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Maxiteimn-Likelihood Estimualion of the Parameters of a
Foir-Paramieter Generalized Gainnia Population from

Complet e and Censored Samples

11. LEON HARTE.:R
.Aerospace Rosearch Laboratorles. Wright.Putterson Air Force flase

Con~i.ler the four-parameter g.neraWihte (Gamma population with h.CAtion param-
iter c, eva.le parameter a, sala,/Txwer p:Lrarketer h, atid power parameter p (shape

paramevitr d - bpi and prlmbitility density function f(z; c, a, b, p) - p(z - c)lv- I
exp I -[(r -)/a]' I/a'• I'(b), where a, h, p > 0 and z 2_ r > 0. The likelihood
ecnations for parameter es'iknatmn are oltaiuned by equating to zero the first partial
lerivatives, with res'pect to each of the four parameters, of the natural logarithm of

the likelihood function for a complete or cenmoreml &mple. The asymptotie variances
and covariancem of the maximum-likelihood estimators are found by inverting the
information matrix. whose compolnente are the limits, as the sample Aime a -- M, of
the negatives of the expected values of the wecond partial derivatives of the likelihood
function with respect to the parameters. Tie likelihood equuations cannot be solved

explicitly, but an iterative procedure for solving them on an electronic computer
is des.ribed. The results of applying this procedure to samples from Gamma, Weibull,

and half-normal populations are tabulated, as are the asymptotic variances and
covarian'es of the maximum-likelihood estimators.

1. INTROIDUCTION

Stacy 14) has studied some of the elementary properties of a three-parameter
generalized Gamma population which includes, as special cases, not only the
two-parameter Gamma, but also the two-parameter Weibull, the one-parameter
exponential and half-normal, and other populations of interest. Parr and
Webster [3] have obtained expressions for the maximum-likelihood estimators,
from complete samples of size n. of the parameters of such a population and
for their asymptotic variances and covariances. Stacy and Mihram 15] have
rm'parameterized the population, generalized it further to include cases in which

S~the power parameter p is negative, and considered estimation of parameters

by the methods of moments, maximum likelihood, and minimum variance.
The author believes that the n tefulnm of the generalized Gamma population

i the.study of life distributions, which has been recognized by Parr and W,Vbster
3 will be greatly celncha by the'ddition of a fourth parameter, the location
parameter c, whivh the above authors have assumed to be zero. In addition.
he has found that it is often necessiary or desirable to estimate population
p:arameters from censored samples. In this paper, therefore, by the mcthods
already employed by Hlarter and Moore 121 for the three-parameter Gamma
and Weibull populations, he formulates an iterative procedure for maximum-
likelihood estimation, from complete and censored samples, of the parameters
of a four-parameter generalized Gamma population. Hlarter [I] gives the mathe-
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160 NOTES

matital formulation :ind t:ahk. for the zaymptotic variance" and covariances
of the .Ml "stinmtors. A one-page excerpt from those tables is included in this
p:ijxr.

Tr. T1*0,;OUII-PATAMETER GENERALIZED GAMMA POPULATION

'The probability density function of the random variable X having a four-

paIrametcr generalized Gamma distribution with location parameter e, scale
parameter a, shape/power paramet, : b, and power parameter p (shape parameter

TABLz I

Coepffiients of i/N Time# Power of Seale Parameter A in ML Estimatom, from Samples

of Sire N with Proportions QI Censored from Below and Q2 from Above, of

ParTme!era of Pour-Parameter Generalized Gamma Population with

Shape/Power Paramder B and Power Parameter P

GAMMA POPULATION WITH SIHAPE PARAMETER 3

(B - 3.0, P - 1.0)
Q1 - 0.000, Q2 - 0.(X)

407.99832 -7115.03320 124,785M6 42.27586

1564.3,931 -241.47613 -89,25062
38,50881 12.23302

8.5213&

QI - 0.000, Q2 - 0.25
1 i 17.3,q4 -- 21. W927 309.30249 85.91169

4174.9751 -725.44723 -169.21794
128.32667 26.99814

QI - o.Q25, Q2 - 0.00

1342.7244 -- 2878.2305 3,,.5831 308.78M55

62RA9.205 -824.72781 -685.23892
111.84,878 86.7*2460

85.08538

QI - 0.25, q, 2- 0.25
q119 Iebo - 14 19.355 2138.1030 1179.6570

2S752.850 -4335.83&4 -2433.3743
659.22462 358.37341

222.31513

WEIBULL P10l117LATION WITH SHAPE PARAMETER 3

(H? - 1.0, P - 3.0)
QI - 0.000, q(2 - 0.00

5..30772 - 14.919*oC 23.n349 0.9M26
.6W40Q271 -73.189.53 -8.10825

114.80484 6.59776
2.23764

(P1 - o 000, (q2 - 0.25

15. S33S9 -47.06445 ,o.01908 2.99543

114 5•.181 -263.08530 -14.2253
493.09374 18.34561

2.6&2649
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D~J 0!,q1 41 Ml~li'

5 7&%65 -21.635 W8 Z% MUM 3 175441i
21S 922;k -I6G7. 51331 -65, 56W02

171 IVS<;3 0' 411M3
22:7P00'2

QI - Q) 025, (r2 -. 0.25

'8 5,35•0 -- 134.474W.2 17 . 249S.I 24.69!&57
779.59296 -- t.p. 12068 - 173 (159811

11,5 W.5&"8 1 W) 69916
43. 51342

IA.F-NORMAL POPULATION
(B - 0 5, P - 2(0)

QI - 0.02f), q2 - 0.0)
S. 22773 -7.03012 19.29805 0.33.54:-

8.18039 - 19.565"33 -0.38075
51.190M7 0.73146

0.04C09
Q1 - 0.0"25, Q2 - 0.25

25.22315 -30.24875 88.9A806 0.80371
37.67493 -1!! !9979 -0.99136

340.703655 2.63114
0.05909

d - bp) is given by

.(x; , a, b, p) = p(- c) '-' exp I-[(x - c)!a]jplahr(b),

a,b,p>O, x> c>?O. (2.1)

From a mathematical standpoint there is no reason why c cannot be negative,
and Stacy and Mhibram [51 have introduced a simple modification which allows p
to be negative, but since negative values of either c or p are not of much interest,
at least from the point of view of life distributions, we assume that c and p

are non-negative. The corresponding eumulat ive distribut ion function is given by
F(x; c, a, b, p) = r .... ~~i(b). (2.2)

The fact that the cumulative distribution function of this population is an
incomplete Gamma-function ratio, as is that of the Cizmiula ix)pulation. suggests
the namn, generalized G.mma population, though it is also a generalization
of the three-parnmeter Weibull population and of other populations as well.

SSpecifically, one may nertilion the following populations as special eases: three-
parameter Gamma tp = 1; thrte-paraniter Weibull ýb = P ; two-parameter
exponential (b = p = 1); and two-parameter half-normal (b = 1/2, p - 2).
If, in addition, oneW s.ts tfii location parameter c equal to zero in any one of
these populations, the resul is the same population with the number of param-

eters decreased by one.

3. AsxymMuOTIC VAIIANCIS, AND COVARIANCS OY* ML EsqiuAToit

The aymptotic variance-covarianee matrix for the maximum-likelihood
estimators 8, n, , and e is given by n-'Jv',j, where [e.,I = Iy"T' and the v'"
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are giveU in a report by I larter [1]. The computation of the elements v" of the
information matrix (multiplied by t/n) and the inversion of this matrix to
obtain the coefficients of 1/n in the variance-covariance matrix were performed
on the IBM 7094 computer for various values of the parameters b and p and
the cernsoring proportions q, (from below) and q2 (from above). Computation is
quite straightforward when the shape parameter d i bp is greater than 2,
but when the shape parameter is less than or equal to 2, one encounters quantities
which become infinite when q, a 0 and take the indeterminate form c -
when q, > 0. In the latter case, one may use alternate forms which are finite
and can be evaluated by numerical integration. Estimation is non-regular
and hence the asymptotic variances and covariances of the estimators have
not been found when q, - 0 and the shape parameter is less than or equal to 2.
With this exception, the coefficients of (1/n) times a power of the scale parameter
a in the asymptotic variances and covariances were computed for q, = 0.000
(0.005) 0.025 and q, - 0.00 (0.25) 0.75 for the following cases: b = 1, p a 3
(Weibull with shape parameter 3); b = 3, p - 1 (Gamma with shape param-
eter 3): b - 1, p = 2 (Weibull with iLhape parameter 2); b = 2, p - I (Gamma
with shape parameter 2); b - p - 1 (exponential); and b a G.5, p - 2 (half-
normal). Representative results, accurate to within a unit in the last place
given, are shown in Table I, arranged in the form

n Var (d)/a' n Coy (4, 6)/a n Coy (d, P)/a n Cv (d. &)/a'

n Var (6) n Cov', (F, ) n Cov (6, e/a
n Var @)n Cov (, e/a

i Var (e)la'

4. I'rxRATrV' PROCEDURZ FOR OBTAININo ML E'riuAcn

The maximum-likelihood estimates of the parameters are the solutions of
the likelihood equations obtained by equating to zero the first partial derivatives
of the likelihood function with respect to the parameters, which are given in
a report by Hlarter [1]. Since these equations do not have explicit solutions,
it is necessary to resort to iterative solution on an electronic computer. Three
iterative procedures were tried, singly and in various combinations--the rule.
of false position, the Newton-Raphson method, and the gradient method. The
procedure found to give best results wr.s a hybrid one, in which the rule of false
position was used, for the first 120 iterations, to estimate the parameters,
one at a time. in thi cyclic order a, b, p, and c, omitting any assumed to be
known. Assuming that J'ie first m order statistics of a sample of size n (m _< n)
are known, one staru' by setting r - 0 (no censoring from below). One then
chooses initial ectimates for the unknown parameters. At each step, one deter-
mines the -value (if (tay) of th(. parameter then being estimated which satisfies
the appropriate likelihoo,' -.ýAJ-Von, in which the latest estimates (or known
values) of tho other t11rz pai tmeteis have been substituted. Positive values
4, 6, and fi rcitt elw~y., hI. founq "i this way. In estimating e, however, one may
find that no vniie of c in the permi&4ibjle interval 0 < c !5 x, satisfies the



NOTES 163

CA CA Ti -4 CI

Ca S.Z to -4 b:

A 7 iS. ic x

-I ~ ~ ~!-Zr

A- I- CA-

;d~ C'- 'A I- An-o i

--4a. ~ .,, -

C' CQ. 4

AM, C6~~I

jI I m, '

I C-- ~ -A -:-aII

to c

A- -o -I. F

CA T 9 R. I



164 NOTES

likelihoodl equatinu ohi :tint.d Ily ,qtio.LU g to zero the p:rtial derivativot with r.-
spet to C. In such cases, the likelihood fiunation in that. interval i6 either mono-
tone dtecre:Lsing, so that e 0, or mnonototne increasing, so that s! = ,. Tl'he latter
Situation ovculrs i lhn t 1, sitte then the partial derivative- with r".pect to c,
for r = 0, contairs only positive terr-..A. Once that hNs orcurred, it is imiossiblh to
eontinue iteration with r - 0, siwe i.e. of the terms in the, likelihood equations
become infinite, so it is neeessary to censor tilt smallest ohservation x, and
any others equal to it (r bliserv:olmn.s in all). Subsequently, x, plays no role in
the estimation procedure except ts an upper bound on e. Iteration continues
until the results of successive steps agree to within some assigned tolerance.
If, however, the toleranee has not li-en met by the time 120 iterations have
bee-1 performel, the procedure is adter•d. The Newton-Raphson method is
used, starting with the 121" iteration, to nstim:te the three parameters a, b,
and p simultaneously. This is alternated with i.itimation, by the rule of false
position, of the parameter r, which, because it is rtestricted to the closed interval
10, Xr,, does not lend itself to estimation by the Newton-lnaphson method,
which might yield an estimate outside this interval. The alterei procedure is
continiUe(l until the tolerance has Ixben met, or until the total number of iterations
reach"e 100, at whiclh point the attempt to estimate the parameters is aban-
donet. This particular provedure is recommended because the gradient method
is the most slowly converging of the three, while the Newton-Raphson method
converges most rapidly if the estimates are already quite good, but behaves
erratically if they are not, as is likely to be the c4ase at the outset.

5. NUMERICAL EXAMPLrus

As illustrations, consider the simulated life tests, each on forty components,
sumnnarized in Table 2. We shall suppose that the "data" represent observed
failure times (in hours). Actually, they were obtained by approporiate trans-
formations of uniform, exponential, or normal random numbers. For each set
of data, the iterative estimation procedure described in Section 4 was carried
out for n, = 10(10)40 in the following cases: (1) all four parameters unknown;
(2) any three parameters unknown; (3) any two parameters unknown; and (4)
any one parameter unknown. The resulting estimates for m = 30, 40 are shown
in Table 2. The number of iterations required tends to be large when one is
estimating b and p simultanenusly, especially from censored samples, apparently
because of the fact that there is a high negative correlation between 6 and ,
so that their product a, an estimate (not Mi.) of the shape parameter d, tends
to •e more stable than either 9 or f).

"The iterative estimation procedure was programmed in FORTRAN and run
onl the IBM 709-0 computer. Machine time tends to be somewhat exeess.,;ve,
averaging about a minute per hundred iterations itn eases in which three or
four parameters are being ,stimated.

6i. CONCLUmINo REMARKS

A.-yniptotic varinati• : and covariances of the estimators of the remaining
par:trncttr- when one or morte of the pIraineters are known have been calculated
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for various parauneter valnIs :Mid cenlsorilng proportions. This was aceinplislhed
by inverting all square sibmattrices of the information matrix. When the location
parameter c is known, -timnttion is regular even when the shape parameter d is
less than or equ:d to 2, so it was possible to compute asymptotic variances and
covarian;ees of the estimators of the other parametvrs for the cases in which

0, d <' 2. lle'aute of spave limitations, the r(sult- are not ineluded in this
papor.

,i,-', how applicable the a:symptot ic varianves and covariances are to tstimates
from -.-inph.e of size as st|vll a-s .10 is tn open que.,stion. Conceptutally, this
ques-tiotu might be settled by a Motite ('arlo study, hut from a praetiild stand-
point tiny ?•uch study large ,itough to be conclusive would be ruled out by the
excessive machine time required. In any case, the estimates given by the
iterative procedure described in Section 4, when the location parameter c
is unknown, differ in two important respIc ts from thtse for which asymptotic
variantces and covariances have been caleulated, which assume that at least
one obser-:ation is censored from below whenever the shape parameter d is
less than or equal to 2 and that negative values of the estimate e of the location
parameter are permitted. Violation of either of these conditions vitiates the
property of asymptotic multivariate normality and changes the asymptotic
variances and eovarianees. Nevertheless, the author believes that, when it
converges, the iterative procedure described in Section 4, which vic,.%t !- both
of these conditions, rcsults in more realistic estimates. Moreover, the restriction
of e to be non-negative results obviously in a reduction (which may be substantial
when d is large and n and c/a are small) in the variance of t, and probably,
because of the high correlation between the estimators, in a reduction in the
other variances and eovariances. A comparison of the discrepancies of the
estimates given in Table 2 for the cases in which d = 3 from the true values of
the parameters with those which one might expect if the asuymptotic formulas
held tends to confirm that such reductions do occur.
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Consider the four-parameter generalized Gamma population with location parameter c,
scale parameter a, shape/power parameter b, and power parameter p (shape parameter

bp)nd robbili density function f (x; c, a, b, p) p(x - c) exp
" (x- cJ/;&) /a '(b), where a, b, p> 0 and x. c Ž0. The i.:elihood

equations for parameter estimation are obtained by equating to zero the first
partial derivatives, with respect to each of the four parameters, of the natural
logarithm of the likelihood function for a complete or censored sample. The
asymptotic variances and covariances of the maximum-likelihood estimators are
found by invert"ig the information matrix, whose components are the limits, as the
sample size n -- , of the negatives of the expected values of the second partial
derivatives of the likelihood function with respect to the parameters. The likeli-
hood equations cannot be solved explicitly, but an iterative procedure for solving
them on an electronic computer is described. The results of applying this procedure
to samples from Gamma, Weibull, and half-normal populations are tabulated, as are
the asymptotic variances and covariances of the maximum-likelihood estimators.
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