor, and 
superintendent levels in one of the more than 200 career ladders which the 
Air Force has established for management control. This inventory is 
administered by test control officers to individuals working in the career 
ladder at Air Force installations throughout the world. A worker is asked 
to check those tasks which he performs as part of his normal Job, and to 
indicate how his worktime is distributed across those tasks.  He also fills 
in a background information section, where he indicates such things as his 
base, command, grade, time on the Job, courses taken or equipment worked on. 

The completed inventories are sent to the Laboratory, where the data 
are keypunched and transferred to magnetic tape. Without going into detail, 
let me simply state that a series of studies has indicated that we get 
high-quality information using these instruments. 

Once the data are in the computer, they are analyzed by fifteen or 
twenty programs in order to produce reports tailored to meet the needs of 
various using agencies (Morsh & Christal, In Press). 

One program is a general-purpose information retrieval system. It 
enables the investigator to produce a consolidated description of the work 
being performed by any specified group of workers. A special group can be 
identified in terms of values on as many as nine background variables, 
through use of a series of "and" and "or" statements. For example, one 
might ask for a description of the work being performed by airmen who have 
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been in the Air Force less than two years; who bypassed the basic training 
course; who art less than 19 years of afe; who failed to complete high 
school; and who are working in overseas Jobs in the Pacific Air Force 
Connandi 

Figure i presents the top portion of a typical consolidated Job 
description. This one describes the work being performed by 391* Journeymen 
medical laboratory technicians working in hospitals and clinics throughout 
the world, notice the four columns of numbers printed to the right of the 
task statements. The first column indicates the per cent of members in 
this group performing the listed task. The second column reports the per 
cent of worktiae spent on the task by individuals who perform It, The 
third column presents the per cent of the entire groups' worktime spent 
on the task. This third column is the main element of the description, 
since it accounts for the worktlme of all cases. Tasks in the Job descrip- 
tion are arranged in descending order based on the magnitude of the values 
in this column. Thus, "collect blood specimen directly from patients" is 
tht most time-consuming task performed by Journeymen laboratory technicians. 
By the time you read through the third task, you have accounted for U.30 
per cent of the worktime for this group. This is seen by looking at the 
value in Column b, which presents the cumulative sum of the values in Column 
3. 

Insert Figure 1 about here 

While this Job description is an excellent statement of the work 
performed by Journeymen laboratory technicians as a group, it may not be 
an accurate description of what any one man does. Commanders of local 
hospitals and clinics can engineer Jobs any way they please in order to 
accomplish their mission effectively. It might be that the Jobs in larger 
hospitals are highly specialized, so that an individual worker performs only 
a small subset of the tasks. The Air Force wanted to know bow work is 
organized in the field. They wanted to identify and define all of the Job 
types in each career ladder, and find out where each Job type exists and 
who is working in it. 

It seemed reasonable that if we had a detailed description of the work 
performed by each individual in a career ladder, there should be a way to 
cluster individuals having similar Jobs, Hopefully this could be accomplished 
using the MAXOF Clustering Model. 

The first requirement was to develop a matrix of values defining the 
overlap of each Job with every other Job.  Several measures of Job similari- 
ty were considered. Two cf these potential overlap functions reflected the 
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extent to which any two Jobs contained identical tasks. One was simply 
the number of tasks in either Job, divided into the number of tasks common 
to both Jobs. The second was the pt-r cent of tasks in Job A which were 
also in Job B, averaged with the number of tasks in Job B which were also 
in Job A. Both of these measures of task overlap were later discarded in 
favor of a value indicating common worktime. 

This common worktime value is obtained for a pair of Jobs by summing 
the smaller of the two time values associated with each task in the 
inventory. Thus in the example give., in Figure 2, the common worktime 
value is 80 per cent. Notice that by reallocating 2Ü per cent of the time 
values on either of the two descriptions, one can perfectly reproduce the 
other. 

Insert Figure 2 about here 

Once we have computed a matrix of overlap values, we next must define 
our objective function, or the decision rule to be used in the grouping 
operation. In this case, we decided to group in a manner that maximizes 
retention of descriptive accuracy. Thus, we begin with a separate Job 
description for each individual in our sample. At this stage we can per- 
fectly describe the worktime of all workers. Next, we evaluate every possible 
way of describing the worktime of all workers using N-l descriptions. At 
the end of this stage we must describe the Jobs of two workers with a single 
description. To the extent these two Jobs are not exactly identical, this 
single description will make a small error in defining the worktime of the 
two individuals.  It can be shown that this error will be minimized if we 
select the two Jobs having the highest common worktime value. Thus, we 
can locate the first two Jobs to be clustered by identifying the highest 
value in our original overlap matrix. The composite description for these 
two Jobs is simply an average of the worktime on each task in the inventory. 

At the second stage we evaluate every possible way of reducing the 
number of descriptions by one. The possibilities include locating a third 
Job similar to the first pair, and describing all three with a single 
description, or finding a second pair of similar Jobs to be defined by a 
composite description. The process is continued, defining the worktime of 
all cases with one less description at each stage, until we reach the last 
stage—where we attempt to define all Jobs with a single description. 

In order to determine the number of Job types in the ladder, we normally 
work backwards through the solution. Ordinarily, we can quickly eliminate 
the one description stage because of the magnitude of the error.  If the 
error is too large at the twe-group stage, we look at the three-group stage. 
We proceed in this manner until we reach a point where we cannot tell from 
the error term alone whether the clusters being merged are similar enough 
to be considered as being in the same Job type.  In order to help us reach 
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a decision point, we have the computer provide us with consolidated 
descriptions of the groups being merged at several stages around the 
decision point. We may find, for example, that we cannot detect meaningful 
differences between the two groups being merged at the 25-group stage. 
However, we may discover that in order to reduce the number of Job-type 
descriptions from 25 to 2U, the computer merges two groups idiich are 
different in some significemt respect. If so, we conclude that there are 
25 significemt Job types, and we have the computer publish consolidated 
descriptions of the work in each Job type.

In the course of obtaining a complete hierarchical grouping of a 
2,000-Job input matrix, the computer evaluates U,333,333,000 possible 
configurations. However, problems of this magnitude are now accomplished 
on a routine basis without difficulty. Job-type analyses of some forty 
career ladders have been completed, and in ecu:h Instance the results have 
given us a clear picture of the way that work is organized in the field.
For example, sixteen cleeurly defined Job types were identified in the 
medical laboratory career ladder. The reader will find the top tasks 
from severed of these Job type descriptions listed in the appendix.

CRITERION GROUPING

It wasn't long before we discovered a new application of the MAXOF 
Clustering Model. In personnel classification and assignment, a primary 
goal is to predict performance of each individual in a technical training 
course associated with a particular Job area. Even though a battery of 
tests is routinely administered to Air Force volunteers, it has n>^t ^een 
feasible to develop and utilize a separate test composite for predi • ng 
the success of each individual in each technical course. Attempts ha.e 
been made to group related courses into "families" so that a smaller 
number of predictor composites covild be used.

In the Air Force, highly subjective techniques have been used for 
grouping courses into homogeneous families and for determining the aptitude 
composite associated with each family. In general, interrelationships 
among courses have been estimated by intercorrelating the patterns of 
predictor validities associated with each school. The intercorrelation 
matrix has been factor cmalyzed, and schools with similar factor loeulings 
have been grouped. Finally, weights for aptitude composites have been 
estimated by averaging validity coefficients for the predictor tests 
against schools in a cluster.
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It should be noted that factor analysis is not appropriate for this 
type of clustering problem, for it is not our goal to explain the common 
variance in terms of a minimum number of hypothetical constructs. Further- 
more, the rank of the matrix of intercorrelations among technical schools 
(which can only be estimated) does not help us to decide on the optimal 
number of clusters. Finally, even if the factor-analytic appioach did 
enable us to assign courses into homogeneous groups, we still wouli need 
to determine the weights which yield simultaneous, optimum prediction of 
all criteria within clusters. 

After reflecting on the matter, it eeemed that the MAXOF Clustering 
Model might be applicable. Details of the system which was finally worked 
out would take too much space to describe in this paper.  However, they 
are spelled out in a Technical Documentary Report (Bottenberg i Christal, 
196l) which is available upon request. Conceptually, the system begins 
with k separate least squared regression equations—one for each of k 
schools. A computing expression has been developed which enables the 
investigator to determine the overall predictive efficiency obtained using 
these k separate equations. As the first step, the two schools are clustered 
whose associated regression equations are most homogeneous, and a single 
set of least squares weights is developed for simultaneously predicting 
criterion scores in both schools. Thus, the number of school groups and 
associated equations is reduced by one. The process of reducing the number 
of groups and associated equations by one at each step is continued until 
the one-group stage is reached. In each instance all alternatives are 
considered, and that alternative is selected which minimizes loss of 
overall predictive efficiency. The number of groups and equations to be 
retained is decided by weighing predictive efficiency against the cost of 
utilizing a given number of prediction composites. 

This is a considerably over-simplified description of the actual 
criterion grouping system. For example, the program enables the investigator 
to give weight to training costs, personnel quotas, and other factors 
associated with a particular school. That is, the program may be oriented 
toward preserving predictive efficiency for those schools where the number 
of students and the training costs are high relative to other schools. 

In those instances where the criterion means and variances are equal, 
computing expressions for the grouping system are extremely simple. Under 
this condition, the computer program can easily accomplish a complete 
hierarchical grouping of nearly a thousand criterion situations, using 
predictor composites based on as many as a hundred and fifty variables. 

We were able to locate criterion information and classification test 
scores for airmen attending sixty Air Force technical schools. A complete 
hierarchical grouping of the schools was accomplished. The results revealed 
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that reduction of the number of predictor equations from 60 to 15 was 
associated with a drop in overall R2 from .56 to .50.  However, as the 
number of equations was reduced from 15 to 1, the R^ dropped from .50 
to .38. 

JUDGMENT ANALYSIS 

In 1963, investigators at the Personnel Research Laboratory were 
experiencing remarkable success in programming a computer to simulate 
the actions of decision makers (Ward & Davis, 1963). A subject was required 
to record a series of decisions into the computer via the console typewriter. 
The subject made each decision after studying relevant information displayed 
to him by the typewriter. The computer was programmed to capture the policy 
of the subject in the form of an equation developed with the fixed-X multi- 
ple linear regression model. A series of decisions made by the subject was 
used as the dependent variable, while the independent variables were 
generated from information provided to the subject on the typewriter. The 
policy equation was then cross validated against a second series of decisions. 

At that time, the concept of policy capturing using the regression model 
was rather novel. However, more recently we have found policy-capturing to 
be a powerful approach to many meaningful operational problems. For example, 
in one study (Christal, 1965) a Hq USAF board of senior officers reveiwed 
descriptions of 3,575 representative officer positions and made decisions 
concerning the appropriate grade level to be associated with each.  In an 
effort to identify the factors considered by these board members in making 
their Judgments, over a hundred variables were hypothesized and evaluated. 
Eventually, a nine-predictor equation was developed which accurately 
reproduced the board's actions. Subsequently, this equation was applied by 
the computer to determine appropriate grades for an additional 10,000 officers, 
positions.  In other applications the model has been us^d to develop a 
mechanized initial assignment system for airmen which duplicates actions 
previously performed by assignment specialists. A study is planned to use 
this technique to develop a reassignment model which gives appropriate 
consideration to Job and personnel characteristics. While these applications 
have been in the military setting, the policy-capturing model might be used 
to study such diverse properties as the quality of beefstock, the beauty 
of pictures, the effectiveness of workers or the quality of English composi- 
tions.  (Christal, 1966) 

As one might expect, we have found that individuals sometimes differ 
quite markedly in their policies concerning a particular type of stimulus. 
For example, whet might be a beautiful picture to one Judge may be dull to 
another.  And what might be an excellent composition to one teacher may 
appear unacceptable to another.  The problem, of course, is that all 
Judges do not have the same value system.  We find this problem in the military 
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setting.  If one has a board of officers Judge the relative acceptability 
of a series of applicants for the Air Force Academy, for example, there 
will be considerable disagreement. Some will place high value on previous 
participation in high school sports and on the physical characteristics of 
applicants. Others will tend to place more weight on academic aptitudes. 

In the past, even though we might find interrater agreement to be low, 
we have simply averaged across all Judges in order to determine final values. 
However, it should be recognized that even when the level of interrater 
agreement among an entire sample of Judges is low, it might be that the 
Judges could be divided into two or morr groups within each of which there 
is very high agreement. Conventional analysis techniques for determining 
interrater agreement would fail to detect this situation.  It turns out 
that the criterion grouping application of the MAXOF Clustering Model is 
ideal for studying similarities and differences in rating policies (Christal, 
1963). We begin with a separate equation for each Judge, and then we 
cluster Judges with similar policies as measured by the homogeneity of 
their associated equations. Sometimes we find that Judges can be nicely 
clustered into two or three policy groups. In such an instance, differences 
in policies are pinpointed for arbitration. 

As an illustration, there was a group of ten supervisors in the personnel 
department of a large government-owned, government-managed research labora- 
tory who had been arguing about promotion standards for six years. Each 
year they had met for three days to discuss the matter, but without 
reaching agreement. Dr Robert Stephenson of the U.S. Naval Ordinance Test 
Station worked with Dr Ward in conducting a study to resolve the problem 
(Stephenson & Ward, In Press). First thay identified 112 items which 
might be related to promotion potential. Next each supervisor rated the 
importance of each item for evaluating promotion potential. Following a 
study of relevant variables, an analysis was performed in which the position 
of each super/isor was plotted as a point in multi-dimensional space. 
"Unfortunately," report the authors, "the knowledge of how similar one's 
position was to somebody else's position did not really help the members 
of the group to resolve their conflicting opinions.  In fact, the analysis 
tended to focus attention on people relationships (like 'How similar am I 
to the boss.') rather than policy differences." 

Next Stephenson and Ward tried the "JAN" technique (Christal, 1963), 
which is nothing more than a combination of policy-capturing and the MAXOF 
Clustering Model. First the investigators described a sample of potential 
pr« iotees in terms of their score values on relevant factors. Then each of 
the ten supervisors was asked to rank the entire sample in terms of Judged 
merit. The policy of each supervisor was captured using the multiple-linear 
regression model. The supervisors were then clustered in terms of the 
homogeneity of their equations, using the MAXOF Model.  Three distinctive 
policy groups were identified, and three associated Joint-policy equations 
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were developed.  These three equations were applied to rank the applicant 
sample, and the supervisors were asked to discuss and resolve differences 
in the rank positions of cases resulting from application of these three 
equations.  It is interesting to note that the supervisors spent more time 
resolving these differences than they did in making their original rankings. 
However, as a result of this undertaking the supervisors began to understand 
each other's positions, and found compromise possible. 'Jltimately, a 
compromise ranking was arrived at for each controversial case. A single 
new equation was developed which produced an R^ of .932.  This is almost un- 
believable, when one considers that the best single overall equation which 
could be attained before arbitration produced an R^ of only .1+82, and that 
the best equation for an individual supervisor produced an R of only .8^8. 
The authors concluded that the JAN technique was doubly successful.  The 
supervisors gained an understanding of each others positions, and they 
also reached agreement on a matter over which they had been fighting for 
six years. 

BIOLOGICAL TAXONOMIES 

As mentioned previously, the MAXOF Clustering Model is ideally suited 
for establishing biological taxonomies.  It yields a completely-nested 
hierarchical structure based upon optimization of a criterion established 
by the investigator.  The MAXOF Model was used by a New York botonist 
(unpublished study) to establish a taxonomy of Latin American tapioca 
plants.  The model is now being applied to cluster a group of tropical 
fish in terms of the similarity of their eating habits.  In this instance, 
the problem turns out to be identical to the Job-typing problem.  In place 
of a Job description reporting the "per cent worktime" on each of N tasks, 
we compute a "stomach content" description, reporting the per cent of total 
stomach content accounted for by each of N foods. Instead of an input 
matrix of common worktime values, we have an input matrix of common food 
values.  If the volume of food were considered to be a relevant factor, 
then a matrix of d'-s could be generated as input which would give weight 
to differences in volume as well as types of food consumed. 

INTEREST AREAS AND 
DOCUMENT GROUPING 

The MAXOF Clustering Model was used to group interest areas displayed 
by scientists at the Personnel Research Laboratory.  Results of this study 
(Tomlinson, 1965) are reported in Figure 3.  One of the advantages in 
obtaining a completely-nested hierarchical solution is revealed in this 
figure.  It is possible to determine a particular sequencing of the items 
being clustered, such that items appearing in any cluster at any stage are 
listed next to one another.  Thus in Figure 3 the reader can view 67 levels 
of the hierarchical solution. 
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After clustering interest areas, this investigator obtained a transpose 
of the original matrix and clustered the scientists in terms of the similarity 
of their reading interests.  Both solutions were accepted by personnel working 
in the Laboratory as being a true representation of reality. 

In a somewhat related study, an investigator at the Systems Development 
Corporation in California reported (unpublished study) that the MAXOF Model 
turned out to be nearly ideal as a basis for a mixed document and word grouping 
approach to be used in document storage and retrieval. 

MISCELLANEOUS APPLICATIONS 

The MAXOF Clustering Model has been used in several profile analysis 
studies. For example, it has been used to cluster subjects in terms of 
their test profiles (Ward & Hook, 1963). The model also has been used to 
group psychiatric patients in terms of the similarity of their profiles 
on personal history, socio-economic, and other variables considered relevant 
to diagnosis and prognosis. 

In most studies of this type, some form of a distance function is used 
as a measure of similarity. There is no problem in applying the MAXOF 
Clustering Model to group things or people so as to minimize the distances 
or squared distances among items within clusters.  However, distance values 
are at best rather ambiguous statements, being affected by the number, types, 
and nature of variables used in their computation. Distance functions 
should be avoided when more relevant and understandable measures of similarity 
can be utilized. Nevertheless, there are occasions when more meaningful values 
cannot be defined. This being the case, the investigator should at least 
excercise some control over the contribution of variables to the computed 
distance values.  One approach would be to avoid geometric distances altogether, 
and to substitute measures of perceived distances. A group of experts in 
the discipline area could be provided with profile descriptions for a sub- 
sample of the things or people to be clustered and asked to make direct 
Judgments of the distances among them. The fixed-X multiple linear regression 
model co Id then be employed to determine how difference scores on th? 
descriptive variables must be weighed in order to implement the policy of 
these experts. This equation could be applied to determine the perceived 
distances among the entire sample of things or people to be grouped.  Using 
this input matrix, clusters could be defined which are likely to have face 
validity, since they contain items perceived as being close to one another 
by experts in the discipline area. 
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PROGRAM DESCRIPTIONS 

The Personnel Research Laboratory has two sets of computer programs 
available for applying the MAXOF Clustering Model. The most elaborate 
set contains a large variety of options for computing Input matrices, 
clustering, and generating reports of results. This systems package 
Is designed for execution on an IBM 70U0 computer which has a 32K core 
memory, a 1301 disk file, six addressable tape units, an on-line lk02 
reader-punch, an on-line lU03 printer, and an Inquiry station. A few of 
the routines in this package will be described below. For investigators 
who do not have access to a computer with disk storage, a special set of 
programs has been written which will accomplish profile, criterion, and 
Job clustering on a smaller scale.  Input limitations are a function of 
core size. 

The profile clustering program permits grouping of 1,000 cases. Input 
is normally from punched cards, and may Include up to 928 words of background 
and history Information on each case in addition to th^ profile data. Profile 
data may consist of score values on up to 928 variables. Values on a 
particular profile variable must fit into a field of eight columns, including 
the sign and decimal point, if required. The system reads and edits input 
data, assigns case numbers, and writes data on tape. Twelve options are 
available for computing a matrix of similarities among profiles. These 
are defined in the appendix. The first will be recognized as the d2,8 
computed from raw scores. The second d2^ computed from standardized 
scores. The standardization routine is part of the basic program and is 
accomplished automatically if option 3 is selected. Option 3 permits the 
Investigator to introduce weights to be applied to raw score variables. 
It results in d2^ computed from weighted raw scores. Option 1* produces 
d2,s computed from weighted stnadardlzed scores. Again, the investigator 
provides the weights. Options 5 through 8 correspond to options 1 through U, 
except that values in the latter matrices are the positive square roots 
of the values in the former matrices. Thus they might be defined as being 
d's rather than d2|8. Options 9 through 12 produce summations of absolute 
differences of (a) raw scores, (b) standard scores, (c) weighted raw scores, 
and (d) weighted standard scores, respectively. 

Once the selected input matrix has been computed, V  may be written on 
tape or stored on disks ready for immediate grouping,  rhe function of the 
grouping program is to combine or "collapse" two rows of the matrix at a 
time until only one final row remains. This collapsing is guided by an 
"option" or objective function selected by the user. A total of six pre- 
programmed options are available. The prog, am also provides a way for the 
user to code and insert his own objective fu'ction. Definition of the pre- 
programmed options are given in the appendix. Ordinarily, profile analysis 
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is accomplished using the maximizing function associated with options 1 
or 2. Thus in option 1, groups are collapsed so as to maximize the average 
within-group overlap at each stage.  In option 2, which we have found best 
for most purposes except criterion grouping, the program simply collapses 
the two groups whose members are most similar; that is, for which the 
average pair-wise between-groups member overlap is highest. 

After the grouping has been accomplished, the program enables the 
investigator to publish several types of tables displaying the results. 
First, one can obtain a group profile description for any group existing 
at any stage. The format of a group profile description is Illustrated in 
the appendix. Programs also are available for describing individuals in 
any group in terms of the history and background data. One can request 
distributions, means and standard deviations for selected background 
variables. Many other types of displays are possible which cannot be 
described due to space limitations. It Is suggested that anyone desiring 
more information about these programs write to one of the authors. 

Input to the criterion grouping program Is in the form of beta weights 
and validity coefficients. The appendix includes a note written by 
Dr Robert A. Bottenberg which demonstrates how an input matrix of "pair- 
wise loss values" can be grouped with option 1 of the general grouping 
program in a manner which minimizes over-all loss in predictive efficiency. 
In the case of equal criterion means and standard deviations, the program 
can handle nearly a thousand input equations, each involving a common set 
of not more than 150 predictors. Outputs Include (a) the overall R^ at 
each stage, (b) the set of raw score regression weights for the new group 
formed at each stage, and (c) the set of validity coefficients for the new 
group formed at each stage. Again, several other outputs are  available, 
which can be described to requestors. 

The task survey analysis programs are by far the most elaborate, and 
cannot be described in this paper. 

SUMMARY 

A hierarchical clustering technique has been described which is designed 
to group people or things into mutually exclusive categories. The input 
matrix of overlap values may take any form which the investigator selects 
as representing reality. 

The model begins with each of the N objects in a separate group. The 
number of groups is reduced by one at each stage, until all objects are in 
a single group. Choice of the two groups to be collapsed at a given stage 
is determined by considering all possibilities and selecting that one which 

11.15 

m» 



h

best satisfies an objective fanction previously established by the 
investigator. Thus, the model groups objects into every possible number 
of mutually exclusive clusters, from H to 1. The investigator decides 
on the appropriate number of clusters to report by considering relevant 
factors.

Applications of the model described in the paper include: (a) grouping
Jobs in a manner vhich minimizes average cross-training time among Jobs 
within clusters; (b) defining a large number of Jobs with a fewer number of 
consolidated Job descriptions in a manner which maintains maximam descrip­

tive accuracy; (c) clustering technical schools into families and producing 
associated prediction equations so as to maintain maximum predictive 
efficiency; (d) clustering Judges in terms of the homogeneity of their 
policy equations, and producing composite equations for each group accepted; 
(e) establishing a taxonosqr of Latin American tapioca plants; (f) grouping 
tropical fish in terms of the similarity of their eating habits; (g) 
grouping reading areas; (h) grouping scientists in terms of the similarity 
of their reading Interests; (i) document grouping; (j) task clustering, 
and (K) profile analysis.
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APPENDIX 

Contents of Appendix are as follows, listed in order of appearance: 

1. Requirements for computer evaluation of objective function on 
pooling a large number of objects. 

2. Definition of input matrices for profile grouping. 

3. Format for description of group profile. 

k.    Definition of grouping process and collapsing formulas. 

5. Conditions for use of options k  and 6 for grouping in terms 
of square multiple correlation coefficients. 

6. Listing of top tasks from six medical Laboratory Technician Job 
type descriptions. 
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DEPARTMENT OF THE AIR FORCE 
MCAOOUAHTeWMTOTM PtRSONMfL  HEStABCM LABORATORY (AFSCt 

CACKLAND AIR »ORCi «ASE. 1CXAS   nan 

PRMMA*^ 26 September 1966 

tequirements for Coaputer Evaluation of Objective Function/on Pooling a 
Large Number of Objectr 

,0 PRB (Dr. Christal) 

1. The most general statement of the problem is to determine an estimate 
of machine time required to perform the evaluations for all posßible group- 
ings of 1,000 objects. The enumeration of all such groupings appeure to be 
a difficult problem. Therefore, what follows is limited to the enuaeration 
of a subset of these groupings. Any time estimate made on the basis of 
evaluating the objective function for all groupings in this subset will be 
a ^ross underestimete of the time requirement for grouping in all possible 
ways. The subset in question contains any grouping such that: a. there are 
500 groups, and b. there are exactly two objects In each group. Define this 
subset as S. 

2. To enumerate the groupings of 1,000 objects into 500 partitions of two 
objects each, flrat consider the simple problem of enumerating the group- 
ings of k  objects Into two partitions of two objects each. There are three 
such groupings, (1,2:3,^)» (1,3^U), and (l,U:2,3). Note that the lead 
element in the first partition is the l.d. number 1., and we can make this 
true for any arbitrary arrangement of l.d. numbers into partitions by reorder- 
ing the object l.d. numbers within a partition and the order of the partitions 
without in any way altering the unique grouping. Next consider grouping 6 
objects into three partitions of two objects each. Again let the i.d. number 
1 be the lead element of the first partition. There are five other l.d. 
numbers which can be used to fill out the first partition. Then, as in the 
case of grouping four objects into two partitions of two each, there are 
three ways of partitioning the remaining four objects for each of the five 
ways of completing the first partition. 00 there are 5 x 3 » 15 ways of 
grouping 6 objects into three partitions of two objects each. The same 
general argument holds for the problem of putting 8 objects into four pcrti- 
tlons of two each. There are 7 i»d. numbers which can be used to complete 
the first partition after assigning i.d. number 1 to the lead element of the 
first partition. For each of the 7 ways of completing partition 1, there 
are 5 x 3 ■ 15 ways of assigning the remaining 6 objects to three partitions 
of two objects each. It can be seen by Induction that for grouping 1,000 
objects into 500 partitions of two^objects each, there ar|o999 * 99? x ... x 3 x 1 
different ways, - (lOOO:/(500lx2500)) « approximately lO128?. 

3. There are approximately 3 x 10T seconds per year. Assuming that the cycle 
time for a computer is about 10'°, and that one evaluation of the objective 
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function could be performed on eact) machine cycle, then a computer operating 
for one year could compute 3 x 10^° evaluations. If the total number of 
evaluations were split up so that separate computers could perform different 
subsets of the evaluations, It would require 10^289/3 x lcA° • approxiraately 
101272 computers running continuously for one year to evaluate all the objec- 
tive functions for the subset S. 

RpBERT A. BOTTENBERG   J 
Chief, Mathernatical and Statistical 
Analysis Branch 
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DEFINITION OF INPUl MATRICES FOR PROFILE GROUPING 

A. Input.  (l) A tape file or deck of cards containing scores on 

a set p variables for each of n cases. 

(2) A set of p weights, one for each of the p variables, 

When weights are unspecified, they are assumed to be equal to 1.00. 

B. Functions of the Program. This program computes a matrix of 

profile similarities, ready for input in the PRL grouping programs. 

The input matrix is symmetric and contains n2 values. The elements of 

the matrix are computed according to one of the twelve computing 

expressions listed below, depending upon the option selected. 

C. Definition of Terms. 

Let X^j » score on variable J for person i, or the J  element 

in the ith record.  J» 1000, 1*1000 

n     »the upper value for i. 

p     ■ the upper value for J. 

A^     = weight to be applied to variable k. 

Ou     = standard deviation of variable k. 

? y2     r 1 Xik    I ^ x.. 
i-1 ik      1-1 ik 

n 
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D.    Computing expressions.    Twelve options are programmed 

as  follows: 

1.     DU-j       =     I      (xik - Xjk  I 

=    d 

P 

k=l 
2.    DUSij    =     I        Xik - Xjk 

=    d    using standardized scores 

=    d    computed from weighted raw scores 

2 p 

1*.    DWS. .    =    Z 
J        k=l 

Xik " XJkl 

= d computed from weighted standard scores 

5. DU    = ^7 

6.  DUS 
U   si  iJ 

-J 

DUS. 

7.  DW 

8.  DWS 

=  PW^. 

, DWS.. 

9. ADU. 
i.] 

P 
I 

k=l 
X - X 
ik AJk 

Summation of absolute differences in raw scores 
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10.     ADUS ij 
P 
I 

k=l 
ik .Ik 

Summation of absolute differences  of standard scores 

11.     ADW, 
ij 

P 
I 

k=l 
X.,   - X,, ik        ,1k 

Summation of weighted absolute differences of 
raw scores 

12.     ADWS 
ij 

p 

k = l 
Xik  " XJk 

= Summation of weighted absolute differences in 
standardized scores. 

NOTE: The general program is written so that if options 1 and 5 

are required simultaneously, the program will obtain both raatricies at 

one time; similarity for options 2 and 6, 3 and 7, and h  and 8. 

11.23 



ö    § 

•    i 

g 
ß 

X 
X 
X 

o 

ö 

r—> 

X 

a 
ö 

o 
M 

s 

i 
z 
H 

OS 

3 
X. £&§ 

^^       PQ 

I 
QL, 

B 
ü 

1 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
X 

X 
X 

X 
X 
X 
X 
>■ 
X 

X 
X 

X 
X 
X 
X 
X 
X 
X 
X 

X 
X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

§ , o > a 

11.2»* 



I 
/ 

DEFINITION OF GROUPING PROGRAM AND 
COLLAPSING FORMULAS 

FUNCTION:     To combine rows oC matrix (stored on disk), two at a time, until 

only one final value remains.   This process is called "collapsing 

the matrix."  Two methods are available tor selection of the 

sequence o;' rows to be combined: 

1. MAXIMIZING Process:  The largest value V^ in the 

matrix is searched for each time, and when found, the 

indices of its position in the matrix (i and j) become the 

two rows to be combined.   Thus, if the numerically 
rd largest matrix element is in 123     cell of row 45, then 

row 123 will be combined with row 45. 

2. MINIMIZING Process:  Similar to the maximizing process 

except the smallest value is searched for each time. Once 

either the minimizing or maximizing process is selected 

(via control card) it remains in effect for all collapses oi 

the entire matrix. 

The value selected to determine each collapse is called the BEST 

value for that collapse; each collapse is called a STAGE.   The 

two row numbers are called the IBEST and JBEST indices for 

that STAGE .   The rows for each STAGE are combined together 

according to a pre-determined formula.   It can be shown that 

after a combination, no value can be generated which is greater 

than BEST for that stage if maximizing, or smaller than BEST 

if minimizing.   The row indicated by the larger index is always 

collapsed into the row with the smaller index.   Hence, if BEST 

is found at 123 and 45, then the new values generated will be 

restored into row 45, and row 123 will be considered dclcicd 

from the matrix.   If the matrix was m x m to start, then the 

first collapse is called STAGE (m - 1), the next is calicu 
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STAGE ( m - 2), down to stage 1.   The original matrix is de- 

stroyed in the process. 

The original matrix normally was created by one of the OVERLAP 

programs.   Its values really form a "triangular" matrix but it 

was found that by reflecting the values on the other side of the 

diagonal, that the grouping program could be made to operate 

very rapidly.   This is done by a "delayed updating" process 

developed in contract AF 4l-(609)-I982.   Details will not be 

repeated here.   Actually, a table of BEST values is maintained 

in core so as to avoid searching the entire matrix on disk for 

each collapse.   The BEST table, the generated weights (number 

of rows combined into a given row) and order of collapses is 

also maintained by the program and used as part of the technique. 

COLLAPSING FORMULAS: 

The user must choose one of these and punch its Identification 

number on a control card.   The entire collapse of the total 

matrix then occurs according to the chosen option.   In all the 

below: 

i = Lower numbered row of any pair of rows being 

combined. 

New values are restored into row i. 

j = Higher numbered row of any pair of rows being 

combined. 

Row j is then deleted from matrix. 
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k =      Successive values in a row, where K = 1, 2 .... 

m and m is order of the matrix, except no value 

is computed for the diagonal element k = i. 

V^f     Old values ojtained from row i. 

Vj ■=     Old values obtained from row J. 

V'lti=   ^ew va^ue tlue to the combination and restored 

into position k or row i. 

Wx=     Weight of a row, where x can be i, j, or k 

depending on the option selected. 

At the final stage of collapse, the weight value 

will be equal to the sum of weight row of the 

matrix. 

Collapse Option 1 

v,ki= Vki ^i * W
k) + \ ^j + Wk) " Vij wk 

wi + wj+wk 

Collapse Option 2 

ki      ki    i       kj    j 

Wi^j 

Collapse Option 3 (when MAXIMIZING) 

V'ki = larger of Vk. and V 

Collapse Option 3 (when MINIMIZING) 

V'ki = smaller of V^ and V^ 

Collapsj Option 4 

V'.. = A value generated by user written code incorporated 

in the GROUP program. 

In all options, the new weight of row i (designated W.) will be the 

sum of the old W. plus W.. 
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TASK IXVZNTORY and/or PROFILE ANALYSIS 

AVERAGE WTTHIN = V Ti 

ii 
2 2 

V'., = V,,- \\\   -r V.. W;2 + 2V . W. W. 
** 1     m 3J 1J     -1    -J 

(W. + VV.)2 

WIIERE: V . was the previous "average within" for all rows collapsed 

into row i (usually, starts at 100%). 

V.. is like V   except for row j. 
JJ ii 

V. is BEST, the value used as the criteria to select these 
ij 

two rows for combination. 

W. and W are the weights of the respective vows before 

combining. 

DEGRESSION EQUATION ANALYSIS 
2 

When collapse Option I is utilized, a value R   will be computed. 
o 

For the initial collapse R' will be computed in OVLAP1 by the 

formula: 

I Wj r^ 

2 
Rff = . 

g 
v 

j--l 
I W; 

Where r:; was a calculated value of the squared multiple 

correlation coefficient. 
2 

For every collapse thereafter, R. will be computed by the 

formula: 

Rk - R
k

2.l " Vii 
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Where Rf is the overall R   at stage K and V.. is the matrix 

element located by the i and j indices. 
2 

The value R. is the output in the place of AVERAGE within. 
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1. Ctntrtl. 
4 and 6 «ill 

CONDITIONS FOR USE OF OPTIONS 4 AND 6 
FOR GROUPING IN TERMS OF SQUARED 

MULTIPLE CORRELATION COEFFICIENTS 

Attuwi« an input matrix, V, axiata.  Both optiona 
uaa V, aaak for tha anallaat valua in V, and than 

updata.  Tha matrix V ia aaaunad to ba aymnatric.  If tha 
«iniMuai valua in V ia tha alament vij «hara i ia laaa than J, 

than row and column i ara updatad and tha axiating ro« and 
column J mill ba diaragardad in aubaaquant oparationa« Aftar 
tha alamanta in rom and column i hava baan updatad, tha moight 
■j ia updatad and tha axiating maight mj ia aubaaquantly 

diaragardad.  Tha axpraaaion for updating alamant k in column 
i dapanda on tha option. For option 4, 

vki * ^vik"i * vJI<*J^/^*i * "j)» ■htr> itJ idantify tha poaition 
of tha amallaat alamant, v^j in V| 

for option 6, 

vkl ' 'wik("i ♦ "k) ♦ vJk("J *  *k)   - wij>'k)/("i ♦ "j ♦ «»k)» 
•here i,j idantifiaa tha minimum in matrix V. 

For both optiona, tha updatad m. ia given by mj •i * 'J- 

2. Aaaumotiona. 

a. Proportionality of auma of squares and cross-products 
of predictor matrices batmaan the initial groupa. Equality of 
predictor intexcorrelation matrixes for initial groupa ia 
necessary but not sufficient, since the solution for a set of 
beta meighta in combined groups mould involve the predictor 
correlation matrix for the rjmbined group, and even though 
these matrices ara equal for the separate groupa, the combined 
group predictor corralatiur, matrix mill not in general be a 
maighted sum of the separate matricea unless the auma of 
squares and cross-products matricea for separate groups ara 
proportional.  Proportionality alao implies that the predictor 
mean for a given variable ia conatant from group to group, 
similarly for the predictor a.d. 

b. Equality of criterion variable means acroaa initial 
groups. 

c. Eauallty of criterion variable a.d. acroaa initial 
groups. 

11.30 



V 

3, Definition», 

a. P^, • roM vector of bate weights (standard partial 

•eights) in which the (p)th element is the «eight for predic- 
tor p in initial group i. 

b, B, a Matrix in which the rows are the Bi, 

c» TJ, » column vector of validity coefficients in which 

the (p)th element ia the validity of predictor p for the 
criterion in initial group J. 

d. T, a matrix in which the columna are the Tj. 

a.  R, a aquare matrix, BT.  R ia theoretically symmetrical 
but will, in general, fail to be symmetrical due to Inaccuracy 
in aolving for the B^. 

f, wp weights.  Initial valuaa of the w^ are set at the 

corraaponding N^ (number of criterion observations) for option 

6 with unequal N^f and aet at 1 when option 6 ia used for an 

equal N caaa and for option 4, 

g, w, the sum over i of initiel valuaa of w^, 

h.  V, a symmetric matrix in which the element vjj ia 

obtained from elements r^, t\\%   r^j, and rji of matrix R, 

VJJ » (l/w)(wiwj(ril ♦ rjj - rxj - rji))/(w1 ♦ wj), where 

the velues of w^ and wj are the initial values, 

4.  Proof that option 6 combines groups so aa to minimize 
loas in over-all predictive efficiency, given the input matrix 
V and the updating procedure deacribad in paragraph 1. 
Method!  (1) Assume that grouping haa occurred and that at the 
end of this stage the element v. . ia found to be best (minimum) 

in the updated matrix; (2) That VIJ, Vi^, and v.k are the 

over-all loss in predictive efficiency when the i,J cluster 
is combined, when the i,k cluster is combined, and when the 
j,k cluater is combined respectively; (3) Then to show that 
v/. aa given by the updeting expreeeion will be the over-all 

loas in predictive efficiency when the i,J cluster is combined 
with cluster k; and (4) To ahow that the initial values in the 
V matrix repreaent the over-all loss in predictive efficiency 
when two of the initial groups are combined.  If (3) and (4) 
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are demonttratad, than by induction the alananta in matrix V 
at the and of any grouping ataga «ill ba tha loss in predic- 
tive efficiency, over all, «hen the two clusters identified 
by the subscripts are combined. 

a.  Denote the squared multiple for clusters 1, j, and k; 
cluster i,J{ cluster ifk; cluster J,k; and cluster ifjfk as 

Ri» Rj» Rk» R1,J» "i.k» Rj k» and Ri,j,k#  Denote the updated 

values of the «eights for clusters i, j, and k after s stages 
as W|f Wj, W^, and mff,,mQ,   m^,   etc. as the weights asso- 

ciated with the initial group indicated by the subscript. 

b.  The over-all predictive efficiency after s stages is 

(l/w)(liiiR^ ♦ WJRJ ♦ WkR^ ♦ C), where C is the weighted sum of 

squared multiples for other clusters. 

« 

c.  The over-all predictive efficiency, if at the next 
stage clusters i and J were combined, would be 

♦ wj)Rifj ♦ wkRk ♦ c). 

d. The corresponding loss in over-all predictive effi- 

ciency is (l/w)(WiRj ♦ WjR] - (Wi ♦ Wj)Rifj). 

e. By analogy, the loss in over-all predictive efficiency, 
if 1 and k are combined after stage s, is 

(l/w)(UliRf ♦ lllkR£ - (Wi ♦ lllk)Rf,k). 

f. By analogy, the loss in over-all predictive efficiency, 
if J and k were combined after stage s, is 

(l/wHWjRJ . UlkR* - (ttj * Wk)RJik). 

g. By analogy, the loss in over-all predictive efficiency, 
if at stage 8+2 cluster k is combined with the i,J cluster 
which is assumed to have been combined at stage s*l, is 

(l/w)((Wi ♦ Wj)Rifj ♦ Mk - (^i *  WJ *  wk)Ri.j,k). 

h.  Now assume that element v.. contains the quantity 

shown in step d after a stages, v.. containa tha quantity 

in step e, v- contains the quantity shown in step f, and 

that VJJ ia the minimum in the updated V matrix.  Then show 

that the updating expression v^ = (l/(Wi ♦ Wj ♦ ^k^^ik^l 

♦ Vj^Ulj ♦ U)k) - v^W^ 

will yield the value of the quantity ahown in step g. 

V 
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1.     Subitltutlng  thtir   assumed  values   for   v.. ,   v.. ,   and v. ., 

v^   -   (1/(«(UI1   ♦   Wj   ♦   UI|<)))(W[RJ   *   W^RJ  ♦   Ulk(Wi   ♦   W     4   2W)<)R^ 

-  («i  *  wk)2Ri,k  -  (Wj  *  Wk)2Rj,k *  Wk(Wl  -  Wj)Ri,j). 

J.  Denote 9Bj the vector of beta Heights for cluster i 

after ■ stages, 8Bj and 8Bk similarly; gl^, 8Tj, aTk are vectors 

of validity coefficients after stags s for clusters 1, J, and 
k respectively. 

k.  Let 

s*lBi i be th8 vector of beta weights for the combined i,j 
cluster, if clusters i,J were combined on stage s*l, and by 
proportionnlity assumption = (l/CWj ♦ wi^(Wi,8Bi *   WJ*8B^! 

s*lBi k be the VBctor of beta weights for the combined i,k 
cluster, if on stage 8*1 clusters i and k are combined, 
« (1/(W1 ♦ Wk))-(Wi'iBi ♦ V8Bk); 

s+lB1 k be the vector 0^ beta weights for the combined j,k 
cluster, if on stage s+l clusters J and k are combined, 
= (l/dHj *  Wk))(WJ-8Bj . ttk.sBk); 

s*?Bi 1 k be ^B  V8Ctor or   hets weights for the combiied i,j,k 
cluster, if on stage s*l clusters i and J are combined and on 
stage s*2 cluster k is combined with the i,J cluster formed on 
state •♦!, = (l/dlli t Ulj ♦ Ulk))(Wi-8Bi ♦ Wj'8ej * Wk-sBk); 

and define vectors of validity coefficients similarly. 

1.  Then, 
Ri = sBi-sTi' 

«j - 8Bj-8TJ; 

Rk ' 8Bk-sTk' 

Rl   1  '  s*lBi   l*s*lTi   i'   antl  '"^'tituting  the  s  stage  vectors 
for   the  s*l   stage vectors  as   in step k,  =   (l/(uii  ♦  Ui.)   ) (^^gBi •s

T
i 

*  »"jVjVj   *   «i^j'sBi'sTj   *   ^UIj^Oj^Ti); 
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Ritl<  =  8.1Bi,k-8.1Ti.k  or   =   (1/(114  ♦  «^^(W^-.B^.Ti 

* wJ.9Bk.9Tk  *  WiWk-8Bi-5Tk   *   Wi^k'sBk-sTi)? 

Rj,k    =    8.1BJ.k-8*lTJtk    "    "    (l/(Wj    *   Wk)2HWj-S0jVj 

* ^.8Bk.,Tk  ♦  WjlV.BjVk   *   WJWk.8Bk.8Tj);   and 

Ri.J.k   «  .^l.J.kWl.j.k  or   «  (lAtti   *   Wj  *   Wk)
2)(W?-.Bi-iTi 

♦ W.W.«   8.»   T.   ♦   W.W. •   B. •   T.   *   W.W  •   B.«   T.    ♦   W.tt. •   B.»   T,), iksisk i   k   a   k   s   i Jk8j8k J   k   a  k  a   j7 

m.     Substituting  from atap  1  tha axpraaslona  for R?,   R?, 
2        2 7 2 l        J 

Rk,   RJ   i,   RJ  k,  and Rj  k  into  tha axpraaaion  for   v^  in 

atap  i,   v^  «  {l/bitii*  Wj  *  Wk)))(l*lkw{«iB1-9Ti/(wi  ♦ Wj) 

4  VJ'iBj"lV^i  *  wj)   *  «k^i  4  wj)8Bk-8Tk 

♦ wiwjulk-aBi-8Tj/(wi  *  wj)  *  «i^k-a^-a^/^i  *  wj) 

-  M.W .•   B.»   T.   -  W.UI. •   B. •   T.   -  W.W.«   B.»   T.    -  HI.W. •   B.«   T.). ikaiak        i  k  a  k  a   1 Jkajak        Jkaka  j' 

n.     Substituting  from atap  1  tha axprasaiona   for R?   ., 
2      2 * J 

Pkf and R| j^ into tha axpraaaion for loss in over-all pre- 

dictive afficiancy in atap g and evaluating, tha quantity is 
identical to the value of v^. derived in & ep m, 

o.  Therefore, if it ia assumed that tha updated V matrix 
after a stages contains elements which are the loss in over-all 
predictive efficiency which would be required at stage s*l if 
tha two clusters indicated by the row and column subscripts 
of an element were combined, then the expreesion for updating 
the elementa in the column and row in which the minimum is 
found will, in fact, give the loss in over-all predictive 
efficiency when some other cluatar, k, is combined on stage 
8*2 with the combined i,J cluster formed et stage s+l. 

p.  To prove that tha input matrix V contains alemente 
which ere the loaa in over-all predictive efficiency when a 
pair of initial groupa are combined, let Af  be the squared 

i»J 
multiple for the two group cluatar consisting of initial 
groups i and J. Tha over-all predictive efficiency for the 
full interaction model ia (l/wHw.r.. ♦ m\Ti\  * K)» "betB  K 
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is the melghted sum of other elements on the diagonal of 
matrix R.  The over-all predictive efficiency, mhen i and j 
are combined is 

(l/wX'.^i ♦ "j^i.j *   K) ; 

and  the   loss   in over-all   predictive efficiency   is 

(iMVu *  wjrj: " (wi * "j^i.j^ 
The vector of beta weights for the i,j cluster is, because 
of proportionality, 

(i/(uüi ♦ *j))(1*.ioi ♦ wjöj); 

and the validity vector for the i,j cluster is 

(l/(l»l. -r ui JHu/jT. 4 "'j1 j) 5 

hence, 

A^j = (l/(wi * tt(j)
2)(«fBiTi * "jBjTj * «i-jBJj * ü^jBjT^ 

or = {l/{mi   ♦ *j)2)(,,'irii ♦ wjrjJ * ■,i,ujrij + ''ilMj^ji)• 

Substituting this value in the expression for the loss in 
over-all predictive efficiency, 

loss = (wiWj/(ii(wi *  •ij)))(rii ♦ TJJ - r^ - r^), 

which is also the expression for the element v. . in the input 

matrix (see paragraph 3, item h). 

q.  Note:  IF all the initial group n's are equal, the 
initial values of m.   could either all be set equal to this 

common value or the w,   all set equal to 1 initially.  In 

the latter case, the \U>,   etc., would be just the number of 

initial groups currently contained in cluster i and w would 
be the number of initial groups.  The expressions fur the 
vectors of beta weights and validity coefficients would 
still be correct. 

5.  Proof that option 4 groups so as to minimize the average 
pairwise loss in predictive efficiency, given an input matrix 
\l  and the expression for updating elements in the row and 
column in which the minimum of the updated V matrix is located, 
vki = ^vikwi * VjkUlj)/(Uli *   W:), where Vj , is the minimuin in V, 

Definition:  A pairwise loss in predictive efficiency is the 

reduction in R^ when an interaction model for only two of the 
initial groups is reduced to a common model for ine two groups. 



, 

If at tht mad  of 9 tlagts thtra are Ml of tha initial groupa 

in cluster i and IH. of tha initial groupa in cluatar k, than 

tha avarag« laaa baing considered la tha average of Wj>
,l»lk 

losses, ahcr« eech loaa raflecta tha combining of one member 
of cluatar 1 silth one member of clueter k. Methodt  (1) 
Assume that at tha and of a stages the V matrix haa bean 
updated ao -that v^j contains 2/m  timee the averege pairwise 

loss ehich «111 occur on stage s*l if cluatars i and J are 
combined, v.. centaina ?/m  times tha average peirmlae loaa 

■hich aill occur on atege s*l if clusters i and k are com- 
bined, end v.  contains 2/m  times the averege pairmisa loaa 

which eill occur on atage s-tl if clusters J end k are com- 
bined; (2) Aeeume that v.. is tha minimum in the updeted V; 

(3) Then shorn that v^ «ill be 2/m  times the average pair- 

•lae lose which mill occur on etaga 9*2 if cluster k ia com- 
bined aith tha new cluatar called 1 which wee formed et 
atage 8*1; (4) Then show that an element of the input matrix 
ia 2/a timaa the loaa for a pair of initial groups; (5) So, 
by induction, all elements of the updated V metrlx will con- 
tain 2/a timaa tha average pairwise loee when all possible 
peirs ere formed by putting members of the clueter identified 
by the row subscript with members of the clueter identified 
by the column eubacript of tha element of the updated V 
ma t r1x. 

a. 9y aaaumption (1) under "Method," there are W^'W^ 

losses involved in v.. ; hence, wi'"'k^^^^ik ** the 8um or 

Wj-W^ losses when members of cluatar i are peired with mem- 

bers of cluatar k. 

b. Similarly, W.»UI (e/2)v  is the sum of ^ ,t^k   losses 

when membere »f cluatar J are paired with members of cluster 
k. 

c. The total number of losses to be considered when mem- 
•rs of clueter 1 are paired with members of cluster k and 
-wmbars of cluster J era paired with members of clueter k ia 
4i-Wk ♦ Wj-Wk - ^iVi   *  Wj). 

d. Therefore, (W1'Wk(a/2)vik ■♦ l/jWk(w/2)vjk)/(H)k(l»li *  Ulj)) 

= (w/2)(wlkUli ♦ VjkUlj)/(W1 ♦ Wj) or « (w/2)v|ii is the average 

oalrwiss loaa when members of cluatar 1 are paired with mem- 
bere of cluster k and mambera of cluatar J ar« paired with 
members of cluster k. 
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e. Hence, v^ = (2/w) times the average loss «yhich would 

occur on stage s*2 if clusters i and J existing at the end of 
stage s are combined on stage 8*1. 

f. The txo-group interaction model spuared multiple for 
initial groups i and j mith equal n's is (l/zXr,, ♦ rn^* 

g. The vector of beta weights for the combination of 
initial groups i and j is (l/2j(Bj ♦ Bj); the vector of 

validity coefficients is (l/2)(T, ♦ T.); the squared multiple 
is then J 

(l/4)(BiTi ♦ BjTj ♦ B^j * BjTi) = (l/4)(ril ♦ tjj ♦ r^ * tj^ 

h.  The loss for pairing groups i and j is 

(l/4)(rii *  rjj - rjj - rji) = («i/2)vij 

(see paragraph 3h). 

i.  Hence, the element v  of the input matrix \l   is {2/w) 

times the pairwise loss for initial groups i and J. 

j.  Since steps a through e do not use the assumption of 
proportional sums of squares and cross-product predictor 
matrices and of common criterion means and s.d.'s, option 4 
can be shown to minimize average loss in pairwise R^ if 
some other input matrix V can be constructed which reflects 

loss in pairwise R^ with an expression using the elements 
of matrix R and other information so as not to involve these 
assumptions.  However, initial values w. must be set at 1 

even if another input matrix \l  is used. 
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Top Tasks from Six Medical Laboratory 
Technician Job Types 

Bio Chemistry Job Type 

Perform Liver Function Tssts 
Perform NPN and BUN Tests 
Operate Spectro Photometer 
Perform Calcium and Phosphorus Tests 
Perform Total Protein and A G Ratio 
Total Cholesterol and Esters Test 
Utilize Colormetric Procedure 
Perform URIC Acid Tests 
Perform Carbon Dioxide Determinations 
Perform Enzyme Analyses 
Perform Chlorides Tests 
Prepare Reagents and Standards 
Perform Electrolyte Determinations 
Collect Blood Specimens Directly from Patients 
Perform Carbohydrates Tolerance Tests 
Operate Flame Photometer 
Perform Creatinine Tests 
Prepare Reagents 
Perform Prothrombin Time Test 
Prepare Solutions and Standards 
Clean Area Equipment Aseptically 
Separate Serum from Blood 
Prepare and Pro .ess Specimens 
Centrifuge and Separate Serum from Clot 
Utilize Titrimetric Procedure 

Blood Bank Job Type 

Crossmatch Blood 
Test Blood for ABO Grouping and ABO Subgrouping 
Type Blood of Donors and Receipients 
Test Blood for RHO or DU Factors 
Store Blood According to Grouping and Factor 
Centrifuge and Separate Serum from Clot 
Prepare Blood for Shipment 
Maintain Files of Blood Banking Forms 
Perform Direct and Indirect Coombs Tests 
Record Information on Blood Record Card 
Prepare and Process Specimens 
Heterophile Presumptive and Differential Antibody Teot 
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Blood Pank Job IVpe  (Cont'd) 

Collect Blood Spet-imeru; Directly from r'atienta 
Dispose of Blood after Time Limit 
Perform Cardiolipin Microflocculation 
Perform C Reactive Protein Tests 
Perform Latex Fixation Test 
Log Incoming or Outgoing Specimens 
Draw Blood for Transfusions 
Maintain Donor Files 
Process Blood for Packed Cells 

Hematology Supervisor Job Type 

Perform Hematrocrit Tests 
Perform Blood Count 
Prepare Blood Smears 
Perform Erythrocyte Sedimentation Hate 
Identify Morphological Variations if Blood Cells 
Perform Reticulocyte Count 
Perform Sickle Ct-ll Preparations 
Separate Serum from Blood 
Identify Immature Blood Cells 
Perform Eosinophile Counts 
Determine Coagulation Times by Lee White Method 
Perform Spinal Fluid Cell Counts 
Requisition Supplies and Equipment 
Perform Thrombocyte Count 
Determine Coagulation Times by Capillary Method 
Determine Bleeding Time Ivy Method 
Collect Blood Specimens Directly from Patients 
Perform Differential Cell Countf 
Perfon Clot Retraction Test 
Determine Bleeding Time Duke Method 
Perform Cerebrospinal Fluid Count 
Perform Erythrocyte Indices 

Bacteriology Job Type 

Prepare Culture Media 
Clean Area and Equipment Aseptictlly 
Identify and Classify Pathogenic 3acteria 
Perform Antibiotic Sensitivity Test 
Stain Bacteriological Smears 
Examine Specimens Microscopically 

11.39 
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Bacteriology Job TVpe (Cont'd) 

Identify Prototoan» Cestodes Nematodes or Trematodes 
Collect Skin Specimens Directly from Patients 
Perform Concentration and Flotation Techniques 
Collect Pus Specimens Directly fron» Patients 
Log Incoming or Outgoing Specimens 
Perform Bacteriological or Cheaical Exam of Water 
Collect Fecal or Urine Specimens from Patients 
Stain Mycology Specimens 
Stain Parasltological Smears 
Prepare Solutions and Standards 
Maintain Files of Laboratory Records and Reports 
Investigate Possible Sources of Staphylococcus Outbreaks 
Perform Sperm Counts 
Cultivate Mycology Specimens for Primary Isolation 
Perform KOH Preparation for Dermatophytes 
Identify and Classify Fungi 
Collect Sputum Specimens Directly from Patients 

Histopathalogy Technician Job TVpe 

Section Tissue in Microscopic Blocks 
Mount Tissue Section in Preparation for Microscopic Study 
Qnbed Tissue in Paraffin 
Stain Specimens for Microscopic Study 
Prepare Routine Stains 
Prepare Tissue for Dehydration and Infiltration of Paraffin 
Assist with Autopny 
Prepare Special Stains 
Log Incoming or Outgoing Specimens 
Use Autotechnlcon 
Prepare and Process Specimens 
Decalcify Specimens of Teeth and Bone 
Prepare Specimens for Shipment 
Submit Tissue Specimens to AFIP or Histopathology Centers 
Prepare Frozen Section of Tissue 
Use Microtome Knife Sharpener 
Clean Area and Equipment Aseptically 
Collect Biopsy or Autopsy Specimens 

NCQIC Job Type 

Evaluate Work Performance of Subordinates 
Resolve Technical Problems of Subordinates 
Assure the Availability of Equipment and Supplies 
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NCÜIC Job Type (Cont'd) 

Assign Specific Work to Individuals 
Evaluate the Accuracy of Routine Reports 
Develop and Improve Work Methods and Procedures 
Plan Reports for the Section 
Plan and Schedx le Work Assignments 
Direct Maint Utilzn of Equip Supplies and Work Space 
Determine Equipment Repairs of Replacements Needed 
Evaluate Compliance with Established Work Standards 
Supervise On-the-Job Training Programs 
Evaluate the Adequacy of Routing Reports 
Coordinate Work Activities with other Sections 
Establish Work Priorities 
Show How Locate and Interp Technical Information 
Assist Officer in Charge Estab Organizational Policy 
Evaluate Individuals for Promotions and Upgrading 
Recoranend Special Corrective Action for Recurring Problems 
Rotate Duty Assignments of Personnel 
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Status Variables 
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Item Analysis 

Test Standardisation 
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M.                           L   65 27                     26 Academic Achievement Tests 

43 
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Composite Scores 

Aptitude Tests 
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Selection Tests 

Classifi  ition Teats 
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at 
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-1   33 

»    r  34 
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35 
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Scalea and Scaling 

Criterion Development 

Validation 

Personality Tcata 

Attitude Teata 

Biographical Inventories 

Opinion Questionnaires 

L_ L_    70 

"     71 
•1 
_    72 

73 

74 

" r 75 
21 
L    76 

Jf         77 
_ I .L M         38 Activity Preferences M 78 

TOPIC 

Job Analyaia 

Jolt Requirements 

Cteer Fields 

Occupstional Inventories . 

Task Analysis 

Job tvsluation 

Air Force Specialties 

Job Description 

Supervision 

Job Knowledge Tests 

(iroup Aisembly 

Hunun Etigineering 

drou/i /J)fi<jiiiif s 

Sociometrics 

Proiective Techniques 

Aniiety, Stress 

Design of Eiperiments 

Statistical Inference 

Sampling 

Analysis of Variance 

Data Collection 

Correlation Techniuues 

Multiple Regression Techniques 

Ststistical Diatributions 

Factor Analyaia 

Operation! Research 

Decision Making 

Linear Programming 

Computer Methods 

Programming (Computfra) 

Mathematical Models 

Information Theory 

Appsrstus 

Communication Networks 

Programmed Instruction 

Equipment Design 

Documentation 

Indering 

Information Retrieval 

Data Stotage and Retrieval 

FIR. 3.   Clualering of informnliun topicn through 67 computer stagen.   I ngrouprd topi««* in italics. 
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FOOTNOTE 

The "MAXOF Cluster Model" has been available and utilized for more 
than five years. However, this Is the first time that the model has been 
given a naare. It has on occasion been referred to as "The Personnel 
Research Laboratory Hierarchical Grouping Model." In other Instances, 
applications of the model have been given s title, such as "The PRL 
Job-Type Analysis Program" or "The Iterative Criterion Clustering 
Program." Rone of these titles is descriptive or easy to remember. 
Hopefully, future papers will be consistent in applying the name given 
in this paper, so as to avoid further confusion of the readers. 

11.1.5 
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THE MUUriVARIATE AHALYSIS OF QUALITATIVE DATA1»2 

JuMf C. Llngoef 
The University of Michigan^ 

Although • large number of linear technique! have been proposed for the aul- 

Uvariate treatnent of quantitative data (Ball, 196«)), little has been advanced 

for th«? multidimensional analysis of nominal data. Indeed, in some quarters 

(Torgerson, 19^), nominal or claasificatory variables do not merit the atatua 

of scales and are, therefore, not deserving of any serious consideration in a 

nook on scaling theory and methods. 

When an investigator Is confronted vlth categorical variables in the con- 

text of their more respectable brethren, quantitative variables, and he is, never- 

theless, determined to analyze them, typically he resorts to constructing "duamy 

variables" from the various categories before proceeding with a standard linear 

analysis. Alternatively, the researcher may eliminate nominal variables from the 

analysis proper (save, perhaps, for that omnipresent dichotomy of sex), resting 

content to later use the categorical data in a descriptive capacity for talking 

about his results and interpretations. Each of these strategies has its associa- 

ted dangers. In brief, for the former choice, an element of artificiality is in- 

troduced along with all the problems attendant upon having uneven or extreme mar- 

ginal <Ustributlons - factors which may cause difficulties in interpretation and 

result in a loss of parsimony. In the latter choice, a very real risk may be in- 

curred In assigning appropriate weights to the qualitative data because of their 

univariate treatment and, as a consequence, some important cues may be lost for 

refinement of research design. 

This paper will be concerned with presenting the rationale and details of 

three possible approaches to the multivarlate analysis of nosdnal data. The 

1. An invited paper presented at the Conference on Cluster Analysis of Multivarlate 
Data, held in New Orleans, Louisiana on 12/9-11/66. 
2. This research in nonmetric methods is supported In part by a grant from the 
National Science Foundation (GS-929). 
3. Prepared while on leave to The University of California, Berkeley. 
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three procedures to be discussed in turn are: 1) Multivariate Analysis of Contin- 

gencies - II (r.uttman, 19^1; Lingoes, 19^3b; 196U ); ?) Multidimensional Scalo- 

gram Analysis - I (Guttman ; Lingoes, 1966a); and, 3) Multidiaenslonal Scalogran 

Analysis - TI (Guttman, 196? ; Lingoes, I.967c), which, for brevity, are labeled: 

MAC-II, M8A-I, and MSA-II, respectively. 

MuJtivariate Analyals of Contingenciea 

The general problem of multidimensional analysis is concerned with the i.hree 

basic facets of persons (P), variables (j), and categories (Cj), the aubticript on 

C always being implied, when not expressly written, to denote that a category be- 

longs to an item, i.e., it has no independent status. Given these sets, our task 

is one of mapping P into C. (j * j) or, symbolically, P —♦ C^. The characteris- 

tic function of the three sets is: 

^ epjc 

1, if p -• c for J 

0, otherwise 

The binary matrix defined by 1) is called the attribute or trait matrix E, repre- 

senting the general model for both quantitative and qualitative data. Under the 

condition of having mutually exclusive and exhaustive categories (which can always 

be effected by a proper choice or definition): 

2) LI epjc " 1 ^€J; PtP^ 

3) / .. / » e .  ■ n, the number of variables in set J (p€P); 
WJ etc    W 
iC.I ciCj  "■■ 

U) }>  XJ eD4C ■ *» the number of persona in aet P (jt j); 
ctc^ ptP 

'h.    Guttman, L. Unpublished lectures on multidimensional analysis given at The 
University of Michigan, 1963. Much in the above and following discussion is based 
upon these lectures. Some minor changes in notation and terminology have been 
made to conform with a prior presentation (Lingoes, 1963b). 
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5) )   1 = k., the number of cateROrie« in Ci (J k J; pi P); 

6) / ^ k4 ■ n , the number of categories ovor all Items;  and 
JTJ ^    c 

^ c-* eDlc " n4 > or the num^er 0^ persons in category c of item ,1. 
pip P3 •'e 

FIT i  ■ nHr/N ■ t e«ir» or the probability of variable ,1 falling in cate- 
'-  Jc    •** ptp PJC . 
('orv P = the relative frequency ■ the expected value of e , for the population P.J 

PJC 

A universal property of the characteristic function is that any scoring 

scheme for persons can be fonrulated in terms of the product of a set of weights 

and the elements of E: 

B) 5SwKep" ■'" (p",)- 
J 

An example of a simple scoring system would be a vector of Is and 0»? for dichoto- 

mous items, e.g., the number of correct answers. A more complicavJ seeing sys- 

tem might make adjustments for guessing, etc. In all cases, however, Individuals 

are placed into score classes such that one person or group of person.«? is distin- 

guishable from another person or group. The scoring problem can thus be seen as 

being equivalent to that of ietermining the partitions of P under specified con- 

straints. What aspects of E are we interested in classifying? The answer to 

this question will specify the kinds of constraints needed for finding a solution 

to the unknown weights and scores. Some may be interested in the principal com- 

ponents of scales (Guttman, 1950); others in scale homogeneity (Dempsey, I963); 

some in optimizing discriminant functions (Bryan, 196l); yet others in reducing 

dimensionality within the framework of common factor theory (Butler, et al, 1963); 

and others in maximizing linearity as a basis for both typing objects and determin- 

ing a smallest space nonmetric solution for variables (Lingoes, 1963b; 196U; 1966b). 

Again, other interests, as in the MSA-I and MSA-II approaches, will suggest alterna- 

tive restrictions on the solutions to the partitioning problem. All, however, are 

■ 
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bated upon '■; and all, with the exception of MSA-II, use the basic theory and 

equation! worked out by Quttman (19^ ) a quarter of a century ap;o. 

The MAC-II Baeic Equationi 

Matrix notation will he used for outlining the initial steps of the MAC-II 

aLpprlthB. 

STEP 1:    Define an nc-order diagonal matrix F, whose f^ elements « the num- 

ber of Ss falling in the l*h category,  I.e., n^c.    If there are n variabieB and 

N Ss th«n tr(K) ■ nil. 

STEP 2:    Form the matrix product F"^E « G, where E and 0 »re ncxN order 

matrices. 

STEP 3:    Compute G'G = M, where M is an N-square Gramian matrix with typical 

element: 

«pa   ■   EL !£j£l<Ü£- (P.^Pi    04«^in), 
j'jcrcj      "Jc 

or the number of categories that p and q share weighted inversely by the number 

of persons falling in the shared categories. Tr(M) ■ nc and the maximum rank of 

M, ^(M) - nc-n+l (for N»n). 

STEP hi    Solve the eigenequation: (M - Al)S > 0, where I is an order N 

identity matrix and A and S, respectively, are the roots and vectors satisfying 

the equation. The largest root of the solution ■ n and the elements of its 

associated vector of unit length ■ (l/N)*, a constant» representing the substan- 

tively trivial but formally important solution corresponding to removing "chance 

expectation" as in chisquare analysis. Indeed, what we are solving for are the 

orthogonal components of chisquare and the resultant metric is that of chisquare. 

The mean score for each independent score vector = 0 as a consequence of the con- 
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•tant solution. 

Althourh thia paper will not be concerned with determlnln/» optimal cat^ory 

welrrhla (the mean of the distribution of scores for persons falling in varioun 

categories), which serve as the basis for the nonmetrlc factor analysis of var- 

iables by CoA-IIJ (Lingoes, 1966b; Lingoes & Guttman, in preparation) in the 

later part of the MAC-II program, the significance of the roots should be com- 

mented upon. If we order the roots of M (excluding Aj^) as follows: 

A, >A/ > ••OA.>...^A^ > then the total chisquare can be obtained from: 

9) ^t " f Si ^J"1)2 » h«vin« /»(»-I) or  (nc-n)(lf-l) decxees of 

freedom. On the other hand, the j**1 partition of chisquare: 

10) ^j = |(Aj-l)2 and has [(^-1) + (M-l) - ü(d-lj| degrees of free- 

dom. Corresponding to each root, however, there is a correlation ratio: 

11) "H*    m  (Aj-l)/(n-l)} which varies between 0 and 1 and measures the 

covariance among variables. If all bivariate regressions are linear or can be 

made linear by finding an optimal set of scores (in the least squares sense of 

MAC-II), then the correlation ratio will equal the average intercorrelation 

among the variables. This fact, of course, is exploited in the MAC series for 

linearizln//; (Ungoaa, 1964) relationships among quantitative variables, e.g., 

when nonlinear relationships may be present. 

By introducing the concept of statistical significance we are afforded a 

rationale for attending to but a subset of the/> vectors for further analysis. Let 

m = the number of significant roots in our solution. Each person then can be 

«t 
■ 

W- 
^ ■ 
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plotted in a m-diMenslonal Euclidean opac* and our problem reduces to that of de- 

termining the further partitions of this subspace in terms of nallent clusters. 

Although a number of technlquoo could be used for clustering, once the proper sub- 

space has been determined, a hierarchical clustering method» max-mln cluster anal- 

ysis (Lingoes, 1963b), based upon a perceptual and statistical model was used and 

_s cisserlbod bel^w. 

Max-mln Clustering 

STEP 1: Normalize the unit length vectors of scores to the length of their 

associated roots, i.e., form H*s' = X* where H is Jhe  m-square diagonal matrix of 

etas and S and X are the order Rxm matrices of unit length score vectors and nor- 

malized scores, respectively. 

STEP 2: Calculate the N-square matrix of Euclidean distances nmong the 

NfN-l)/2 pairs of persons according to the standard distance formula: 

^ Sq ' (Li ^Pi " "qi^jf  (p-l,2,...,H-l; q«iM-l,p+2>...,l). 
i«l 

STEP 3: Compute I and sd from the off-diagonal elements of the distance 

matrix D. Set Level, 1*0; compute A = sd/8; and set Radius, r"' * sd/2 -A' 

STEP U. Set 1 ■ 1+1 and r^ - r^"1) ♦A. If Jt ■ Ik,  or if i » 6 and less 

than iff has been clustered, or if the number of clusters is less than 3» terminate 

clustering. Otherwise proceed to next step. 

STEP 3: Sitting on each point in turn in the m-dimenslonal spac? determine 

the number of points which ai* within the current radius criterion for each. Se- 

lect that point accounting for the most points within the radius as a new cluster 

(breakla?. any ties in favor of that point hsving the smallest sum of squared dis- 

tances between the centrold of the cluster and those points within Its orbit). 
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If any point represents a cluater of peraona, then the nuuber of individuals In 

that cluster are considered whenever a new cluster Is to be formed. 

Kxciuain« points eiready clasoillod at a fixed level, determine thai point 

which accounta lor the next largest number of individuals, iteratively, until no 

further clusters can be fonaed at the given criterion. Coraput« the centroids of 

ail clustc« formed within the radius of Inclusion and the reduced matrix of in- 

terpoint distances. Go to STEP U. 

Some useful statistics that might be calculated at each level are: i) the 

mean and standard deviation of the off-diagonal distances; and 2) for each 

cluster corr^rising four or more individuals: a) the mean and variance of the 

distances from the origin for constituents; b) the interpoint distances be- 

tween all such pairs of clusters; and c) t-tests (based upon pooled estimates 

of variance) between pairs of clusters. 

The above rather simple clustering procedure results in a tree where Ss are 

classified in only one cluster at a given level and are never reclassifled on the 

basis that the cluster might thereby be improved. Based upon the statistics com- 

puted for each level in conjunction with extra-statistical considerations (e.g., 

number of clusters desired, number of Ss unclassified, meaningfulness, etc.), the 

investigator is free to select that level of parti  tiing most appropriate to his 

purposes. Indeed, the hierarchical approach has as <.c of its chief virtues this 

Kind of freedom of selection.  Among the statistics calculated at each level, 

the d and 8d of the interpoint distances have often proved helpful as guides. 

Generally, as radius Increases so does mean distance among points, but not uni- 

formally nor for all problems at the same level. On the other hand, the standard 

deviation does not behave as consistently as a function of level. For most pur- 

poses choosiiift that level for which the coefficient of variation is a minimum has 

proven optimal, i.e., V » 100sd/d. 
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In summary, starting with a completely general binary matrix E, representing 

a subject by category classification, for any set of categories (quantitative and/ 

or qualitative), a solution for a set of real numbers (chisquare metric) is sought 

to replace the arbitrary category captions such that the covariance matrix among 

variables is maximized. We inpose the restrictions that each scoring system be 

orthogonal to every other, each successively accounts for the maximum amount of 

remaining variance, and the number of such scoring systems be a minimum. Since 

we are not interested In exactly reproducing E, something less than a full set 

of vectors are required. To the extent that sampling and measurement errors may 

h« ve entered into the determination of E, we have invoked the statistical concept 

of significance for selecting the appropriate subset of solutions. Finally, as a 

way of looking at and organizing the configuration of points in m-dlmensional 

space, we have introduced a clustering procedure whereby each point appears within 

a set of spherical envelopes of varying radii such that mutually exclusive sets of 

these spheres define a typology and give us a feel for the distribution of points 

free of considerations in respect to the origin, rotation, or orientation of the 

principal axes. Thus, three kinds of partitioning are involved in MAC-II: 1) at 

the point where the number and kinds of categories have been decided upon (mainly 

a psychological problem), 2) at the level where the category captions have been 

replaced by a set of optimal weights (a problem of numerical analysis), and 3) at 

the level where a subspace is defined and clusters are sought (a problem Involving 

statistical, perceptual, and psychological considerations). The first and third 

partitions involve coaiponents of subjectivity and arbitrariness, while the second 

is completely objective and results in a unique solution (given the initial set of 

categories and the function that is being maximized). 

Although most applications of MAC have been restricted to quantitative data, 

some have involved combinations of quantitative and qualitative variables and some 
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predominantly qualitative data (McFtierron, 1963). yielding most intereiting retulti. 

More studies, however, are required to properly assess the potentials and limita- 

tions of this technique for the multldimenaional treatment of categorical data. 

A redefinition of our goals and the kinds of constraints imposed suggests 

yet another way of looking at the basic data matrix E. 

Multidimensional Scalogram Analysis - I 

The essential task set for MSA-I is that given the If points embedded in a 

subspace defined by the m largest vectors of X (the normalized score vectors), 

can we transform the coordinates such that for a fixed item all individuals 

falling within a given category will be placed in a contiguous region of that 

space? We are thus seeking a definition of category boundaries yielding regions 

of indefinite contours (the nature of the boundaries are not specified) where 

erch item represents a partitioning of the space. In order to solve this prob- 

lem we need to specify how the boundaries are to be determined such that con- 

tiguous regions are insured and, further, what is the nature of the loss function 

to be minimized, i.e., how are we to evaluate noise? 

Consider a given partition J C J of the m-dimensional subspace iefined by X, 

the points falling within a specified category (c C C.., J t j) will not, in gener- 

al, fall within a region all of whose members belong to that category. For each 

point not belonging to c, however, say, b f Cj, there is a closest point that does 

belong to the category c; such a closest point is defined as a trial "outer-point" 

of category c. For each person-point in turn we can define a set of outer-point«. 

Further, all points not classifiable as outer-points will be considered as "inner- 

points". Now, the set of points falling in a fixed category, outer- and inner- 

points alike, are defined as being contiguous iff each (if any) inner-point is 

closer to some outer-point of the same category than it is to any outer-point of 
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of any alternative category of the same item. More formally, given Item ,1 t J 

and c ft CJ and any three polnta p, q, r £ P, If e_JCeq4C(l-er4C) " 1 and d 

,2 

pr 

< i^Qj,,  then «L. * 1 (p !■ an outer-point of c for j), otherwise «^ . e 0 (p 

is an Inner-point of c for j), where d2pr ia the squared Euclidean distance 

between the two points, p and r. The remaining algebra is concerned with an 

explicit statement of the function to be maximized (Outtman's coefficient of 

contiguity, A), how the coordinates arc to be modified in order that the fore- 

going function is maximized, and how we are to control or modulate the conver- 

gence process. The MSA-I progrto (Lingoes, 1966a) is completely adequate for 

the analysis of quantitative as well as qualitative data, dichotomous as well 

as n-chotomous variables, monotone and/or polytone itcrs, and involves no assump- 

tions whatsoever about scaling properties or distributions. 

The MSA-I Basic Equations 

STEP 1: Determine what outer-point of its own category is p as an inner- 

poin closest to, i.e.. if •pjcU-*pj)-,q;)*rj - 1 and d
2
pq<d

2
pr , then ^ = 1 

and otherwise = 0, If ■< ., = 1, then ^ . «= 0 for all q. 
PJ   '     PQJ 

STEP 2: Determine what outer-point of another category is p aa an inner- 

point closest to, i.e., if epJc(l--^(l-eq^^jd-e^^^ - 1 and d
2
pq4d

2
pr) 

then ypqj ■ 1, otherwise 0. 

STEP 3: Where Aj... is a n element column vector and y J is a n element row 

vector compute: £^qr  = LT/JpqjfprJ- 

STEP k:    Compute the sign matrix: S   = 8gn(d2  - d2 ) « -S  • 

STEP 5: Calculate: £*   ■ S  • £  »i.e., modify £        according to 
pqr   pqr  pqr pqr 

whether the sign of the difference between the squared distances is + or -. 
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STEP 6: Compute: n  = SMC « " £ ^-) and n*  = J^tjC " L*««.)» 

where f- = the number of persons In the rth type , i.e., individuals having Iden- 

tical profiles over the n variables, and K = the number of types rather than per- 

sons. (N.B. If each of the points is to be weighted by this W element frequency 

vector, then the initial configuration based on the N types should be adjusted so 

that the weighted mean of X is zero for each vector. Letting U represent the un- 

weighted normalized score vectors, then: X^ «■ U a - XTfrura/N (P"1»2,.. .»N; 

a=l,2,...,m). X will now be referred to as the weighted normalized score matrix.) 

STEP 7: Calculate the N-square matrix M with typical off-diagonal element: 
N 

""pq = "^"pq + nqp^ ^ and tyPlcal ^i««?01»1 element: n^p « ^L JTfqVj» <i^' 
p q=l 

The row and column sums of M = C. 

STEP 6: Similarly compute M* by substituting n*pq for n-Q and n*  for n--. 

M will also be an If-square matrix whose rows and columns sum to zero. 

STEP 9: Calculate: V*  = fJL.. pa       p pa 
m 

/T W'a^a 
STEP 10:    Determine:   A ■ 2^1  , the coefficient of contiguity, which 

W'aMX 
ls=J 

varies between -1 (representing perfect discontiguity) and +1 (representing perfect 

contiguity). 

STEP 11: If t (the number of iterations, initially set = 1) «= some preset 

number or if A = some predetermined cut-off point, then increase m to m+1 and re- 

set t>l, provided that more dimensions are required to get a good fit, otherwise 

terminate. When going to a higher dimensionality one always starts with the ini- 

tial configuration in order that the metric be comparable from one set of dimen- 

sions to that which is appended. If neither of ehe first two conditions obtain, 

go to the next section for computing a new trial set of coordinates 

MM 
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STEP 12:    Calculate the Itai matrix:    Yf  ■ Xar(M - ANf*), as a basil for rood- 

Ifyirv: X. 
m     W 

STEP 13:    Compute:   /8 B JT ^C1«1" pa« 

STEP 14:    If t-1 calculate the scalar c - ^(1 -A), otherwise: 

c «= fi^'/ß^'1}    if 4   1, otherwise set c ■ 1. 

STEP 1^:    If t«l compute the scalar:   <r a i(l - A), otherwise: 

^(t-l^t-l) 

STEP 16:    Also compute the scalar:  o< = T^ jTf JT^.. 

STEP 17:    Compute the multiplicative scalar which keeps the results of ad- 

jacent iterations highly correlated: 

k B   [(•fcrVC^Cl-Ccr)))]* , a value which is a monotonic decreasing function of 

t and never reaches zero unless and until A = 1. 

STEP Iß:    Compute the new set of coordinates:    Z = X + kY. 

STEP 19:    Set new coordinates equal to the initial squared Euclidean norm: 

X(t+1) - z[(5^fpX^2)/(55fpZ2^ ,     (p-l,2,....Ä; a=l,2 m). 

STEP 20: Set t*t+l, canpute the matrix of squared Euclidean distances, and 

return to STEP 1. 

The above "average steepest ascent" algorithm in general converges in a few 

iterations, but is a time-consuming process in that each cell of M and M involves 

N(N-l)/2 calculations and each of these in turn are based on a large number of 

computations involving the n items and the n categories. MSA-I's complete gen- 

eral! LJT for quantitative and/or qualitative data and for linear and/or nonlinear 

relationships makes it an ideal procedure for studying both numeric and conceptual 

problems (e.g., facet models: Guttman, 1959). Although the solutions risulting 

from MSA-I are embedded in an Euclidean space, the dimensions of this space are 

i 
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not,,  In general, meaningful.    One muct look at the configuration of points In this 

apace and study each partition separately in terma of the properties of regions in 

order to make full use of this method.    Since neither rectilinear nor parallel 

boundaries are insisted upon In the definition of contiguity, one loses potential 

Information in respect to order for both items and categories.    Indeed, with its 

weak definition of contiguity the method 01cen results In what might be considered 

a quasi-topological representation - very revealing and certainly fascinating from 

a numDer of points of view. 

In summary,  starting with the basic data matrix E and defining a trial space 

based upon the normalized weighted score matrix X, the task set for MSA-I is that 

of moving the points around In this space such that a certain definition of con- 

tiguity is satisfied in a minimum number of dimensions.    Each type Is a point In 

Euclidean space, each item is a partitioning of this space, and each region with- 

in a partition represents a category.    A subset of the person points,  i.e.,  those 

characterized as "outer-points", define the contiguous regions which may assume 

any form whatsoever.    The cutting points of Cuttman's earlier technique of acalo- 

gram analysis (19^0 for m=l lie between the outer-points of MSA-I.    When ra=^ 

there are cutting curves and for m>2 there are cutting surfaces separating the 

boundary definers.    Contrasted with the earlier method of scale analysis,  not 

only is the number of errors counted (as reflected in the coefficient of repro- 

duciblllty), but the size of the errors is also taken into consideration by the 

coefficient of contiguity.    For example, take a variable like religion whose three 

categories were:    a ■ catholic, b e protestant, and c * Jewish end a particular 

Individual p who fell In category a.    Now if d2     was the smallest squared distance 

of p from all other points and r happened to define the category boundary of pro- 

testants  (r is an outer-point for category b), then a decrement to the coefficient of 

t 
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contiguity would be Incurred. 

As an Illustration of MSA-I the following example of a purely conceptual an- 

alysis is given. 

An MSA-I of Social Structure 

Guttman's adaptation (1966 ) of a table appearing in Bell and Slrjamaki's 

(l96l; p. 3?5) sociology text provides a set of five characterizations by which 

groups of persons can be differentiated. The five facets and their elements or 

categories are as follcws: l) Intensity of Interaction (a = slight, b = low, 

c ■ moderate, and d ■ high); 2) Frequency of Interaction (a ■ slight, b = non- 

recurring, c = infrequent, and d « frequent); 3) Feeling of Belonging (a «= none, 

b ■ slight, c « variable, and d = high); U) Physical Proximity (a = distant and 

b ■ close); and 5) Formality of Relationship (a ■ no relationship, b ■ formal, 

and c » Informal). The objects to be classified, seven in number, ^e various 

kinds of groups, i.e.: 1) Crowd (aaabb); 2) Audience (bbbbb); 3) Public 

(aabaa); U) Mob (dbdbc); 5) Primary Group (dddbc); 6) Secondary Group 

(cccab); and 7) Modern Community (bccbb). With no a priori conceptions as to 

order In respect to types of groups, Items, or categories within an item the follow« 

Ing perfect solution in two dimensions required but one iteration (see Fig. l). 

Figure 1 about here 

The rather Interesting Y-configuration that emerges places Primary Group and 

Mob close together and at the foot of the Y and the remaining groups In the order: 

Secondary Group, Modern Commonity, Audience, Crowd, and Public - forming the arc. 

It will also be noted that for each of the five characteristics there appears a 

I 
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circular arrangement for the categories for those types appearing on the V part 

of the Y, e.R., in respect to Intensity of Interaction the ordering goes from 

moderate to low to alight following the above ordering for the five groups. Since 

parallel straight line boundaries can be constructed for this configuration, some 

purchase on item and category orders can be obtained. The items and the category 

orders within items can be arranged thusly: Physical Proximity (ab), Feeling of 

Belonging (chad). Formality of Relationship (cab), then either order of the fol- 

lowing two: Intensity of Interaction (cbdo), and Frequency of Interaction (cbda), 

with the first and last Items yielding cu-ting curvet which are orthogonal to 

each other and the intermediate items having slopes for their boundaries that 

are at a slant. Because there are so few points and a relatively small number 

of categories, alternative parallel straight line solutions are possible. For 

example, Guttman's hand solution of this problem yielded the following order for 

items: ^5312, where within each facet the order of the categories was maintained 

(1966 ). Furthermore, in his analysis he placed Primary Group as being closest 

to Secondary Group, whereas MSA-I places these two farthest apart. Without be- 

laboring the point, since this is but an example, the differences between the 

hand solution and the MSA-I solution may have arisen from the ambiguity of the 

categories within some of the Items, e.g., should the order for Frequency of 

Interaction be: bacd, abed, bead, or some other order? We know that the first 

three are opposed to the last, but there might be some question a« to the beat 

order for the first three. Similarly for the categories of the third item. As 

can be seen from a discussion of these differences, MSA-I may prove fruitful for 

testing not only certain substantive issues but may also be revealing in respect 

to preconceived coding assumptions, e.g., that the categories follow a linear 

order. 

We will now pass on to the third and last technique of this paper, MSA-II. 

- 
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Multidimensional Scalogram Analysla - II 

Starting once again with the binary attribute matrix E, let us formulate a 

specification that will reproduce E in the smallest possible space. One way of 

looking at the basic data matrix would be that E is an incomplete proximity ma- 

trix having but two coefficients, i.e., 1 and 0, where the rows of this matrix 

represent categories and the columns persons. Thus, whenever a 1 appears we 

can assume that some category is in a sense near some person and that the rela- 

tionship is syimetrlc. In essence, the ncxN rectangular matrix E can be thought 

of as a partial adjacency matrix for a graph whose dimensionality we seek. For- 

tunately, Guttman (19^ ) has established the necessary theorems for defining the 

dimensionality of graphs in terms of smallest space theory. We can now write 

our specification as: given E, satisfy the inequality that whenever e .. = 

e,..^ - 1 » 1 then d . 4 dÄ^ for all pIP, etc., and j< J such that the loss qjc PJC ^ qjc       ' y 
function, normalized phi (v.l.),is minimized for a specified m dimensions, where 

d is the Euclidean distance. We are defining binary relations in terms of a dis- 

tance function such that all points belonging to one set (categories) which are 

in relation to points in the other set (persona) will have smaller distances in 

the Joint space of persons and categories than all points (one from each set) which 

are not in relation, i.e., e . > 0. Nothing in this statement is implied about 

the relationships among categories, items, or persons (this information does not 

exist, although it could be defined in terms of the relationships between rows 

and columns of E) - all that does exist in E is the category-person relation. By 

confining our attention to the inter-set relations, however, we should be able 

t3 infer something about the intra-set relationships that are implicit in E from 

the nature of our solution. 

The following is an outline of the MSA-II algorithm (Lingoes, 1967c). 
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The MnA-II Baaic Equation» 

STEP 1: Define an nc+N « k-cquare ayinnetrlc matrix V whose first nc r«rs 

(columns) represent the category captions and whose TIQ+I  to k row» (columns) rep- 

resent the person captions of E. The basic data matrix appears as an off-diago- 

nal submatrix of V occupying rows 1 to nc and columns n.+l to k. For the elements 

of the submatrix E, whenever e ,c = 1 substitute 1 - (Nn-«-l)/(k(k-l)) and whenever 

e . = 0 substitute 1 - (N(n+nc)+l)/(k(k-l)). Ail other off-diagonal elements of 

V are set equal to ^ - (n N+l)/(k(k-l)). The k diagonal elements of V are clcu- 
k 

lated from the following formula: v.. e K - JZv  (i«l,2,... ,k; i^.l). The row 
J«=l 

(column) suras of V = k, the order of the matrix and tr(v) ■ l+k'fk(k-l)/2. V is a 

Gramian matrix whose largest root ■ k and the elements of its associated unit 

length vector = (l/k)*, a constant. 

STEP 2: Solve for: ü(V - M) « 0, which yields the Initial configuration 

(see: Lingoes, 1967a), where I is the order k Identity matrix and Ü and ^, re- 

spectively, are the vectors of unit length and the roots, Homalize the unit 

length vectors to the size of their associated roots, I.e., X - UA*. Ignoring 

the constant vector, order vectors by their length froo large to small. The mean 

of each vector will be zero. 

STEP 3: Calculate the nclf Euclidean distances between every category point, 

on the one hand, and every person point, on the other. I.e., d  (i»l,2 nc; 

.i«=nc+l,nc+2,... ,k) based on the m dimensions of X, «here m > some predetermined 

number based upon either a parameter or the number of vectors whose roots are 

)> k/2 (excepting the largest root). 

STEP kt Permute the Nn smallest distances so that they occupy the same po- 

sitions that the Is have In E and permute the remaining N(nc-n) distances to the 

positions in E occupied by Os. These cell-wise permuted distances are the rank 
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imacen  (Guttman, 1967 ; Lingoes, 1967») of the distance», the ci*'B, which within 

tied blocks  (e.F,, the block of la) have been ordered from low to high. 

STEP 5:    Calculate the normalized phi coefficient of monotonicity: 

0   .   X XJ±a I d iJ)      ,    (i-1,2 nc; .1-nc+l.nc+2 k), 

^nJ the coefficient of alienation: •< ■ (l - (l-^)^)', which permits uc to guage 

now cood our fit is in respect to reducing the error of estimate. 

STEP 6: Calculate the coefficient of reproducibility: 

P = 1 - number of errors  where errors are cafined as the number of 
2nN 

distances which are smaller than the largest distance for Is of E whose positions 

correspond tc Os plus the number of distances which are larger than Uie smallest 

distance for Os of E whose positions correspond to Is. This measure disregards 

the magnitudes of the errors implied in the distances, being solely concerned 

with the number of such incorrect predictions. When 0 ■ 0 it must be true that 

all distances between categories and persons for which e jc ■ 1 are smaller than 

distances corresponding to cell entries of E which are zero. We are thus defin- 

ing the radius of a circle (more generally that of a sphere) such that all points 

filling within that enclosure are in relation to the point lying at the center. 

All points lying within the sphere for which e . > 0 plus all points lying out- 

side the sphere for which e_<c ■ 1 are considered errors. R serves no functional 

purpose in the MSA-II program, but is an interesting descriptive measure telling 

us how well we could reproduce E. 

STEP 7: If we have satisfied a given number of iterations, or if fi is suf- 

ficiently small, or if 0 has not changed significantly over a number of itera- 
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tions, ve can terminate the solution and then go «ither up or down in dlaenalon- 

allty according to the aame option« aa in SSA-I (Lingoes» 19^5 ; 1967a). If, 

however, none of these conditions prevail, proceed to the next set of steps for 

modifying the coordinates for another iteration. 

STEP Ö: For each of the d#,8 corresponding to Is substitute a mean d* and 

for each of the d^s corresponding to the Os of E substitute their mean d*. It 

can be seen that ve are tying all distances that should be tied such that when 

a solution has been achieved ties will be broken in an optimal fashion. 

STEP 9: Define a k-square symmetric matrix C, the correction matrix, which 

is coordinate in respect to the partitions of V in STEP 1. Proceeding from top 

to bottom, and within each, from left to right, let us number these partitions 

thusly: I, II, III, and IV. The elements of these four partitions of C are: 

k 

J=nc+1 
?Vdid5 Partition I of order n.: c . ■ 0 (i^.l) and c.< » n_ + 

Partition II of order ncxN: c^j = 1 - d^-j/dji; 

Partition III of order Nxnc: 11' or Cj^ of II; and, 

»c _ 
Partition IV of order N: c^ = 0 (i/j) and cli ■ N + TT^-n/d^. 

Erch row (column) of C stuns to the constant k and CJJ = c^. When ^ = 0, C be- 

comes a scalar matrix. 

STEP 10: Compute a new trial set of coordinates by the following pivotal 

formula: 

(t+1) ^ 1 ^   (*). 
1a U  xja  ci.1 ' where t " iteration number. 

STEP 11: Calculate the ncN distances based upon the transformed coordinates 

and go back to STEP U for another iteration. As an alternative to doing Just one 
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least squares adjustment for every rank ima^e permutation, one could do ten least 

squares corrections for every permutetion, as is done in most of the smallest 

space programs, by returning to STEP 8, after which one would return to STEP h. 

In summary, based on the binary attribute matrix E and using a trial net 

of coordinates which are a Itinction of the ranks of the values in E, we specify 

an ortVogonal solution in a minimum number of dimenoions ouch that for all pairs 

Of categories -ma persons it will always be true that whenever fi
n|C -' 0f v ~ ^ ~ 

1 then d . < ^'r*  Short of perfect monotonicity, however, for the given dimen- 

sionality we will minimize the function, 0. When the process of leact-squarec- 

rank-imar.e-permutations converges, we attain a representation in a Joint Euclidean 

space of the two sets of points (categories and persons), such that having, defined 

the largest distance of all points which form a binary relation (the Is of E) we 

are able to araw spherical boundaries, using each point in turn as a center. The 

radius corresponding to the largest distance will enclose all points in relation 

to the center point, thus permitting us to reproduce the original response matrix. 

Rather than employing the spherical boundaries outlined above, however, one 

could partition the Joint space by finding those hyperplanes which bisect pairs 

of points within, but not between, items. These hyperplanes would then cut out 

regions of the space having linear rather than circular boundaries. From either 

conception one could determine to what extent E is reproducible. The curved 

boundary formulation, however, is more easily implemented and produces a less 

cluttered picture. 

The dimensions of the MSA-II solution are primarily meaningful (or some ro- 

tation thereof) in terms of the configuration of person points, although under 

some circumstances where such a configuration allows parallel straight line 

boundaries, one may gain some insight into item and category structure (v.i.). 

WrtlfcHü i i ll"i 
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An MSA-II of Social Structure 

For comparison purposes we will present an MSA-II analyais of the same data 

amily/.od by MSA-I involving seven types of social proups defined by live Kinds of 

characteristics. Once afain a two space is perfectly adequate to portray oil the 

interrelotionchips of E (Figure 2 below). 

Figure 2 about here 

It will be noted that Figure 2 only contains the person points since this 

aspect interests us mostly. A comparison of the MSA-I and II configurations of 

the seven croups reveals a remarkable similarity between the two, although the 

rationale of these two methods differ greatly. A slightly tilted Y is apparent, 

Primary Group is closest to Mob, and a circular order among the categories is 

evident lor the five items among the groups arrayed on the V portion of the Y. 

Given the profiles of these seven groups a set of linear parallel boundaries 

can be constructed such that for each item ail individuals failing in a particu- 

lar category will be contiguous. The partitions of this space (despite the con- 

figural similarities to Figure l) are different from the reauite of MSA-I. Thus, 

the item and the wHhin item orderings are: Physical Proximity (ab), Formality 

oi Relationship (abc). Frequency of Interaction (cbda), Intensity of Interaction 

(chad), and Feeling of Belonging (cbad). As was mentioned before, there would 

appear to be some ambiguity in respect to category ordering within items, permit- 

t'.np; alternative solutions. Furthermore, based upon the MAC-II category weights 

there is a strong suspicion that curvilinear relationships exist among these 

variables giving rise to the differences noted between Guttman's hand solution 

\ 



and the  MSA-I and TI «olutlons alike. 

Although this one example is Insufficient for making any inferences about 

what will happen in general when MSA-I is compared with MSA-II, certain obßer- 

vatione having both a practical and theoretical import are relevant. 

Some Comparisons Between MSA-I and MSA-II 

First, in respect to the size of a problem that can be analyzed by these two 

Kcalogram programs, MSA-I has a greater capacity (i.e., up to ^0 variables, with 

as many as 20 categories for each, and up to 60 types) than MSA-II, which is re- 

stricted to nc+N^80. Second, MSA-II, being baaed upon a much simpler algorithm, 

is considerably faster than MSA-I for problems of the same magnitude. Third, the 

simpler contours for the boundaries of MSA-II are more easily depicted and the re- 

sultinp; representation is easier to grasp vis-a-vis the basic data matrix E. Fourth, 

MSA-II would seem to have more applications than MSA-I, since (with a minor modifi- 

cation) the former is not restricted to mutually exclusive categories. Filth, in 

respect to the criterion of reproducibility, MSA-I reserves a subset of the person 

points for defining regions and these points are not considered in computing the 

coefficients of either contiguity or reproducibility. In contrast, MSA-II (at the 

expense of including a set of points for categories) does include all person points 

in determining reproducibility and, as such, is more analogous to Guttman's origi- 

nal conception of unidimensional scalogram analysis (19^) and Lingoes' generali- 

zation thereof for multiple unidimensional scalogram analysis (MSA) for binary 

data (I960; 196-la). 

Both procedures, starting with the aame general data matrix E, are ideally 

suited for the multidimensional analysis of qualitative data and for quantitative 

data where the distributional and linear assumptions of standard tnultlvariate 

I 
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techniques cannot be met or are questionable. Based upon quite different defini­

tions and specifications (MSA-I involving a definition of contiRuity in terms of 

outer-points, for example, and MSA-II being based upon the logic of smallest 

space analysis (see: Lingoes, 1967b lor a review) and a delinition of distance

ana dimensionality for graphs (r.uttman, 196^)), the two procedures would appear 

to yield escentially the same results. Further analyses, however, are necessary 

nefore reaching a final conclusion on this point. There may well be certain kinds 

oi data v/hich are more economically represented by one procedure than the other.

SuBBUiry

Tiiree methods for analyxing qualitative data were introduced: l) Multivar­

iate Analysis of Contingencies - II (based on the early work of Guttman, 19*«l),

2) Multidimensional Gcalogram Analysis - I (involving a unique definition of 

contiguity which presupposes a minimum of assus^stions), and 3) Multidimensional 

Scalogram Analysis - II (involving a graph theoretic and ssiallest space logic).

An outline of the basic equations and ass\arptions of each were presented. One 

example of a conceptual data siatrix was analyzed by both MSA-I and MSA-II and 

the results were discussed vis-a-vis a hand analysis of the same data based upon 

a linear ordering of the categories involved. Finally, some comparisons between 

the two scalogram procedures were made.

In conclusion, the three methods discussed in this paper for the multidi­

mensional analysis of both qualitative and quantitative data and of both linear 

and nonlinear relationships are based upon a Bd.ninum number of ass\imptions(more 

consonant with our usual ignorance regarding the metric and distributional prop­

erties of social science dat^. One would anticipate, therefore, an increasing 

use of these and similar techniques (e.g., the various programs developed by 

Ghepard, 1962; Shepard & Carroll, 1966; Shepard & Kruskal, 1964; Kruskal, 1964;
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and Mcr.ee.   lr)67).     r.hepord'a 1962  breakthrough paper provided much of the impetus 

for Uiese current developments  in nonmetrif.- methodology (Lingoes,  lfX>7b). 
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'ClASSIFICATIOil 80 AS TO RHATE TO OÜIÖIDE VARIABLE" 

VnmrA W. Pörgy 
UCZA 

Introduction: 

! 

Let me first explain a bit of hiotory behind the title. About a year ego 
in Washington, D.C., there nae a conference on claeeification in psychiatry.(1) 
One of the desirable qualities for any classification system that «as unani- 
mously agreed upon by the conferees «as that the classes should be relevant to 
a number of other qualities about persons beyond the information that went into 
asking the classification or diagnosis itself. 

At this same conference, a number of empirical papers (2,3,U,5,6 ><ere 
presented in which typologies «ere developed from various kinds of data by 
several computer techniques. In most of these studies, after a classification 
system «as developed, it «as then evaluated to some degree by relating it to 
outside variables not used in building the system. 

I couldn't help being struck then by the real absence of any relation be- 
tween what classifications «ere hoped to accomplish versus the methods used to 
develop them. In no case did any outside variables enter in any «ay into the 
computing that developed the classification systems. This is analogous to a 
situation in which relevant linear functions of variables (rather than 
classifications) were desired, if factor analysis of predictor variables were 
relied upon exclusively as the method of obtaining ehe linear functions. Given 
a choice, most of us would naturally put available criterion variables into the 
analysis as dependent variables. Then, if such relations are in the data the 
method will find them, and the linear functions that emerge will be system 
atioally related to the dependent variables of interest. Analogously, I 
couldn't help thinking that a systematic effort to find relevant classification 
systems would probably be much more successful than what have been es^ntially 
random efforts with respect to relevance. 

Ibere are, I think, several kinds of reasons to account for the absence of 
clustering methods directed at relevance to outside measures. It appears that 
many investigators, at least psychologists «ho use cluster analysis, tend to 
believe that the computer has revealed some sort of natural, pre-existing 
typological structure in their data. Believing --or perhaps really only hoping 
-- this, they consider relevance to particular outside variables a somewhat 
secondary issue. 

The comment by Dr. Sokal on the tendency of various clustering methods to 
bias the results is most pertinent here. As he pointed out, each method tends 
to impose a certain kind of structure upon the data, whether that structure is 

^-Support received from the Rational Institute of General Medical Science 
(ON 11055) and the Health Sciences Computing Facility of UCLA (HIH Grant PR 3) 
is gratefully acknowledged. The work was done at the Alcoholism Research 
Clinic, supported by the California Department of Public Health, Division of 
Alcoholism. 
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mm^y>y f—at or not. I think 'hi« applies with even more force to psycho- 
logical data. In biology, the question is yhich arrangement of clusses fits 
the data beat. In psychology, I think the basic, usually un-asked question is 
whether an^ structure of types or classes is called for to describe the data. 
To help answer this, I'd strongly recomasnd a simple experiment to anyone who 
cluster-analyses his data in order to understand it. 

1. Generate some samples of artificial "eases" from a 
unimodal, non-cluitered, non-nested population -• 
for Instance, a ^Int normal population with the 

co-varianoei as the actual data. 

2. hit these through the same cluster analysis process 
as your real dass. 

The subtypes that may well b« "discovered" in a sample from this classic, 
classless population would provide a helpful baseline against which to compare 
the results from the real decs. 

It is also true that relevance to outside variables is only one of the 
desirable qualities of «x typology, and In addition the most desired kind of 
relevance is to some broad, usually undefined set of factors, rather than to 
a particular outside variable. However, it remains that, while some kind of 
relevance to outside vsrirbles is strongly desired for claaeifications, the 
main thing depended upon to get it is extraordinary good luck. This being so, 
I felt that it might be worthvhile to attempt to develop something to improve 
the odds in favor of an investigator who wants some eort of relevance. 

The Concept of Maximally Relevant Classes; 

Here another acknowledgment is due, in this case a very delayed appreciation 
of another person's idea. About five years ago a UCLA colleague, Dr. James 
McQueen, (7), distinguished several possible goals of classification. One of 
the goals spelled out was so that class membership could be used to estimate or 
predict sos» outside variable with minimum error. If the outside variable is 
a quantitative one, on an interval scale, then the familiar success criterion 
of minimising the squared errors can be used. Then the most relevant 
classification would be that which explains the largest amount of variance of 
the dependent variable. Just as in linear regression. 

This is about the simplest kind of relevance possible -- that class member- 
ship itself and alone will enable one to make good predictions about one other 
characteristic. Because it is so simple, it will be the problem dealt with in 
this paper. 

This is not to deny that broader or more subtle kinds of relevance exist. 
Two kinds of extensions are obvious: 

1) Asking for the same kind of relevance but to larger 
set of variables. 
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2) Asking for a different kind of relevance, I.e. that claes 
membership will sharpen the predictive value of other 
variables, even though class may predict poorly itself. 

Discussion of these will be postponed beyond this paper. 

Ttut Mature of tne .Classification Rule; 

9/ this is meant a rule which will assign any individual with information 
on a set of variables (the X's) to one of several mutually exclusive classes. 
Tbie  forms such classification rules might take are quite varied, and sons 
choice must be made before any method to maximise relevance can "get off the 
ground." One particular form of rule will be outlined here, and it will be 
used as the basis of a procedure to seek maximum relevance for its classes. 

Let us specify one location in X-space for each group. Each location 
would of course be defined by as many numbers (co-ordinates) as there are X- 
varlables. The class membernhip of any case can be determined simply by seeing 
■which location is nearest to that case. We will use Euclidean distance as a 
measure. Parenthetically, by various transformations of the X's beforehand, 
Euclidean distance can be made to reflect almost any desired kind of similarity. 

Each location need not be close in an absolute sense to the members of its 
group, but it would of course always lie in the same region. The boundaries 
in X-space defined by this classification rule would be straight lines, planes, 
or hyperplanes; they are segments of the perpendicular bisectors between the 
various locations. The regions of X-space produced would sometimes be bounded 
on all sides, sometimes not. Regions would not overlap, and each region would 
always be convex. Such a system, while logically simple, still permits a fair 
degree of flexibility in the size and shape of possible regions which define 
classes. A set of locations, once defined, can then be used later to classify 
other cases with the same X- measurements -- i.e. the system can be "cross- 
validated" -- and its relevance to various other outside variables may be seen. 
The mean Y value of each class can be used to make absolute predictions of Y 
for new cases. 

Such a system is really a species of nonlinear prediction function, and it 
may be evaluated in comparison with other sorts of predictions; for instance 
linear regression, quadratic regression, etc. Ttaxs not only may the relevance 
of various systems of this sort be compared, but the efficiency of the whole 
classification approach may be compared to the efficiency of other ways of 
making predictions. 

Such comparisons would probably be a very healthy thing for the field of 
cluster analysis. They would give us a more realistic Idea of what we are and 
are not accomplishing. Predicting via discrete classes has both potential 
advantages and disadvantages when compared to other ways of using information 
to make specific forecasts. 

The nature of the relation of Y to the X's obviously affects the relative 
success of using classes vs.the more usual kinds of algebraic functions to 
predict Y. This is seen most clearly when there is only one X-variable so that 
relations may be drawn on an ordinary graph. If the relation consisted of 
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•everal horizontal line-segments with sharp discontinuities In between, then Y 
could be predicted perfectly via discrete classes. On the ether hand, if it 
were a single slanted straight line, then predicting Y by a linear function of 
X would be better than using any finite number of discrete classes. Smooth but 
curvilinear relations could give various results, depending on the degree of 
non-linearity, complexity of the curve, number of classes used, etc. 

Non-linear algebraic functions of the X's — exponential terms, etc. -- 
would sometimes do better them either classes or linear terns. However, there 
is no real limit to the possible variety and complexity of non- linear functions 
but there usually is a limit to the size of the data sample. 

We shall now return to the problem of how best predict Y via classes defined 
on the X's. 

The Approach; 

To make the problem of maximizing the relevance of such a classification 
rule a tractable one, we need to limit the number of classes. If there are CM 
many classes as cases in the data sample, then we have the Nearest-Neighbor 
prediction rule of Fix and Hodges (8), which again indicates the overlap be- 
tween this kind of cluster analysis and prediction theory. But when a data 
sample contains hundreds or thousands of cases, that procedure becomes an 
increasingly unwieldly classification or prediction system; all the work is 
in using the system, rather than in developing it. tee would expect cross- 
validation performance to be poor, and such a system itself is not at all 
interpretable or easy to describe and communicate. The optimum number of 
classes would depend upon the relative gain in explanation or prediction from 
additional classes versus the loss in the form of extra mechanical or conceptual 
effort required to use it. 

For the present we shall dodge this problem by holding the number of classes 
constant, and the solving for maximum relevance. Of course, a variety of 
solutions with different numbers of classes could give an indication of the 
point of diminishing returns in any particular applied problem. 

When N is over 30 or so, I am sure that finding the optimal classification 
into some given number of groups is beyond us for some time, Just as is the 
simpler problem of finding the minimum-variance partition among the X's alone. 
However, as in the latter case, it may be possible to find some very good 
solutions -- with a fair degree of certainty -- even if not necessarily the 
best solution that we are accustomed to getting from least-squares methods. 

On the mini mum-variance problem, I found (9,10) that one way of getting a 
number of good solutions is to start with a number of poor solutions. For 
instance, some arbitrary or random partitions, or with results from another 
method susceptible to improvement. Then I applied various Improvement 
algorithms, making changes only when there was a demonstrable gain from doing 
so. One of the surprising (to me) results of such a procedure was that the 
goodness of the final classification depended very little, and not at all 
systematically, upon the starting-point. The computer program very rarely got 
"hung up" upon a very poor solution, regardless of what it started from. 
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Hopefully this may eventually be true of the same approach applied on the 
present problem» even though the improvement algorithms will differ. 

Starting classes as well as final solution classes will be defined in terms 
of point locations (which we shall call P's), one for each group. A convenient 
source of "reasonable" P's — that is, ones which produce groups all with at 
least one member — is the data sample itself. If the P's are simply set equal 
to the X-coordinates of certain cases (perhaps chosen at random), then we have 
a starting classification with the desired geometric properties and necessarily 
with at least one member in each class. Alternatively, prior information might 
be used to define the starting P's directly. Another starting point would be 
to perform a minimum-variance type of clustering on the X-variables alone. If 
a single starting point is desired this might well be a very sensible one. 
However, if a number of widely different starting points are desired, they could 
be achieved most easily by a process of generating random selections of case 
numbers and setting the defining locations equal to the X's values of these oases« 

The Improvement Algorithm: 

Central to the whole process is a fairly economical way of exploring a 
limited set of possible changes in the definition of classes, evaluating such 
changes, and making them vhenever the between-class variance of Y is increased. 

- Given the chosen way of defining classes, an obvious way of changing the 
classification system is to move a one or more of the locations. But in what 
direction, and how far?? In multivariate data there are an infinity of 
different directions that might be tried, and in each of these there's no 
guarantee that, as a location is moved, the variance of Y accounted for will 
change in a simple way. On the contrary, given the discrete nature of data 
points, the occurrence of multiple minimia is to be expected. 

On the question of how far to move, fortunately there are some natural 
limits. Moving in any direction, there is a limit beyond which a defining point 
will cause some group (usually its own) to have no members at all. Moving past 
this limit would be pointless, since it changes the nature of the problem by 
reducing the number of classes. In some directions there will be a closer 
"natural" limit, because continued movement would lead to crossing the old 
boundary of the region defined by its original position. Making this boundary 
an additional limit for a move would have the effect of allowing only moderate 
changes in the classification system during any one cycle of the iteration. 

Now back to the question of direction for the move. Imagine a region with 
large Y variance, and in which Y is somewhat systematically related to the X's. 
Such a region is a good candidate for being "purified" — made more homogeneous 
on Y — which would improve the whole system. If the relation of Y to the X's 
is not too complex within each region, then fitting a regression plane to it 
would be a fairly accurate summary of this relation, (in practice, the slope 
coefficients for the regression planes should be computed in a "stepwise" 
fashion, so that there will be a solution even when a group has fewer points 
than there are X-variables.) This regression plane might provide a promising 
direction for a future move of the location. If it is moved "up" the plane 
(i.e. in the direction where high-Y values are found), then it will often change 
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the boundaries In such a way as to leave out some of the low Y cases behind. 
If the location is moved "down" the plane (toward low-Y cases) then it will 
often act so as to leave out the high-Y cases behind it. In some cases, moving 
the location cither direction may improve the classification system, ike  only 
feasible way to survey the effects of moving locations seems to be to evaluate 
the whole classification system at a number of specific moves - perhaps at 
equal intervals betwoen the permitted limits -- and choose the best location 
fourd. 

1!he  simpleEt way to move would be to move one group at a time, and proceed 
through the groups sequsntially. If any group is improved by a move, then it 
may be worthwhile to cycle back and go through the groups again, because the 
move of a single group cay change the boundaries and thus the membership of all 
the other groupß. The process terminates when an entire cycle of groups has 
been gone through with no further improvement. 

The "Y-GROUPS" Conputer Program; 

The two flow charts show the structure of the program and of the central 
"MOVE" Process. The user's description will give an idea of the various options 
and limitations of the present program. It was written in Fortran *♦, and has 
performed on the IBM 360/75 at the Health Sciences Computing Facility at UCLA. 
It is still under development but copies of the program may be obtained from 
the writer. 

Perforcance of "Y-GROUPS" on Test Problems; 

Artificial data in known configurations involving 1, 2, and h  X variables 
were generated and used to test the algorithm, which proceeded from five random 
starting partitions on each problem. The results were excellent when no "noise" 
X-variables were present, but somewhat uneven over the several (random) starts 
when half or more of the X-variables were unrelated to Y in rny fashion. All 
problems involved nonlinear relations of the X's to Y, and in all even the 
worst "Y-GROUPS" solutions were superior to linear regression in terms of the 
amount of Y variance accounted for. 

Discussion: 

While the present "Y-GROUPS" Program handled the test problems fairly well, 
it is only a first step toward a dependable method to establish maximally 
relevant classes. Some detailed analysis of its occasional "mistakes" on the 
several test problems should lead to improvements in the algorithm or perhaps 
even to a better general approach. 

While it is, to my knowledge, the only cluster analysis roetaod directed at 
relevance to outside measures, a number of developments in other fields have 
goals that are quite similar. For example, the "learning machines" of Hunt (12) 
and others establish a very different kind of classification rule in X- space — 
one composed of logical "and's" & "or's", and make it successively more 
complicated until it achieves perfect relevance within the data sample. The 
■any configural scoring and pattern prediction methods of psychologists are 
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also pertinent, though we do not think of them as defining classification 
systems. However, again they would form a very complex and logically "messy" 
typologies, and their cross-validation performance has usually been quit« 
disappointing.  Yet another heading under which related work is being done is 
that of "pattern recognition" (13)* And the problem of finding the optimum way 
to stratify a sample (Ik)  is essentially similar, although I believe it has only 
been handled neatly only in situations with one variable. 

Thus, while there is not yet much being directed at making simple clusters, 
classes, or types relevant to outside measures, there has been a great deal of 
effort and accomplishment at making other functions of multlvarlate data as 
relevant as possible to a wide variety of outside variables. There is almost 
certainly much to be learned from this work. 

And even with an imperfect method in hand, I think there is also much that 
could be learned by applying it to empirical data which have been analyzed in 
enough other ways so as -not to be a completely unknown quantity. I hope to 
do some of this myself in the near future, with some MMPI data in which relations 
fire alleged to be distinctly nonlinear. Looking at the same body of data from 
«everal different perspectives will certainly help us understand clustering 
methods better than we do, and this should eventually help the empirical 
Investigator come to more reasonable conclusions about what his data mean. 
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Flow Chart for "MOTE" Subroutine In "Y-QROPPS" Progrw 
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Investigation of Rellaolllty of Different Profile 
Similarity Indices

John E, Overall
The University of Texas Hedlcel -ranco

Two distinct problems In the methodology of cluster analysis have 
become apparent In this conference. The first problem concerns what Is 
clustered and the second concerns now. In general, rrost profile cluster­

ing techniques Involve first the computing of a matrix of similarity In­

dices among all possible pairs of profiles and secondly the analysis of 
this matrix to Identify subsets or clusters characterized by relative 
homogenlety within cluster and relative Independence between clusters.
Most discussion has been directed at the problem of ow to identify ncmo- 
geneous clusters, with the tacit recognition f-at most methods can be 
applied to a variety of different kinds of oroflle similarity measures; 
however. Important questions exist concerning the meaningfulness and 
psychometric properties of the profile similarity Indices that provide 
a basis for clustering. If clustering Is to be meaningful and valid, 
reliability must be an Important consideration in choice of the profile 
similarity Index to be used.

The distance between two multivariate profiles can be considered 
to be a measurement statistic. This paper Is concerned with an empirical 
Investigation of distance function rellaollltles, or more soeclflcally 
with the consistencies between Interprofile distances derived from rat­

ing profiles provided by two Independent observers for the same samples 
of subjects. Considering Interprofile distance to oe a measurement, 
the investigation Is concerned with simple Interrater rellnbllltles cf 
distances computed In different ways.

Several different methods for computing Interprofile similarities 
which can be conceived as representing Pythagorean distances In Eucli­

dean geometric space have been proposed in the literature. They dif­

fer in manner of defining coordinate axes and In the extent to which 
properties of the geometric model are Identified with properties of the 
measurements. In order for a geometric system to serve as a model, cer­

tain points of coincidence need oe established between the abstract geo­

metric model and the measurement domain it is supposed to represent.

With regard to univariate measurement scaling, Stevens (1952) •'■as 
discussed the problem of establl::hlng points of coincidence. Isomorphism, 
between real world and model. Different levels of measurement - nomiral, 
ordinal. Interval and ratio-scales - represent different degrees of cor­

respondence between abstract number system r.r.d the real world It is 
supposed to represent. In the measurement of dlstirces between multivar­

iate profiles, a similar problem exists. Or* the cue upnd is the acsrract 
Pytnagorean model with mutually orthogonal reference axes of unit scale 
Interval; on the other hav.d is a raultlvaria*’e taeosurement domain. If 
the geometric system Is to serve as a model, certain points of coincidence
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•<« ?stablls ied. It Is clearly nonsense to say that "we may legit­

imately pmnlo',’ trie Pvthagorean model to calculate Interpolnt distances 
without concern for the degree of correlation among profile elements ^ 
oroTlded H Is assumed that our coordinate axes aE£ mutually 9rt*1^K9Hal 
(Heermann, 1965T. ^he coordinate axes In tV'e model are orthogonal, end 
no assumption Is Involved there. To what properties or cnaracterlstlcs 
of nature does the "? sumption" apply?

The lowest level of corresporlence, perhaps best conceived as 
analogous to nominal scaling. Involves associating with each ortnogonal 
axis of the model a single measurement variable, without regard for cor­

relations among measurements or comparability of scale units. At 
lowest level of 1omorptiisra, the angles between the reference axes and the 
units of distance alot.g the axes have no meaning with regard to statis­

tical properties ri' me'.suremerts. While It Is true that we can use
the simple Pythagr^rean formula to calculate interprofile distances with­

out necessity for associating geometric angles and axis lengths with 
any prc'-ert les : f the data, the meaningfulness of such calculations 
appear.' questionable (Overall,

The aegree of correspondence oetween abstract geometric model and 
measurement domain can be Increased by eouatlng statistical properties 
of the data with orthogonality of reference axes and with units of length 
of the geometric axes. For example, reference axes can be associated with 
statistically independent, equal-variance transformations of the original 
data. Tne orthogonal transformations can be obtained In a variety of 
ways, and different numbers of transformed orthogonal variates can be 
emnloyed in computing Interproflle distances. The variations In nature 

i rumber of transformed variates provide different distance measures 
which have been the subject of this Investigation. Is orthogonal trans­

formation useful? If so, what kind and how manv transformed variates 
should one use? aellablllty Is one criterion to consider In evaluating 
answers to these questions.

The first distance Index of Interest Is the simple d' statistic 
(Cronbach and Gleser, 1953).

(1) d.' ♦ d,* ♦ ♦ d. 1
Recognizing that profile elements may be correlated to dlffarl^ 

and unknown extent and that units of measurement may lack comparability, 
an orthogonal transformation of the original n correlated measurements 
mav be sought to yield a new set of p uncorrelated, equal-variance trans­

formations of the p correlated profile variates. Sucn transformation 
can be obtained using the Inverse covariance matrix. The distance function 
computed from the transformed variates will oe called a Mahalanobls - 
tyoe D». (Since the Mahalanobls distance between groups is something 
quite different from this simple Interproflle distance, we are probably 
doing the late Professor Mahalanobls a disservice In using this termin­

ology).

(2) D» = C*'' i
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Finally, another orthogonal transformation of the original profile 
elements based on factor analysis of the correlation (covarlance) matrix 
has been suggested by the present Investigator as having certain appeal. 
If the total variance Is employed In the principal diagonal of the matrix 
of Intercorrelatlons among profile elements, factor varlates which have 
statistical properties of orthogonality and equal variance can be obtained 
(Overall, 1962). Distances between profiles can be computed using the 
Pythagorean model such that angles between reference axes and unit axis 
lengths have meaning In terras of the statistical properties of the trans- 
formed varlates.  In addition, the factor varlates may have meaningful 
psychological Interpretation, Increased measurement reliability and ot\ 
desirable properties. 

)ther 

V = dF, a + dF " + dt 8 _ = ä' w w' £ 

where W = C1? (for factors extracted from covarlance matrix), 
or where W =c~i V F in which V is a diagonal matrix containing 
test standard deviations (for factors extracted from a cor- 
relation matrix). 

Relationships between the Three Indices of Profile Similarity. 

The simple da statistic (l) Is a special case of the Mahalanobls- 
type Da statistic (2). If It can be assumed that profile elements are 
uncorrelated arH have equal variances, the Inverse covarlance matrix C'1 

In equation 2  will be a diagonal matrix proportional to an Identy matrix 
by a scalar constant. 

D" = i' C-i i = i' I ^ = 1' i = d9 

If, on the other hand, profile elements are not uncorrelated and variances 
are not equal, then the simple d8 statistic may be quite different from 
the transformed D8 statistic. As Cronbach and Gleser (1953) have pointed 
out, the failure ^o take Into account profile-element correlations re- 
sults In statlst'.cally orthogonal factors being weighted according to 
the extent of representation In the profile, while In the transformed Da 

each orthogonal dimension Is weighted equally. 

The Mahalanob1s-type D8 (equation 2) Is a special case of the general 
factor space Dr-,8 (equation 3). If factoring Is continued until p ortho- 
gonal factors nave been extracted from the p-order covarlance (correlation) 
matrix, the Dp9 computed from the p transformed orthogonal factor varlates 
will be precisely the Mahalanobls-type D8 for the same prcfll^s.  (This 
equivalence will be Illustrated only for the factoring of covarlance 
matrix; however, It should be obvious that the same relationship holds 
for factors extracted from a correlation matrix when loadings are re- 
scaled through multiplying by test standard deviations.) When the co- 
variance matrix Is factored completely. It can be reproduced perfectly 
from the factor loadings. 

C = F F ' 
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The factor score transformation matrix Is obtained 

W = C'1 F. 

The factor space distance function Dp8' is computed by equation 3 

ü. a _ = i' W W ^ = 4' C"1 F F' C"1 d = ä' C"1 1 = Da 

Thus, the Mahalanobls-type D9 is precisely equivalent to the factor space 
Dps In the special case where factoring has proceeded to extraction of all 
p factors. Where factoring Is terminated after r<p factors have been ex- 
tracted, t:;e Mahalanobls-type D8 may be substantially different from the 
factor space Dp', 

If we conceive that a matrix may contain only r < p reliable factors 
and that additional factors may represent only error variance, we have a 
basis for understanding the very considerable differences In reliability 
of results which will be reported to exist between the alternative ap- 
proaches.  If a matrix is factored completely and orthogonal factor var- 
lates are all scaled to equal variance, the effect will be to increase 
greatly the error Involved in accessing profile similarities when» in 
fact, there are only a few true common factors and many small error factors 
(now stretched to unit length Just like the true factors). 

These results appear to mediate against my previous recommendation 
of the complete Mahalanobls-type D', not because it is unimportant to 
establish coincidence with geometric properties of orthogonality and 
equal unit coordinate axes, but because the coordinate axes need to be 
defined in terms of true, non-error factors. Since the Mahalanobls-type 
orthogonal transformation Is equivalent to complete orthogonal factoring, 
an interesting question arises concerning how many transformed orthogonal 
varlates should be used in computing interprofile distances. 

Empirical Study of Reliability of Distance Indices. 

In psychiatric symptom ratings, the degree of agreement between two 
indenendent observers represents an important kind of reliability. Unless 
two observers can agree concerning the level of symptomatology present in 
each patient, there is little basis for confidence that the ratings re- 
present true status of the patients. Where psychiatric rating profiles 
are used as a basis for clustering of patients with the hope of identify- 
ing naturally occurring homogeneous modal types, it is important to know 
the extent to which the same cluster results can be expected to result 
from ratings made by different observers.  If the relative distances be- 
tween patients differ widely from one independent observer to the next, 
one can have little confidence that the cluster results really represent 
fundamental types of patients. 

The present Investigation was undertaken on the assumption that 
some types of profile similarity indices rnf.y be more Invariant (reliable) 
across different observers than others. The investigation involved 
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comparing Interproflle distances derived from ratings by one observer with 
Interprofile distances derived from ratings by another observer. This 
comparison was made for seven different measures of profile slra'larlty, 
representing variations of the three basic models described above (ds, 
Ds and Dp8), The analyses were replicated across seven Independent random 
samples of 20 patients - each sample yielding n(n-l)/2 = 190 Interproflle 
distances for ratings by each observer. The seven different distance 
Indices for which Interrater reliabilities were evaluated are shown In 
Taole i. 

The first three series of analyses Involved Interproflle distances 
computed using only the information present in each sample of 20 profiles 
being analyzed.  In the case of the simple d" index, this is ^11 infor- 
mntior, that can De used since no transformation of the original varlctcs 
is imposed.  Wich ehe Mahalanobis D8, the original varlates are trans- 
formed to a set of mathematical varlates which are statistically ortho- 
gonal In some population or in some sample. When inter-profile distances 
are computed using only the information present in the sample, the trans- 
formed varlates are statistically orthogonal within that sample. Such 
an orthogonal basis contains the sampling error present in the specific 
small-sample covarlance matrix; hence, it may be different from one rater 
to the next. Variations in the covarlance matrix, thus, contribute to 
variability of Dp   results fror, one rater to the next, even within the 
same sample of patients. Using the factor space Dp8 model, the original 
varlates are 'ransformed to a set of r < p mathematical varlates which 
are statistic, lly orthogonal in the sample or population represented in 
the correlation (covarlance) matrix which is factored.  When the ortho- 
gonal factor varlates are derived from analysis of the small-sample 
correlation (covarlance) matrix Involving only the cases for which inter- 
proflle distances are being computed, the factor varlates will be in- 
fluenced by sampling variability in the covarlances. Since the covar- 
lance matrix will differ from one rater to the next, some variability in 
distance function results may be introduced. On the other hand, coirmon 
factors tend to be more stable than individual variables so that rel'a- 
bility may be Increased. 

The three types of distance indices were computed for all possible 
pairs of patients in the seven samples, first using ratings by one rater 
and then using ratings for the same patients made by another rater. The 
n(n-l)/2 - 190 resulting paired distance indices in each sample were 
intercorrelated for the two raters.  In this Instance, the rank correlation 
coefficient was employed as a simple descriptive index of the relative 
similarities of distance Indices computed from ratings by the two inde- 
pendent observers.  (No assumptions concerning distributions of these 
coefficients were made.) The results of correlations between paired dis- 
tance measures for the three types of indices are plotted in Figure 1 
for the seven Independent samples of patients. 

The results Indicate that the orderings of simple d8 indices were 
consistently most similar for the two independent raters. The factor 
space Dp8 results were less conslstant from rater to rater when the factor 
vor^ot-oo w^re defined in terms of the indlvlriual sample (N=20) corrv»! ntlon 
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matrices for each rater separately. Finally, the orderl’^g of Mahalanobls - 
type D* Indices was almost entirely lacking In consistency from rater to 
rater when the Individual sample (N=20) covariance matrix was used in com­

puting D*. In fact. Inter-rater correlations were equal to or less than 
zero In four out of the seven samples.

Figure 1

The results of this first series of analyses leads to the conclusion 
that the simple d® Index of profile similarity Is significantly (? out 
of 7) more Invariant across raters than either the factor space Dp* or 
the Mahalanobls-type D* when only the Information contained In the pro­

files being clustered Is used. The results further suggest that the 
Mahalanobls-type D® is entirely lacking In reliability across raters when 
the small-ssunple covariance matrix Is employed In the calculations. As 
previously discussed, this Is due to the fact that the Mahalanobls-type 
D* Is equivalent to factoring the correlation (covariance) matrix completely 
and then equating the variance of all factor variates, whether true common 
factors or error factors.

The next series of analyses was undertaken to evaluate the effect 
of increasing the stability of the covariance matrix used In Mahalanobls- 
type D* calculations. A single stable covariance matrix based on a larger 
sample (N=280) was computed, and the Inverse of this covariance matrix 
was used In calculating Inter-proflie distances in all samples for both 
raters. This procedure Is equivalent to transforming nil rating profiles 
using a common transformation matrix. It Is like factoring a stable 
population correlation (covariance) matrix completely, equating variances 
of all factor variates, and using these factor variate equations In trans­

forming all ratings. The results of this procedure were correlated for 
the two Independent raters In the seven samples. Results are presented 
In Figure 2. Use of the more stable common covariance matrix to obtain 
orthogonal transformation, rather than obtaining a separate transforma­

tion matrix for each rater, resulted In Increased Inter-rater reliability 
for the Mahalanobls-type D* indices; however, the Inter-rater reliability 
was still found to be quite low. For comparison, results obtained for the 
same data using the simple d* Index are reproduced in Figure 2. Even 
where a single orthogonal transformations for the Mahalanobls-type D*cal- 
culatlons, the simple d* Index evidences considerably more stable results 
from one rater to the next. Again, this result is presumable due to the 
increased emphasis on error factors resulting 1rcra a transformation which 
Is equivalent to total factoring of a matrix containing only four sub­

stantial principal factors and 12 roots less char, uni'-y.

Figure 2

A final series of analyses w’s undertaken to evaluate the Inter­

rater reliability of factor space D-;.® Indices computed from factor variates 
derived from a single large sample ' (N-28O) correlation matrix. Factor
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score  transformation vectors  were computed  for one,   two and four principal 
factors  of  the common large  sample correlation matrix.     Inter-rater cor- 
relations  of Dp?   values were computed within each  sample  of  20 cases  using 
the same  factor  score transformation equations.     Results  are presented  in 
Figure  3»    For comparison,   the simple d*   results are also  reproduced   in 
this figure. 

Figure  3 

While the consistency from sample to sample is not as pronounced, 
the general trend is for the factor cr. ^e Dp9 coefficients to evidence 
greater invariance between raters than the simple d" statistic. Where Dp ! 

based on the four principal factors corresponding to latent roots       k 
greater than unity were analyzed, the inter-rater consistency was higher 
than for the simple d" statistic in s^.x out of the seven independent 

when Dp9 indices samples. The average inter-rater consistency increased 
were based on only first two principal factors, and increase^ still more 
with use of only first principal factor; however, the variability from 
sample to sample Increased as fewer factors formed the bas"3 for Dp* cal- 
culations.  As has already been pointed out, the Dp" statlccic approaches 
the Mahalanobis-type D9  as the number of factors approaches the total 
number of profile components. For comparison Dp ? inter-rater correla- 
tions have been entered in Figure 3 also.      16 

From these results it is concluded that the ur>e of a stable ortho- 
gOTi;:l transformation representing only .he non-error factors of a large- 
sample correlation matrix will tend to result in more reliable profile 
similarity indices, that there is generally an Inverse relationship be- 
tween number of factors used in defining the space and the reliability 
of diEtance indices, but that the simple d" statistic compares favorabl-' 
to the best profile similarity measures, as far as inter-rater consistency 
is concerned. 

* 
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Table 1 

Seven Indices Employed In Comparing Relative 
Invarlance of Distances Computed from Rating Profiles Provided 

by Two Independent Observers 

Covarlance Matrix 
based on N=20 

Cov.irlance Matrix 
based on N=280 

Two principal factors 

ur.e principal factor 

Simple d8 

d8 = 1' (i 

Mahalanoble D8 

D8 = £' C"i d 

D8 = d' C"i ^ 

Factor Space Dp8 

Dp Ä = 4' W W i 

Dp 
8 = ^' W W 1 

Dp 8 = d' W W d 
F2   " 

Dp 8 = d ' W W ' d 

Simple 41: 

Mahalanobls D8 : 

Factor Space D^8: 

Covarlance matrix not Involved; all variables enter 
Into distance calculations. 

First series of analyses Involved use of C'1 calcu- 
lated from the particular sample of 20 cases for 
whom Interproflle distances were calculated. Second 
series of analyses Involved use of a constant C"1 

based on larger sample of 2C0 cases. 

First series of analyses Involved first four prin- 
cipal factors of sample {N=20) correlation matrix. 
Second series of analyses Involved first four prin- 
cipal factors of constant correlation matrix based 
on large sample of 280 cases. Third and fourth 
series Involved two and one principal factors of 
large sample matrix. 

• 
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