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Maximum-Likelihood Estimation of the Parameters of a
Four-Parameter Generalized Gamma Population from
Complete and Censored Samples

. LeoN HarTER
Aerospace Research labaratories, Wright-Patterson Air Force Rase

Consisder the four-parameter generalized Gamma popuintion with location param-
vter ¢, #cale parameter a, shape/power parwmeter b, and power parameter p (shupe
parameter d = bp) and prohability density function f(z; ¢, a, b, p) = p(z = c)t»}
exp | =[(r ~ e)/alP)/a* D(h), wheee @, b, p > O and 2 2 ¢ > 0. The likelihood
equations for purameter estimation are ohtained by equating to zero the first partial
derivatives, with respect to each of the four parameters, of the natural logarithm of
the likelihood function for a complete or censored sample. The asymptotic variances
and covariances of the maximum:-likelihood estimators are found by inverting the
information matrix, whose components are the limita, an the sample size n — =, of
the negatives of the expected values of the second partial derivatives of the likelihood
function with respect to the parameters, The likelihood equations cannot be solved
explicitly, but an iterative procedure for solving them on an electronic computer
in described. The results of applying this procedure to samples from Gamma, Weibull,
and half-normal populations are tabulated, as are the asymptotic variances and
vovarianees of the maximum-likelihood estimators.

1. InTRODUCTION

Stacy [4] has studied some of the clementary properties of a three-parametor
generalized Gamma population which includes, as special cases, not only the
two-parameter Gumma, but also the two-parameter Weibull, the one-parameter
exponential and half-normal, nnd other populations of interest. Parr and
Webster [3] have obtained expressions for the maximum-likelihood estimators,
from complete rumples of size n, of the purameters of such a population and
for their asymptotic varianees and covariances. Stacy and Mihram [5} have
reparameterized the population, generalized it further to include cases in which
the power parameter p is negative, and considered estimation of parameters
by the methods of moments, maximum likelihood, and minimum variance.

The author believes that the usefulness of the generalized Gamma population
n the study of life distributions, which hiaa been recognized by Parr and Webster
(3], will be greatly enchaneed by the addition of a fourth parameter, the loeation
parameter ¢, which the above nuthor: have arsumed to be zero. In addition,
he has found that it is often necessary or desirable to estimate population
parameters from cenzored samples. In this paper, therefore, by the methods
already employed by Harter and Moore [2] for the three-parameter Gamma
and Weibull populations, he farmulates an iterative procedure for maximum-
likelihood estimation, from complete and censored samples, of the parameters
of a four-parameter generalized Gamma population. Harter [1] gives the mathe-
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160 NOTES )

matical formulation and tables for the asymptotic variances and covariances

of the ML cstimators, A one-page excerpt from those tables is included in this
paper.

2. Tue Foun-PAnaMETER GENERALIZED GaMuma PopuraTtion
The probability density function of the random varinble X having a four-
parameteir generalized Gamma distribution with location parameter ¢, scale
parameter g, shape/power paramet. : b, and power parameter p (shape parameter

TabLE 1
Corfficients of 1/N Times Power of Scale Parameter A in ML Estimators, from Samplea

of Size N with Proportions Q1 Censored from Below and Q2 from Above, of -

Puramelers of Four-Parameter Generalized Gamma Population with
Shape/Power Parameter B and Power Parameler P

GAMMA POPULATION WITH SHAPE PARAMETER 3
(B=30,P=1.0)
Q1 = 0.000, Q2 = 0.00

407 . 00832 -705.03320 124, 78598 42,27586
1504.33831 ~241,47613 -89 .25062
38. 50881 12,23302
8.52138
Q1 = 0.000, Q2 = 0.25
1187.3064 =222 ,3827 389.30249 85.91169
4174.9751 —~T725.44723 -169.21794
128.32667 26.90814
11.00843
Q1 = 0.025, Q2 = 9,00
1342,7244 — 2878, 2305 388. 58361 308.78855
6200, 9205 -824.72781 -685.23892
111.84878 86.72469
85.08538
Q1 = 0.025, Q2 = 0.2 ?
[ H N N ~14119.355 2138.1030 1179.6570
I8T5H2,850 —4335.8384 —2433.3743
6859.22462 358.37341
22231593

WEIBULL POPULATION WITH SHAPE PARAMETER 3
(B =1.0, P =3.0)
Q1 = 0,000, Q2 = 0.00

H.30772 - 14.01038 23.83340 0.99266
20840271 ~73.18953 ~8.10825 - T
114.80484 6.50776 .

2.23704

Q) = 00, Q2 =D,25

15 K3489 ~47.06445 ¥6.01908 2.99543

154 HEOOR -263.08530 -~14.22536

483.00374 18.34561

2.62640
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NOTES 186}
Temre t Contrngerd!

Gl o O 025, (2 = 0 00

5.78565 ~21 . 63456 2% 3035 317548
218 92256 —167.51331 ~ 65, 59402
171 1363 9411008

S2.75602
Q1 = 0 025, Q2 = 0.25

28 58350 — 134 .474u2 175 240849 2469657
77959296 — Y0 12068 — 17308989
1157.5938 18069986

1351342
HALF-NORMAL POPULATION
(B =05 P =20)
Q1 = 0.025, Q2 = 0.00

8.22773 —7.93012 19.29805 0.33543
8.18039 —19.65633 -0.38075
51.19087 0.73148
004669
Q1 = 0.025, Q2 = 0.25
25.22315 —~30.24875 88.96886 0.80371
37.67493 =111 99979 —0.99136
340.70355 2.63114
0.05909

d = bp) is given by
f(x;c.a. b,p) = p(r — 0" " exp {~[(x — ¢)/a)"}/a" T (D),
a,b,p>0, z>2c¢20. @.1)

From a mathematical standpoint there iz no reason why ¢ cannot be negative,
and Stacy and Mihram [5] have introduced a sitnple modification which allows p
to be negative, but since negative values of either ¢ or p are not of much interest,
at least from the point of view of hfe distributions, we assume that ¢ and p
are non-negative. The correspording cumulative distribution function is given by

Flr;e,a, b, p) = Fosame(b)/ T(D). 22
The fact that the cumulative distribution function of this population is an
incomplete Gamma-function ratio, as is that of the Gumina population, suggests
the nam~ generalized Gemma population, though it is also a generalization
of the three-parameter Veibull population and of other populations as well
Specifically, one may mention the following populations as special cases: three-
parameter Gamma (p = 1); three-parameter Weibull (b = 1); two-parameter
expounential (b = p = 1); and two-parameter half-normal (b = 1/2, p = 2;.
If, in addition, one sets the location parameter ¢ equal to zero in any one of
these populations, the result is the same population with the number of param-
eters decrensed by one.

3. AsyMproTic VARIANCES AND CoOVARIANCES 03 ML Esrimarors

The asymptotic variance-covariance matrix for the maximum-likelihood
estimators 4, §, p, and ¢ is given by ™ '[v,,], where [v.,] = [*']"! and the »*’
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are given in a report by Harter [1]). The computation of the elements v** of the
information matrix (multiplicd by 1/n) and the invemion of this matrix to
obtain the coefficients of 1/n in the variance-covariance matrix were performed
on the IBM 7094 computer for various values of the parameters b and p and
the censoring proportions ¢y (from below) and g, (from above). Computation is
quite straightforward when the shape parameter d = bp is greater than 2,
but when the shape parameter is less than or equal to 2, one encounters quantities
which become infinite when ¢, = 0 and take the indeterminate form © — «
when ¢, > 0. In the latter case, one may use alternate forms which are finite
und ecan be evaluated by numerical integration. Estimation is non-regular
and henee the asymptotic variances and covariances of the estimators have
not been found when ¢, = 0 and the shape parameter is less than or equal to 2.
With this exception, the cocflicients of (1/n) times a power of the scale parameter
a in the asymptotic variances and covariances were computed for ¢, = 0.000
(0.005) 0.025 and ¢, = 0.00 (0.25) 0.75 for the following cases: b = 1, p = 3
{Weibull with shape parameter 3); b = 3, p = 1 (Gamma with shape param-
eter 3): b = 1, p = 2 (Weibull with vhape parameter 2); b = 2, p = 1 (Gamma
with shape parameter 2); b = p = 1 (exponentinl); and b = (.5, p = 2 (half-
normal). Representative results, accurate to within a unit in the last place
given, are shown in Table 1, arranged in the form

nVar(@)/a'® nCov(d 8/a nCov(d,f)/a nCov(d &)/d

n Var (5) n Cov {5, 9) n Cov (6, &/a
n Var (9) n Cov (8, 8)/a
n Var (&)/a’

4. ITERATIVE PROCEDURE rorR OBTAINING ML Esrimares

The maximum-likelihood estimates of the parameters are the solutions of
the likelihood equations obtaincd by equating to gero the first partial derivatives
of the likelihood function with respect to the parameters, whizh are given in
a report by Harter [1]. Since these equations do not have explicit solutions,
it is necessary to resort to iterative solution on an electronic computer. Three
iterative procedures were tried, singly and in various combinations—the rule
of false position, the Newton—-Raphson method, and the gradient method. The
procedure found to give best results wes a hybrid one, in which the rule of false
position was used, for the first 120 iterations, to estimate the parameters,
one at a time, in e cyclic order a, b, p, and ¢, omitting any assumed to be
known. Assuming that _he first m order statistics of a sample of sizsen (m < n)
are known, one starcs hy solting r = 0 (no censoring from below). One then
chooses initial ectimates for the unknown parameters. At each atep, one deter-
mines the value 7if any) of the parameter then being estimated which satisfies
the approprinte lilielihoo” «<.;»ation, in which the latest estimates {or known
values) of the other tlrae pasneters have been substituted. Positive values
4, §, and # ean alwuys b fount in thix way. In estimating ¢, however, one may
find that no vatue of ¢ in the permisaiile interval 0 € ¢ € z, satisfies the
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likelihood equation obtained by cquating to zero the partial derivative with e
speet to e Insuch eases, the likelihood function in that interval is either mono-
tone deereasing, so that é = 0, or monotone incrensing, vo that ¢ = r, . Thelatter
situntion oecurs when by < 1, sinee then the partial derivative with respect to e,
ferr = 0, contains only poxitive tertis, Onee that has oceurred, it is impossible to
rontinue iteration with r = 0, xinee <o e of the terms in the likelihood equations
Leeome infinite, 50 it is necersary to consor the smallest observation r, and
any otherx cqual to it (r observations in all). Subsequently, £, plays no role in
the estimation procedure except ns an upper bound on & Iteration continues
until the results of auccessive steps agree to within some assigned tolerance.
If, however, the toleranee has not been met by the time 120 iterations have
been performed, the procedure i altered. The Newton-Raphson method is
uszed, starting with the 121 iteration, (o estimate the three parameters a, b,
and p simultancously. Thix is alternated with estimation, by the rule of fulse
position, of the parameter ¢, which, beeause it is restricted to the elosed interval
10, 1. does not lend itself to estimation by the Newton-Raphson method,
which might yield an estimate outside this interval. The alterad procedure is
continued until the toleranee has been met or until the total number of iterations
reaches 1100, at which point the attempt to estimate the parameters is aban-
doned. Thia particular procedure is recommended beeause the gradient method
is the most slowly converging of the three, while the Newton-Raphs=on method
vonverges most rapidly if the estimates are already quite good, but behaves
ereatieally if they are not, as ix likely to be the ease at the outset,

5. NUMERICAL EXAMPLEs

Ay illustrations, consider the simulated life tests, each on forty components,
summarized in Table 2. We shall suppose that the “data’” represent observed
failure times (in hours). Aectunlly, they were obtained by approporiate trans-
formations of uniform, exponential, or normal random numbers. For each set
of data, the iterative cstimation procedure deseribed in Section 4 was carried
out for m = 10(10)40 in the following cascs: (1) all four parameters unknown;
(2) any three parameters unknown; (3) any two parameters unknown; and (4)
any one parameter unknown. The resulting estimates for m = 30, 40 are shown
in Table 2. The number of iterations required tends to be large when one is
estimating b and p simultancously, especially from censored samples, apparently
beeause of the fact that there is a high negative correlation between b and g,
so that their product d, an estimate (not ML) of the shape parameter d, tends
to he mare stable than either b or p.

The iterative estimation procedure was programmed in FORTRAN and run
on the 1BM 7094 computer. Machine time tends to be somewhat excessive,
averaging about a1 minute per hundred iterations in eases in which three or
four parameters are being extimatesl.

6. CoxcLuning REMARKS

Asymptotic varianees and covariances of the estimators of the remaining
parameters when one or more of the parameters are known have been calculated
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for various parumeter values ind censoring proportions. This was aecomplished
by inverting all square submatrices of the information matrix. When the location
parameter ¢ i3 known, estimation is regular even when the shape parameter d is
less than or equal to 2, o it was possible to compute asymptotic variances and
covariances of the estimators of the other parameters for the cases in which
@ = 0,d < 2 Beeause of space limitations, the results are not ineluded in this
paper.

Ju~, how applicable the asyniptotie varianees and covariances are to estimates
from ~amples of size ax small as 40 is an open question. Conceptually, this
question wight be settled by a Monte Carlo study, tmt from a practiesl stand-
point any ~uch study large enough to be conclusive would be ruled out by the
excessive machine time required. In any case, the estimates given by the
iterative proccdure described in Section 4, when the location parameter ¢
is unknown, differ in two important respects from those for which asymptotic
variances and covarinnees have been enleulated, which assume that at least
one ohservation is censored from below whenever the shape parameter d is
less than or equal to 2 and that negative values of the estimate é of the location
parameter are permitted. Violation of either of these conditions vitiates the
property of asymptotic multivariate vormality and changes the asymptotie
variances and covariances. Nevertheless, the author believes that, when it
converges, the iterative procedure described in Section 4, which viclat = both
of these conditions, results in more realistic estimates. Moreover, the restriction
of ¢ to be non-negative results obviously in a reduction (which may be substantial
when d is large and n and ¢/e¢ are small) in the variance of ¢, and probably,
beeause of the high correlation between the estimators, in a reduction in the
other variances and covariances. A comparison of the discrepancies of the
estimates given in Table 2 for the cases in which 4 = 3 from the true values of
the parameters with those which one might expeet if the asymptotic formulas
held tends to confirm that such reduetions do occur,
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Consider the four-parameter generalized Gamma population with location parameter ¢,
scale parameter a, shape/power parameter b, and power parameter p (shggs parameter
d = bp) and robgbiligg density function £ (x; ¢, a, b, p) = p(x ~ ¢)°P~1 exp
V=[x - c?/a’ }/a"PI'(b), where a, b, p>0 and x> ¢ > 0. The likelihood
equations for parameter estimation are obtained by equating to zero the first
partial derivatives, with respect to each of the four parameters, of the natural
logarithm of the likelihood function for a complete or censored sample. The
asymptotic variances and covariances of the moximum-likelihood estimators are

found by inverting the information matrix, whose components are the limits, as the
sample size n -—» , of the negatives of the expected values of the second partial
derivatives of the likelihood function with respect to the parameters. The likeli-
hood equations cannot be solved explicitly, but an iterative procedure for solving
them on an electronic computer is described. The results of applying this procedure
to samples from Gamma, Weibull, and half-normal populations are tabulated, as are
the asymptotic variances and covariances of the maxdmm-likelihood estimators.
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