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CT-11 Summary*

\\"IA gradient method is presented for adjusting the parameters of a system
to optimize a performance criterion, The partial derivatives of the perform-
ance index with respect to the adjustable parameters are obtained as real
time signals, using a single perturbation signal for a system with unknown

structure, but favorable topology.,

Computer simulations are included to indicate the feasibility of the
approach,
The adaptive control methed using a single perturbation signal, as pro-

posed here, has many features in commom with the well-known parameter

perturbation scheme,

* This paper will be presented at the Sixth Symposium on Adaptive Processes
at the National Electronics Conference, Chicago, llinois, October, 1967,



INTRODUCTION

A new perturbation method is presented in this paper for the simultaneous
adjustmen’ by the gradient method of multiple parameters in adaptive control
systems, The significant advantage of this method is that only one perturba-
tion signal is needed to generate the gradient of a performance criterion which
is a function of all of the adjustable parameters, This results in a consider-
able saving in time and equipment over the conventional perturbation methods
which use a separate perturbation for each parameter adjustment, At present
the method has only been shown to work for systems with a favorable topology,
where the adjustable gain parameters feed into a common summing junction
that is linked with the system input by a single subsystem, as shown in
Figure 1. This is not, however, necessarily overly restrictive since a control-
ler with adjustable parameters often can be constructed with this structure
evan though the plant itself may not have a structure suitable for this perturba-
tion method,

The single perturbation signal method is an outgrowth of the model methods
of gradient generation |1, 2] . It was shown previously [2] that in a truly
adaptive situation, where much of the structure of the system is unknown and
a model cannot be constructed, that the system could be used as its own 1odel
by feeding back the appropriate error signal, attenuated and delayed beyond
the autocorrelation time of the system signals, In this paper thev idea of using
the system as its own model is extended further by the demonstration that a
multiplicative perturbation signal, which is uncorrelated with the major system
signals, can be used in place of the time Jelay. Furthermore, it is shown that

such conventional techniques as the well-known sinusoidal perturbation method
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[3, 4] exhibit significant features in common with the method presented here.
First it is shown that a single perturbation signal can generate the signals
necessary for the correlation technique construction of the gradient of the
performance index in parameter space. Then this method is compared with the
model method and the conventional perturbation methods., Next the design and
stability of the adaptive loop is discussed and finally computer simulations

which demonstrate the feasibility of the method are presented.

PLRTURBATION METHOD

A performance criterion often used in adaptive procedures is the minimiza-
tion of e2 . whera the bar denotes a statistical ensemble average, or a
time average over a finite or infinite time interval. If k 1is an adjustable

parameter, then the quantity required for the steepest descent adjustment of

k 1is the gradient component

a__teztt)}.a—. |;2(tﬂ - 2 e(t).peft)
ak L . ak ok

The adaptive loop is an implementation of this correlation process. The
erro’ vignal is multiplied by the partial derivative and the product is integrated
and multiplied by a loop gain constant g , The resulting signal is subtracted
from the gain k . The error e(t ) usually is available as an actual signal
so that the gradient component for any particular k c:ar{ be obtained by correla-

tion of e(t) and _g__ek_(_t__)_ , if this partial derivative also can be generated

as a real time signal, Even if & more general performance index, J =F(e(t) , t),
i1 vsed, the crucial part in determining the gradient {8 obtaining —-g-g-(l-)— as

a signal,
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It is shown now that if the system has several adjustable gain parameters
k1 , (1=1, ..., m), then the partial derivatives ___g_z_(_f_l each appear
at the inputs to the respective gains k1 . These dasiredisignals are imbedded

within the normal system signals at these points and must be extracted for .se
in the adaptive loops,
The convolution integral representations of the signals e{t ), x(t),

and yi\‘ t ) in the linear time invarjant system shown in Figure 1 are

o«

e(t) = {;H(s) e(t-s ) ds = Hw™

Yi(t)ﬂhi*x (1)

m
x(¢)=u+ g*( z k v, + cpe),
i=]

wbere H is the impulse response between the input summer output and the error

output and h, 1is the impulse responuse between the input summer output and the

1
input to the gain k1 , with the output of every kt open-circuited and with

€ {t)= 0, Also, g(t) is the impulse response of the subsystem between
the gain summer and the input summer,

The partial derivatives of each of these signals with respect to any one of

the adjustable gains kj is calculated from (1 ) as

ak’ SE’
3 Vi . |
re———— = h ALx-
sk 1 3 % (2)

J }
m 3y1
X = gw ( r k + vy, + de )
i Ep .
9 j i=] akj j akj
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Since each impulse response corresponds to a linear time invariant system
any sequence of convolutions can be permuted, for zero initial conditions,
Therefore, equations( 2 ) can be combined to yield

m
i&.a(g*z kh)*.ﬂ_+(g*H)*y+eg*H*(p_ﬂ§.).(3)
Ekj i Ik j ak -

=1 J J

If the magnitude of the perturbation signal, ep(t ), is small compared with'
the magnitudes of the systerm signals, then the last term in (3 ) is small com-
pared with the other terms,

Therefore, if a system wers modeled by the integral equation representation

m
2, = (g T kh ) * 2z + (g*H)y , (4)
) i ) ]
=]
e

then zj would be the dasired partial derivative === , It 18 shown now that
(4 ) is an approxiniate representation for a portion of the signal yj (t) , and
that this portion can be extracted for use in generating the gradient of ez(t ).

Equations (1 ) can be combined to yleld

m
Y= (g% & kb )%y 4 e gty oo (k) 4 hptu (5)
l=l
Let + y' and + x' hot are the
YjﬂYj'o Yj xuxo X ,wcneyjlo andxo

signals developed when ¢ p(t) =0, Then (5 ) becomes

m
" m (g% L Kh )% y' + cg¥h % p (H% )+ € g¥H % p (H*'). (6)
vj R yj qj ( 0) gj (

I ¢ p(t) is small, thean x'(t ) is much smaller than xo(t ) and the last term

in (6 ) can be ignored, which ylelds
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m
y! = (g*

1 kihi)*y; + eg*hj* Q(H*xo)a (7)

1
I o(t) is slowly varying compared with the impulse response \imes of
h1 and H then ,(t) can be shifted within ths sequence of convolutions in

the last term of (7 ) to yield (g*H )% ¢ pyj 0 Therefore, (7 ) becomes ,'
[

identical to (4 ) except that the drivirg function in (7 )is ¢ p (t )yj 0( t) ,
[

whereas the driving function in (4 ) is y’(t )I (t) . Because

=Y
0 = () jl 0
p(t) is slowly varyiug the outnut of the system represented by (7 ) is approxi-
mately equal to the output of the system represanted by ( 4 ) multiplied by
¢ p(t), tio,, y; i °(t)z,“ ), or
da(t)
t + e p(t . 8 )
o(t) (t) x, (
A heuristic de;nonstration that —'%‘ axists within the signal yj is
)
afforded by the model method., The system is shown with a model and without

t =
yj( ) yj

[

the perturbation signal, in Figure 2, The system equations are the same as (1),

with € =0 , and these can he combined to yield

m
A w (g% I vORE 4 (grH) %y, (9)
T tov 2 Ky ok, (g*H) *y,

which is the same as (3 )with  , (t) = 0,
The model equations are
f = Hiw

z Hhi*w (10)

i
w ”g*( ) kz+e)r
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which can be combined with (1 ) to yield

m
Zju(g* 1!:’1 kihi)* zj-O-(g"'H)"'y1 . (11)

For zero initial conditions (9 )and (11 ) gener the same signal, so that

zj'ge‘ '
k ¢
]

Now if e(t ) is multiplied by a low frequency perturbation signal ¢ p (t)

before insertion into the model, it is claimed that the new signals in the model
will be approximately equal to the respective old signals, each multiplied by
e p(t) . Secondly it is claimed that the perturbation signal is not large enough

to disturb the system significantly, and the system can be used as its own model,

ADA 'ME
As in most adaptive methods using the gradient technique, the basic idea
in the present scheme is to construct the gradient of the performance index

ez(t ) with respect to the oontrol parameters, and then adjust these parameters

in the direction of the negative gradient, In the model method the partial deri-

vatives are generated directly as real time signals and .3_9._ is obtained by
multiplying e(t ) and LE.(_t ) and integrating the product. The adaptive loop

for the 1th gain is 1mplemented as
t
ky(t) =k (0)-8/ ofs)- GL-’ ds , so that
0 i
the integration for the continuous adjustiment of k1 is combined with the integra-~

tion for the averaging of ez(t ).

In the present scheme -.?:z-(-) is imbedded in the signal y (t), (8).
p)
i
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The extraction of the partial derivative and the correlation with e(t ) is

incorporated within one integration as

a6

TRk (12)

ki(t) = ki(O) - gep Yy

y =R0) - ¢oe

i

where g' = B¢ 02 . The simplification in (12 ) follows from (8 ) and the
assumption that p(t ) is uncorrelated with the system signals and has zero
mean,

In the usual parameter perturbation schemes for adaptive systems |3, 4]
each gain k1 is perturbed by a signal pi( t ) and the partial derivatives

-38_  all are imbedded in the perturbed error signal, It is commonly assumed

aki
2 3 m 2
that e% = e® + I o py - + n(t) , where e* {8 the perturbed

error, ¢ is the unperturbed error, and n(t ) is noise, The gradient is then

extracted by correlation as

m — ) e

2 2 2 N
e¥'p, = po” + I ~0. 2
N A e

where the p1 havo zero moan and are uncorrelated with each other, This
extraction and correlation, howevar, can be formulatad in the manner of the
porturbation scheme of this papor, too, Thus

m 3
e¥ = e+ I ini-—-e-"'n(t):
1 m] &Ky

m _2_ ""é‘
a8 .
Y kj

2
9*( pje*) ) (e+1f1 01 pi_g—:_;) pj = 2 ij
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ADAPT]VE PARAMETERS AND STABILITY

The four adaptive parameters of a system using this new perturbation method
are (1) the perturbation frequency, @ , (or period, T), (i1 ) the gain of the
perturbation loop, ¢ , (1it ) the gain of the adapiive loop, 8 , and (iv ) the
bandwidth of the adaptive loop, The parameter € is adjusted so that the
perturbed system does not differ markedly from the unperturbed system and the
first term in the Taylor expansions are adequate for approximation purposes, Too
small a value of ¢ , however, requires a long averaging time. If only a single
integrator is used in the adaptive loop, then g determines the gain and band-
width of the adaptive loop, If B is increased, then the speed of adaptation is
ircreased but the effect of noise (due to averaging ,(t)e (t) yi(t ) overa
gshort time ) results in larger excursions of the parameters from their optimum
values, as discussed below,

The choice of the perturbation frequency  is decided by considerations of

stabliity and accuracy, CGenerally, uppe. and lower bounds, and w

w 1 0 ’
respoctively, oan be found, U 18 greater than w 1 then the approximations
made while deriving the gradient signal cre no longer valid, If w is less than

wo then & large phase lag may be introduced in the loop, which causes insta-
bility . Slow perturbations involve longer averuging times which are equivalent
to longer time delays in the feedback loop.

At the present time no general method exists for analyzing adaptive systems

involving significant adaptive loop and system intercoupling, Therefore, for

purposes nf analysis the adaptive loop gain  # which controls the speed of

adaptation is assumed small, With this simplifying assumption a stability
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analysis of the system using the error perturbation described in this paper, is
carried out exactly as in the case of a parametar perturbation system.
Using the method suggested by Eveleigh [3] , if the index of performance
can be expressed as

r 2
ez(t) =a1(k-ko) + 8,

for a2 single adjustable parameter k , then

ok 1
ko is the optimal value of k

)
e (t) - 2a;(k=-k_ ), where a, and a, are constants and

The signal used to adjust the parameter k it obtained by multiplying the two
signals, y(t) =y (t)+ ¢ o(t) _5_39)_((}) , (8), and o(t)e (t),

If the product of these two signals is integrated over a sufficiently large time
interval, then the first term 0(t ) = } Yot) plt)elt) it becomes negligible
because ,(t) is uncorrelated with t%e input or other system signals, The

second term is

t
/ 2 o2 () :
-g_p(t)i-a—k— dt 2 e v ay Lk -k, 1
o
w
wlere / pz(t ) dt = vy , the variance of the independent random
o]

perturbation signal.
If B is the gain of the feedback loop, the rate of change of the parameter

k is given by
k = - 3eyal(k-ko)=- a(k-ko),where
¢ = € By . It is seen that in the ideal case the parameter k variles

exponentially to reach the final value k o In practice, however, the averaging
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time 18 not sufficiently large to reduce 6(t ) to zero and this term acts as an
added forcing function so that,
k+ ak = ak + 8(t),
and the final value of k(t ) oscillates about the optimal value ko .

In the multiple parameter case the same argument is used for each of the adjustable

parameters k1 ’ k2 -, kn o If ez(t ) in the parameter space is repre-

sented by

T
e¥(t) = |k-k] P [k-k ]t a .

where k is the parameter vector, a is a constant vector and P is a positive

definite matrix, then the simplified adaptive loop is described by the vector

equation

k=-—chP Lk-k°]+ _G_(t) ’ .
where 8(t) is obtained by the finite time averaging of / o(t)e(t )-yo t) dt .

(o)
In the ideal case k(t ) approaches Xk, exponentially, If 9(t ) is nonzero,

the final value of k(t ) oscillates in the vicinity of -’-‘o .
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COMPUTER SIMULATIONS

Systems modeled by difference equations have been simulated on the
7094/7090 digital computer at Yale University to illustrate the single pertur-
bation signal method of adaptation. The error function in each case is the
difference between the output of the system and the output of a reference
system which is fed by the same input, In order to demonstrate the feasi-
bility of the method the reference system and the actual system are given the
same structure so that the actual system can "identify" the reference exactly,
in the absence of noise. Examples are presented for two and three adjustable
parameters with sinusoidal and white noise perturbation signals, and with
additive white noise.

The adaptive scheme used for adjusting parameters A, B, and C is shown

in Figure 3a. The adjustable parameter system has a pulse transfer function

3
z , and the reference system has a pulse transfer function
23 + A::z + Bz + C
23 . In examples 1 and 3 the parameter C is fixed

23 - 0.12% + 0.2z - 0.25
at -0.25, and the region in the { A, B ) parameter space where the system is
asymptotically stable is shown in Figure 3b .

The input to all systems in the following examples is a white ncise signal
with uniform distribution between -0,5 and +0.5, This input is a sequence
of random numbers ( generated by a computer program ) whose statistical proper-
ties have been verified by direct computer calculation, Furthermore, both the

same random number sequence at the input and the same initial settings of the

adjustable parameters ( zero ) have been used throughout to provide a basis
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for comparison among the different situations.

In all of these examples the performance index for implementing the adap-
tation is the continuous adjustment of the parameters with the instantaneous
integral of the square error, The performance index for evaluating the adaptive
scheme, however, is more meaningful as the mean square error, A theoretical
mean square error criterion is most easily used in calculations if the integra-
tion interval is infinite. Therefore, one index reported in all of these results

is the mean square error at any time t ,

1

mse, = 2(

ez(i).
1

HIH
s

t
re
0 i
As time increases, the values of this index approach those for an infinite time
average , but even for large integration intervals this index depends signifi-

cantly on the initial state of the system, Therefore, a second index reported

in all of these results is the square error averaged over only the previous 150

units of time, at any time t

¢

. t 5 150
1 2
s = R 2 e - .
mse,, 155 / e“(s )ds 155 I e‘(t~-1i)
t-150 i=0

Since 150 units of time is much larger than the impulse response time of the
reterence system, (which is approximately 5 units of time ), or than the
correlation times of any signals used here, the index mse, is a good measure

of the closeness of any set of parameters to their optimum value, for large time.

EXAMPIE 1 :

In this example the perturbation is a sinusoid of unit amplitude aud period,

T . For a specific setting of the adaptive parameters, the time responses of the
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adjustable parameters A and B are shown by the solid curves in Figure 4b .
After 2000 units of time A and B have reached the vulues -0,1 and +0,2 ,
respectively and the system is indistinguishable from the reference. This is

7

corroborated by the reduction of mse, from leO"3 to 5x10°

2 , s shown
by the solid curves i{n Figure 4c , After 5000 units of time ma;e2 is zero within
the accuracy of the computer,

It has been observed in other test runs that the adjustable parameters
approach their optimum values for wide ranges of g and & and for periods
of the sinusoidal perturbations ranging between 10 and 60 units of time ( which
is large comparedwith the impulse response time of 5 units for the reference
system ) .

If additive white tioise is inserted at the system output, then the adapta-~
tion is slower and subject to more fluctuations, as shown by the dotted curves
in Figures 4b, ¢ . Nonetheless, the system adapts nearly as well as is possible,

as shown by the eventual approach of mse, to the experimentally determined

value for a system with parameters fixed identically to those of the reference

system,

EXAMPLE 2 :

For the same settingof B and € , but with the sinusoidal perturhation
at twice the frequency of that in Example 1, all three parameters, A, B, and C
adjust near to their optimum values within 3000 units of time, as shown by the
dotted curves in Figures Sb, ¢ . During the next two thousand units of time,
however, there are drastic fluctuations, For these settingsof g and T ,

but with ¢ reduced, the system adapts at almost the same speed and no



- 14 -
instability occurs, as shown by the sclid curves in Figures 5b, ¢ ,

This stable case with three parameters corroborates the claim that multiple
parameters can be adjusted simultaneously with a single perturbation signal,
The fluctuating case alsco supports this contention but emphasizes the depend-
ence of the scheme on the settings of the adaptive parameters, The most likely
explanation for the instability with larger ¢ is that this increase in the pertur-
bation signal disturbs the system sufficiently so that an incorrect gradient is
generated in the vicinity of the optimum settings, Thus the adaptive system

hunts around the optimum settings,

EXAMPLE 3

Despite the emphasis on low frequency perturbation signals it is shown
in Figures 6, 7 that the system parameters adjust along the gradient even if
the perturbation signal ig broad band noise, It is seen by comparing Figure 6
with Figure 4, for two adjustable parameters, and Figure 7 with Figure 5, for
three adjustable parameters, thai the adaptation is much slower and less
accurate for the white nolse perturbation than for the low frequency sinusgoid.
Yet the fact that the parturbation noise is uncorrelated with the input noise
permits the adaptive loop to utilize the low frequency content of the perturba-
tion signal in the extraction and correlation process (12 ), for producing the
gradient, As expectad the values of 8 and € must be increased to compen-

sate for the loscof high frequency perturbation signal energy,.

- G e - @S W RS SR e R A W B we

Work is in progress to determine experimentally and analytically the
behavior of these systems for other sets of initial conditions and for wider

ranges of the adaptive parameters,
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CONCLUSION

To the best of the authors' knowledge this is the first demonstration of
an adaptive scheme for adjusting many parameters simultaneously with one
perturbation signal, without the necessity of using a model or an equivalent
system identification scheme, The method is limited at present to situations
where the adjustable gain parameters feed into a common summing junction,
but this limitation is not overly restrictive in the design of a controller, It
is expected that the method can be extendud to certain time-varying and non-

linear situations,
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