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CT- 11 Summary+

A gradient method is presented for adjusting the parameters of a system

to optimize a performance criterion. The partial derivatives of the perform-

ance index with respect to the adjustable parameters are obtained as real

time signals, using a single perturbation signal for a system with unknown

structure, but favorable topology.

Computer simulations are included to indicate the feasibility of the

approach.

The adaptive control method using a single perturbation signal, as pro-

posed here, has many features in commom with the weli-known parameter

perturbation scheme.

+ This paper will be presented at the Sixth Symposium on Adaptive Processes

at the National Electronics Conference, Chicago, Illinois, October, 1967.



INTRODUCTION

A new perturbation method is presented in this paper for the simultaneous

adjustmen: by the gradient method of multiple parameters in adaptive control

systems. The significant advantage of this method is that only one perturba-

tion signal is needed to generate the gradient of a performance criterion which

is a function of all of the adjustable parameters. This results in a consider-

able saving in time and equipment over the conventional perturbation methods

which use a separate perturbation for each parameter adjustment. At present

the method has only been shown to work. for systems with a favorable topology,

where the adjustable gain parameters feed into a common summing junction

that is linked with the system input by a single subsystem, as shown in

Figure 1. This is not, however, necessarily overly restrictive since a control-

ler with adjustable parameters often can be constructed with this structure

ewvn though the plant itself may not have a structure suitable for this perturba-

tion method.

The single perturbation signal method is an outgrowth of the model methods

of gradient generation 1i., 2] . It was shown previously P]2j that in a truly

adaptive situation, where much of the structure of the system is unknown and

a model cannot be constructed, that the system could be used as its own model

by feeding back the appropriate error signal, attenuated and delayed beyond

the autocorrelation time of the system signals. In this paper the idea of using

the system as its own model is extended further by the demonstration that a

multiplirdative perturbation signal, which is uncorrelated with the major system

signals, can be used in place of the time d.elay. Furthermore, it is shown that

such conventional techniques as the well-known sinusoidal perturbation method
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[3, 4] exhibit significant features in common with the method presented here.

First it is shown that a single perturbation signal can generate the signals

necessary for the correlation technique construction of the gradient of the

performance index in parameter space, Then this method is compared with the

model method and the conventional perturbation methods. Next the design and

stability of the adaptive loop is discussed and finally computer simulations

which demonstrate the feasibility of the method are presented.

PERTURBATION METHOD

A performance criterion often used in adaptive procedures is the minimiza-

tion of e 2 , where the bar denotes a statistical ensemble average, or a

time average over a finite or infinite time interval, If k is an adjustable

parameter, then the quantity required for the steepest descent adjustment of

k is the gradient component

F 2 t L2(t = 2 e(t) -211 t)
kL

The adaptive loop is an implementation of this correlation process . The

erro,'' eignal is multiplied by the partial derivative and the product is integrated

and multlplied by a loop gain constant 0 . The resulting signal is subtracted

from the gain k . The error e(t ) usually is available as an actual signal

so that the gradient component for any particular k can be obtained by correla-

tion of e(t ) and ae(t , if this ro'rtial derivative also can be generated
3 k

as a real time signkil. Even if a more general performance index, F ( Fe(t t)T,

ia:• used, the crucial part in determining the gradient '.s obtaining ke(t as

a signal.
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It is shown now that if the system has several adjustable gain parameters

kIT (t =1, ... , m) , then the partial derivatives Be(t) each appear
aki

at the inputs to the respective gains kI . These desired signals are imbedded

within the normal sy3tem signals at these points and must be extracted for 'se

in the adaptive loops.

The convolution integral representations of the signals e(t) , x(t ) ,

and y i(t ) in the linear time invariant system shown in Figure 1 are

IW
e(t) = f H(s) e(t-s) ds = H*x

0

Yi(t ) Ih*x (1)

m
x(t)= u+ g*( E ki yi+ cPe)

iti

where H is the impulse response between the input summer output and the error

output and hi is the impulse response between the input summer output and the

input to the gain kI , with the output of every ki open-circuited and with

c qt ) = 0 . Also, g(t ) is the impulse responle of the subsystem between

the gain summer and the input summer.

The partial derivatives of each of these signals with respect to any one of

the adjustable gains kj is calculated from ( I ) as

-e , H ax

•Y

; kj k kj( )

m a Yi

* - - - + Yj + CP -'--'-'-

i kj ak
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Since each impulse response corresponds to a linear time invarian.t system

any sequence of convolutions can be permuted, for zero initial conditions.

Therefore, equations ( 2 ) can be combined to yield

m
.e (g* kihi 9. iek + (g*H)*y + c g*Ii*( 2 . (3)

If the magnitude of the perturbation signal, cP(t ), is small compared with

the magnitudes of the system signals, then the last term in (3 ) is small com-

pared with the other terms.

Therefore, if a system werj modeled by the integral equation representation

m
Zj =(g* E kih)i *z + (g*H)*y (4)

Ji-

then z would be the desired partial derivative -- It is shown now that

(4 ) is an approximate representation for a portion of the signal y (t ) and

that this portion can be extracted for use in generating the gradient of C (-t .

Equations (I) can be combined to yield

m

Yj = (g* L kih )* yj + c g*h*P (H*x) + h1 *u (5

Let YJ 9 YJ 0 + y; and x = x0 + x' , where y 0 and x 0 are the

signals developed when p p(t ) - 0 . Then (S ) becomes

m
yJ I (g* I kh )* YJ + c g*h * p (H*x0) + L g*H * P (H*x' 6

If • p(t ) is small, then x' ( t ) is much smaller than x0(t ) and the last term

in ( 6 ) can be ignored, which yields

4
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m
Y (g* z khi) * y' + c g*h * (H*x). (7)

1i=1 Y

If o(t ) is slowly varying compared with the impulse response vI es of

hi and H then p (t ) can be shifted within the sequence of convolutions in

the last term of (7 ) to yield ( g*H )* c Py Therefore, ( 7 ) becomes

identical to (4 )except that the driving function in (7 ) is C p (t )y1 (t)

whereas the driving function in (4 ) is yj (t) = yj (t) . Because

p ( t ) is slowly varyiag the outrput of the system represented by ( 7 ) is approxi-

mately equal to the output of the system represented by (4 ) multiplied by

CP(t) i.e. , C t (t z (t , or
It I

ae(t)
y t) y 0t) + c p(t) ak (8)

A heuristic demonstration that exists within the signal y is

afforded by thj model method. The system is shown with a model and without

the perturbation signal, in Figure 2. The system equations are the same as (1 ),

with E in 0 , and these can be combined to yield

m

L_8 (g * E * + (g*H) *yj (9)
a kj iml kih a k i

whichisthesamuas (3)with P (t)m 0,

The model equations are

f =H*w

z m h i ( 10)
m

w =g*( E kizi + e)i-i ii
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which can be combined with ( 1) to yield

m
z (g* kih )*zj + (g*H)*y . (11)

i-1l

For zero initial conditions ( 9 ) and ( 11 ) gener the same signal, so that

z le
3kj

Now if e (t ) is multiplied by a low frequency perturbation signal e p (t )

before insertion into the model, it is claimed that the new signals in the model

will be approximately equal to the respective old signals, each multiplied by

e p( t ) . Secondly it is claimed that the perturbation signal is not large enough

to disturb the system significantly, and the system can be used as its own model.

ADAFTIVE SCHEME

As in most adaptive methods using the gradient technique, the basic idea

in the present scheme is to construct the gradient of the performance index

e2( t ) with respect to the control parameters, and then adjust these parameters

in the direction of the negative gradient, In the model method the partial dert-

2
vatives are generated directly as real time signals and V is obtained by

I -I

multiplying e ( t ) and e t ) and integrating the product. The adaptive loop

for the Ith gain is implemented as

t

k (t ) k (0)- s ds , so that
ak i 0

the integration for the continuous adjustment of k is combined with the integra-

tion for the averaging of e 2(t ) .

In the present scheme le(t) is imbedded in tie signal y (t) , (8)Ok i
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The extraction of the partial derivative, and the correlation with e ( t ) is

incorporated within one integration as

ki(t) k(0) - sep y, W -( e- (2
kk---- (1:2 )

where a• r -¢ P The simplification in ( 12 ) follows from (8) and the

assumption that p t) is uncorrelated with the system signals and has zero

mean.

In the usual parameter perturbation schemes for adaptive systems L3, 4J

each gain k is perturbed by a signal PI (t) and the partial derivatives

all are imbedded in the perturbed error signal, It is commonly assumed
a i
ht '2 e2 . 2

that + E P i - + n(t ) , where e* is the perturbed
i"i = 1

error, a is the unperturbed error, and n ( t ) is noise, The gradient is then

extracted by correlation as

0*2 PP a + Ci j
.1 5 0 i~iPS k J PJ~Spt 1• I SJ•k

where the P havo zero moan and are uncorrelatod with each other. This

extraction and correlation, however, can be formulated in the mmnner of the

perturbation scheme of this papor , too. Thus

m
e* = e + E Ci pc a + n(t)

S-1 - -

* a e 2 2 2
e* ( Pie*) (e + r, c, P5 2e P A 2

=k J
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ADAPTNE PARNMETERS AND STABIIjTY

"The four adaptive parameters of a system using this new perturbation method

are ( i ) the perturbation frequency, w , ( or period, T ), ( ii) the gain of the

perturbation loop, r, , ( lii ) the gain of the adaptive loop, 8 , and ( iv ) the

bandwidth of the adaptive loop. The parameter c is adjusted so that the

perturbed system does not differ markedly from the unperturbed system and the

first term in the Taylor expansions are adequate for approximation purposes. Too

small a value of c , however, requires a long averaging time. If only a single

integrator is used in the adaptive loop, then a determines the gain and band-

width of the adaptive loop. If a is increased, then the speed of adaptation is

increased but the effect of noise ( due to averaging p ( t ) e (t ) y i( t ) over a

short time ) results in larger excursions of the parameters from their optimum

values, as discussed below.

The choice of the perturbation frequency w is decided by considerations of

stability and accuracy. Generally, uppe, and lower bounds, w I and w 0 '

respectively, can be found. If w is greater than w I then the approximations

made while deriving the gradient signal ere no longer valid. If w is less than

W 0 then a large phase lag may be introduced in the loop, which causes insta-

bility . Slow perturbations involve longer averuging times which are equivalent

to longer time delays in the feedback loop.

At the present time no general method exists for analyzing adaptive systems

involving significant adaptive loop and iystem intercoupling. Therefore, for

pui'poses of analysis the adaptive loop gain (0 which controls the speed of

adaptation is assumed small. 'With this simplifying assumption a stability
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analysis of the system using the error perturbation described in this paper, is

carried out exactly as in the case of a parametar perturbation system.

Using the method suggested by Eveleigh [3] , if the index of performance

can be expressed as

e2(t) aI(k- k0 )2 + a 2

for a single adjustable parameter k , then

e2(t= 2a. (k-k ), where a and a are constants andýk 1 2

k is the optimal value of k0

The signal used to adjust the parameter k is obtained by multiplying the two

signals, y(t)= y0 (t)+ c p(t) elt) , (8), and p(t )e (t)8k
If the product of these two signals is integrated over a sufficiently large time

t
interval, then the first term e(t ) = f Yo(t) p(t)e(t) :it becomes negligible

0
because p(t ) is uncorrelated with the input or other system signals. The

second term is
t 2 

2
2- p (t dtak c y a1 [.k- ko0 ,0 2 ak

0

GDo

where r p2(t ) dt = y the variance of the independent random

0

perturbation signal.

If B is the gain of the feea±back loop, the rate of change of the parameter

k is given by

k y ya 1 (k- ko) a (k- k) , where

a = e C y Y It is seen that in the ideal case the parameter k varies

exponentially to reach the final value k0 . In practice, however, the averaging
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time is not sufficiently large to reduce 8 ( t ) to zero and this term acts as an

added forcing function so that,

@k+ a k = 0ko + G(t),

and the final ialue of k( t ) oscillates about the optimal value k.

In the multiple parameter case the same argument is used for each of the adjustable

parameters k, k, kn . If e 2(t ) in the parameter space is repre-

sented by
---- T
e 2 (t) = k_ ] [kT-ko+ a

where k is the parameter vector, a is a constant vector and P is a positive

definite matrix, then the simplified adaptive loop is described by the vector

equation

k = -ayP [k-ko] + _(t)
0 t

where 8_( t ) is obtained by the finite time averaging of f p (t) e ( t )-y-0(t) dt

0

In the ideal case k( t ) approaches ko exponentially. If 9( t ) is nonzero,

the final value of k( t ) oscillates in the vicinity of ko



COMPUTER SIMULATIONS

Systems modeled by difference equations have been simulated on the

7094/7090 digital computer at Yale University to illustrate the single pertur-

bation signal method of adaptation. The error function in each case is the

difference between the output of the system and the output of a reference

system which is fed by the same input. In order to demonstrate the feasi-

bility of the method the reference system and the actual system are given the

same structure so that the actual system can "identify" the reference exactly,

in the absence of noise. Examples are presented for two and three adjustable

parameters with sinusoidal and white noise perturbation signals, and with

additive white noise.

The adaptive scheme used for adjusting parameters A, B, and C is shown

in Figure 3a. The adjustable parameter system has a pulse transfer function
3

z , and the reference system has a pulse transfer function

z + Az + Bz + C

z 3_. In examples 1 and 3 the parameter C is fixed
3 iz2

z - 0.lz + 0.2z - 0.25

at -0.25, and the region in the ( A, B ) parameter space where the system is

asymptotically stable is shown in Figure 3b .

The input to all systems in the following examples is a white noise signal

with uniform distribution between -0.5 and +0.5. This input is a sequence

of random numbers ( generated by a computer program ) whose statistical proper-

ties have been verified by direct computer calculation. Furthermore, both the

same random number sequence at the input and the same initial settings of the

adjustable parameters ( zero ) hcive been used throughout to provide a basis
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for comparison among the different situations.

In all of these examples the performance index for implementing the adap-

tation is the continuous adjustment of the parameters with the instantaneous

integral of the square error. The performance index for evaluating the adaptive

scheme, however, is more meaningful as the mean square error. A theoretical

mean square error criterion is most easily used in calculations if the integra-

tion interval is infinite. Therefore, one index reported in all of these results

is the mean square error at any time t

t t1 21 E 2(
mse 1 r f (s)ds= e (i

0 l

As time increases, the values of this index approach those for an infinite time

average, but even for large integration intervals this index depends signifi-

caintly on the initial state of the system. Therefore, a second index reported

in all of these results is the square error averaged over only the previous 150

units of time, at any time t ,

t2 150

rnse = e (s ) ds=--- E e 2 (t-i)
2 150 150t-150 1= 0

Since 150 units of time is much larger than the impulse response time of the

reterence system, (which is approximately 5 units of time ), or than the

correlation times of any signals used here, the index mse 2 is a good measure

of the closeness of any set of parameters to their optimum value, for large time,

EXAMPLE 1 :

In this example the perturbation is a sinusoid of unit amplitude and period,

T . For a specific setting of the adaptive parameters, the time responses of the
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adjustable parameters A and B are shown by the solid curves in Figure 4b

After 2000 units of time A and B have reached the values -0.1 and +0.2 ,

respe(:tively and the system is indistinguishable from the reference. This is

corroborated by the reduction of mse 2 from 5x10-3 to Sx10-7 , as shown

by the solid curves In Figure 4c . After 5000 units of time mse 2 is zero within

the accuracy of the computer.

It has been observed in other test runs that the adjustable parameters

approach their optimum values for wide ranges of 8 and F and for periods

of the sinusoidal perturbations ranging between 10 and 60 units of time ( which

is large comparedwith the impulse response time of 5 units for the reference

system ) .

If additive white noise is inserted at the system output, then the adapta-

tion is slower and subject to more fluctuations, as shown by the dotted curves

in Figures 4b, c . Nonetheless, the system adapts nearly as well as is possible,

as shown by the eventual approach of mse 2 to the experimentally determined

value for a system with parameters fixed identically to those of the reference

system.

EXAMPLE 2.:

For the same setting of 8 and c , but with the sinusoidal perturbation

at twice the frequency of that in Example 1, all three parameters, A , B , and C

adjust near to their optimum values within 3000 units of time, as shown by the

dotted curves in Figures 5b, c . During the next two thousand units of time,

however, there are drastic fluctuations. For these settings of 8 and T

but with E reduced, the system adapts at almost the same speed and no
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instability occurs, as shown by the solid curves in Figures 5b, c

This stable case with three parameters corroborates the claim that multiple

parameters can be adjusted simultaneously with a single perturbation signal.

The fluctuating case also supports this contention but emphasizes the depend-

ence of the scheme on the settings of the adaptive parameters . The most likely

explanation for the instability with larger E is that this increase in the pertur-

bation signal disturbs the system sufficiently so that an incorrect gradient is

generatad in the vicinity of the optimum settings. Thus the adaptive system

hunts around the optimum settings.

EXAMPLE 3 :

Desp•ite the emphasis on low frequency perturbation signals it is shown

in Figures 6, 7 that the system parameters adjust along the gradient even if

the perturbation signoil is broad band noise. It is seen by comparing Figure 6

with Figure 4, for two adjustable parameters, and Figure 7 with Figure 5, for

three adjustable parameters, that the adaptation is much slower and less

accurate for the white noise perturbation than for the low frequency sinusoid.

Yet the fact that the perturbation noise is uncorrelated with the input noise

permits the adaptive loop to utilize the low frequency content of the perturba-

tion signal in the extraction and correlation process ( 12 ) , for producing the

gradient. As expect-d the values of a and c must be increased to compen-

sate for the loscof high frequency perturbation signal energy.

Work is in progress to determine experimentally and analytically the

behavior of these systems for other sets of initial conditions and for wider

ranges of the adaptive parameters.
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CONCLUSIQN

To the best of the authors' knowledge this is the first demonstration of

an adaptive scheme for adjusting many parameters simultaneously with one

perturbation signal, without the necessity of using a model or an equivalent

system identification scheme. The method Is limited at present to situations

where the adjustable gain parameters feed into a common summing junction,

but this limitation is not overly restrictive in the design of a controller. It

is expected that the method can be extended to certain time-varying and non-

linear situations.
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