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'FOREWORD

By Dr Frederick H-. Todd

This report is a wide-ranging account of the fundamentals of the potential flow of
frictionless fluids, and its value is greatly enhanced by the large ..Umber of actual examples

includ.d in the text. It will be of great value both to the practicing engineer concerned with
fluid flevs and to ti student.

Dr. Earle II. Kennard was formerlI Chief Scientist in the Hydromechanics Laboratory at
the David Taylor Model Basin, and later head of its Structural Mechanics Laboratory. Through-

out his service at the Model Basin he devoted his efforts to the advancement of knowledge in
these fields and to the physics of underwater explosions. The value of his work in these

areas and in the associated one of structural vibration is well attested by the many papers
and reports which he has published.

He has also devoted much time to the education and training of the younger members of
the staff. His educational work, indeed, began much earlier as a professor at Cornell Univer-

sity, and unnumbered students have profited from his well-known text book on physics.
His colleagues have learned to respect his judgemcnts, to enjoy his friendship and to

appreciate his wit, even though it is sometimes somewhat sharp!
This report is a typical example of Earle Kennard's clear, explanatory writing, com-

bined nevertheless with an admirable economy of words. It is a great pleasure to his many

friends and admirers to see it published while Dr. Kennard, though over 80 years of age,

is still active and still continuing to work in the field of structural vibration. We look for-
ward to the privilege of making more of his work available to the profession of naval archi-

tecture through the medium of Model Basih. reports, for it is upon such people as Dr. Kennard
and the results of their research that the reputation and image of the establishment depends.

o..11
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NOTATION

A, B Constants

a b, c Constants; semi-axes of ellipse or e!lipsoid

e Ellipticity of an ellipse

F Force on a body

F1  Force per unit length on a cylinder

f Constant; sign of a function of a variable

g A constant

h A constant, real or sometimes complex

I Moment o; inertia

/P Equivalent moment of inertia of fluid moving irrotationally around or inside a
rotating body

(I') Symbol depoting that only the imaginary part. of the expression following it is to
be taken, with omission of the factor i

/C A real c-)nstant; inertia coefficient

1, m, n Direction cosines, or constants

M Mass of a body

Atl Equivalent mass of fluid moving around a body that is in translational motion

,1 t M Values of 31, J/'taken per unit length of a cylinder, in cases of two-dimensional

motion.

N1  Torque per unit length on a cylinder

p Pressure in the fluid

q Magnitude of particle velocity in the fluid

q, Component of the velocity in direction normal to a curve or surface

qr, q0, q(, Components of velocity in the directions of polar coordinates r, 0, 0)

qt Component of velocity in the direction of the tangent to a curve

qx, q, % q, Components of velocity in the directions of cylindrical coordinates X, Z, ,

R ladius of a circle

(B) Symuol denoting that only the real part of the expression following it is to be
taken

r A pole." coutdinato; in two dimensions, distance from a line; in three dimensions,
distance from a point

S Denotes a surface
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T Kinetic energy of the fluid

T, In two-dimensional motion, kinetic energy of the fluid between two planes of
flow unit distance apart

t Time; also, an auxiliary complex variable

U Uniform stream velocity at infinity; velocity of translation of a body

u Component of velocity in the x-direction

V Same as U but always specifically parallel to the y-axis

v Component of velocity in the y-direction

w In three dimensions, component of velocity in the z-direction; in two dimensions,
u:.=€ +jt,

X, Y, Z Components of force on a body

X1 , Y1, Z, Components of force per unit length on a cylinder

x, y Cartesian coordinates

z In three dimensions, the third Cartesian coordinate; in two dimensions, z = x + iy

a, y Constants, usually angles

r Circulation around a curve or about a cylinder

cAn angle

4 For two dimensions, a complex variable; X = A - it, in sacs 88-90, 4 = + it in
sacs. 81-86 and 106, and C =- dz/dw in sacs. 111-117; for three dimensions, a
spheroidal coordinate in sees. 137-138

17 An elliptic coordinate in Secs. 81-86, 106

0 An angle

X A special coordinate in Sees. 88-90, 136, 141

X1 X2  Pafaholic coordinates in Sec. 87

p Moment of a point dipole, or moment per unit length of a line dipole; a special
coordinate in Sees. 88-90, 107, 136, or a spheroidal coordinate in Secs. 137-138

V Dipole strength per unit length in Sec. 132; a special coordinate in Sees. 107, 136

.\n elliptic coordinate in Sees. 81-86 and 106

Z" Distance from a line, sometimes used as a cylindrical coordinate

p Density of the fluid, in dynamical units

Velocity potential
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i/i Stream function, for either two-dimensional or axisymmotric throe-dimensional
motion

W Angular velocity, in radians per second; anglo about a line, used with a, s
a cylindrical coordinate or with 4, as a spheroidal coordinate

Wx' o,', 4)z Components of angular velocity about the z-, y-, z-axes
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INTRODUCTION

In the work of the David Taylor Model Basin a need was felt some twenty
years ago for a collection of the known typesof the potential flow of frictionless

fluids ha%,ing a uniform and invariable density. The following report was intended

to meet that need in a form convenient for reference.

In Chapter I the chief principles needed in dealing with the potential flow
of a fritionless fluid are de-.cribed. In this chapter, but not elsewhere, variation

of the fluid density is sometimes allowed. In Chapter II the use of mathematical
complex functions in dealing with two-dimensional problems is explained. Then

Chapter III deals w ith t%%o-dimensional caseos and Chapter IV %% ith three-dimensional
cases. Sometimes bounuary conditions in the form of vorties or vortex lines are

alloved. Chapter V lists coefficients of inertia.

The fluid velocity in potential flow is assumed to equal the negative grad-

ient of the velocity potential, as in the textbooks of Lamb and of Milne-Thomson.

An older assumption was that the velocity equals the positive gradient of the
potential. The formulas given in this report can be adapted to this older assump-
tion by reversing in all formulas either the potential or all of the fluid velocities

wherever these occur.

It was found necessary, however, to limit some\\ hat the field that is covered.

The extensi'e literature in \'hich incidental use i.- made of potential flow in treating

practical flow problems is not even listed. Curved line vortic'-s have not been
included, nor interactiig spherical boundaries, nor the thin curved stratum that is
discussed in Article 80 of Lamb's Hydrodynamics.

This report was finished during the last war, but its great volume was con-

sidered to make publication impractical at that time. Publication has finally been
effected. No additions have been made, however, to take account of literature

published since the war.
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CHAPTER I

FUNDAMENTALS OF THE IRROTATIONAL FLOW OF FRICTIONLESS FLUIDS

In this chapter the nature and properties of the irrotational or potential flow of friction-

less fluids will be discussed to the extent that is desirable for the understanding and use of

the material that forms the body of the report. This chapter may be regarded as an introduction

to the subject, but it does not aim at a comvlete exposition of the mathematical theory of the

potential. Further information on the mathematical side may be found in the textbooks of

Lamb1 and Milne-Thomson, 2 in MacMillan's or Kellog's "Theory of the Potential," 1 2 or in tho

periodical literature.

1. PARTICLE VELOCITY AND STREAM LINES

The velocity of the particles in a fluid may vary from point to point in a complicated

manner. By a particle of the fluid is meant a portion so small that both its linear dimensions

and differences in the motion of its parts may be neglected. The motion of the fluid at any

instant can be described completely by specifying the particle velodity at each point.

At any given instant, a set of curves can be drawn such that at every point on a curve

its tangent has the direction of the particle velocity at that point. These curves are called

streamlines; the aggregate of them is sometimes called a flow pattern. Thus at any given

instant the particles are all moving along the streamlines as they exist at that instant.

If the sueamlines remain fixed in position, the particles will continue to follow them,

and the streamlines will then represent the actual paths of the particles. If the motion under-

goes changes, however, the actual paths of the particles may be quite different from any of the

instantaneous streamlines. Thus in Figure 1, curves a, b, c may represent streamlines at a

time t, and curves a', b', c'may be the streamlines at a later time t" whereas the actual paths

pursued by particles P,, P2 from time t to t' are as shown by the heavy curves.

An important case in which the paths of the particles coincide permanently with the

streamlines is the case of steady motion. The motion of a fluid is called steady when the

particle velocity at each point in space remains constant. The velocity of a given particle

may vary, however, as it moves from point to point. Motion may be steady when referred to

one frame of reference and variable when referred to another. Thus the motion of the air

around an airplane in steady flight is a steady motion as seen by the pilot, whereas at a

fixed p at above the ground the velocity of the air changes as the airplane goes past.

1References are listed on page 396.
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Figure 1 - Two successive positions of Figure 2 - Relation between the velocity and
several streamlines and, shown by heavy its components.

curves, the paths of two particles.

In addition to streamlines, the concept of tubes of flow is sometimes useful. A tube of

flow is a slender filament of fluid whose bounding surface is composed of streamlines.

The particle velocity is a vector quantity. Its magnitude will be denoted by q; its com-

ponents in the directions of the x-, y-, z-axes of a rectangular Cartesian coordinate system will
be denoted by u, v, w. Thus

2 - U + 2 + [la]

The component q, of the velocity in a direction whose direction cosines are 1, m, n can then

be written

q, = lu + mv + nw [b]

as is evident from Figure 2, in which the component in the direction OP is represented by the

projection on OP of either the vector OQ representing the velocity or of the broken line ORSQ,
whose segments represent u, v, and w.

Since q, u, v, and w may vary from point to point, and also with the time, they may be

regarded as functions of the four variables x, y, z, and t. In steady motion, however, every-
thing is a function of x, y, z only.

2. THE EQUATION OF CONTINUITY

A relation must exist between the motion of a fluid and changes in its density. If, for

example, more fluid enters a given volume than leaves it, the density of the fluid in the
volume must increase.

Consider a small cubical element of sides 8z, 8y, 8z whose center is situated at the

point (x, y, z), as in Figure 3; let it be fixed in size as well as in position in space. Fixing

attention first on the increase in mass due to flow through the two faces perpendicular to the

2



x-axis, the amount of mass per unit time enter-

ing the cube through its left-hand face, per

unit time, is I

("* a~ aa 2/ . )S

where pu stands for the value of this quantity

at the point (x, y, z). The amount which Sy

leaves through the opposite face is

(u +~ O~u) )\~
dx 2

The net increase in mass per unit time due to Figure 3 - Illustrating the equation of

flow in the x-direction is the inflow minus the continuity.

outflow or

a(pu)

In an analogous manner the net increases in mass per unit time due to flow in the y- and z-

directions are, respectively,
a ( V ) aOy z ( 0 W ) S 8 5
ay az

The net increase in mass per unit time for all three component directions must equal the

increase of mass per unit time within the cube, which is

at
As the sides of the cube are fixed, this can also be written

ap S8S
at

Collecting the terms and dividing through by the volume or 8z8y~z, we obtain the equation of

continuity,

ap + (p)+ = 0 1[2a]

at OX ay az

This equation must be satisfied at all points throughout the fluid.

in the subsequent chapters on two- and three-dimenswnal flow we are mainly concerned

with fluids or constant density so that p does not vary in space or in time. For this case,

ap/at becomes zero and the equation of continuity takes the form, after canceling out p,

-. u + . + 0.w o (2b]dX dy 8Z

3
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3. EULER'S ;EQUATIONS OF MOTION

The equations of motion for a fluid are the mathematical equivalent of Newton's second

law of motion, which states that the resultant force on any particle equals the product of the

mass of the particle by its acceleration. For convenience we may assume a fluid particle to

have the form of a cube whose edges are ax, By, 8z parallel to the x-, y-, z-axes as in Figure 4.

Considering the cube as a free body, the forces acting on it may be considered as made up of

three parts: compressive o, tensile, shear, and external forces, such as gravity. On each

face there may be two shear force components parallel to the coordinate axes.

Shear forces, in a fluid, are due to a physical property of the fluid known as viscosity,

by virtue of which it offers resistance to motion involving the production of shearing strain.

All actual fluids have viscosity, but in some fluids, such as water, the viscosity is quite

small. In many flow problems the viscous forces are so small as compared with other forces

that their effect may be neglected. This greatly simplifies the mathematicap treatment of the

problem. Throughout this report, the assumption will be made that the viscosity is zero; this

is equivalent to saying that the fluid cannot sustain a shear stress, or that it is frictionless.

Let the pressure or force per unit area at the center of the cube be p, and consider the

two faces of the cube normal to the x-axis. Since the pressure will be a function of x, y, z,

the average pressure on the left-hand face will be

P - P ax
ox2

and that on the right-hand face,
p 0] P " -P + 0

The resultant force due to pressure in the positive x-direction will be the difference between

the pressures on these two faces multiplied by the area of a face or

--LP 8X By 8z

ax
l Let X be the component of the external

I Iforces per unit mass of fluid in the x-direction.
P' I V' z Usually the only source of external forces is

(P,y,zI gravity. The external fo.-ce acting on the

L material in the cube in this direction is then

-z ay pX 8x y 8Z

where p is the mass density. Here p must be

expressed in dynamical units, for example, in

slugs per cubic foot or pounds sec 2 /ft 4 . As

the viscosity has been assumed zero, there can
Figure . -- lilustra'ing Euler's equation be no other forces acting in the x-directioa,

of motion. and the resultant force on the material in the
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cube is
(OX - P )&X0; 5/ 8b z

This force is now equal to te mass of the partic!e in the cube multiplied by its acceleration

in the x-direction, which will be denoted by du/dt. Hence

axP dt (3a]

dt P TX

In this equation, It has reference to a certain particle of the fluid, which at a given in-

stant occupies a certain cube but whose position in space varies. Usually, however, it is of

no interest actually to follow a particle in its motion; it is more convenient to regard u as a

function of position and time or

u(x, y, z, t)

without regard to the identity of the particle whose coordinates at a particular time t are

represented by x, y, z. Viewed from this mathematical standpoint, the change in u during the

time dt at the particle just considered may be written

du = dz + Lt' dy + -. u dz + au dt

ax dy d z at

Here dx represents the change in the x-coordinate of the particle during the time di; hence

dx = u dt. Similarly, dy = v dt, dz = w dt. Hence, after dividing through by dr,
du = du+ U au + V--v + w [3b)

dt at ax dy Oz

Here du/dt represents the rate of change of u at a given particle, whereas ault represents the

rate of change in u at a fixed point in space. The last three terms represent an effect due to

motion of the particle and are sometimes called convection terms.

Thus, Equation [3a] may be written, together with the analogous equations for the y-

and z-directions, in the form known as Euler's equations:

au 4+ ud"u+ V Ou+ w .U =x -1a DO [c

at ax ay az P ax

+ u + L + _V= Y 1 p [3d]
at ax ay az P ay

f- UL__+ V.2_-+ IVw z __ ap [3e]
at ax ay az P az

where X, Y, Z are the components of the external force per unit mass. These equations hold

whether the density of the fluid is constant or not; in general, p is a function of x, y, z: and t.

For a fluid of constant density, Equations (2b], [3c], (3d], and [3e! constitute four

differential equations in four unknowns: u, v, w, and p. As arbitrary constants and functions

enter into the solutions of differential equations, boundary conditions are required in order to



cube is
"P,\ - P ax Sy 8z

This force is now equal to the mass of the particle in the cube multiplied by its acceleration

in the x-direction, which will be denoted by du/dt. Hence

(PX -- )P ) ax sy = p 8ax y 8z du
ax dt [3a]

du = I ap
W P Ox

In this equation, u has reference to a certain particle of the fluid, which at a given in-

stant occupies a certain cube but whose position in space varies. Usually, however, itis of

no interest actually to follow a particle in its motion; it is more convenient to rogar- a as a

function of position and time or
u(0, y, z,1)

without regard to the identity of the particle whose coordinates at a particular time t are

represented by x, y, z. Viewed from this mathematical standpoint, tb-' change in u during the

time dt at the particle just considered may be written

du = du dx + U dy + U dz + au dt
Ox ay Oz at

Here dx represents the change in the x-coordinate of the particle during the time dt; hence

dx = u dl. Similarly, dy = v dl, dz = w dl. Hence, after dividing through by dt,

du = au + u Ou + V Ov + Ww [3b]
dt at Ox dy Oz

Here du,'dt represents the rate of change of u at a given particle, whereas au/at represents the

rate of change in u at a fixed point in space. The last tnree terms represent an effect due to

motion of the particle and are sometimes called convection terms.

Thus, Equation [3a] may be written, together with the analogous equations for the y-

and z-directions, in the form known as Euler's equations:

._ + + w !..,= X - Ip [3c]
aO ax ay az P ax

a-2+ u Lv + v L + w L_= Y _ i_ ap [3d]
at ax ay az P ay

,OW + U w + V 2W+ ,vW__ Z -1 ap [3e]
at ax Oy az P az

where X, Y, Z are the components of the external force per unit mass. These equations hold

whether the density of the fluid is constant or not; in general, p is a function of x, y, z, and t.

For a fluid of constant density, Equations [2b], [3c], [3d], and [3e] constitute four

differential equations in four unknowns: u, v, w, and p. As arbitrary constants and functions

enter into the solutions of differential equations, boundary conditions are required in order to
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remain closed, and the circulation about them must remain zero. Since a state of rest is a

state in which the circulation vanishes about all closed curves, the application of pressure to

the fluid can generate in it only irrotational motion. For this reason, the motion generated by

a moving ship in the surrounding water or by an airplane in the air is roughly irrotational,

except near the solid surfaces where friction pirys a large role.

6. THE VELOCITY POTENTIAL FOR IRROTATIONAL FLOW

Only irrocational motion will be considered hereafter. Its mathematical treatment can

be greatly simplified by introducing the velocity potential.

If the motion is irrotational within a singly connected region, the integral
P2
"2

f qs ds

P1

taken along any path lying in the region and connecting two given points, Pt and P2, depends

only on the positions of the points P and "P2. The integral is defined as in the last section;

the chosen direction of motion along the path is from P, toward ' 2.
To prove the statement just made, note that any two paths B and B2, as illustrated in

Figure 6a, when taken together form a closed curve around which the circulation vanishes, so

that

21'p 
( B 1 ) q s Js + ( B ?.) q , d s -0

But

2 2)

2 q

(z,y,'")

P1  z

Figure 6a Figure 6b

Figure 6 - Illustrating properties of the velocity potential.
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eliminate them and so make the solution determinate.

4. BOUNDARY CONDITIONS

At the boundaries of the fluid the continuity equation is replaced by special surface
conditions. For example, at a fixed boundary it is necessary that the fluid velocity have no
component normal to the surface. If 1, in, n are the direction cosines of the normal to the

surface, this condition requires that

lu+mv +nw =0 [4aj

at every point on the surfaaee; compare Equation [ib].

If the boundary is in motion, the normal component of the fluid velocity at the surface,
or qn - lu + my + nw, must equal the velocity of the surface normal to itself. This is equiva-
lent to -aying that the velocity of the fluid relative to the surface is wholly tangential, or that

a particle on the surface remains on the surface. A method of finding 1, m, n when the equation
of the surface is given is derived in See. 135.

5. ROTATIONAL MOTION; THE CIRCULATION

In the kinematics of rigid bodies, a distinction is made between translational and
rotational n,.tion. In rotational motion, all particles not on the axis go round the axis in
circles. An analogous but more general conception of rotational motion in a fluid can be

developed as follows.

Consider any closed curve C drawn in the fluid, and choose a positive direction of
motion around the curve, as in Figure 5a. At each point of the curve, divide the particle
velocity into a component perpendicular to the curve and a component qs in the direction of
the tangent tG the curve; lot q, be taken positive when it has the same direction as the chosen
positi~e direction of motion around the curve and negative when it has the opposite direction.

In Figure 5a, q, is positive at P but negative at Q. Multiply each element of length ds along

C

qs

Axis

Figure a Figure b

Figure 5 - Illustrating the definition of the circulation.
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the curve by the value of q at that element and add the products, thus forming the line inte-

gral

q, ds

where f indicates that the integration extends around the whole curve. This integral is
/

called the circulation of the fluid around the curve C. It may' be regarded as a measure of the

extent to which the fluid is moving in a rotational manner along this particular path.

The integral can aXso be written % ds= (u dx + vdy + w dz) since the direction

cosines of ds are dx/ds, dy/ds, dz/ds and hence, oy Equation [lb],

dx dy dz

If the fluid is actually moving like a rotating rigid body, the circulation about any closed

curve lying in a plane perpendicular to the axis of rotation is equal to twice the angular

velocity of rotation ca multiplied by the area enclosed by the curve. This is easily seen in the

special case of a circle whose axis is the axis of rotation, as in Figure 5b; here q = qs = air,

where r denotes distance from the axis, and the circulation around the circle is

qs ds = cards = w r ds = o r (2 n r) = 2(w) (rr). The same result is obtained, by evaluation

of the integral, for a circle centered anywhere.

Motion of a fluid in which the circulation is zero around any continuously collapsible

curve is called irrotational motion or flow. The significance of the collapsibility of the curve

can be illustrated in the space occupied by the body of a doughnut. Any closed curve in this

space that is not linked with the central hole can be shrunk down continuously onto a point,

or can be deformed in continuous fashion into any other curve of the same type. Curves that

link with the hole, on the other hand, although continuously deformable into each other, can
never be shrunk below a certain minimum size. A region in which closed cirves fall into two

classes with respect to collapsibility is called doubly connected; a regih; in which all curves

are completely collapsible is called singly connected. In some cases there are more than two

such classes of carves. Regions in which there are at least two classes are called multiply

connected. In irrotational motion in a multiply c.innected region, the circulation is required to

vanish only about the closed curves that are cont.inuously collapsible down to a point.
The great importance of irrotational flow a,"ses from the following dynamical theorem,

which is proved in See. 33 of Lamb's Hydrodynamics. 1

Suppose that the fluid is frictionless, anid that its density, if not uniform and constant,

is at least a definite, fixed function of the pressure. Let the external forces be conservative,

as are those due to gravity; that is, the total work done by these forces on a given mass

vanishes when the mass is carried around any closed curve, Then the circulation around any

closed curve that is allowed to move with the fluid is constant in time.

It follows from this theorem that, if a mass of frictionless fluid acted on only by con-

servative forces happens to be moving irrotationally at any instant, it will continue to move

irrotationally thereafter. Closed curves moving with the fluid may change their shape, but they

7



remain closed, and the circulation about them must remain zero. Since a state of rest is a

state in which the circulation vanishes about all closed curves, the application of pressure to

the fluid can generate in it only irrotational motion. For this reason, the motion generated by

a moving ship in the surrounding water u by an airplane in the air is roughly irrotational,

except near the solid surfaces whore friction plays a large role.

6. THE VELOCITY POTENTIAL FOR IRROTATIONAL FLOW

Only irrotational motion will be considered hereafter. Its mathematical tieatm:nt can

be greatly simplified by introducing the velocity potential.

If the motion is irrotational within a singly con,"x. d region, the integral
P2

f qds

P1

taken along any path lying in the region and conr.ecting two given points, P, and P2 , depends

only on the positions of the points P, and P2 . The integral is defined as in the last section;

the chosen direction of motion along the path is from P1 toward F2 .

To prove the statement just made, note that any two paths B1 and B2 , as illustrated in

Figure 6a, when taken together form a closed curve around which the circulution vanishes, so

that

P 'P
(B I) q, ds + f(B2) q,,d, 0

fpl "P2

But

'2 0

(,r,y , 2)

Figure 6a Fagure 6b

Figure 6 - Illustrating properties of the velocity potential.
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P P2

1(32 ) qsd, - (B2) qsds

P2  PI

since interchange of the limits reverses the direction of motion along the path and hence the

positive direction for 1,. Hence
PP

f I) qsds-J (B2) qsds

P P

It follows that, if . is defined as
.

= qsd s  [6a)

P

along any path joining any point P to a fixed point Po, p will be a single-valued function of the

coordinates x, y, z of P.

Furthermore,

a95 aodo2  do 2  a~2
u=--I, v=---y' w=--, = [ y6b, c, d, e]

where u, v, w are the components of the particle velocity at P. For, let the path be drawn so

as to run from P straight to a neighboring point P', which is displaced a distance az from P

toward + x without change of y or z, as in Figure 6b. Then, if 46 is the difference in the

values of at P'and at P,

8 f- fqs da

P

since the path from P' differs from that drawn from P only by the omission of the additional

stretch PP'. But along this stretch q= u, and is constant in the limit as P, approaches P.

Hence

8=- u fId = - u~x

P

Equation [6b] follows; and Equations [6c, d] can be similarly obtained.

The function 0 thus introduced is called the velocity potential. If it is known at all

points, the particle velocity can be found from it by differentiation. The sign has been chosen

in such a way that the potential decreases in the direction of the particle velocity. The

relation between the velocity and the velocity potential is the same as the relation between

the electric intensity and the electrostatic potential.

Since the position of Po is arbitrary, the velocity potential, like the electrostatic

potential, contains an arbitrary additive constant. A surface over which o has a constant

value is called an equipotential surface. As the derivative of .b with respect to any element

!9
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of distance along the surface is zero, there can be no component of the particle velocity

tangent to an equipotontial surface; compare Equation [6f] below. Thus the direction of the

velocity is everywhere normal to the oquipotential surfaces; and, since the streamlines have

everywhere the direction of the velocity, the streamlines cut the equipotential surfaces per-

pendicularly.

Certain other relations between the velocity and the potential may be notea. The

component of the velocity in any given direction can be written

do 
[6f]

here ao/ds is the space derivative of € in the given direction or

.o _ limA9

Os As-.o As

where d\s is a displacement in that direction and A95 is the corresponding change in (A. The

proof is similar to that of Equations [6b, c, d]. By integrating Equation [6f] it is seen that the

change in 95 from one end to the other along any path is

A= -fq., ds [6g]

where the integral is taken along the path.

It is often convenient to use spherical polar coordinates r, 0, (j. Here r is the distance

from a fixed origin 0, 0 is the angle between the li ie Or and a fixed line or axis through 0, and

c is the angle between the plane containing 0 and a fixed plane drawn through the fixed axis.

The definition is illustrated in Figure 7. A set of Cartesian coordinates is also shown having

Y

X (F. 0.0))

Y ) Figure 7 - Illustrating polar coordinates.
(a

00
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the same origin, the fixed plane as the xy-plane and the fixed line as the x-axis. It is evident

that

x=rcos Q, y=rsin 0cos o, z =rsin0sin w [6h, i,j]

Any point P can be displaced in such a direction that only one of thu coordinates r, 0, (o varies.

The three mutually perpendicular directions thus defined may be called coordinate directions;

the corresponding elements of distance ds are dr, rdO along a circle through OX, and r sin OdC,
along a circle of radius r sin 0 and in a plane normal to Ox. From [6f] the components of the

velocity in these three directions are

qr=--:-, q 0 - - ~ 6,1 idr r dO' q1 r sin 0 do [6k, 1, m]

In other cases, cylindrical coordinates x, , co ate useful. Here Z denotes distance

from the x-axis and &, denotes angular distance around this axis measured from a fixed plane

drawn through it; see Figure 8. If the Cartesian axe. are drawn so that (a is measured from

the xy plane,

y= Zcos o, z = Zsin o [6n, ol

The elements of distance in the coordinate directions are now dx, dJ'and MdO, and the com-

ponents of the particle velocity in these directions are

a_€ aq5 I Ya¢ a g [6p, q, r]
a"= x ' a= " YWo = " at

In all of these equacions connecting the velocity potential with the velocity, the sign

is that of recent textbooks on hydrodynamics. An older usage must be noted in which c6 is
P

defined as 0 = f q ds. Ther. all differences between values of 6 are reversed in sign and

the signs in equations equivalent to [6b, c, dl, [6f, g], [6k, 1, ml, and [6 p, q, ri are all positive.

Figure 8 - Illustrating cylindrical coordinates. Y

lCa

es.
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7. THE LAPLACE EQUATION

In an incompressible fluid of uniform- density the velocity potential satisfies a very

simple differential equation. If the velocity )otential (b is substituted from Equations [6b, c, d]

into the equation of continuity, Equation [2b], there results

a2, 026 026
- + 0 (7a]

Ox2  ay2  dz 2

This equation must be satisfied at every point throughout the region in which irrotaiional flow

exists. It is known as the Laplace equation and is often written in the symbolic form 7 2 (b 0

where V2 stands for the differential operator

V2 = a2  a2  a2
V - + +

Ox2  ay2  a-2

The Laplace equation is encountered in many other branches of physics, such as

electricity, heat flow, and elasticity, and the properties of its solutions are well known. 1 ' 12, 16

Because of the linearity of the Laplace Equation, its solutions possess the following useful

properties. If (6 is a solution, so is Ccb where C is any constant. If (b and ,) 2 are two solu-

tions, :, + (62 is another solution; the particle velocity corresponding to Ct + 02 at any point

is the vector sum of the velocities corresponding to 6, and to d 2 . Tlese statements may be

verified by suLstitution in the equation. Finally, if .b is a solution, so is b2 = d[/ax or

O laiy or o,/ az; for, after substituting 0, for h in Equation [7a], differentiating with

respect to x, for example, and changing the order of integration,
02 ~ _02 04¢i _a2 d4,

_!2 Loj 1 + _Ld1I+ a 0=

ax2 Ox ay 2 ax az2 ax

Thus ai/ax is another solution of the Laplace equation.

rhe problem of determining the motion of a frictionless, incompressible fluid under

given conditions thus reduc6s to the problem of solving the Laplace equation subject to

certain boundary conditions. Any solution q) of the equation represents a possible type of

irrotational flow in which the components of the velocity are given in terms of (b by Equations

[6b, c, d]. Since the density of the fluid does not occur either in the Laplace equation or tn

Equation [1a] expressing the usual boundary condition, each type of flow can exist in a fluid

of any density. So long as the motion is not too rapid, gases as well as liquids can be assumed

to move approximately as if they were incompressible.

Once the velocity at each point is known, the distribution of pressure may be found

from the pressure equation to be obtained presently.

12
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8. SOME PROPERTIES OF IRROTATIONAL FLOW

Tie following properties of the irrotatioal flow of incompressible fluids may be noted.

More rigorous proofs of sonic of them may be found in Milne- 'homson's Theoretical hiydro-

dynamics 2 or elsewhere. 12

a. The distance between two given equipotential surfaces corresponding to slightly differ-

ent values of 0 varies in inverse ratio to the magnitude of the velocity q.

For, o = - q 8 s; if 30 is constant, 8s . I
q

b. Tie streamlines are concave toward the side on which the magnitude of the velocity q

is larger.

For on the concave side of a streamline neighboring oquipotential surfaces, being per-

pendicular to the line, must converge, as at P in contrast to Q in Figure 9a; hence, by (a), q

is greater.

c. The velocity q increases in the direction in which the streamlines converge, and hence

is greater near the concave side of an equipotential surface than near its convex side.

For, if the streamlines converge in a certain direction, such as RS in Figure 9b, the

associated tube of flow diminishes in cross section in that direction; but the same volume of

an incompressible fluid must flow across every cross section of a tube; hence q increases in

this direction.

d. In any given region, the maximum velocity must occur at a point on the boundary. Tile

same is true of the minimum velocity unless it is actually zero.

For, suppose a maximum value of q occurred in the midst of the fluid, as at T in Figure

9c. Then q would decrease in all directions from this point. But then the tube of flow contain-

ing this point would have to flare in both directions from T by (c), and would also have to be
concave inward over the sides of the tube, by (b), which is impossible. The proof for a nonzero

minimum is similar.

13
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Figure a.- Figure b - Figure c -

Figure 9 - Illustrating some gomertrical properties of streamlines and equipotential surfaces.
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e. Vi ithin a single connected region the stroar.lines must begin and end on the boundary.

lienec, if the boundary is entirely stationary, so is the fluid.

For, otherwise, closed streamlines would necessarily ,accur, and this is impossible

under the conditions assumed; since, in gong around a closed streamline in the direction of

the flow, the velocity potential would decrease continually, and hence it could not return to

its initial value ,npon returning to the starting point. Flirthermore, no streamline can end on a

stationary boundary, since there the normal component of the velocity must vanish.

f. rhe flow within any region is uniquely determined if the velocity is given, in magnitude

and in direction, nt all points on trio boundary of the region.

For, if two different distributions of velocity satisfying the given conditions were

possible, a third one would also be possible in which the velocity is the vector difference of

the velocities in the given distributions. In this latter distribution the velocity would be zero

at all points on the boundary; hence, by (d), the velocity must vanksi evorywhore. It follows

that the two original distributions of velocity must be identical.

g. Ina singly connected finite region, the flow is uniquely determined if the normal com-

ponent of the velocity is assigned at all points of the boundary.

The proof is similar to tha.t of (f). The difference between two types of flow satisfying

the given condition would be another in which the normal component of the velocity vanishes

over the boundary, so that no streamlines could begin or end there; hence, as explained under

(e), there can be no streamlines, and the two assumed distributions of velocity must be identi-

cal.

In all cases, the word boundary may refer either to a physical boundary or merely to a

geometric, surface drawn through the fluid. Furthermore, except where the contrary is

specified, the boundary may lie partly or wholly at infinity.

It may also be noted that differentiation of Equations [6b, c, dl leads to the equations

=0, - -.L= o, au aV= 0 . [8a, b,c]

Oz ,y tax az ay ax

These differential equations may be regarded as an alternative characterization of irrotational

motion; for it (.an be shown by means of a theorem known as Stokes' theorem that the circula-

tion vanishes around any closed curve drawn in a singly connecte-! region in which Equations

[8a, b, ci are satisfied. The three left-hand members of the equations are the components of

a vector, which is called in vector analysis the curl of the particle velocity and in hydro-

dynamics is often called the vorticity.

From Equations [8a, b, c it can be shown, furthermore, that in irrotational flow the

motion of any particle is compounded of a motion of translation and one of pure strain. In a

pure strainint! n:;otion there are three mutually perpendicular lines through any particle of the

material which do not change their directions; these lines are the strain axes. In rigid-

rotational motion, on the other hand, only one line through a given particle retains its

14



direction, namely, the line parallel to the axis of rotation.

9. TH PRESSURE EQUATION FOR IRROTATIONAL FLOW

Let the external forces per unit mass be given by

X_ a= -Y, - [9a, b, cIax' dy d z

in terms of a potential function fQ, as is true for forces due to gravity; and let the fluid have

the property that its pressure is a definite function of its density. Then, if the motion is

irrotational, the equations of motion for a frictionless fluid can be integrated.

On those assumptions, Equation [3c can be written, after replacing u by - do/0a in the

first term,
a2 & +uau+vu +w + - lp
tdx TZ ay da dx p ax

or, by means of Equations [8b] and [8c], after changing signs,

axdt x ax ax ax p2T

Equations [3d] and [3e] become similarly

d- - -u vL- waw- -.- 1
dy at ay dy ay dy pay

and
d a. a6_u ~uv.aw as!i lap

doat do do a z d z d

Let these last three equations be multiplied through by dX, dy, da and added; and let, the time

t be held constant. Then the first ternis give

x 1O b+ dy _.2 + do 1 d dde

dx at ay at a at - at

In general, d O would contain also. a term dt g a ; but here it is assumed that dt 0. The
at atat

next terms in the equations give in the sum

u Odx+uUy +uUdoz = u2 dx ...... d U
13X dy doa x (x2 )/1

The remaining terms give similar results. Thus the final result is

d, Id u 2 + v2 ,W\- d p

This can be integrated to give

f dp= 10- q2 - [ + (t) [9d]

15
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where q2 = U2 + v 2 i w 2

Ilere fdp/p can be evaluated when tile law of variation of p with p is known. The

integration "constant" F(t) must be regarded as an arbitrary function of t, for the mathemati-

cal reason that the integration involved only z, y, and 2, and also for the physical reason that

6 itself contains an arbitrary "constant" which may be supposed to vary with the time. The

presence of this arbitrary term in (h limits the usefulness of Equation [9dl in the general case.

If the density is uniform and constant,

f dp p+ constant
Jp

and

P at 2

where the arbitrary constant in the integral has been absorbed in F(t). In this case the

pressure itself contains an arbitrary additive constant: for it is well known that a uniform

pressure p0 applied to the boundary of an enclosed mass of incompressible liquid merely

raises the pressure throughout by the amount po without affecting the motion. To fix the

pressure completely, therefore, its value on the boundary must be known. This value then

fixes F(t) after the arbitrary additive function of t that occurs in 0 has been chosen. The

equation thus obtained is very useful.

If the only external forces acting are those due to gravity, it is sometimes convenient to

simplify the last equation by considering the pressure to be made up of two parts, p = Ps - Pd

where p. is the hydrostatic pressure that would exist if there were no motion and Pd is the

dynamic pressure due to changes in velocity. When there is no motion, Equation [9e] gives,

with ps substituted fcc p and F(t) assumed to bo constant,

p + pQ - uns.ant. [9f]

If, then. p is replaced by p, + Pd in Equation [9e] and p5 then substituted from Equation [9f],

the result is
Pd aO 1 2 + p(t ) [9g]

P at 2

where the constant in Equation [9f] has been absorbed in F(t). In Equation [9gl, p is some-

times written for Pd

When the only external forces are gravitational, if the z-axis is drawn vertically upward,

X = Y = 0, Z = -g, where g is the acceleration due to gravity. Hence Q2 is a function of z only,

and integration of (9c] gives

Q = gz + constant.

Dynamical units are to be understood in Equations [9e] and [9g]. The pressure p or Pd

may be in pounds per square foot, p in slugs per cubic foot, q in feet per second, and t in

seconds. The potential 6 would then be in feet squared per second, since the dimensions of

(b are those of length times velocity or L2 T- .

16



10. THE BERNOULLI EQUATMON FOR STEADY IRROTATIONAL FLOW

If the motion is steady, the constant of integration in 0 can be chosen so that 9db/dt 0.

Then F(t) reduces to a constant, and the pressure equation [9d] can be written

f dp + 1 2 + [10al

where C is a constant. Similarly, if p is uniform and constant and if the pressure %t infinity

or on the boundary does not vary with time, Equations [9el and [9g] become, respectively,

P 2 10b]

P2 1 2
PdI 'q2 +  C'. [lOc]

The value of C, which is not necessarily the same in these three equations, may be

found from the known values of the other quantities at sonic one point, such as a point on the

boundary.

In many problems, the motion at infinity is one of uniform flow and . = 0. Then, if U

is the particle velocity and p. the pressure at infinity,

Pe 1 1)
C =- + - U-

p 2

and from Equation [lOb], for incompressible fluid,

= I p(U2 q2) [Ihd]
p ': -- q,, [10d

It is important to note that the peessure difference, p - p.,, at any point depends only upon the
relative motion between the fluid at the point and the fluid at infinity; in particular, it remains

the same if a frame of reference is substituted relative to which U is zero. It is physically

obvious that p - p. cannot be altered by a mere change of the frame of reference; and it is

easily verified that the .esulting changes in Uand q are such that the difference U2 
- q2

remains unchanged.

Thesa are various forms of what is commonly called the Bernouili equation for irrotation-

al motion. For any type of steady flow, whether irrotational or not, equations identical in form

call be obtained for any one streamline, but in general the constant rnay vary from one stream-

line to another. In irrotational flow the consttnt C has the same value for all streamlines.

The Bernoulli equation holds throughout any region, large or small, throughout which

the motion happens to be irrotational. The region may even surround one or more cylinders

about which there is circulation; irrotationality in the neighborhood of each point of the region

is all that is required.
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11. THE PRESSURE EQUATION FOR ROTATING BOUNDARIES

The following special case may be noted for reference. Suppose that incompressible

fluid is set into irrotational motion by the steady rotation of a solid boundary, internal or

external, the fluid being otherwise unbounded. Then the flow patteen will obviously be always

the same relative to the boundary but at any point fixed in space variations will occur. The

distribution of values of the potential 0 can be imagined to rotate with the boundary, but

otherwise to remain unchanged. Since the motion is not steady in space, the Bernoulli equa-

tion cannot be used. Let the density p be uniform.

Lot 0 denote an angle of position about the axis of rotation and lot the angular velocity

of rotation be j. Then that value S6 of q which, at time t, is at a point P is carried forward

by the rotation during an interval dt to a point P'at which 0 is greater by dO = t-adt. At time t,

on the other hand, the value of ¢ at P' was

= = 1 i+ d-. o = ,1 +e dt.

a0 ao
Thus, during dt, 0 changes at P by

do = q- k I +  dt dt

Hance, at any fixed point in space,

do - - = w V [ l

a t ao q[

where adenotes the distance of the point from the axis of rotation, and qo = -(1 4) a/C70
and represents the transverse component of the particle velocity; see Equation [6r].

Thus Equation [9ol for the pressure p can be written, when the boundary rotates steadily,

iv = P (Wo O -1 q2 _ Q) + P0 [1lb]

or, if fl 0, 1 2
p = p(4 q0 - "q )+po [le]

where po is either a constant or at most a function of the time.

These equations can also b - written in terms of velocities relative to axes that rotate

with the boundary. The radial comnonent of velocity qr' is the same as q, the same -omponent

taken relative to fixed axes, but th( transverse component is qo" - , 6' Writing
2 =2 2q qr i qo and then substituting 'or qo,

p _P ((02-2 -q2)+pe [lid]

whore q'2 =q,,2 + qo.
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12. THREE-DIMAENSIONAL SOURCES, SINKS, AND DIPOLES

Some important types of flow in incompressible fluid of uniform density will now be

discussed briefly in preparation for the detailed studies to be made in later chapters.

Suppose that incompressible fluid is flowing radially outward from a point P with a

velocity q that is a function only of the distance r from P. Then, if a sphere of radius r is

drawn with its cenver at P, a volume 4nr;2 q of fluid flows outward from this sphere per so.. ,nd.

Since this volume must be the same for all spheres centered at P, r2 q must be a constant, and

it is possible to write

1 
2

where A is a constant. Tho volume of fluid flowing outward per second from P is then 4r"A.

A velocity potential q, exists; for, if
_A,

r

or

At P, q is not defined and a singularity is said to occur. It may be imagined that there
is a source at P in which fluid is being created at the rate 4rA. In Lamb's Hydrodynamics, 1

4hA is called the strength of the source and is denoted by m; in Milne-Thomson's Theoretical

Hydrodynamics, 2 the symbol n is used for A itself and is called the strength. If A is negative,

the flow is inward and a sink may be imagined to exist at P, in which fluid is being annihilated

at the rate 4,7A. The term "source," when not specifically contrasted with "sink," will be

intended in an algebraic sense, covering both sources and sinks. A flow of this type could be

produced by a sphere with fixed center whose radius varies with time.

To find the distribution of pressure in the fluid, substiute in the pressure equation or

Equation [9g] q = A/r 2 and

L9' 1 dA
Ot r dt

Then
P 1idA A2

...... ' + F(t)
P r dt 2r4

if for simplicity p is written for Pd. At r = co, p = pF(t). Hence if p, denotes the pressure at

infinity (in excess of hydrostatic pressure), assumed uniform all round,

P PdA pA 2  [12c]
rdt 2r4

Other types of flow having a singula.ity at P can be obtained by differentiating Equation

[12b), in accordance with the principle stated in Section 7. Thus, in Cartesian coordinates

with origin at P, replacing 40 by q1,
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= A + y2 =A-Ax
(2 + Y2 + 22)1/2 ax (x 2 + Y2 + a 2 ) 3 2

and 2b ,l'az is also a solution of the Laplace equation. Hero x can also be replaced by r cos 0

in terms of spherical coordinates with origin at P and the x-axis as axis. Thus, another solu-

tion of Laplace's equation is (-dlA)(0 I/ ax) or

Ax I_ COS 0

(X2 + y2 + Z2)3/2 
F2

where p is a new constant.

The type of flow thus defined is said to be due to a point dipole or double source at P,

also called a point doublet, because it can be produced by placing a source and sink of equal

strength close together and letting their distance apart decrease to zero while the product of

distance and the strength of the positive source is kept equal to t. The line from which 0 is

measured is called the axis of the doublet.

13. TWO-DIMENSIONAL FLOW

The flow is two-dimensional when there is no variation of anLhing in a. certain direction,

and Mhen the component of the voloci y in thht direction is everywhere zero. Thus, along any

line having this direction, the pressure and the particle velocity are uniform. Each fluid

particle rioses in a plane perpendicular to the direction of uniformity, and the motion i.; the

same in all of those planes. It suffices to study the motion in a single plane, which may be

taken as the xy-plane. Then the. a-component of the velocity w is 0, and the components u and

v, like the pressure, are fuictions of x, y and perhaps the time t.

Alternatively, it is sometimes conteniont to consider the fluid between the xy-plane and

a parallel plane at unit distance from it. This part of the fluid remains permanently between

the two planes, and its motion is typical of the motion of the whole.

For the two-dimensiolal flow of incompressible fluids it is convenient to define another

function known as the stream function. Choose a fixed line perpendicular to the zy-plane,

intersecting it in che point A, and a parallel line intersecting the xy-plane in P, as in Figure

10a. Let the lines be joined by an open cylindrical surface parallel to z and having the lines

as to of its generators; this cylinder will intersect the xy plane in a curve, as illustrated by

one of the curves in Figure 10a. Let , denote the volume of fluid that passes per second

across the part of the cylindrical surface that lies between the xy-plane and a parallel plane

unit distance awa); lot L, be called positive when the fluid crosses in the positive direction

of rotation about A, or in the direction from Ox toward Oy.

The quantitv ut thus defined may be described briefly as the volume of fluid that passes

per second across any curve, per unit of thickness in the z-direction. Its value must be the

same for all curves joining A and P, since no fluid is created or destroyed betwecn the

2G
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0

Figure 10a Figure 101)

Figure 10 - Illustrating the definition of Elie stream function di.

c~orresponding cylindrical surfaces. If A is held fixed, therefore, 4i is a function of tile coor-

diflaes x, y of P, and also perhaps of the timie, or i (x, y, t). This function i- called thle

stream function. Its dimensions are those of volume per unit tirme per unit of leriptl parallel

to z, or £ 2 T-1 .

If t'- base point is moved fror., 4 to some other point R, then all values of di are changed

by a fixed value reprcsenting thle flow across BA. Thus i, contains an arbitrary additive con.-

stant.

If the v'alues of 64 at two points Pp, P2 are VIand 6 2 t thle rate of flow across any curve

P P as in Figure 10b, in tile positive direction around P,,~ per unit of length in the z-direction,

i s02 - L11 If P, and P2 lie on thle same streai.iline, the rates of flowv across AlP' and across

AP 2 m-ust he the same, since there is no flowv across a strear.line. :lence t, has a constant
value along any given streamline. The family of curves defined by i = constanL is thus the

set of streamlines, and the streamalines themselves can he identified by means of the

associated values of 6. It follows in particular that 01 rnuzt have a constant value over any

stationary boundary, which is necessarily composed of streamlines.

Simple relations exist between the stream function and the particle velocity. For, if P

is displaced an infinitesimal distance dxr in the xdirection, ji increases by the flow across dx

or by ivdx; whereas if P is d~splaced at distance dy in thle y direction, doi =udy, in view of

the convention as to the sign of Ci: see Figure 10a. Thus;

= - * - EUa, b)I
ay

Or, more generally, let &ad/0s denote the space rate of variation of ii in a chosen positive

direction along any curve v.,on tile xy-piane, and let qdenoto- thle component of the

velocitx, normal to the v-. taken positive in a direction rotate'! counterclockwvise through

90 degrees from the positive direction idiong the tangent to the curve. Thtus, if q,, > 0, thle fluid
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crosses frnm right to left as the curvo is traced positively;

-0 see Figure It.. Then 00

q - [13c

The stream function exists for any type of flow in an

incompressible fluid, oven when the motion is rotational.

If the flow is irrotational, then the velocity potential 4)

also exists, and the two families of curves, € = constant and

Figzure 11 - Illustrating the , = constant, cut. orthogonally, since the velocity at any point

relationship between the is perpendicular to a curve 4 = constant through that point and

space rate of variation of tangential to a curve di = constant. Then also, as in [6b, c]

stream function O0,'os

an(d particle velocity .u = -, v = - [13d, el

ax ay1dc

Comparison of these equations with Equation [13a, b] leads to the following relations between

6 and t,: 06b 6a M C [13f, g]

ax= y y X

The Laplace equation for 6 or Equation [7a] becomes, in two dimensions,
02 + 2 , = 0; [13h]

0a2 a y2

and differentiation and subtraction of Equations [13f, g yields also the result that

a2d + O.b = 0 [13i]

Ox2  ay2

Thus in irrotational, two-dimensional flow the velocity potential and the stream function

are both solutions of the two-dimensional Laplace equation. Solutions of this equation,

relal2d as stated in Equations [13f, g], are called conjugate solutions or functions. If either

6 or 6 is known, the other can be found, except for an arbitrary constant, by integrating

Equations [13e, f]

rhe two orthogonal families of curves, q5 = constant and Vi - constant, are called a flow

pitern. If closely spaced curves of both types are drawn, they divide the plane into small

areas approximately rectangular in shape; such a diagram is called a flow net. If the same

equal spacing is used for both sets of curves, the rectangles become squares; for, by the

defin-tions of 6 and i,, betwebn two adjacent 0 curves 86 - - q8s where 8s is the distance

between them, and similarly between two & curves 8ib = q83s', hence if 141 = l8tji, 68 = 8s'.

This property of flow nets is sometimes made the basis of a graphical method for the

construction of an approximate flow net to satisfy given boundary conditions. The k fid tw

curves are sketched in smoothly by estimation and are then corrected repeatedly while keeping

them in harmony with the boundary conditions, until they divide the area as nearly as possible

22



into small squares. Tie procedure was discussed in detail by Closterhalfen, 2 2 and a machine

for use in such graphtical constructions was described by Futtinger. 2 3

Obviously 0, itself could be the velocity potential for another type of irrotational flow,

satisfying a different set of boundary conditions. The stream function to accompany it would

then be --o. For, if the new potential and stream function are V= ; = -- 6, by Equations

[13f, g]
06' ad, a" ,

-dx ' ay 5x

which are simply Equations [13f, g] written for 0 'and di 'and show that these functions stand

in the relation to each other that is characteristic of a potential and its associated stream

function.

Thus the two-dimensional types of irrotational flow occur in associated lairs, which

might be called conjugate pairs. At a given point, velocities in two conjugate flows have per-

pendicular directions but equal magnitudes; in fact, the vector velocity in the second type is

merely rotated, relative to that in the first type, through 90 degrees in the counterclockvise

direction, or from x toward y. For, in the second type of flow the components are

6a 00 a L11
U' . - . v, v - - =u [13j, k]

ax ax ay ay

by Equations [13a, b]; the magnitude of the velocity is thus q = (u 2 + v2)%, and the directions
are as stated, as is illustrated in Figure 12.

All of the equations written down in this section are linear and homogeneous in the

dependent variables. For this reason it is easily seen that if 61, tb, are the potential and

stream function for one type of irrotational flow and ,2, 1112 for another, then the sums,

0 3 
= 
(h1 

+ (b, 11f3 
= 

1~l 
+ 1112

represent tie potential and stream function for
a third possible type. In C e latter type, which

is said to be formed by superposition of the

first two, the velocity as a vector is easily q'-q

s en to be the vector sum of the two component Vq

vector velocities. Again, both potential and

stream function may be multiplied by the same

constant. U

Finally. if

ao, ad l
q~ 7-, 114 =-7-,
Sd X dx Figure 12 - Relation between particle

velocities in two conjugate flows.
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(b 4 and 4 are the potential and stream function for till another possible type of flow; for, as

was zhown for 6 in Section 7, b4 and 04 Will saitisfk Equations [13h], [13i] and [13f, g].

Instead of x, y or z may he substituted in both derivatives.

It slhould be remarked that when the older convention mentioned in Section 6 is employed

for the sign of the potential, the stream function i, is measured by the volume of fluid crossing

a curve in the clockwise direction, so that in a given case differences in the values of & have

opposite signs, and the signs before the derivatives in Equations [13a, b] and [13j, k] are

reversed. The positive direction for q, in Equation [13c] is lik(,wise reversed. The relation

between , and 6 as stated in 13f, g], however, remains the same. 'fhe simplest way to

summarize the difference between the two conventions is to say that all ve'ocities are reversed

when a change is made from one to the other.

14. TWO-DIMENSIONAL FLOW IN MULTIPLY CONNECTED SPACES

In cases of two-dimensional flow, boundaries often occur which hav(i finite dimensions

in directions parallel to the planes of motion. These are called internal boundaries. They

have the physical form of cylinders of unlimited length and are repcesented on thc. xy-plane

by closed ,'urves. which may or maN not be circular. The presence of an internmo boundary

nvikes the space doubly connected; more generally, if two or more separate inner boundaries

occur, it is multiply connected.

In irrotational motion, the circulation is required to vanish only around closed curves

which do not surround any inner boundary and hence can be contracted contiiuously down to a

noint, in accordance with the explanation in Section 5. An example is curve C in Figure 13,

where A represents an obstacle with a boundary that the fluid cannot penetrate. Around a

curve that encircles A, such as DEF in Figure 13, the circulation may or may not vanish.

Let the positive direction along all curves that encircle boundaries be chosen in the

same direction; it will be convenient to adopt the convention that, as a point traverses such

a curve positively, its projection on the xy-plane eventually goes round the boundar%

in the counterclockwise direction, or in the

direction of rotation froni the x-axis toward

the y-axis. Then the circulation has the same

%alue for all clo-,,,l cur es that encircle A

just once and (10 not on m "Ic any other fin ite

boumndary'.

ro show this, let I)FF and C/IK be two D

curv'e, and introduco connection GD (G

between them, as illti~tratwd in Figure 13. .

Then the combined cur,,e DEFDGKIIGD,

traced ill this order, can be collapsed con- Figure 13 - Curves in a doubly connected

tinuously to a ponnL; to do this, the space.
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twice-travorsed segment GD is first separated into two parallel segments. Then the circula-

tion around this combined curve equals zero. But this circulation is tile difference of the

circulations in the positive directions about )E'F and G/K; for GIA" was traversed in the

negative direction, so that its contribution to fq, ds was reversed in sign and the contribution

of GD which is traversed twice but in opposite directions, cancels out. Hence the circulations

around DEF and GCK are equal.

In the same way it can be shown that the circulation about a curve that encircles

several internal boundaries is the sum of the circulations around the separate boundaries.

If the velocity potential at any )oint P near A is now defined by
PO

6 J qs ds

P

as in Section 6, its value for a path of integration such as PRP o in Figure 14 is easily seen

to exceed it.s value for a path such as PQPo uy the circulation P around A. For, geometricaliy,

these two paths together make up a closed curve encircling A. Other paths may encircle A in

the negative direction, or several times. Thus, if 6 is the value for one path, other paths of

integration may give any one of the values

q5 +nlV

where n is any positive or negative integer.

The potential :s thus many valued in a multiply connected space; to each point P there

belongs an infinite number of values of 6, spaced P apart. rhe particle velocity as calculated

from 0 is, however, single-valued, since all branches of the potential, characterized by various

values of n, have the same space derivatives.

If several internal boundaries are present, the potential is many valued in a more com-

plicated fashion. In any case it follows from Equation [6g] that in going around any closed

curve in the positive direction the potential decreases by an amount equal to the cirr'ultivjn

around the curve.

An alternative prodedure sometimes

adopted is to introduce enough imaginary
barriers extending to infinity so that, if hese

barriers are never crossed by any path, the 1
integral defining 6b remains single-valued. T Q

Such a barrier is shown at ST in F, igure 14. S

But then discontinuities in 6 may occur at the
PO

imaginary barriers; and, if the velocity at a

point on a barrier is to be represented by
derivati,-es of €, the barrier m,'ust be movel

teFigure 14 - Illusuating the definition of the
temporarily to one side. velocity potential in a doubly connected

space.
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15. TWO-DIMENSIONAL OR LINE SOURCES, SINKS, VORTICES, AND DIPOLES

A two-dimensional source or uniform line source is said to exist on a line when the

fluid flows uniformly away at right angles to the line. In the diagram that represents the flow

in a particular plane, the line is represented by a point. By considering the flow across a

circular cylinder having the line as its axis, it is easily seen that, because of the assumed

incompressibility of the fluid, the velocity is

q [15aJ

where A is a constant, positive or negative, and V)denotes distance from the line. The

volume flowing outward per unit time per unit length of the cylinder is thus 2irA; either this

quantity or A itself may be called the strength of the line source or sink. On the line itself

the velocity is not defined.

The corresponding velocity otential is
q5- A In "[15b]

where In stands for the natural logarithm, since then v - d/d@ It is impossible by adding

a constant in S to prevent it from becoming infinite at infinity; this complication in two

dimensions is sometimes annoying.

The line source can also be built up by distributing infinitesimal three-dimensional

point sources uniformly along the line. The constant A then represents twice the point-source

strength per unit length of the line, if by source strength is meant the constant A in such

formulas as [12a, bi.

The potential of a two-dimensional line dipole can be obtained by differentiating that

of a line source. Since W-- (x 2 + y2 )5 in terms of Cartesian coordinates defined in a plane

parallel to the flow, a possible potential for a line source at the origin is

= -A In (z 2 + 92),|

By differentiating 0, with respect to z and using the principles stated in Section 7, the

following solution of the Laplace equation is obtaiined, representing a line dipole of strength

____ cos 0 [15c]
:12 + Y 2

Here p is a constant and 0 is a polar angle inea.sured from the z-axis, so that cos 0 =x/(x 2 + Y2 )lh.

In using this formula, irrespective of its mode ol derivation, 0 may conveniently be

defined as e angle between two planes intersecting aiong a fixed line, on which the line

dipole ik sitwated, and mr as a coordinate representing perpendicular distance from this line;

one of the planes, from which 0 is measured, is fixed in ,osition, the other rotates about the

fixed line. When the motion is studied in a plane parallel to the flow, the intersection of this

plane with the fixed plane is a line called the azis of the dipole.
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As in three dimensions, the dipole can be formed by placing two simple line sources of
equal and opposite strength close together and allowing them to approach each other while

their strength increases without limit. It can also be formed by distributing infinitesimal

three-dimensional point dipoles uniformly along the fixed line, with their axes all parallel and

perpendicular to the line. The constant it then reprosents twice tile sum of the three-

dimensional dipole noments per unit length along the line.

In Lamb's Hydrodynamics,' Section 60, m/2n is written for A and p/ 2n for px.

A third type of flow in which a line singularity occurs is one in which, again,

qA [15d

but in which the streamlines are circles having a common axis, like the magnetic lines around

a long straight current. In this case, along any one of the closed streamlines there is

obviously circulation of magnitude r = 2,70 (A/() 2rr A; and it can be shown that F has tile

same value around any closed curve that encircles the axis. Around a curve that does not

encircle the axis, on the other hand, P = 0. Thus the motion is irrotational everywhere except
at points on the axis, where the velocity becomes infinite and is undefined.

Because of the resemblance of this type of flow to the motion in actual vortices, an

ideal line vortex is said to exist on tile axis. Its strength is measured by the circulation F

around it. In actual "vortices" the central portion either is missing or is rotating more or ,9.s

like a rigid body.

The corresponding velocity potential is discussed in Section 40.

T!,e line dipole itself can also be interpreted as a vortex dipole, since it can be pro-

duced by allowing two vortices with equal and opposite circulations to approach coincidence

while their circulations increase without limit. The axis of the resulting dipole is perpendi-

cular to the line joining the vortices.

16. AXISYMMETRIC THREE-DIMENSIONAL FLOW

Another important case is axisymnietric flow, in which axial symmetry exists. Each

particle of the fluid is confined to one of a set of fixed planes intersecting along tile axis;

and, at every point of any circle whose axis is the axis of symmetry, the pressure and the

magnitude of the velocity have the same values and the direction of the velocity is equally

inclined to the axis.

In this case, also, a stream function exists, but it is somewhat different from that for

two-dimnonsional flow.

In any plane through the axis of symmetry, take an arbitrary but fVxed point A on the axis,

and any other point P joined to A by any curve AP, as in Figure 15. Consider the surface of

revolution generated by the rotation of this curve about the axis. It is evident that the volume

of fluid crossing this surface per second, taken positive toward the assumed negative direction

along the axis, is a function only of the coordinates of P; let it be represented by 2; 7. The



stream function V1 thus defined, ofton called
d r,; the Stokes stream function, represent,; the flow

between P and the axis taken per radian uf

rotation about the axis.

As in two-dimensional motion, however,

it is often convenient to relax the definition

somewhat by adding an arbitrary constant to ei.

Axs 1 lie dimensions of tk are volume per unit time

IN or L3/t. In any plane through the axis, tbe

curves, t, = constant, are again th stroanlines.

As coordinates, take distance x along

the axis measured in the positive direction, and

the distance 'from the axis, and let the

corresponding componenL of the particle

velocity be qx and q. (Thus the x- component
Figure 15 - lilustr.--ing the definition of the

stream function in axisymnmetric is denoted by u only when Cartesian coordinates

three-dimensional motion, are employed.) Then, if P is displaced a dis-

tance dx parallel to tie axis, the flow across

AP is increased by 2ni'q-dx, and this equals 21i. Or, if P is displaced a distance d "
outward from the axis, the flow in increased by -2rtqxd'= 2udt . 'lenco

= Z 1TX-- [16a, b]

In a similar way it can be shown that

1 ' [

where q is the magnitude of the velocity and a /dn is the space rate of change of ib in that

perpendicular direction which is obtained b a clockwise rotation through 90 degrees from the

direction of the velocity.

If a velocity potential ( exists, from Equations [6 p, q]

q, a [ ,16d, el

Thus & and ul are related by the equations

06 1 O t,/ 1 O[=,;:, -7z, -[16f, g]
ax W0" d d" a (X

It is to be noted that in the axisymmetric case 6 and d do not have the same dimensions.

Since x and 'ware really Cartesian coordinates, and 6 does not vary in the third direc-

tion, 6 will satisfy the usuAl Laplace equation in terms of r and Zalone. The differential

equation for di is found by substitut'ag from [16f, g] in the identity, a2 6/Ox O"= O2 6/OUOX.
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Thus, when a veiocity potential exists, 0 and tb are associated solutions of the two equations

a2  d a x ,dX OZ )0

A surface over which t, is constant, or a stream surface, is necessarily a surface of

revolution. A streamline may follow the axis up to a stagnation point, at which it divides into

a sheaf of stroamlines which then diverge and form a stream surface. The distance between

two given stream surfaces for slightly different values of t, varies as 1/(('jq), as is evident
from Equation (16c].

The older convention as to the signs of 0 and 6, mentioned in Sections 6 and 13, has to

be recognized again in Li.:: present connection. According to it, the signs before the derivatives

would be revorsed in Equations [16a, b] and [16d, el, but not in Equations [16f, g], and the

direction for dt,,/dn would also be reversed.

17. KINETIC ENERGY OF THE FLUID

A useful formula in terms of the potential can be obtained for the kinetic energy of the

fluid. The following simple deduction may be of interest; a more rigorous proof is given in

Milne-Thomson's book. 2

Let the fluid be homogeneous and incompressible, and let it be moving with zero

circu!ation about all closed curves. Suppose, first, that the region is enclosed within a moving

finite boundary. Then the entire region can be divided up into slender tubes of flow, such

that the boundary of each tube consists of streamlines. As illustrated in Figure 16, each tube

must start and end on the boundary, for the reason stated in Section 8.

The kinetic energy of the fluid in unit volume is (1/2)pq2; hence the energy in a single

tube can be written

BT f p q2 (GA) ds [17a]

Figure 16 - Illustrating the kinetic energy of the fluid.
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where q is the velocity, 8A is the cross-section of the tube and ds is an element of distance

along it, taken in the direction of q, so that SA ds represents an element of volume. But pq SA

ropresents the mass of fluid that passes a given cross section of the tube per second and is

constant along the tube, since no fluid crosses its sides. Hence p qSA can be put in front of

the integral sign. Furthermore, qds = -db in terni. of the velocity potential 0, by Equation
[6f]. hlence 1 A/, f

ST =IpqS ds= -. pq 8Ad6 =_pqSA (hp - OQ) [17b]

where 6p and OQ denote values of ,b at the ends of the tube. Now let BS denote the element

of area on the bounding surface that is enclosed by the tube, and lot q. be the component of

the v-.ity normal to 8S, taken positive toward the fluid. Then, at the end P where q. is

positive, either q,,8S or q aA represents the rate at which fluid is flowing away from the

instantaneous pcsition of 8S; hence at this end qS A qn SS. At the other end, where qn ie

negative, q.SS = - qSA. Thus

ST p p [(6 q, S)p + (q, SS)QI

Summation of this expression for all tubes gives for the total kinetic energy

T-=-1f Cqn dS= - 1 O-rdS, (17c]

in which dS stands for an element of area on the bounding surface, whereas q,, re, :esents the

component of velocity normal to the boundary, taken positive toward the fluid, and equals

-Oia/On by Equation [6f], where Os is replaced by On, representing an elementary displacement

away from the boundary and along the normal. The integral extends over the entire boundary.

For two-dimensional motion, let T1 denote the kinetic energy of the fluid between two

planes drawn parallel to the planes in which the particles move, and unit distance apart. The

integral in Equation [17c] may then be taken only over the included part of the boundary; and,

since the motion is the same in all planes, dS may be given the form of a strip of unit length

and width d3, where ds is an element of distance along the curve representing the boundary in

a typical plane. Thus, provided there is no circulation,

T= 1 0p€qds =-ip LOds =-1 po4d, [17d]
122 an 2

Here the curve is assumed to be traversed with the fluid lying on the left; Oc/dn is the space

rate of change of 0 toward the fluid along the normal to the boundary, and the last expression

results from Equation [13c] and the relation (ddi/Os)ds = dtb.

If circulation is presen, the formula for T1 must be modified. In the case cf a station-

ary cylinder inside a stationary cylindrica,' shell, only circulatory flow is possible, and the

tubes of flow are all closed on themselves. Here, in Equation [17h], P and Q coincide and

6p - 6( = P, the circulation, which is ihe same for all tubes: also, XqSA, summed for all

tubes between two planes unit distance apart, equals 'ji, - Ofc where 6,s is the value of the

stream function on the shell and dic i!i value on the enclosed cylinder. Hence in this case
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T1 = 1p P. (tt"S _J [170}

If the cylinder and shell are in motion, it is only necessary to superpose upon the

circulatory flow F2 as just described another flow F, having a single-valud potential 0, such

as is caused by the motion of the boundaries when P = 0. The kinetic energies associated

with these two flows, are simply additive, giving a total of

T .- 1 QSl qnds +PP (d2 S - t'2c) [17f]

where the first integral extends around both shell and cylinder and tL/2 is the stream function

for F2 alone. For, if at any point in the fluid the particle velocity due to 0, has a component

(lin normal to the direction of the velocity q2 due to F2 , and a component q1p parallel to

then

q2 = q1 n2 4 (q1 p + q2 )2 = q1
2 + q22 + 2q1 p q2

If, now, p q1 q2 A is integrated along any tube of F2 , just as p q2 /2 was in Equation [17b1,
pq2 SA is again constant, and qipdsq - - (change in 95) 0. Thus the product term q1 pq 2

contributes nothing on the whole to the kinetic energy.

If several cylinders are present inside the shell, the flow can be resolved into F1 and

a number of circulatory flows, in each of which there is the same circulatioa about all paths

encircling a certain one of the cylinders once and zero circulation about all paths not en-

circling it. Then the argument can be extended to prove that the tftal kinetic energy is

simply the sum , f the energies associated with each of these component flows.

In the aisymrnmetric case, the element of area dS may take the form of a ring cut out of

the bounding surface by two neighboring planes perpendicular to the axis; see Figure 17. Tile

width of the ring is the length ds of the arc

that is cut out by the planes from the curve OU."Aazy

representing. the boundary on a typical plane --

through the axis, and its perimeter is 2 rvr

where adenotes distance from the axis; hence

its area is dS = 2rfds. Thus, from Equation dS
[17c], Axis of Symmetry

T--upfoq,,dS prpfo do [17g] Ii

after substituting dS = 2rads, q. = (I 7)

630/8n from Equation [16c], cr/dn = do/s,

and (Od,/os) ds = dO. Figure 17 - Illustrating the kinetic energy of

the fluid for an axisymmetric surface.

rhose formulas can all be shown to

hold also for an infinite mass of kOuid surrounding a moving irternal boundary, provided the

,elocity vanishes at infinity and provided there is no eirculation. Here the integral is taken

only over the internal boundary.
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Two-dimensional circulatory flow about an interr.al botndary immersed in infinite fluid

leads to an infiite value for T,. this circumstance, althcugh inconvenient, loes not invali-

date other conclusions from the theory, since a cyliader nf nfinito length is in any case an

abstraction introduced in order to simplify the man.flonatics.

18. UNITS OF MEASUREMENT

In all cases, a consistent set of dyramical units is assumed to be employed. In using

each formula, any unit of length may be ,,sed, but the same unit must be used for all linear

dimensions, the square of that unit must be used for areas, and the cube for volumes. A

common unit of time must be employjd for all velocities and accelerations.

If forces are measured in po unds, time in seconds, and linear dimensions in feet, then

pressure is in pounds per squard foot; mass is measured in slugs, or pounds times seconds

squared divided by feet, and equals weight in pounds divided by the acceleration . - gravit) or

by 32.2; density is in slug; per cubic foot; energy is in -1ot-pounds.

If forces are meopured in pounds and time in seconds, but linear dimensions in inches,

then pressure is in pounds per square inch; mass is in pounds times seconids squared dividod

by inches and equris weight in pounas divided by 386, which is the acceleration due to

gravity expressei in inches per second squared; density equals pounds per cubic inch divided

by 336; energy is in inch-pounds.

The olocity potential has the dimensions of velocity multiplied by distance; hence it

will be in let squared divided by seconds if lengths are expressed in foot and time in seconds,

or ia 'nc'ies squared divided by seconds if inches are substituted for feet. The same units

apply to the circulation as to the velocity potential.

Angles may always be measured in radians, and this unit is always understood when an

angle is added or equated to a quantity that is not an angle, as in Equation [138f'] in Section

138; this holds whether the angle is represented by a single syn~bol, such as 0, or indirectly

by a symbol such as sin- 1. In equations between angles, like Equation [38b], or when a

trigonometric function such as sin 0 is indicated, degrees may be used instead of radians.

it may be remarked that the symbol VP will be used to denote the positive square root

of any expression P whenever P represents a positive real number; and such angles as sin- Ix

or tan-Ix will be understood to be in the first quadrant whenever x is so limited by the circum-

stances of the case that this interpretation cannot fail. Otherwise these symbols are to be

interpreted as many-valued except insofar as a special rule is stated for their interpretation.
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CHAPTER II

THE USE OF CO'RPLEX FUNCTIONS IN HY'DRODYNAMICS

In two-dimensional hydrodynamics extensive use is made of functions of a complex

variable. In this chapter, therfore, the mode of application of the theory of complex variables

in hydrodynamics will be discussed, and a summary will be included of the principal relevant

parts of the mathematical theory.

For convenience of reference, a short table of formulas pertaining to the hyperbolic

functions is appended; and some useful series are also listed.

19. COMPLEX NUMBERS

The so-called imaginary numbers were invented in order to solve certain algebraic

equations, such as x2- 1. A solution of this equation is x = i, where i is a symbol having

the property that i2 = - .In other respects i is assumed to behave like a real number. Ob-

viously i 3 = ii2 = _ i, i4  y22 1, 1/i z . The product of i by a real number is called an

imaginary number.

The sum of a real number and an imaginary number is called a complex numb-,r; it can

be written

0 = X + i

where x and y are real numbers.

The number ;a* = x- iy is formed from z by changing the sign of the imaginary part and

is called the complex conjugate of z. It is often denoted by T.

Complex numbers are conveniently represented on a plot called the Argand diagram.

In this plot the real part. z is plotted as abcissa and the imaginary part y with i omitted is

plotted as ordinate, as in Figure 18. Either the Doint (x, y) or the vector drawn from the

origin to this point may be regarded as representing the complex number.

In labeling points and lines on such
diagrams, it is convenient sometimes to use

(Z' i)
specisa' symbols representing geonmetrical

quantities only, ?nd sometimes to use sym-

bols f,'iat stand fNr numbers, real or complex.

zi

Thie leads to no difficulty in spite of the ______-

logical d~ifference between geometrical mag- -0
aitudes on a plane and complex numbers.

It is often conventient to express a

complex number, in terms of the polar co-

ordiatesFigure 18 - Argand diagram.
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V/ -+ y2 > 0, 0 .-tn- 1

The geometrical significance of r and 0 on the plot is shown in Figure 18. Hero r is called

the "',. b .lut value of z an6 is denoted by Iz t or mod a. The angle 0 is called the

amplitude, or s*metimes the argur~e;, of a; it is denoted by amp a, or arg z.

The amplitude is multiple-valued, since if 01 is one value, another possible value is

01 + 2 nrr wh.ere n is any positive or negative integer. A complex number is completely speci-

fied when its modulus and amplitude are given; for, in terms of r and 0,

z - z + iy- r (cos 0 + i sin 0)

In referring to the amplitude, however, it is often necessary Lo specify which of its many

value.- is meant. The value of the amplitude 0 such that

-Ir < 0 
I

is called its principal value; this value is often .acitly understood. It should be carefully

noted that no ambiguity attaches to the value of the complex number itself; the ambiguity

attaches only to its polar representation.

Numbers for which r = 1 are represented on the diagram by points lying on the unit

circle, or a circle about the origin of radius unity.

Two complex numbers are equal only when their real parts are equal and their imaginary

parts are also equP.I For this reason every equation between complex numbers is equivalent

to two real equations, one containing the real parts, and the other the isaginary parts with i

omitted. Equal complex numbers have equal moduli, and their amplitudes can differ only by

an integer multiplied by 27r.

In the diagram, the sum of two complex numbers is represented by the vector sum of

the vectors representing the two numbers, as in Figure 19. For, if

a 1 - X I+ iYl' Z 2 + 2 +iY 2 1

then

z I + Z2 - + 2 + i (y1 + y 2 )

It should be noted that the amplitude of the sum or difference of two numbers is not uniquely

fixed by an assignment of the amplitudes of the two numbers; it is partly arbitrary and must be

separately chosen if needed.

The product, on the other hand, has nothing to do with the ordinary vector products of

the corresponding vectors. Multiplication and division can be done in cartesian form, thus:

ZlZ 2 W X lZ2 - YlY2 + 1 (2102 + '2Yl)'

aI 1~ + 1 Z1 2 + YIY + -

Z2  X2 +zY2  X12 + Yl2 X 2 + 2
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In the latter formula the separation of the Y

quotient into re , 1 aid imaginary parts has + 2

been eff,,eted by We usual and important 1

device of ra'ionalizing the denominator, that

is, both numerator and denominator are multi-

plied by the comrplex conjugate of the de-

nominator or '2 - Y2"

Substitutiop 'f

ZI =t co03 01, - ri sin 0,
r Figure i9 - The addition of two complex
2 2 0 2 Y2  ' 2  S 02 numbers z 1  and 22.

gives, after some trigonometric substitutions,

zI 2 rIr2 [Cos (01 + 02) + i sin (01 + 02)'

-1 r [cos (01 - 02) + i sin (0, -02)1.

z2 r2

Thus the modulus of the product is the product of the moduli of the factors; and the amplitude

of the product is naturally obtained as the sum of the amplitudes. Similarly, the modulus of

the quotient is the quotient of the moduli; whereas the amplitude of the quotient may be taken

to be the difference between the amplitudes of numerator and denominator. This convention

as to amplitudes of product and quotient will be retained throughout. An example is illustrated

in Figure 20.

Multiplication of a complex number by

i merely increases its amplitude by r/2 , or

-otates the representative vector on the dia- 4 -2

gram counterclockwise through / 2 . Multipi- .c~

cation by -i decieases the amplitude by n/2 Ir2

and rotates the vector clockwise. ------ > 0,,

The following formulas may be noted: 0 2 0

0

r 2
-

-

2+2*=2Z, z--a*=2iy; 2F2; 1

!n"i IJI for real n, *:;I a21 I 2;

11/ZI IZ11/1l21

Figure 20 - Illustrating the product and
quotient of z I and z 2 '
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20. SOME COMMON FUNCTIONS OF z

Functions constructed by moans of algebraic processes, perhaps with the adilon of

the process of taking fi limit, can be taken over at once from the field of real numbers into the

complex field. It is convenient to begin with certain transcendental functions defined by

means of series.

In the defining series
X.2 X3 X4

e + x +, +. + [20a]
2 ! 3 ! 4!

substitution of iO for x gives

eio = I + io - 2 _ o3 + 04 [20b]
2! 3! 4!

Comparison with the series for sin 0 and cos 0, which are stated in Equations [33b, c] shows

that the following important formula holds:

eiO = cos 0 + i sin 0 [20c]

Thus

eiu/2 =-i e-i / 2 = - i, e' =-1

It follows that any complex number can be written in the alternative forms

z = x + iy = r(cos 0 + i sin0) = reiO

Its conjua'o is

z* = x - iy = r(cos 0-isin0) =re- iO

Two other useful functions are the hyperbolic sine and cosine:

sinhx (' -e')x + 3- EL+ 1- +[20d]
2 3 !5! 7!

cosh x- (ex - e+) i + E 6 + ' "  [20e)
2 2! 4 ! 6

From the series it is easily verified that

sin (iy) = i sinh y, cos (iy) -cosh y,

sinh (iy) = i in y, cosh (iy) = cos y

Finally, writing a = reiO and In for the natural logarithm,

In a= lnr 'i0=2ln(x 2 +y2)+itan Y

(fore In r or In (x2 + y2 ) is to be interpreted as the ordinary real logarithm. Thus In a is

many-valued. Its imaginary part has an infinite number of values spaced 2fri apart, namely,

written in terms of any one of them iO, iO + 2-ni, iO + 4rri ... , iW - 21ri, iO - 47ri .. • Even if

z = x and is real and positive, for complete generality In z In z = (In x) real + 27rni, where

n is any integir, pesitivo or negative.
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21. POWERS OF z

Writing z re' 0

z n raile i n o - r(cos i0 + i sin no)

by [20c]. If n is an integer, positive or negative, z" is single-valued; in particular, °0 1, as

for a real number. For nonintegral n, z' is many-valued, because of the ambiguity of 0.

For example:

r1/2 cos~ oT i sin k!o)

But, if 0 is replaced by 0 + 2mn where m is an integer

ZI/2 = r/ 2 jcos(2 0 + ina + i sin(i. 0 + mnn

If m is even, the expression in brackets reduces to cos (1/2 0) - i sin (1/2 0) and the same

value of z1/2 is obtained as before. If, however, m is an odd integer, positive or negative,

Thus, as for a real number, z1/2 has two values, each the negative of the other; see Figure 21.

Similarly, z1/3 has three values, with applitudes spaced 2 rt/ 3 radians apart; and, in

general, if k is a poiive integer, zi/k has k different values with amplitudes spaced 2.7/k
apart. If n is not a rational number, that is, the ratio of two integers, z" has an infinite number

of values.

In working with many-valued functions

such a:; In z or z ' , the value that is to be

employed for amp a must be clearly established. j
If possible, amp a is usually so chosen that

the given function varies continuously as 3

is allowed to vary through such sets of values

as are of interest, and is also continuous with

the same function as ordinarily understood when z I
z becomes real and positive. Thus, for real 3
z > 0, In a is made to become the ordinary real

In z, and z n is real and positive.

Special care is needed when a more

complicated function of z is involved, as, for 7

exa;nple, in In [(a +a)/(z + b)]. Every sum or Zl, 3
difference iepresents a new entity for which a

special rule must be adopted for the determina-

tion of its amplitude. Algebraic changes are

Figure 21 - The various values of a 1 1 2 and z 1 / 3 .
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trea,-herous; for example, In [z2!(-z)i , In (-z), even In 1 '(-1)1 In (-1), if the same rule is

used for amnp (-a) or amp (-1) in oath places. The safest procedure ere in to calculate In a

from the amplitudes and absolute valuos of the separate factors.

22. REGULAR FUNCTIONS OF A COMPLEX VARIABLE

If, in ths complex number, a = x + iy, x and y are allowed to vary, z becomes a complex
variable. If a value of another complex varinble w is associated by means of some rule with

each value of z, then w is a function o z. 11: is also possible to regard w as a complex function
of the real variables x and y, of which it) , -iai and imaginary parts are likewise functions. Thus

W , f~) =W (-,Y) =(XY) + i, (XY) [22a]

where 0 and tt are real functions of x and y.
Some functions of z are single-valued, thac ;s, there is only one value of the function

associated with each value of z; others are many-valued. A function which, at all points within

a certain region an the z-plane, is both single-valued and differentiable, is said to be regular

or analytic or holomorphic within that region. * Such a function is also said to be regular or
analyti-c or holomorpnic at any point in the interior of the region. Many functions are regelar

except at certain points called singular points.
In dealing with many-valued functions, a particular branch of the function can often be

define,) so that, taken by itself, it is regular within a certain region. Thus, if z rei0 and
0 is kept within the range -n < 0 < n, In z is an analytic function of a, except where 0 F, since
st such points In z cannot be differentiated without overstepping the bounds set for 0.

It can be shown that regular frunctions necessarily posses derivatives of all orders.The
reason for this special behavior lies in the fact that a point, on the z-plane can be ap-
proached from many different directions. Thus, in the formula

df _ lirn Af

dz Az -0 Az

if z is a real variable, Az can vary only in magnitude, waeteas if a is a complex variable tie
increment Az may vary also in amplitude, or 4. the directior: of the representative vector on the
diaagam; nevortheless the limit is required to have a fixed value, real or complex. This re-
quirement imposes a severe restriction upon the bertavior of tfhe function.

The existence of a derivative with respect to z requires, in fact, that c'ertain differential
equa'.ions in terms of z and y must be satisfied. Consid-it

f(Z) (X+iy) = (,Y) + i 'b(4,Y)

where 5 and tp are real. Regarding f(z) on the one hand ua- a function of z and on the other hand

as a function of z and y, by the ordinary rule for the dif" trortiation of a function of a function,

*Some writers call a function an Al)tic withum a region when it has * properties stated except at a U.lnite number

of singular points.
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Jz dz a dz' dy dz ay dz
He-ice

da Ofdz ax ay

or

a- + i L =i ilk + [22b]
d az Ox y ay

and, equating real and imaginary parts separately in this last equation,

Lqh L, .. P _0 [22c,d]
ax ay ay dx

These equations are known as the Cauchy-Riemann relations. They hold necessarily
wherever f(z) is differentiable; and it can be shown that they guarantee tile exiStence of a der-

ivative with respect to z wherever the derivativ.es of 0 and , are continuous functions of x aid y.

From [22b] and [22c,d] it follows that

2 2 2 2

I~~ df ao) 1) [22e)
where I I denotes as usual the absolute value.

If w = f(z), then P - F (w) where F denotes another function known as the inverse of

the function f. If f(z) is a regular function at any point z, so is F(w) at the corresponding

value of w. As it real variables,
dz =dwr"-dau dw 1

23. CONFORMAL REPRESENTATION OR MAPPING

Assume that a - z + iy

and
w = f(Z) = + i I [23a]

where f(a) denotes a regular function of a and 95 and 0f are real functions 5 (z,y) 41 (X,y).
Suppose that the values of w are plotted Wli the same plane with thoee of z, with a common real

axis. Then the transformation fom z to w displaces each point on the plane, representing a
value of z, into another position where it represents a value of w. Curves are displaced and,
in general, changed in shape.

Often, however, it is more convenient to plot w on a separate plane called the w-plane.

Then, to each point or curve on one plane there corresponds a point or curve on the other. The
configuration on the z-plane is said to :)e transformed into that on the w-plane, or to be repre-

sented by it, by means of the transformation w - f(a). A diagram on the w-plane can be re-
garded as a kind of map of the correspondiag ii diagram. The comparison is facilitated if the
two planes are thought of as parallel, and with parallel axes for real and imaginary numbers.

Corresponding curves on the two planes will usually differ both in linear scale and in
direction. Lot z undergo hi small increment 8z along a curve, as from P, to P2 in Figure 22.



Then w will receive a small increment Q, Q2 or

da

here dw/dz and 8z are complex numbers; they can be written

dw Reia 8z - 8Iz e 8
dz-

in terms of real numbers R, a, 18zl and /3. Then

Suppose that R A 0 so that dw/dz A 0. Then this last equation shows that the line

element Bw c ,i be formed out of the line element 8z by first stretching or shrinking it in tiho

ratio represented by R, or by the modulu3 of dw/dz, and then rotating it through the angle a,
which is the amplitude of dw/dz.

Thus the vector ropresentihmg 8w makes with the axis of reals on the w-plane an angle

greater by a than the angle that the vector representing 8z makes with the real axis on the
z-plane; see Figure 22. Any other line element at P1, such as P P3, is changed in scale in

the same ratio and is rotated throegh the same angle and in the same direction. The derivative

diw/dz can be thought of as an operator that transforms the line elements in this manner; it
stretches the lc.al area in the ratio R and rotates it through the angle a.

It follows that, if the two curves interesect at an angle y on the z-plane, the txansformed

curves will intersect at the same angle y on the w-plane. Furthermore, the angle is not turned
over; a rotation in the same direction through an angle y swings the tangent from one curve to

the other on either plane. Thus a transformation by means of a regular function f(z) completely
preserves the angles between intersecting curves at all points at which df/dz A 0. Infinitesimal

figures also keep the same shipe, although they may be changed in scale and rotated through a

certain angle, without being turned over.

23  P 9Y Y

Figure 22a Figure 22b

Figure 22 - Illustation of conformal mapping.

40



A transformation or representation which preserves angles and the shape (,f "finite. imal

figures is called isogonal; if the angles are also not turned over, it is called conformal. Mer-
cator's projection represents a conformal mapping of the earth's surface on a plane.

A figure of finite size, hoever, does not usually retain its shape under r. transforma-

tion, since the change of scale and the rotation are usually different at different points, be-

cause of variation in the value of dw/dz.

The angle between two curves may fail to be preserved if they intersect either at a

singular point, where df/da does not exist, or at a point at which df/dz = 0.

It should be noted that as 8z is rotated in direction, by changing its amplitude, w

rotates in the same direction, and by an equal amount. Hence, as the z-point traverses a curve

in a certain direction and the w-point traverses the corresponding curve on the w-plane, the

area on the left-hand side of une curve corresponds to that on the left-hand side of the other,

and the area on the right of one to the area on the right of the other. For example, in Figure 23,

rotating 6z as shown off the curve and toward the area S causes Sw to rotate toward the area T;

this shows that points lying near the cure and in S transform into points in T. Similarly,

nearby points in V transform into points in V. This rule is very useful in the study of con-

formal mapping.

The transformation can also be viewed from the inverse standpoint, as a mapping of the

w-plane on the z-plane by means of the inverse transformation,

2 = F(W)

where F is the inverse function obtained by solving Equation L23a] for z. Then

- - X y = y

Two families of curves on the z-plane that are of particular interest are those definel

by c6 (x,y) = constart and 0 (x,y) - constant. From the conformal property of the transformation,

it follows that these two families of curves intersect orthogonally, wherever dw/dz is finite

and not zero, as illustrated in Figure 29, page 48. For, this is obviously true or the corres-

ponding curves on the w-plane, which are straight lines parallel to the axes. The orthogonality

can also be verified directly from Equations [22b,c].

U
T

VV

Figure 23 - The correspondence of regions adjoining a curve in conformal mapping.
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The values of S6 and of Vi that are thus associated with each point on the a-plane can

be employed as curvilinear orthogonal coordinates on that plane. Thus each regular transfor-

mation furnishes in 0S and 0 a special set of orthogonal coordinates.

If w - f(z) is a many-valued function but such that any one branch of it, taken by itself,

has a unique derivative, then each branch maps an area .3f the z-plane onto the w-plane, inde-

pendently of all other branches.

Finally, a device pointed out by Maxwell may be mentioned that is sometimes useful in

drawing the curves. Suppose the curves, 0 = cost.iit, are to be drawn, and 'hat 0 is the sum

of two terms:
=b(,Y f (-,y) + g (X,Y)

First draw the two sets of curves, f(x,y) - constant, g(x,y) = constant, using the same equal

spacing for the constant values of f and g. These curves divide the plane into approximate

parallelograms. Then iL is easily , en that curves, 0 (z,y) - constant, for equally spaced

values of , pass through opposite corners of these parallelograms as illustrated in Figure 24,

.95

s 9 As 4

f4 93

0r3

202

Figure 24 - Maxwell's construction for curves defined by the sum of two functions.

24. EXAMPLES OF CONFORMAL TRANSFORMATIONS

(1) Coitsider first the linear transformation

w =Az+ B

where A and B are fi~ed numbers, perhaps complex. Let A =a + ib wherg a and b are real.
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dw A 2+b2 a_ ita. - I (ba)

dz

Since du,/dz does not vary from point to point of the z-plane, even finite figures will transform

conformally under this transformation; their linear dimensions, however, will be changed on tile

w-plane in tile ratio i+b 2 and they will be rotated, relatively to the real axis, through an
angle equal to amp A or to tan- 1(b/a). They will also be displaced in the direction of the

vector representing B.

(2). Another interesting transformation is the inverse transforma Lion

to= 1

Z

or

W- a-re
r

The transformation from the z-plane to the w-plane may be imagined to be made in two steps.

First, let each point P at r distance from the origin of z be moved to a position P' lying on the

same radius from the origin but at a distance li/r; that is, each point is displaced to its inverse

point in the unit circle, r = 1. Such a geometrical transformation is called inversion with re-

spect to the circle. It can be visualized by imagining the plane to be turned inside out while

the unit circle stands still. Then let each point be moved to its mirror image in the real axis;

this changes the sign of 0. Thus the inverse transformation is equivalent geometrically to

inversion in the unit circle plus a reflection in the real axis. ThesA two steps may be taken

in either order. The changes may be imagined to be executed on the z-plane, which is then

rechristened the w-plane; see Figures 25 and 26.

CC

Figure 25 -The transformation w = /a Figure 26i - The transformnation w = 1/a.
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The exterior of the unit circle on the a-plane is thus mapped onto the interior of this

circle on the to-plane, and vice versa. Radial lines transform into radial lines with reflection

in the real axis.

It is easily shown that a circle passing through the origin transforms into a straight line

not passing through the origin, whereas any other circle transforms into a circle. If the circle

is centered at the origin, so is the transformed circle, but they lie in inverse positions with

respect to the unit circle.

It is sufficient to prove those statements for the inversion. Referring to Figure 27, for
P on a givL.n circle C,

F2 +1 2 -2 ir cos 0 = a 2 .

The rcsult of substituting r - 1/rI whers r, is the value of r at the inverse point PI, may be

w ritten h2  2 - r C a2

+ (h2 a2 2 _a2cos 0 ( 2)2

which locates P, similarly on another fixed circle. If A - a = b as for 0 'in the figure,

r = 2b cos (. r, cos i = I,'(2b) where t- = l/r, so that Pi is located o,. the line ST.

The point a - 0 is a singularity to which, in strictness, the transformation does not

apply. It is often convenient, however, to speak of a single "point at infinity." If this is

done, it can be said that the transformatior, w - 1/z transforms the point a - 0 into the point

tO = oo. If z is allowed to approach a = 0 in a certain direction, to recedes toward . in a cor-

responding direction, and vice versa. If z goes around z = 0 along a curve of very small

diameter, to goes around to - along a curve on which I to is everywhere large, and vice versa.

The transformation to - 1/a is single-valued in both directions; any point of the a-plane

is transformed into a definite point on the tk-plane, and the inverse transformation 0 = 1/1o

transforms any point on the w-plane into a definite point on the a-plane.

Further formulas for this transformation will be found in Section 37.

The most general transformation that transforms all lines and circles into lines or circles

is the bilinear transformation, sometimes called linear, or

W aa+b

cz +d

whore a,b,c, and d are constants, real or complex

(3). The Transformation
to = ZI/2

on the other hand, is double-valued, transforming every point on the a-plane except 0 and 00

into two points on the to-plane.
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C

Pi

bI

Q

Figure 27 - Circles go into circles under the transformation w = 1/z.

In terms of z - re iO, the two values of w are

w 2 =Z I/ 2  -rl 1 2  os + +isin)

As z moves about on its plane, w, and w 2 both move about on the w-pla.-e; their valjes

are said to constitute different branches of the function a1/2 . The relationship is not like that

of the branches of a tree, hov-'ever, but rather like that of the various loops of a string tied in

an open knot.

To study the situation more closely, let a start from the positive real axis and explore

the a-plane without ever passing directly from the negative real axis to points below it or vice

versa; it may move along curves such as ab, ac in Figure 28. The a-plane may be thought of

as cut apart just below the negative real axis. Let 0 be defined so that -n < 0 , :7. Then

W will explore the right-hand half of the w-plane, including the positive half of the imaginary

axis, while w, explores the other half of the plane. in this way w1 maps the entire z-plane
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b w Z 1/ 2

I b

Figure 28 - The transformation w z 1/2.

onto half of the to-plane; and to2 maps it again onto the other half. So long as the motion of

z is restricted in this manner, to1 and w2 behave as distinct single-valued and regular functions

of Z.

Yet w1 and t 2 cannot be regarded as completely separate functions. For, if 0 is

allowed to vary without limit, and if z goes completely around the origin and returns to its

starting point, as along curve efg (Figure 28), toI and 102 will have just changed places; and,

if z then explores the plane as before, to and to2 interchange roles. It is thus clear tha*, as

z moves freely, both toI and w 2 move continuously and freely on the whole w-plane. Further-

more, the location of the half plane on which the entire z-plane is mapped by either value of

za/2 can be varied at will by changing the position of the line, or curve, along which the

a-plane is cut.

At z = 0, to = w2 = 0, so that the two branches come together. For this reason the

point z - 0 is called a branch point for the function a 1 2 . If z actually passes through the

branch point along a continuous curve, the function z 1 / 2 , approaching along a given branch,

may be assumed to emerge without discontinuity along either branch.

The point z = 0 is also a singular point of a certain kind, and at this point angles are

not preserved in the transformation from z to to.

The inverse transformation z = w2 is single-valuod. But each value of a except

z = 0 and z = a* occurs twice among tho possible values of a = w2 .

£he function In z is discussed in Section 40, and z in Section 39.

25. RELATION OF REGULAR FUNCTIONS TO TWO-DIMENSIONAL

IRROTATIONAL FLOW

Consider the regular transformation (22a]

to = [(z) = + ib
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By differentiating Equitions [22c,d] once more, it is found that
a20 0, 2 0, a2 .

02€ + = 0, + -. 0

az 2  ay2 X2 dV

Thus every regular function of z furnishes at once two real solutions of the Laplace equation

[7a] in two dimensions; they are obtained, respectively, from the real part and the imaginary

part of the function. This principle furnishes a powerful means of discovering such solutions.

Furthermore, as has been seen, the two families of curves, 5 - constant and , = constant,

intersect everywhere orthogonally, as illustrated in Figure 29, except perhaps where dw/dz
vanishes or at a singular point.

Obviously either 0 or tb can be employed as the velocity potential for a type of

irrotational flow.

If q4 is the potential, the x and y components of the velocity are

U a 946 [25a,b]

Thus, using Equation [22c,d],

u - ,v=- [25c,d]

ay Ox

also. The agreement of these equations with Equations [13a,b] shows that di represents the

stream function as previously defined.

The functions 0 and V/i have thus all of the properties of the conjugate functions de-

scribed in Section 13. The relationship is reciprocal; for, any solutions 0 and d, of the two-

dimensional Laplace equation that satisfy Equations [22c,d] can be used to construct a reg.

ular transformation, w = q + i fi. Thus conjugate functions can be defined, as an Iternative,

in terms of their relation to ceitain regular transformations of a complex variable.

Each transformation yields two conjugate types of flow, In the second type, the velocity

potential 0i 'and stream function W, 'are related to 0 Lnd 0& by the equations q5 " v/, b -

and the components of the velocity are

U11=- a., M (7k W -[25e,f]
ax ay ax ay ax a[y

Use has been made here again of the Cauchy-Riemank relations, Equations [22c,d]. This

second type of flow can also be regarded as arising from the modified or conjugate transforma-

tion

,' "+ i "--, - i~f () - , - ; 25g3

Tb,'s the conjugate flow is substituted for the original if in all formulas iw is substituted for

w, sinea itr '- w.

Comparison of Equations (25e,f] and [25c,d] shows, as stated in Section 13, that the

vector velocity in the second type of flow can be produced by rotating the velocity in the first
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_w -- y

Figure 29 - Illustrating the transformation f(z) .- + i for two families of orthogonal curves
r = constant and 0 = constant.

type through an angle of 00 degree in the counterclockwise direction. Furthermore, the mag-

nitude of the velocity, which has in both types the same value q = (U2 + v2 ) 1/ 2 = (u "2 + V'2 )1/ 2 ,

can be written, in view of Equation [22e];

When 0 is the velocity potential, it is convenient tW think of w or 5 + i Of as a complex

potential. Its derivative is related to the velocity by the equation

= - U + iv [25i]

Equations [25i] and [25h] furnish usually the most convenient means of finding the velocity

from Equations [22b] and [25b,c]. The points at which dw/dz = 0 are the stagnation points or

or points of zero velocity.

At a singular ,. int winere dw/dz becomes infinite, q would be infinite. In applications

of the theory, such points must be excluded. By the insertion of a boundary they may be caused

to lie in a region to which the fluid does not penetrate.

So long as dw/dz is single valued, no harm results if w itself is many-valued. In that

case a many-valued potential or stream function is obtained, or both.

But if, also, dw/dz is many-valued, so would be the velocity, in virtue of the relation

expressed in Equation ! -5!]. A many-valued velocity, however, is physically impossible. In

such cases the z-rLano must be cut or divided by a curve, representing a physical boundary,.
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in such a way that, as a varies freely but without touching this curve, w varies continuously
along one branch of its values without the occurronCA of ambiguities as to the value of dw/dz,

Examples of this procedure occur in the next chapt~jr; Sections 40 and 61 may be mentioned.

Many transformations are most conveniently defined in the inverse form as z - F (w).

Upon separating real and imaginary parts, equations of the form x - F1 (0, y - F. (0, 0i) are

obtained. From these equations the equipotential curves and streabnlines, defined by constant

values of qS and 0b, may be traced.

Finally, the physical significance of certain constants that may be introduced into a

transformation should be noted.

Consider, in the first place, the effect of replacing -

W - f(a) [25j]

by -

w f(As +B), or w = f[k(,-A) e ] [25k,l]

where k = AI, a =-amp A, so that A = ke- i , and h =-Beik. The value of w that is

associated with any given value z, of z by the equation to f(z) is assigned by (251) to a

value z2 such that

k(a2 -h)e =aI, ora 2  e +h

Thus the vector representing z2 is obtained from that for z I by changing its magnitude in the

ratio 1/k and also rotating it through the aigle a, and then addirg the vector representing h.

The resulting change in the plot of w on tha z-plane can thus be cescribed by supposing the

plot to be changed in scale in the ratio 1/k and also rotated counterclockwise through an

angle a , without moving the origin, and then to be given the translation represented by the

real or complex number A. The entire flow is thus rotated and displaced on the z-plane in the

manner described. This constitutes an important means by which the solutions of hydrodynamical

problems car. be modified to suit new conditions.

The changes produced in 5 and 0f regarded as functions of x ,4nd y by the rotation and dis-

placement of the plot are the same as would result from an opposite rotation and displacement of

the x and y axes and thus possess in themselves no novelty. The change of scale, however,

is less familiar. It leads to the useful rule that all functions or expres sins resulting from

a transformation w f (z) may be generalized by replacing everywhere a byz, or x, y by kx,

ky, where k is any ;'eal number,

In the second plare, consider the effect of replacing w f (z) by

Cw + D =f (z) [25n]
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Writing C -C1 + i C2 where C1 and C2 are real, Cw = C(6 + i p) = C1rk-C 2 V, + i(C 20+C 1V).

Thus C changs te potential and the stream function from h and ¢, to

(b=C tC2 b, d.Clip +C2 .0

Here, in the terms containing C2 , V, may be regarded as a second possible potential and - 4,

as the corresponding stream function. It is already known, however, that a new potential and

the associated stream function can be constructed by m. .ng a linear combination of other

potentials and the same combination of the associated stream functions.
The addition of D to Cw then merely adds constants toopand Vi**, which, as hydrodynami-

cal quantities, contain arbitrary constants in any case.

In view of all these results, it is often convenient to study a transformation in skeleton

fkyrr, with the omission of constants such as A, 3, C, D. The equations thus obtained may not

l,, imensionally balanced, from the physical standpoint. The results can then easily be gen-

eralized as desired by adding constants to (b and if, or by multiplying both of them in all

equations by the same real constant, or by making suitable combinations of these functions,

or by changing axes on the z-plane, or, finally, by multiplying z, a, and y in all equations by
the same real number. In this way, also the dirensional balance can be restored if desired.

In practical problems a boundary condition is usually specified. If the fluid is confined

by fixed bounding surfaces, the streamlines must be tangential to these surfaces, and over

each of them 0 must have a fixed value. The mathematical problem is then to find a trans-

formation w = f(s) such that the curves representing these surfaces on the z-plane transform
on the w-plane into straight lines parallel to the q axis, along each of which ib has a constant

value.

No practical general method of discovering the necessary transformation is known. It

can sometimes be found by means of the Schwarz-Christoffel transformation, which will be de-

scribed presently. Many types of flow have been discovered by assuming some transformation

and then investigating the flow that it represents.

26. THE TRANSFORMATION OF IRROTATIONAL MOTIONS

The solution of a new problem can sometines be obtained by transforming the known

solution of an old one. Thus, let w - (h + ip l f (z) be the complex potential for a known

problem; and let z be connected with a new variable Z by the transformation

z = x + iy = F(Z), Z = X + iY

The result is equivalent to a single transformation from Z to w:

w f[ (Z) = g (Z)
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Hence, when 4 (z,y) and j, (;,y) have been expressed in terms of X and Y, they may be taken

as the potential and the stream function for a new motion described in Wrms of X and Y. The

original boundaries on the a-plane become transformed into boundaries of a different shape on

the ,-plane; and the curves, 0 = constant and 0, = constant, transform into curves for the same

constant values of 5 and V1 on the Z-plane. Thus the known flow described in terms of z is

transformed into another type of flow satisfying different boundary conditions.

An alternative mathematical statemeni, is the following. Let 0 (z,y), V, (T,y) be a known

pair of conjugate functions, and let x(A,Y), y(X,Y) be any other pair of conjugate functions in

terms of the variables X and Y. Then a ne. pair of conjugate functions in terms of X and Y

can be obtained by substituting in 95 (z,y) and 0, (z,y) the expressions for X and y in terms of

X and Y. They may be written S [x(X,Y), y(X,Y), i[z(X. Y), y(X,Y)]

Any boundary that is a stream)ine on the a-plane remains a streamline on the Z-plane.

Sources and sinks also remain sources and sinks of the same strength; and the circulation

around any closed curve retains the same value around the transformed curve. For, the volume

of fluid emitted from a line source, per second and per unit length, is represented by the de-

crease in 0& as the source is encircled once in the positive direction, according to a principle

stated in Section 40, whereas the circulation around a closed curve is similarly represented by

the decrease in d as the curve is traversed in the positive direction, and these changes in ql

and tl are invariant ,lnder the transformation.

27. THE LAURENT SERIES

Many series of positive powers are limited in their range of convergence. For example,

= +a +z 2 + . .. .
1-a

converges only within the unit circle defined by I z 1. On the other hand, negative powers

such as 1/5 or 1/z 2 are regular fractions of a except only at a = 0. These observations

suggest that s.ries containing both positive and negative powers might be useful.

In books on functions of a complex variable it is shown that, if ((z) is regular at all

points near a given point a = c, it can be expanded in a series of the form

f(a) .... b2 (a-c)- 2 + b1 (a + a +a (z-c) +a 2 (a-c)2 ....

where the a's and b's are constants and all positive and negative powers of (a -c) may occur.

This is called a Laurent Series. It converges at any a J c throughout the interior of a circle

drawn about c as center and passing through the singularity nearest to c; if f(a) has no singu-

larity except perhaps at c itself, the series converges for all a = c.

If the series contains negative powers of unlimited order with nonvanishing coefficients,

/(a) has an essential singularity at a = c; if the series begins with a term containing a definite

negative power, namely, bm (a -c)-m, f(a) has a pole of order m at z = c; if m = 1. the pole is
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called simple. If f(z) is regular also at c, the negative powers disappear and the series be-

conms a Taylor series, converging also at z = c.

rho series exists also if f(z) is assumed to be regular merely outside of a given circle

centered at c, or between two such circles. Then the series converges at least at all points

outside of the given circle, or between the two circles, respectively.

In any case, if a Laurent Series or Taylor Series representing a function to(z) converges

for all large z, then it can be shown that either values of jwj exceeding all limits occur when

z goes to infinity in certain directions, or else the series contains no positive powers of z.

28. COMPLEX INTEGRATION

An integral with respect to the complex variable z = x + iy is defined in the same way

as with real variables, but it has some novel properties.

The indefinite integral of f(z) or ff(z) dz is a function F(z) of z whose derivative is

f(a), as with real variables. If F(z) is many-valued, care must be taken to select a branch of

this function that varies continuously with z.

In defining the definite integral, it is necessary to specify, in addition to the limits, a

definite path of integration connecting them. This may be ndicated by adding to the integral

sign a symbol designating the path. For example, the integral of f(za along the path APB in

Figure 30 is
f( (z) dz Z li f(z) A z

(APB) Az-O

Here the sum on the right is formed as follows.
YChoose a large number of points scattered

34 B along the curve, and let Az stand for the

Az A V difference in the values of z at any two
.22 successive points; thus, in Figure 30, one

P Az Az =z3 - z2, the next Az =z 4 - 23, and so

A_. on. Multiply each Az by the value of f(z) at

_ any point on the corresponding segment of the

curve; for example, if Az - z3 - Z2, f(Z) hZ
may stand for f(z') (z 3- 2), where z' is the

point shown in Figure 30. All the products

thus obtained are to be added, and the limit of

this sum is to be taken as the number of points

is increased indefinitely in such manner that

all of the differences Az approach zero.

Figure 30 - Illustrating the definition of The value of such an integral is usually

a complex integral, a complex number. It can also be written in
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terms of t'vo real line integrals in which tile variables of integration are x and y. Thus, if

/ (a) = (x,y) . i V, (x,y) where 0 and 0, are real functions, since da- dx + idy,

f f(z) az - f(0dx - dy)+if(0dx +.6 dv) [28a]

Here dz and dy may be interpreted as components of successive elements da, and values of
0 and t& are to be taken at points lying on the corresponding elementary segments of the path.

Negative values of dx and dy may occur as well as positive values.

The integral of f(z) along a closed curve is often denoted by J f(z) dz. This symbol
will be understood to imply that the curve is traversed in the positive or counterclockwise

direction, Lhat is, in such a direction that its interior lies on the left.

29. THE CAUCHY INTEGRAL THEOREM A

As in the case of integrals with respect to real variables, reversing tile direction of
integration along the path reverses the sign of the value of ff(z) dz. But integrals of f(z)

along different end points, such as APB and AQB in Figure 30, may or may niot be equal; and

f(z) dz taken around a closed path or contour, such as M in Figure 30, may or may not vanish.
If an integral around a contour does not vanish, its sign is changed if the dire-tion of .ntegra-

tion around the contour is reversed.

The following important theorems can, however, be proved. The first two taken together
are known as Cauchy's integral theorem.

(a) If f(z) is regular at all points both inside of and on i closed contour, then around the

contour Of(z) dz - 0.

(b) If f(z) is regular at all points between and on two paths joining two end points P and P,

then fPf(z) dz has the same value along both paths.
P

(c) If f(z) is regular at all points between and on two closed contours of which one

encloses the other, then Of(z) da has the same value around both contours.

In all three cases, it is also sufficient if f(z), instead of being actually regular on tile

contour or path itself, is merely continuous from the contour or path into the region in which it
is required to be regular.

Cauchy's second proof ol (a) is instructive enough to be repeated here. It is open to a
certain logical objction, however; a more satisfactory proof can be found in books on functions

of a complex variable (for example, E.T. Copson 13).

Let the first of the Cauchy-Riemann equations or [22c] be integrated with respect to z

and y over the area on the ?-plane enclosed within the contour, giving

Ld. dy- f"a dx d y
1JJ Jx4 ay
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Now

provided O7/Ox is continuous in x. [lore 02 and 0, denote values at opposite ends of

the range for x, for any given value of y, as illustrated in Figure .1.

The integral in y is then to be carried out between the extreme limits for y, and dy is

is hero understood to be positive. Thi-i integral can also be written

J (¢ 2 -0 1 )dy= icdy

where 4denotes as usual the integral taken around the contour in the counterclockwi.s:e direc-

tion. For 02 dy equals the corresponding (Ady in the contour integration, whereas q5 dy = - ¢ dy

since all dy's are negative along the left-hand side of the contour. Hence

ff d dy= d4ax

Similarly,

Sdx dy f d f (c,2 - ) dy- I dx

the sign is negative here because it is at point number 2 that dx has opposite signs in the two

integrations.

Hence

-y dx

Similarly, by integrating [2"2d]

- dx= J dy

From these twt equations it is obvious that the right-hand member of Equation [28a] vanishes.

Hence qf(z) dz = 0.

Theorems (b) and (c) are corollaries of (a).

To deauce (b), let APB and AQB denote two paths of the kind specified in (b). Then

APBQA is a closed path to which (a) applies, so that
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2>

dy A
1 2

Figure 31 - A closed path of integration Figure 32 - Two alternative closed paths

of integration.

B A
P) f(z) dz + (Q)f(z) dz =0

Here (P) and (Q) are inserted to specify that the paths of integration pass respectively

through the points P and Q, But
A B

(Q)f(z) dz f (Q)f(z) dz

hence
B B

J (P) f(z)d = J (Q) f(z) dz

To obtain theorem (c), connect any two contours AVDA, EFGE, by a cross-path BF,

as in Figure 32. Then the path BDABFEGFB is a closed contour around which, under the

conditions assumed in theorem (c), f(z) dz = 0. But the path BF is traversed twipe, in

opposite directions, and hence its net contribution to the integral vanishes. The contributions

made by the original contours are thus equal and opposite. But the contour EFGE was trav-

ersed with its interior on the right, or in the negative direction; if traversed positively, its

contribution to the integral is reversed in sign. Ilence ~ ((z) dz has the same value around

the two original contours.
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Those thoorems are of enormous value in the evaluation of conip- integrals. The

evaluation can often be rendered very easy by defornMing the path it" a suitable shape; the

path can be deformed at will so long as it is not deformed past any point at which f(z) ceases

to be regular.

30. SINGULAR POINTS AND RESIDUES

An important case in applications of the theory is that in which f(z) is regular through-

out a certain region S except at one or more internal points. Those excluded points may be

singular points, or theo may be points at which nothing is known or assumed about the function.

Suppose that S contains one excluded point. Then f f(z) da has the same value for

all closed curves lying in S which encircle this point once. This follows from theorem (c) in

Section 29, in view of the fact that no excluded point occurs either between or on the two

curves. The number
1
-l (z) dz

is called the residue of the function f(z) at the excluded point.

If more than one excluded point occurs in S, the value of 9"f(z)dz around a curve en-

circling any finite number of them is 2n i timen the sum of the residues of (z) at the encircled

points. This is proved b deforming the original curve until it consists of separate curves

encircling one sirgular point each and conr.ected by paths that are traversed twice, as illus-

trated in Figure 33, where Q and R represent two exciuded points and the outer curve is the

original one. Tho connecting paths ceont.ibute nothing to f[(z) dz taken around the combined

curve.

As an example, consider

k

(z -a)'

where n is a positive integer and a and k are constants. This function has one singularity, at

z =a. Let the path of integration be a circle of radius R about a =a as center. Then, for values

of z on the circle, Iz-at = R, and, if 0 is the amplitude of z-a,

z-a = Re iO, dz .iRe' O dO

since R is constant along the circle. Thus
2 r

£ kdz - kf iRe'0 dO -i kR 1 f e'(1 - ) 0dO
(z-a)" (ReiO) n

If n > 1,

J kdz ikR'~f n i(1 -n)o 10-2n -0
a)i(1-n) o
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since, for integral n,

ei(1 - n)2u - cos [(1 -n)2] 1

But if n I 1 the integral becomes

Jkdfik f dOx21rik [30a]

Thus the residue of k(z -a)- " is 0 for n > 1 but equal to k for a 1. Often f(z) can be written

in the form

f(2) ( Z)

(z -a)m

where m is a positive integer and tile function g(z) is regular both at 3 = a and in its neighbor-

hood. Then g(z) can be expanded in a Taylor series near z a:

g(z) = ao + a, (z-a) + a, (z-a)2 +.

By substituting this series for g(z) and using

the results just obtained, it is seen that the

residue of f(z) at z = a is am 1 or the coef-

ficient of the power (z-a)m-  in the series.

Or, the residue of f(z) at z - a also equals

g(f) (a)/n! where g(n) (a) denotes the value

of the nth derivative of g at z a.

Figure 33 - Integration around two
singular points Q, R.

31. THE SCHWARZ-CHRISTOFFEL TRANSFORMATION

This transformation is useful in two-dimensional hydrodynamical problems that involve

boundaries in the form of flat surfaces, so that their trace on the zyoplane is a polygon. It

may be an ordinary finite closed polygon, such as A, A2 A 3 A4 A. in Figure 34, or the bound-

ary on the zy-piane may consist of one or more broken lines each of which extends to infinity

in at least one direction. Boundaries of the latter sort can be formed out of a finite polygon

by allowing one or more vertices to recede to infinity and perhaps to spread out there; they

are often regarded as closed polygons with vertices at infinity.

The Schwarz-Christoffel transformation maps the sides of such a polygon onto the real

axis in another complex plane, and r-ips the interior of the polygon into tie upper half of this

plane. If the polygon has vertices at infinity, the space on either side of it may be defined

as the interior.
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Figure 34 -Illustrating the Schwarz-Christoffel transformation.

Lot the polygon be drawn on the z-plane and mapped onto the piano of the variable t,
which is also shown in Figure 34, t being complex.

The appropriate transformation is mcxt simply stated in terms of the inverse derivative,
thus:

do 1  -a2  -an

7t .-2)

hfere K is a constant, real or complex; a1, a 2 . . . a., are n real numbers in ascending order of
magnitude; and ca1, a2 .. * cc are another set of n real numbers.

The powers that occur in [31a] mnust be made single-valued by a suitable convention
concerning the amplitudes. Lot a denote any one of the constants a, a . 0 and a the
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corresponding . .. n. When t is real and t < a, t - a is a negative real number. As t

6xplores the upper half plane and comes down to the real axis where t > a, as illustrated in
Figure 35, the amplitude 0 of t - a decreases by rr. Lot 0 be so chosen that

- < 0 <A 3
2 -2

Then, for the values of t under consideration,

0 varies continuously between 0 and n, and
(I-a)- " 0 is a continuous function and is

differentiable by the ordinary rule. Actually, a

t may be allowed to go anywhere except to
t = a, but it, must not cross the vertical line

extending downward from t = a.
Lot all of the points t - a,, a2 ... a n be treated in this manner. Then dz/dt and the

function z (t) obtained by integrating dz/dt will be regular functions of I above and on Ele real

axis except at the points t = a,, a2 . . . a n '

Finite Polygons. Let a 1, a 2 . . . an be such that

-1< a < 1, j=l1, 2. .. n

< a+ a2 + cc <2

The meaning of the first statement is that all of the a 's lie within the limits specified.

Under these conditi: ts, che transformation defined by Equation [31a] transforms the
real axis of t into a close] polygon on the z-plane. To show this, the equation must be inte-

grated along the real axis.

As t advances a distance 8 t along its real axis, the z-point on the a-plane undergoes

a displacement

dz
8z =- a

Since 8t as a vector is directed toward t=t+o, the direction of az will make with the real axis
on the z-plane an angle equal to the amplitude of dz/dt. This amplitude is in turn the sum of
the amplitudes of the various factors in the right-hand member of Equation [31a].

So long as t is to the left of a,, the amplitudes of all factors such as (t-a)-aremain

constant, and so does amp (d./dt). Thus, as I moves from - c* up to a,, z moves along a
straight line, as illustrated, for example, by A5 A, in Figure 34.

The total complex length of this line is
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S 2  -a n
K (t-a,) (t-a 2) . . -a.) dt

The integral is an improper one, but under the conditions assumed it converges at both limits

and has a finite value.

For, in the first place, over a short range of t from some value t I up to a,, variation of

the remaining factors can be neglected and the corresponding part of the integral is nearly

proportional to
01 -(Ar 1a - 1 i

(t-a,) dt = (1 - c,)-I (t-a) [31b]
1I 1

Since by tissumption a < 1, this integral is finite.

In the second place, for large negative t the constants a,, a2 . . . may all be dropped in

comparison with t. Thus the integral toward t - - reduces approximately to

J(t) + dt A tl-(al+a 2 +''" an) /_
K-f dts~ . t,-o. 1 -(al + a 2 + • a""n)

[31c]

which is finite since the sum of the a 's has been assumed to exceed 1.

As t increases past a1 , the amplitude of t - a decreases from w to 0, as is clear from

Figure 35. Hence the amplitude of (t-a)-'a increases from -a, n to 0, and the amplitude of

da/dt likewise increases by cc, w. Thus from t - a, to t .. a2, z travels along another straight

line making an exterior angle a I Y with the first line. This line, too, is of finite length, as

illustrated byA I A 2 in Figure 34.

It cannot be concluded immediately, however, that these two lines join at AV For it

may not be possible actually to integrate past the point t - a1 , at which dz/dt is infinite if

a1 is positive. To avoid this difficulty, we adopt the standard device of letting t pass abov

a1 along a small semicircle centered at a,, as illustrated in Figure 36. As t traverses this

semicircle, z cuts across from one straight line to the other, along a curve such as that drawn

near A1 in Figure 34. The change in z along this curve is given by the integral of da/dt along

the semicircle.

In terms of polar coordinates, as illustrated in Figure 36, on the semicircle

i01  i01
t-ai I e , dt-iI e dO1

since r I is constant. For an approximate estimate, all other factors -n dz/dt can be treated

as constants; let their product, multiplied by K, bo denoted by Q. Then the change in z as t

goes around the semicircle is, from [31a],
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dtt

1i-a1 0 1(1-01)O1
Aa-- f:dt--i~ri f e - dO1

1 -.- 1 )

Since c1 < 1, the exponent of ri is positive. Hence, as the semicircle is shrunk down onto
t = a, and r! - 0, Az -. 0. On the a-plane, therefore, the two lines must meet at a point.

By proceeding in this manner it can be shown that, as t traverses its real axis from
- oo to + 00, a moves along a broken line with corners corresponding to t = a1 , a2. . . a., at

which extericr angles a I rr, a 2 Tr . .. acr occur. To form a finite polygon, the ends of this
broken line must coincide.

Now the distance between the ends is equal to fo (dz/dt) dt along the entire real
axis, calculated with avoidance of all the singular points in the manner just described. The
value of the integral can be found more easily by the followini indirect method.

Let' trace the following contour, as illustrated in Figure 37. Beginning at a point
t = - R where R is a large positive real number, let " trace the real axis to the point t - R,
except that it goes round above the points a,, a2 . . a, along small semicircles. Let t then
return to its starting-point along a large semicircle of radius IR. On this contour and overywheire
inside it, dz/dt is differentiable. Ience, by the Cauchy integral theorem, f (dz/dt) dt around
the contour vanishes. But it can be shown that the contribution of the large semicircle decransos
to zero as R -. oo. For, on this semicircle, the absolute vaiue of t equals R and is so largo
that a1, a2 . . . anre relatively negligible and may be omitted. Let

i9 jO

t=Re ,dt -iRe dO

and write

a I I2

01

aal +a2+2.an

Figure 36 - Semicircular path past a singular point.
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/R

-aR , (2 0 a a4 1

Figure 37 - A large semicircular path.

Then, from [31a], around the large semicircle, approximately,

rd- .ad t-af i-la)O0

f dt K ft =iKR e dO
[31d]

hK I -1 

1-id

Since by assumption X a > 1, this last expression goes to 0 as R -# oo.

Tile remainder of the contour integral, therefore, must likewise become zero as R -. co,

But if the small semicircles are allowed to shrink down onto their centers, th remainder

bc'.imes in the limit the desired integral. Hence it must be that this latter integral itself

equals zero. It follows that Az = 0 between the ends of the broken line, so that they join and

complete a finite polygon, at A. in Figure 34.

The last segment of the broken line makes an angle (1a) ;r with the first, or the first

makes an angle an+ r (2 - 1a) (2" [ - (a t  + C2 ••• n]r

with the last; in Figure 34 this is the exterior anglMac. A.. The itumber of actual vertices then

depends upon the value of Y c.

IfI a '= c I +a 2 " * * an <2, the polygon has an actual vertex corresponding tot=00

with an exterior angle an+ 17. Tho two adjacent sides A5 A1 and A4 A. in Figure 34, have

lengths
0t 00

f [ral do dt. [real] L' dtL ral T,- f d-

oo 'I
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where [real] indicates that the integral is taken along the real axis. Thus, in gon6eal, n

factors in dz/dt produce a polygon with n+ 1 vertices and sides, and with t = oo at one vertex.

If a I + a2 +... a n, = 2, however, an+ I f 0, so that the first and last segments of the
broken line coalesce into a single straight line. In this case the polygon has only n actual

vertices and sides, and t w occurs somewhere on one side; the total length of this side is

f [real] d dt + [real] da
dt fa

n

This case may be regarded as a degenerate one in which the exterior angle at the (n + 1) st

vertex is zero.

Thus it has been shown that the real axis of t is transformed into a finite closed polygon.

It remains then to show that the arbitrary constants in the transformation can be chosen so as

to fit an arbitrarily chosen polygon on the z-plane.

The general expression for z will be

z = KJ(t-a1 ) - (t-a 2 ) 2  (t-a,) dt + L

Now changing the integration constant L merely translates the polygon on the z-plane; changing

IKI stretches all of its sides in a certain ratio, and changing amp K rotates it about the point

z = L. By adjusting K and L, therefore, one side of the transformed polygon can always be

made to coincide with one side of the given polygon. The two polygons will then coincide

completely provided they have the same shape. The necessary similarity can be secured in

either of two alternative ways.

1. For a polygon of m sides, m-1 factors may be employed in the expression for da/dt,

with at, a 2 * . * am 1 made equal to m-I external angles of the given polygon taken in

order, each divided by ir. The external angles then come out correct. For the lengths of the

sides, m integrals are obtained, two of them extending to t = + a.. Elimination of the factor

K from these integrals leaves m-1 ratios between them. By a suitable choice of a,, a2 . . .

aml, these ratios can be made equal to the m-I ratios of the lengths of the sides of the

given polygon to the length of a chosen side. These latter ratios cannot all be independent,

however; for the last two sides, whose directions are already fixed, will automatically come

into the correct ratio when the other ratios have been adjusted. In Figure 34, for example,

A3 A 4 end A4 A, are fixed in length when their directions have been assigned and when the

sides Al A 2 ani A2 A3 have been constructed in the proper ratio to A. A . Hence two of the

a's can be chose.: arbitrarily, the remaining a's being then chosen so as to give correct values

to m-3 of the rat.-s of the sides. In practice, it is usually most convenient to determine ;"

and L by substituting the valuv, of z at two corners.
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2. As an alternative, m factors may be employed in the expression for dz/dt, with a 's

representing all of the external anglbs. In this case only one integral to infinity is obtained,

representing the length of one of thu m sides, at some point of which t = occurn. The a's

are again subject to m-- 3 condition , but here their number is m. Ilonce in this case three

of the a's can be chosen arbitrarily.

Infinite Polygons. A corner of the polygon can be displaced to infinity in either of

two ways.

1. lf -1 a + 2 ... a < 1, theintegrals tot=+ oand from t=- no longercon-

verge, as is illustrated by Equation [31c]. Thus the broken line extends to infinity at both ends.

Jrhe integral along the semicircle at infinity, in Equation [31d), also no longer vanishes.

If af 2 + . . . a n = 1, an+, =2 -(a, + • . . an) =1 also, and the first and last

sognients of the broken line, on which t < a, or t > a., respectively, differ in direction by

a V = n and so are geometrically parallel. In this case [31a] can also be written

dt

Thus or, the first and last segments dz/dt has opposite signs, so that these segments are

traced in opposite directions. For their distance apart, measured from the last to the first, a

fresh evaluation of the integral in Equation [31Ad] gives
Ir

A2z -i K do=inK

!!ere the factor i causes Az to be perpendicular to both negments, whose directions are those

of T K. This case is illustrated in Figure 38a.

Examples in which - 1 = al + a 2 .. . a n < 1 are illustrated in Figures 38b, c, d. [lere

Nz, estimated as in Equation [31d], is infinite. In Figure 38d the geometrical polygon is re-

duced to a single semi-infinite line and its "interior" includes all the remainder of the a plane.

2. As an alternative, one of the a's may itself exceed 1. Then the integrals up to the

corresponding point a, as in (31b], diverge, and both adjacent sides extend to infinity. No a

should be made greater than 2, however. Two cases are shown in Figures 38e and 38f; in

38f the polygon consists of two unconnected infinite lines.

As with finite polygons, a given infinite polygon can be transformed into the real t

axis in different ways.

In any case, as t traverses its real axis positively, the upper half of the t-plane lies

to the left; hence, as explained under conformal mapping, the corresponding region on the

2-plane lies to the left as z traces the perimeter of the polygon. In the case of finite polygons,

the region on the left is the interior; with an infinite polygon, the region on the left is t'.at
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which is transformed into the uppor half of the t-plane and hence may appropriately be defined

to constitute the interior. An infinite polygon can be traced in either direction; if the direction

is reversed, the exterior angles are replaced by their supplements, and the former extetior be-
becomes the interior.

Detailed discussions of a number of cases will be found in the next chapter.

32. THE IYPERBOLIC FUNCTIONS

fhe following formulas are collected here for convenience of reference. Where - occurs

twice in the same formula, the upper sign is to be taken throughout the formula, or the lower

sign throughout. The posiffive square root is always meant, and In denotes the kgarithm to

base e.
sinh x in(e ex-), cosh x - 1=(e + e-

2 2

exex coh cosh xex+e-x
cosh x X ' sinh x X

sech x _ 1 2 csch 1- . 2

cosh x er+e- X sinh'x eX-e - X

sinh (x±y) sinh x cosh y ± cosh x sinh y

cosh (z±y) - cosh z cosh y ± sinh x sinh y

sinh 2x = 2sinh a cosh x, cosh 2x = cosh 2 x + sinh 2 X

tanht2- 2tanh z coth 2x = I (tanh z + coth z)th2 -1 + tan hy - '

sinh I x ±_ _(cosh x - 1) cosh I x= j(cosh +1)
2 2 2 2

(The sign is + or - according as the value of x is + or - )

tanh 1 z.sinh x coth l - s in h z

2 cosh +1 2 cosh x-1

sinh- 1 x = In (x + +/ 12+), tanh-1 x =- In 1.+.
2 1--

cosh - 1  =±lIn (x+ jXC2-), coth- I X =1 In L±+._1
2 x-I

sinh a cosh a - cosh a = sinh x
(4T dx
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.d tanh x = soch2 X coth x = -csch 2 x

d soch x - - soch x tanh z

d

csch x - csch x coth z

sin (iz) i sinh z sinh (ix) = i sin z

cos (ix) cosh x cosh (ix) = cos x

tan (ix)= i tanh tanh (i.) i tan x

cot (ix) =- i cot x coth (ix) - i cot x

sin (x t iy) = sin x cosh y± i cos x sinh y

cos (x t iy) - cos x cosh y T i sin x sinh y

tan (x ± iy) 1sin 2 z i sinh 22cosz + sin'h .y

cot (z± i y ) j -sill2x Ti sinh 2v

2 sin2z +sinh 2 y

cos x cosh y ± i sin x sinh ysec (- ,
cos 2 - + sin h2 y

csc, (T ±y)sin x cosh y T i cos x sinh y
sin2 x + sinh 2 y

sinh (z + iy) sinh x cos y ± i cosh x sin y

cosh (z + iy) cosh x cos y ± i sinh - sin y

tanh (z ±iy) =1 sinh 2x ± i sin 2y
2 sinh 2 x + cos 2 y

coth (z ± iy) 1 sinh 2z T i sin 2y
2 sinh2 x + sin2 y

sech (x ± ii) cosh x cos y T i sinh z sin y
sinh2 x + COS 2 y
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csch (x ± sinh x cos y T i cosh x sin y

sinh2 X i- sin 2 y

sinh2 x sin2 y + .Josh 2 X cos 2 y - sinh 2 X + cos 2

-cosh 2 z - sin2 y =-1 (cosh 2 x + cos 2y) [32a]
2

sinh 2 X cos 2 y + cosh 2 x sin2 y = sinh 2 x + sin 2 y

-cosh2 X - cos2 y =1 (cosh 2 x - cos 2 y) [32b]2

The first six of these formulas may serve as definitions; the others can be deduced from

them, or, for functions containing i, from results obtained in Section 20. In some cases deno-

,ninators are rationalized. In the last two formulas, the second and thirt members may be added

and divided by 2 in order to obtain the fourth.

The first four functions are plotted in Figure 39.

"4,

-3

Figure 39 - Plots of four hyperbolic functions.
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33. SOME SERIES
X 2 X3

ex  l +  + ! + - + (33a)
2! 3![3a

x 3 X5 X7sip x= x - + -- [33
3! 5! 7!

X2 x4 X6

2! 4! 6!

tan x= x+-1 3 + 2-- X5s+ 1-7 .7 ..z <  
3d

3 15 315 (33d

cot x 1- _ _1 X3 - 2- z . [xH < w] [3-3e]
x 3 45 945

x 3  x 5 x 7

sinh x x + -- +- . [ .333! 5! 7! 33

1 2 X4 X6
cosh x1+-- -... 33g2! 4! 6!

tanhX,=z-_I,3+ . _ 5- 17 X7 ... [XI<L (33h)3 15 31-5 2

coth x =+ ~ -E- 3 +" 2 X5 [ Z . . r 10 <[33i]
z 3 45 945

sin-1 =x+ -L X3L + 1.3 X5+ 1[35X7 . <1 [33J]
2.3 2.4.5 2.4.6.-7

tan-1 x = X -.1 X3 +.I Xs X._7 ..[.(JX < 1
3 5 7 ["

[33k]

2 3- - "z •" x' > 1]

sinh- 1 x x X3 + 1'3 X5 .. .IXI < 1) [3311
2.3 2.4.5

tanh-1 X = +. X 3 +_L--S +.L Z7 + X 7 + . .[IXI < 1] [33ml
3 5 7

In (1 + X) = X _1=X2 +_I X3 _1z4 •[[=[j < 1][33n)
2 3 4

Except as indicated, the expansions hold for all values of x. See Smithsonian Mathematical
Formulas 1 S for other series.
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CHAPTER III

CASES OF TWO-DIMENSIONAL FLO#

The principal known types of two-dimensional flow, including all that are treated in

Lamb's llydrodynamics,1 will be described or listed in this chapter. The important formulas

will be deduced and plots of the streamlines or sometimes the flow net will be shown.

As the theory of complex variables is particularly suiced for two-dimensional problems,

it will be used consistently. Acquaintance with the theory will be assumed, to the extent of

de summary in Chapter II, and also with hyperbolic functions, for %vhich some formulas are

listed in Section 32. As a rule the standard formulation described in the next section will

be adopted.

34. NOTATION AND FORM OF PRESENTATION

The given boundaries portaini,-, to a particular problem are assumed to be drawn on the

piano of the complex variable z = x + ;y, on which x and y are real Cartesian coordinates. Dia-

grams on this piano will be labeled indiscriminately with symbols representing geometrical

magnitudes, such as points or distances, and with symbols representing complex numbers.

The appropriate mathematical transformation is represented in each case by

w(z) = 0 (X,y) + i & (X,Y)

where 0 and 0 are real functions of z and y. Except as stated, the fluid is assumed to be at

rest at infinity. For simplicity, each transformation is regarded as giving rise to two conjugate

types of flow.

In one type of flow, (h represents the velocity potential and t, the stream function; the

equipotential curves are given by 6 = constant, and the streamlines by ip = constant. The

z and y components of the velocity are then

o,6 atf, a6 atf,
U .... 6 ..... [34a,b]

ax ay y Ox

In the conjugate type of flow, the velocity potential q5 'and the stream function di 'are

related to q0 and L6 as follows:

6"=d , i',"=-6

The equipotential curves and the streamlines are inteichanged; and the velocity components u,

v 'are:
a6 • a6

u . .v, V =-- =u [34c,d]
ax ay
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Thus the vector velocity (u', v') is rotated positively or counterclockwise through 90 degree

relative to (u, v). The second type of flow also constitutes the first type as furnished by the

modified transformation,

wI (Z) ,,+ i ,= - i w (Z)

The flow net, or the pattern of equipotential curves aAd streamlines, is geometrically

the same for both types of flow. The magnitude of the velocity is also Lhe same in the two

typos, namely,

q (u2 + v 2 ) _ (u' 2 + v ' 2 )1 =dw [34e]

Furthermore, since dw/dz dw/Ox = Oab/ax + i a¢k/a,
dw dw div

dw - u + iv" = - ; _ d [34fg]
-u a Tz d2

Usually u and v are most easily foun d from Equation [34f] by separating dw/dz into its

real and imaginary parts; in order to do this, it may be necessary to rationalize a denominator

by multiplying by its com, plex conjugate. Frequently, values of u and v obtained in this manner

will be given without writing down de/idz. In some cases, however, use of Equations [34a, b]

is more convenient.
Stagnation points occur in both types where dwidz = 0 and hence q = 0. At such points

the transformation may fail to be conformal, and equipotential curves and streamlines may meet

at other angles than 90 degree.

Singular points for the transformation occur wherever dwdz . . Since at such points

q.. o, they must be excluded from the body of the fluid by inserting suitable boundaries. It is

convenient, however, to allow a singularity to fall on a boundary; iii a physical case, it can

then always be imagined to be removed from the region of the fluid by slightly altering the

shape of the boundary.

When polar coordinates r, 0 are employed, the compo.ient of the velonity in the radial

direction is denoted by qr, that in the transverse direction of increasing 0 by q0 ; these

components are calculated as

qr q0

Many-valued functions are to be understood as defined so that they vary continuously

with z, or with z and y, in all variations that are possible without crossing any boundaries

that may be present. If it is appropriate in a given case to choose a single set of values for

such a function, this is to be done in such manner that the function takes on its ordinary values

at points on the positive z-axis, or the positive real axis for a.

The symbol I will be used only for the positive square root of a positive real number.
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In mony figures tile curves which are streamlines when .0 is the potential will be marked

with arrows. For the conjugate flow tile arrows are then to be supposed transferred to the other

sot of curves. Curvcs are always drawn for equally spaced values of ) or of di, and in flow

nots tile sume spacing is used for both 0 and ut. Sometimes, however, an intermediate curve,

for a value midway, between those for the adjacent curves, may be shown as a broken line.

Physical cases can be constructed as desired by inserting a rigid boundary along any

streamline; this does not disturb the flow, since friction is assumed to be absent. If the bound-

ary extends to infinity so as to divide the field completely, the flow can be assumed to occur

only on one side of it, or to differ by a constant factor on the two sides. Special cases cor-

responding to different possible oositions of such a boundary are not usually illustrated.

The positive direction for angles, and for tracing closed curves, is taken as usual to be

counterclockwise. Thus, in tracing a closed curve positively, its interior lies on the left.

This direction is understood in the symbol 0, denoting the line integral around a closed el, e,

and in the fundamental definition of the circulation.

The circulation F around any closed curve is also equal to the norative of the algebraic

change in the velocity potentia! on going once around the curve in the positive direction.

Many types of two-dimensional flow possess one or more planes of symmetry, which are

represented on the xy-plane by a line of symmetry. Two types of symmetry may be distinguished.

In one type, which will be called symmetry of flow, the actual motion on one side of the

plane is the mirror image of that on the other side. At points symmetrically located relative to

the plane of symmetry, the values of q and 0 are the same, also those of the pressure p, and

of the component of velocity parallel to the p!ane; whereas the component of velocity perpendic-

ular to the plane is oppositely directed. The difference between the value of 1A and its value

on the plane, which is necessarily composed of streamlines, is equal and opposite at the two

points.

in the other type of symmetry, the flow net is again gometrically symmetrical, but the

motions have a different relation; p, of, and the vector component of velocity perpendicular to

the plane of symmetry have equal values at corresponding points, whereas the component of

velocity parallel to the plane, and also the algebraic excess of 0 above its value on the plane,

have equal and opposite values.

Many examples of the two types of symnetry may be found in succeeding sections. The

contrast is specifically mentioned, for example, in Sections 41 and 55.

The kinetic energ' of the mass of fluid that is contained between two planes parallel

to the flow and unit distance apart will be denoted by Ti . It- dimensions are those of kinetic

energy divided by distance or rnl/t 2 .

Formulas for the pressure p will not usually be given. When the boundaries are station-

ary and the motion of the fluid is steady, the pressure is given by the Bernoulli equation,

1 (U2 q2)34h]
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in which p is the density of the fluid, assumed uniform, U is the particle velocity, and p. the

pressure in the fluid at infinity. In many figures tile difference, p-p, or p ((12 -q2)/2, along

selected lines or curves is shown on an arbitrary scale. The pressure along the y-axis is some-

times plotted horizontally, with positive values toward the right. Any case in which the bound-

aries are in uniform translatory motion may be reduced to the corresponding case in which tile)

are at rest by a suitable change of the fran of reference, or by imparting to everything an equal
velocity in the opposite direction. Such a change does not alter the distribution of pressure or

the forces.

Results will commonly be stated in terms of a particular choice of axes, and sometimne'
in terms of particular units of length and of velocity. The use of special units permits the math-

ematical developments to be made in compact form; but the equations may not be dimensionally

balanced. It is to be understood that the formulas, if too specialized, may always be general-

ized by substituting kz, kIX, kly, kr for z, x, y, r, also k2 w, k21, k 2 tb, for w, 0, 0, and k 2 u/k 1 ,

k 2v/kl, k2 q/k 1 , for u,v,q, where k, and k2 are any real numbers, provided these changes

are made consistently in all formulas. Velocities are thereby changed in the ratio kl/k2 , since

u, v, q are then given by the original expressions each multiplied by ki/k2; 3nl all linear

dimensions similarly become 1/k i times as great. Even the velocity at infinity is changed in

the ratio k/k 2 ; and the kinetic energy in a layer of unit thickness perpendicular to the planes

of flow or T, is multiplied in proportion to velocity squared times area or by 1/k2. The dimen-

sional balance may then be restored, if desired, by assigning the proper dimensions to k, and

k,. One type of change without the other may be made by letting either k, or k2 be unity.

In addition, of course, the axes may be moved into any other position by means of the
usual formulas. The method of doing this in terms of z is important and was explained in

Section 25. To displace the flow and all boundaries through distances h1 in the x-direction

and h2 in the y-direction, without rotation, it suffices to replace x by x-h, and y by y-Ah2 in

all formulas, or z by z- h where h = hI +ih 2 . To rotate everything through an angle a about the

origin, which requires rotation of the axes in the opposite direction relatively to the flow field,

replacexbyxcosa +ysina and ybv-xsina +ycosa or z byze-ia anduandv, there-

fore, by u cos a + v sin a and - u sin a f v cos a, respectively, in all formulas. ro effect

first the rotation, about the initial origin, then the displacement, substitute (z-h)e- i a for z;

or, *f = (w), ta ke z = h + e ia f(,).
Where w(z) contains a real multiplicative constant, often A or U, it is to be understood

that reversal of the sign of this factor merely reverses all velocities, with an accompanying

change of sign of and di but without any change in the geometrical equipotential curves and

streamlines and without change of the pressure. Arrows drawn on the streamlines in the plots

refer in each case to a positive value of this constant.

It should be remembered that states of flow of an incompressible fluid may be superposed

freely to form new states of flow. The potential, stream functions, and velocity components

add algebraically, the velocities themselves, vectorially. The pressures and forces, however,



are not additive. Out of all the cases that can be constructed in this manner, only the most

interesting will be mentioned.

The section on unils in Chapter 1, Section 18, may be noted.

The older convention as to the signs of 0 and 0, described in Sections 6, 13, and 16,

may also be noted; it is often encountered in the literature. Formulas based on this older

convention may he obtained by changing the sign before every symbol representing a velocity

component.

SOME SIMPLE TYPES OF FLOW

35. UNIFORM MOTION

iv = Az + C, A = a + ib

where a and b are real constants and C is another constant, real or complex. This transforma-

tion was discussed mathematically in Section 24. Since w = (b + i i,

c ax - by, tb - b. + ay

u=-a, v=b, q=j =A=(a2+b2)'A

The flow is thus one of uniform translation. The flow net, illustrated in Figure 40, corsists

of straight lines.
If the fluid is moving at velocity U in a direction inclined at an angle a to the negative

x-axis, as in Figure 41:A =U,u=- r -Ucosa ,vb =-Usin a,and, with omission of

the physically meaningless constant C,

w = U (cosa - i sinct) z = Uze - i a [35a]

(For notation and method; see Section .34; Reference 2, Section 6.0.)

Figure 40 - Floh net for uniform flow.
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Figure 41 - Definition of U and a in

Equation [35a).

Iz

Figure 42 - Flow net in a right angle:
w = Az 2.

36. HYPERBOLIC FLOW

wt = A, 2 (36a]

where A is a real constant. Then 0i + i h - A(x +iy)2 ,

4-A (X2 -y 2 ), 0 - 2A zy [36b,c]

Both the equipotential curves and the streamlines are rectangular hyperbolas, the former with

asymptotes inclined at 45 degree to the z- y-axes, the latter with the axes themselves as

asymptotes.

In the conjugate flow
.'= 2A xy, P' = A (y 2 - X2) [36d,e]

In both cases q oo at infinity, q = 0 at the origin.

The flow net is the same in all quadrants. One quadrant is shown in Figure 42. It may

be used to give an approximate idea of the flow past a square corner.

The two conjugate flows differ only in that the flow pattern is rotated through 45 degree.

(For notation and method; see Section 34; Reference 1, Article 63; Reference 2, Section 4.70.)

37. LINE DIPOLE
to = - , p is a real constant, [37a]

t -(-iy) =__ Iy
+ + 2 2'X: + *,y ( + iy )A ( - iy ) X2 + y ;2 + 7 y3 7 b[37b,c]

X2 +y2' X2 +y2
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' I 'U 1 [37d]

or

+y = ,Tr = (X2 +y2) 1 / 2  [37ef]

Thus q c. at the origin, where z = 0 and a singularity occurs.

In terms of polar coordirates r and 0, with 0 measured from the x-axis so that X - r cos 0,

y = r sin 0,
11Cos 0 psin 0 [37gh]

r r

n'ime equipotential curves and the streamlines are circles through the origin; their equa-

tions are obtained by assigning a constant value to 6 or i, in Equations [37b,c] or in the equiv-

alent equations

(- + _ , + -- 4[ 37i

The radius is p/( 2 11), or iil(216I1). See Figure 43,

This is the flow duG to a uniform line dipole or doublet. It is obtained in more elemen-

tary fashion in Section 15. rhe axis of the dipole is here the z-axis, which represents a plane

of symmetry. The constant i represents twice the point-dipole moment per unit length; it may

be called the line-dipole moment. The dipole axis is regarded as directed toward the side of

maximum ,6: if p > 0, this is here the positive x-axis, if p < 0, it is the negative x-axis.

The components of velocity in the directions of x and y, or of r and 0, respectively, are

X2 _y2 AXy cos 0 sin0
S = g r4 I v - r 4  , r 

= 2 )t 7 q 0 r 2g - [3 7 k ,l ,m ,n )

The conjugate flow represents a line dipole with axis along the y-axis, directed towarl

negative y if IL > 0. It is also obtainable from the transformation

S t [37o,p,q" -- -z r2- - , _ r2

More generally, the trans formation

/e = 
[37r]

z - z0

where it an a -ire real and z = o + iy O, represents a line dipole located on a line cutting the

xy-plane at (xo , yo), with its axis inclined at an angle a to the positive x-axis; see Figure 44.

Since

eia  cos a 4 isin a (cos a .isin a)[X-Xo-i(y-yo)]
Z_ - 0  -- z0 + i (y- Yo) (X- Zo)2 + (y- Yo)2
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Figure 43 - Flow net for a line dipole: w -/z.

by sabstituting in terms of polar coordinates with origin at (z., Yo) so ihat

r = [(x-xo) 2 + (y-yo)21%, x- o =r cos 0, y - yo r sin 0

it is found that

cos (0- ZI) sin (0 -3vU r Ur r ['st

cos (0 -a) sin (0 -a )qr 1,I - 2 'qO =  r2 [3uv

The singularity now occurs at z = zo, or at (X0, yo), and the plane f skmmetry passes through
xO, yo and is inclined at an angle a to the --axis; these facts verify the statement made as to
the location .,id orientation of th(, dipole.

The geometrical properties of the transformation are dj.cussed in Section 24.
(For notation and method; .ee Section 34; Reference 1, Article 63; Reference 2,

Section 8.23.)
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v (z;y)

(z,yo)

Figure 44 -Dle nition of a, x0 , YO1 in Equation
[37r],

38. LINE QUADRUPOLE

W A
2

where A is a real constant. If z reiO,
AT

+S -i-iV/A =A(re'O) 2  (cos 2 0 - i sin 20) [38a]

A A y
r2 cos 20, 0 =--sin 20, 0= tan - 

_ [38b,c]

i dw 2A e_3i0 2A(cos 30 i sin 30) [38d]

hence
2A 2A

u=- cos 30, v =- sin 30 [38et

, = = 2A ; r (X2 +2) [38g,hl

This type of flow can' be producod in the limit out of that due to two opposing dipoles

placed close together, hence t.e name quadrupole. The origin is a singular point, a pole of

the second order.

Th- equipotential curves and streamlines are !emniscates. The first quad:'ant of the

flow not is illustrated in Figure 45; other quadrants are geometrically similar, with changes

of sign in 0 and ti that are easily determined.

( For notation and method; see Section 34; Reference 1, Article 63.)
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Figure 45 - P.rt of flow net for a
line quadrupole: w = A/z 2 ..

39. FLOW IN AN ANGLE

w = Az [39a]

where A and a are real constants and a is positive. If 2 = re 0 ,

b + i ti A (re i U /a= Ar11 0 ros I bi + i

Ar cos- ,Ar /a sinI- [30b,c]

. ... za -  q =A -ra  [39de]

dz a a

The origin is a singular point, unless n/or is an integer. If & > ri, dw/dz becomes

infinite at z = 0. In any case, as z goes round the point z = 0, the amplitude of w increases by

(2n)n/a and that of dw/dz by (2 rT) (r'/a - 1). lence, if rf/ct. is not an integer, both w and dw/dz

are multiple-valued in the neighborhood of z = 0 or x = y = 0. In applications, therefore, a

boundary must be introduced excluding the origin and also extending to infinity, in order to

make dw/dz and the components of the velocity single-valued.

The diagram of the equipotentials is the same as that of the streamlines but rotated

through an angle 0/2.

The principal application is to represent the flow between two planes meeting at vn

angle of a radians. On one plane let 0 = 0 and on the other 0 = a ; then = 0 on both planes,

and they cut the xy-plane along a streamline. On these planes 4) ± Arri' •.

One sector of the streamline diagram for c =/ 3 is shown in Figure 46; that for

= 3./2 is shown in Figure 47.
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Figure 46 - Strearilines in an angle of Figure 47 - Streamlines around a right

a = n,13 radians: w = Az. angle: a = 3r/2, w = z/3 .

If a = 2rt, the flow is around the edge of a semi-infinite plane. In this case

~1
w = Az 1/ 2 , 6 = Arl / 2 cos _, 4 = Ar1/ 2 sinO-, q r 2 [39f,g,h,i]

2 2 2

Streamlines for this case are shown in Figure 48.
A uniform flow parallel to the plane may be added, producing streamlines as shown in

Figure 49; see Cisotti, Reference 24.

The mathematical transformation Z'= an, where n is real, is useful in constructing
transformations for special purposes. Geometrically, it rerely rotates all radii from the origin,
except the positive real axis, about the origin as center until on the z'-plane they make an
angle with the positive real axis n times as great as on the z-olane. The change is like the
opening or shutting of a fan. !f n is an integer, the a-plane is mapped r. times onto the z'-plane;
the mapping is backwards if i is negative. If mnl < 1, the entire z-plane is mapped onto a
sector of angle 2tin radians. If n is not integral, the transformation is many-valued, with z = 0
as a branch point. In any case, circles centered at the origin transform into arcs of similar

circles.

The more general transformation z'= Cz n also stretches all radii from the origin in a
ratio equal to 1C and rotates everything through an additional angle equal to amp C.

(For notation and method; see Section 34; Reference 1, Article 63; Reference 2 Section

6.0.)

80

. . .. . . -



Figure 48 - Symmetrical streamlines around the edge of a semi-infinite
plane: a= 2y, w = Az 112

- - Figure 49 - Asymmetric streamlines around
the edge of a semi-infinite plane.

(Copied from Reference 24.)
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40. LOGARITHMIC FLOW

w =-A In z [40a]

Let 4 be real. Then, ifz =x +iy=rei o

b + itf, =-A In (re' 0 ) =-A In r-iAO

140b,c]
=-Illnr, it =-AO

where r = (x2+y2)%, 0 = tan-i y,'.;

- u + i= = - - eiO [40d]
dz z r

u=ACos0, v=Asin 0, q =A [40e,f,g}
r r r

rhe origin, z = 0 or x y = 0, is a singular point.

Line Source

The equipotential curves defined by , = constant are circles about the origin, each

defined by a constant value of r or by

X2 + y 2 =e-26/

The streamlines, defined by 0 = constant, are radial lines from the origin; see Figure 50.

This is the flow due to a uniform line

Ysource, as described in Section 15. The vol-

ume emitted by the source per second, per

unit of its length, is 2rrq = 2,rA. The veloc-

ity becomes infinite as the origin is approach-

ed and is nw defined at the origin itself. This

type of flo%% is physicaliy impossible in in-

compressible, indestructible fluid, but it is

useful mathematically in building up by

super-position the solutions for more com-

plicated problems.

The stream function , is many-valued.

In going around the origin in the positive

direction, 0 increases by 2 v and io decreases

by 2.r A. Thus the vlunse of fluid emitted

Figure AO - Flow net for a line source by the source per second and per unit length,
or vortex: w = - A In z

(Copied from Reference 7) represented by 2
t A, is equal to the decrease
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in 6 upon going positively around any closed curve that encircles the source. The decrease
in 6 is also equal to the volume of fluid that flows outward across the cylinder represented

by such a curve, between two pianos of flow unit distance aparL.

It may be noted that, if the flow duo to a line source located at a point P is superposed

upon another flow in which the volocitN at P is finite, the resultant streamlines approximate

more and more to those duo to the source alone as P is approached, since in the flow due to

the source q - . at P.

The equations could be balanced dimensionally by writing w = A In (z/a) where a is
a constant having the dimension of length. Then r is replaced by r/a in 0, which merely adds

a constant to all values of 4b.

Line Vortex

For the conjugate flow the circles become the streamlines and the radii the equipoten-

tials. The potential 0', stream function u!'', and velocity are given by

'---.40, 6'=Alnr [40h,i]

u'=-Asin 9, v'Acos 0, q =A [40j,k,lI
r r r

The corresponding complex potential is

w = 6' + iV,'= iA In z [40m]

It is now the potential 6' that is man -valued; in going counterclockwise once around the origin,

0' changes by -2rr A. The velocity, however, is single-valued, as is dw/dz, except at the

origin; for 0 + 2n;7 has the same space derivatives at any point as has 6 itself. The circula-

tion, taken around any closed curve encircling the origin once, is F = 2 7rA Treated as an

ideal case, the flow may be regarded as due to a line vortex at the origin, as described in

Section 15.
in this type of flow, the singular point can be excluded by inserting a cylindrical

boundary along any one of the circular streamlines. Then 0'and & represent a physically

possible irrotatmonal c;rculatory motion about this cylinder. rhe circulation vanishes taken

around any closed path that does not enclose the cylinder. If the path goes positively once

around the cylinder, however, the circulation r, around it is 2 nA. Thus the constant

2r

If the flow is steady, the pressure is given as usual by the Bernoulli equation.

The velocity increases without limit as the vortex is approached, and is undefined at

the location of the vortex itself. Hence, if the flow due to a line vortex at P is superposed

upon another flow in which the velocity is finite at P, the resultant streamlines near P
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0-(a.b) //

Figure 51 - Symbols for source or
vortex at (a,b). Figure 52 - Streamlines for a superposed

line sourte and vortex:
w =-(A- i 2 ) In z

approximate those due to the vortex alone and consist of closed loops surrounding P; as P is

approached, these looes -pproximate circles centered at P.

To locate the source or vortex at, (a,b) instead of at the origin, it is only necessary to

replace in the formulas z by z-a-ib, hence x by x-a and y by y-b, and to write

r = [(x-a) 2 + (y- b)2]% , 0 = tan t ((y-b)/(x-a)]

ris 0 is measured from a line drawn in the direction of positive z, as illustrated in Figure 51.

Combined Source and Vortex

A line source and vortex may be imagined to coexist oni the same line. The combined

potential and stream function and the resultan, velocity may be written

6 - l lnr - A 20 , V, = -Al 0+ A 2 In r [40n,o]

q7r q0 = A q--(A2 + A2) [40p,q,r]
|'r r 2

The corresponding complex l)otential is w = -(A -iA 2 )In z. The streamlines are equiangular

spirals defined by 0 = (A 2/t) Inr + constant, as illustrated in Figure 52. The equipotential

curves are a similar set of spirals turning in the opposite direction.

Rigid walls might be inserted along any one of the spirals on which d, is constant. If

walls are inserted along n of them, chosen to be equally spaced about the axis, a first step is

taken toward tie idealization of a radial centrtfugal pump; see Section 97.

84

I t



A different type of flow between such walls, in which there is no source on the axis

and hence no not outflow of fluid, was derived by LVwy from the transfer;nation w - zm + in

where ni and n are real constants.

Geometrical Properties of the Transformation z' In z

If z =re' O a r d z'=z'+iy'. then x'= Inr, y'- 0. If 0 is kept in the range -rr < 0,<u,

the entire z-plane is mapprd onto a horizontal strip of the z'-plaue extending frcm but not in-

cluding y'= - n up to and including y'= ft. The negative half of the real axis of z is mapped

onto the upper edge of the strip at y'= u; the positive half becomes the parallel line y'= 0.

All radii from the origin of z, in fact, become lines parallel to the real axis of z', each defined
by a certain value of 0 or y. Circles about the origin of z, on the other hand, being defined by

fixed values of ror of x' become lines parallel to the imaginary axis o z'; the annulus between

two such circles becomes a strip in the same direction. All other straight lines on the z'-ptane
correspond on the z-plane to logarithmic spirals with focus at the origin.

The transformation can be visualized by imagining the z-plane to be cut just below the
negative x-axis and partially shut up like a fan, while the origin is spread out over a width 2r

and simuitaneously displaced to minus infinity.

By selecting for 0 a different range of magnitude 2r2, the strip may be displaced verti-
cally into any other position. Or, if 0 is restricted to a range of widtht e, where 0 < * < 2i7,

the corresponding sector of apical angle a is transformed into a horizontal strip ot width a on
the z'-plane. Finally, if 0 is allowed to range without limit, the z-plane is mapped once on

6very successive strip of width 2 yr. The complete transformation is thus infinitely many-valued.

Sometimes it is convenient in such cases to include both boundaries of the transformed
area. Thus, if - v < 0< r, the negative x-axis is used twice; with 0 = - rr it transforms into

the lower boundary of the strip at y'= - n, with 0 = Yr, into the upper boundary at y'- ir.

A simple closed curve not surrounding the origin on the z-plane becomes a simple closed

curve on the z'-plane, but one that surrounds the origin becomes an endless curve that is per-

iodic in the y'direction, with a period 2rt, provided amp z is allowed to increase indefinitely

as the z curve is traced repeatedly in the same direction. If amp z is restricted to a limited

range, a closed curve about the Z'origin becomes an open one on the z-plane, traced once for

each traversal of the z curve.

The more general transformation, z = A In (az) = A In z + A In a, includes also rotation

about the origin through an angle equal to amp A, a unitorm change o scale in the ratio IAI,
and the displacement represented by A In a.

(1,'or notation and method; see Section 34; Reference 1, Article 64; Reference 2, Section

8.11, 13.10, 13.20, 13.21, 13.33.)
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LINE SINGULARITIES IN COMBINATION

41. LINE SOURCE AND SINK; LINE VORTEX PAIR

it- A[ In (z+c) - In (a-c)]I ['tin]

Or, z= C coth i -
2A

For simplicity, lot the constants At and c be real.

Writing a-C-.reW Z+c=r 2 e 0o2

as illustrated in Figure 53, and a = x + iy,

r 2

+ 2c

dw 2'e

u=A -1 4=o 1Cs0 2A c X2 _Y _2  [41id)

(1 21) 1 2

v IAsin 0, sin 0)4tlc xy[4]
r r,, r2 r!

I 
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wheer = [(z-c), + Y2 ] , r2 [+c) 2 + y2 ] [41f,g]

Here Sin 01 = y/rj, cos 01 = (z-c)/r,, sin 02 = Y/r2 , cos 02 = (X+c)/r 2 from which tan (02-01)

may be found. Also
q = (u2 + v2)% - 2cA 141h)

since

(z2 - 2-c2) 2 + 4 X2 Y2 X [(X+C) 2 + y 21 [(Z-c) 2 + y 2I

On the x-axis, U '; 2Ac/(z 2 -c2); on the y-axis, u = -"2Ac/(y
2 +c 2 ).

Singularit;os occur at (c,O) and at (-c,O), wher,- dw/dz - co.

The S0 curves are circles with centers on the x-axis, each enclosing one of the singular

points. The V, curves. are circular arcs with centers on the y-axis and ending at the singular

points. The equations of these curves can be written either

-2 e,/ , 1- 02 = - '6  [41i,il
ri A

or

( -c coth + Y2 =c2 csch2 (41k)

X2 + + C cot- = c2 csc2  [4111A A

The first of those equations in x and y is obtained by substituting from [41f,g], squaring,

dividing by e/A, and rearranging. The second equation comes from the second expression

given for 1.

The flow net is illustrated in Figure 54.

The curve for b = 0 is the y-axis. If A > 0, b - + C at (c,0) and - -o at (-c,O).

The function 6 is many-valued with a period 2 rr JAI. As the point (x,y) goes positively

oncs around (c,0) without encircling (-c,0), 01 increases by 21r and 6 changes by Ad, = - 2,7A;

if the point encircles (-c,0) instead, A 02 = 2,r and A&, = 21rA. If, however, both singular

points are encircled, or neither, then A, = 0.

The cu; ve for 0 = 0 (or - 21r 4 or 2rrnA) is the x-axis outside of (c,0) and (-c,O), provided

01 and 02 are measured from the same reference radius, as shown in Figuro 53. Assume A> 0.

Then successively smaller values of , are represented by the circular arcs above the axis

taker in descending order. On the x-axis between (c.0) and (-c,O) 01 = IT, 02 = 0, if = - YrA.

The arcs below the x-axis represent successively smaller values cf , down to - 2rnA, for which

the curve is again the outlying part of the x-axis.

When q is the potential, so that Equations [41d,e] hold, a unifor q line source occurs

at each singular point, one being a positive source and the other an equal sink; if A > 0, the
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Figure 54 - Flow net for equal line source and sink, or for a pair of equal and
opposite line vortices, or, in Section 42(A), for the circulating flow

around and between two circular cylinders.
(Copied from Reference 1.)

positive source is at (cO). The streamlines run from the source to the sink, and the stream

function t', is many-valued. -here is flow symmetry about the x-axis, more geometrical sym-

metry about, the y-axis.

Vortex Pair

In the conjugate flow, it is the potential s'= , that is many-valued in the manner just

described; the stream function t/&= - 0 is single-valued. Consequently there is circAation

of magnitude
r = - ' ,"= 2,rA

around any curve encircling (c,O) once, or of magnitude -2rA if the curve encircles (-c,O)

once, whereas the circulation vanishes around curves encircling both points the same number

of times. A 3.niple line vortex may be supposed to exist at (c,O) and another of equal s'xongth

but opposite sign aL (-c,O); these are called a vortex pair. The components of velocity for
this case are u °-- v, v'= u, where u and v are given by [41d,el. There is flow symmetry with

respect to the y-axis, geometrical symmetry with respect to x.
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Figure 55 - Streamlines for a vortex pair. The arrows indicate the direction of
motion of the vortices if they move with the fluid; see Section 41.

If the flow is assumed to be steady, the vortices are stationary. Alternatively, each

vortex may be supposed to move with the average velocity of the fluid in its neighborhood, as
a vortex does in a real fluid; in the present case, t'is velocity is simply that due to tne other
vortex, or, by [401], U = A/2c = 1/4 rre, directed toward negative y if A and F are positive.

The pair of vortices thus advances without change of the distarce between them; see Figure 55,
wnere the direction of advance according to this assnmption is shown by an arrow. The formulas
will continue to represent the motion at each instant provided the axes are allowed to move

with the vortices.

A pair of vortices of th; same sign was discussed by Greenhiil12 6 . Trains of vortices

were introduced by von Karnan 2 7 ; the streamlines for a typical Karman 2 7 ; the streanilines for
a typical Karman colum or "Karman street" are shown in Figure 56.

The transformation w = A [In (z + ic) - In (z- ic)] represents the same flow rotated

through 90 degree, with the source and sink or the vortices at (0,± a).

It may be remarked also thaL toward infinity

Z -- C I /\3
In -=ln( ) +E £ 2cZ-c ( z 3 7''

so that toward infinity the flow due to either a source and sink or a vortex pair approximates

that of a dipole; compare Equation (37a].

89



Figure 56 - Streamlines due to a Karmdn vortex train or "street."
(Copied from Reference 28.)

Further Geometrical Notes

Any given h circle has a radius RO = c csca I(O/A)I, and its center is at x = c coth

(c/A). Thus the points (± c,O) are inverse points with respect to each of these circles; for,

the distances of the points from the center of any circle are d, = Ic - ccoth (,;/4) 1 and d2

= I -- c - c coth (.6/.4)1, and d, d1 = c 2 [coth2 (/IA) - 1 ? = R¢2 . The equation of the circle

inight be written, from [41i],

In =--± =-sinh-1 c [41m]r2 A R 0

the sign depending upon whother t2 or r, is the greater.

The , arcs, on the other hand, have a radius RO = c csc l(d/A and are centered at

y= - c cot (d4). The region between any two of these arcs is mapped onto a strip of the

w-plane lying between the corresponding values of di. The entire z-plane is thus mapped onto

a strip of width 2.7A, between d = - A and ib = .a , and it is mapped again on each successive

strip of the sa.me width.

The arcs for . = -ir A/2 and d, =- 3 , A/2 are semicircles which together form a circle

of radius c centered at the origin and passing through the singular points at (+ c,O). Thus the

transformation can also be used to transform the interior of a circle into an infinite strip. Ite

strip is 71,41 wide and parallel to the real axis of dl; it can be shifted so as to lie between the

lines o = ± - A/r2 by adding i ,A to the value of w and hence ,r- to that of L", and, since iit

In(-1), the transformation can then be .. itten

w = A [In (c+z) - In (c-z)] [41n]
i(0O. -'rr)

liere amp (c-z) has been chosen so that c - z = r- e and In (c-z) = In (z-c) - ir, as

shown in Figure 57; thus nvw O = A (02 -01 + n). The quantity if - 01 also equals the internal

angle 0 between co an, cz measured positively clockwise; in terms of this angle,
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0 ,,- rA2

Figure 57 - Diagram to illustrate the transformation of the interior of a

u;.cle into an infinite strip, by Equation [41n1.

C-S=re e-iOand =A (0+I).

The x-axis between ± o now transforms into the entire real axis or d, = 0. The trans-

formation can be vis;ualized by imagining the interior of the circle to be drawn out into a strip

as the points c and - c recede in opposite directions to infinity.

(For notation -nd method; see Section 34; Reference 1, Article 64, 155; Reference 2,

Sections 6.50, 8.22. 13.30.)

42. CIRCULATING FLOW: CYLINDERS, VORTICES, A WALL

The flow due to a vortex pair, as described in the last section, maybe used to represent

a circulating flow around parallel cylinders. Ifere the potential and stream function are '0

= /', di '= - 5, but it will be convenient to drop the primes. Then the now 6 and V, may be

derived from the modified transformation

w = 0 + i , = i.4 (in ( -c) - In (z+c)) [42a)

whence, in the notation of the last section,

6 = - A (01 - 02), , = - A In F2  [42b,c)
ri

(s i n 0, sin 02) 4AcxyU k -r 2) r 2 r 2 [42d ]

(Cos 0) x2 -Y2-C22

1 2 1 29
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where rw e[(-c) 2 + y2] ", r2 = [(Z+c) 2 + y2

and the angles 01 and 02 are shown in Figure 53. The value of q is ago in given by Equation

[41hi.
.rhe equipotential curves are now the circular arcs ending at (± c,O), while the stre.,.-

lines are the circles about these points; the equations of the arcs and circles, respectively,
are, from [41k,l], 2

X2 +(y+c cot- A)=c2 csc2=l2 [420

AA

xl+ coti- +y 2 =C2 csch2 -=R 2 [42g1

where R 9, R Vi denote the corresponding circular radii. The points (± c,O) are inverse points

with respect to each circle; and die equation of any rp circle can also be written in terns of

geometrical quantities, from [41m], as

in r2 = t sinh-I -c [42h]rI  R

If 4 > 0, ut has ever whore the opposite sign to x, whereas 6 is many-valued. If 0 is

assumed to be zero on the x-axis wherever I x j > c, it decreases in passing above the points

(± c,0), becomes - r .A on the z-axis between those points, and decreases further to - 27TA on

returning below th points (± c.0) to the starting point, where I x I > c. Thus there is circula-

tion of magnitude I' =. 2 rt 4 about (c,O) and of magnitude - 2,r 4 about (- c,0).

By inserting cylindrical boundaries along one or two of the '4 circles, a number of cases

of motion with circulation can be handled. In order to apply the formulas to a given case, it

is necessary to find 4 and c, and the location of the origin of coordinates, in terms of given

quantities.

A. Two Circular Cylinders

Two circular cylinders neither enclosing the other, with axe, D distance apart, may be

represented b% causing t%%o of the ' circles to coincide with the circles representing the

cylinders. For exariple, the circles may be those labeled 1 and 2 in Figure 54, where number 1

encloses the point (c,O) and c:tLnber 2 tie point (-c, 0). Lot the given circulation around any cur~e

encircling cylinder number 1 just once in the positive direction, but not cylinder nutiber 2, be

1', and that around any curve. encircling number 2 only, - 1. Let 0 have values 0 and V12 on

the two cylinders, respectively. Draw the x-axis from 2 toward 1, as in Figure 54. Then A

In this case 02 has the sign of 4 or 1, and V1 has the opposite sign; for, r2 ,/ri < 1 near

cylinder 2 and r2 , 'r > 1 near cylinder 1. If A > 0, '4 increases from I to 2, corresponding to a

downward flow between the two cylinders. lence, whatever the sign of A,
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=- ccsch -0, R2 ccsch "'2 [42h,i]A-' R2 Acse

C coth A X2 - coth L-2 [42j,k]

or

Then/V = o- 2, and, after eliminating all radicals by squaring twice,

4 c2 02 1)2 -(R1 + R2 )1 D2-(R -R 2 )jn

This formula fixes c when 1), Rl, and R2 are given, and the valuas of x I and x2 then locate

the origin of coordinates.

The singular points (- c,O) lie inside the cylinders. Hence a valid representation is

obtained of purely circulatory flow between and around two parallel cylinders. The difference

d2 -V i, represents the volume of fluid that passes between them per second, per unit of their

length.

B. Line Vortex Outside a Circular Cylinder

If cylinder number 1 is omitted and the formulas are continued down to the point fc,O),

the ideal flow is represented due to a line vortex outside a rigid cylindrical boundary of

circular cross-section. The vortex, located at (c,O), is at a distance h from the axis of the

cylinder, which is located at (x2 ,0), where h = c - x 2. If R is written in place of R2 for the

cadius of the cylinder and th2 as before for the value of d, on it, using [42i) and '42m]

(Figure 58), 1? hs_ 2 2  h2 + R2

R -2 h=c+v 2 c= , X2 =42o,p,q,r]

A vc2h 2k

The last equations serve to fix c and x when h and R are given, and A = F/ 2 r, where r is the

assumed circulation around the vortex. The circulation around a curve encircling the cylinder

once in a positive direction is -F.

Figure 58 - Illustration of a line vortex of circulational strength F near a
circular cylinder with circulation r'- ' around it; see Section 42B.
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The term -iA In (z+c) in te expression for w as given in [42a] represents the potential

duo to an image vortex of equal and opposite strength located at (-c,O), or .t a distance h

from the axis of the cylinder where h'= c -x - /c2+I2 - c . Thus /h'= ?2, so that the

vortex and its image are located on inverse lines with respect to the cylinder.

The stream function has the same sign as P or A near the cylinder, the opposite sign

near the vortex.

If the vortex is assumed to move with the fluid, it revolves around the cylinder at the

fixed distance h from its axis, in the opposite direction to that suggested by its own circ.la-

tion and with a linear velocity equal to the fluid velocity caused by the image vortex in the

cylinder, or with a velocity A/2c or I/4rc. The formulas continue t. 3prosent the flow at

each instant provided the axes rotate with the vortex, as does also the imag. vortex in the

cylinder.
The circulation around the cylinder can bc changed by superposing the flow due to

another imaginary vortex located on the axis of the cylinder. Let the circulation due to this

vortex be 1'. The total circulation around the cylinder is then r'- F, and thus vanishes if

r'= 1'. From [42b,c] and [40h,i], if r, 0 are auxiliary polar coordinates with origin on the axis

of the cylinder and coordinate axis parallel to x, as in Figure 58, potential and stream function

for the resultant flow are:

=A (0 - 0)- 0, A In- - In r [42s,t]
1 2) r 2rr

The added components of velocity are u'= - F'sin 0/(2nr),v'= r 'cos 0/(2rrr). The added

term in w is (i1A2 i) F In (z -x 2 ), where z -x 2 = re iO.

If the original vortex is now assumed to move with the fluid, it revolves about the

cylinder as before but at a linear velocity r/(4ac)l - F '/(4,A). The revolution is clockwise

if r, < h F/c, otherwise counterclockwise; if r- = A r/c, the vortex is stationary.

C. A Cylinder of Radius R 2 enclosing one of Radius RI

For this case, us6 is made of two circles lying on the same side of the origin of

coordinates. Let the circulation around the inner cylinder, in the space between the two, be

F. Let the x-axis be drawn in the direction from the axis of the inner cylinder, called number

1, toward the axis of the outer, called number 2; and let their axes be at X, and z 2 , respective-

ly. Lot 01 have values Of and e2 on the two cylinders, respectively. Then, using [42h] and

[4211 for both cylinders,

1 --- ccsch 2-, R =-ccsch >L [4t,u]

1  I , 2  2 +R9 [42vw]
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Figure 60 - Representation of a line
vortex within a cylindrical shell.

Figure 59 - Streamlines between two See Section 42(D).

tigid cylindrical surface, , centered
at x,, x2 . See Section 42 (C).

Here the distance D between the axes of the cylinders equals x2 - z, but c is found to be

given by [42n] as befoiur, and A = r/2r. The value of r, or x2 locates the origin of coordi-

nates. In the region between the cylinders 0 and A have opposite signs.

The formulas represent circulating flow in the space between the two cyl'iders. A

case is illustrated in Figure 59.

D. Line Vortex Inside a Cylinder

Li the case just described, if the inner cylinder is omitted and the formulas are contin-

ued down to the point (c,O), the ideal flow is represented around a line vortex inside of a rigid

cylindrical shell. The vortex is at (c,O) and there is circulation F = 2,7A about any closed curve

lying inside the shell and encircling it once in the positive direction. If R is written for the

radius of the shell, d/0 instead of 02 for the value of ¢ on it, and h for the distance of the

vortex from the axis of the shell, which is at (x 2 ,0), then h = X2 -c and from [42u) and [42w],

I0 = - c csch (---, A = f+R 2 - c, c = (R 2 --h 2 )/2A [42x,y,z]

which fixes c when R and h are given. The origin lies outside of the shell, at a distance

h + c toward negative z from its axis, and inside the shell d has the opposite sign to A; see

Figure 60.

If the vortex is assumed to move with the fluid, it revolves about the axis of the cylin-

drical shell at velocity A/2c, as in Case B; but here the direction of revolution is the same

as that suggested by the circulation around the vortex. If it is located on the axis, the vortex

is stationary.
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Figure 61 - Streamlines between a j
circular cylinder and a wall. /

See Section 42 (E).

E. Cylinder and Plane Wall

By expanding the outer circle in Case C until it coincides with the y-axis, circulating
flow is represented between a circular cylinder and a plane bourndary or wall. Writing R in-
stead of R for the radius of the cylinder, H for the distance of its axis from the wall, and 0

instead of d, for the value of b on it, it is found that 11 = x and

1? = - c csch(=) I= c = v/2-R2 [42a'h',c']

which fixes c when R and It are given. The circulation around any closed curve encircling the

cylinder positively, once but not crossing the wall is r or 2aA.

Since O = 0 on the wall, - to represents the volume of fluid that passes between unit

length of the cylinder and the wall per second, taken positive in the direction of counterclock-
wise motion around the cylinder. See Figure 61.

F. Line Vortex and Rigid Wall

If, in Case E, R is allowed to shrink to zero, the flow is represented due to an ideal

line vortex parallel to a rigid wall and distant 11 or c from it. The wall is at x = 0; the vortex

is at (1,0), and the circulation around it is r or 2 nA. The terms in 0 and 0b that involve refer-
. nce to (-11,0) can be regarded as arising from an image vortex at (-//,0).

The velocity at the wall, from [42e], in which now

c r IH r ~2  2 (y+ q2 ) '

is
2All p ;
y2+112 2+_12

If the vortex is again assumed to move with the fluid, it moves parallel to the wall with

the velocity due to the image vortex, which is A/21 or l'/(4r71l), toward negative y if A > 0.

The axes must be assumed to move with the voctex.
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The frces on the cylinders in any of the preceding cases, when the motion is steady,

are most easily found from the Blasius theorem, which will be proved in Section 74. When

only the two original vortices are present, from [42a]

Substitution for (dw/dz) 2 in Equation [74g] gives, after a slight alge raic change,

X- Y1= p A 2  
- - + +i--- Ida-i Ya=-c) c(Z-c) +c(Z+c) (Z+ C)2

where X I and Y1 repressnt x and y components of the force per unit length on any cylinder due
to fluid outside it, and the integral is to be taKen around tie circle representing the cylinder.

The integral is easily evaluated by the method of residues as explained in Section 30. If the

cylindor encloses the singular point (-c,0) but not (cO),

,Z+c

whereas all other terms of the integrand give zero. Thus

X, -i Y, r A
I c 4rrc

where F -- 2trA and represents the circulation around the cylinder. Since pI' 2/47rc is real,

Y, = 0, and the total force per unit length on the cylinder is

X1  4 d 42d']

If the cylinder encloses the point (c,0) instead,
da
d- = 2ri

and the sign ofX 1 is reversed.
If another cylinder or a wall is present, as in Cases A, C, E, an equal and opposite

force acts on it. The force on a wall is easily verified by direct integration of the Bernoulli
term in the pressure.

If there is only an ideal iine vortex at the point (c,0), the reactive force may be imagined
to act on the vortex, but the formula for the force is correct only if the vortex is assumed to be

stationary. If the fluid and stationary vortex are inside a cylindrical shell, the force on the
shell is the same as if an inner cylinder were present with a circulation F around it equal to
that around the vortex.

The direction of the force on a cylinder or on the wall is in all cases such as to draw

it toward the other cylinder, or toward the wall or vrrtex, along the shortest path between them.

97



In the extended example case considered under Case B, where a vortex is near a

cylinder having total circulation r' - F around it, w contains another term and

dw = iA A +iF i
dz Z-c 3+c 2 n z-x 2

The poles at z = - c and a = x 2 both lie inside the cylinder and conuibuto to the integral. Tile

product terms can be treated as before; for example,

22 (r-c i
(a- c) (Z- X2 ) C-X 2 ( -C Z-X 2 )

The latter product, arising from two poles that lie inside the path of integration, gives zero

in to integration, as is always the case with included poles. The force on the cylinder is

thus found to be, using A = P/2rr where F is the circulation around the vortex,

pfl2 pr "
X =4 tc 2rr h

A positive value of XI, means that the force acts toward the vortex.

Finally, in the case of a vortex moving freely parallel to a wall as described under

Case F, the motion can be made steady without altering the force by imparting to everything

a velocity equal and opposite to that with which the vortex is moving. Tihe fluid velocity at

the wall is then
F 1" Hi

v 4nll y2 +/I,

On the assumption of zero pressure at infinity, the force on the wall is, from [34h], in which

U = 1/4 r/I here,
1 [E(Z..,. 2  r2d~l()2 I 8  lol2l, dy=

V2] y -p - k7_ ( 2 dy=

'ro evaluate the second integral, put y = / tan 0.

(For notation and method; see Section 34; Reference 1, Articles 64, 155; Reference 2,

Section 13.30, 13.31, 13.40, 13.41; for line vortex and cylinder, MuNller 2 8 and Morris. 2 9

43. LINE SOURCE AND PLANE WALL

w = - A [In (z+h) + In (z-h)] [43a]

A and h real constants.

Some problems are easily solved by superposing known types of flow.

Consider for example, a uniform line source in fluid that is bounded, at. a distance h

from the source, by a plane rigid wall parallel to the source, as in Figure 62. If the flow is
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Figure 62 - A line source nea~r a wall. 02

Image h h Source

Wall

first assumed to be the same as it would be in unbounded fluid, the velocity has a component
normal to the wall. Ut;-n this flow let there be superposed the flow that would be associated
in an infinite mass of fluid with an equal and parallel line source located on the opposite side
of the wall, at a distance A from it and on the perpendicular from the given source to the wall
produced. Then at the wall the normal components of these two flows will cancel and tile
boundary condition will thus be satisfied. These two partial flow3 are assumed to exist only
on the side of the wall on which the original source lies. The imaginary second source is
called an image of the first in the plane of the wall.

Let the x-axis be drawn through the source and its image, being thus perpendicular to
the wall, and the y-axis along tile wall. Then, from Section 40, the complex potential is as
given above and the resultant potential b and streamfunction 0& are

q5 =- 4 In (rr 2 ), tb = -A(0 1 +0 2 ) [43b,c]

the significance of r, r2 , 01,02 is exhibited in Figure 62. If it is desired to balance the equa-
tions dimensionally, rI r2 can be replaced by rI r2/a

2 in 0, thereby merely adding a constant to
all values of .,. The volume of fluid emitted by unit length of the line source per second is

2rrA.

Some of the streamlines are shown in Figure 63, above the --axis only, relative to which
the flow is symmetrical. The source is at S. The streamlines are arcs of rectangular hyperbolag,
with centers e.L the origin 0, given by

X2 + 2 xy cot _y2 = h2  [43d]
A

as is easily verified by writing out tan (01 + 02). The oquipotential curves are Bernoullian
lemniscates.

Since z = +iy

q2 1 2 = 4A2  =4A2

Iz Z2 _h2 (X2 _y2A) + 4x2 y

whence

q = 2Ar [43e]
rI r 2
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whore

r2 = X2 + Y2, r 2 . (X -h)2 + y2, r 2 = (X + h2 + y,2

Thus at infinity q - 2A/r, as in the flow duo to a single source of double strength at 0. On the

wall x = 0, r = I y and q = 2A IyI!(h 2 + y2 ); 0 is a stagnation point.

The components of velocity are, from Equation [43b],

Cos CsO2  (sin 01  sin0S I o 0 =r2  t + s-'--) [43f,g]

The not force per unit length on the wall due to the Bernoulli term in the pressure is

S_ 0 4 A y = -pA2  [43h]

f cc 2 0042

The source can be said to attract the %all.

[For notation and method; see Section 34; RefersncA 2, Sections 8.31, 8.41; also

Reference 51

44. ROW OF EQUAL SOURCES OR VORTICES; SOURCE MIDWAY BETWEEN WALLS
OR ON ONE WALL; CONTRACTED CHANNEL

= - A In sinh £z, a and A real, [44a]
a

1Alncos2nx 2 y

... cosh- Cos -[44b]

=-A tan- 1 (tan Ly/ tanh -7 [44c]

from hyperbolic formulas in Section 32 and In (rei O) = in r + i 0. In 95 a constant term is dropped.

In 0, tan - 1 is to be interpreted so as to vary continuously with z and y. Then tan- 1

and y vary in the same sense if x i.; held fixed at a positive value, whereas they vary in op-

posite directions if z is kept negative. While x remains positive, tan- 1 may be assumed to

vanish with y; then, continuity being assumed, either tan- 1 and it y/a are both positive angles

in the first quadran,, or they are both negativo angles in the fourth. The effect of letting x

become negative is easily seen if tan( rty/ 2 ) is kept finite and not zero. For example, let both

tan- 1 and 7y/2 be positive and in the first quadrant, with z = xi > 0. Then, if x is decreased

to -x wfthout change in y, tan - I increases to r - tan- ' [tan (rnyia) /tanh (rrx,/a)]; whereas,

I0
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Figure 64 - A row of equa! line bources/ or vortices.
Plane of Symmetry

Figure 63 - Streamlines due to a line source
S near a wail.

if rry/a and tan- 1 are both negative and in the fcucth quadrant, tan' 1 decreases withdecreas-

ing x to - r + tan- [tan (ir y/a)/tanh (r xi/a)] at"c -e xi.

Hence,

u = - sinh -, v = A sin - [44d,]
all a all a

q272(c 2ifX- - /  h " 2
I try

q2/2 (coshX+ cos -- , = h - - cos- [44f,g]
a2 \ a a a

The expressions for 0, u,v, and e are periodic in tie y direction with a period equal to

a. The y-axis and the lines y = 0, ± a/2, ± a, ± 3/2 a, ± 2a ....... all represent planes of

flow symmetry.

The flow is that due to equal line sources spaced a distance a apart along the y.axis;

at each of the points (0,0), (0, ± a), (0, - 2a), etc., there occurs a line source emitting a volume

2r A per second per unit length. For, as the origin, for example, is encircled posit;vely, tan- t

increases by 2-r and tb decreases by 2 ,r A. If A < 0, line sinks occur at these points. See

Section 40 and Figure 64a.

In the corresponding conjugate floto, with potential W- and stream function g "=- ,

the sources are replaced by line vortices with circulation lF = 2 -rA about each. The veiocity

components are u'=-v, v'=u. At large distraces from the row of vortices u'=0, v'-.,7,1.'a =

F,'2a, since sinh(, z'a)'cosh (2,, z.'a) ,±1 . See Figure 6-1b. Thus, if a large width h of the

plane containing the %ortices is encircled by a path, the circulation about this path is

2h l',"'a = h[F,'a, in agreement with the fact that h 'a %ortices are encircled. The substitution

101



aJ

o--2,YAI

Figure 65 - Flow net due to a line source between walls, or forming one member of a
row of sources; the source mentioned is at the origin.

See Section 44. (Copied from Reference 253.)

sin rrz/a for sinh irz/a rotates everything through 60 deg, with the sources or vortices on the
z-ax is.

A number of interesting physical cases can be constructed by the suitable insertion of

walls.

(A) Line Source Between Parallel Walls

According to Equation [44c], d is constant along each of the lines y = + a/2. (Note

that tan 90 deg = ± c, tan 270 deg = ± .o.) Rigid walls may be inserted along these lines, and

the formulas then represent flow due to a line source midway between two walls separated by

a distance a. The flow net is shown in Figure 65. As indicated on the figure, a consistent

set of values of Vi, which is many-valued, is as follows: & = 0 on the positive x-axis;

= - r A/2 along the positive y-axis to y = a/2 and then in both directions along the wall

that lies a, y = a/2; V1 = - rrA on the negative z-axis; di = - 3 r A/2 on the negative y-axis

and along the other wall at y = - a/2; ul -. - 2rtA just below the z-axis.

As z- ± , v-* 0, u- (w A/a) tanh (2vz/a) .+ ±, A/a. Thus the flow becomes uniform,

and the total rate of outflow from the source is 2 (a lul) = 2 trA, as found before. In general, on

the x-axis v = 0 and
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rrA sinh (2rfa) rA coth [44h]
a cosh(2 7 7a)-I a a

a

On the y-axis u 0 and

v = EM cot Cy [44i]
a a

On the walls aty= + a/2, v=0and

u = A tanh ff 0 [44j]
a a

(B) Line Source in a Stream Between Parallel Walls

If a uniform flow parallel to the walls is superposed, the resulting formulas can be written,

in terms of real constants U and a real positive constant g.

2'y

1) gx _ +ll'x- n cosh 2  2 a")x -[o 44k]

un - a [44m,n]

The uniform velocity that is here superposed is U (1+ g/2a), buL the resultant; stream velocity
at x=+o is U, since, as x-,oo, u4,-U. As x.,-eo, u.a-U (1 + gla). On the walls at yf±a/2,

u U[-l+1a(tanh1---L)] [4401

On the -axis

u - -.. 1 a(cd -1)][4p

u=U lr I a aa)]I

and a stagnation line oc2curs at .- where
a a

U = tanh- E-T - [44o]
a 2a+g
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With a suitablo definition of tan- 1 , , 0 occurs on the x-axis and also on the dividing

surface S defined Lty

(1 + -- tan -  tan .- /tanh -
ga a a

This surfac-, passes through the point (x., 0), and toward x - its sides become parallel o9d

a distance L apart where L represents twice the limiting numerical value of y or

ga
L = - [44s]

a+0

Y

Figure 66 - Flow past a semi-infinite cylinder
" - -- _----"_ _.between walls a apart, or along a channel

S..narrowed in a certain manner. Constructed
- -...-- -- - with use of a line source at 0.

See Section 44.
0 Q

Here, for continuity, tan- 1 [- tan (nL/2a)] is interpreted as rr - rrL/2a. On the walls, Vf = aU/2

at y = a/2, and 0/ = - aU/2 at y = - a/2.

A semi-infinite cylinder can be inserted along S, an,! the flow is then represented

between the walls and past this cylinder. The fluid approaches from x = + 00 at velocity U

.nd leaves, at x = - , at velocity U'= U (1 + gla) = aU/(a-L).

Streamlines for gla = 1 are shown in Figure 66, for y > 0 only, since the x-axis repre-

sents a plane of synrretry. On the cylinder, q = U at P, where x -= 0.087a. Other possible

forms of the cylinder, for g/a = 1/2 and gla = 3, are shown by broken curves.

A wall could also be inserted a!ong the positive x-axis up to xQ and then along .,

forming, with a wall at y = a/2, a channel narrowed in a certain manner,

If the sign of U is changed, all velocities are reversed without change in the geometri-

cal flow net or the pressure. The diagram can be most easily reversed from lett to right by

reversing the positive direction for x.

(C) Line Source in One Wall or Corner of a Channel

In Case A, an additional wall can be inserted along the y-axi,. lt is then convenient

to take 0 = - n 4/2 for y > 0 and 0i = rrA/2 for y < 0, so that ip is continuous on the positive

z-axis. The formulas of Case A, and the right-hand half of Figure 65, will then represent the

flow in a semi-infinite channel with plane walls a apart, due to a line source along the middle

of its base. See Figure 67a. The source may represent approximately fluid entering or leav-

ing through a narrow slit; a volume YrfA passes through the slit per second, between any two

planes of flow unit distance apart.
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(a) (b) (c)
Figuire 67 -Line sourcon a rectilinear boundary or in a corner.

See Section 44(C).
Or, alItbrna ively, walls may be inserted along y = 0 and y = a/2 only. rhen the line

source, of tie same strength, lies o-, a side extending to infinity in both directtions, as in
Figure 67b, and the strumiines ' re illustrated by the upper half of Figure 65.

Finally, walls may be inserted again along y = 0 and y =a/2, and also along y = 0.
Then the formulas and one quarter of Figure 65 represent the flow due to a source or sink in
one corner of a rectangular channel of width a/2, as in Figure GVc. The source emitz 1fA/2
units of v:iwae into the channel per unit time, between planes of flow unit distance apart.

(D) Channel with a Smooth Contraction

The m~athematical formulas can be extended upward to y =a without passing any singu-
larity. The diagram between y 0 and y =a is then symmetric with respect to the line y =a12.
Let a uniform stream be superposed, as in Case B, and let curved infin~ite walls be inserted
along any two streamlines lying between y = 0 and y =a. Then the diagram between these
lines represents flow along a two-dimensional channel whose cross-section changes smoothly
at a certain place along its length. See Figure 68, where any two curves may represent te
walls.

Equations [44k] to [44p] arc applicable. Assume 'k = and tan-' [(tan aYY/a)/tanh
(Pf x/a)i = 0 on the i-axis. Then, for con~tinuity, lan-I passes front the first quadrant into the
second as y increases past y =a/2, provided z > C. but, if x < 0, these two quadrants are
interchanged. Thus, as x -, + P~ nd tanh (w Tla) -, 1, tan-I [(tan (,-, y/a)/ tanh (ff -/a)] IT y/a;
whereas, as z oo- , tan-1 , - (rr y/a). [fence

Ai

as X-+-oo,

Thus, if irI and 6':2 are the values of i, on the curved walls, their distance apart, given by the
difference in y, is

L = a 2
I ~g2U Jatx L=2-U 1az+
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Figure 68 - Streamlines in a channel narrowed D A'

in a certain manner, as constructed (a) (b)
with use a line sources. Figure 69 - Line source on a rectilinear

See Section 44(D). boundary. See Section N,(E).

The ratio of contraction or L1/L is in all cases al(a+,).

If the z-axis is drawn along the central line of symmetry or y = a/2, then in (44k],

[4411, and [44rm,n] tan - 1 is replaced by cotl , 'an by cot, sin by - sin, and cos by - cos.

If infinite piano walls are inserted along y = 0 and y = a, they form a straight channel

with a source in each wall.

(E) Source Anywhere on Wall of a Rectangular Vessel

MJore general cases can be constructed by combining two flows of the type described

in this section. Two examples may be noted.

To represent approximately flow into c- out of a small slit at E in the side of a rectan-

gular two-dimensional v',n ABCD, as sketched in Figure 69a, flows may be superposed due

to two equal rows of ;ources or sinks perpendicular to the side AA"of an infinite channel, with

sources or sinks at. E aad E'on this side, aid a partition may then be inserted along the

plane of symmetry BO.

To represent approximately flow through a small slit located in the bottom of a rectan-

gular vessel ABCD but displaced a distance I from the canter, combine two rows of equal

sources, with the sources 2a apart in each row but the rows differing in position by a - 2b,

where a is the width of the vessel, and insert partitions along two consecutive planes of

symmetry, such as AB and CD in Figure 69b.

In both cases, of course, only the flow inside the vessel is represented. (For notation

and method; see Section 34; Reference 2, Article 10.4, 10.5; Jaffe' (30); Cisotti (31).
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45. ALTERNATING VORTICES OR SOURCES; VORTEX MIDWAY
BETWEEN WALLS

w =- In tanh E.' a and I' real FA5a]
2¥ 2a

ta 1  7 osh 'x+ COS
rtan- in ,/sinh =-- In a a [45b,c]

cosh !.x - COS .y
a a

u .. .cosh sin 7 =-- sinh - cos [45d,e]
2aG a a 2aG a a

q r 2 G-sin2 + sin 2 fy[45f,g]
2aG a a

For the interpretation of tan- 1 , see Section 44:.

On the x-axis; u = 0, v 1/(2a sinh [ 45n]

On the y-axis,,v = 0, u=.r1/ (2a sin~X [45i]

On the lines y=±a/2, 'v 0, u = Fr/ 2a cosh - [45j]

The tan- 1 is to be defined so as to vary continuously with x and y; let one of its values cn the

positive a-a':is be zero.

There is circulacion r around the origin, since tan- 1 increases by 2ow and .) decrea.ses

by r as the origin is encircled. Furthermore, if y is increased by a, ali functions merely

change sign; hence there is circulation - r about (0,a). Finally, everything repeats when y

is changed by 2a. Thus the formulas represent the flow due to a row of vortices spaced a

apart along the y-axis, all of equal strength but alternating in direction of rotation. Part of

the flow net is shown in Figure 70.

The conjugate flow with 0'= Vf, 0b= - ) represents a row of alternate sources and

sinks of equal strength, spaced a apart along the y-axis.

Parallel plane walls may be inserted along the lines y = a/2, on which t6 = 0. Stream-

lines for this case are shown by the central section of Figure 70.

The substitution of tan(wz/2a)for tanh (Yz/ 2 a) rotates everything through 90 degrees,

with the sources or vortices on the x-axis. (For notation and method; see Section 34; Jaff430 ,

Reference 32.)
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Figure 70 - Flow net due to a row of vortce:
or sources of alternating sign, or due " -

vortex between walls a apart.
(Copied from Reference 253.) i

46. ROW OF EQUAL LINE DIPOLES ON A TRANSVERSE AXIS; DIPOLE
MIDWAY BETWEEN WALLS, WITH PAR.LLEL AXIS; FLOW PAST
CYLINDER BETWEEN WALLS OR THKROUGH A GRATING

w=Bcott L, aandBreal; [46a]
a

B zB 2y

a aa (co a a 1 @Vs a a

Lsnh aX+ sin 2  =cosh 2-46f]-a a a a

All functions are periodic in the y direction with a period a. The lines y 0, ± a/2, ± a,.
represent planes of flow symmetry; the y-axis represents a pLne of geometrical symmetry.

At each of the points (0,0), (0 ± a), (0 2a) . . .. on tho y-axis there occurs a line
dipole with line-dipole moment equal to aB/ and with its axis directed toward positive X
(if B > 0). For, near the origin, for example, w = B cosh (rz,/'4lsinh (2rz/a) .4 aB/Irz by use

of the series [33f,g]; this represents a dipole, as in Sectiou 3'f; see Figure 71.

In the conjugate flow the axes of the dipoles are directed along the y-axis; this is the

flow of Section 47 rotated through 90 degrees.
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Figure 71 - Row of equal line dipoles with
transverse axes. -

(1) Dipole Between Walls

On the lines y = ± a/2, r, = 0. Walls may be inserted along these lines, which are

drawn broken in Figure 71. Then the flow is represented due to a dipole placed midway
between parallel walls separated by a distance a; the axis of the dipole is parallel to the walls.

278~ 2irx ) -

On the walls aty-±a/2, v=0, u . - (osh -+l [46g)
it a

On the x-axis, v =0, u = - csh -- 1 (46h]
a Co a

On the axis, .0, 2 ... / [46i
(1 - Cos -46aX

(2) Dipole in a Stream Between Walls

If a uniform stream at velocity U toward negative x is superposed, terms Uz, Vz, Uy

are added in w, 9,, d,, respectively, and a term - U in u. Assume that B/U > 0. Then d = 0,

not only on the x-axis or median plane between the walls, but also on an oval cylindrical

surface S whose equation is

B sin 2113 / -snh + sin
Uy =- s 1a + s i n 2 -- [46j]

2 a a a])

See Figure 72. The semidiamoters of S, rl, and r2, in the z and y directions, are given by

sinh n = ? r2 
= - cot [46k,]

a rU a
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Figure 72 - Nearly cirular cylinder between
walls, obtained with use of dipoles in

a stream. See Section 46.

To obtain the first of these equations, divide (46j) through by y, then let y -+ 0, noting that sin

(2try/a) /y .+ 2ff/a, and solve for x = r1. The second equation has a root 0 < r2 < a/2 for any

B/U > 0.

A cylinder may be inserted along the surface S. Then, if walls are also inserted along

the lines y = ± a/2, the formulas, modified as stated, represent a stream that flows between the

walls and past this cylinder.

Equation [46k] may be solved for r1 by using the seri( . [3311 for sinh- 1 :

rrri i ( , ..1/2 , 3/2 3 If B , /2
a--~ 6 k l 40 -a. .

or

0 fro ( o)r 4
r = To 3 . 0 =  [46m,n]

To obtain a similar series for r29 assume that

2  
Ir0 +c 1  )+ C2( r 4 . . . . .

write [461] in the form
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cB r2 Cot

a2  aU a a

use series [33e] for cot, substitute for r2 in terms of ro and determine ol, c2 . . . . . . by equa-

ting coofficients of like powers. The result is

r1 to 4itA _ [40o1r2 =re 1 a 30 . .a ..

Thus, when aB/rrU is small, so that rr ro/a is small, -so that, yrro/a is small, r, and r2

P gree to the second order, and S closely approximates a circle. Its radius becomes ro as

aB/U. 0. Even if r2 = a/4, r, exceeds r2 by less than 2 percent, although both are about

10 percent smaller than r0.

The kinetic energy of the fluid, when the cylinder moves at velocity U in translation
parallel to the walls while the fluid at infinity is at rest, is easily found from Equation j76a]

in Section 76. For such motion the complex potential, obtained by dropping again the term

Ua, is w as given by [46a]. Lot the path of integration be displaced outward from the contour
of the cylinder until it becomes a long rectangle with sides lying along the walls and ends at

x = ± 1. Then on the walls dz = dx and b = 0; hence the walls contribute nothing to (') t w dz.

On the ends, dz = i dy and q5, -± B sinh (2if1/a)/[cosh 2, i/h) + 1] - t B tanh (Yrl/a) - ± B as

I , so that the ends contribute

Ca/ 2

2Bf dr, = 2aB
~- /

Thus the kinetic energy of the fluid, per unit length of the cylinder, is, from [76a],

T =1-p U (2aBQ-US) -=- I p U 2  ro2 _ S) [46p]

where S is the cross-sectional area of the cylinder. If ro/a is small, the radius of the cylinder

can be taken to be, from [46m,o], r = r0 [1 - (uro/a)2 /61, so that r0 = r [1 + (rt/a)2 /6), approxi-

mately; and S rt2. Then (see Taylor 3 3)

T, 1 Pur2U 2 +1 2 +. [46q1

(3) Flow Through a Orating. When the stream is present, a similar surface
S surrounds each of the points (0, 0), (0, ± a), (0, + 2a) .... On the surface surround-

ing (0,a), for example, t, = aU, and the equation of the surface can be written
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Figure 74 - Row of equal line dipoles
with longitudinal axes.

Figure 73 - Streamlines between two nearly
circular cylinders, mounted in walls or

forming two members of an infinite
grating. See S7ction 46.

B . 2,r(y-a) [46r]
U(y-a) - sin

II 2

Thus, if no walls are inserted, the formulas represent a stream flowing at normal incidence

through a grating whose bars are represented by the surfaces S. The bars are nearly circuar

in section provided their diameters are smaller than the intervening spaces. Some streamlines

for this case are shown in Figure 73.

(For notation and method; see Section 34; Reference 1, Article 64.)

47. ROW OF EQUAL LINE DIPOLES ON A LONGITUDINAL AXIS;
FLOW PAST A GRATING

7z2
ic B cot- , a and B real [47a]

a

Sin- , V/=--- sinh [47b,c]
a1 a a

ui~ [i2 ~ + sjnh2 ~J= cosh -tr - cs [7

:12
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22, 2._ . 2nB sn2, x 2ff
2rrB 1-cosncosh V sin -nsinh

all2  a all2  a a [47e,f]

All functions are periodic in the direction of .z with the period a, and the x-axis represents a

plane of flow symmetry. The lines x = 0, ± a/2, ± a ........ represent planes of purely

geometrical symmetry.
Near the origin, as in Section 46, w reduces to aB/iz, so that there is a dipole at the

origin with line-dipole moment equal to aB/, and with its axis directed toward positive X if

B > 0, toward negative x if R < 0. Similar line dipoles occur at Y = 0 and x = ± a, L 2a.

Hence the formulas represent the flow due a row of such dipoles spaced a apart along the

z-axis; see Figure 74.

On the x-axis, v = 0, u=I1 - cos [47g
a \ -

On the lines x = 0, ± a, ± 2a, etc., v = 0,

u=- s h !os-- [47h]
a

In the conjugate flow the dipole axes are directed parallel to the y-axis; thi, is the

flow of Section 46 rotated through 90 degrees.

Flow Fast a Grating

V a uniform flow at velocity U toward aegative x is superposed, a term -U is added

in u, Us in w, and Ux in q!, and the formula for 0 becomes

b= Uy-_ sinh-Y , 47i]
IIH a

Assume that B/U is rssitive, so that the dipole axes are oppositely directed to the stream.

Then & = 0 on the x-axis and on a dividing surface S, symmstrical with respect to both axes,

given by

y=iBsinh- / I osh- -cos- l [47j)
U a (C a a
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if nfB/aU > 1, S consists of two undulating surfaces enclosing.the plane y = 0. This

appears from Equation 147k], which cannot be solved for r, if nrB/aU > 1, so that S cannot cut

the z-axis.

If rtB/aU < 1, S breaks up into a set of similar cylindrical surfaces with axes at

z0, 1 a, ± 2a ..... .'rie semidiameters of each cylinder in the x and y directions, found as

in Section 46, are ri and r2 where

rl /rB r2 Bcooh _"r2

sin = , B= -- [47k,l]
a V a U  U a

Stagnation lines occur on the'y I ders where y = 0.

The formulas will then repr sent streaming flow past a grating whose bars have the

contours of the cylinders. If the diameter of the bars is smaller than the spacing between

them, they are nearly circu!ar in section, the y-diameter exceeding the x-diameter by less than

2 percent. Streamlines for such a case are shown in Figure 75; only half of the symmetrical

diagram is illustrated. If the diameter is small, rI = r2 = (aB/n fV)" , nearly.

(For notation and method, see Section 34.)

48. ALTERNATING LINE DIPOLES; DIPOLE MIDWAY BETWEEN
WALLS, WITH PERPENDICULAR AXIS

w=iB/ sin 11 ) [48a]
a)

B * y B nX ry
, =-cosh - sin -, T = sinh - -os

G a a G a a

G+= sinh2- + 2 (cosh- -cos ) [48d)
a a 2 t7 a )

U=-coh -- + cos2 ly sinh si -" [48e]

aG 2  a a a a

V fB / 2r'7z - ) si2 7Y rr ry

cosh - Cos - [481]
aG 7) a a a

Near (0,0), w -. ia B/irz, representing a line dipc:e of moment aB/nr at the origin with

its axis toward positive y (if B > 0). See Section 46. The entire field represents a row of such

dipoles spaced a apart along the y-axis and with their axes directed alternately toward positive

and toward negative y.

.n the conjugate flow the dipoie axes are par:,alel to the x-axis.
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y

0

Figure 75 - Streamlines past a grating of
nearly circular cylinders; see Section 47.

(Copied from Reference 253.)

Figure 76 - Row of line dipoles with axes
longitudinal but alternating in direction.

On the lines y = -a/2, ih = 0. Hence parallel plane walls may be inserted along these

lines. Then the flow is represented due to a dipole placed midway between walls a apart, with

its axis perpendicular to the walls; see Figure 76.

iB rx

On the x-axis, u = 0, v = - - coth - csch - [48g]
a a a

On the walls at y =a/2, u= - tanh -r sech -. [48h]
a a a

YnB rrx 17X

Oa the y-axis, v = -- cot - csc - [48i]
a a a

(For notation and method, see Section 34.)

49. LINE SOURCE, VORTEX OR DIPOLE ANYWHERE
BETWEEN PARALLEL WALLS

If the line singularity between walls, as considered in Sections 44, 45, 46, and 48, is

at a distance b from the median plane between the walls, the complex potential ij modified as

follows:

Line source:

F A~n ia(-ib) r(z+ib-ta)1
w = -A [n sinh + In sinh ] [49a]2a "2a

Line vortnx:

lnsinh rr(z+ ib-ia)1 [49
2u L 2a 2a
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Line dipole with axis parallel to walls:

' rc ff('-ib) n(a+ib-ia)1
w =- C+ coh+ th [49c]2 2a 2a .,

Line dipole perpendicular to walls:

i0[~ ~ ( (-i) +ib-ia)l
w=--[ coth "(z-il) -coth 'T aJ] [49d]

The walls are assumed to be at y ± a/2 as before, where a/2 > Jbi. If no walls are present,
there are two rows of singularities displaced a distance 2b relatively to each other, the spac-

ing jn each row being 2a. A, 17, and 0 are real; the volume emitted per unit length from the

source is 2,rA, the circulation around the vortex is F, the line-dipole moment is aC/F.

Expressions for ,, &, u, and v are easily constructed by substituting first y - b. then

y + b - a, for y, and 2a for a, in formulas given in Sections 44, 45, 46, or 48, and combining

the %wo terms thus obtained. For the line vortex the formulas for the conjugate flow of Sec-

tion 44, not those of Section 45, are to be used, with A = r/2r; the corresponding complex

potential is w = An sinh (i7z/a). Similarly, for the fourth case, the conjugate flow of Sec-

tion 46 reversed in sign is to be used, with a complex potential iB coth (.2/a); B is to be

replaced by C/2. (Reference: Jaffe' 3 0 , Caldonazzo 3 2 ).

50. TWO LINE DIPOLES IN OPPOSITION;
DIPOLE AND A WALL

w IL eT- )-,p pandcrealandc>0, [50a]

Co(01 c) COS (02 +c) i sin (01 - ) sin (02 +a)c4\ ~c
Ji r2 ~ r - r

where the significance of rl, i2, 01, 02 is adequately shown in Figure 77.

Y

Figuro 77 - A line dipole at (o,0) and
01 its image in a wall along the y-axis.

-C\C
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From Section 37 it is seen that these fo-mulas represent a line dipole of moment p,

located at (c,O) and having its axis directed at an angle ce with the positive x-axis, together

with another of equal moment located at (-c,O) and having its axis inclined at a clockwiso

angle ce from the negative x-axis. To obtain the second term as here written from (57r], re-

place a by -r-aand note that e rr =- 1.

The particle velocity is easily found by adding vectorially the velocities due to rhe

two dipoles.

Along the y-axis, whore 02 O= - 01, and r, = r2 , Vi = 0. Hence a rigid wall may be in-

sorted along the y-axis; then either half of the field represents the flow due to a line dipole

in the presence of a parallel rigid plane boundary. The other dipole may be regarded as an

image of the first in the wall.

(For notation and method; see Section 34; Reference 2, Section 8.42.)

51. LINE SOURCE AND CYLINDRICAL BARRIER

The problem of a uniform line source parallel to a cylindrical barrier of circular cross-

section is easily soluble by the method of images.

Let the source be at P, distant k., from the axis of the cylinder, whose radius is a; see

Figure 78. Add, outside the cylinder, the flow that would be due to an equal and parallel line

source on the inverse line Q in the cylinder, which lies in the plane containing the axis of the

cylinder but at a distance A2 = a 2 /h from the axis. Add also the flow due to a line sink of

equal strength located on the axis 0 itself.

(XY)

Figure 78 - A line source at P a
outside a circular cylinder.

0 2

The resultant stream function is from Equation [40c] in Section 40,

0 ( ,y)= A (0 + 02 - 0) [51a1

where A is a real constant and 01, 0., 0 are variable angles defined as shown in Figure 78.

At any point S on the cylinder: the triangles OSQ and OSP aro similar; hence angle OSQ equals

angle OPS or r- 01, whence 02 = 0 + - 01. Thus at points on the cylinder 01 + 02 - 0

and b -Art and is ccrastant. The 3tieamline for & = -Air thus proceeds from P to the nearest
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point on the cylinder, divides, passes around it, and then continues along the extension of

PO. The extension of OP to the right of P is the streamline for & 0.

The velocity potential is, from Equation [40b],

q"-A log (.r ) r, [51b]

or, in a dirensionally balanced form,

(r Ir2N

9 = -A log - -[51c]
ar

where rp r2, and r are distances as shown in Figure 78. The complex potential, with the
origin on the axis of the cylinder and the source at (A1,0), is

W =-A [log (3a -d+ log (sa h2 ) -log] [51d]

The components of velocity may be written down from Equations [R0e,f].

On the cylinder, taking d3 = a d 0,

q i A + T sin 0
&s aO \ 1  F2I

2

since

r 1-2 2 + h _ 2a Icos O, r :.a +h 2 -2ah cos O,

or, using the similar triangles again to show that r. -r, = al,

r 1
q 2A - sinO. [51e]

Half of the flow net, which is symmetrical with respect to thp OP axis, is shown for

h1 = 2a in Figure 79. The source is at P.

The total force gr unit length on the cylinder is

F = 2frpa 2A2  [51f]
h 1 (h2 - a2)

4

and is directed toward the source. This result is easily obtained from the Blasius theorem
and the residues at a 0 and z =h 2; compare Section 42.
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a

I
I2 Plane of Symmetry

Figure 79 - Streamlines from a line source at P near a circular cylinder.

The equations will represent also the flow ins;de a cylindrical shell of radius a due

to a line sink along the axis and a parallel line source of equal strength distant A2 from the

axis; then in the formulas the constant h stands for a2 /h2.

If A is made negative, sources become sinks and vice versa, and all velocities are

reversed. (See Reference 1, Article 64; Reference 2, Sections 8.61, 8.62.)

52. LINE DIPOLE AND CYLINDRICAL BARRIER

Near a circula, cylinder let there exist both a parallel line source .t.,d a line sink of

equal strength. Than, upon superposing the flow's as described in Section 51, it is noted

that the images at the origin cancel each other and there remain only the image source and

sink at the inverse points. By imaginipg the external source and sink to coaleace while

suitably increasing in strength, so as to form a dipole, the conclusion is reached that the

image of a line dipole in a circular cylinder with parallel axis is a dipole located on the in-

verse line with respect to the cylinder.

Let the given dipole be at a distance bI from the axis of the cylinder, whose radius is

a, and let its axis make an angle a with the line drawn from the axis of the cylinder through

the position of the dipole, as in Figure 80. Then, using [37r) for the potential dut, to a Line

dipole,
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r0a '01 Figure 80 - Image of a line dipole in a
'2 #1 circular cylinder; see Section 52.

b2b'

wa 2 e= b a , [52a,b]

a-b1  b?32/ 2

-Cos (01-a a 2 Cos (0 2 +s sin(0, -6) a 2 sin (0 2 +a) [52c,d]
L ri -r 2 Lr 1  b2  r

11

where the significance of r , r2, 01, and 02 is as shown in Figure 80. The real constant p
is the line-dipole moment of the given dipole. The dipole and its image have axes equally
but oppositely inclined to the line joining ftheir positions.

On the cylinder itself, since r2/r I - a/b, and r, sin 01 r2 sin 02 expanding the

sines

V, si* (Cos 01 a2 COS 02)

r I b21 r

1 2

But, also, on the cylinder

cos 01 =(a 2 -b2 -r2)/2b1

and

Hee
4 Cos 02  (a2-b2 -r2)_-(b -a 2 

-r2)

Hence

IL sin a 
(52o]bi

and thus has a constant value, so that the cylinder forms part of a stream surface.
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The formulas may represent the flow due to a dipole outside of such a cylinder, or, if

b1 < a, the flow inside a cylindrical shell of radius a caused by a line dipole inside it. In

either case the subscript 1 refers to the given dipole, and the other dipole may be regarded

as the image of this one in the .ylinder.

The force on the cylinder can be found, as in Section 42, from the Blasius theorem

and the method of residues. Here

dw eia  a 2  e-i
dT + -- I

(z -b)2  b2 (b 2

If b1 > a, inside the cylinder there is only a singularity at z = b2 , and, expanding at a = b2,

as in Section 30,

1 1 2(z-b 2 )
b -2 (b2 -bi + z - b2 )-2 = - -- 2

( 1-bt) (b2 -b 1 )2  (b2 -b 1 )3

If bI < a, the singularity is located at b and (ab2)-2 is expanded; the path of integration

is then trav'erse, in the negative direction, so that ' (z-bi)- dz =- 2tri. In either case the

force pet unit length on the cylinder is found to be directed toward the dipole and to be of

magnitude

4vpp2 a2 b1
F = - [52h]

The force is thus il;dependent of the direction of the dipole axis. (See Reference 2, Section

8.81, 8.82.)

53. LINE SOURCE IN UNIFORM STREAM

Upon the flow due to a line source at the origin let there be superposed a uniform flow

at velocity U toward negative x. From Equations [35a] and [40a] the resultant w, 5, and

may be written

w = U(S-glnz) [53a]

5= U(x-glnr), -= U(y-gO) [53b,c]

r (X,2 + y2 )11, 0 = tan- , (y/X),

where g is a real poitive constant, 101< r, and 0 has the sign of y; soe Figure 81. Thus
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3' u
d

5

r

6 z Figure 81 - Line soucce at 0 in a
0 g12 g uniform stream; see Section 53.

Co 0) sin 0
U s kn -+9 gv [53d,e]

dw Xq +Id -9WIr,
-= U 1i U =±21-+

_Z + z, d = (z-X ++ y2 , [53f,g]

where r, is the distance from the stagnation point at (y,0) Note that ar/az = x/r - cos 0.

The only singularity occurs at the origin; and the x-axis is an axis of flow symmetry.

The value 0 0 occurs on the positive x-axis and also on a curve S defined by

Y = go, or r - go/sin 0, [53h,i]

As 0 -. 0, y -. 0; also 0/sin 0 -. 1, so that r - g. Hence S passes through (g,O). Toward

z - , 101 "r w, and IyI increases to a maximum of irg.

Thus the streamline for qi - 0 follows the x-axis to the nose of S, where it divides and

continues along both sides of S. Every other streamline undergoes a lateral displacement of

+ irg from + - to - -, or from 0 = 0 to 0 = ± a. All fluid coming from infinity remains outside

of S, and all fluid emitted from the source remains inside S.

An infinite solid cylinder may be inserted along S, extending to infinity also toward

negative z, whore it has a maximum thickness of 2rng. The formulas then represent flow past

this cylinder. They may also be used to represent the flow due to a line source inside a cy-

lindrical shell having the form of S.

If the motion is steady, the values q - IUI and p - p. occur on S where r, rj n =gA2,

from [53g]. On the x-axis ahead of S, r x n, rI = z - g, q m IVI (1-g/), and

P - -( [53j]
X
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The net force on the cylinder is parallel to the z-axis, by symmetry; taken positive

toward negative z, it is, per unit of length perpendicular to the flow,

F - fp cos e ds

where p is the pressure on the cylinder at any point, da is an element of distance along S,

and e is the angle between the normal to ds and the x-axis; see Figure 81. But, also, ds cos

= dy where dy is the elsment of y corresponding to d8. Hence

F - fp dy [53k]

Inserting p - p q2 /2, also r2 r2 + 2
- 2gr cos 0, and using [53h,i], the contribution

of the Bernoulli term to the pressure is found to be

S= - %pqU2 j' "2 Sir, 0 cos 0 + Si20 dO
0 02

But

Ir s 0 iin2  c r sin 0 cos 0os 0 d
i+2 dO + --- i---s- -

20 0 0

Hence

FB =-pgU2J dOr-wpgy 2

, ff

The same result is obtained with -p V2/2. Hence the total for.-e on S is the same as if

the pressure in the fluid were uniform throtghout.

Half of the symmetric diagram of streamlines outside of S is illustrated in Figure 82.

The excess of pressure p - p. along the x-vxis and then over S is shown on an arbitrary

scale.

Y

Figure 82 - Streamlines past a cylinder S --

of semi-infinite cross-sectior, L. ly half of -

which is shown, o' width 2ig at infinity; -

also. the distribu~io i of pres',ure along the Yg 9 _

plane of symmetry and over the cylinder.
Cons,.,cted with use of a line source at O. Plane of Symmebty
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Changino the sign of U morel) .everses all v!c,,ities, the bo::e becoming a sink. S

may be reversed in space by drawing the x-axis in the opposite dire( tion. (For notation and

reth'od; see Section 34; Reference 2, Section 8.21.)

54. LINE SOURCE AND SINK IN UNIFORM STREAM.

let a line source be located at (a,0) and an equal sink at (-a,0), and superpose uniform

flow at velocity U toward negative x; see Figure 83. From Equations [35a] and [40a] the re-

sultant potential and stream functions can be written, in terms of a real positive constant g,

r2 F1 Figure 83 - Cylinder whose cross-section
S is a Rankine oval, obtained from a line

S 01 Qsource at (a,O) and a sink at (-a,O).

-a aSee Section 54.

to = Vlz + g [ln (z + a)- In (a - a)]il [54a]

9 V x+gg - a) 2 + y2 [51b]

¢ = U gl = ( I n 5
2 ( -a) 2 + y2

u - [y - g (01 - 02)= U g'tan- t  .2ay ) [54c]
(Y - X2 + y2 - a2)

where

r = -a) 2 + y2, r (z + a)2 + V2  [54c]

tan 01 =yl( - a), tan 02 - y/(c + a)

and all angles may be supposed to lie between --rf and ri and to have the sign of y. Also

Ug -U g [54d]
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V y- g) V 5401

1 2

2 'ag _ 2)] 5f
q2  12fI +I (a2 + ag - z2 + ] (540

1 2

Singularities occur at z ± a; and stagnation points Q1 , Q2 occur where dw/dz = 0 or
X I + and 

Q1Q

a 2 + 2 ag [54g]

On the x-axis where a > a, r 1 = x - a, r2 = x + a, and q iul where

u = U 1 + 2a) [54h]
X2 - a2)

Thus the streamline for i/ = 0 follows the x - axis from + -o to Q1, where it is joined by an-

other branch coming from the source; then it divides and proceeds along the two halves of the

curve S that is defined by

2ay tan_ [54i]

X2 + y2 - a2  g

From Q2 , one branch of this treamline proceeds to the sink, the other follows the z - axis to

- o. The surface S divides the fluid into that which is coming from infinity and that which is

on its way from the source to the sink.

The curve S is symmetrical about both axes, and is called a Rankine oval. Since an

angle in radians and its tangent are nearly equal when the angle is small, the symbol tan can

be omitted in [54i] when y is small; then, after canceling y, it becomes clear that the curve

crosses the x - axis at the stagnation points. It is broadest in the middle, where z = 0. Its

half-width A can be found by putting y = k and z = 0 in [54i] and solving the resulting quad-

ratic for h; the result can be written

a h
-= tan- [54j]A 2g

On the middle circumference of S, q = lul and

u-U (1+ 2ag [54k]
a 2 + A2.
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Equations [54g] and [54j] can be written

1- + -- ,tana (a 2g

which shows that the shape of the oval as fixed by h/a and 1/a depends only on the ratio g/a.

As g/a increases, the oval comes to resemble an ellipse and finally approximates a circle;

but for small gla it is much more flat-sided and restembles the profile of a ship having a

rounded bow and stern.

The formulas may represent the flow past a cylinder whose cross-section has the shape

of the oval. In Figure 83 the oval is drawn for g . a. An example of the streamlines for

gla - 0.17 is shown in Figure 84. Here i/a - 1.15, h/a = 0.41, A/1 = 0.35. Details of the con-

struction according to the Maxwell-Rankine method are shown as described in Section 13; the

parallel lines ,,epresent streamlines for the uniform flow, whereas the circular arcs diverging

from a represent those for the flow due to the source and sink, all drawn for equal increments

of V/. In the original figure, however, twice as many lines and curves were drawn, for greater

accuracy. The heavy curve is the cylinder S. Only one quarter of the diagram is shown,

since it is symmetric with respect to both the z- and y-axes. According to the Bernoulli

principle, the pressure excess, p - p., sinks from pV 2/2 at (1,0), to zero at about the point

indicated as P, and then remains negative to the middle, where, from [54f] with x = 0, y h,

q=juj-1.29 JUI, p - p. = p(U 2 - q2 )/2 = - 0.33pU 2.

0 Plane of Symmetry a I

Figure 84 - One quarter of the streamline plot for a more slender Rankine oval.

Construction of the plot by the Maxwell method is shown. See Section 54.
(Copied from Reference 254.)

r.not.oer plo, also containing some of the construction lines and arcs, is shown in

Figure 85. Here gia f 0.27, 1/a , 1.24, h/a - 0.57, A/1 = 0.46.
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Figure 85 - Streamlines past a broader
Rankine oval with construction curves.

At P the pressure equals that at
infinity. See Section 54. ---- --

(Copied from Reference 7.) -

Useful forms resembling the outlines of ships can be obtained in this manner; see

McEntee 3 4 , and Taylor 3 5 .

The formulas may also represent the flow due to a line source and an equal line sink

inside a cylindrical shell having the form of S.

Changing the sign of U merely interchanges source and sink and reverses all velocities.

Kinetic Energy

If the cylinder S is moving through fluid at rest at infinity, the term Us is missing from

w. Then, at large z,

w = g U lI n I - = g U . I n i + _ - . . . + . .

Hence, in Equation [76c] of Section 76, bi = 2ag U, and, from [76d,f], the energy of the fluid,

for unit thickness perpendicular to the flow, is

T 1 = p(4rrag- S) U 2  (54k]

where S is the cross-sectional area of the cylinder.

(For notation and general explanation; see Section 34; Reference 2, Section 8,30.)

55. VORTEX PAIR IN A UNIFORM STREAM

The complex potential for a pair of line vortices with equal and opposite circulations,

located ., (9,±c) and superposed upon a uniform flow at velocity U toward negative X, is

w = iA[ln (z - ic) - In (z + ic)] + Us [55a]

where A is a real constant. The circulation about (Oc) is r = 2f2 A, that about (0,-c),

r= -2,fA. SGe Equations [401] and [35a1. Hence
t.

A(01 -0 2 ) +U, = Aln. + y [55b,c]
r2
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Figure 86 - Vortex pair in a
transverse stream.

z f r 2 [ 2+(y+c) 1 0 tan- 1 E ' 0 = tan-,

See Figure 86. Also

(3in 01 sin z2,C2-_y 2

u--A -U 2Ac u, [55d]
1 2 r I2

Acos 0 Cos 02 4Acxy [55e]

On the x-axis, u U - + 2Ac/(x 2 + C2 ); on the y-axis, u = - U + 2Ac/(c 2 
- y2 ). Hence,

stagnation points occur; they are on the z-axis at z - ± xQ if A/U > c/2, or on the y-axis at
Y ±Y if A/U < c/2, where

zq cYQ .4 [55f,g]

If A/U - c/2, there is a single stagnation point at the origin.

The z-axis represents a plane of flow symmetry, the y-axis, a plane of geometrical

symmetry for the flow net.

A dividing surface S always occurs, passing through the stagnation points. If

A/U < c/2, it consists of two loops, each surrounding one vortex. If A/U > c,2, it consists

of a single loop surrounding both vortices, defined by the equation,

A r2
- In-, or z 2 + y2 + c -2 2cy coth (Uy/A). [55h,i]
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In this case the streamline for b - 0 follows the x-axis and the curve S. That S passes

through the stagnation points at (±ZQ, 0) can be verified by first replacing coth (Uy/A) by
AIUy from the first terms of the hyperbolic series [33i].

The formulas may represent noncirculatory flow past a cylinder represented by the un-
divided curve S, or flow pe.3L Lwo cylinders of a certain shape with circulation ± 2 r A about

them.

The most interesting case is that in which the vortices, when assumed to move with
the fluid, actually stand stili. This is realized when A/2c = U or A/U = 2c, so that the ve-

iocity at other vortex due to the other just cancels the stream velocity U. Streamlines for
this case are shown in Figure 86. The large oval curve is S; its semidiameters are 2.09c

and 1.73c, approximately.

(For notation and method; see Section 34; Reference 1, Article 155; Reference 2,
Section 13.30.)

56. -OTHER COMBINATIONS INVOLVING LINE SOURCES OR DIPOLES

The following cases may be mentioned.

(1) Sources or dipoles only. Streamlines due to three equal and symmetrically placed

line sources, with the fluid at rest at infinity, are shown in Figure 27 of Durand's Aerody-
namic Theory 3, and for two sources and a sink in Figure 28. For a source and a dipole at

the same point, see Reference 36.

(2) Source near a cylinder whose contour is elliptic or of certain other types: K,.'ris 2"
and Wrinch 37 ; paraboa-likt: Sharpe 38 ; a circular arc: Caldonazzo 39 and Sestini 40 ; see

Figure 87 for streamline., in one case with the source at the center of the circular arc.

(3) Source inside a rectangular cylinder: Jaffe30 and Mller. 41

Figure 87 - Line source on axis of a A
circular-arc shell. (Copied from

Reference 39.) a
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(4) Source or dipole on vertex of an angle (or sharply bent lamina): Agostinelli 42 ;

(5) Lamina, plane or bent along the median line, with a centered line source on one or

both sides, and immersed in a stream: Colomnbo. 43 The velocity may be finite at the edges.

For a similar combination including circulation or a vortex, see Section 98.

(6) Sources or sinks in a stream. Boundaries of many other shapes then those described

in Sections 53 and 54 can be obtained by inserting various combinations of sources and sinks

into a uniform stream. There will always be a dividing surface along which a cylinder may be

introduced. This surface is closed if the total strengths of sources and sinks are equal; oth-

erwise it extends to infinity, in the direction of the stream if the sources are in excess, or in

the opposite direction if sinks predominate. Although it is not always possible in this manner

to match exactly the shape of an arbitrarily given cylinder, sufficiently close matches may

often be securod, Uniform sheets of sources, as described in the next section, may be

employed.

57. SHEETS OF LINE SOURCES OR VORTICES

Let sources be distributed uniformly over an infinite plane strip of width c. Let tne

source strength per unit area be !, so that a volume of fluid 2nuis emitted per second from

each unit area of the strip. Draw the xy-plane so that the given strip cuts it perpendicularly

along the segment of the x-axis from z - a to z - b; thus c - b - a. The resulting flow will

then be parallel to-the xy-plane.

On the strip, let x be replaced by x', and consider the sources on a substrip of width

dx'extending from r'to x'+ dx': see Figure 88. Since the volume of fluid emitted by these

sources is 2radx per second, per unit of length perpendicular to the planes of flow, their

contribution to the complex potential is, from [40a), in which now A = adx and a is to be re-

placed L z - --x',

dw =-a In (z - z'I dx'

r 
rb

ab Figure 88 - A plane sheet bf line sources.
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where z x z + iy and refers to a fixed point (xy). Thus

w=- *fb In[(z-x')dx' [(z-x') In (z-x') + x']

to = + itP = *1 [(z -b) In (z --b) - (z -a) In (z -a)]

after dropping a constant term. Hence

5 ,[(z -b)In rb-(X-a) Inr -Y(O b - 0], ) - Ob+ yln- [57a,b]
r b

where

rat [(X -a) 2 + Y2J rb" (w-b) 2 +y 2 ), Ob tan- 0b' a -tan-1

and 0. and 0 b may be allowed t9 vary continuously without. restriction. Also

U -ln-, V - -= .(0 b - O a) [57c,d]
rb dy

The conjugate flow is that due to a uniform sheet of line vortices; the vortex strength

or circulation per unit of width of the sheet is 2ra, and the circulation around the entire sheet

is 2 rrtc; see Section 40.

If,& is negative, the sources become sinks, or the direction of the circu!ation around

the vortex sheet is reversed.

(For notation and method; see Section 34; Reference 3, p. 81.)

58. SOURCE SHEET IN A UNIFORM STREAM

Let the sheet of sources described in the preceding section be immersed in a uniform

stream flowing at velocity U toward negative z. For simplicity let a - - c, b = 0, so hat the

sheet, of width c, extends from z - -c to z - 0. Adding, from Section 35, a term Uz for the

stream, and replacing a by g U, where g will be assumed to be positive:

w - U iz + g [zlnz- (z + c) ln( a + c)] [58a]

- Ulz + g [xlnr- (z + c) lnr I - y(O - 01)]1 [58b]

S + U{+ [ zO-(X+c) 01 - yln [58c]
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Y

"igure 89 - Cylinder with semi-infinite
I - ,j>_. "  0 cross-section S, obtained from a

source-sheet in a stream.
See Section 58.

U U-1+glnrt, V gUV (0 -01) ,  [58d,e]

where

rm(X2'-y 2 ) , r1'= [(x+c)2+y2] ,  O=tan-  ,  0=tan-I Y

and 0 and 01 may be assumed to lie betweeni -ir and rr and to have the sign of y; see

Figure 89.

A stagnation point Q occurs on the z-axis, which represents a plane of symmetry, at

z=xQ>Owhere, to makeu= 0, sincer=z,r, =x+c,

xQ = e - -  [58f]

On the positive x-axis, 0 - 01 0 and & 0, also, & 0 on the dividing surface S

defined by

y+ g[(0-01)-cOl -yln =O [58g]

By expanding all terms in powers of y it can be shown that S crosses the x-axis perpendicu-

larly at Q. Since v has the same sign as y, the surface S, being a stream surface, must be

broadest at z -- - -o. At large distances from the origin, 0 - 01 -. c sin 0/r a:nd in(rl/r) - 0,

also, z -- r cos 0. Hence, Equation [58g] becomes, in the limit,

y + g(c sin 0 cos 0 -cO)= 0

Thus as z -. - *, y remains finite; hence 0 -Y r and y -, cgrr. Hence, toward negative X, S
becomes asymptotic to a cylinder of radius

R ir cq [58h]
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The flow is thus represented past a semi-infinite cylinder whose profile in cross sec-
tion is S. The cylinder has a sharper edge then that obtained with a line source in Section 53.
Its shape is determined by 9, its size by c, since increasing c and all coordinates in the same
ratio leaves Equation [58g] satisfied. The half width at x - c/2, or at the middle of the

source shoot, where r = r, and 0 = rr - 0, is

y = h = rcg/2 = R/2 [58i]

An example is illustrated in Figure 90, ror g = 0.15; R - 0.47 c, x - c/800, approxi-
mately. The distribution of the excess of pressure above that at infinity, p - p. and of the
velocity q, along the cylinder and along the plane of symmetry in front of it, are shown on
arbitrary scales.

(For notation and method; see Section 34; Reference 3, p. 81.)

59. THE SIMPLER SINGULARITIES AND THEIR TRANSFORMATION

A simple type of singularity is the followig. Suppose that at z = c the complex poten-
tial w becomes infinite in such a way that near c it approximates the function B In (z - c)

where B is a constant; let the difference w - B In (z - c) be a finite regular function of z even
at z = c. Then, from the formulas in Section 40, it is clear that, if B = A I where A 1 is real,
a line source exists at z = c, emitting 2rnA 1 units of volume of fluid per second and per unit
length, whereas if B = iA2 where A2 is real, a line vortex exists there with circulation 2 rA
around it; if B = A1 + iA2 , both source and vortex occur. Again, if w approximates similarly

uei/(z - c), where i and a are real, then Equation [37r] shows that a line dipole exists at
z = c, with line-dipole moment I and with axis inclined at an angle at to the positive x-axis.

Plessure 1 .

Figure 90 - Streamlines past the cylinder
shown as S in Figure 89. The inner velci

streamlines are those due to the
sourca sheet alone inside a cylindrical
shell of contour S. The pressure andthe velocity are shown, along the - Z

axes and over the cylinder. See ___-_-_-_

Section 58. (Copied from
Referee: e 7.)
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Tito flow due to the bource, vortex or dipole may be regarded as superposed upon a flow that

has no singularity at a - c.

If a transformation is now made to tho plane of a new variable C - [ (a), then any line

source or vortox preserves its nature and strength on the 4-plano, provided it occurs at a cor-

formal point for the transformation at which and near which d/dz exists and does not vanish.

A dipole also transforms into a dipole, but, in general, with a different moment and axial di-

rection.

For, if y - f(c), so that y is the point on the C-plane corresponding to a = c,

Bin(C- y) = Bin [ f(z)-f(c)] = Bin (z -c)+ Bin
a-c

The last term reduces to Bin [df/dz I at z = c and hence represents a regular function at and

near this point; and the coefficient of In (C - y) is the same as that of In (z - c). Thuz a

source and vortex are conserved in the transformation.

Similarly,

p = = e -c 1
C y f() - f(c) z-C

in which

f(z) - f(c) df dC

z -c dz dZ

as z -+ C;

or,

where p' - r/p and',' o + 0, r and v being modulus and amplitude of d/dz = re iO. Thus a

dipole transforms into a dipole with its strength increased in the ratio of the modulus, and

its axial irclination to the real axis increased by the amplitude, of the transformation.

(For notation; see Section. 34)

60. LINE SINGULARITY IN AN ANGLE

Consider (to transfoyrmation

a", z - / [60a,b]
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where n is a real number not leas than 1/2. In terms of <= re

a W r'" e'/ n  [OOc]

Thus the real axis of C, corresponding to 0 - 0 or i, s bent at the origin into two radii on the

a-plane enclosing an angle n/n, and the space above the real axis of C is transformed into the

space in this angle. The angle is concave if n > 1, convex if 1/2 6 n < 1. Under the trans-

formation, the upper half of the C-plane may be imagined to expand or contract as the negaive

half of the real axis rotates into the proper position.

An infinite wall lying along the real axis of C thus becomes an angle formed by two

semi-infiniLe p'anes joined at their edges. Suppose that there is also a singularity in the flow

on the <-plane, such as a source, vortex or dipole, located at a point which lies above the

x-axis and is represented by 4 - h' e'P or (W cos Or,, AP sin j3n). Assume that 0 = ,3 n/n.

This singulatity will have a line image in the plane wall, located as if behind a mirror or at

C = A' e-'16". The effect of the transformation [60a,b] will then be to transform this singu-

larity into a similar one on the z-plane, located at a A h ei'9 or (h cos f3, A sin i3) inside or

on the angle.

Equations [43a], [42a], and [50a] are readily adapted to the geometry of the present case by

changing z to Cand making the proper substitution for c or h. Let all amplitudes 0, except that. of

e- i f3n , be taken in the range 0 g 0 < 2 n. The complex potentials to on the z-plane thus obtained

are, when written in terms of z,

Source: w = - A [In (zn-hneiJn3)+ In (Zn-hne-in)]

Vortex: w = iA [ln(2n-hn,'r.fn) - Inr (1-hneipfn)).

Dipoie: to = g le ia (zn-hne'3")- - e1af -nfc()-l.

According to the results of the last section, the source on the z-plane emits a volume

of fluid equal to 2vA per unit length, and the circulation around the vortex is still 1-= 2frA,

as on the -plane. The transformed dipole momunt, however, is p/(nh n- 1), and its axis is

directed at an angle &-(n-1)P to the positive x-axis on the z-plane. For, as z -. he',

Pe i - ( -. _ e i (T d )

Z'-APe 3' z -he z -be i z - h _= hei13 nhA -  z-he 3

If n = %, the "angle" becomes a semi-infinite plane, as in Section 39. A few of the

streamlines due to a symmetricaily placed vortex near such a plane are illustrated in Figure

01. In this figure 13 = r, so that on the C-plane the vortex lies on the y-axis and its stream-

lines are circles, like those shown in Figure 61 and suggested briefly in Figure 92. Refer-

ences: Greenhil12 6, Ilarrkel 4 4, Paul 45 ' 46 , and fo the vortex, Miyadzu 47 ; with flow past the

corner and perhaps finite q at the edge, Uslenghi'a; with a line source on the edge,

Kucharski 49 .

(For notation and method; see Section 34: Reference 2, Section 8.51.)
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Figure 91 - Streamnlines due to a line vortex at P, opposite a semi-infinite
rigid plane extending from 0 toward the right.

Imag

Figure 92 - The vortex of Figure 91 before
transformation to the z-plape.

Real

TRANSFORMATIONS DEFINED INVERSELY

61. ELLIPSES AND HYPERBOLAS

z = c cosh w [61a]

Here c is a real positive constant. Since z = x + iy, w + itp,
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= c cosh 0 cos tp, y = c sinh 0 sin b, [61b,c]

dw (dz -1 1 1

dz \dw c sinh w c(sinh 05 cos tp + i cosh 95 sin &)'

1d]2 G=sinh2 0 cos2 d, + CoSh 2 0P sin2 4 [61d,eJ
id c2 G

or

G = sinh2 q + sin2  
- (cosh 2k- cos 2V,), [6101

by the use of hyperbolic formulas listed in Section 32.

By substitution it can readily be verified that the solutions of [61b,c] for €and 0f can

be written

cosh 5=- {(r + + y2] + [ + y2] [61g]

Cos 0 - ( ~{ + C)2 + y2.1 [ -rxC)2 +y2] ~ [61h]

Here the positive square root is meant. The sign of 0 and the value of p must be chosen to

fit [61b,c].

Singular points occur wherever both 0 and sin & = 0, so that dw/dz -, -, hence at

(c, o) and (-c, o). Furthermore, two types of multiplicity occur: b is many-valued with a

period of 2ri; and the same point on the z-plane corresponds to - 0 -¢V ' as to q5I, I -

The latter multiplicity extends to dw/dz, which has opposite signs for -01, - '! and for

By elimination of 0 or 0b it is found that
X2 y 2 X2 y2

+ - = 1, - 1. [61i,j]

c 2 c osh 2 0 c 2 sinh 2  c2 cos 2
, c2 sin2 ,

Thus the curves = constant are ellipses, while the curves f = constant are hyperbolas;
both families of curves are confocal, with common foci at (±c, 0), and, as usual, they cut each

other orthogonally. They are illustrated in Figure 93, also, in more detail, in Figure 129, on

which e may he identified with 95 Rnd q with ,. Two of the hyperbolas degenerate into parts of

the x-axis:

f = , X = c cosh 0 > c; 0 = , X= -c cosho< - c,

using [61b,c]. Again, on the y-axis, Vj = 12/2 or 3 / 2 and y t c sinh 0. The ellipse for < = 0

degenerates into the z-axis between ± c, on which z = c cos i.
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8- o ! .+ Figure 93 - Confocai llipses and

~hyperbolas; the flow new on the

-plane for a = c c sh (€ - )

l the hydrodynamical application5, the double-valued character of dwdz makes it

necessary to insert boundaries .o as not only to exclude the singular points but also to pre-

vent the fluid from circulating around just one of them. When this has been lone, a choice

can be male for the va ds of ¢ and ¢ such that they vary continuously throughout the fluid

and such that their de-ivatives represent a single-valued velocity. The singular points can-

not be interpreted as representing a source and a sink, either siple or compound; mathemat-

ically, they are not poles but branch points.

Flow between Hyperbolic Cylinders

If is taken as the potential, boundaries may e inserted along any two of the hy-

perbolas. Th formulas then rei.cesent the flow between two hyperbolic cylinders. Conven-

ient ranges for the variables are:

Since dw/dz = - u + iv, from [Ga-f]
1 

1

u c=-- (sinh q€ cos p), = cO cosh a sin /i. [61k,l]

On a boundary defined by O = bl from [61c,d and [61f,

sin2  C z + -)[61 
]

c =' c2 sin 2 0

On the y-axis, ¢', -- /2 and q = i/i/ + y. In the plane of the opening € = 0 and the veloc-

ity is from Equations [61d,f,b],
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1 1(61n

c nC sin ;tVi . _x

The volume of fluid t.'a. flows per second through unit length of the slot is represented by the

increase in 0i from one hyperbolic face to the other.

Flow through a slot

" " c3 inders are allowed to shrink onto the x-axis, the flow becomes that through a

slot of width 2c in a plape L.!id shoot extending to infinity on both sides, as illustrated in

Figure 94a. The volume pas-ii gr second, per unit length of the slot, is then t. On either

face of the solid sheet cos i/ = ±1, x ± c cosh 0 and, from [61d,e]

1 1
q=- [610l

c Isinh 1 -
c2

Thus q -o at the edges of the slot.

If, for generality, 0 and i/ are replaced in all formulas by //k and 0p/k, all velocities

and the issuing volume are multiplied by k.

Circulatory Flow Around an Elliptic Cylinder or Plane Lamina

For the conjugate flow, with potential q5'z / and stream function vp'= -q/, an ellip-

tical cylinder may be inserted along one of the vp 'or q5 curves, or a plane lamina of width 2c

along the z-axis between ± c. The irrotational flow around such a cylinder or lamina is then

represented. This is illustrated in Figure 94b, where any one of the curves may represent the

Figure 94a Figure 94b

Figure 94 - Streamlines for (a) flow through a slot in an infinite plane wall,
(b) circulatory flow around a plane lamina.
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cylinder, or the line the lamina, the outer curves then representing streamlines. For this ca.3e

it is most convenient to keep 0 > 0, hence 0'< 0. Then from (61b,c] it is easily verified that,

as . 'or Vr increases continuously from 0 to 2,-r, the point (x,y) passes once around the cylinder.

Thus the many-valuedness of € - implies the existence of circulation around the cylinder of

magnitude 2n.

On an elliptical cylinder defined by t' -6 = -9t' with major somiaxis a, c cosh

Op from [61d,f,b], after inserting sin 2 b 1 - cos 2 V/,

q= (cosh2 c2 cosh2 C2 a2  2 (61p]

1

At large distances the elliptical streamlines approximate circles, and, since sinh ' c

becomes large and nearly equal to cosh q5, it is readily seen with the use of [61e) that

1q = -2

(X
2 +

approximately. Thus the flow approximates that of a line vortex (Section 40) at the origin.
If , 'and ft 'are replaced in these last fornlas by 0 "1k, ift '/k, then all velocities are

multiplied by k and the magnitude of the circulation hecomes 2rt/.

The variables 0 and 0, define6 in terms of x and y by [61b,c], can be u-ed as coordi-

nates on the xy-plane; this use, and che geometrical properties of the transformation, are dis-

cussed in Section 82.

Among other possible forms, z = ic cosh w gives the same field of flow rotated through

90 dog, with the foci at (0, +c); z = c cos w or 2 = c cosh (iw) is the conjugate transformation,

in which 0, V1 are replaced by Vj, -0; and a = c sinh u; gives the original field rotated through

90 deg and with 0p increased by -/ 2 , to which the conjugate transformation is z = $c sin w.

(For notation and method; see Section 34; Reference 1, Article 66; Reference 2, Sec-

tions 6.10, 6.30.)

62. STRAIGHT SPOUT

z=w+eW. [62a]

Since

eW =eO + iO = eO (cos rp + isinip), zx+iy, and-u+iw=dw/dz,

x,=i + eO cos i, y =V + e; sin , [62b,c]
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dwj 1
d2 \dw/ T 1+ e"' I+ eO(co.% ft+ isin )

I dtol
- = z , G - (1 +e2€ +2eA cos ,)'l [62d,e]

1 + eO cos V,), v 00 - sin 0. [62f,g]
02 G2

Since 1 - 2 e€+ e2 (1 - e()2 - 0, it follows that 2 e' 1 + e24; and the equality
sign holds only if - 0. Hence G= 0 and dw/da .only if 0 and cos =-1. Thus
singular points occur at x = - 1 and y - - , . 3rr, + 5rr.....

The streamline for 0 is the x-axis, on which x = € + eO. Along this streamline,
while 0 is negative and numerically large, 0 = a, approximately. As 5 increases, x increases,
and ato=0, x= 1; as -*+c-, a..+ -o. Again, ifo ±n, y= ±nand x = O-eO. Herezin-
creases to a maximum of -1 at € = 0, and then returns toward - 00 as 5 -# + 0.. The two
straight lines on which y and a -1 may be regarded as streamlines bent back on them-
selves. The intermediate streamlines, for --fr <q < r, lie between these straight lines; for
large negative 0 they are almost parallel, but for large positive 0 they fan out and cover the
entire z-plane. Half of the flow net, which is symmetrical about the x-axis, is shown in Fig-
ure 95. For 1b>r,, curves are obtained which overlap some of those already obtained; since
this results in multiple-valued velocities such values of t rannot be uzcd.

If plane, semi-infinite boundaries are inserted along the two straight streamlines, a
motion is represented in which the fluid is flowing into and through a spout or mouthpiece
bounded by two parallel walls 2 rr apart.

Figure 95 - H1alf of the symmetrical flow / > -
net for fluid entering a straight two-
dimensional spout extending toward , r
the left to infinity. (Copied from

Reference 253.) I
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Within the spout, except near the entrance, 0 is large and negative and q =, approxi-

mately. The total volume of the inflow per second, per unit of length perpendicular to the

flow, is the value of A o hetween the walls or 2 rr. Along either wall q = Jul = (1 - 06)-1;

hence at the edge, where = 0, q- . Inside the spout, -. - as -- and q -. lwhere-

as outside 5 - + ,w along any streamline and q 0. On the central or x-axis, q = Jul = (1+e0) - 1.

The more general transformation

z = c(gw iv e g w) [62h]

or

x - cgo + e90 cos (gg,), y = c[go + eg0 sin (gob)],

where c and g are real constants and c > 0, represents a spout 2rc wile; for, when go = + ri,

y = +ic. All velocities are changed from the values stated previously in the ratio 1/cg. If

g < 0 the fluid is issuing irom tie spout, but the flow pattern is the same. On the walls,

l r/g, and the volume of outilow is 2rt/g.

(For notation and method; see Section 34; Reference 1, Article 66.)

63. DIVERGING SPOUT

z = - (1 + e( 1 - w, O<n< ; [63a]

x [1 - e- cos (no)) + e(' - n)q cos [(1 - n)V,], [63b]

y -n e-0 sin (no,) + e(1 - ) sin [(1 - n)o], [63c]
n

da
= (1 - n) (1 + ew) e-"'.

This is a generalization of the preceding transformation, to which it reverts if n -. 0.

The streamline for 0. = 0 is again the x-axis. If g, = - rr, since cos (1-n17 = - cos nri,

sin (1-n)ii = sin nrr,

n + e-0 e-4 cos nr,

Y = + nLz + e) e-' sin nr

or, as may be verified by substituting the formula for z,
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Y= X-- tan nrr.

Thus the streamlines for iu ,= ± rr are straight lines inclined At angles T nr to the positive

x-axis. These lines do not cross the axis but end at the points

it cos nr + sin nir)
n - n

at these points dx/d = 0, 0 = 0, and x as a funct.on of q has its maximum value.

The fluid is thus flowing into a diverging channel or spout with parallel walls inclined

at an angle 2 nr radians to each other. The opening is (2 sin nnr)/n wide. The volume of fluid

that flows out per second, per unit of length perpendicular to the xy-plane, is the total incre-

ment of 0/ across the opening or 2 r. Part of the flow net for n = 1/4 is shown in Figure 96.

If in the formulas 0 and 0, are replaced by o,/k and 0/k, respectively, 0h I +
1k on the

wall and the volumetric rate of outflow is 2 irk. If k < 0, the flow is reversed. If the expres-

sions given for z, x, and y are all multiplied by c, the opening is (2c sin nrr)/n wide. Both

changes may be made. Velocities are multiplied by k or by 1/c, or, if both changes are made,

by k/c.

For n = 1/2, the spout becomes a slotted plate and the transformation reduces to a mod-

ified form of that in Section 61. For 1/2 < n < 1, the transformation merely repeats itself with

changes of scale, orientation, and direction of flow.

(For notation and method; see Section 34; Reference 1, Article 66.)

64. TWO-DIMENSIONAL PITOT TUBE

z = w + Inw. [64a]

Figure 96 - Flow net for fluid entering
a diverging spout. See Section 63.

'Copied from Reference 255.)
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This transformation may be obtained by superposing a uniform velocity upon the flow
out of a spout having parallel walls in such manner as to reduce the fluid to rest within the

depths of the spout. It is convenient first to reverse the flow through the spout by substitut-

-w 1 for w in Equation [62a], which gives

--w1 + e [64b]

For uniform flow at unit velocity toward negative x, the complex potential is w2 = a,

with 52 - x. Combining the two flows, the complex potential is w = w + w2 = W I + z. Sub-

stitution of w - z in Equation [64b] gives z = -w + z + e-  or t e- W 4 Z, which is

equivalent to Equation [64a].

Then, from z - z + iy, w = 9 +

z = + ln (0 2 +fr 2), y= 0/ + tan - 1  [64c,d]

-U + iv =.I
\dw) 1 + W 1 + 5 +iOb

U +S62 + 0,2 [64,f______________-_________ ______________________ [64e,f]

(1 + S6)2 - (1 +0)2 + ¢2
Since y changes sign with V, symmetry exists with respect to the x-axis. Furthermore,

the expression for y is many-valued, with a period of 2r. To make y single-valued, let

tan - 1 (r/0) have always the sign of 0/ and be numerically less than vf.

Assume that 04 > 0. Then, if qi is large, so is y. Furthermore, along any streamline or

curve for constant v/, as 4 ranges from + oc to - eo, y continually increases, with a total in-

crease of if, while z decreases on the whole from + - to - .. If 0/ > %,

ax 95
4 q2 + ¢

since the enuation, 9,2 + 0 + 0,2 = 0 has no real roots for q.; hence x varies always in the

same direction along the streamline. If 0 < , < %, however, z retrogrades for a time as

decreases, giving an S-shape to the streamline, as illustrated in Figure 97.

To locate the streamline for Vi = 0, keep 0 constant and let ;6 -, 0. Then, if q5 > 0,

from [64c,d] y-.tan - ' (,/k, ) -.0, z - . + In 4. Hence, with , = 0, as q5 varies from + 0 to 0,

x traces the entire x-axis and 0 -. 0 a.3 x -, - o. If, however, 4 < 0, y -. tan- 1 (.P/O) -. ± i7
and z -, 95 + In(-qS). Here (In4h2)/2 is written as In(-4,,) rather than as In 4, because S5 < 0

and the real logarithm is intended. Hence, as q5 decreases from 0 to - -0, x first increases

from - to a maximum value of -1 at 4, -1, where dx/d5 = 0, and then decreases again to
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0 .

Figure 97 - A few streamlines for fluid flowing past a two-dimensional
pitot tube. The x-axis is drawn along the median plane of the tube.

(Copied from Reference 256.)

- ,o. For, a positive number always exceeds its logarithm, and toward infinity their ratio in-

creases without limit. Furthermore, the lower half of the diagram is symmetrical with the up-

per. Hence, to sum up, the streamline for = 0 follows the x-axis to x = - c, where 4 = 0,

returns along both of the straight lines y = rr and y = -n to x = -1, where 4, -1, and then
retraces these lines to x = - oo, where (A= ..

Streamlines for a value of 0 close to 0 dip a certain distance into the space between

the two lines and then emerge again.
Singularities occur only at (-1, ir), where 4 = -1, t = 0 and q -, oo. With the defini-

tion of tan- 1 that has been adopted, however, the velocity is discontinuous across the lines

y . +rr, because of the discontinuity in 40. In the space between these lines, q -* 0 as x-'-oo,

since both 4 and ,Pt then vanish; but elsewhere toward infinity q -. 1, since "oo or ltI, -.

or both, so that dw/dz -* 1.

In a physical case, therefore, boundaries ,,u.ist be inserted along the straight lines
X <-1, y = ±. They form a two-dimensional pitot-tube with parallel plane walls 2 17 apart,

placed in a stream of fluid approaching at unit velocity in a direction parallel to the walls.

A few of the streamlines above the x-axis or median plane, labeled with values of 4,, are

shown in Figure 97. Along the walls and also aiong the x-axis, x = 4 + In 14,I, q = Jul,

u =- -0; on the walls 4 < 0, on the X-axis, 4 > 0.
1+40
The results r-:. y be generalized, as in Section 62, by replacing z, X, y, w, 4, 4,, in all

formula9s by z/c, a/c, y/c, gw, g4, go,. The tube is then 2 I c wide, and the values of all

velocities are divided by cg.

(For notation and method; see Section 34; Reference 1, Article 66.)
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65. LAMINA BETWEEN WALLS

sinh w - g sinh z, g real and g> 1. [65a]

sinh 0 cos g sinh x cos y, cosh 0 sin 0& g cosh x sin y, [65b,c]

from w - + i , z z + iy and hyperbolic formulas in Section 32. The functions 0 and /
are many-valued. It is readily seen that continuous values can be chosen so as to satisfy
the following description.

o, has the sign of z and 0b that of y; if y = 0, b = 0. Thus the x- and y-axes represent

planes of symmetry. As x -, *, € -, also; furthermore, coth k -. coth z -. 1, so that, since

from 165b,c] coth 4) tan b = coth x tan y, ' - y. For all values of x, / y on the lines y = 0,

y = r/2, y - r,; then one of Equations [65b,c] is satisfied automatically and the other fixes 0
in terms of x. Furthermore, on the y-axis, wherever sin y > 11g, in [65c], g cosh X sin y > 1
and this equation can be satisfied only if (A > 0; then, to make x 0, cos b 0. In particu-

lar, cos i/ = 0 and i/i = n/2 on the segment defined as follows:

_cos-l_<y + COS -  .
2g 2 g

On this segment of the y-axis 4 is discontinuous, since here cosh S6 g sin y > 1 but 1 .must

change sign with x as the y-axis is crossed.
For a physically possible case, a plane lamina must be inserted along the segment of

the y-axis in question; and walls may also be inserted along the lines y = 0 and y = f. Then

the flow is represented between these walls, with unit velocity at infinity where 4i -, y, past
a lamina of width L = 2 cos - 1 (11g) placed perpendicular to the walls and midway between

them; see Figure 98a.

2 }cos'I

Figure 98 - (a) Lamina between walls, or (b) a grating of laminas;
(c) slot in a partition between walls.

On the walls, 0 = y, sinh q6 = g sinh z. [S5d]

On the median line, y -n/2, 0 = -T/2, cosh 95 - g cosh x. [6501

On the lamina, = n/2, cosh ib = g sin y. [65f]
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In the plane containing the lamina but between it and the walls, q = 0, v - 0 and

0¢ gl cos yl
sin = gsin y, u ..... [65g,h]

ay /1 -g2 sin2 y

Without the walls, the formulas may represent a stream falling perpendicularly upon a

grating composed of such laminas lying in a common plane and spaced n apart; see Figure 98b.

The similar transformation cosh w = g cosh a replaces the lamina between walls by an

opening of width 2 sin - 1 (11g) in a transverse partition between the walls; see Figure 98c.

Kinetic Energy of the Fluid

If the lamina moves in translation parallel to the walls at unit velocity, with the fluid

at rest at infinity, the complex potential becomes w - z, where w is still given by [65a]. Sub-

stituting w - z for w in Equation [76a], and U = 1, the kinetic energy of the fluid is

1
T, =Ip (1') (w - z)da, [65i]

since for the lamina S = 0. Let the path of integration be displaced into a long rectangle with

sides on the walls and ends at x = ± 1. This does not alter the value of the integral; see Sec-

tion 29. On either wall, dz = ± z and w - z = 5 -z since qj = y; hence it is easily seen that

the contributions of the walls to the integral cancel each other. Over each end, 95 is practi-

cally constant and equa! to its value at the corners, so that, when z = I and I is large, from

[65d], sinh 95 being positive ec I gex, approximately and 0 = z + lng; whereas when Z -I,

sinh (h is negative, e"- = g e-X and 95 = x - In g. Thus the integral over the two ends is

f(w - z)dz f (Ing + i, - iy) idy + J (-lng + i- iy) idy = 2 fo(ng) idy - 217ilng.

Hence

T, =f plng.

Generalization

The distance between the walls, or between the centers of the laminas in the grating,

mdy be changed from Y to a, and also the velocity at infinity from unity to U, by substituting

in all formulas inz/a, xz/a, r y/a, rrw/aU, nS6/aU, rb/a U, u/U for z, z, y, w, w, t0, u,

respectively. Thereby all velocities are multiplied by U; the width of the lamina becomes

L=2a 1
L =- cos -, [65j]

17 9

and the kinetic energy of the fluid per unit length of the lamina is
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Ti - pa2 U2 Ing - pa 2  2  [65k]
IT Ir S a

If Lia is small, using the series for cos and In from Section 33,

T, Ipb2L0  (+ 2 L 2  [

24a2 )

(For notation and method; see Section 34; Reference Lc,¢oe5 0 and Taylor. 3 3

66. LAMINAS OR CYLINDERS AND SURFACES

A lamina in other positions between rigid walls was studied, with reference to the lift

when there is circulation around it, by Rosenhead5 1 and Tomotika, 5 2 and more generally by

Tomotika and others, 3 3 - 5 8 , and by Havelock. 5 9 When the lamina is centered but inclined at
an angle to the walls, with tha circulation so chosen as to make the velocity finite at the

trailing edge, the lift is increased by the presence of the walls, largely because the necessary

circulation is itself increased.

Cylinders of a certain shape between walls, including a first approximation to a circu-
lar cylinder, are discussed in Sections 46 and 47. A plate near a single rigid wall was stud-

ied by Villat, 60 Raimondi, 6 1 and Tomotika and others, 6 2 - 6 and, with one edge on the wall,
by D'twyler 6 6 and Tomotika and Imai. 6 7 The wall increases the lift, at least at small angles

of incidence. The effect of a neighboring free surface was studied by Tomotika and Imai. 68

A circular arc near a rigid wall was treated by Jones, 6 9 and, for the case of actual

contact, by Tomotika and !mai. 70 A cylinder near a wall was discussed in general terms by

Villat.
60

Circulatory flow between a cylinder and a free surface was treated by Vitali. 7 1

CIRCULAR CYLINDERS

67. SYMMETRICAL FLOW PAST A CIRCULAR CYLINDER; DIPOLE IN
A PARALLEL STREAM, OR INSIDE A COAXIAL SHELL

wU z+ , U and a real constants, a > 0. [67a]

From w = +i.h and z=x+iy,

1- y, r=(z. + y 2 ) % [61b,c,d]
1 2
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Figure 99 - Diagram for flow past
a circular cylinder.

or

2 a2) 0 ( i [67e,f]

in terms of polar coordinates r, 0, such that z r cos 0 and y = r sin 0 as illustrated in

Figure 99. The components of velocity are

X 2 y2 2)

u U -1 + a2 .r4 , a- , [67g,h]
r
4

or

I + 2) U a2

qr U cos 0, q0 I+_ sin 0, [67i,jI
r

2

q 2= U2 I-2cos20 +4 [67k]

There is a singularity at the origin, where q -. -. Stagnation points occur at (a,O) and (-a,O).

The x-axis represents a plane of symmet-y for the flow, and the flow net has alo a

plane of geometrical symmetry along the y-axis.

At large distances 5 -+ Uz and the fluid is flowing toward negative f (if U > 0), or to-

ward 0 = n, with uniform velocity U. The formulas represent, .- fact, such a uniform stream

superposed upon the flow due to a line dipole at the origin of dipole moment i = a2 U, as is

evident from formulas in Sections 35 and 37. The axis of the dipole is directed oppositely to

the stream.

Along the x-axis t 1i, and 4v = 0 also on the circle r = a. This circle may be taken

to represent a circular cylinder, and the formulas then represent a stream, uniform at infinity,

flowing past such a cylinder. On the cylinder itself 2 = Liz, qr =0, and q = jq01 where
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Figure 100 - Flow net for symmetrical

flow past a circular cylinder.

a (Copied front Reference 8.)

q0  2 U sin 0. [671]

The flow not is shown in Figure 100; the points A and B represent the stagnation Lines. The

streamlines for tb - 0 follow the plane of the x-axis to the stagnation line on the cylinder at

a C 0, divide and proceed around both sides of the cylinder to the other stagnation Line, then

continue toward negative x.

If the motion is steady, the Bernoulli equation for the pressure p, assumed zero at in-

finity, gives on the cylinder itself

p, %p(U2. q2 ) wP1p) 2 (1 -4 sin2 0). [67m]

Thus p=0at0=sin- 1 (±t)or 0= 300or : 1500. At0= 00or18 00,p=p U2/2;at0=90*

or 2700. where q = 2 1U1 and is a maximum, p . - 3 p U2 /2 and is a minimum. Because of the

symmetry, there :s no net force on the cylinder.

On the z-axis, where 0 - 0 or rr,

pz~pU (a 2 a
p % p U2 2 2 ; [67n]

z2 z 4 /

on the y-axis, where 0 - 90' or 2700,

P_-4PU2 2- +a. [67o

These formulas for p are plotted in Figure 101. The lower curve shows p along the X-axis

and on the surface of the cyLinder, plotted against z; the upper curve shows p at points on

the y.axis outside of the cylinder, plotted horizontally with negative values to the left.
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Figure 101 - Pressure in the symmetric.al
flow past a circular cylinder, along the

axis of the flow, over the cylinder, --a

and in the equatorial plano.
See Equations [67m,n,o].

At points in8ide the cylindrical surface, the formulas may be used to represent the

flow caused inside of a rigid cylindrical shell of radius a by a line dipole of moment p - a2U

on its axis. In this use of the formulas, U represents merely a constant having the value

p/a 2 .

Changing the sign of U reverses all velocities, without affecting the flow net or the

pressure.

(For notation and method, see Section 34; Reference 1, Article 68; Reference 2,

Section 6.22, 6.23.)

68. TRANSLATION OF A C!RCULAR CYLINDER

By changing to a hame of reference that is moving toward negative z at velocity U, a

description is obtained of a circular cylinder that is moving toward positive x at velocity U

while the fluid is at rest at infinity. The change adds to w a term -Uz, representing uniform

flow of the fluid toward positive z, so that, from [67a],

a2 U cos 0 sin 0w= - 95 = a2U -, =a2U I [68a,b,c]
a r r

These formulas represent the dipole transformation, as discussed in Section 37. The axes of

coordinates move here with the cylinder. The streamlines are arcs of circles, as itlustrated

in Figure 102.

The velocity components and the value of q2 are:

a2U X 2 2 a2 V 2y "68d,e]
r4  74

qr a2 COS 0 sin 0 a4 U2

qr 2, qO=a2 U -; q =  -" [68f,g,h]
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Figure 102 - Streamlines around a
circular cylinder in translation.

(Copied from Reference 1.)

Thus on the cylinder q = jVl. There are no stagnation points, but at the points 0 = 0 and

0 - 1800 the fluid is simply moving with the cylinder.

The distribution of pressure on the cylinder is the same as in the last section, and the

net force on it vanishes if the motion is uniform.

The kinetic energy of the fluid per unit. of length of the cylinder is

T1  dr q2rdO -1 pa2U2. [68i]

(For notation; see Section 34; Reference 1, Article 68; Reference 2, Section 9.20).

69. FLOW WITH CIRCULATION PAST A CIRCULAR CYLINDER

To introduce circulation around the cylinder, it is only necessary to add appropriate

terms from Section 40. Then [67a,e,ft are replaced by

w + 2+ - In--, a reiO,  [69a,b]
wa? 2 r a

r= r+ !u s0 -Lt 0, .U r -r!/in 0O+ - Ina.r [69c,d]

Hore r, 0 are polar coordinates with origin on the axis of the cylinder, whose radius is a, and

with 0 measured from the positive x-axis, as in Figure 99; U and I are real constants.

The velocity components are

I a2  r 6 9
qgrU -1+19cos 0, q 0 -U  1+- sin0+-

152 r2 / Ler
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Thus at infinity q, , U cos 0 and q0 - U sin 0, so that the flow is parallel to the x-axis and

directed toward negative x if U > 0. On the cylindni - = q0 and q0 - 2U sin 0 + F/(217 a).

The constant I represents the circulation around any closed curve encircling the cyl-

inder once in the positive direction, or in the direction of increasing 0. For 0, like 0, is

many-valued; 5 decreases by r in going around the cylinder.

The streamlines for 1 = 0.6 (4raU) are illustrated in Figure 103, and for I = 6taU in

IY

Figure 103a

-Below 9001 -

30' o

1802100 2400 2?00 3000 33P0
P P °

Figure 103b

Figure 103 -- Flow net for a stream with circulation past a circular cylinder, and
distribution of pressure over the cylinder, plotted against 0. See Section 69.

(The flow net is copied from Reference 8.)
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Figure 104. The excess pressure on the cylinder, p - p.., for steady motion, is 3hown in each

case in terms of P (P/2 as a unit. The angle 0 is plotted as abscissa toward the left from 0 to

rr, then toward the right; "above" and "below" refer to the upper and lower halves of the cyl-

inder as drawn.

Figure 104a

000150' 120P 900 -Or 30- 360

Fieure 104b

Figure 104 - Streamlines for flow with stronger ciiculation past a circular
cylinder, and distribution of pressure ov'er the cylinder. See Section 69.

(The streamlines are copied from Reference 257.)
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Stagnation points occur whore q. = 0 and q0  0. The equation q, 0 is solved either
by r = a or by cos 0 ,0. If the solution r - a is posrible, stgnation points occur on the cyl-
inder at positions such that, to make q0 = 0,

P
sin 0 = - a- [69g]

They are at A, B, in Figure 103. From [69g] and [69f) it is easily seen that the presence of
circulation shifts both of the stagnation points toward the side on which it reduces the fluid

velocity.

Suppose that P' and U have the same sign. Then, if P = .raU, the two stagnation points
come Logether at 0 = - 90"'. If I/U > 4ura, the equation for sin 0 cannot be solved; but now it
is possible to assume that cos 0 = 0, sin 0 = - 1, and to solve the equation q0 = 0 for r. Thus
as F/U is increased above 4rfa the stagnation point moves out along the radius 0 = - 900, oc-

curring at

P 16n'2a2 U2 \= J 1+ - [69h1ffu 12  )

The streamline that passes through such a stagnation point cuts itself perpendicularly and
encircles the cylinder, as in Figurq 104; all fluid inside it remains inside, circling round the

cylinder along closed paths.

Changing the sign of F reverses the flow pattern and alters all velocities as if by re-
flection in a mirror along the axis 0 = 0 or Yr. Changing the signs of both F and U, however,
merely reverses all velocities without other change.

If the motion is steady, so that the pressure is given by the Bernoulli equation, it is
easily seen from symmetry that the resultant force on the cylinder is a force transverse to the
direction of the stream, or a lift. Drag, in actual fluids, is an effect of viscosity, which is
here assumed to be absent. On an element of area of width a dO and of unit length in tb di-
rection of the axis, the force is padO, directed toward the axis. Hence the total force in the
direction 0 = if/2 on unit length of the cylinder is, substituting -pq 2 /2 for p and the value of

qo2 for q2 ,

2yr

LHf ~ pq2) a Fin 0 dO = pU [69i]
0

Here - sin 0 is introduced in taking a component of the force.
If the velocity at infinity makes an angle y with the nogat:ve z-axis, and if the axis of

the cylinder is displaced Lo the point a = = x, + iy,, then
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(a 2  iF z1
wU[(a--i) eLY+ e + In - , [69j]z - Z 1 21r a

=U + L cogs(0-y)- - 0, ¢=U r---sin(0 -y) +- ln--, [69k,

q, -U (-1 + cos (0 -, q0 = + )sin (0 - y) + 1- [69m,n]r2  Fffrr

where , e . [( - X) 2 + (y - yl)2]1 ,

and 0 is a polar angle about the point z,, or 0 = tan- 1 [(y - yl)/(x - z)]. For, it is obvious

that the entire flow in displaced in the desired manner; and at infinity the term Uze-'Y pro-

dominates in w and represents uniform flow at the angle y, as in Section 35.

(For notation and method; see Section 34; Reference 1, Article 69; Reference 2,

Section 7.12.)

70. TRANSLATION OF A CIRCULAR CYLINDER WITH CIRCULATION

By viewing the situation discussed in the last section from a frame of reference that

moves with the fluid at infinity, as in Section 68, formulas are obtained for the case of a cyl-

inder that has circulation around it but is moving toward positive z at velocity U, while the
fluid is at rest at infinity. For this case

a2 U iF z
w=- +- IP-, [70a]

a 2a a

cos0 F sin 0 F r
. .- O -, COS - a 2 U - + - In -, [70b,c]

r 2rr r 2rr a

q,a2U OS 0 
2 U sin 0 e

= a _I qo0 a v  - + T [70d,er2  2  Irr

The axes of coordinates move with the cylinder.

A stagnation point can now occur only where cos 0 and also

rF
= sin 0-1. [70f]

2na 2 U

For F/U > 0, 0 = - 90'; for F/U < 0, 0 90 ; anti in either case

r-2rra2  [70g]
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4 3~ ~ -..3__x a iU

Figure 105 - Streamlines around a circular
cylinder in translation and with circulation

around iL; the fluid is at rest at infinity. Figure 106 - Same as Figure 105 but with
See Section 70. (Copied from the circulation four times as strong.

Reference 1.)

Since, however, it is necessary that r a a, a stagnation point can occur only if Il 2najUj.

it r - 2naU, it lies on the surface of the cylinder.

Streamlines for r = 3rfaU/4 and F = 3fraU are shown in Figures 105 and 106.

The pressure and the lift on the cylinder are as in the last section.

Changing the sign of F changes the diagram as if by reflectioni in the x-axis. Chang-

ing the signs of both F and U merely reverses all velocities.

If the direction of motion of the cylinder makes an angle y with the positive x-axis,

from [69j] with z 0,

a2O iF zW=U elY + - In -I [70h]

z 2 1 a

a2  F a2 U F r
= r cos (-y)-- 0, .=-- sin (0- Y) +-- In-; [70i,j]

rr r 2rr a

a2 U a2 r F
q= -cos (0 - y), qo = - sin (0 - y) + - (70k,l]

r 2  r 2  2 r

(Reference 1, Article 69; Reference 2, Section 9.60.)
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71. CYLINDER AND VORTICES IN A STREAM

(1) A single vortex. Let a cylinder of radius a be stationary in a stream approaching PC

velocity U toward nogative x; lot there be circulation r about the cylinder, and also a Jino

vortex with c-irculation 1, located at the external point z b = -he'y, or (-h cos y, -h sin y),

the origin being taken on the axis of the cylinder. Hero h and y are real, and the vortex is lo-

cated on a radial line inclined at an angle y to a radius drawn in the direction of the stream;

see Figure 107. This case is of interest in th, theory of wakes.

The complex potential representing the partial flow caused by the vortex is given by

Equation [42a] with A replaced by I'1/2rr, z - c by z - b or a + he'Y, and z + c by z - b'where

b'= -(a 2 /h)eiY; for, as shown in Section 42(B), the image vortex lies on the inverse line with

respect to the cylinder and hence on the same radial line as the actual vortex 4ut at. a distance

a2 /h from the axis of the cylinder. In this flow the circulation around the cylinder is -r,.
Circulation F + r, must then be added in order to make the total equal to r. This can be ac-

complished, in superposing the flow due to the stream, by using Equation [69a] with r re-

placed by r + [ t. The complete complex potential thus constructed is

a2) i(F+r) z iF z -b

a + + ----- In - + L In M-b

Expressions for 0, p, and the velocity are easily derived if needed.

The force on the cylinder may be found from the Blasius theorem, Equation [74g], pro-

vided the vortex is assumed to remain stationary. Here

3' U

r I,. Figure 107 - A line vortex at "b" near
a circular cylinder in a stream.

y
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dutt i 2 \ + 1 ) 1 tr/

dz V2/ 2 z 2n a-b Z-b?

The force is obtained from the residlues at z = 0 andl a b'; compare Sections 30 and 42. It
is found that

*X ; (i h T2a2 y- , rU sin 2y, [71c]

Pl1 ( I,-+Fr Ar 1  a2

Y = prU+T- (A - - ) siny'+ - pru cos 2y. [71di

A negative value of x represents a force in the direction of the stream or a drag.
if r = -I,,, the formulas are simplified. Streamlines for such a case are shown in

Figure 108; here I' is positive and the flow is from right to left.

Figure 108 - SL-ea.-Ines near a circular cylinder due to a streanm with
circulation I' about the cylinder and a line vortex of circulational

strength -r1. (Copied from Reference 28.)

(2) Several vortices. If several vortices are present, the forces due to them are simply
additive; each term in X and Y that cnntains r I is replaced by a sum of such terms, one for
each vortex. In Figure 10P are shown streamlines for a symmetrical case with r 0 and two
v rtices. (References M6ller28, B ickley72 , and MiorriS73.)



-Figure 109 - Symmetrical streamlines near
a circular cy'inder caused by a stream
and two equal and opposite vortices.

.. -- (Copied from Reference 28.)

FORCES ON CYLINDERS

72. THE DISTANT MOTION

The fluid at infinity is usually assumed to he either at rest or in uniform motion.

Sometimes it is of interest to know how rapidly this condition is approached.

Suppose, for generality, that at infinity the fluid is moving uniformly at speed 1j, and

that the motion is irrotationaI everywhere except perhaps inside a certain cylindrical surface

S, which may enclose within it one or more solid cylinders. The cross section of S need not

be circular. Then at large dis,.,nices from S a closer approximation to the actual motion can

be secured by superposing the following thr~e motions:

(a) The uniform flow at speed U;

(b) A motion in which the velocity is everywhere directed along a radius from any chosen

axis inside S and is of magnitude

q, - ; [72a]

(c) A circulatory motion in which the velocity is perpendicular to the radius drawn froi i

the chosen axis and of magnitude

qr =  -1

Ilere r denotes distance from the axis,
V is the not volume per second that flows outward across S, per unit of its length, due

to sources or sinks inside it, and

e is the circulation along any ath encircling S once in the positive directic.

V, qe.qr, and :v be positive or negativem
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To establish this result, let the potential 6 for the .ctual motion be written as the

sum of the potential for the approximate motion thus cor.-:tructed and a fourth component W,
or

V r
Inr- - 0+'V 21= 2yr

where ot is the potential for the uniform flow; see Section 40. The partial motion represented

by h' will then be one in which the not outflow or inflow across S vanishes, and in which the

circulation likewise vanishes around every closed curve that does not cut S. Hence, in par-

ticular, q 'is singled valued, and so is the corresponding stream function 0b ' In such a mo-

tion, it can be shown that the velocity vanishes at infinity at least as fast as 1/r 2 , as it does,

for example, in the symmetrical flow caused by a moving nirc ilar cylinder. At large distance

from S the motion represented by O'may accordingly be disregarded i comparison with the

other components, and only motions (a), (b), and (c) remain.

The corresponding theorem for the complex potential is that, if dw/dz is differentiable

and single valued outside a %,urve S, and also finite at infinity, then, at sufficiently great

distances from S, dw/dz can be expanded in a Laurent series of the form,

dw b3 b2  bl
..... -- + -- -- a, [72c]
dz Z3  Z2 z

as stated in Section 27. lence, by integration,

b2 b1
w= . . . + - +a o +cln z +a1 z  [72d]

Z2 z

where . . . . b-, I, no, c are constants, real or complex. The last two or three terms of this

series represent the approximation just descrited; the real part tf c gives a term representing

the sources, the imaginary part a term representing the circulatory motion. The term in In z
is many valued.

If the surface S represent- a rigid cylinder, there can t)e no source and c must be purely

imaginary. Furthermore, the largest term that depends upon the shape and motion of S is the

term b/, which, as in Section 37, represents a dipole. "hus at large distances the effect of

a moving cylinder with no circulation around it is that of a line dipole located in its neighbor-

hood.

It is of interest, finally, to consider the effect of a conformai transformation upon the

distant motion. In an :mportant class of single-valued transformations the plane is left un-

altered at infinity. Such a trans formation from z to z"can be written, toward infinity, in the

form
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bI"  bl"
Z - + ..... [72e]

2 Z

Then, substituting in (72d), using the binomial theorem and aiso the series for In (1 + x) after

writing In 2 = In z'+ln (I +(2 - az')/z,

bt + alb t"wb a+a +cI n z'+a Z'. [72f0

Thus the equivalent dipole at infinity is in general changed, in correspondence with the

change in the shape and size of the cylinder. The circulation and source strength remain un-

changed.

73. LIFT ON A CYLINDER; THE KUTTA-JOUKOWSKI THEOREM

In Section 70 it was shown that a circular cylinder moving through fluid otherwise at

rest experiences no drag or force opposing its motion, but, if circulation is present, there is
a transverse force or lift of magnitude

L = pFU (73a]

per unit of length of the cylinder. Here p is the density of the fluid, & is the velocity of

translation of the cylinder perpendicularly to its length, and F is the circulation in the fluid

around any closed path encircling it once. The fluid is assumed, as usual, to be incompress-

ible and devoid of viscosity. The direction, of the lift can be found by rotating the direction

of motion of the cylinder through 90 deg in the direction of rotation suggested by F, as illus-

trated in Figure 110.

U . Figure 110 - Illustrating direction of the lift on a cylinder.

It was shown by Kutta and independently by Joukowski that the same statements are

true for a cylinder of any form. Tiis may be shown by considering the changes in the mome i-

turn of the fluid as the cylinder passes.

Let a frame of reference be used relative to whch the cylinder is at rest while the

fluid at infinity is moving with velocity -U. Consider the nass of fluid that lies, at any time

t,, between two planes drawn perpendicular to the axis of the cylinder and unit distance

apart, and also between Lwo other planes PPI P 'I drawn perpendicular to the direction of
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Q P Q' P.

rdO Vat

Figure 111 - Diagram for _,_

calculation of the lift.
L \ ,,/

Qt P,

U and far removed from the cylinder; see Figure 111. In time at the boundaries of this fluid

are displaced through a distance U8t into new positions QQ1, Q'Q1' At the end of the dis-

plncement, the pa:t of the fluid that lies between PP, and Q'Q1'has the same momentum as

had the part of the fluid that occupied this position origitally, since the motion is steady.

Hence this region may be disregarded; and the net change in momentum of the mass of fluid

under discussion is equal to the momentum present in the newly occupied layer of space

QQ1PP, minus the momentum that has disappeared from the layer Q'Q1"P'P, which has

been vacated.
In calculating the momentum in these two layers, use may be made of the approximate

description of the motion given in the last section. Here V = 0, since there is no outflow

from the cylinder. The uniform motion at velocity -U contributes nothing to the difference

in momentum between the two layers. The velocity qr gives rise, on the whole, to no momon-

turn having the direction of ), because of symmetry, but it does give rise to transverse

momentum.

Take the axis of polar ccordinates in the direction of V. Then an element of cross-

sectioral ara of the layer QP Q1PI is a parallelogram of height U t on a base of

rdO/(-cos O), as in Figure 111, and, using [72b] for qr, the transverse momentum in this

layer is

3ff/2 P t r I
Cos a= pbt.

2(/L 2r ) Cos 0 2

, ual but oppositely directed transverse momentum was initially pres;ent in the layer
Q'Q" P'P The net change in transverse momentum of the original mass of fluid is thus
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twice the momentum in the first layer or pF'Ut, in the downward direction in Figure 111. By

the law of action and reaction, thits must equal the opposite momentum given to the cylinder,

or L(5t. Equation [Mhal follows; and the direction of L is easily seen to be as stated.

74. THE BLASIUS THEOREM.

This theorem provides useful formulas for the force on a cylinder of any shape, and

also for the torque or moment of force, in the Case of scaoly Lwo-aimensionai motion.

Consider an element of the surface of the cylinder which has a width ds and unit length

in a direction perpendicular to the xy-plane, or to the rlanes of motion. Let the tangent to

ds, dra%%n in the counterclockwise direction around the cylinder, make k.. angle 0 with the

x-axis, as shown in Figure 112. Then the force on the element due to the pres3dre p, taken

positive when directed toward the interior of the cylinder, has a magnitude pds and

Cartesian components

Figure 112 - Force on element ds of the
surface of a cylinder due to a pressure p.

pds

dr

0

dX - p ds sin 0, dY = p d. cos 0

But ds cos 0 = dx, ds sin 0 = dy, where dx and dy are the components of ds. Tlence

X= fpdy, Y= f pdx [74a, b]

Xlso, by multiplying each component of force by its lever arm, the total moment L

about an axis passing through the origin is similarly found to be

N =fP(X dx t ydy) =prdr [74c]

where r 2  X 2 + Y/2.
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These formulas are general. If, however, the motion is steady, then, the pressure

being taken as zero at points where the velocity q is zero, p = - pq 2 i2 where p is the density

of the fluid and

2,Y y 1 2 IX ' lf 2(XdIX+ ydy) [.d ,f

X- pJ q2dy, Y=- - p q2dx, = 2 [7de,f

It was shown by Blasius that these expressions could be transformed Qn 'I- t.

oniy inLegrais ot a certain analytic function of z where z = x + iy; the methods of complex-

variable theory then become available for their evaluation. From Equation [74d,e], since
q2 = u 2 + V2

X- i Y=- P (u2 + v 2 )(dx - idy)
2J

Now (u2 + v 2 ) (dx-idy) = (-u+iv) (-u-iv) (dx-idy). Since the path of integration is part of a

streamline, the vector (dx, dy) is parallel to the velocity or to (u, v) at the same point; hence

dy/dx = v/u or vdx = udy. Thus

(-u-iv) (dx-idy) =- ud'+iudy-ivdx-vdy = (-u+ iv) (dx+idy),

and, using -u+iv = dw/dz, as in Equations [25i] and [34f], and da = dx + idy,

X - i Y = J p T [74g]

The torque requires a somewhat different artifice. Clearly

q2 (x dx + ydy) = (R) [(u 2 + v2) (x + iy) (dx - idy)]

where the symbol (R) signifies that only the real part of what follows is to be taken. Tae

same changes as before can be made in this expression. It is then found that, since the real

rart of any integral arises exclusively from Zhe real part of the integrated expression, [74f]
may be written

2 z) (R) z dz [74h]
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The integrals in these equations can be evaluated either for the entire contour of a

stationary body or for any part of it, or even for part of a streamline in the flvid. In any case

X and Y stAnd for the components of the total force transmitted towkard !.e left across the

chosen path of integration, and L for its moment about an axis through the origin.

The ne formulas are especially advantageous when the path of integration is closed.

Then, if dw,'dz is given by a mathematical function that is analytic on the rath, .nd also

throughout its interior except for a few singular points, the integrals are given at once by

the sum of the residues of thG intogrand at the singular points. It does not matter if these

points actually lie in a region devoid of fluid.

As an example, the Blasius theorem may be used to prove the Kutta-Jouko, ski the,)renA.

Under the conditions specified in Secaon 72, %ith the cylinder stationary, dw'dz :s a regular

function eery%%here outside of the cylinder; he.nce, by the Cauchy integral theorem, the path

of into.ration may be displaced toward infinity in all directions. As before, let the motion be

steady; and at infinity let the fluid approach at speed U from a direction making an angle y

with the positive z-axis, so that its components of velocity are - U cos y, - U sin y. Then,

in view of the results in Sections 35 and 72, v) can be written for large z in the form

it bU b 2
tt =-.e- 1-.+ In z+ a0 + - + - [74i02r z z 2

%here I is the circulation about the cylinder. The origin may be located at any finite point.

Then, in powers of 1,'z,

(Itt if' b1  2b2
- Ue-'Y+ . 174j](1z 2jtz z 2 z 3

(,h* 2 -e2iy, irU (F( 2e + - e-'Y- t2 + 2 bI U e- i )'  ..

Upon substituting this series for dw/dA in Equation [74g] and noting that Iz/z =2ri

if n = 1 but = 6 for other integral values of n, as shown in Section 30. it is found that

X - iY= + p I'Ue- i = - iplUe - Y.

Hence

X =-pl'U sin y, Y = pFU cos y. [74k, 1]

The magnitude of the force per unit length is thus (X 2 + y2)% pl'U.
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For the torque, Equation [74h1 gives similarly

N - -p (1? \ 1- 26Ue- ) TI

Write

b1 b"+ i b1 , b1 and b " real.

Then

N = 2rpU ('?) (ibe - ') = 2npU (bl' sin y - bl"cos y). [74m)

Thus the torque is independent of F.

If the fluid is brought to rest at infinity by using a frame of reference moving with the

fluid, the cylinder is moving at velocity U, with components U cos ),, U sin y, but both force

and torque are the same as before.

The final remark may be made that, if dw/dz contains two or more poles inside the path

of integration, representing line sources, vortices, dipoles, or other singularities, these in-

cluded singLIarities in combination with themselves or each other contribute nothing on the

'VholD to the integral for the force. Consider, for example, two terms in dw/dz of the form

A/(2-a)', B,/( -b)m where n and m are positive integers and A, B, a, b are constants. The

confribution of these two terms to 4 (dw/dz) 2 dz is

F A2  2AB B 2

+ - + dz.

Even the middle term here integrates to zero. For, the path of integration may be displaced

toward infinity without crossing a y singularit of the integrand and hence without changing

the value of the integral; and toward infinity, using the binominal theorem,

1 /1 na \ 1 _ mb1
(z-a)n(z-b)m  z n  zn+ Zm m+1 In +r

This integrates to zero, since n + m > 1.

In the same way it may be seen that the same product term contributes nothing to the

integral for the moment L provided n + in > 2.

(See Reference 1, Article 72b, where U, V replace - U cos y, - V sin y, and ct, /3

replace b6, bk," Reference 2, Section 6.41.)
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75. THE LAGALLY THEOREMS

The following special case of the force action on a cy linder is readily handled by

means of the Blasius theorem.

Let a uniform line source be located at z = a, outside a cylinder of any shape, and let

the flow of the fluid be uniform at infinity, with velocity components u = - b sin y and

v - U cos y. Then, if X and Y denote the x and y components of the force on unit length

of the cylinder, it will be shown that

X - p'U sin y + 2rnpA uaC, Y = pI'U cos y + 21rpA v. [75a, b]

Here I' is the circulation around the cylinder; 217A represents the volume of fluid emitted

per socknd per unit length from the line source; and Uac , Vac are the components of the

partial particle Velocity at the location of the source caused by the presence of the cylinder,

in addition to the velocity that would exist there if the cylinder and all circulation around

it were removed and replaced by fluid.

To prove this theorem, the contour of integration in Equation [74g] is displaced from

the contour C of the cylinder and transformed into a distant contour S together with a small

contour a surrounding z = a; see Figure 113 and compare Section 29. The value of the
integral remains unaffoected, since no singularities are passed in transforming the contour.

The theorem of residues is then used, as explained in Section 30.

S

Figure 113 - A line source at "a" near
acylinder C
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The complex potential can be written, from Equations (35a] and 140a],

u, = - A In (z-a) t Uze4 I L

where w. is the nartial potential due to the prisonce of the cylinder. Then

A du duc
= + U e-iY + -,-U a + iva-

dz z- a ' aC a 1

from Equation [25i].

On S, 1 '(z-a) can be expanded by the binomial theorem:

A A a a2

2-a 22 23

Furthermore, div /dz will vanish at infinity, so that, on the contour S, i% can be expanded

as in Equation [72(1]:

iF 61 b2 du iI" bi 2b2
w- In z + - + - - - - - - ..

2n 2 Z2 dz 277z z2  z3

All but two of the resulting terms in the integral around S then give zero.

On a, which is traversed in the negative direction, the residue of [-2A!(z-a)]

[dwc /dzl contributes to the integral 41uiA [dic,/d]a = 4niA (-uac + iV:), since dwidz

is analytic at 2=a: see Section 30. The term in AU cancels one obtained from S.

-thus Equation [74g] becomes

X - iY = - pFUe- iy + 2upA (u.c - iV.c). [75c)

As was seen in Section 40, A is real for a source; hence Equations [75a, b] follow.

If there is a line vortex instead of a source at z = a, with circulation Fio around it, by

[40m] A = - i 1'/2;7 : hence

X = - p'U sin y - pl O rac, v = pl'V cos y + pl 0 Ua,. [75d, el
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If U - 0, a little reflection shows that the force on the cylinder is directed more or

loss towards the source or vortex.

The torque L on the cylinder per unit of its length is given by Equation [74h'. In

evaluating this integral around a, the factor z in the intogrand can be written as (2-a) - a.

It is found that

I (irA 1,2
L--p(R ) T4niaA(-uac+iv.c)+2i --- - 2b Ue - iY1

2 IT 2

Write b - Ible' 1. Then, for a line source at z = a,

L = p [A (2:av. - F) - 2nU1b 1 sin (0, - y)], (7f]

or for a line vortex,

L =p[alo u., - 2nrUlbl sin (,8, - y)]. 175g]

To use these results, uaC and Vac must be known.

If several sources or vortices are present, the values of X, Y, and L due to all of

them are simply added to obtain the total force and torque, as is easily verified. The

principle of the superposition of flows will not hold, however, since in each formula the

values of Ua and vac are influenced indirectly by all sources or vortices. The sources

or vortices may be fictitious, introduced to represent the effect of another cylinder, with

or without circulation around it; in this way it may be possible to caiculate the interaction

of two or more cylinders.

(See Reference 2, Section 8.63, 9.53, 13.62; also Section 8.83 for an extension to

dipoles.)

76. KINETIC ENERGY IN TRANSLATIONAL MOTION

By using the same stratagem as in Section 74, some useful formulas can be derived
for the kinetic energy of the fluid surrounding a cylinder that is moving in t.-anslation per-

pendicularly to its generators. Let the velocity of the cylinder be U with the fluid at rest

at infinity and with no circulation around the cylinder, and first, for simplicity, let it be

moving toward positive z. Then the common norntrl velocity of the surface of the cylinder

and the fluid, at a point where the x direction cosine of the normal to the surface is 1, is

q,, where % = 1U, and the kinetic energy of the fluid per unit length of the cylinder is T,

where, from Equation [17d],
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1 1 1
T, - pc¢q 1 s -pVld3 p dy,

since I ds - dy. Hero p is the density of the fluid and the integration is to be extended

around the surface of the cylinder.

Now, if

w + i and - x +iy,

then

4dy = (I') (w dz) - 0d-,

where the symbol (I') signifies that only the imaginary part of what follows is ' be taken,

and without including the factor i; thus

(I') (w dz) - (1') [(-0 + i ) (dx + i dy)] 4 dy + 4, dx.

Also, between two points on the surface ds apart, 4, differs by dep where dip - qn ds -- lUds

= - U dy: whence, after integrating, U = - Uy + C on the surface, where C is a constant,

Substituting,

1
T= p[(I') (U wdz).- US] [76a]

where S stands for - 4ydx and represeats the cross-sectioi. area of the cylinder. Ile'e C

has disappeared because C dx C dx =-0.

Thiz result may now be gereralized so as to allow the cylinder to be moving at speed

U in a direction inclined at an angle y to the positive x-axis. Both the cylinder and the flow

are rotated through an angle y about the origin if z is replaced by ze-'Y, as explained in

SecElons 25 and 34. Thus Equation [76a is replaced by

1
,- p U [(I') (w e-'Y dz) - U S], [76b]

2

since th6 rotation does not. alter S.

Another useful form for T1 may be obtained by displacing tha contour of integrat;on

toward infinity, which does not alter the value of tne integral; see Section 29. Then w can

be expanded as in Equation [72d], but here the last two terms of that expansion vanish, so

that
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b, b2
w +a0  - + -. [76c

- 2

In the integral, all terms give ztero except that b1 dz/z rrib,; see 31E ',. 's . Also,

(1') (i bI e-'Y) = (R) [b I e- 'Y ] whero (R) indicates as in Section 74 that unly the real part of

what follows is to be taken. 3fence

-- pU 2 S, , = 2(R) L j S, [76del

or, if the cylinder is moving toward positive x,

(I?) b,

-- -S. [76f0
U

Finally, let the shape of the cylinder b changed by means of a transformation which

is -ingl, valued and regular outside of the cylinder and which leaves the plane of z uncknged

at infinity. Toward infinity such a transformation from z to a new variable z" can be writcen

b1  2

z = Z + - + .... [76g]
2 Z12

If this series is substituted for z in Equation 176c] as it stands, however, the boundary

condition on the flow may no longer be satisfied at the surface of the cylinder. To avoid

this difficulty, let the moving cylinder first be brought to rest by superposing uniform motion

in the opposite direction; then, from Equation (35a], tv becomes, in place of Equation [76c],

L ib 1 1

L= Ue-Yz+a + -- = Ue-Yz+ao0 + (Ub'e-'Y + b) . .......
z z

The boundary condition on the cylinder is now, on the z-plane, d = constant, and this con-

dition remains satisfied on the z" plane. Removal of the term U e-'Y z then sets the cylinder

moving again, at speed U in a direction inclined at the angle y to the positive real axis of

z'; the corresponding flow is represented by

1a+ I, bh'e-i' . b1) -.... [76hi

1 "
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Equation [76e] for the entrained area S1' then gives

S'-2a (R) (6e-2i; + " [76i1

where S" is the cross-sectional area of the transformed cylinder.

(See Reference 74, where a proof not employing complex variables is given by Leathem.)

AIRFOILS

77. THE JOUKOWSKI TRANSFORMATION

By making a transformation from z to a new variable z', the flow with circulation around

a circular cylinder can be transformed into the flow around a cylinder of a different shape.

The equipotential curves and streamlines on ,he z-plane transform into curves on the z'-plane

in association with the same values of 0 and 0&. Since the total change in 0 on going around

a closed curve thus remains unaltered, the circulation around the transformed cylinder i" the

same as that around the original circular cylinder.
It was shown by Joukowski that a first step toward obtaining in this way useful p--

files for airfoils could be taken by using the sin'ple transformation

C
2

z'- z + - , [U7a]
z

where e is a real positive constant, z'= x'+ iy', z = x + iy.

if c is chosen equal to the radius a of the given cylinder, z'becomes simply the complex

potential t for the flow past the circular cylinder itself, as obtained in Section 69. Assume,

therefore, that c < a.

The transformation Equation [77a] has a singularity at z = 0. Furthermore, since

dz' c2  1
= 1 -- = - (Z + c) (z -c), [77b]

dz z2 z2

the transformation is not conformal at either of the points z = t c, or z'= + 2c, where

dz'/dz = C. In fact, as z passes through either of these points along a smooth curve, since

dz'/dz changes sign, the motion of z'reverses, so that the corresponding z'curve exhibits a

cttsp.
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t the initial circulhr cylinder be so rlaced on the a-plane that neither of the points
a - c lies outside of it. If one of them lies on the cylinder, an infinite velocity will occur

at tile corresponding proint in the transformed flow unless the original poirt on the initial
cylinder was a stagnation point. For dw/dz'= (dw/dz)/(dz'1dz), so that, at a = ± c,
dw/dz "-.o unless dj/dz -. 0. The singular point z = 0 lHes inside the cylinder and can be

disregarded.

To study Lhe general character of the transformation, let z' and a both be represented
for the moment on the same plane, with coincident axes. At infinity a'= a, so that the flow

is unaltered. The transformation gives to every finite point represented by a = re' 0 the dis-
placement c 7/a = (C2 Ir)e-'O; the magnitude of this displacement is inversely proportional 0
r and its diection lies at the same angle below the x-axis as does the vector representing
a above it; see Figire 114. Thus all points not on the x-axis are moved toward this axis, ani
all points not on the y-axis are moved tway from this axis, provided r > c. Points on the
x-axis are merely shifted along it, and similarly for the y-axis.

SY z

$ • all

P__ . Figure 114 - The Joukowski transformation,
-2c a'" -cZ 0= Z + C2/Z.

Points lying on the circle Il = c are brought on to the segment of the x-axis between
a' t 2c. Other circles transform into curves whose shapes vary widely. A circle centerek.
on the x-axis is transformed into a curve that is symmetric with respect to the X'-axis. If the
center of the circle is not on either axis, the transformed curve is asymmetric.

The part of the a-plane that lies outside the circle Ii = c is thus mapped onto the
entire z'plane, conformally except at z = t c. The transformation can be visualized by
imagining the circle [8j = c to be both flattened vertically and drawn out horizontally until
it becomes a segment of the real axis of length 4c, accompanied by a (;:--esponding distortion
of all parts of the plane. Circles centered at the origin become converts. i. to confocal
ellipses, while the radial lines outside the c-circle become joined at the ends W form hyper-

bolas confocal with the ellipses; see Section 81. The interior of the c-circle is likewise
mapped onto the entire z'-plane, as if it were turned inside out and also reflected in the real
axis while the origin recedes to infinity.
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The transfomed cylinder. Let the center of the circie of radius a, which represents a

circular cylinder, be located on the a-plane at the point

Z= 1 - A ei? [77c]

where h and ?I are real positiva constants, or at. the point (h cos q, h sin rj); and let the fluid

at infinity have a velocity U inclined at an angle y to the negative z-axis, with components

-U cos y, -U sin y; see Figure 115. Then, from Equation [69j], the complex potential is

to = V z-he lq) ea 2 + e] + ir I a-hein [77d]
z- hei) 21r a

By substitution for a from Equaton ['7a], w can be found, if necessary, as a functioIn of z.

Figure 115 - Diagram for Equation [77d].

The lift on either cylinder is gkven by the Kutta-Joukowski foraula [73a1. A simple

formula for the torque on the transformed cylindve can be obtained from the Blasmua theorem.

For this purpose, dw/dz'must be expanded in descending powers of a, -as in Equation [74j],

but terms in higher negative powers than I/z'2 are not needed here. From Equations [77d]

and [77b]

dw dw -da' " e-i a] ei +  1 1

da z- a da a (--hee)17
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Solving Equation [77al as a quadratic in z and expanding the radical,

z, [1 1 42C2 C

+ +3=~~~~~ -- I "3 +...
z z °  z 2 4 ZJ-3

by the seies, (l- )- 1 = 1 + T ........ .; hence

(z- he') - 2
=  I h h e n 1 e

z 22 P*Z2

( _ h i q ) 2  12 0.2  c 2

=Z h 2- + .. . .. + . .; -= + + . .. -, + . .

z2  a 2  *\ 2 12

Hence, as far as terms of order 1/z2,

dw - UIe+ [irr 2  I2

dz' 21r' z+ c - ) ITI

Thus the constant b1 in Equation [74j] with z replaced by z'here has the value

il he ih - U (c 2 e - i ' - a2 eLY), [770

and, upon substituting iL, Equation [74m] and selecting the real part as indicated by the

symbol (R), the torqvi per unit length on the cylinder about an axis passing through the

origin of coordinate,; i. uund to be

N = - 2P p c2 U2 sin 2y+ phFU cos ('i -y). [77g]

(See Reference 2, Section 7.50, where the sign of , is reversed; Reference 4.)
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78. CIRCULAR ARCS BY THE JOUKOWSKI TRANSFORMATION

Lot the initial circle representing a circulhr cylinder be centered now on the y-axi.1 't
(0, A), and lot it have such a radius a as to pass through the points a =± c, as in Figure 1A6.
Then it tran-.fcrms into a circular arc with ends at the points z"= - 2c, which may represent
a lamina of arcuate cross section.

01-02

rj2

1

L6 20~2 2

Figure 116 - The a-circle goes into an arc on the za plane. See Section 78.

For, each of the Loilowing two equations is equivalent to Equation [77a]

(a'- 2o) a -- (a - c)2, (a+ 2c) a = (a + c)2.

Division of these equations gives

a'-2C =(._-c \'2

Write
iO1  iO' O

a-c=rle , a+c=r 2 e 2 a'-2c=rle , a +c=r'e 2

The angles thus i-troduced are illustrated in Figure 116. Then equating complex amplitudes

on both sides of Equation [78a,

0'- 02 2(01 - 02). [78b]
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Now, it is clear from Equation [78a] that the points a c correspond to z'= t 2c.

As a, starting from a = c, traverses the initial circle positively up to z - c, 01 - 02 retains

a constant value, for a geometrical reason; hence by Equation [78b] 0 '- 0' likewise remains

constant, and z therefore, traces a circular arc extending from a'= 2c to z' - -20. As z con-
tinues past z - c, 02 changes by ir, and 01'- 0 'by 2rr; this is easil) seen to be equivalent

to no change at all in 0,'- 02, so that z'must now retrace the arc, arriving back at z'= 2c
as z comes to c.

The constant value of 01 - 02 along the upper part of the circle can be written

iT
0 - - [7Sc]

where the significance of / is shown in Figure 116a, and

c = a cos /6, h = a sin/3 = c tan/. [78d, e]

The angle between the tangent and the chord at each end of the arc on the z'-plane is

- (0 "- 02") or 2 8; thus the arc has a total angular length of 4,3. Its radius I, and its

camber C, or the ratio of its maximum height above the chord to the length of the chord, are,
from the geometry of Figure 116a and Equation [(78d, el,

2 c a2  P. (I - cos 2-,6) 17i = , = - C= = --in 2 02 ta n /6 . [7 8 f, g ]
sin 2/3 2_ 2 Rsin2 2/

The interior and the exterior of the circle are each mapped onto the entire 0'-plane;
the mapping of the interior is to be ignored here.

For an application, it will be convenient to assume the fluid to approach at infinity
from a direction inclined at an angle 9 below the positive z- or x' -axis, with components of

velocity -- U cos a, + U sin a. Since the flow at infinity remains unaltered, the angle (,f
approach is the same in the transformed as in the original flc~w. Then, in Equation [77d] for

the complex potential w, y = - c; and here q = rr/2, e"7Q i. Thus

ra a 2  " iF z - i,
w = V L(Z-ih) ei + e - in 7-in8h

Substitution for z in terms of z' from Equation [77a' th,n yields w as a function of
', and from "w = . + io, z'= z'+ iy, the potential 0 and stram function 0 can be found;

but the equations are complicated. The flow net is most easily constructed by diroct
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graphical transformation of that for the cylinder; a sufficient ntmber of f~oints on the curves
can be transferred into their new positions by the method described in Section 77 and illus-
trated in Figure 114.

From Equations [78h] and [77a]

. .dw =dw ed -2 e-, a + [78i]

d z dz d 2 2_c2 (a-ih)2  21r(z-ih)

from which Cho components of velocity u' and v' in the transfor-med flow can be found.
On the .rc itself, since the corresponding 3-point lies on the initial circle, z is rep-

resented by z - ih + ae i where e is a variable angle, shown in Figure 116. Hence

ii- - e-i =e-i (e'(0+o)-e-i(a+ )) 2ie-i E sin(a+t ir.L(z-. s=£C
( i ) 2 2(z-ih)) 2ra'

and, since z2 _ C2 = (z + c) (z - c) and lie-'I 1,

dw r2  /
q-= = 2Usin(c+c)+ . [78j]

rc 21ra

Here r = 1zl, ?c = Iz - cl, rc = Iz + cl; and these quantities represent distances that can be
measured on a plot. Th- point on the a-c at which q as calculated from Equation [78j] i.- the
velocity can be found by graphical transfer of the corresponding point on the circle.

Streamlines for/3 = 11 deg, a = 25 deg and r = 0 are shown in Figure 117; the diagram
has been tipped up to save space. Another case of streamlines about a flattish arc is shown
in Figure 118; see Reference 114. About a semicircular arc, streamlines for three cases of
non-circulatory flow are shown in Figure 119; see Reference 113.

Figure 117 - Streamlines past a circular
arc without circulation.
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Figure 118 - S:.eamlines past a circular arc
with no circulation about it.

----------

--- -----

....... ...

Figure 119 - Noncirculatory streamlines about a semicircular are.

(Copied from Reference 113)

The lift per unit length on the lamina, in the direction perpendicular to the direction of

the tteady stream at infinity, is in any case L = prU, by the Kutta-Joukowski theorem. The

torque about the origin of coordinates or the cent-r of the chord, from Equation [77g], in which

here y = -a, Y = 90 deg, h = c tan 13, is, in any case,

N =21pc 2 j 2 sin 2a-pcrU tan j3sina [78k]

Here p is the density of the fluid.

The lift and torquo will be the same if the lamina is itsell moving through fluid which
is at rest at infinity; the lift is then perpendicular to the direction of motion of the lamina,

end a is the angle between the direction of motion and the chord of the lamina, as shown in
Figure 120.
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y

Figure 120 - Symbol relations for oblique

motion of a circular-arc lamina. 2 8 2#3

a

At the edges of tlie lain,.%, where z = t c, q - o, in general. The velocity can be made

finite at one edge, however, by choosing the ratio F/U so that the bracket in EquaLion [78i]

vanishes at that edge. Then dw/dz = 0 there and the corresponding point on the initial

cylinder is a stagnation point. In particular, let

U (eic a 2  e-i) , [7811
(_ C. ih)2  irr (- c- ih)

or, since by Equation [78d,eI

c + ih = a (cos .8 + i sin 1) ae i13 , [78m]

F = 4 ,TaU sin ( c, + f3), [78n]

Then, eliminating F between Equations [78i0 and f7Pi and at the very end using

Equation [78m],

dw UZ 2  ia a a +

dz' (z-c)(z-ih) z-ih

Thus dw/dz' and q are now finite at z =- c, although still infinite at z = c. Furthermore, both

dw/dz'and z' are continuous functions of z at z = - c, so that no discontinuity of the velocity

can occur there; the fluid flows smoothly away from the trailing edge along the tangent.

With this value of F, Equation [78j] becomes

2 r2 U
q= -r [sin (a+,E)+sin (a+ )1, [78o]

C -1C
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r.nd the lift is

L = pFU = 417paU2 sin (a+), [78p]

whore a = c/cos 13. The lift in this case is directed away from the convex side of the lamina

provided a -- , and it is a maximum for a = 90 dog - 83.

The flow net around such an arc-shaped lumina, with the cirk ulation adjusted to make

the velocity finite at the trailing edge, is shown in Figure 121. The stream approaches from
the left at an angle of 10 deg to the chord. Because of the presence of circulation, the

apparent directions of approach and departure differ in the figure by a few degrees. The
theoretical pressure-differences on both surfaces of the lamina are plotted in Figure 122,

drawn vertically from the arc as a base; the numbers represent millimeters of water in an
airstream of 10 meters per second. The broken line represents old measurements by Eiffel.

6rt o ,1#T .-. Y r.,4

S * I I

Figure 121 - Flow with finite trailing veloci~y around an arc-shaped lamina.

The kinetic energy of the fluid when the lamina moves in translation is easily found.

Let it move at velocity U at the angle a with the direction of its chord, with no circulation
around it, and with the fluid at rest at infinity. Fromr E-uation [78h], in which the term in

e ja represents the un~forrn stream and is to be dropped. the appropriate potential is

a2 u i a2 Ue-a ih a2 u

with a, measured downward from the positive rea* axis. The transformation Equation (717a1

4 -

c ' w i

" " "~~~~~1 -•,, ,,., .-.r--"
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c 2  c 
2

3 = 3
t  
= e +..........

Comparison of these equations with Equations

[76d] and [76h] shows that here b -'a- Ue - i a, -15

b1", - c2 ; also, here y = -a . Hence from

Equation [76e, i], in which S'= 0, the kinetic

energy of the fluid per unit length of the -10

lamina is

T =pS 1 U2  U2 (a 2 -c 2 cos 2a), [78q] -4

-2

is obtained by writing b for 2c, the half-chord *1
+2

of the lamina, and introducing its central 431

height d above the chord. Using Equations +4

[78g] and [78d], d2 = 02 (4c)2 =2 tan2 /

= b2 (a2/c 2 -1), whence a2 =(b2 + d2 )/4.

Thus
Figure 122 - Pressure differences above and

betow the lamina shown in Figure 121.

T= . - pUU 2  (b 2 sin 2 a + . [78r]

(See Reference 1, Article 70.)

/9. THE JOUKOWS'I AIRFOILS

By disi 'cing the initial circle so that it passes through only one of the points

z = t c and surrounds the other, the Joukowski transformation can be ma-. Yo yiuld a contour

that is pointed at one end and rounded at the other. If the circulation is h,7n chosen so as to

make the velocity finite at. the pointed end, it is finite al! round. According to a hypothesis

proposed by Joukow ?ki, a properly designed airfoil automatically develops in the fluid around

it, by means of friction, a circulation of such magnitude as ta remoe the tendency for the

velocity to become infinite at the trailing edge, which is usually made comparatively sharp,

and measurements have shown this hypothesis to 4e close to the truth.

The general Joukcwski transformation is most easily handled by a graphical method.

It is desired to construct points representing z'where
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z ' +-- [79a]
2

and c is real. If z re i0

C 2 =C2 i

z r

Thus the point representing the complex number c2 /z lies on a line inclined at the angle 0

below the x-axis, and at a distance c 2 /r from the origin. The vecto,4. representing c 2/z and

z are easily constructed and can then be added vectorialiy to obtain z.

For values of z representing points on the initial circle, the operation can be simpli-

fied by first constructing the locus on which v2 /z must lie. Let the center C of the initial

circle, whose radius is c, be displaced a distance h from the origin in a direction making an

angle q with the positive x-axis, as illustrated ;n Figure 123. Then, whei 2 lies on the circle,

(r cos 0 - h cos 1)2+ (r sin 0 - h sin 11)2 = a2 ,

r2 -2hr(cos 0cosi+sin 0sin 1 )+h 2 -a 2 = 0.

S--Figure 123 - Illustrating relations for a general
a Joukowski transformatioai.
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Multiplying through by -. c4 /[r 2 (a2 - h2 )]:

( 2 ) 2+2 : 2 A 2  C 4

+'2 - (COS 0cos 17+sin 0sin /)-, - =0.
a2_h 2 r a2 - h 2

This can be written

cos 0 + h' cos +) r sin 0- h' sin 2= a 2  [79b]

Itc
2 h c 2 a

h'= - a' -a" 179c, d)
a2 - h2  a2 - h2

Now c2 cos 0/r, -c 2 sin 01r are the coordinates of the point c2 /z. Hence, Equation [79b]

shows that c2/z lies on a circle of radius a' drawn about the point C' or (-h'cos q, h sin 7/)

as centnr. Clearly OC'and OC are equally inclined to the y-axis but on opposite sides of it.

If, in particular, the initial circle passes through the point z =- c or B, C' lies on

the radius BC. For, the slopes of BC and BC'are, respectively.

h sin q h'sinr i c2 h sin -q

c+ h cos q c- h'cos r7 c(a 2 _h 2 )_c 2 hcos,7

from Equation [79c]. But, from the triangle BOC,

a2 - h 2 = c 2 +2c cos ,.

Hence the second slope equals the first. Since the point a - c or B is itself on the locus

circle, the two circles touch at B.

According to the results of Section 78, a circle centered at C,, the intersection of the

radius BC with the y-axis, would transform into a circular arc of tcfil angular iength 4P3,

where (3 is the angle between the radius BC and the x-axis. This arc, with ends at

z'- ± 2c, lies inside the transformed contour as a sort of skeleton.

The construction of an airfoil contour in this manner is shown in Figure 124 for

h = 0.87c, P3 = 34C 40'. The skeleton -,rc is also drawn. The graphical procedure is

discussed further by Ruden. 75
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Figure 124 - Illustrating the construction of an airfoil contour.

If j6 0, so that the initial circle is centered on the --axis, the skeleton arc becomes
a straight line and the contour obtained from the circle is symmstrical at)out the z'-axis. Its

shape depends on wie ratio a/c. If [3 / 0, the contour is asymmetric.

For the flow in the surrounding fluid, nothing needs to be changed in the discussion of

the last section except that here the velocity can be infinite only at the sharp edge or at

z 2 - c, and ih is t be replaced by h cos r? + ih sin il = h ei, as ir Section 77. With the

latter change, Equations [78i] and [73j] for u', v" nd q, which are expressed in ternis of

quantities on the z-plane, hold as before.

If F = 4 aU sin (a+ 13), the velocity is again finite everywhere. Here U is the
relative velocity of the airfoil and the fluid at infinity and a is the angle of attack, or the

angle between the direction of approach of the fluid and the chord of the skeleton arc, taken

positive when the approach is from the concave or less convex side. With this value of r,
the lift per unit length is again

L =4rpaU2 sin( a + l ) [79e]

where p is the density of the fluid.

In any case L = p F U, provided the motion is steady, as for any cylinder.

The torque abouL the origin of coordinates on the z' plane is, from Equation [77g),

in which here y = - a,
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N = 2,trpc 2 U2 sin 2& +phrv cos (9'+a). [79f]

Flow without circulation past a Joukowski airfoil of a certain shape is shown in

Figure 125. For another profile, there is shown in Figure 126 first, the flow without circula-

tion, then the flow due to the circulation alone, and finally the resultant flow due to the super-

position of the two; the circulation has been chosen so as to make the resultant velocity finite

at the trailing edge.

The trailing edge can be rounded off by allowing the initial circle to enclose both of

the singular points (± c, 0). A Joukowski profile constructed by R.H. Smith 25 1 with P = 0,

alc = 1.35, A/c = 0.135 is shown by the heavy curve with two rounded ends in Figure 127.

Streamlines for A !jw without circulation past Li1b conweur are shown in Figure 128.

The extended contour with a pointed end in Figure 127 represents the profile of U.S.

Navy strut No. 2. It can be reproduced without visible error, using the njethod of Section 56,

by assuming 5 line sources and 8 line sinks of suitable strength properly disposed along the

axis. Figure 127 shows also the calculated distributions of pressure over both theoretical

profiles in comparison with the observed distribution over strut No. 2 in an air stream; the

flow is from right to left.

(See Reference 1, Article 70; Reference 2, Sections 7.20, 7.30, 7.31, 7.32, 7.40,

7.50.)

Figure 125 - Flow without circu ation past a Joukowski airfoil. A and B
indicate sgnation lines.

187

...T . . .!



Figure 126a

Figure 126b

Figure 126c

Figure 126 - Streamlines past another Joukowski airfoil: (a) with no circulation,
(b) with circulation only, (c) with circulation adjusted to eliminate cross flow

at the trailing edge.
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* Joukowski
o--Sources A Sinks

x- Eperiment~l .5

Figure 127 -Profile of U.S. Navy Strut -i 5Q
No. 2 (pointed) and closely similar -0

Joukowski profile (roundedi), with -______________

th oretic l and experimentalpressure distributions. See
the end of Sec. 79.

Figure 128 - Flow without circulation past
a similar profile with rounded ends.

:E- -

80. IMPROVEM AIRFOILS

A modification ol the Joukowski transformation by which the sides of the airfoil may

be made to form a trailing edge containing a finite angle instead of a cuspo is furnished by the

circular-arc transformation, which will be treated in Section 88. There is no simple graphical

construction for this trans formation. It was studied by von Ndrman and Trefftz77 , Mhlier7

and Glauert 8 , and was generalized further by Betz an, !{eune 7 , wvho a(Ved a dipole term.

Other eicsed trans formations for the construcic)i of airfoil cont.ours were discussed by
Blaiu80 rirc, ipr ad reto 8 1, -iper82 , and Durington and Dobbie08 3. More

generally, any ordinary closed curve can be transformed into a circle by a suitable trans-

formation, in ordrr to make the two planes agree at infinity, the transformation must be repre-

sentable by a Laurent series of the form mentioned in Section 76 or

al 472
Z"= ~Z+ - + - +....

Z Z

The use of trans forma ti ons so defined was studied by von Mises8 and by 11ller8 5 .
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Simple methods for the treatment of thin airfoils were described by Jeffroys8 6 ,

Munk , Glauort 4 , 8e,, and Millikan 8 9 , who also considered biplanes.

Later work has been concerned chiefly with practical methods of making calculations

for given profiles -f any shape. See especially papers by Theodorsen and Garrick 9 ° , and by

Gebeloin 9 , also Tho xdorson 9 2 , Schnioden9 3 , Garrick 9 4 , Kaplan 9 s . Line sources on the

axis of the airfoil are used by Pistolosi 9 6 and by Goldstein 9 7 , both sources and vortices by
ieune 98 . Jones and Cohen 9 9 show how to use the Joukowski transformation itself in order

In ?1,ct small changes in a given profile.

Approximate methods for double or biplane airfoils have been discussed by Millikan 8 9

o;id, with use of elliptic functions, by Garrick l o° .

The theoretical literature on airfoils is naturally extensive, but most of it either makes

liutle use of potential theory or deals with systems of vortices and so lies outside of the

scot c of the present discussion.

VARIOUS CYLINDEPS

81. CIRCLES INTO ELLIPSES

The transformation of Section 77,

C2z = Z"+ - [81a]

can be used to convert a circular cylinder into one of elliptic cross section.

For, consider a circle on the z'-plane centered at the origin, which can be described

in terms of polar coordinates r, 0 as follows:

z x"+ iy"= rejO, x"= rcos 0, y'"- rsin 0, [81b, c,d]

where r is constant. For the corresponding transformed curve on the z-plane, from Equation

[81al,

02

z = X + iy = re + e-  [81e1
r

X= r+ ) Cos O,y ( r - sinO. [81f, g)
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The equation of the transformed curve can also be written

X 2  C2 -2
-+ - -1, a = r+ ,b r- ,[81h, ij]

a2  b2  r

which shows that the given z"-circle becomes an ellipse on the z-plane having semiaxes a,

b. Its foci are located at y = 0 and x + a -P = t 2c.

Similarly, a radius from the origin of z", on which 0 is constant, becomes a curve on
which, from Equation f81f,g]

X y X y 2 0 2  X2  y 2
+ = 2r, = , = 1. [81k]

cos 0 sin 0 cos 0 sin 0 r 4 02 cos 2 0 4C2 sin 2 0

This represents a hyperbola having semiaxes 2 c cos 0, 2 c sin 0, and foci likewise at
(t 2 c, 0). Since the transformation is conformal, the hyperbolas and ellipses are orthogonal,
as were the original circles and radii.

Toward infinity, z -. z"and the two planes become alike. The ellipses then reduce
to circles like those on the z"-plane, and the hyperbolas approach their asymptotes, which
have the directions of the original z"radii.

In working with these curves, it is convenient to change somewhat the variables that
characterize them. Let a new complex variable 4 be defined by

a"= ce<, 4= 4+i27. [811,ml

Since 4= in (z"/c) and a"= re'O,

e= In (r/c), 7/= 0. [81n, o]

Substitution in Equation [81a] then gives

z = 2 c cosh 8. [81p]

This latter transformation will be studied in the next section.
Each of the ellipses previously described now corresponds to a certain numerical

value of e. There are two different circles on the z"-plane corresponding to each ellipse,

however, one lying inside of the circle r = c and the other outside of it; their radii rl, r2 are
such that r, r2 = c2 , since in Equation [81i,j] two such values of r give the same a and b,
and Equation [81n] shows that for the larger circle C > 0 while for the smaller 4 < 0. Each

hyperbola corresponds to q/= I + 2n 7 where 77, is a real number and n is an integer or zero.
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The inverse transformation to Equation [81a] is

z' =--[z +  -4c 2 ) ; [81q
2

the plus sign goes with r>c or e> 0, and the negative with r<c or e<O, as is easily verified for

positive real z; for a real 2<- 2 c, however, the symbol (z2 - 4 c2)1 must be understood to stand

for the negative square root.

(See Reference 2, Section 6.30, where c is replaced by c/2, also Section 6.32.)

82. ELLIPTIC COORDINATES

Lot

z = x + iy = c cosh, + i q. [82a, b]

This transformation was studied briefly in a different notation in Section 61, and the results

obtained there will be assumed. From Equations [61b,c,g,h,i,jI

x - c cosh e cos -q, y = c sinh :sin q, [82c, d]

cosh I = 1 [(X + C)2 + y21% + ((X - )2 + y2]Vl, (82n
2c

1 , 2

COS =- I[(X+ c) 2 + y 2] -[(- c) 2 + Y2]%, [82f0
2c

X2 y2 X2 y2
+ 1, =1. 82g, h

c2 cosh 2 f c2 sinh 2  c2 cos 2 r c2 sin 2 7

If eis held constant while q is given all possible values, an ellipse is obtained on

the z-plane, with semimajor and semiminor axes

a'= c cosh f, b'= c Isinh . [82i,j]

The same ellipse is obtained for f= - 4, as for e= el. If 7 is held constant while ranges

from -e to ., a hyperbola is obtained with semiaxes

a"= c cos qj, b"= c Isin '11. [82k, 1]

-All elli. s and hyperbolas have common foci at (± c, 0), and

a' 2 - b 2  c2 , a- 2 + b" 2  c2 .  [82m, n]
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See Figure 129, on which possible values of e and r/are indicated in terms of Ir.'30 as a unit.

19 12 1 ig p cor i Se St 82.
2 1 2 01 0 9

22 13
127

24 116
25 105

26 a 4

Th lis or4=0rdcs/,tesget ftexai betee 30 n hc

.-iecsi o > rcs~- o -,ado hc cosh €

77

The variables , ,T can obviously be used as coordinates on the a-plane; they are
called elliptic coordinates. They have the disadvabtage of being doubly many-valued. Not
only is r/many-valued like an angle, with a period of 2n , but the~values - :. -r define the
same point ( , y) as do , 77. If both and i/ are required to vary continuously with x and y,

Smust change sign in crossing the i-axis between x = ± c, since there Icos rlI < 1 and
sin rq 0, whereas in crossing at IxI > c, [ > 0 and sin , must change sign with y. Hence
it is easily seen that . does not change sign but rl changes by ± 2 ,'r in going once around
both of the points (-+ a, 0); whereas, if only one of these points is encircled, upon returning
to the starting-point, 7/has returned .z' its initial value but has changed sign. In appli-
cations it is usually convenient to suppress at least the ambiquity as to e. The two most
useful alternative conventions are the following.
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(a) Keep _ 0. Then from Equation (82c,d] it is easily seen that, as the -axis is crossed

between the points x ± t c, sin qt must change sign discontinuously without change of cos 37;

,I it.zolf may change discontinuously to -q, or to 2yrn -q where n is an integer, positive or

nogu.6ve. Elsewhere q may vary continuously: in this case ., will differ on the two halves of

each hyperbola and is many valued; in going once around both of the points (L c,0) in the

same direction, q, like a polar angle, changes by t 2 ,r.

A possible choice to make il single valued is the range -r,<r/6rr. Then ,? changes

sign discontinuously in crossing the x-axis wherever ixJ < v. Values of 6 and q according

to this convention are indicated in Figuro 130a.

(b) As an alternative, e may be given everywhere the same sign as y. Then e will have

opposite signs on the two halves of each ellipse and will change dign discontinuously at

the z-,xis where Ilxi > c, whereas q may be made to vary continuously and will then have a

fixed value on each hyperbola. A possible range is 0 < q < ir. This latter convention is

illustrated in Figure 130b, and in more detail in Figure !29.

!n any case, if dr, -0, dx = c sinh cos r/d~and dy o cosh esin qde; if df= 0,

dx - c cosh esin Yqdq and dy - sinh ecos qdq.

Y Y

,1--,T, q=o V, q =--o7=

r/- rtq=0 q/l\r=0

A\ I N/ -

Figure 130a Figure 130b

Figure 130 - Sy.nbolism for flow parallel to major axis past an elliptic cylinder.

Hence the slope angles of the e and q coordinate directions sre

Or ta- tan- ' (coth ertan q); 0r, W tan- ' (tan 1l(tanhecotl). [82o, p]
0o=tan -  ()d,

dx dq-0dx de-= 0
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Also, the elements of distance in the coordinate directions, calculated as d8 (dX2 + dy)
with either djT 0 or de - 0,

dse = c~de, ds - oGdq, [82q, r]

C (sinh2 e- sin2 2) s (cosh 2 e- cos 2 [82s]

by hyperbolic formulas in Section 32. Hence the compc-nents of velocity q, and q,7in the

coordinate directions are, from Equation [6f], in which q denotes the velocity potential,

q Ci [82t, ul

In applying these results it may be more convenient to substitute, in place of e, the

semiaxes a, b, of the corresponding ellipse, always taken positive. Then, if always f 0,
from Equations [82c, d] and [82i, j]

z - a'cos 17, y= '-sin 17, = In [(a'+ b')/c] [82v, w,x]

For any point (x, y), the value of a" can be found by adding distant-es from the foci and

dividing by 2; then

b V (a " 2 
- c2)%, tan q a' y/b'x.

The components of velocity, q, along the tangent to the ellipse in the direction of
increasing q, and q. along the outward normal, are then, from Equations [82t, u] and [82j]

1 ao 1 aS 2 1)1n =€ 1e A'a 0t q---A l h' =(b 2 + c
2 s in 2 /  [82y, z, a']

The components q. and qt make angles O, 0. with the x-axis where, from Equation [82o. p],

on = O= tan- " tan , 0t =0T=-tan- ( bcot ) . [82b', c']

Geometrically, the transformation from z to 4'maps the entire z-plane continuously onto
the positive half, and again ontthe negative half of a strip on the 4-plane parallel to the e-axis

and extending from I = 0 to q - u, as may be verified by consideration of the displacements

on the 4-plane that are required to reach all parts of the a-plane. Thq, mapping is then repeated
in this manner upon each successive parallel strip of width 2 yr.
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If convention (a) is adopted for the values of e and q/, with f _ 0 ar.d - r < q rr, the ring

between two ellipses, or the interior of any ellipse, is mapped onto a re,'.-agle with sides at

t -+ and with ends at the proper values of f. The ring may be surp-.ed to be cut along

the negative x-axis and straightened out. Using conventien (b), the area between two hyper-

bolas is mapped onto an infinite strip parallel 'S the e-axiL.

(See Reference 1, Article 71; Reference 1, Sectior 6.32.)

83. FLOW PAST AN ELLIPTIC CYLINDER

By means of the transformation discussed in Section 81, or a = z"+ c2 /z", the flow

around a stationary circuiar cylinder can be transformed into tha6 around an elliptic cylinder.

The appropriate complex potential tc can be obtained by replacing z - zi by z" in Equation

[69j] and then substituting for z" in terms of z. The result will be written down in a modi-

fied notation and verified. It is

w-- U(a+b) cosh (C-40-io) + i (/I-o), [83a]

z= +iy= cco.h e+¢ i'7' e=0, (83b, c]

where a and b are positive real constants, a and U are real constants,

and

c= -b2 >0, eo: =a+b = b[83d, eI
c a-b

or

sinh -= , cosh o - [83f, g]
C C

Pere e, q are the elliptic coordinates of Section 82.

Writing cosh ¢= (eC+ e-C)/2, it is found that

2z 1 E2 2z c
c -2 2
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by use n( the binomial expansion; hence, using also In (1 + x) = x - x2/2 .... , writing
1 C-,•- C+e%+5o
2 (e + e using Equation [83a, d, e], keepin, only

the first power of 1/z,

Fz ( c2  2z C2
=In 1-- .. In

4z2 4z2iI'(lnz l n-

+LU(bcosa +iasina) - .... [83h]22

Thus at infinity w- Uze- ia and represents a stream approaching at velocity U from a direction

making an angle a with the positive x-axis; see Section 35 and Figure 131.

Y

Figure 131 - Symbolism for flow past an elliptic cylinder.

T*"- variables C, q are the elliptic coordinates described in the last section. They are

related Oj x ard y by Equations [82c, d] or [82v, w). The e curves are confocal ellipses with
foci at (r c, 0). tlere e> 0.

Using the hyperbolic formulas listed in Section 32, from w = S + i

S = U(a + b) cosh ( - ,f) cos (P -a) - , [83i1
2,

= V(a + b) sinh (e- eo) sin (q -a) + P (e- eo)' [83j]
2r
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or, from Equations [83f,g], [82i, j], [83d,el and [82x],

U F;?

5 a- U (a'a-b'b) cos (Y1 -a) - " ' [S3kl

U r a'+ V

= - (b'a-a'b) sin (q -a) + In [831]a -b 2,, a + b

Thus e 0 on the ellipse e = eo whose equation, from Equations [82g] and [83fg], is

2 2
-+ ----1

a2  b2

This ellipse may represent the profile of a solid elliptic cylinder immersed in the fluid stream,

with its major axis parallel to the flow at infinity. In going once around the cylinder, q in-

creases by 2 u and q0 decreases by F. Hence i.here is circulation r around the cylinder.
If r = 0, the remainder of the otreamline for b = 0 is defined by il = a on the forward

side or = a + u on the rear side; it consists of hyperbolic arcs.

The components of velocity at any point (x, y), respectively tangential and normal to

the e-ellipse that passes through (z, y), or in the directions specified in Equations [82b, cl,

are, from Equations [82y, zi and [82i, j], [83f, gi,

U(b' a - a' b)

(a-b) (b 2 + c2 sin 2 17)o

1 a'a- b'b F[
(b- 2 +=( sin sin (c-a) + [83n]qtf i r = (,2 +C2 si2 ./ a- b 2v

On the x-axis, where ; = 0 or ir and z= -a, respectively, b = J' F -c2

u=+q"=- - a- cos c, [83o]
a-b z f2 /C

S azI - b) sin + F [83p];Z+-" °-C2 I-

On the y-axis, where i= ,,/2 or 3 v/2, y ± b , a'- Nfb 2 + c2  fy-2+c 2
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. (a blyl Cosa T r [83q]
a- b y2+.o 2 a V§ 7, +C

-V + q j q, , ajyl b sina. t83r]

On the cylindor itself a'= a, b'= b, x a cos iq, y = b sin q, hence q. = 0,

(+b (a+ b) Y cosa -- Lsina + r [83s10t=( 4 + C2 y2) 1Aa 2b

and q = Iqt. If r = 0, stagnation points occur whbre y/x = (b/a) tana. For comparisons with

experiment, see Zahm, References 101 and 102.

Examples of the streamlines for I' = 0 and a = 0 dog, 45 dog, and 90 deg are shown in

Figures 132, 133, and 134. Here a/b = 2, fo = coth- 1 2 = 0.549. In two cases only ha*. of

the symmetrical diagram is shown. In two cases the excess of pressure abIv9 that at infinity

is shown, for steady motion, at points on the axes or on the cylinder, by curves labeled

p - p.. For points on the y-axis, p - po. is plotted horizontally from the y-axis as a base

with positive values toward the right. In Figure 135 the calculated pressure on an elliptic

cylinder with r = a = 0, represented by the broken curve, is compared with observed values

in air at 40 miles per hour, which are represented by small circles (from Reference 101).

/ [Y
P-P

-C Plane of Synm etly ,C IT -'

Figure 132 - Flow past an elliptic cylinder, incident parallel to
the major axis (a - 0), and pressure p on the cylinder or at

points on the z or y axis.
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Y

Figure 133 - Flow past an elliptic cylinder with ai 45 degrees.

'1 I Q4
b_ b

-C a ____ C
Plane of Symmetry

-P.

Figure 134 - Flow past an elliptic cylinder, incident parallel to
the minor axis (cc - 90%, and pressure p at points on the

cylinder or on the x or y axis.
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Figure 135 - On an elliptic cylind, r the
calculated pressure is shown by a 0.5

broken curve and observed
pressures by small circles. 2 \

-4\ -3 -2 -1 0 1 2 30

o- I.-

In steady motion the resultant force is a lift pU'V per unit length, according to the

Kutta-Joukowski theorem proved in Section 73. Furthermore, comparison of Equation [83h]

with Equation [74h] shows that here y =a, bi = U(a+ b) (b cos a 4. ia sin a)/'2; hence

Equation [74k] gives for the torque per unit length on the cylinder about an axis through the

origin, in steady motion,

N - rp (a2 - b2 ) U2 sin 2t. [83t]
2

Because of the sign, the torque tends to set the cylinder broadside to the stream.

An elliptic cylinder in a converging stream was considered by Oka' ° 7 .

(For notation and method; see Section 34; Reference 1, Section 71; Reference 2,

Sections 6.31, 6.32, 6.33, 6.42; Zahm and others, References 182 and 101.)

84. ELLIPTIC CYLINDER IN TRANSLATION

Let the cylinder described in the lasi. section be itself in motion at velocity U in a

direction inclined at an angle a to the positive x-axis or to the major axis of the ellipse,

and let the surrounding fluid be at rest at infinity. This case can be produced out of the pre-

ceding by imposing on everything a uniform velocity U in the required direction. Then, from

Equations [35a] and [82a], there is to be added in u, the term

Uze-ia  cue- ia cosh .

After inserting exponentials in place of all hyperbolic cosines and eliminating fo and c by

means of Equation [83d, el, from Equation [83a],

tb U ra+T(b cos a + ia sin a )e-C + ir (4 - e0)' [84a]
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0 =Ui/ -b (b cosa cos 1 + a sin a sin 1/)e-- -_2r [84b]

_ a--U 7 (cos asini asin cosY)e-+ (-), [84c]

or, by Equations [82x] and [83d, e],

a+ bFr
= ,b (bcosa ci q +asina sini)- - , [84d]

a + 2rr

U (bcosa sin -a sin a cos q) + - In a"+ 6 84o
a'+ 2r a + b

These formulas hold at any instant provided the axes are drawn with the origin on the axis

of the cylinder and the x-axis along the major axis of its profile. The surface of the cylinder

is the ellipse e= eo0 or a'= a, '. b.

The components of velocity, in directions given by Equation [82b', c'], gre, from

Equations [82y, z], [84b] and [82x],

a+ b bcosa costq+asin sin [i f8401
U a'+ b' (V2 + C2 sin 2 q/)%'

1a+ b
q1 = q+ sa" (b cos a sin -a sin a cos 7) +-

(2+ C2 sin2 L)I a'+ 6 b oc sln-.ln
[84g]

On the cylinder itself a'= a, 6'- b.

On the x-axis,

= ooru, x - a, bp ,"  -c2 = I -<2,

and u± q b (a+ b) cos a [84h]n-- + " : - 2 (IMX + qrX_ C2)[8h

+ a (a + b) sina r[. . .qj. [84i]

VX - C (I + c2) 2-7

On the y-axis,

= 7/2 or 3ri , y ±b, a' y2 + c2
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and

U b (a+ b) cos c [84j]
9=Y7C2 (Il, + =/ 

7+2) 
[

Ua (a+ b) sin a [84k]n -Jy 2  1(I.V1+ JV + C2)

The formulas for this case and the preceding are readily shown to differ by terms representing
a uniform flow, with use of the fact that (a + b) (a - b) = c2 = (a'+ b') (a'- ".

If there is no circulation about the cylinder, r = 0.
For motion parallel to the major axis, a = 0 or r; to the minor axis, a - 1r/2 or 377/2.

If r 0, the geometrical flow net is the same for flow parallel to either axis; the 0 curves

for one case become the b curves for the other, and , , and all velocities are changed in a
uniform ratio. The general case, for which the formulas have been written, can be regarded

as formed by the superposition of these two simpler cases.

Furthermore, if the motion is parallel to an axis, and if r = 0, the velocity at a given
external point is the same for all confocal forms of the cylinder. For the relations between

X, y, and e, 7 are unaffected so long as the foci are not disturbed; and changing a and b
merely multiplies q5, ip and hence all velocities by a uniform factor.

Figure 138 will serve to illustrate the flow for motion parallel to either axis. The
ellipse drawn as a broken curve, or any other ellipse confocal with it, may represent the

cylinder. The foci are at the ends of the horizontal heavy line. Either family of curves,

that crossing the vertical or the horizontal axis, constitutes streamlines according as the
motion is parallel to the major or to the minor axis; the curves of the other set are then the

equipotentials. The arrows on the curves refer to motion along the minor axis.
No similar identities occur in motion oblique to the axes.

The kinetic energy of the fluid, per unit length of the cylinder is, by Equation [17d],
when r 0,

2ff

Od f U2 a+b e o20  (bcosa cos q+asina sin r1)2 dil7 -2 f 2 a - bf
0

or, using Equation [83d, el,

T- p! 2 (b2 cos 2 a 4. a 2 sin2 ). [8411

The forces are as in the last case, Section 83.
(For notation and method; see Section 34; Reference 1, Article 71; Reference 2,

Section 9.65; Ratib 10 4 ; Kr'enes 1 °S.)
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85. FLOW PAST A PLANE LAMINA

If b -. 0, the cylinder of the last two sections becomes a plane lamina of width 2a. with
its edges at (± a,0), on which a stream impinges at velocity U and at an angle of inclination
a to its faces. Then c = a, f0 = 0. The general formulas need not be repeated, but a few
points may be noted.

On the lamina itself, a' = a -c, ' = b = 0, and from x = a cos 7 and Equation [83n],
after expanding sin (q - a),

u= qt= U (-cosa + sina) T 7X,2(85a]

where the upper sign refers to the front face, on which 0 < < r, and the lower sign to the
back face; and q = Jul.

Thus q -* o at the edges of the laming., in general. By assigning the proper value to
F, however, q may be made finite at one edge. Thus, if r - faU sin a, u approaches

- U cos a as x- - a; for, (x + a)/2 - x 2 = [(a + x)/(a - x)] -, 0 as x-# -a.

If r = 0, stagnation points occur on the lamina at 71 = a and at i = a + rr, or at
x = a cos a on the front face and at x =- a cos a on the rear face. The hyperbolic dividing
streamline meets the lamina at the first of these points and leaves it at the second; the two
hyperbolic arcs, with foci at the edges, are asymptotic to a line drawn through the center of
the lamina and inclined at an angle a to its plane. On the front face, u = U at X = a cos (a/2)
and u=- U at x=- a sin (a/2).

When I' = 0, however, a more direct formulation becomes possible. Then, from
Equation [83a] with b = 0, w = aU cosh (C4- ia) = aU cosh C cos a - iaU sinh C sin a. Here,
since c = a, the term in cosa equals Uz cos a and so represents a uniform flow parallel to
the plane of the lamina, which need not be further considered.

The term in sin a taken by itself represents a stream flowing toward negative y and
impinging perpendicularly on the disk. Dropping for a moment the proportionality factor sin

a , so that the velocity of the stream at infinity is U, its complex potential is

w = - iaU sinh 4= - iU (z 2 - a2 )%. [85b]

If W = + i,

o2 o2 u= 2 (a2 + y2 -X2), qd=- U2 Xy. [85c, (I
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These equations can easily be solved, either for q an' q, or for z and y. The signs of (A arid

.! may be inferred either from physical considerations or from a detailed study of Equation

[85b].

On LY.qy-axis;=0, =U Ua 2 +y2;u = 0,v = - Uy / 7 + V2.

On the x-axis where i[s< a: €-- 0, 0 = ±- - , also V = 0, U =± U-V/ -x
whore the upper sign refers to the front face and the lower sign to the rear face. Thus

q- Iu' = jUl at Ia1 = a,/§7
On the x-axis where Ix ] > a: 95 = 0, F = U /z- a2 , where the sign T is opposite to

the sign of x.

In this case, where the y-axis is a streamline and may represent an infinite rigid sur-
face, half of the flow may represent a stream flowing past a straight boundary carrying a

straight rigid stiffener of N idth a and negligible thickness, perpendicular both to the boundary

and to the stream.

Two cases for I = 0, with a = 45 dog and a= 90 deg, respectively, are shown in

Figures 136 and 137. In the first figure, the x-axis is rotated into a convenient direction.

The points at which v. - U are shown by short marks.

Figure 136 - Flow past a plane lamina

in a direction inclined at 45'
to the lamina.

Rotation of the stream and lamina through -90 dog, so that U (if positive) is directed

toward negative x and the lamina lies along the y-axis, gives, perhaps by using Equation

[25k] with a =- 90 dog, k = land h =0 , W_ U (z 2 + a2)% and

h2-2 = u2 + a 2 - y2)! U2 xy.

In steady motion, tne lift on the lamina is in any case prU, as on the cylinder, and the

torque on it, from Equation [83t, is
1

N = - - npa 2 U2 sin 2a [85e]2

where a is the angle between its direction of motion and the plane of its faces. The torque

tends to set the lamina at right angles to the stream.
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Figure 137 - Flow past a plane lamina ata = 90 degrees.

It may seen strange that the lift should remain perpendicular to U at oblique angles,

although the pre3suro on the lamina is everywhere perpendicular to its faces. The expla-

nation lies in the occurrence of infinite velocities at the edges. In such cases erroneous

results may be obtained if the forces are calculated from an integration of the pressures.

In the present case, study of the behavior of the pressure distribution over the ellipsoid as

it becomes progressively flattened into a lamina indicates that f:tite forces must be suposed

to act on the edges of the lamina; see Morton, Reference 106. Mathematically: the limit of

the integral giving the lift on the ellipsoid is not the same as the integral of the limit of the

integrand, whic-. reprsents pressure on the lamina. That the limit of the force must be the

correct value for the lamina, on the other hand, is physically obvious, since no discontinuous

change occurs in the motion of the neighboring fluid as the ellipsoid is flattened.

(For notation and method; see Section 34; Reference t, Article 71.)

86. PLANE LAMINA IN TRANSLATION.

If the plane lamina described in the last section moves in translation through fluid at

rest at infinity, oatly its perpendicular component of motion is significant, since motion

parallel to its plane does not disturb the fluid. Let the lamina lie parallel to the T-axis and
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be moving toward positive y at velocity U. The relevant formulas may then be obtained from

those of Section 84 by substituting b = C, e0 = 0, c m a, a = ir/2.

On the lamina itself b' = 0, a'= a, x = a cos q? by Equation [82c], hence, from

Equation [84f,g], q. = U and

"= T t . - r [86a1

where the upper sign refers to the front face and the lower to the roar face. If' = ± 2naU,

the velocity is finite at one edge.

The flow net for F = 0 is shown in Figure 138, in which the dotted ellipse is now to

be ignored. The arrows have reference to motion upward.

The kinetic energy per unit length is, from Equation [8411,

p7a2 U 2 .

T, -- 2 p a [86b]

The forces are as in the last section; see Reference 1, Article 71.

Figure 138 - Flow net around a plane lanmina moving perpendicularly

at velocity U with r = 0.
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81. PARABOLIC CYLINDERS

Consider the transformation

2 2 '1 ,= 1 2

r= 2 _,_ 2. (87g]

The surfaces X, - constant, or X 2 = constant, constitute two families of orthogonal confocal

parabolas, with the xr-axis as their axis and the focus at the origin; they open toward Xr- -

and x--.-, respectively; see Figure 139. The parabola for X1 = 0 is the positive x-axis, that

for A2 =0 the negative.
The variables A1, X may be used as parabolic coordinates on the xy-plane. They are

double valued, and changes of sign of X1 or X 2 on the same parabola are necessary in order

to cover the entire plane.

2.0 1.9 L.B 1.1 1.6 L.5 1.4 1.3 1.2 1 1.0 0.9

J7 4'V,1.3 1. 1.

0.01" 1.1

0. 10 Li 12 -3 1.- 1. .6 17 1. .9 20

20.8
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Circulatory Flow. If tk = A A, AX, i AX2 , whore A is real, the X2 parabolas

become streamlines in a type of "low in which there is a singularity at the origin and the

velocity vanishes at infinity. For, then

This might represent a -ort of circulatory flow past a parabolic cylinder whose cross-sectional

profile ,. . ,probe~A,3 by one of the A2 parabolas, or between two such cylinders corresponding

to two v, 1ves of A2 .

Streaming Flow. Lot

w=-U (V X2-ip) , UaudPreal and 3>O, [87i]

s=-u [(4A9-)+ 2 ] =((X2- _rX-)-8) [87j]

(U y 1 _) [87k]

Here, in accord with the labeling in Figure 139, cortinuity has been secured, except on the

negative x-axis, by assuming that X2 > 0; then the sign of X1 and tne sign before Vr'-- x

must be taken opposite to the sign of y, but \/T -is positive. For the velocity

U I+22r ,r-" [871, m]

q2  U2 ( - - - + --). [8Tn]
r 2r)

Thus toward infinity v -* 0, u-. - U, and the flow becomes a uniform stream at velocity U

toward negative . On the positive z-axis r = z and

u=-U 1 - [87o]

The value i 0 occurs on the positive z-axis, where X1 = 0, on the parabola at X2 w- .

On this parabola Vrf 'x= P3 so that its apex, which represents the stagnation line, is at
X . '62 /2; its semi-latus-rectum is the value of jyj when x = 0 and r = y, or p2. A -,olid

cylinder may be inserted along this parabola. On the cylinder
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q 2 -u2 (- I [87p]

Streamlines for the flow past such a parabolic cylinder are shown in Figure 140; only

half of the synmotricaI plot is shown. The excess of pressure above that at infinity, in

steady motion, is also shown as p - p., for points on the cylinder or on the x-axis ahead of it.

This excess is everywhere positive; on the cylinder, it is pU2 ) 2/4r, on the x-axis ahead of it,

p. -P 2 
__ A [87q

FigurePlane of SyFande
Y

Figure 140 - Flow past a parabolic cylinder.

All such flow nets are similar, differing only in scale or in position; for, if 3 is

changed, it is only necessary to change x, y, ,, 0 and 0 in proportion to p 2 in order to have

all equations satisfied.

(For notation and method; see Section 34.)

88. THE CIRCULAR-ARC TRANSFORMATION

Equation [78a] of Section 78 invites generalization as follows:

a'- nc . ) [88a]
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where n and c are positive real numbers. The points z - ± c now correspond to z'-. ± nc, and

at these points, in general, comformality fails.

Writing, as illustrated in Figure 141,

e 0 i 02 ,,W 10'2

a-c=r Ie , Z+ c r2 e , z"-no=r1 e , a+ nc=r e 2,

where - nf 01 _ r, - 02

it follows that

0- 0- n (01 - 02). [88b]

r2  
A- a

8C
_ _ _ _ _ _-c 

c B
- C .1- C C

B

Figure 141 - Illustration for a circular arc A, B or C. See Section 88.

This shows that any circular arc joining z - ± c, along which 01 - 02 has a constant value,
transforms into one joining z'= ± nc. The tangent to the z arc makes an external angle

y = 01 - 02 with its chord produced beyond z = c, or with the positive x-axis; the tangent to the

z'arc makes a similar angle y'.with its chord where

y'= ny. [88c1

Here - v < y = Yr. The respective radii of the arcs, which subtend angles 2 1r - 2 y or 2r - 2y,"

at their centers, are R = c/lsin yi, R'= c/Isin y'I.
To solve for z'and y', where z'+ iy'= z', write

-In z =X-ijiX=ln ,= 1 -0 2 . [88d,e,f]
a- c r1

Then ('+ nc)/(A'- no) - en C and, solving for a',

z'= no coth n [88gi
2
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nc Sic
T, 7 sinh nX, y' -- sin .y, [88h, i]2g" 2g"

g , s n 2  n X 2 n t 1
- -- + sin2  (cosh nX - cos nit), [88j]2 2 2 cs

from hyperbolic formulas listed in Section 32. Similarly

a = c coth -, [88k]

C C 1
x - sinh A, y= ' sinp, g= - (cosh A-cos 1). [881, m,n]2 g 2g2

Thus p has the sign of y and - r5 p < rr. The variables A, i are sometimes called bipolar
coordinates on the z-plane.

The transformation can be visualized by imagining the z-plane to be cut along the real
axis between ± c and to be pulled or pushed until all arcs come into the proper position, with
the remainder of the real axis retaining its direction.

An important special case is that of a circle through (± c, 0) on the a-plane, such as
AB, which transforms into two arcs meeting at an interior angle 2 1r - Y'I or (2 - n) ,f. If
n = 2, these coalesce into a single arc, as in Section 78. If 0 < n < 2, the exterior of the
circle is mapped conformally onto the part of the z'-plane lying outside of the crescent
enclosed by the two arcs. If 0 <a < 1, the ends of the "crescent" are reentrant; compare
Figure 142b.

Toward infinity, Equation [88a] becemes, by binomial expansion,

i -... -L ... )' =( ... .) +/.....
Z % Z Z

Hence at infinity z'-- a and the two ilanss agree.
The transformation fails to be conformal, in general, at a ± c. From Equations

[88g] and [88k]

d . da' fda2 sinh 2  inh2 n

da d d 2 2

(- i I-) --\ (2 - i) - (A-in)
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As z -# t c, either X -. or A -. - , and in either case one exponential becomes negligibly

small, while in the other - ip may be ignored. It thus appears that dz'/dz -. if n < 1, but

da /dz -- 0 if i > 1.

The transformation has several uses; see Sections 80 and 89.

(See Reference: v. Karma'n and Trefftz 7 7 and Miiller 7 8 .)

89. CIRCULAR-ARC CYLINDER, BOSS OR GROOVE

By means of the preceding transformation the flow can be found past any cylinder whose

contour consists of two circular arcs. Only the symmetrical case will be treated here; compare

Figure 142a and b.

yy - rn
y my

(a) (b)

(c)

Figure 142 - Examples of a symmetrical circular-arc cylinder (a) or (b),
or a circular-arc groove (c) in a plane wall.

To be streamlines, the arcs must transform into part of the real axis of W. Let the

edges of the cylinder be at (t c, 0) on the z-plane, so that the arcs have a cunmon chord of

length 2c, and let each arc make a numerical angle y = m a with their common chord produced.

Thus 0 < m < 1, and the internal angle at each edge of the cylinder is 2 (1 - m) r; the radius

of each arc is R - c/sin y. Then the transformation Equation (88a) flattens both arcs onto the

same segment oF the real axis of z' provided n = 1/m; the region outside of the cylinder thus

goes into the whole z'-plane, and at infinity z'-. z.
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Hence substituting also tw/U for a', a complex potential w defined by

1

Mi.- CU /z- c\
=~T = -) [89a]MtW+ cU ( Z + C) 8a

will represent flow past the given cylinder, with a uniform velocity U toward negative - at

infinity. Then, in terms of , X, and 1L as defined by Equations [88d, e, f, k] or [881, m, n],

cU
w = -- coth -; [89b]

m 2m

cU c U I
-u sinh-, = sin-, [89c, d]

2mG Ir. 2mG m

0 sinh 2 A + sin 2  ( cosh - cos ; [89e)2m2m 2 mr

d d d -= U sinh s-/ inh [890
dz d4\ dC/ m2 \ 2, 2m/

SId = L sinh 2 - + sin 2  - (cosh X - cos ft). [89g]z m 2o  o 2m2G

On the x-axis where II > c andp = 01-02 = 0, 4= X, z = x, q = lul and

U cosh X - I X + c
u-, A=n - . [89h,i]

m2 cosh (X/m) - 1- C

On the y-axis outside of the cylinder, A = 0, C = - ip, q = Jul and

U 1 - CoS Iy
S -cos (/ I) = 2 co t- 1 c [89j,k]

On the cylinder itself p t m n and, from Equation [39g],

IUI cosh A - cos (mr)

m2  cosh (A/m) + 1
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The maximum velocity occ'urs at the middle of the sides, whore A = 0, and is

ZMaX lu (1 - cos min). [89m]
2M

2

The edges are stagnation lines; for, with 0 < m < 1, cosh A/cosh (X/m) -t 0 as A - - cc.

Half of the symmetrical streamlines past such a cylinder are illustrated in Figure 143
for m = 0.88, y = 158 deg, and by the ippor part of Figure 144 for m 0.71, y = 127 dog. In
both cases the pressure in steady motion is shown as p - P.,, along the surface of the cylinder
and the outlying parts of the plane of symmetry. The case m 1/3, y 60 deg is illustrated
in Figure 157, page 232. If m 1/2, the cylinder is circular.

y

_C PC

Figure 143 - Streamlines past a symmetrical circular-arc cylinder, and pressure p
in steady flow, either on the cylinder or in the fluid along the z or y axis.

Y

-C
Figure 144 - Streamlines near a thin sheet
containing the x axis except for a circular-

arc buckie, and also the pressure p on
.---.....-. ....- . both sides of the sheet and the buckle

Beelow

Aboveb
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The motion of such a cylinder through fluid stationary at infinity, at velocity U

parallel to the common chord of the arcs, can be represented by adding a term - Uz in to.

Then, at points where C is small and hence z large, using Equation [33i] in Equations [88k]

and [89b1,

z +

6cu 12) c211(1)

Thus, in Equations [76c, d, (], (R) b = b= (c 2 U/3) (1/m 2 
- 1), and the kinetic energy of the

fluid por unit length of the cylinder is

21 1=l -- p j - -~I c2 -S U2, [89n]

where S is the cross-sectional area of the cylinder or

C
2

S= s .2(1 - m) i + sin 2mv]. [89o1
sin 2 flrt

The case of motion perpendicular to the chord is also easily treated by noting first
that the slightly modified transformation mz'= Z = c coth (C/2m), with z = c coth (V/2) as

before, flattens the outline of the cylinder into the segment of ;he real Z-axis from Z =- c

to Z = c. The cylinder is thereby transformed into a lamina of width 2c. From Equation

[85b] for transverse flow on the Z-plane past such a lamina, w =- iU (Z2 - C2 )%. Further-

more, at infinity, Z- 2mcl-, mz, so that uniform flow on the Z-plane transforms into similar

flow on the a-plane but with the velocity multiplied by m (since w = UZ becomes w = mUz).

Hence, after multiplying to by 1/m in order to keep the stream velocity equal to U on tho

3-plane, and substituting for Z in terms of z,

W=- u sinh [89p]m 2m
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This is the complex potential for flow past the original cylinder at velocity U toward

negative y. Then

cU A , cU k P
S=m cosh sin-- , = sinh - cos -

2m 2m mG 2m 2m

dwdl < iU -2 C 2_ 4
d= d--- ' iU - cosh - sinh sinh2

dC dz I 2 2m 2m

(cosh cosh - + cos • [89q]2m2c

When the fluid velocity at infinity is again suppressed, this time by adding iUZ in W

so as to superpose a flow toward positive y, then at large z and small 4 writing

z = 2c/C + c/6 .... again,

icU C . .... + iUz

m\2m 48m 3

(1 1 2
=icU + J i [89r1

12m 2  6 3. 2m 2

Thus, from Equation [76d, el, with y = ;7/ 2 , e- i n / 2 = -,

T,1= -P + C2  S 2. [89S]

Cylindical Bess or Groove. According to Equations [89d] and [88m], the x-axis for

IxI > c is part of a streamline; hence semi-infinite walls can be inserted there. Provided

m < 1, half of the field then represents flow past a plane wall interrupted by a cylindrical

boss of circular-arc section, which is 2c wide at the base and has an external angle y or
Mir between its tangent and the wall, and hence a radius R = c/sin Mir. Figures 143 and

157 and the upper part of Figure 144 may also be interpreted as showing streamlines for

such a flow.

If m > 1, the diagram on the z-plane overlaps on itself and the whole field cannot be

used. Provided m < 2, however, the upper half of the tw-plane taken by itself maps conformally

upon the part of the z-plane that lies above the part of the x-axis on which jzI > c and also

above the arci = mv, which now lies below the axis. For this purpose take 0 < 0 1 < 2 n,

-r < 02 < v; then 0 < i < 2 ru and below the --axis p lies in the third or fourth quadrant.
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A wall can be inserted along the arc and the outlying parts of the x-axis on which

, 0, and the formulas thon represent flow past a circular-arc groove in a plane wall; see
Figure 142c. The velocity is infinite at the projecting edges of the groove.

The lower part of Figure 144 represents the flow past such a groove with m = 1.30,

y = 233 dog; to match the description, the figure needs to be turned upside down and the

z-axis reversed. The entire figure may alsc represent flow on both sides, with the same
velocity at infinity, past a thin shoot with a circular-arc buckle in it. The shoot cannot be

removed, snce t.eh priusuros are unequal on the two sides; the exceos of pressure p - p.

is shown in the figure for both sides, on an arbitrary scale, on the assumption of steady

motion. Streamlines past a deeper groove, with m = 1.75, y = 315 dog, are shown in

Figure 145.

(For notation and methcd; see Section 34; Refetence 2, Section 6.51, where n 2m;

J.L. Taylor, 33 whore rn = I /k.)

Figure 145 - Flow past a sheet or wall with
- .a deep circular-arc groove.

90. DOUBLE CIRCULAR CYLINDER, OR CYLINDER AGAINST A WALL

If, in the formulas of the last section, m is made zero while c remains finite, both

arcs come into coincid.nce with the outlying z-axis. By decreasing c as well, however, the

arcs can be kept finite. Their radius is R = c/sin (m r), since each subtends an angle 2(ri - itn)

at its center; and R remains equal to a fixed number a if c is kept equa! to a sin (m r) as n -. 0.

The arcs thus reduce to two circles of radius a touching both each other and the z-axis at the

origin.
Then, at a fixed point representing a given value of z, C b<comes 'small in Equation

[88k] as c-.0, and z.2c/; substituting for C in Equation [89b] and noting that in the limit,

as m-. 0, c/rm a sin (m r)/r- ar,

nta
o = nraU coth - . [90a]
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Hence, using hyperbolic formulas in Section 32 and z = x + iy,

uaU 2max, maU 2may
a- sinh -, ib=-- - sin y (90b, c]

20 F2 20 r2

1/ -Cos 2ray

G - cosh rs , r=(x + y2 ) [90d,e]
2 r 22

q d - a 2 [90l

These formulas represent a uniform stream flowing past two cylinders of radius a in

contact along a common generator, which passes through the orin. The fluid approaches at

velocity U toward negative x and hence perpendicularly to the plane through the axes of the

cylinders, as illustrated in Figure 146.

_______._= Figure 146 - Flow past two similar cylinders

in contact along a common generator.

Or, if a boundary is inserted along the x-axis and only half of the diagram is used, the

flow is represented past a cylinder resting against a plane wall. Streamlines for the latter

case are shown in Figure 147. The excess of pressure above the pri,.s3ure at infinity, for

steady notion, is shown in the figure as p - p*., along the positive X-axis up to the origin,

and then around the right-hand half of the cylinder; the abscissa for the latter part of the

curve represents the angle 0, plotted toward the left.

On the --axis, 0t = 0, r = x x, q = lul, and

2r 2 a2 u 2ma \1 rr 1 2 a 2  -2m
U--cosh -c U sinh - . [90g1
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2 0

Figure 147 - Streamlines past a circular cylinder resting against
a plane wall, also the pressure p during steady motion, along
the wall for z > 0 and then around half of the circular surface.

Thus u-~ 0 at z = 0, the sole stagnation point; for sinh Q increases much faster than Q as

Oni the y-axis, -6 - 0, r ~y, q = Jul, and

2yr2 a2 u (icos.) -1 U'2a2V u a) -2 [9h

On the cylinders, x2 + (y )2 = a, or +2= 2ay, hence ~b0 and

9 aJUI -'h 27 +TIU os 2  [90i]

II (Cos 1 [Ycosh (trcot!)

in terms of an tingle 0 defined as i~t Figure 147. The maximum velocity, Occurring at X 0

and IyI - 2a, is ,-,2 JI,/4 or 2.47 Il.
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Flow Parallel to the Line of Axe8. Equation [89 p] gives similarly in the limit, with

U replaced by V,

w =-inaV inh I a , [90j]

for flow at infinity at velocity V toward negative y and hence parallel to the line of axes of

the touching cylinders. Then

raY 7raz fray r,aV naz nay
= - cosh -- sin - , =- - sinh - cos - [90k, 1]

G r2 r2 G 2 r2

f/a (o 2 nax 2, nay
-- 1 s +cos -/h (90m]

r 2G [2r22

As the origin is approached along or between the cylinders, cosh (2n a z/r 2 ) increases without

limit and q-O.

The kinetic energy T", of the fluid near unit length of the double cylinder, when moving
at velocity U through fluid that is at rest at infinity, can be found conveniently by substituting

art for c/m in Equations [89n] and [89s] and then letting c-* 0. This gives, since S - 2na 2 :

for motion perpendicular to the line of axes,

1 / f2 \1, " - 1 a2U2 .- p (4.580 rra 2 ) u 2 ; On]
23aU 2[9n

for motion parallel to the line of axes,

1 2 U 1
= - p - 1) 2,,a 2  p p (1.290 a2) g2.oo

In the case of motion perpendicular to the line of axes, a wall can be inserted, as

before; then half of T, is the kinetic energy of the fluid near unit length of a cylinder that is

sliding along a wall.

(Foi notation and method; see Section 34; Reference 2, Section 6.52.)

221.

I



91. CYLINDERS OF OTHER FORMS

Aside from airfoil shapes, cylinders of the following additional cross-sectional shapes

have boon studied, the cylinder being either stationary in a stream or moving through quiescent

fluid. The kinetic energy per unit length of fluid of density p surrounding the cylinder, when

it is moving at velocity U with the fluid quiescent at infinity, is denoted below by TI;

see also Section 34.

(a) A hypocycloid, by Agostinelli1 0" and Sestini. 1 0 9

(b) Rectangular, by Riabouchinsky 1 i ° and J.L. Taylor. 3 3 For kinetic energy, see

Chapter V.

(c) Equal-sided quadrilateral of side s, moving parallel to a diagonal bisecting an internal

angle of 0 radians, by J.L. Taylor. 33 Here a i f[W2/(W2 _ 1)10/(2') dw. The area is .s2

sin 0 and

T I  P " r (3/2) 2 _ sin 0 s 2 U 2  [91a]

where r(x) denotes the gamma function of z.

(d) Two parabolic arcs meeting at riglt angles, by J.L. Taylor. 3 3 If h is the length of

the chord joining the edges, the area is h2 /3, and

(1) For motion parallel to the chord

b 1 A2 /4K4 11
S-[- 2, - dw] T =- I --L - -±K u 2  

-
p (0.1 78) h2 U2 ; [91b,c]

4 ' 2 3  / 2

(2) For motion perpendicular to the chord,

3 -[f (-w~~~d 2 1~ h2 f8K p U2 (h2 t)V ±(.8)U2. [9Id, ela = 4 w21 d , T 2 P 3 F- 3 2 (0.683)

Here b is a constant and K is the complete elliptic integral of modulus V17 or

K = /2 I i2 d-1.5.0)
(e) Four equal semicircles, on the sides of an inscribed square whose diagonal is of

length D, by J.L. Taylor. 3 3 The area is (2 + v) D2 /4 and
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t + L (t4) d] -

1 2U 12U2

T = 2 p (K 2 -T-2)-4 U p (1.414) D2  [91(1

where K is as in (d).

(f) Circle with radial plane extending to infinity on one side:

W =C (iriT+r ~~+ (+ a2i ,Cand Ureal.

A few streamlines for positive values of C and U are shown in Figure 148; see Cisotti. 1 '

O<C<4aL/

C > 0, U -0

Figure 148a Figure 148b

Figure 148c

Figure 148 - Streamlines around a circila r cylinder attached to a
semi-infinite plane. (See Reference 111.)
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(g) Circle with a radial fin of finite width, by Bassani. 112

(h) Circle with two equal ,adial fins opposite each other,,by J.L. Taylor. 3 3 Let the

greatest width between the outer edges of the fins be n times the diameter of the circle.

Then, for motion perpendicular to the plane of the fins,

-\IVLk + ?L 2 -47 ), k-n---,
2n

and

2Tl p= (1 + k ) a2 U2  [91g]

where a is the radius of the circle.

(i) Broken line, or two plane laminas joined by their edges, by Morton, 10 6 by Sona,1 15

and, with special reference to an airfoil equipped with a rudder, by Sauer, 116 who gives

other references. Streamlines for the flow without circulation past a right angle, approaching

at 15 (leg to the plane of one side, are shown in Figure 149. By properly choosing the cir-

culation and the direction of approach of the stream, the velocity can be made finite at both

edges of the lamina, whatever its angular aperture, as in Figure 150; see Sona.1 I

Figure 150 - Streamlines past an angle-lamina AB,

Figure 149 - Flow past a right-angle. with the direction of approach of the stream and

See Section 91(i). (Copied from the circulation around the lamina so chosen
Reference 106.) that the velocity is finite at both edges.

See Section 91(i). (Copied fromReference 115, Lineci 22.)
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(j) .,ectangular cross, by Westwater. 117

(k) Arc and line joined together, by Sauer. 1 16

(1) A small circular cylinder of radius a in motion but mcmentarily coaxial with a

surrounding stationary square cylindrical shell of width 2c, by J.L. Taylor: 3 3

T= piTa 2  + 1.719 • [91h1

(mn) A convex curve joined to a straight sogment, by Riabouchinsky;1 10

(n) Contours described parametrically by

x= a cos u + (b cos 2u)/2, y= b sin u - (b sin 2u)/2,

by Wrinch, 1 18 or by other analytical formulas, by Morris, 7 3 , 119 Basset, 1 2 0 Neronoff, 1 2 1

Milne-Thompson.
1 2 2

A general method of modifying the Schwarz-Christoffel transformation so as to intro-

duce rounded edges or other curvatures, by adding "curve factors," was described with

examples by Leathen; 7 4 see also page 123.

92. T'?MO EQUAL LINE DIPOLES WITH AXES LONGITUDINAL; FLOW PAST
ONE OR TWO SIMILAR CYLINDERS

fk= z + + - [92a]

U, it and b real constants and b > 0,

('cos0 cos 0) J:) -C U y-y + -- , [92b]¢=U (t \ 2 1 r2

+ ~22(sin 0, sin 02 2 ( 2

t=Uy-IL _ + - Vy-Iy(2+[92c]

where r= [(X - b)2 + y2 ]%, r2 = [(x + b)2 + y2 1%, and the significance of the angles

01 and 02 is shown in Figure 151. Hence

(cos 2 01 cos 2 02\ /sin20 1  sin20l

2+ ,[92d,e]
2 12 r2 r
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-b 6

Figure 151 - Two equal line dipoles with longitudinal axes
(in the direction of a).

2./cos2O0 1  cos 2O02 \ 2 1 1 2 cos (2 01 - 202)\
q2 -2t U  2 + _ + i + - + - [92(1

On the x-axis u =u and on the y-axis u = u where

X 2 + b 2  b 2 _ y 2

u, U +21 - , u  
- 2U +.2 [92g, h

(X2 - b2)
2  (b

2 + y2)
2

A. Two Line Dipoles Alone. If U = 0, the field of flow is that due to two equal line

dipoles whoso axes are parallel and directed along the line through the locations of the dipoles,

which are at (± b, 0); compare Equation [37a]. Stagnation points occur on the y-axis at

(0, ± b), where 01 = 135 deg, 02 = 45 deg, and ,p = T p 'b. Streamlines for jutl <1 l/b run

through both dipoles; those for I'p1> jLj ,'b consist of two disconnected loops, one associated

with each dipole. Streamlines above the x-axis are shown in Figure 152.

B. Flow Past On- or Two Similar Cylinders of Special Shape. Assume that U/It > 0,
so that the dipole axes are oppositely directed to the stream at infinity, whose VelocitN is

1 toward negative x. Then the streamline for f = 0 consists of the x-axis and the curve

S defined by

1 1 2 2p
+ = ,=- .[92g, h]

~1 ~2

If c is large, S is an oval curve cutting the z-axis in two stagnation points; as c-,., it approxi-

mates a circle. If c = b, it contracts in the middle to a point at the origin; for c<b, it consists

of two loops, one surrounding each dirole. Several possible forms of S are shown :n Figure 153.

The formulas may represent flow past a cylinder, or two parallel similar cylinders, in-

serted along S. If c< b,2, the cross-sections of the cylinders are nearly circular; even if their
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Figure 152 - Str-eamlines on one side of the plane of' symnetry due to two line
dipoles at ±b. See Section 92. (Copied from R~eference 124.)
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diameters are as large as the distance between their surfaces, the maximum and minimum

diamoters of each cylinder differ by less than 4 percent- if their diameters are at most half of

the distance between them, the difference is less than 1 percent.

In the case of two cylinders, the forces on them, which are equal and opposite, are

easily found from the Blasius theorem. For the cylinder surrounding z b, write dw/dz thus:

dt 1 z (- b) (z + 36b)
- = U -- +- - I
dz b)2 4b2 4lb 2 (z + b)2 1

Substitution in Equation [74g] and evaluation of the integral from the residues, as in Section 30,

then gives for the force X = itpi 2 /(2b'). The cylinders repel each other, because or lower

velocities between them. For the approximately circular cylinder, l/r2 may be dropped in

comparison with 1/r,, and Equation [92g1 then gives for its radius a= r1 c/=2= c /y/U,

Thus in this case the force is, approximately, y = "p U2 a4 '(2 3 ).

(For notation and method; see Section 34; Reference Mduller 124.)

93. TWO EQUAL LINE DIPOLES WITH AXES TRANSVERSE; FLOW PAST
ONE OR BETWEEN TWO SIMILAR CYLINDERS.

V =UIz + t2 [93at

U, it and b real constants and b>O;

+ + ) + , [93b](C--=+ S,\ ' r2 / , 2

t~=' s- (i ,, 0 sin 02) = -+ 02\1 9c
A + =y -L + - -1 , [93 ]

where

rw = [x 2 + (y- b)2], r2 = [X2 + (y + b)21% ,  [93d, el

and the significance of 0, and 02 is shown in Figure 154. Hence

1 22

u=-U+p / r- + 11, ( + / [93t, g1
2r2 -2~ 2

q2 = V22 1 + c ; 202) + 2 + + 1 2 .20 )2, -- + - + t _
k ? 2 r r2 r, r2
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points occur on the x-axis at (± b, C): streamlines run to these points, divide, and continue

in opposite directions a.ong the x-axis. Some streamlines are shown, above the x-axis only,
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Figure 155 - Streamlines, above the plane of symmetry, due to two equal line dipoles
with transverse axes. See Section 93(A). (Copied from Reference 124.)

B. Flout Past One or Between and Around TiLo Similar Cylinders of Special Shape.
Assume U/p > 0, so that. the dipole axes are oppositely directed to the stream at infinity,

whos- velocity is U toward negative x.

The streamline for i, = 0 consists of the x-axis and also of the curve S defined by

-+ - - - =_ , C = - t93j, H
r2 2 r2 2 c2
1  r2  r1  2 -

2 2

provided c2 > 8b2. If c is large, S approximates a circle enclosing both dipoles. As c

dec-eases, S becomes compressed along the x-axis; when c 2 r- 8b2, S consists of two cir-
cular arcs defined respectively by r1 = 2b and r2 = 2b and meeting at the stagnation points,

which are then at (±-3"b, 0). This is a special case, for n - 2/3, of the flow considered

in Section 89. As c 2 becomes less than 8b2, the curve defined by 93(j) disappears, an4 the

dividing surface splits along the x-axia to form two separate curves, each of which surrounds

one dipole and carries two stagnation points. The curves can be found 6y setting u=v=0 in

03(f, g) in order to find the stagnation points and then calculating the value of 0 at these points

from 93(c); with this constant value of 01, 93(c) defines the curves. They soon approximate to

circles, whose radius, for small c/b, approximate3 cA/!/= vt-'/.

The dividing surface may represent a cylinder, or t-o cylinders, of a certain shape,

immersed in a uniform stream. The limiting form of S for c 2 
= 8b2 and a larger oval are
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shown in Figure 156. Half of S for the case c 0.91 b is shown by the approximate circle in

Figure 154. The streamlines for flow past the limiting foen are shown, above the x-axis only,

in Figure 157. If c 2/8b 2 is rather small, there is an approximation to two circular cylinders

in a stream perpendicular to the line joining their centers, which are 2b apart.

The forces on the two cylinders can be found from the Blasius theorem, as in Section

92. The cylinders attract each other, because of higher velocities between them, with a

force F -pp 2 /(2b 3 ) acting on each. For slender circular cylinders of radius a,

F = up U2 a4 /(2b 3 ), approximately.

A rigid wall may also be inserted along the x-axis. Then half of the field represents

flow past a cylinder of a certain shape with its a:is distant b from a rigid wall. The force

b, now directed toward the wall, remains the same.

(For notation and method; see Section 34; Reference Mt'ller 124.)

" C 2 . 02

Figure 156 - Two possible forms of the dividing surface S for two
equal line dipoles at (0, t b) in a stream. See Section 93(B).

(Copied from Reference 124.)
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Figure 157 - Streamlines above the plane of symmetry, outside the dividing surface S
obtained from two line dipoles in a stream. See Section 93(B). The L.undary may
also represent a circular boss on a plane wall, with the x-axis taken aiong the

wall, or half of a symmetrical circular-arc cylinder, as in Section 89.
(Copied from Reference 124.)

94. TWO CIRCULAR CYLINDERS IN A STREAM; CYLINDER AND WALL

Since a cylinder immersed in a uniform stream merely adds the flow due to a certain

dipole on its axis, as in Section 67, and the image of a dipole in a circular cylinder is another

dipole, as in Section 52, the flow around any numbcr of cylinders in a stream can be built up

in terms of an infinite train of image dipc!es in each cylinder. Circulation around the cyl-

inders may be added by assun.ing a suitable vortex on the axis of each, and then an infinite

train of image vortices inside each, in accord with results in Section 42.

Or;y the first approximation to the solution will be given in detail here.

Let two cylinders A and B have radii a and b, and let their axes be located, respec-

tively, at (0, 0) and (-d, 0) so that .iey are d apart, and let a/d and b/d be small. Let the

stream approach at an angle a with a line drawn through their axes, as illustrated in Figure

158; and let there be circulation F1 about A and 12 about B. Then a first approximation to

the complex potential is

U,-' U 3 ++ - F1 n z+F 2 In (z+d)]. [94a]
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Figure 158 - Two circular cylinders in a stream. See Section 94.

The first term represents the flow past each cylinder as if the other were absent; it is con-

structed out of Equation [69j], in which, for the term representing the contribution of the

second cylinder, z is replaced by z + din order to displace its axis to (-d, 0).

The forces on the cylinders may be found from the Blasius theorem. Here

dib _,(a2 b2 + ( 1, 72

- - Ueia + + -
dz U ( z + 2v +

By proceeding as in Section 42, it is found from Equation [74g] that the force on A has

components

a 2 r2 - b2 r pl1 72  2 b2
X I  p 1 U sine + pU sin c + - 4fpU2  - cos 2a, [94b]

d2  2nd d3

a2 1F2 - b21 a 2 b2

Y1 -Pr U cos Posc -4IpU 2 - sin 2 a. [94c]2  d3

The force X2 , 1'2 on B can be found by substituting in these expressions -d for d and also

interchanging a2 with b2 and FI with F2 . All terms containing d thus merely change sign.

The first terms of X and Y represent the usual lift, and the next terms a possible

modification of the lift due to the presence of' the other cylinder. The term in I 1 F2 represents

a irst approximation to the circulatory interaction, as found for a simpler case in Equation

[42c 'I of Section 42. It indicates that like circulations cause repulsion, unlike, attraction.

The terms not containing a2 or b2 have the same values for two slender cylinders of any

cross-sectional shapes.
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There remains in addition a force of magnitude 4npU2 a 2 b2 /d 3 inclined at an angle

2cato the fine of axes. This force is4 shown as FU in Figure 158. Its direction is such that

a stream flowing parallel to the line of axes causes the cylinders to repel each other, where-

as a transverse stream causes them to attract. When the strear. is oblique the forces tend to

turn the line of axes into a direction perpendicular to the stream.

If the stream is abolished by giving to everything an equal and opposite velocity, the

forces remain the same. Then the cylinders, if free from circulation, repel each other when

moving at equal speeds along the line of axes, but attract when moving in the same direction

transversely to this axis.

It will be noted that no images at all have been included in this a- "oximation, except

those associated with the stream itself. Their inclusion leads to terms ol ,igher order in

L,'d, for each of the three types of terms containing U2 , FU. or [F1 12, respectively.

If more than two slender cylinders are present, it is easily seen that the forces are

additive in first approximation; the presence of each cylinder modifies the lift on every uther

and contributes interaction forces upon it according to the formulas just found.

The complete solution for noncirculatory flcw past two cylinders of equal radius was

written out in terms of images by M\'ller. 12 4 Streamlines for F = 0, and for a= 0 and

a = 90 (log, respectively, are shown in Figure 159. The directions of the forces on the

cylinders are also shown.

Figure 159 - Streamlines for flow in two directions past two equal circular cylinders.
The arrows indicate the directions of the forces on the cylinders, when the

motion is steady. (Copied from Reference 124.)

The flow was treated with no restriction upon the sizes of the cylinders except that

they are external to each other, in terms of elliptic functions by Lagally, 1 25 and with use

of bipolar coordinates and serioc by Endo. 1 2 6

Cylinder and a ,,'I. If the two cylinders just considered have equal radii and equal

and opposite circulations, or no circulations at all, and if the stream approaches perpendic-

ularly to the line of axes, then the plane that bisects the line joining the axes is a stream
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surface and may be replaced by a rigid wall. Then half of the field represents flow along a wall

and a slender circular cylinder parallel to it. For an exact solution, one of the treatments of

two cylinders may be used, or an earlier direct treatment by Riabouchinsky. 12 7

A first approximation to the force on the cylinder, which is equal and opposite to that

on the wall, is given by Equation [94h, c].

I)ut a = 90 dog, so that the --axis is perpendicular to the wall, 1', - - F2 = P where

I- is the circulation around the cylinder, and d = 2h where h is the distance from the wall to

the axis of the cylinder. Then Y, = 0 and; writing V instead of U for the velocity of the

stream and X for the force on the cylinder,

7 a2\ p' 1+aa =- p2V 1+-- 1 UV 2 a [94d1
4nh 2 h 3

where a is the radius of the cylinder. Thus the e'fect of V alone, or of F alone, is an

attraction between the wall and the cylinder. The joint effect of circulation and stream is

likewise an attraction when the two resulting components of velocity are in the same

direction along the wall.

95. SLENDER CIRCULAR CYLINDERS MOVING INDEPENDENTLY,
OR NEAR A WALL

When cylinders such as those considered in the last section move independently, the

method of images can still be used, since a moving cylinder is equivalent to a dipole located

on its axis, but the motion cannot be made steady by a suitable choice of the frame of

reference. The forces can then be determined either by integration of the pressure or, more

conveniently, by first finding the energy and then using the Lagrange equations. The latter
method will be used here, to a first approximation only.

(h) Two Slender.Cylinders

Let two parallel cylinders A and B have radii, respectively, a and b, and let A be
moving at velocity V in a direction inclined at an angle a to a line PQ drawn through the
axes of the cylinders in the direction from A toward B, while B is moving with velocity W

inclined at the angle P to the same line; see Figure 160. Assume that there is no circulation
around either cylinde(; and for the present let the fluid be at rest at infinity.
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Figure 16 0 - Two slend, c circular cylinders in "motion. See Section 95.

T he first approximation to the velocity potential represents a dipole on the axis of

each cylinder and is, from Equation [37s1 in Sectio~n 37,

cos (0l - at) cos (02 r [-5a)
'k = a2 V + b2 W [5a

rI  r 2

where r, r2 01, 02 are adequately defined in Figure 100. The flow due to each of these
dipoles then '.iolates the boundary condition at tihe surface of the ,thr cylinder, hence their
respective images in the other cylinder must be added, then, for a similar reason, the images

of these images, and so on. Only thle first pair of images will be included here.
Furthermore, to the same degree of approximation the displacement of the first images

from the axis of the cylinder containing them may be neglected. Their contribiAtion to the
potential is then, from Equation [52c],

a2 2 cos (02 +a ) + a2 2 cos (0 +)

a' [95a]
r2 r2 r r

where T is the dlistance between the axes of the cylinders.
The cont.-ibution of cylinier n to the integral in Equation T17d], which expresses the

kinetic energy of the fluid, is then

2r 2 r t

2n
P q, ds -p (6" + ") Wcos (02 -3)d0 2.
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On the surface of B, r2 equals b. Furthermore, to include only terms of order 1,'r 2, it is

sufficiently accurate to write, by projection of the radius of B,

1 1 b cos 02  b sin 02

=1 6CO -r + b cos 0-1os 25 -_,sin 01= cos 0r I  r r 2 r

and the second term of 5" may be omitted.

The result of carrying out the integration, after adding and evaluating the correspn(linty

integral over A, is the following simple expression for the total kinetic energy of the fluid per

unit length of the cylinders:

n ay 2  b2 i 4a 2 b2

T 2 p L a + W 2  VW cos (a + )[95c]

The next step is to express the energy in terms of coordinates representing the positions

of the cylinders. Let the Cartesian coordinates of the axes of A and B be z,, Y1, and x2) Y2'

and let the corresponding components of velocity be denoted by a19 Y1' x2, 2" Let the line

of axes PQ make an angle 0 with the positive z-axis. Then, by projection,

Vcosa = l cos 0+ ,sin 0,1Wcos 5 2 Cos0+y 2 sin 0,

Vsina=-X, sin 0+ i, cos 0, Wsinf=- 2 sin 0+ i 2 COS0.

Substitution for V and IV in Equation [95c) gives

1 2U ( 2 2 2 + i ) 6 b2 i2 *2

-4a
2 6? [( 1 2 - 1t 2) cos 20+ ( 1¢2 + x2 y1 ) sin 2 01 [95d]

r2
+

Here r and 0 are to be considered as fur.ctions of z, Y11'T29 Y2"

Now let XIB, Y1B denote components of the force exerted by the fluid on unit length

of cylinder B. Then the reactive force on the fluid is -XIB, - Y iB, and the Lagrange equation

for x2 iS

d T1 aT
T 5=2 aX2 - B'

where t denotes thc time. Hence.
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- 2 - (a cos 20 +l sin 2 0dt r2

4a2 b2  Or
[(z1 z2 - 1 Y2 ) cos 2 0 + (1l Y2 + x2 y) sin 201 2r 3  dX2

4a2 b2  00

A similar equation is obtained for YiB"

For simplicity, after differentiating with respect to t, let the axes be rotated so that at

the instant under consideration 0 - 0. Then it is easily seen that at this instant

dr dO 2 - Y1  Or Or o0 o0 1
r= X2  X1 1 - = t - = 1, - = 0, - - 0, -

i 2 d r 2  (y 2  Ox2 - y 2  r

Hence, with axes choser so that 0 = 0, the force upon B has components

2a2 b2  4a2 b2  .
, I B P 2 r2 + -1 y950

2 2  8a 2 b2

Y1 2 -b .1 1 1 [95]L r B r ' 2 1 r3

where two (lots denote two differentiations with respect to the time, or a component of
acceleration. hlere , = V cos Ct, 1 = V sin a.

Similar expressions are obtainable for the force on A, but it is also possible to use

the equations just found by interchanging notation between the cylinders.

A strean, at irfinitv can be introduced by changing to a uniformly moving frame of
reference. This change does not affect the forces or the accelerations; the equations for

XiB and Y,, as they stand can, therefore, be used in all cases, with the understanding that

x, y1, V a-id a all refer to the velocity of cylinder A taken relative to the fluid at infinity.

The first term in Xlt or YIB represents the usual effective increase in the inertia of

13 due to the presence of the fluid. The remaining terns represent the effect of A upon R,

and are valid only if a/r ai d b/r are small. It is readily seen that the errors due to the

approximations are of an order in 1 'r that is higher than 1,'r 2 in terms that involve the

acceleration and higher than 1,'r 3 in those that do not.
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The interaction effect may be stated as follows, in first approximation:

(1) Acceleration of either cylinder evokes a force on the other whose magnitude equals
2 rrp a2b2,r2 multiplied by the acceleration, and whose direction is inclined to a line drawn

through the axes of the cylinders at the same angle as is the acceleration but on the opposite

side of that line; compare Figure 161. The "orce and acceleration have th(. ,ame direction

when they lie along the line of axes, but opposite when they are transverse. For, , and

are the components of the acceleration of A, and the ratio of the terms containing them in

X i and Y'B gives - as the tangent of the inclination of the force to the x-axis, which

is now assumed to be the line of axes.

A

.4 B

Figure 161 - Illustrating direction of force due to acceleration of
another slender cylinder. See Section 95(a).

(2) Motion of either cylinder at velocity V relative to the fluid at infinity, in a direction

inclined at an angle cc to the line of axes drawn toward the other cylinder, evokes a force

upon the other whose magnitude is 4upa2 b2 V 2/r 3 . The direction of this force makes an

angle 2 with the line of axes drawn as described, but it lies on the opposite side of this

line from the direction of the vlocity V. This force is shown as Fv in Figure 160. For,

when 0 = 0, j12 2 = V2 cos 2 a,, 2 , -. ,2 sin 2a.

In particular, a slender cylinder moving toward or away from another (Ci = 0 or 1r), or

stationary but immersed in a stream that is uniform at infinity and directed parallel to the

line of axes, repels the other cylinder, whereas, if the motion of the cylinder or of the stream

is transverse to the line of axes, the force is attractive.

If more than two cylinders are present, the forces due to the motion of each are simply

additive, in this approximation.

(B) Slender Cylinder and a Wall

If 6 = a, if the fluid is at rest at infinity, and if at all times 6 = 1 - a and 11 = ,

then it is obvious from symmetry that the plane bisecting the line joining the axes of the

two cylinders remains a stream surface. A rigid wall may be inserted along this plane, and

cylinder A and the fluid on izs side of the wall may be discarded.
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Then the formulas may be taken to refer to a cylinder of radius a moving with its axis

distant h - r/2 from a rigid parallel wall; a,'h is to be assumed small. See Figure 162.

Y,

V Figure 162 - Slender cylinder mving
near a wall. See Section 95(B).[h

The cylinder has a velocity V inclined at an angle 3 to the positive x-axis, which is drawn

perpendicularly away from the wall. The kinetic energy per unit length is half of T1 as

given by Equation [95c) or

T j P a2 V 2  + a-2) [95g]2 2h 2

Let the components of the acceleration of the cylinder be denoted by z and y Then in

Equation [95e, f]

Y2 V1 = V2 - 'V cos . - V sin /3;

and the component of force X1 on unit length of the cylinder, taken positive away from 'he

wall, and the component '1 taken parallel to it and toward positive 13 are, from Equations

[950, f],

/ a2 )~ rzpa4 V2

X =-rrpa2 1 + - x+ cos 213, [95h]
2h 2  2h-

2 1 a2  rp a 4 0 
2

Y1 =.-rp a2 y+ - )"+ - in 23. [gsij
2h 2 / Oh3
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The wall thus appears to repel a cylinder that is moving toward or away from it (f3 - 0 or tr),

but to attract one that is moving parallel to it (0? n,'2 or 3rr,'2).

A flow parallel to the wall and unifo-m at infinity may be added. Then the velocity of

the cylinder is to be taken relative to the fluid at infinity. If the cylinder is stationary, the

stream pus.:s it toward the wall.

For the general case of two cylinders, see the references in Section 94 or Basset.5

96. TWO OR THREE LAMINAS

The noncirculatory flow past two plane laminas, placed with their central axes par-
allel and with their faces perpendicular to the plane through their axes, has been treated by

Nomura. 12 8 The torques on the laminas tend to turn them perpendicular to the incident

stream. The resultant forces on the two laminas are equal and opposite; if 'ie laminas are

of equal width, the forces tend to separare the.n and are proportional to cos 2  where 0 is

the angle between the direction of the stream and the normal to their faces. See also

Ferrari. 129

The flow past a similar pair of lami.as of equal width, with or without circulation,

has been studied with reference to biplane theory by Kutta, 76 Schmitr 130 and Munk. 13,

Lines of flow for two positions of the laminas, in a streai perpendicular to their faces, are

shown in Figure 163.

Three parallel lannas were studied by Tani. 1 3 2

.. - /|... "-- --- - -.--

. _--___ _ __,,-- - - --- -

--' . 1-./" I--- --.-- "".-S -
-,,1 ,,.. .---- -

Figure 163 - Streamlines past two similar plane laminas

in two positions. (Copied from Reference 133.)
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97. GRATINGS

A linear grating consists of a set of parallel cylinders or laminas of any shape, usually

infinite in number, all alike ar,. similarly o:iowtd, with their centers equally spaced along a

straight line. Examples occur in Sections 46 and 47.

Another simple case that. can be treated with elementary " .... 's the following:

a [UM

z- In cos - ,97a]
aV

a ( u ,,€ 2no

a tan- 1  tan "0 tanh !2 ), [97 ]

T.r aV aV

V 2u95 V 2r¢
u=- sin - ,= -= ig- [97d,]

S aV TG in aV

G7 sin2 +r siiih c osh -- -cos .17 [97f]
= V aV +ig "2" 1 aV aV/

Tle field represented by these formulas is clearly periodic in the direction of y,

which changes by a when 0 is increased by aV, while z, u, and v return to their initial values.
Assuming such a definition of tan- 1 that 0 = 0 and V) = 0 at x = y = 0, let tb for the

moment he kept equal to zero. Then, as 0 increases from zero, y remaius zero but z decreases,
down to - c* at 95 = aV/2; there, let the tan- ' in y decrease discontinuously by ir; then, as

S increases further, z returns along the line y = a to the point (0, a) where 5 = aV, then
recedes again along the same line, returns after a further decrease of tan - ' by v along y= 2a,

and so on. That this interpretation of tan- ' is in harmony with continuity is seen by assuming

5 to be slightly less than zero; then z recedes a long way toward x = - 00, tan- 1 decreases

rapidly almost o -r as 0 passes through the value aV/2, then z returns slightly below y= a,
swings around (0, a) as 95 increases past the value aV, reo.edes again slightly above y = a,
and so on. Negative .0 corresponds similarly to negative y.

The real axis of w is thus transformed intO an infinite set of lines parallel to z, spaced

a apart and each extending from x = - -. to x = 0. A set of rgid planes may be inserted along

these lines, 'orming a plane gratin, having plates of infini'e width.

As Vj decreases to a large negative value,

x -9 + o, u -- 0, v - V, since sinh/cosh -. - 1.

Thus, if 5 is assjmed to be negative, the formulas represent flow past the grating with a
velocity V toward negative y at ditant points. A few of the streamlines are shown in Figure

164.
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Figure 164 - Streamines past a grating or
grille consisting of semi-infinite plates

_: _ symmetrically placed. (Copied from
Reference 133.)

The penetration into the grating spaces is small. On one of the plates, where , 0
and x < 0,

cot + V e-  e [97g1

aV

after solving Equation [97b] for q0 in terms of x.

A uniform stream at velocity U parallel to the plates can easily be added. Then a
representation is obtained of a stream that approace.i-s at velocity + V2 and at an angle

tan- 1 (V/U) with the plates, and flows off between them. Part of the streamlines and flow
net for such a case are shown in Figure 165, in which tho plates extend off toward the right.

Figure 165 - Oblique flow (without circulation) past and
through a grating as described under Figure 164.

(Copied from Reference 135.)
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The transformation Equation [97a] can be arrived at by first transforming the grating

into a cylinder represented by the unit circle on the I-plane, using z = (a/u) In [(t 1/t)/2),

and then assuaming w(t) to represent circulatory flow around this cylinder. This is do.. by

Prand tl. 
1 33

A siroiar infinite grating with plates of finite width and flow past both sides was

treated by Nutta, 7 6 Grammel, 13 4 and Engel. 1 35 Other cases are considered.by Steuding, 1 3 6

Ringleb 1
13 Konig, 1 3 8 and, with direct reference to turbine theory, by Busemann 1 3 9 and

Weinel: 4 ° see also Sedov, Reference 141.

Citcular Gratings

Gratings may also be constructed with circular symmetry, so as to have the property

that the grating coincides with itself after a certain integral fraction of a turn about :h, axis

of symmetry. The flow through such gratings has been studied as a basis for applications

in the theory of turbines and centrifugal pumps. For this purpose a line source and vortex

may be assumed to exist on the axis, also circulation about the exterior of the grating, and

perhaps other line vortices disposed with the symmetry of the grating. References:

Sparnhake, 4 2 Schulz, 14 3 Florin, 1 4 4 and other references there given.

98. VORTICES NEAR CYLINDERS OR WALLS

In addition to the simple cases treated in Section 42, many other cases have been

studied of a line vortex in the presence of a rigid cylinder or wall. Usually the center of

interest has lain in the motion of the vortex itself, which is assumed to move with the fluid.

The following may be noted:

Vortex near a lamina: Cisot.i,' 4 Paul, 4 ' 4 6 and Caldonazzo. 1 4 6

Vortex near a slit in an infi,, 3:e plane: Paul. 4 5

Vortices near a broken wall or in a channel of varied width: Mazet, 1 4 7 Miiller, 4 1 4 8

Miyadzu, 1 4 9 and Zeuli. 1 5 0

Vortex near a semicircular lamina or near a wall with a semicircular boss: De. 15 1

Vortex inside a semicircie: Cisotti. 52

Vortex inside a rectangular cylinder: Jaffj(,3 0 Mdller, 1 48 and Seth.' 5 3

Vortex inside a curvilinear rectangle: Greenhill, 2 6 and Kondo. 1 5 4

Vortex near an ellipt;c cylinder or inside an elliptic shell: Coates, 5 5 and

Rosenhead; 1 5 6 also Caldonazzo, 3 2 Poggi, 1 5 7 Sanuki anA Arakawa, 1 5 8 arid

Tomotika. 
1 5 9

Vortex near a parabolic cylinder: Masotti. 60

Vortex near a cylinder of certain other shapes: Caldonazzo, 3 2 a cardioid, 16 1 where

the force is questionable; Morris. 2 9
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Vortices between parallel walls: Jsffd30 and Masotti; 16 2 trains of vortices, tilauert, 1 6 3

Rosenhead, 1 6 4 Tomotika; 16 5 Imai, 16 6 and Schwarz. 16 7

Two vortices and two parallel laminas: Riabouchinsky 16 8 and VUllat. 1 6 9

Source and vortex near a plane lamina: Cisotti 1 45 and Agostinelli. 7 ° By using two

out of the three elements source, vortex, and circulation the velocity can be made

finite on both edges of the lamina.

ROTATING BOUNDARIES

99. MOVING BOUNDARIES

From the properties of the stream funttion 0, the required condition at a moving

boundary is readily seen to take the form

qn" [99a]

Here ao/ds is the space rate of change of b along the boundary in a chosen positive direc-

tion; q. is the component of the velocity of the boundary in the direction of its normal, taken

as positive when directed toward the side that lies on the left as the boundary is traced in

the positive- direction; compare Figure 1 60a. If the boundary is at rest, q. = 0, hence

o/as = 0 and, as hitherto assumed, 0 is constant.

,(\ luid)

Figure 166a Figure 166b

Figure 166 - Relations at a moving boundary. See Section 99.

In any given field of irrotational flow, a physical boundary may be supposed inserted

along any chosen curve provided the boundary is assumed to move at every point as is re-

quired by Equation [99a]; the flow will then be undisturbed by the insertion of the boundary.

In this way the flow around moving boundaries of many forms can be fotizid.

If the boundary moves in translation, an alternative procedure is the familiar one of

first solving the problem with the boundary at rest and then imposing an additionai uniform

velocity upon everything. A more useful application of Equation [99a] is to rotating

cylinders.
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If a rigid cylinder- of any shape rott:tes at angular velocity a) about an axis parallel to

its generators, the velocity of its - urface at any point distant C" from the axis has a magnitude

q Ei and is directed at right angles to the radius. INence, by similar triangles, as illustrated

in Figure 166b,

q, q, d,9

q ds

where d is the increment of Z; corresponding to ds. Using this value of q, and Equation

[99a],

= s ds

whence

I
-- = c [99b]

after integrating. Or, if the origin is taken on the axis, so that 0) 2= X2 + y2,

1
- (x2 + y2) C = constant. [99c]

2

If any known stream function is inserted for if in this equation and any chosen value of

C, the equation defines a certain curve. A rigid cylinder or shell may be inserted along this

curve; then , and the associated potential 0 will represent a possible flow around the cylinder,

or inside the shell, when it is rotating at angular velocity ao about the axis from which 0 is

measured.
The vw.ocify of theu fluid relative co the cylinder or shell, or relative to axes rotating

with it, may be of interest. Let q., qa;, #10 denote components of the velocity in the direc-

tions of cylindrical coordinates z, W, 0, where t'i axis of z is drawn along the axis of rotation

and the angle 0 is measured around it ii. the poitive direction of rotation; and let q, q ' qo

denote the corresponding components of thr, relative velocity. Then any point sharing in the

rotation has a velocity a) U in the di-ection of q0. Hence

g -'= q,, q--'= qg, q'= q0 - [99d,e,f]

(See Reference 1, Art. 71, 72.)
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100. ROTATING CHANNEL

Consider the channel between two parallel plane walls of infinite extent which t.e
rotati g at velocity w &bout an axis drawn parallel co the walls. Let there be no component

of the fluid velocity in the direction of the axis. The walis will be represented on the .zy.plane

by two parallel lines; let these lie at distances al, om the axis of rotation. Take the

origin on the axis of rotation, and draw the x-9xis , A .dicular to the walls, as in Figure 167.

(Fluid)

'a2

/

Figure 167 - A channel or infinitc box in rotation. See Section 100.

Then the equation of either wall will be of the form, x = constant. It follows that in

Equation [99c] y must cancel out. This condition is met if

-__(X2 - y) + Ax [t00a]

2

where A is an arbitrary constant. This is a permi:iible form for 0b, since the last term repre-

sents uniform motion at velocity A toward positive y, and the first term is adapted from

Equation [36e]. Using also Equation [36d], the corresponding potential and components of

velocity are

S6= oxy- Ay, u =- y, v -ojx + A. [I00b, c,d]
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Since the velccity of a point rotating with the walls La. omponvnts

U = - , V - (1),

the velocity of the fluid relative to the walls has components, taken in the instantaneous

directions of the rotating axes,

u'=0, v'--2a)x+ A.

Thus in the relative motit; the ii , flow are straight and parallel to the walls.

The constarii. A is connected with the total fL:w through the channel; the volume passing

per second relatively to the walls, per unit of length perpendicular to the planes of flow, is

Q'= f v,'d,= (a 2 - a,)[A .-co (a, +c)1.

a 1

The relative velocity varies linearly from one wall to the other; it may vanish on an
intermediate plane and have opposite directions near the two walls; see Reference 10, page 79.

101. ROTATING ANGLE

Consider the irrotational two-dimensional motion of the fluid in an angular space formed

by two semi-infinite plane walls meeting at a fixed angle 2a. Let the walls rotate at constant

velocity wo about their line of intersection. With the origin taken on this line and the X-axis

drawn along the bisector of the angle, the walls will be represented on the xy-plane by two

radii drawn from the origin at 0 I a , where 0 = tan- (y/1).

The following assumption, suggested by the conlugate flow of Section 36, will be found

to satisfy Equation [99b] on the walls, with C = 0, si-io here ( = r:

1 _2 sin 2 0 _1 cos 2 0

2 cos 2 a 2W cos 2 a

Then

sin 2 0 cos 1?, V IWoI r

cos 2 ot ai' cos2o. q- cos 2t

For tile velocity relative to the walls, by Equations [oe, 1],

sin 2 0 / e , 2 0gqr =u - ,q= COr -o '  . [0If gr cos 2a Co I. a
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If, as will be assumed, a < r7/4 , qr" has the same sign as has the product O0; the fluid
thus flows inward or toward the axis along the trailing wall of the angle and outward along

the leading wall. This is illustrated by Figure 168, in which relative streamlines are shown

for ct = 9 dog. If a>n,',, the flow pattern is more complicated, ut such cases are of little
practical interest. If a = u/4, cos 2a = 0 and irrottional motion is impossible, in the ideal

case in which the walls extend to infinity.

t'K

Figure 168 - Streamlines for the motion of fluid relative to the walls
in a rotating angle. (Copied from Reference 10.)

The pressi're in the fluid, from Equation [lid], is

= + Po"[lO.h]
cos 2 a 2 cos 2 2 a

Theflow within the angle can be generalized by adding one or more terms of the
following form, derivable from a complex potential

2 (2n+ I)-r/2ct .W = ia) Z
( n ) / 2 "

(2n +1) 70-1

95n - n t  2sin I(2n+ 1) 2a J

IT
Ab -A n r (n+1 2cl cos F(2n + 1) "70 ,[101i,j]

where n is any positive integer and .1n is an arbitrary real constant. The corresponding

contribution to qo vanishes at 0 = a so that the boundary condition, qO = cr, remains

satisfied.
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Rotation Combined with Outflow

With reference to applications in turbine theory, it is of interest trn imagii 'a 'ne

source to exist along the apex of the rotating angle. By the principal of superposition, the

source adids a radial component of velocity A/r where A is a constant, so that, in place of

Equation 1101c or Equation [101f],

sin2 0 A
qr = qr' = ot sin2 + A [101k]

cos 2a r

q0 anti q0'are unchanged. A volume 2 a A of fluid flows outward through the angle, per

second and per unit of length perpendicular to the planes of motion.

A stagnation line now occurs on one face of the angle, on the rear face if (a and A
have the same sign, at r = ro = (A/a tan 2 cc )1/2. Where r< r0 , qr"has everywhere the same

sign, but beyond this point revecoal of the radial velocity occurs from one side of the angle

to the other, as it doe- in the absence of outflow. As r increases, the outflowing fluid that

has come from the source becomes crowded more and more against the leading wall of the

angle. If A < 0, there is a line sink on the axis, and the fluid that is destined to be absorbed

by it is crowded against the trailing edge. The streamlines are illustrated in Figure 169.

(For notation and method; see Section 34; Reference 10, page 94)

Figure 169 - Streamlines for the motion of fluid relative to the walls
in a rotating angle containing a line source at its apex,

i.e., on the axis of rotation.
(Copied from Reference 10.)

102. FLUID WITHIN A ROTATiNG SiECTOR

Consider the fluid within a vessel whose section has the form of a circular sector of

radius a and aperture 2 a ; let it rota, at angular velocity cu about its edge, or about the apex

of the sector; see Figure 170.

This problem differs from the last in the additional boundary condition that q, = 0 at

r - a, where r denotes distance from the axis. The solution can be constructed by adding to
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at

I ig',re 170a Figure 170b

Figure 170 - 'iwn sector-shaped cylindrical profiles. See Section 102.

Equation [101a, b] a Fourier seties composed of terms of the form of Equation [101i, j] and

giving suitable values to the coefficient An .

Assume that

1  sin 2 0 ( 2a 0 [102a]

(osr- - -(a A2n+1 sin 2n+

where 0 is measured as before from the bisector of the apical angle. Then, to make

r (- a~/dr) = 0 at r = a,

sin 20 17 270

Cos C E2c 2aJ

To find A2 k+ 1' multiply through by sin [(2k + 1) 50/2o] and integrate from 0 =-a to 0=--.

It is found that, replacing k by n,

32a 2

A 2 n+ 1 = (-1)n + 1 3 2 [102b]
n(2n+1)[(2n+1)2 172 - 16 aE

The complete Fourier series would include also terms containing cos [(2n+1)1r0/2c], but if

these are included their coefficients are at once seen to be zero because of symmetry.

The corresponding expression for 0, is

CO \(2n+ 1)

1 2 cos20 2  + wa A 2a cos 2n+1) • [102c]
2I cos 2a )[
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The relative motion in a group of three such sector-shaped cylinders rotating about their

common edge is shown in Figure 171.

Figure 171 -Streamlines for the motion of
fluid relative to the walls within a

threefold sector-form cylinder
rotating about its apex.

6ee Section 102.
(Copied from
Reference 10.)

If a = n14 or 31r/4, cos 2a 0; but then, also, either the first or second A,. + 1 be-

comes infinite. To handle such cases, a modified formula must be developed by seeking the

limit forms that 0 and 0 take on as cc approaches the value stated.

In Equation [17d) for the kinetic energy, or T, (1/2)pfo qn ds, along the side at

0 -c, qn = wr, ds = dr, and, since sin [(2n + 1)nr/21 = (- 1 )',

(2n+l) z

1 2 2 10nA r2
2- =-c"ur tan 2cc +ca a - 2 n+la

On the other side, where 0 = +ct , 0 and qn are both reversed in sign, hence the integral has

the same value as on the first side. Finally, over the curved end q. = 0. Hence the kinetic

energy per unit length is T, = p(, f ak r dr, or, after integrating,
0

T, 24 _, r(q 1 -'
=Pja a " tan 2 + +1 )(2n - +2 A 2 n+1  [102d1

80 L2 a flI

A semicircle is obtained if a = r/2; it is revolving about the central line of its base,

as in Figure 170b. In this case, since (_1)2n = 1, using Equatio [102b],
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T- pwu2 a4  8

ifi

o (2n+.I) (2n+1) [4 - (2n+1) 2]

p G2 4 1 4 3 4

4n _..a 2n-1 2n+1 2ni43 (2n+3)2
0

Of the four series into which the last sum may be broken up, the terms of the first three canci

each other except for one term out of the second, which equals 4. Furthermore

I =-+ + + .. =- + - ,

o (2n + 3) 2  12 32 52 8

see Carslaw's Fourier Series, 1 7 3d ed. (1930), p. 235. Hence

T - paW 2  = 0.1553 a2 pa G [1020

( ,e Reference 1, Article 72; Reference 10, page 102.)

103. MOTION WS -IN A ROTATING TRIANGULAR PRISM.

if

w + i¢i =iAz 3 , z =reiO, f103a,b.

then

S=-Ar 3 in 3 0, t~b=Ar 3 cos 3 0, [103c,d]

or

fr= A (x 3 - 3 Xy 2 )

from

z3 = (X+iy)3 , where x=rcos 0, y= rsin 0. '

Substituting for V/ in Equation [99c],

A (X-3 _ 3 -i ( (X2 + Y2)= C.

2

This is satisfied for all values of y if x = a and

3Aa+- w =0.
2
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Hence, if these equations hold, the line x - a may form part of a rotating boundary. Since it is

evident from Equation [103c,d] that everything repeats when 0 is increased by 120 dog or 240
dog, two other similar lines must exist. These three lines will enclose an equilateral triangle

centered at the origin.

Substituting for A in Equation [103c,d],

r3 sin 3 0 , 4=- r cos3 0; [103e, f6a 6a

2o 2 ItoI 2qr = r- - r sin 30, qo =--r cos 30, q=-- [103g, h,i]

These formulas represent the flow inside a vessel in the form of an equilateral triangular
prism, rotating with angular velocity about an axis parallel to its length and passing through

the ceter of its section. The vertices are at r = 2a and 0 = 60 deg, 180 deg, and 300 dog;

the sides are of length s = 2 (2a cos 300) or s = 2 vTia. The instantaneous streamlines are

illustrated in V:igure 172.

The pressure p, when o is constant, is

given by Equation [Ile] with ' = r or, using
Equations [103h,il,

2
P -- (r4 + 4ar3 cos 3 0 + p0 ).

8 a
2

[103j1

The kinetic energy of the fluid per unit
length is

T, ) d1 1 ,-pffq(d)dy.

[103k]

Figure 172 - Absolute streamlines for (For notatior and method: see Section 34;
fluid within a triangular prism Reference 1, Article 7:q; Reference 2, Section

rotating about its axis. 9.72.)
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104. TWO COAXIAL CYLINDERS.

In tie flow described at the end of Section 67, at any given value of r such as r-- b the

radial velocity varies with 0 in the same way as doe3 the iormal component of the velocity of

a moving circular cylinder. Let such a cylinder, of radius b, be inserted with its axis at tile

origin, and let it. move perpendicularly to its axis with a velocity V toward 0 = 0 where

V = U 1 + . [104a]

Then tile surface of the cylinder and the fluid have the same radial component of velocity, so

that the necessary boundary condition is satisfied at the surface of the cylinder.

Assume that a > b. Then the formulas of Section 67 will represent the flow between

two coaxial cylinders of which the outer, of radius a, is stationary. After substituting from

Equation [104a] for U in terms of V, Equations [67b, c, i,j] give for the motion of the fluid

between the cylinders

b v a20b 2  a O, [104b,c]6b= - r+- Cos 0, r&= 'a2-b) a2 -b 2 r

q,= __ 1 cos 0, q0 = _ + I sin 0. [104d,el

In Equation [17d] for the kinetic energy, the contribution of the outer boundary at r= a

vanishes, since q. = 0. Hence the kinetic energy of the fluid per unit length of the cylinders,

at the instant at which they are coaxial, is

11 2,f 1 a2 *2

T P4 qn ds=--P O qbdO=. a2 -b v2 ,  [104f]

after substituting the values of € and qr with r = b and integrating.

105. FLUID WITHIN A ROTATING SHELL OF ELLIPTIC OR OTHER SHAPE

If Equation [99c] in Sectior. 99 ,3 to represent an ellipse, b must be a quadratic function

of x and y. Consider, therefore,

t + i iAz2 =iA( + iy)2 , 2 =-2A xy, =A( 2 -y 2 ).

255

*1-:
---.- .-



Substituting for Vi in Equation [99c],

A(X 2 _ y2) _O (X2 + y2 ) = C.

2

This can be written

x2  y2 2 2 2 2 C
- +-- =1, a - , b= [105a, b,c]
a2  b2 , w-2A 'o+2A

These equations represent a real ellipse with semiaxes a and b prov ed ? < 0, JAI < co/2.

Substituting for A in terms of co, a2 , and b2,

1 a2 - b2
S=-tk xy,h= I Wk(X 2 -_ y 2 ) ,1 k- -a P[105d,e,f]

2 a2 + b2

These formulas represent the flow inside a cylindrical sh(ell whose cross sectic:, is an

ellipse of semiaxes a and b, when it is rotating at angular velocity CU about its axis, on which

the origin of i.oordinates has been taken. The coordinate axes must be allowed to rotate with

the shell, but all velocities are referred to a fixed frame of reference. The streamlines are

rectangular hypr. bolas. They are illustrated in the interior uf the heavy ellipse rawn in

Figure 173, which may be taken to represent half of the symmetrical shell.

60 a,

Figure 173 - The heavy ellese may represent half of the contour of an elliptic cylinder that
is rotating ,tbout its axis ,ind producing etreamlines represented by the solid curves, or
half of an elliptic shell rotating similarly and producing streamlines in the contained

fluid represented by the broken curves. See Section 106.
(Copied from Reference 174.)
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In terms of cylindrical coordinates Z. 0 such that x = Z cos 0, y = -sin 0,

11
=- co k Z 2 sin 20, ib 1 w k Z 2 c os 20; il05g,h]
2 2

hence

qa)= wak .Zsin 20 , qo k Z cos 2 0, [105i,ji

q = Iol k [105k]

At the end of the minor axis, 0 = v/2, qg = 0, qo = - ok Z , so that the fluid is circulating

backwards. At the end of the major axis, 0 = 0, qo = w k '; but the velocity of the shell is

w 0) and so exceeds qO, since k < 1. Thus relatively to the shell the fluid circulates in the

opposite direction, in order to keep its motion irrotational in space.

The pressure at any point, if the rotation is steady, is, from Equation [lc],

Pp 2k 2 ( -cos20- k) + constant. [1051]

The kinetic energy of the fluid, per unit length of the cylinder, is

Y p = I fq 2dx dy,
2 J

where the boundary of the region of integration is the ellipse defined by Equation [105a].

Substituting x = ax', y = by', and the value of q,

T1  I p ab C02 k2ff (a 2 x0 2 + b2 y 2 ) dx'dy',

and the region of integration for x' and y' is now a circle of unit radius. Changing to polar

coordinates so that x'= r cos 0, and reLiacing dx'd"by r dr dO,

1 2 r

fy:dxt dy' jf1 dx' dy' fr drf Cos 2 0d0=-

Hence

TI- 8- k2 ab (a2 + b2 ) 02 [105m)
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If 'ho fluid rotated as r rigid bc-'ly, T, would be rrp ab (a 2 + b2 ) (o2 /8.

For the elliptic shell; see Reference 1, Articles 71, 72. A shell whose cross section

is an elliptic quadrant was studied by Sen, 1 7 1 one composed of arcs and lines, by Ghose. 1 7 2

(F..r notation and method; see Section 34.)

106. ROTATION OF ELLIPTIC CYLINDER OR LAMINA.

A transformation that yields a quadratic stream function with the fluid at rest at infinity,

is that of Section 8,t with V = 0 or, after a slight change of notation,

w=iAe- 2 , z=cCosh 6, [106a, b]

where z = x + iy, C= e+ i q and the elliptic coordinates eand 71 on the z-plane are described

in Section 82. Here 4 > 0 and j7 is multiple valued like an angle. The ellipse for a given

4has semiaxes a', b'such that

a"=ceosh e, '= c sinh 4, a'+ b'= cc 4 , c = a*2-b2 !'06c,d,e,f]

x =ccosh 6 cosq=-a'cos q, y=csinh sin 7= b'sin q. [106g,h]

From w=q +io

q= Ae-2sin 2), v = Ae-2cos2 /. [106i,j]

From Equation [106g, hi and a hyperbolic formula in Section 32, X2 + y2 = (C2 /2) (cosli 2 4 +
c'is 2 j7); substitution for x2 + y2 in Equation [99c] gives

A e- 2 e cos 2 C2 a) (cosh 2 e + cos 2 i) = C. [106k]

This equation is setisfied for any value of q provided e = e' = constant and

C2  A-2 C2C-- 4 cosh240 o, Ac - = - o

4 4

Thus for this particular %alug of C the curve defined by Equation [106k] degenerates .ato the

ellipse defined by e- 4. Its semiaxes a, b are such that, by Equation [106e,f],

a + b = (ee ° , c =,a 2 -  b .  [1061, m]
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Eliminating A and 60,

I (a + b)2 e- 2 , [106n]4

=- (a + )2 e2sin 2 71, i =-(a + b)2 e-2cos 2 . [106o, p]
4 4

From Equations [82s, t, ul the components of velocit), in directions given by Equations

[82o, p], are

S(a + b)2 e 2 s(ain 62e 4,s2q [10q,r
q -2 cG -- 2 cG

cC + = (cosh- co12

G =(sinh e + sin2  (cosh 2 cos 2 [106s]
1.2

At large distances from the origin, 4 is large and cosh 6-- sinh 4" - e6/2, nearly, so

that x2 + y2 = c2 e2 e/4. Thus q vanishes in proportion to (X2 + Y2)-3/2.

On the x-axis, cos q -±1, x = ± c cosh 4 and u = ± q = 0, while v has the opposite

sign to that of x and is, since e-2 = (cosh 4 + sinh )-2,

=- =P 2 (a - b) (a+ b)[ C2(, -) [1060 [e

On the y-axis, sin 71= ±1, y = ± c sinh e, and v = - q4 =0, while u has a sign opposite to

that of y and is

Ct) )3 (-j J 2 C)'S= q - (a -b) (a + b [Vy+c 2 (y . [106u]

The formulas represent the flow around an elliptical cylinder of cross-sectional

semiaxes a and b, rotating about its axis at angular velocity a, in fluid that is at rest at

infinity. The origin lies on the axis of rotation, and the axes rotate with the cylinder. The

velocities as given refer, however, to fixed axes; it may be supposed that the axes are

momentarily stationary in their instantaneous positions.

The streamlines for , = 0 correspond to q = ± 450 or ± 1350 and a, L easily seen to be

asymptotic to the radii y = - a. These streamlines separate those that cross the x axis at

their outer extremities from those that cross the y-axis.
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On e c..'inder e = Co and, from Equations [1061, m,o, p1,

- (a2 - b2) sin 2 71, -= (a2 
- 62) cos 2 Y1. [106v,wI

4 4

The flow n " ,s the same for all confocal cylinders; the values of q and b at corre-

sponding points are proportional to (a + b)2. For, the values of 4 and il at a given point in

space depend only on the locations of the foci, and in particular upon c.
If b -- 0, the ellipsoid becomes a lamina of width 2, 2a, rotating about its median

axis. On its surface =0, y=0, x=acos 1 and

CO 2x2 -a 2

U - T q = t a) 2x2 2 +  -[106x,y]

Here , e upper sign refers to the face toward positive y, the lower sign to the other face, and

Ci is pobitive as usual for rotation from x toward y. Thus u = 0 at x = ± a/2.

Streamlines for equally spaced 0b are shown around the elliptical cylinder ab in
Figure 173. The curves inside the ellipse are to be disregarded in this connection. The
fluid is at r,-z,, relative to the cylinder at points o and i. The curve a'b'represents a con-
focal cylinder that % ould give rise to the same streamlines at external points. The flow net

for a lamina is illustrated in Figure 174. The streamlines differ in appearance in the two

cases only because different spacings of wb were chosen.

Figure 174 - Flow net produced by a plane lamina rotating about its median line.
(Copied from Reference 10.)
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The kinetic energy of the fluid per unit length of the cylinder is, from Equations
[106v, w and Equation [17d],

227r

T= o (a2 - b2 )2 sin2 2qdr/= - (a2 - b 2  to2. [106z]1 J- 16

For a lamina (b =0)

T1 1 p 2 a [106a']

Circulation F about the cylinder or lamina can be included by adding the same terms

containing F as in Section 84.

Combined Translation und Rotation, or Rotation about Other Axes.

Any two-dimensional motion of the cylinder or lamina perpendicular to its generators

can be resolved into a motion of translation and a rotation about its axis. Such a motion can

also be regarded as a pure motion of rotation about some other axis. The corresponding

expressions for 0 and 0 can be constructed by adding those for the component motions, with

or without circulation; and the velocity can be found by adding the two velocities vectorially.
In the case F = 0, when the kinetic energy is calculated by substituting the combined

and 04, as obtained from Equations [106v,wl and from Equations [84b, cl with C= 60, in

Equation [17d] or in T, = - (p1 2) fbdik, the same terms in U2 and to2 are obtained as before,
and in addition a product term in oU. The latter contains, besides constants, the integral

f2, 1-2(b cosa cos rq* a sin a sin qi) sin 2 71 + cos 2 71(- b cos a sin il + a sin a cos 71)(d)7.
0

This integral, however, equals zero. Hence the kinetic en gies of translation and of rotation
are simnply additive; their sum is the total energy.

As an example, if a lamina of width 2a is rotating at angular velocity a) about an axis

lying in its plane, parallel to its edges but displaced a distance fPa from its median line, the

translation to be added is one perpendicuiar to its plane at velocity U = Plae. Hence, from

Equation [8411 with a = 7/2 and Equation [106z], the total kinetic energy of the fluid per unit
length of the lamina is

I + 16 ..p a4 
w 2  

[106b']

Streamlines for this case are shown in Figure 175.
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Figure 175 - Streamlines produced by a plane lamina rotating about one edge.
;Copied from Reference 10.)

The pressure can be found from Equation [1l] or [1ld].

A lamina bent sharply along its median line was studied by Sona. 173

(For notation and method; see Section 34; Reference 1, Article 72; Reference 2,

Section 9.65; Zahm 174 and Consiglio. 175

CHANNELS

1O7. FLOW PAST A SQUARE END OR AN OFFSET

Let a stream of fluid, having a uniform velocity U at infinity, flow past an obstacle

in the form of a two-dimensional semi-infinite rectangular box; let the box have a face of

width 2h perpendicular to U and two other faces extending to infinity in the direction of U,

as illustrated in cross section in Figure 176, on the z-plane.

Let the x-axis be taken in the median plane of the obstacle with the origin on its front

face. Then it is obvious from symmetry that a streamline follows the x-axis to the box,
divides, and proceeds to infinity along both sides of the box.

It suffices to determine the flow above the x-axis; that below it is then the mirror

image in the axis of the flow above. A rigid boundary could, in fact, be inserted along the

x-axis to the right of the box without disturbing the flow. Thus either half of the flow %%ill

serve also to represent the flow past a plane wall with an offset in it of width h.

The bounding streamline COBA constitutes an infinite polygon and can be transformed

into the real axis of a new variable t by the Schwarz-Christoffel method. The streamline

must be traced in the direction ABOC to make the area above it correspond to that above the
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yU

A q

h

Figure 176 - A semi-infinite obstacle A'

AB B" A'. or an offset in an
infinit' wall ABOC. t

s--I t-I

real t axis. Then the exterior angle at B is -_/ 2 and at 0 is +n/2. The value.3 of t at these

two points can be chosen arbitrarily as -1 and +1. Then, in Equation [31a] of Section 31,

a1- - aa 1 - 1/2; a2 = 1, a 2 = 1/2; hence Equation [3!a] becomes in the present case

dz
dt

Integrating,

z - 'l(t 2 _1)1/ 2 + in [t+ (t2 - 1)1/2]1 + L.

To fix the amplitudes, assume that, for the values of t required, 0 < amp t < 77. Then amp

(t + 1) and amp (t - 1) can be understood to lie in the same range, so that amp (2 1) will

range from 0 to 2 n, and amp (t2 - 1)1/2 from 0 to f. Then, to preserve continuity, for negative

real _<-,(2- 1)1/2 -- -  <0. Also, 0 <amp [ (1 2 - )1/21 , for use in de-

fining the logarithm.
The constants K and L are chosen so as to make t -1 at B or z - ih, and t = 1 at

z =0:

i-- K log (-1) + L =irK + L: 0 0 + L.

Hence L - 0, K = h/r And

z = - 1(t2 - 1) 1/2 + In [t + (t2 - 1)1/2]1. f107b]
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The flow on the z-plane is thus transformed into a flow on the t-plano in which the

real axis is a streamline. A possible complex potential for such flow is w = ct. With this

potential, as t -, , so that (t" - I)1/2 . t and predominatos over the logarithm, z - hi/n and

w c -, crz/h. But the assumed flow at infinity requires that on the z-plane w -I Uz. Hence

c h U/n, and

w 4, + io/ = - t. [107c]

By substitution, z can easily be expressed in terms of w, but 4) and 0 cannot be separated

in terms of ordinary functions.

The relation between w and z is more conveniently studied in terms of real coordinates

p, i on the z-plane defined by writing

t = cosh (it + iv). [107d]

Using hyperbolic formulas fisted in Sectiun 32, and also separating real and imaginary parts in

z = • + iy 9,nd in w, it is found that

z = h [p + iv + sinh (-L 4 i v,)], [107e]

n

A A
x = - (IL + sinh i cos v), y = - (v + cosh i sin v), [107f, g]

AU hU
q5- - cosh p cos v, )-- - sinh L sin v). [107h, i]

The coordinates 1, v are single valued within the region of interest provided 0 _< I,

0 < j, , . At infinity, p -i f , sinh p -. cosh IL, pL/sinh y - 0, and 4) -. 7Yx, as it must. The

coordinate curves on which I has a constant, positive value begin on the positive X-axis,

where v = 0, cross the y-axis, and end on the line AB, or wh'-h v = ri, y = h. The curve for

p = 0 is the segment OB.

Some streamlines are shown in Figure 177. The poitit on OB at which q = IUI, or

v = 1/2, 1/ = (2 + n) h/1 2.7 = 0.818h, is marked by a shortline.

The line COBA is the streamline for 4) = 0. As the strenr'lines proceed from right to

left, they all rise through a total distance h.

From Equation [OTa], and Equation [107c] and K = h/r,

(dw)2(dw/Idz2 t+4
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-1

AB

0 C

Figure 177 -. Streamlines for the situation in Figure 176.
See Section 107.

and, from Equation [107d] and hyperbolic formulas listed in Section 32,

d 2 (cosh p cos v + 1)2 + sinh2 psin2

or

q 2 = u2 cosh i - cos v [107j]
cosh it 4 cos v

On. the positive x-axis, I _ 0, v = 0, 9 = Jul and

h pL
x = - (sinh iL + it), u=- U tanh - . [107k, 1]

77 2

On the end OB of the obstacle, where it = 0, 0 5 v < 17, q = [v[ and

y- (sin v+ v); v= U tan- . [107m, n]
I2

Ln the faceAB,pi>0, y= v=i, q= Jul and

h IL
s=- -(sinh pL - it), u= - U coth - [107o, p]

if 2

These velocities are most easily calculated thus: on OB, for example, dy = (A/r) (cos v+ 1)dv,

d q5 = - (hU/if) sin vdv, hence v = - do/dy = - V sin v/(cos v + 1) = - U tan (v/2).

If the total force on OB is calculated by integrating the Bernoulli pressure and evalu-

ating the improper integral in the usual way, the force is found to be zero provided the pres-

sure in the undisturbed stream is zero. This result is correct, as will be shown in the next

section. It is unsafe, however, to integrate the pressure up to a point at which q..; see

Section 85.

(For notation and method; see Section 34; Reference 2, Section 10.6.)
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108. STRAIGHT CHANNEL VARIED IN WIDTH.

Consider the flow along a two dimensional channel of infinite length which has parallel
straight sides but whose width undergoes a sudden change at one point from hi to h2, as illus-

trated in Figure 178. Let the fluid approach from the righc at uniform speed U. Then its 'eloc-

ity will ultimately become uniform again at the value A1 U/h2, since the same volume must
pass all cross sections.

aY

B A

t 1
A 

A242 hi U

A rB9 C £ F
0 a

Figure 178 - Treatment of a straight channel abruptly varied in width.
See Section 108.

The mathematical problem is an extension of that in the last section. Tile walls taken

togetaer in the order ABCDEF as labeled in Figure 178 can be regarded as an infinite polygon
with two vertices at infinity, AF and BC. At BC, where a change in direction ofr oucurs,

let t = 0; at D and E, with exterior angles - r/2 and rn/2, let t = 1 and t a > 1, respectively.

Then t.e Schwarz-Christoffel Equation [31a] becomes

z ( 1t _a ' [108a]
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Integrating by means of the substitution

t-a) 1+ -i a- 1/2 a /2
r1 ~[ ---1 [108b]

H tz = K In + In z- + L. [108c]

Here it can be assumed that the amplitudes of t, t - 1, t - a, and hence also of (t - a)/(t - 1)

range only from 0 to n, inclusively, those of-r, 1 + r anC %- + -r frum 0 to r/2, and those of

1 - -r and \/-a- -r from - ir to 0.

As t -r - 1; hence the real part of z becomes infinite. Thus t = at F and

t - at A, since t increases from A to B. Thus, on the t-plane the streamline AB becomes

the negative real axis, the line CDEF, the positive real axis. Since the flow is toward BC,

the transformed flow on the t-plane must be one of convergence toward t = 0. The simplest

type of such convergent flow is that due to a line sink at t = 0, for which the complex potential

may be written

-x = c In t, [108d]

from Section 40, where w = q + ioi aad c is a real constant.

To fix the constants, take the x-axis parallel to the channel. Then, to provide the

assumed inflow at AF, it is n. :' ',arv that at AF w -. Uz + constant or dw/dz .+ L; see

Section 35. But

dto dw ldz C / t-a /

d = dI/ dt T t_ [108e]

When It! is large, the last fraction becomes unity. Hence it is necessary that

C
- = U. [108f0
K

As BC or t = 0 is approached, dw/dz must. reduce similarly to Al U/h 2 . Hence, from

Equation [108e],

hi  U C
- = [108g]

The fact that it is thus obviously possibk, to make the solution represent the assumed

flow in distant parts of the channel confirms the choice of to as a function 3f t.
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Furthermore, if t has a large negative real value, I < r < \I'5; if t is large and positive,

0 .. -r - 1. Hence, as I changes from a large negative to a large positive real value, all of

the four binomials whose logarithms occur in Equation [108l] remain real, but 1 - -r changes

from negative to positive, and its amplitude from -7r to 0. The imaginary part of a is thereby

increased by -in K. But, on the diagram, z changes from A to F; hence the change in its

imaginary part is also .- ih i . Thus -inrK -ih. From this result and Equations [108f, g]

h h U 4 2

K - I I I I .I *[108h,i,j]n flh

2

Finally, at E or t = a, 1" - 0, z = L by Equation [108e. Hence, if the origin is placed

at E, L = 0. Then, from Equations [108e], [10Sh, i,j], [108b] and [108d],

z=+ y=- (h, .In - + h2 In i- , [2T108k]1 -Alh + h 2r

f h 2 ' (ht I )--h "/2
22

= F,_ezv , U) w = -- ivi. [1081,ml

L 2 (e w( 1 U 1

These equations fix 0 and yp as functions of x and y, but their interpretation is involved.

For the velocity, from Equations [108b,e] and Equations [108h,i],

q -z u 2  -  U2 1r 2 . [108n)

On all walls parallel to U, -r is real and positive, so that, from Equation [108n],

r = q/U. OnAB, t<0,1 < -r < V-= /h 2 ; on CD, 0 < t < 1, -r > v/3= h/A 2 ; on EF,

t > a, -r < 1. Hence, from Equation [108n] and Equation [108k],

on AB:

U<q<h U/h 2 , x=- h In 2 U + hInq -U hi V+h 2 q

on CD:
h 2 q-h 1 U

q > h1 U/ h , X= - (h In +h 2 In7 q - U h 2 q + h, U'
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on EF:

<U, x -- h, In U+q +h 2 In .S -q hiU+/2 q

On DE, 1 < t < a, -r is imaginary and -r = iqiU, and
Ih

Y =- hi tan-i h A2 tain -  .)

The force on DE due to the Bernoulli pressure in steady motion is most easily found

from the conservation of momentum. Consider the fquid between two tran.3erse planes drawn

far away from DE and on opposite sides of it.

In a second, the net effect of the motion is the same as if a volume h U of this fluid

were removed from the neighborhood of the rear plane (at the right) and inserted just ahead

of the forward plane, gaining thereby momentum

ph i U  _U -U p.hi u
2  1)[10

The momentum in the remainder of the space between the planes is unaltered. During the

same time the difference of pressure between the two planes delivers momentum to the fluid

of magnitude equal to the differential force multiplied by the time or

. .. ... p .h_2 ['I108p]
2 I2

The remainder of the gain in momentum must be furnished by a force due to negative pressure

over DE; the reaction is a force of suction on DE, directed oppositely to the stream, of

magnitude equal to Equation [108o] minus Equation [108p] or, per unit of length perpendicular

to the flow,

I p u2
F P (hi - h2 ) [108qi

The force F, exceeds the force of suction on an equal area in the approaching stream

by AF = F1 - p U2 ( h
l - h 2 ) or
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A f pv2 ( _h2) 1. ph, _" [108r]

in terms of the exit velocity U2 = hi U/h2.

If hi - h2 is held constant while h, -, , the case of thie ,ast section is reproduced, and

in this case A F1 -. 0. If, on the other hand, h2/h1 is very small, A F, = p h2 U 2/2, approximately.

This is the ramiliar suction force due to deficit of pressure on the walls of a vessel in the

neighborhood of a relatively small orifice.

By putti-g together two flows of this type, one reversed as if by reflection in the direc-
tion of y, the fiow can be represented through a vane-sided orifice of width 2h., located in
the plane end of a two-dimensional semi-infinite tank whose sides are 2h I apart.

The velocity may be reversed at all points withou; affecting q or the geometrical flow
net.

(For notation and method; see Section 34; Reference 2, Section 10.7.)

109. CHANNELS OF VARIOUS FORMS.

Channels with sides variously composed of straight lines, or in part curved, are de-
scribed by Love s ° and Miyadzu; 176 for the introduction of a gate see Reference 177. Channels

with curved walls are described by Sakurai. 25 2

Branching channels are treated in R'.ference 2, Section 10.8; see also articles by
Agostinelli, 178 Cisotti,' 7 9 and Boverio. 180

FREE STREAMLINES

110. NATURE OF FREE STREAMLINES.

Where a free surface occurs, as at the top of a mass of liquid or on the boundary of a

region of cavitation, the usual requirement is uniformity of pressure. Problems involving this

boundary condition are ofon difficult to solve.
If the motion is steady, however, and if gravity is absent, constancy of pressure is

equivalent to constancy of q, the magnitude of the velocity, as is evident from the Bernoulli

Equation [10dl. Furthermore, in steady motion the free surface is composed of streamlines.
Thus in steady motion the boundary condition along a free streamlue is that q is constant.

This boundary condition is readily handled.
Alternatively, the space adjacent to the moving fluid, instead of being empty or filled

with gas of negligible density, may be assumed to be filled with fluid of the same kind but at

re.. The steady motion of the remaining fluid is not thereby affected, provided viscosity is

entirely absent; it suffices to assume that the pressure in the stationary fluid or wake is the

same as the constant pressure along the boundary surface between the two. At this boundary
the velocity is then discontinuous, and the motion ;s there rotational; a sheet of vortices may
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be supposed to exist ,. the boundary. The general principles and theorems that hold for

irrotationai motion will hold within the moving fluid taken by itself, but they may not be

applicable throughout a region that includes part of the surface of discontinuity.

The theoretical flow of a frictionless fluid past an obstacle as obtained on such an

assumption shows more resemblance to the flow of an actual fluid than the theoretical flow in

which the motion is every%% here continuous. In particular, a force is exerted on the obstacle.

But in real cases a great den' of vortex motion is observed to exist in the wake.

In the mathematical theory of two-dimensional motion, constancy of the velocity q

implies constancy of Idw/dzi along a free streamline. It is found convenient to work with

the variable

dz [11a )4'=- ,[la

or, in terms of the velocity components u and v,

(d_ -  1 U +[iv
S-[110b] -u + iV q 2

where the last member is obtained by rationalizing the denominator and using q2 =U + v2 .

Thus 1 1 = 1/q.

Regarded as a function of z, 4(z) effects a transformation from the z-plane onto a

C-plane. Let this plane be drawn parallel to the z-plane and with the real axis of C parallel

to the x-axis. Then the vector representing 4 has the same direction as the particle velocity

at the corresponding point on the z-plane, since it makes with its real axis the angle

tan- 1 (v/u). Therein lies the special utility of the variable C.

Each streamline Dn the z-plane transforms into a curve on the 4-plane, and this curve

can be regarded as the corresponding streamline in a transformed motion. From the properties

of 4 it is clear that any straight portion of a z streamline will transform into a segment of a

parallel radius from the origin. As the z point traces a curved free streamline, on the other

hand, along which q is constant, the 4 point traces the arc of a circle of radius 1/q, centered

at the origin.

Further transformations may then be made in terms of other variables until the problem

is converted into a form in which the solution can be guessed.

In the alternative "hodograph method" of Prandtl, dw/dz, or -1/, is used as an

auxiliary variable instead of C; see, for example, Betz and Petersohn. 181

(For notation; see Section 34.)
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11. EFFLUX FROM A TWK>DIMENSIONAL ORIF10C.

Consider the steady Irrotational outflow of a liquid through a parallel-sided slot of
width 2a in the infinite jplar~e wall of a tank. Let gravity be assumed not to act. In Section 61
the problem was solved on the ass,,umption that fthe liquid remains in contact with the outer
face of the wall. It will now be assumed that the i-;suing liquid separates from the w~all in the
form of a jet bounded on each side by free -Ipirns

On the z.plane let the slot be represen(td by the segment (-a, 0) to (a, 0) of the real
axis, as in Figure 179; and], for simplicity, let. the constant. velocity along the free streamlines
be q1

A B' A 'B
a

Inc

1a-/2 ) A

I AB (CC,.O B, A'

Ytr

Figure 179 - Efflux from a two-dimensional orifice. See Section 111.

As explained in the last section, the mot~on is first studliedl in terms of the variable

dw
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Along the wall AB the fluid velocity is directed toward B and its magnitude q increases from

zero at A, or at infinity, to unity at B. Hence the ( vector, of magnitude 1,'q, lies on its

positive real axis, and its end moves on the 4-plane from - when z is at A to 4 - i at B.

Along the curving free streamli,.e BC, . then moves along the unit circle below it, real axis;

the direction of the 4 vector is at each point that of the tangent to BC. A sin.ilar streamline

coming from the right transforms into the negative real axis of . from - - to - 1, together with

another part of the unit circle below the axis. Finally, because of the obvious symmetry,

there must be a central streamline IJ which is straight throughout and becomes part of the

imaginary axis of 4.
The boundary ABB' A' thus traced on the 4-plane, consisting of two segments of the

real axis and a semicircle, is neo.t transformed into the entire real axis of another variable t.

For this purpose a transformation is first made to a new variable

In e In 4 [ + i amp 4 [l11bi

where In 141 stands for the ordinary real logarithm. This converts the boundary into a semi-

infinite rectangle. AB becomes the positive real axis of In 4. On the unit circle, In 41 - 0

and amp 4ranges from 0 to -i; hence the semicircle below the real axis of 4 becomes the

segmert of the imaginary axis from In 4 0 to in 4 - - i 17. On A 'B ', amp 4 - i n, hence, on

the plane of In , A'B'becomes a line parallel to AB at a distance i7 below it.

The Schwarz-Christoffel transformation, discussed in Section 31, is now used to con-

vert the rectangle ABB'A'on the plane of In 4 into the real axis of t. The space between

AB and A 'B" is to be regarded as the interior of the rectangle, since, as the boundary

ABCJC'B'A'on the .-plane is traced, the fluid lies on the left. Hence exterior angles of

-,'2 occur at B and B. Let the corresponding values of t be chosen as -1 and +1.

Then, putting a1 = - 1, a 1 -- 1/2, a2 = 1, a 2 = 1/2 in Equation [31a1,

- In 4 K(t + 1) - /2 (t - 1)I /2  [idt

and, integrating,

In 4K A' In [t i (t 2 - 1)1/2] 4 L. [11111

The vr.oice of amplitudes here is as in Section 107.

The constants A' and L can now be adjusted to bring the corner B and B 'into the

correct posithiv on the plane of In 4. Inserting into Equation l111d] t I - 1 for In 4 -0, then

t I for in - :

0 K In (-1) L =iK + L, -i.a-L,
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whence K - I and

In C In [t W ( - /21 - in cosh 1 t- iF, [lile]

=- I- , --- - (C4 . 1)4 [llf,g]2

since e - n 1 _. Here, when I is real and negative, (t2 - 1)/2= t 2
-

Now, as z traces one of the streamlines ABC or A'B'C', t moves along its real axis

from - -, or from + -, toward 0; and 04 obviously has different values on these two stceam-

lines, which bound a jet of fluid. Hience the flow on the t-plane resembles that toward a sink

located at the origin. This fact suggests the following trial assumption as to the complex

potential:

0 = C In t, t :- eW/C,

Mhere c is real; see Section 40. According to this assumption, the free streamlines extend

up to the point t =0, or 4 = - i.

Then dw = cdt/I and, from Equation [111a] and Equation [111f], integrating,

dz =- dv -- c [t + (t2  _ 1) 1 / 2 ] di/t;

Z= c + (2_112 1 sin- 1  + k. [11th

1/2

For the significance of (t2 - ) see Section 107.

To evaluate sin - 1 , consider, in general, sin- 1 z. Write

sin" i z = v + ie,

whore v and ear real. Then z = x + iy = sin (v i+ i)=sin v cosh e+ i cos t, sinh

and

= sin v cosh e, y =cos v sinh 4. [ lli,j]

Thus £ and v serve as elliptic coordinates on the z-plane and can be found for any point;

see Section 82, where (r,'2) = v.

In analogy with Equations [82e, f],

1 21/2 y21/2

cosh = I [(., + 1)2 + y2 1 + [(X - 1)2 + Y21 , [111k]
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sin v= - [(x + 1)2 + y2) 1 / 2 
- [(x __ 1)2 + 2 1 / 2  [11"2

On the real axis of ., where lxi < 1, 6 - 0 and sin' z = sin -I x = v and has its ordinary

meaning; where jxj 1 1, cos v = 0, x = ± cosh , and e may have either sign. so that

if X> 1,

sin- 1 z sin- 1 X i cosh - 1 X;2

if X < -
.17

in-  z = sin -  x .. . .i cosh - 1 (-x),
2

where either sign may be chosen.

The variables v and f are doubly many valued, hence so is sin - 1 z; as with real angles,

if one value is sin- 1 z = u, then others are u ± 2ren where -t is any integer, and also

(1 ± 2n) n - u. This complication can be removed only at the expense of introducing discontin-yr
uities. A convenient range for v may be - - < v < nr/2. Using this range, sin -1 z is dis-

2 = =
continuous along the x-axis where lx[ = cosh e > 1; there the sign of e is indeterminate, where.

as elsewhere e has the sign of y. With this convention, Figure 127 may be used by assuming

that on the plot c = 1 and r = (rr/2) - v.
in the present problem the values of 11t lie on or below the real axis. For such values

continuity can be preserved with use of the ranges < 0, - rr/2 < v < n'/2 , provided it is agreed

that, for a real number x, in terms of the positive cosh- ' x,

if X > 1,

sin- x = - i cosh 1 x; [lilm]
2

if X < - 1, 77

sin - X - i sC 1 sh-  . [111n]2

At B' or at t =-1, z = a; at B, or t=- 1, =-a. Inserting these values in Equation

[111h] and evaluating c and k, it is found that

2a 2ac- , w = . In t, [lllo, p]
2 +r 2 +r

2ai 1 )/2 1

= 2 [t + (t2 -1) + sin -  [111q
2 1- ; t

Since w = 0 + zi, q and 0& are now fixed, but they cannot be expressed in terms of z by mAns

of ordinary functions.

The velocity of the fluid at any point is given by

dw 1 I/21 "

dU + iv = .- .-. [t + ( 1 l

dz
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On tho free skreamlines q = 1. On the side A'B'of the wall of the tank, t is real and t > 1;

hence

- + q (t 2 _ 1/2 1

_ 1) 
-

Iq

Also, z is real and = x. Thus, from Equation [l11qi,

x = 2a-- + sin - 1  qJ lls]
2 + [ (q 2+ 1 ]

where sin- 1 is in the first quadrant. The side A 'B' is symmetrical to AB.
Along the median plane, or IJ in Figure !79,

t i itI, (2 _ 1) 1 /2 (ItI 2  + 1)/2

Thus

q =-v = [It[ + (!tl 2 + 1)/2 -

and

ill 1- 2 (1112 + 1)' /2 q (2.

Also, *f s = sin- 1 (1/t) = sin - 1 (1/i Iti, then 1/lt[ = i sin s = sinh (is), hence s i sinh- 1

(1 ltD. Finally, z = iy. Hence, from Equation [1l1qi.

2a rl 2q 1y a sinh-l [lilt]

In describing the form of the free streamlines, a more con~enicnt parameter than t is

the angle 0, actually negative, between the x-axis and the tangent to the streamline; and a

fresh integration is less troublesome, because of the singularit at t = 0. On a free streamline

eiO, cos 0= 1 (C+ -)=_t. [lll,,,v1

Hence, using Equations [lila] and [1ip],

2a sin 0
dz dx f idy =-dw- (cos 04 i sin 0) 7- dO.2 + r ,os 0
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Separating dx and dy and integrating along tle left-hand streamline,

a (r + 2 cos 0), [111w]
2 IT

2a / ~ 1 1 \
Y= I In tan n 1- 0 -sinl . [lIxi

L 7/

Here - < K 0 < 0. The right-hand streamline is then the mirror image in the y-axis of this

one.

The issuing jet eventually becomes straight; its limiting width is twice the value of

JxI when 0 -. r,'2 or 2 a a/(2 + nf). The ratio of contraction, relative to the width of the orifice
or 2a, is thus

n
- 0.611.

2 +n

Since the velocity in the ultimate jet is uniform, the volume of fluid that issues per second,

per unit length, is 2 r a/(2 + 7r).

Thus on the z-plane the streamlines do not converge at infinity, as is indicated by the
distinct labeling C, J, C' in Figure 179, but on the C-, In C-, and t-planes they converge to a

finite point, as at 4 = - i or t = 0.

At 0 = 0, or the edge of the orifice, dy/dx = sin2 0/cos 2 0 = 0, but dO/dx - 1/sin 0 -.

Thus, although there is no discontinuity in the siope of the streamline, its curvature at the

edge is infinite.

The free streamlines are plotted to scale in Figure 179, and an enlarged plot of one
half of the symmetrical diagram is shown in Figure 180.

IFigure 180 - Efflux as in Figure 179:
one side of the issuing jet in
more detail. (Copied from

Reference 1.)

Line of Symmetry
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If the velocity along the free streamlines is made U instead of unity, the only effect is

to replace Equation [111p] by w = 2aU In t/(2 + r), and to multiply all velocities by U; q is

then replaced in all formulas by q/U. The flow pattern is unaltered. U may be negative, so

that the fluid is entering through the slot.

If p is the pressure at infinity in the mass of fluid whore q = 0, and pf the pressure at

the surface of the jot itself, then, from the Bernoulli equation

1 2

P- p = p U

This equation fixes U2 when p.. - p1 is given.

In the presence of gravity the velocity is not uniform along the free surface and the

problem is more difficult.

(For notation and method; see Section 34; Reference 1, Article 75, where a is replaced

by (n + 2) b/i?; Reference 2, Section 11.53.)

112. TWO.DIMENSIONAL BORDA'S MOUTHPIECE.

The transformations in the last section are easily modified so as to allow the plane

boundaries to be inclined to each other at any angle, with preservation of the symmetry.

The integration is simple if the planes are made parallel, so as to form a parallel-sided

mouthpiece enclosing the issuing jet. Let the x-axis be rotated so as to lie in the plane of

symmetry, with the edges of the sides at (0, a), (0, - a), as in Figure 181.

On the C-plane, the boundaries AB, A'B'now coincide and lie on the positive real

axis; in the figure they are drawn slightly separated for clarity. If amp C = 0 on AB,

amp - - 2 r on A 'B'; for, on the z-plane the direction of the velocity rotates through a

clockwise angle of 360 deg in passing from AB through the fluid to A'B'. The t diagram is

the same as before, and Equation [i id] holds again. Substituting in it, first In C = 0 when

t = - 1, then In 4 = - 2rwi when t = 1, noting that here In (-1) = tri, In (0) = 0, and determining

K and L, Equaticn [111d] becomes

In = 2 In [t + (t2 - 1)12l - 2 ri,

whence, since e - 2 r i = 1,

= [t + (t2 - 1) / ] 112a]

As before,

w= +i c In t (112b]
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z

-2J-1

AA A"

Figure 181 -The two-dimensional Borda's mouthpiece. See Section 112.

where c is real. Hence, using Equations [111a] and [112a],

dz =- dw = - [2t 2 _ 1 + 2t(t2 - 1)_1 / 2 1 dil

z ~ t +t~ 2 1)1/ 2  2 )1/21,... . In t- In [t + (t - + _

Here the amplitudes of the algebraic functions of t, except t and t 2 _ 1, are confined to the

range from 0to u. AtB or z=ia, t=- l;atz=-ia, t= 1. Hence,
a a

cF1 Tn k=--ia. [1 12d, e

The velocity of the fluid a any point, using Equation [112a], is given by

1/2
dU + iv- = - I + (t2 - 1)1 112f]

dz C

By proceeding as in the last section it is found that along the wails AB and A'B q - u and

X a a - I Lx =in -- [1 12g]
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whervat.,, along t he med i'm plane or the x-ax is, q u i andl

x = - L---+I n --. [1h
rq2 q 2hq

To trace the tipper free streamline, to which the lower is symmetrical, introduce again

the angle 0, which is here negative. Then

-1/2 *0)2 0 0 6 1 1,' 2
e~~ -co~ - sin -,7o - -(,_t

(1 '. cs2 2/ 2 20

Xa. -(sill2 -- In sey) (1) Q - sinO0) +a, (I112i,]

after integrating and usiag Equation (I1t2d]. As 6 x .- and y -, aZ2. TIhu., the entire

jet is ultimately only 2a - a or a wide, and the ratio of contraction is a,'2a =1,/2. The volume

of fluid issuing per second and per unit length is a.

One side of the jet is plotted in Figure 182.

Figure 182 - Borda's mouthpiece: one side
of the jet.. (Copied from Reference 1.)

Line of Symnethy

Thel( same remarks hold here as in the las-; section in regardl to the terminal form of the
"ree s-treamlines, the pressure, the velocity andl the effect of gravity.

(For notation and niethod see Section 34; Refe.,one 1, Article 7-1, where 6a,-)
R~eference 2, Section 11.51.)
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113. INFINITELY WIDE STREAM INCIDENT NORMALLY ON A PLANE LAMINA.

Let a stead) uniform stream impinge perpendicularly on a fixed plane lamina of breadth
l and continue beyond it with two Iree boundaries; see Figure 183.

From the symmetry, there will be a central streamline which is straight until it meets
the lamina at its center C, then divides and follows the lamina to its edges, from which each
half continues as a free streamline Al or A 'I' on which the constant velocity will be assumed
to be unity. The .?neral method described in Section 110 is applicable, and the mathematical

y

A A C' A' A C

q=1

Wike

-i~lC"

Inc

A -c

,----C A I A C'.

A' CA

-1 I

Figure 183 - Plato in a stream with wake behind it. See Section 113.
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Lratment of Section 111 requires only certain changes in order to fit the present case. The

point C is a stagnation point, from which the fuid flows away toward both sides. Hence the

parts CA and CA'of the lamina are represented by segments of the real axis of C, as shown

in Figure 183, while the free streamlines follow the unit circle below the real axis as before.

The geometrical boundary on the C-plane is thus the same as in Section 111, and the same

transformation from 4 to t can be used:

C=-- =_ tW-01, t= [I I . 3a, b]

For the an.plitudes, see Section 107.

The flow on the t-plane is again along the real axis toward the origin, but in the pre-
sent case 0 has the same value on the two hales of the axis, which represent on the z-plane

parts of a single diided streamline. Hence there cannot be a source or sink at the origin;

the fluid must flow away along the imaginary axis. A simple flow of this type is that of

Section 38, whose complex potential may be written

C
w = - - 113c]

t 2

In this flon the axial streamlines continue to the origin; on the 4-plane, therefore, the corre-

sponding curses continue to the point I or C = - i. It follows that, the free streamlines become

parallel at infinity.

From Equation [113a], dz = - Cdw. After substituting from Equations [113a] and [113c],

integrating with the help of the substitution t = 1,'u and choosing c and the constant of inte-

gration so as to make z = ± 1/2 at A and A'or t T 1, it is found that

c = [113d]a +4'

21 [1 1 112 1
St +-(t 2 -1) + sin- 1  [113e

+ 4 212 2

1

lere, for real t, and Itl > 1, - ,'2 < sin 1 
- < n,'2.t

The particle velocity at any point is obtainable from the equation

du 1 1/2-U + it, .. . .. . . t -(t 2  1) [113f)
dz
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Clearly Izi -, z only as t -, 0, or as - i; then, also, u - 0, v - 1. Thus, in particular,

the velocity at infinity is -1 in the approaching stream. Mathematically, the point I or C=-i

corresponds to all directions of recessiun to infinity on the z-plane, such as those labeled I,

I, 1"in Figure 183. In the same way, C, C, and C"on the C-plane all correspond to the

single point C on the z-plane. At these points there is a failure of one or more of the conformal

transformations.

By proceeding as in Section I11 it is found that on A'A

S+ 21 q(3 + q 2) 1 1 21
= - - sin- I  [l13g]

n+4 (1 + q2)2 2 1 + q2 /

whereas along the median streamline I" C, or the positive y-axis,

21 / q(3 -- q2) [2qy= . ...- sinh- 1 -- [113h]
7+ 4 q(1 2 2 2 1 - q2

Along the right-hand free streamline, proceeding as in Section 111, where Equations

[llu, v] still hold but w is now given by Equation [113c1 and c by Equation [113d],

21 sin 0
dx + idy =-dw - (cos 0 4. i sin 0) dO.

7+ 4 cos 3 0

21 11 \1 F 0 f
X- sec 0+ y= - sec 0 tan 0-n tan + , [113i];,+4 ( ) "+ 4 (2 4

after integrating and choosing the constants of integration to make x = l/2, y = 0 at A, where

0 = 0. The other free streamline is symmetrical with this one.

As 0 -. - 1/2, which is the lower limit for 0, x -. - and y. - w. Thus the free stream-

lines eventually approach parallelism to the direction of incidence. They also become parallel

to each other, but so slowly that the separation between them continues to increase without
limit. A larger plot of one free streamline is shown in Figure 184, and a few streamlines near

the lamina are shown in Figure 185.

The pressure on the free surface must be the same as the pressure in the fluid at

infinity, since the velocity in both locations is onity. On the upper surface of the lamina it

is higher. The total net force on the- lamina in the direction of the stream per unit of its

length is, from the Bernoulli equation,
1/2

F1 = 1 p (1-q 2 ) dx. (113j]
-f/2
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.... .........Line of Symmetry

Figure 184 - Plate in a stream- one of the free
streamlines. (Copied from Reference 1.)

Figure 185 - Plate in a stream: a
few streamlines. (Copied from

Reference 8.)
On the lamina the variables are real, so that

dt w 2 1

(I =p (f' qd =c -I d, 92 <2

-~~ )f =4eft- dt

aa + 4

uising Equation 1113al and Equation (113d1;- the integrals can be simplified by substituting
t - 1 'u, and the integral from -- to -1 equals that from I to +- by symmetry.

In the more general case in which the velocity at infinity is U, the functions u), 6, tb
andl all velocities are multiplied by U, but the geometry of thle flow net is unaltered. The
forve is multiplied by U2.
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For a solution in which the prossure on the free surface is different from that at
infinity; see Reference 7, page 134.

(For notation and method; see Section 34; Reference 1, Article 76; Reference 2,

Section 12.20.)

114. INFINITE STREAM OBLIQUE TO A PLANE LAMINA.

The solution of the last section is easily modified so as to allow the stream to impinge

at an angle ct with the plane of the lamina, as illustrated in Figure 186. Let a be measured

from the positive x-axis. As before, let the velocity on the free streanines and at infinity
be unity.

2 / '.4
7 /

2

Wake

Figure 186 - Plate in a stream incident obliquely, with a wake behind it.
See Section 114.

The dividing streamline will now meet the lamina perpendicularly at a stagnation

point C that is displaced from the center. The transformations from 4 to In 4Cane. t are
unaltered; b-it, at the point corresponding to infinity in the approaching stream, the vector
representin-" ,, having the direction of the velocity, must lie on the radius, 0 = C - 27, and

WeI ;. :"-n01ding value of t will lie to the right of the origin, as shown in Figure 187. When

C4= e - - cos aC - Is:.. c, then t =cos a by Equation [1131-1. The flow on the t-plane
is easily displaced so as to transfer its central point from the origin to I cos a 1 in place of
Equation [113c]1, lot
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A' A

C

C"

*~~ A' ________

Figure 187 - Diagram for oblique incidence on a plate. See Section 114.

C

w = - )2 " [114a]
(t - cos a

Then, from Equations [113a] and (114a],

dz = dw = (t+v/?TY) + [1141b](t - cos C )3

After integrating, by means of the substitution u = (t - cos c )-1, and choosing c and the

constant of integration to make z = t 1/2 for t - T 1, it is found that

I sin4 .
C M -(114c]

4 + a- sin a

4 I cos a - 2[Jfa + t cob C - (t2  1)1/ sin2 a4 + rr sin a (t Ccsct (t - COS )2

+sin a sin - coS a + cos a (3- cos2 . [114d]
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Here, for real t and ItI . 1, (t 2 - 1)1 1 2 has the sign of t, and - n/2 < sin- 1

For the particle velocity, Equation [13fl still holds.

On the lamina itself, t is real and Itl > 1, also q - + u, hence, from Equation [l13f],

1 , 2 1) /2 1 -q 2

2q 2q

the sign is negative where x > xc, positive where x < xc, where x, is the coordinate of C.

These equations and Equation [114d], in which now z = x, connect q with x. The distance of

C from the center 0 is the value of z at tl- or

x - 4 + sin [ 2cosa (1 +sin 2 a)4 2 - ) sina [ll

where a is in radians.

The treatment of the fren streamlines is nearly the same as that in Section 113. Taking

w from Equation [114a] instead of Equation (113c1,

sin 0 dO
dz= dx+ idy 2c (cos 0 + i in 0)

(cos 0 + cos a )3

After separating real and imaginary parts, x and y are found by integrating and adjusting the

constant of integration. The formulas are most conveniently written in terms of distances

and angles measured positively N ith the stream, or y'-- y, 0'= - 0, O"= 0 + = - 0'.

Right-hand streamline, 0 < 0'< n -a :

l sin4 c ( 2cos O'+cosa - 2+cos c
2 4 + nf sin a (cos 0 + cosa )2 (1 + cos a )2/

isina Fsin c sin 0'(1 +cosa cos 0') I +cos(a-O')l

4+fnsincL (cos 0+ Cos C )2 cos 0"+cos *j

[lA4il

Left-hand streamline, _0" < c:

l 1 lsin4 a I)ccs 0"-coscc 2- cosi l14j]

r 2 4 +fsin ct (Cos 0" cosa )2 (1 cos )
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/ sin a sina sin 0"(1 -co cos 0") _os (a fiin" - os 0" c os ( v vs Co )

SI 7 flna (co. 0 - C( a )2 (',' k I

IfI lki

4 COs- (010) Cos 0 COSGa

Cos f) co a os (0(- a) .

Th .,free s renmlinv.,4 for t -o55r're plotted to scalh in Iigure l h6.

The force V, on the lamina 1-, r unit of its length can be found, as in Equations [ ..3j, ki,

uzing fIx- d.? from Equation 11141hi, c from Equation II -1c], and ovaluating f- n JI

separatwlY. When the velocity at infinity and on the free strearnlin(.z is U insIvad of unity,

plU 2  :ina. ill
' - 4 + - sinu

The frce at'is perlwndicu larly on the lamina.

1 - conter of pressure. at \hieh F" may b :-upposori to act, is di,placlr from th,

center to ihe l it, i n x : 7 here

:3 ICos co

-1 4 .-- jin0

Tho ,i,,du,' ion of 7 is ,.oi en in -ection 77 of Lamb'.- Ilydrolynamie,.- hrt, Eqj:tt ion 1 5]

"eq:hn to Equation (1141)] here: a table of valuor, of F'. z and 7 for ;ariou value- of

C1t al!-o -i\en.

Wor notation and .-.ethod : see zect~on -34: H fer(,nc I .- rticl,. 77: Reference 2.

115. INFINITE STREAM ON A V-SHAPED LAMINA.

[.e: a stead. t:,. 7 :npinz-e -ynmetr cally on a la ina whoe ,r.tr. co -t. of

t,, a e~u:;: ::al.i'.e + a:-ee ::, an an ie 2 a a measured on t,, do'Avr..:ran; .Jd,..

T e ,.o,, n et'c o - :3 c a 1- m ,c- i'#-d t. -ui: :}i - xr,b11t,'., !v r) .-t p g a

S.7 on cc- -'.ho - r eal a -Q a:(- i o l'. . all a'- p]iur.'r-

U -
. -- .- : -S+ o =; : a



halr, on which 0 - - -,, make,, with the real axis of 4 the angle - - -

(2u c) . These tVmo lines on the 4-plane thus enclose an angle 2ce between and below

them; and the arc included betwseen them on the unit circle for 4 corresponds to the entire

lo%%er half of the unit circle on the i -plane; see Figurc 18b, in % hich the free streamlines are

copied from Tunlirz. 1 88

If t is then assumed to be related to z by the usual Equation ill0al or dz -- dw, the

two lines and the enclosed arc correctly represent the dividing streamline, i"CAI, l"CA '1,

on the 2-plane, of which the portions A/ and A'' are free; see Figure 188. The variable .j

may be assumed to be related to t and iv in the same way as 4 was in Section 113. Then,

from Equation [113c] and Equation [113a],

dz--4dw, w=- - ,1 
=

-
t ( 2 1)1/2- d w, w, -(t5b I)d

/2

y

(() !"

Wake q- C

Figure 188 - Symmetrical angle-lamina in a stream with wake behind it.
(The free streamlines are copied from Reference 188, Volume 121.)

On the right-hand half of the lamina, t is real and t < - I as before; hence, for continuity,

(12 _ 1) 1  =. - J 1, and
1

If ds is an element of length along the lamina and dz the corresponding element of z, from

Figure 188
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dz -- dx + idy (ds (sin a - i cosa ) - ds e

wvhenlce

2S e(2 ) dz 2 C'?e/ dt(1s = e dI --- 2 .d

t 3

from Equations [1 15a, b, ci. Hence, if b is the half-width of the lanina,

b f =ds=-2c "  t 2c J-2a dl

The integral can be evaluated numerically, and the equation then fixes c in terms of b.

Also, on the right-hand half of the lamina

q 2= 4 . /r7

since C, is real and positixe. Hence, the force o:. the entire lamina per unit of its length, in

the direction of the stream, is

-11

2 f Cau_ -an dt
F,-p (sin c,) f(1-q)ds 2 cp (sin a )I I2 J

-00

=- 2cp(sin.) cc - t '1) _(-t .--. [115e]

The evaluation of the integrals is discussed in Article 78 of Lamb's Hydrodynamics; I

the last integral there written is evaluated by complex integration on page 363 of Wilson's

Advanced Calculus.18 2 In the location first cited is given a table of values of the force,

there called "pressure."

(For nonsymmetrical cases; see Reference 2, Section 12.50 and Morton; 1 9 7 see

Reference 1, Article 78; Reference 2, Section 12.52.)
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116. JET ON A WALL.

Lot a two-dimensional jet of width a fall upon an infinite plane wall, approaching with

uniform velocity U at an angle a with the face of the wall, as in Figure 189. Part of the fluid
in the jet will flow away toward one side, part toward the other.

'\

Figure 189 - Two-dimensional jet \
striking a wall. \ \

C F 'In th tw eatn eto itsa

In the two departing jets, of widths a1 and a2 , the velocity will ultimately become
uniform and equal to that in the incident jet, since, as in Section 41, it is uniform along the

free streamlines. Hence, the incompressibility of the fluid requires that a1 + a, - a.

Furthermore, the component of momentum parallel to the wall must be conserved, since no

force acts on the fluid in this direction. In unit time a mass paU of fluid, carrying momentum
paU2 , is lost from the incident jet and reappears as masses p U and pa2U in the departing

jets; hence paU2 COS = pa-U2 - pa 2 U2 , and a cos a = a1 - a2 . From these two equations

a a a2  2a
a1 = - - (1 + cOsct ), a 2 -2(1 - C a1), - - n -  [116a, b,c!

The decrease in the component of momentum perpendicular to the wall, on the other
hand, equals the total force on the wall, so that

F1 = paU2 sin a [116d]

where F, is the force per unit of length of the wall in a direction perpendicular to the planes

of flow. The effective line of action of 1, can be found from the conservation of moment of

momentum. About the axis At along which the median plane of the incident stream cuts the

wall, the incident stream has a zero moment of momentum because of symmetry; but the median

planes of the departing jets lie at distances a1 /,2 and a2,'2 from Al. Hence, in unit time the
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combined moment of momentum of these jets increases- by

pa b2(a 1 ,2) - pa2 2 (a - a2) pU(j'2,

in a clockwise direction. The reaction on the wall must be an equal counterclockwise moment

of force about i. Hence the force F, must act at a point displaced from 3l to the left, or

toward the stagnation point C, through a distance " such that e F1 = (a 2 - a2)pU 2,'2 or, from

Equation [116,11 and Equations tll6a,bl,

a2 _ a2

e = = - cota. [lliel
2a sina 2

Fui nor details can be discovered by resorting to the method of complex variables.

Only a few results will be cited here.

The distance h from l to the stagnation point C is

a a [,
h=-cot a + - (cos c) In (2 sina)+IneCt --- - a sina . [116f]

2 r- Li si2 2lf

At perpendicular incidence or a = r,2, the equations for the free streamlines, with the

origin taken at the stagnation point C or M and with the x-axis drawn along the wall, are

x=a (I+- In cot -), y=a [+ + IIn cot - , [116g, hI

where 0 is the angle, taken positive, between the direction of the tangent to the streamline and

the wall. On the median plane, where x = 0. in terms of the velocity q, if U > 0,

y = In U+ 2 tan- 1 U. + , [16i
U g-q q

Along the wall the absolute value of x is given in terms of q by the same expression that

represents y along the median plane. Each half of the jet has a plane of symmetry through

C inclined at 45 deg to the wall.

Flow nets for a = n,'12 and a = 3 r,'4 are reproduced from Reference 183 in Figures .90

and 191. In the figures v, stands for U, and 0 and 0b are reversed in sign in accord with the

older convention. The numerical values refer to the case a = 1, v, = U = 1. The broken curves

are curves of constant velocit, , the value of the ratio w = q,'U being indicated for each.

(See Reference 2, Section 11.41; Reference 50 and 183.)

292



ill

t .
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Figure 190 - Flow net for a two-dimensional jet striking a wall perpendicularly
(Copied from Reference 183.)

P- ,C)

1.0

Figure 191 - Flow net for a two-dimensional jet striking a wall at 45 degrees.
(Copied from Reference 183.)

117. OTHER FREE-STREAMLINE PROBLEMS.

he literature on potential flow with free streamlines is extensive. A good summary up

to 1920 was given by Jaffe. 185 Many authors have followed Levi Civita8 8 6 in using, instead

of t, a variable on whose plane the a-plane corresponds to a semicircle; in terms of this variable

w is eerywhere analytic. The later general discussions given by Cisotti 6 aad by Bergmann 187

may be mentioned; see also Reference 2, Sections 12.40-12.47.
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Eff I.,

The efflux of a liquid through a slot in the side of a vessel whose contour is a polygon

is easily handled, and many cases have been solved. A simple case is shown in Figure 192a;

streamlines inside the vessel and a few equipotential curves are shown for the same case but

with a narrower slot in Figure 192b. Three other cases are shown in Figure 193. See Tumlirz, 1 8 8

Cisotti, 189 von Mises, °90 and Eck. 19 1

Figure 192a Pipioru 1Qh

- Laiux from a tank of finite width. See Section 117.

(Copied from Reference 188, Volume 126.)

Figure 193a

Figure 193b Figure 193c

Figure 193 - Three other cases of efflux; the sides of the issuing jet are shown.
(Copied from Reference 188, Volume 121.)
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Efflux from a two-dimensional vase with curved sides was treated by Cisotti;19 2 see

also Reference 2, Section 11.54.

Deadwater or Wake in an Infinite Stream

A "deadwater," that is a region occupied by stationary fluid or by gas at suitable
pressure, ahead of a concave angle was sbown to be possible by Villat. 193 , 194 A similar

deadwater can occur ahead of a convex angle, in addition to the usual Aake behind it, when a

stream is incident unsymmetrically. The t xtent of the dead%%ater is indeterminate; see Thiry, 1 95

Jaffe, 196 and Morton; 197 see also Y,)kota. 198 The indeterminateness is perhaps no more
surprising than the arbitrariness in the directior. of the incident stream; it may be supposed that

the size of the deadwater was fixed by the manner in which the flow was established in the

first place.
The wake behind a lamina with a rim on the forward side was treated by Love, 5 0 behind

a lamina with flaps folded back by Schmieden, 199 behind a curved lamina by Leathem, 74

Cisotti,2 50 and Argeanicoff. 103

Deadwater regions on the sides of a rectangle immersed in a stream parallel to the sides
were described by Riabouchinsky, 1 ° who also gives values of the inertia coefficient.

A deadwater extending from one plane lamina to another was also described by

Riabouchinsky. 11 0 When the laminas are oppositely inclined to the stream there is circula-
tion around them as a whole.

The wake behind circular and elliptic cylinders placed in a uniform stream was studied

by Brodetsky 20 0 and by Ford, 20 1 and for the circular case in further detail by Schmieden. 1 99' 202

The symmetrically disposed free streamlines behind a circular cylinder, on which the
velocity is the same as that in the incident stream, may separate from the cylinder at any

angular position from 0 = 550 to 0 = 1200, approximately, where 0 is measured from the stag-

nation line on the forward side. If they separate at 55 deg, they are concave toward the wake

throughout their course; at intermediate angles they are convex near the cylinder and concave

beyond; aL the largest angle they are convex throughout and meet asymptotically at infinity;

see Figures 194, 195.
The flew through a grating of laminas or other cylinders, with a wake behind each, has

been considered by von Mises, 190 Betz and Petersohn, 18 1 and Schmieden. 2 °3

Free Streamlines in a Channel

The wake behind a body in a channel was considered in a simple case by Cisotti1 89

and more generally by Villat 204 ' 194 and by Bergmann. 1 8 7 A deadwatef ahead of such a

body, or in front of the projecting bend of wall where a channel divides, was considered by

Agostinelli. 2° s For a channel interrupted by openings where free streamlines occur, see

Colonetti, 20 ' ano Miyadzu. 1 7 6 The flow past a triangular ridge on a wall with a wake behind

the ridge is illusti-ated in Figure 196, as found by Tumlirz. 1 88
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Figure 194 - Some . reamlincs, on one side0 of the p~lane of symmnetry, paSt a1
eylinder with a wake of maximum size behind it.

0 - -

-1.0 R< .3-105

-2 0- - -

-3 0-

0 2'40' 60' 80o 00P 1220 140' 160 280)

Figure 195 - Pressure on a cylinder in a
stream with a wake behind it.

The ordinate represents excess of pressure above pressure at infinity, divided by p&i212 where U is the velocity
in the approaching stream. Curves I and III are for the l,miting forms of the free streamlines, leaving the cylinder

at 550 or 1200 ±; these and Curve 11 continue through thc wake along the 0 axis. Curve IV is for the theoretical

continuous flow of Section 67. The broken curves represent observed pressures, under conditions of laminar flow
(R <~ 1.3 x 10 ) and of fully turbulent flow (R > 2.3 x 105) R is Reynold's number. See Section 117. "Circular

Cylinder." (Cooied from Reference 199.)

,- / Figure 196 - Streamlines past a wall carrying
7 / a triangular bridge, back of which a wake

-- -- -exists,. (Copied from Reference 188.)
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Free Surface or a Wall

The following cases may be listed: rise of the free surface over a laminar riffle,

Cisotti;20 7 change in trend1 of the wall, Boggio; 2 0 8 deadwater in an angle, Agostinelli :205

source against a wall, Nlasotti. -

Gliding of a plate on a free surface is treated by Green 2 0 9 and in Miline-Thoinson's

book (Reference 2, Section 12.3); of a slightly curved plate, by Franke. 2 1 0

A jet of fintite ividth striking a cylindet of the following shape has been studied: a

plrae, with a wake behind it, by Morton and Harvey, 2 1 Tomotika,'212 Cisotti, 2 13 hlavelocik, 59

Stoka lo, 2 4 9 or without a wake, by Tomotika; 2' 2 a circular arc without a wvake, or a circular

cylinder, by Jacob.2  The jet may issue from a m~o-dimensional orifice and hit an obstacie;

see Valcovici,2 5 Tumlirz,2 1 and Ilartmann. 2  A cyvindor may have both a wake behind it

and a deadwater in front-, see Agostinelli. '0'

Jets or cuo'rcnts of fluid bounded by free surfaces, or in part by walls, may present

the following features: branches, Cisotti, 2 1 8 also Reference 2, Sections 11.30-11.43; a

point of union, Boggio 219 and Caldonaz?.o, 220 perhaps with one issuing from a vess~el,

Agostinelli-,2 2 1 enclosed (leadlwater, Caldonazzo, 2 2 1 Cisotti, 2 13 anti lrusoni; 223 an en closed

source, Hlopkinson22 and Masotti;.22 an enclosed vortex, Hlopkinson,2 4 ma, 6 and

Simmons.2 
27

A jet issuing from a slot ir. at plane wall and entering a similar slot in a parallel wall

was described by Riabouchinsky.' 10
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CHAPTER IV

CASES OF THREE-DIMENSIONAL FLOW

118. INTRODUCTION

In this chapter the principal cases of three-dimensional potential flow that have been

worked out will be described, or at least listed. Te mathematical solution of problems is

much wrore difficult in three dimnsions than in two, since the mothod of complex variables is

no longer available. The usual procedure is to obtain solutions of the Laplace equation by

any means whatever, and then by supnrposing solutions to work out proper combinations for

certain specified boundary conditions. A stream function 0 can be defined only for the case

of axial synietry, as described in Section 16.

For the con ponents of the particle velocity of the fluid in the directions of Cartesian

or x, y. z a:oes the syrbols u, v, u will be written without repetition of their definition and,

as usual, a will denote the speed, so that

q= + (u 2 + v 2  u2)% [118a]

Confusion with the use of u for the complex potential in the last chapter should not arise,

since in two-dimensional motion the third ve!ocit,' component u is always zero. The com-

ponents of the velocity are understood to be calculated from the velocity potential (b by means

of the usual equations

a6 6 __

=v -- , u =- [118b,c,d]ax ay az

If polar coordinates r, 0, w are used, or cylindrical coordinates x, Z, co as described

in ,ection 6, the components of the velocity in the corresponding coordinate directions are,

as in Fquations [6k, 1, m, p, q, ri,

riqJ S1nOd [118efgJar=  r 'q =  r O0'qo r sin 0 awJ[lefg

or

06 a(3 1 0617X- (Z , a qw =  "a [18h,ij)

""hen the motion is steady, the pressure is given by the Bernoulli equation, which may

he written as in [34h) or
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p _ = .I P (U2_ (12) ,p,[1 18ki

where Li is the uniform velocity of the fluid at infinity and p. is the pressure there; p is the

density of the fluid. Cases in which a bo.ly is moving in steady translation with the fluid

at rest at infinity can be reduced as usual to the case of steady motion of the fluid by impart-

ing to everything a velocity equal and opposite to that of the body; the pressure and the forces

on the body are not thereby affected.

119. POTENTIAL AND STREAM FUNCTIONS FOR A UNIFORM STREAM,
A POINT SOURCE OR A POINT DIPOLE

The velocity potential for a unifora stream having velocity U toward negative . can

be written

5= UX [119aJ

for then, by (ll8b,c,d), u - U, v = 0, u- 0. The streamlines are straight lines parallel

to the x-axis.

For some purposes it is convenient to regard such a stream as having axial symmetry

about sonic chosen line parallel to the velocity, and to define an axisymmetric stream function

with respect to this line. Let the positive direction along the line be taken toward positive x,

and thr,.ugh any point P or (x, y, z) draw a circle of radius ;; about the chosen line QQ' as

axis, as in Figure 197. Then, across any surface bounded J y this circle there flows in unit

time a volume ri(, 2 U of fluid. Ilence, according to the usual definition as stated in Section 16,

the axisymmetric or Stokes stream function at P is rwZ2 o/2r or

1 -- U 2  [119b]

2

In general, any line.parallel to the flow may be chosen as the axis of symmetry, and

o" represents the dis ance of P from this line. If the x-axis itso.f is chosen, a2 = y 2 + z2.

If the velocity of the uniform stream is U toward a direction whose direction cosines

are 1, m, and n, the velocity potential becomes

,3 = - U(lX+my+nz) [119c]

as is easily verified from (119al by a rotation of axes.

For t'm point source, the velocity potential 6 at a point (z,y,z) is, from Section 12,

A
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where r denotes distance of (x,y,z) from

the location of the source, and A is a

constant, positive for an actual source and

negative for a sink. The quantity 417A

represents the volume of fluid emitted by •,C

the source per second. T.e streamlines t'

are radii drawn from the source. 3

\n axis of symmetry may be drawn

through the source in any direction; let it be

taken as the axis of polar coordinetes

?, 0, , with origin at the source. Leta q" q"

circle be drawn as before. with the axis of

symmetry as its axis, but now consider q

this circle as the perimeter of a spherical Figure 197 - Symbols for flow symmetric

cap C cut oct of a sphere centered at the about a line Q Q.

source; see Figure 197 again, where a

source is now understood to be located at Q, and L = 0. The area of this cap is S = 2nr 2

(I -cos 0), where r and 0 refer to any point on the i!rcle, and the rate of outflow of fluid

across it is Sq = SA/r 2, because of the symm( try. Hience the value of the stream function at

P is - SA/r 2 divided by 2n or, after inserting the value of S and dropping the constant term -A,

h = A cos 0 [119e]

The total range in the values of 0 from 0 = 0 to 0 = a is thus -2A, which equals the

volume output from !he suurce per second or 4uA reversed in sign and divided by o:.

If Cartesian axes are intrcduced and the x-axis is drawn p'trallel to the axis of symmetry

and toward 0 = 0, and if the source is at (x,, y1, z,) as in Figure 198, then

r = + (y-yl) 2 + 21)2]1/

and
a-al

-= A [U19f0

For a point dipole, let polar coordinates 7, 0, Ao be employed for the moment, with the

origin at the dipole and the axis for 0 lying along the axis of the dipole. Then the potential

is, as in [12dj

p cos 0 [H 9g]

r
2
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where I, is a constant, the dipole inome,it. The physical axis of the dipole is directed toward

0 - 0 if i > 0, toward 0 = n ifp < 0.

The fluid velocity lies in a plane through the axis of the dipole, which is an axis of

symmetry. Its components in the r, 0 directions are, from [118e, f,g],

2pcos0 psin 0

qr= qo= -, q = 0 [119h,i,j]
r3  r3

The stream function V1, like 6, is most

P(-',Y.) easily found by differentiating that for a point

source, but it can also be round by direct

Q Axis Q, integration. Through any point P draw a

_ Acircle as before, with the axis of the dipole

as its axis; let its radius be n , and let the

distance of its plane from the dipole at Q

._ _ _be h. On the plane of the circle take a

ring-shaped element of area centered on the

axis; see Figure 1971 again, in which there

is now a dipole at Q with its axis along

QQ', and again V = 0. Tne area of the ring

Figure 198 - A dipole at Q or (x1 , y,, zj), will be 2rr-"d9" where d;" is its width
with its axis parallel to the x-axis. wilb f'd heeo"sitwdh

and a' is the radius of either perimeter; and,

because of the symmetry, the rate of flow across it will be 21rq 1 'd(' where q, is the com-

ponent of the velocity in the direction of the axis. The flow across the entire circle is thus

f q, 2r,;1
da,

Now, by projection, if r, 0are the values of r and 0 on the eleme-z'!ry ring,

q, = qr cos 0'- q0 sin 0'= - (2 cos 2 '- sin 2 0")
r 3

= !__ .(3 cos 20, 1) 3h 2  1

r,3 r,05 r,3

See Figure 197. Thus w across the circle is
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or r3 
3

sinec," r'= (A2 +± ). Hence, if the positive axis for the dipole moment is chosen also as the

positive axis in defining the axisymmetric stream function ¢,

Z2

lb i -t[119ki
r3

Here : denotes distance from the axis of the dipole. If x denotes distance along the

axis, measured from the dipole,

[Zos 0 sin 0=-
rr

The variables x and "Z P ay also be regarded as two out of a set of cylindrical coordinates

z,w ,w, and in terms of them the potential and the corresponding components of velocity are

lix it 3 x 2 )  31 :&-)

i- - ; q[=- 1--1, q-=3[1191,m,n]
r3P \r2 r

and = 0.

Or, if Cartesian coordinates are used, with the x-axis drawn in the direction of the

dipclo moment for positive z, and if the dipole is at (xl,y,,z,), as in Figure 198,

r = [(x- X1) 2 + (y-yl)
2 + (z-z) 2 ], = [(y- yl)

2 + (Z- Zi)21v

and the potential and the three velocity components may be %ritten, from [119gi and [118b,c,d],

x-X 1

S= -- [119o1
r
3

3(x-__ x -) 3(x- x ) (Y- Y1 ) 3(.r-x1 )(Z 21)I' ( ( - l21r3  \" r2  , v I "] -al ( -lrS  , - '( - l Z-lr5

[1 19p,q,r]

If the x-axis is otherwise drawn, let the direction of the dipole axis for positive p have

direction cosines ^,m,n. Then, by rotation of axes it is seen that
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//

- - Axis of Symmetry

Figure 199 - Some streamlines due to a dipole, for equally spaced values of V.

= - [lt(X-Xl) + in(y-yj) i- n(z-zl)] [119s]
r.3

Since mu(y- yl)/r 3 and npi(z- z,),'r 3 obviously represent potentials due t3 dipoles with axes
directed toward y or toward z, respectively, the potential can be regarded as the sum of the
potentials due to three component dipoles hav ing moments it, irti, zau; these moments represent

the vector components of the moment p regarded as a vector.
Streamlines selected for equally spaced values of t, including the X-axis, are siown

in Figure 1,99, which ma, refer to any plane through the dipole axis. Only half of the symmetric

diagram in this plane is shown.

Reversing the sign of p reverses the direction of the axis of the dipole and reverses
all velocities. ks an alternative, p may be kept positive and the axis for 0 may b6 drawn in
the opposite direction. (%ee Reference 1, Article 95; Reference 2, Section 15.20, 15.22, 15.26.)

120. VARIABLE POINT SOURCE, O FLOW NEAR A SPHERICAL CAVITY

In the flow from a point source, the potential and the velocity q,, taken positive when

directed outward from the source, are
A A

3 a0 [120a,b]
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where r denotes dFstance from the source. The pressure at any point in the fluid, from the

usual pressure equation for incompressible frctionless fluid moving irrotationally or

Equation [9gd, is

P = P ' q2 + constant=p - +P rl1Oc)) r 2d(t 2r 4

where p. is the pressure at infinity. For, at a given point, only the factor A in ,5 varies, so

that

M 1 (1A

dt r dT

The point source is an ideal abstraction that is useful in building up solutions of

practical problems.

Consider, for example, a sphere whose radius R varies with the time; or, it may be simply

a spherical cavity in the fluid, or a bubble of gas. Let the fluid motion be spherically symmet-

rical about the center P of the sphere or cavity. Then it can be represented by the formulas

appropriate to a point source located at P1; see Figure 200.

Figure 200 - A spherical cavity of
variable radius R.

At the sphere, r = R and qr= di/dIt. Thus, from [120b],

A = R2di? [120d ]dt

and in the surrounding fluid

R 2 1 1 IT d Rl?\2 d
(3 - qr= [ =120e,f

r d id

P P - (h2 TR _~l (dR)2V] +~ P.120g)
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If the pressure in the cavity or bubble is PR, then pR = p at r = 1 or

PR - ± 1 2 dl?) _ (d?)2 + Po [120h]

If PR is known as a function of R, this differential equation determines R ab a fuiction of

the time.

The kinetic energy of the fluid is

T 1  2 o2 , =c, dr2

T . 0  fq,2 (4=r2) r=97 , A2 " 
_r - = 2uple' [120i]

2 f ~ ~JR r tRd

from [120d]. (See Reference 1, Articles 56, 91a; Reference , Section 15.20.)

121. POINT SOURCE IN A UNIFORM STREAM

Let the flow due to a point source be superposed upon a uniform streaming motion.

Take the origin 0 at the source and the x-axis parallel to the flow at infinity. Since the motion

is then axisymmetric about the x-axis, it suffices to take as a second coordinate the distance

Z from the axis, and to study the flow in a single plane; see Figure 201.

(d, U

W dS

!dw

( b 2 ) = -, .V ,o2 + b2 .- , r=

llere b is a positive constant and Li denotes the velocity at infinity, taken positive when
directed toward negative x. The z and components of velocity are, from [118h,i],
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17, 1 l-b2 1'7-),7 -- 1)2' [121d,c]
" Or .) r3

whence

.2 q q2 b2(12b2±+ X[I ) [121f]

k stagnation point Q occurs on 0 ... :- = 0, Z= 0, so thatX= r= b.

, .. irly on the entire positive -xis 4/ b2 5U and is constant. But 2 = b2U also on a

surface of revolution S defined by the equation

Z; 2 1)22 (1- - b2 (I1-COS 0) [121g]

where cos 0 = z/r. On this surface Z has a maxiimum value of 2b at 0 = u, or as x - and

T -. !x. -ks x increases algebraically, Z decreases, and vanishes when 0 = 0. To find x at

this latter point, substitute r ./P 2 and rationalize, obtaining

Z4 +(X2 -48 2 )Z 2 1 4b12 (b 2 - 2) = 0 [121hi

At - 0, x = . Also, differentiating [121h], [4,53 + 2(x 2 -48 2 ) (d9/dx) + 2( 2-4b2) x = 0,

whence, as - 0, d&'/dx - -. Hence the surface S cuts the x-axis perpendicularly at the

stagnation point Q or x = b.

Thus the streamline for if - b2 L, approaching from both sides along the x-axis, divides

at Q into a sheaf of lines that extend off to infinity along S. The surface S divides space

into an exterior region occupied by fluid belonging to the incident stream and an irterior

region occupied by fluid that has come from the source.

If a solid boundary is introduced along S, no singularities occur outside it. Hence

the formulas represent flow past a body of this shape, or a blunt..nosed cylinder of asymptotic

diameter 4b. Its shape is fixed uniquely, since, if b is changed, Equation [121g] remains

satisfied when all coordinates are changed in proportion to b.

In Figtre 202 are shown some of the streamlines on a typical plane through the axis

of symmetry; the lines are equally spaced at infinity and thus differ by equal increments of

the quantity i,/. The excess of the pressure p above the pressure p. in the stream a.

infinity, when the motion is steady, is also plotted, for points on S or on the x-axis in .front

of it. On S, p =-p at 2rx= b2 or x = b 6= 0.408b.

To find the total force on the solid, which must be parallel to the axis by symmetry,

select a narrow ring cut from its surface by two planes perpendicular to the axis, as

illustrated in Figure 200. The circumference of the ring is 2nmt, hence its area is 2a .,ls,
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2b

P-P- Axis or Symmetry

Figure 202 - Streamlines past a semi-infinite solid of revolution obtained
from a point source at 0, and plot of the pressure along the axis

and over the solid. See Section 121

where ds is its width along the tangent tn S in a plane through the x-axis. Let the normal to
the surface at any point on the ring meet the axis at an aitgle f Then the force due to the
pressure p on any element of the ring has a component along the axis equal to the force
multiplied by cos , , and, since p and 4 are uniform around the ring, the total component of
force due to the ring is dF = p (21i-ds) cos e . But d,3= ds cos e where dz'is the element
of Tcorresponding to ds. Hence the total force on the solid, measured positively toward
negative x, is

F = 2, fpad'" [121i]

This formula holds for any surface and any pressure distribution which have a common axis
of symmetry.

For steady motion, the excess pressure, p- p,, = p (U2 - q2)/2, may be inserted for p in
this formula. It is simpler to change to r as a variable of integration. Substituting
X2 = r2 _ a2 in Equation [121h], and then differentiating,

7,2 =4 b2  46b4 804
= P ( r2d'" [121j,k

Eliminating z/r from Equation [121f] by means of [121g] and [121 j],

.72= U2( + 262 - [121]
r2 r4
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on the solid. The limits of integration for r are from r - b at Q to -. Evaluation of the

integral gios

F- 2f77 (2- q2) Z1;= 0

Thus, if the potion is steady, the total force on the solid is the same as if the pressure

in the fluid were uniform and equal to its actual value at infinity.

The fornulas would also represent the flow inside a shell having the shape or S, due to

a source on its axis. The volume of fluid emitted per second by the source is 4n b2 U.

Changing the sign of V! merely reverses the velocity at all points. To reverse the

solid lengthwise, the x-axis may be dravun in the opposite direction. (See Reference 2,

Section 15.23.)

122. POINT SOURCE AND SINK IN UNIFOF, STNEAM; RANKINE SOLIDS

Upon a uniform stream with velocity U in the direction of negative x, superpose the

flow due to a point source on the x-axis at r = a and also that due to a sink of equal strength

at x = - a. The resulting potential and stream function, from Equations [119a,b] and [119d,e],

can be written

t;[ 2 [122a]d -- X+2 rl r2

, 1 -U) 2  b2 (cos 01 -cos 02)] [122b]

where 4 is a positive constant and the significance of r, r2 , 01, 02 is shown in Figure 203.

The figure refers to any plane through the x-axis, about which the flow is symmetrical. In

particular,

(2- -a)' 2 r = [(z+a)2+2

The flow net is symmetrical also with respect to the plane x = 0. For, the second

term in the brackets in [122b] can also be written - b2[cos (n-0 1 ) 4 cos 021, and it is then

clear that 0! is unaltered whereas 6 is reversed in sign if x, rl, and ,7-0 1 are interchanged

with -x, r2, and 02.
The components of velocity are, from [118h,i,jI, 7. = 0 and

u-- [ - 62 -- )[122c]
2 r3 r3
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U

G)

r2

02 Figure 203 - Point source a;ad sink at ± a,
in a stream. See Section 122.

-a a

- 2 [122d]
r13

On the x-axis wherever x > a, r x - a and r z + a;

where x < - a, r,1 a- .,, r2 =-(a + 7).

Hence at such points

U +_ab_21Xl_ [122e]

and q = Iu 1. Stagnation points QI and Q2 occur where x = I 1 and I is given by

2 ab2 l = (12 -a 2) [122f1

Inthe plane -0, q= Jul, r, =2 = x/2+ a2, and

/ ab2u =-U + 2 - //[122g]

On the x-a is, i=Owherex>aorx<-a, sothatO1 =0 2. Between -x a,0 1,=r1,

02 0, V = - b2U.

The value V 0 occurs also on the surface of revolution S defined by the equation

Z)2 = b2 (cos 02- cos 0,) [122h)

By writing cos 02 - cos 01 = (cos 2 02 - cos 2 0)/ (cos 02 + cos 0,) and then expressing

cos 01 and cos 0. in terms of z, E;, and a, the equation can also be put into the form
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4 ab2 x -- rI r2 1(x+a) rI + (x-a) r 2  [122i]

It is then easily seen that the surface passes through both stagnation points. It is broadest

in the middle; its half width h is the value of Z) when x = 0 and is given by

,2 - ab2,"vi4a2 4 h2[122j1

since cos 02 - cos 01- a/N/a 2 f/,
2 when r 0.

This equation and [l 120 can also be written

- (2 (1+ , 2

(a +2 (+ ( a )

which shows that the shape, being fixed when h/a and I/a are known, depends only on the

constant b,'a.

The surface 3 acts again as a dividing surface. The fluid brougLt up by the stream

remains outside of S. the space inside it is occupied by fluid that is on its way from the

source to the sink. The streamline 0 = 0 follows the x-axis to Q, divides into a sheaf of

lines which pass around S to reunite at Q2 , and continues along the x-axis.

The formulas may represent streaming flow past a solid whose surface is S. Sol .s

having such shapes are called Rankine solids. Given the length 21 and the maximum breadth

2h of the solid, a and b can be found from [122f] and [122i. The velocity is most cor.veniently

found by adding vectorially the component velocities due to the steam and the two sources.

An example of the streamlines is shown in Figure 201, for b2 /a 2 = 0.7, h/a = 0.97,

l/a = 1.58. Streamlines are drawn for equally spaced va=,ues of 01.

The formulas could also be used for the flow inside a shell having the shape of S,

caused by a source and a sink at the proper points.

If L,> 0, there is a positive source at x a, and a sink at x =-a. If &U< 0, all

velocities are reversed and the source and sink are interchanged, but the s,'id is unaffected.

(See Reference 1, Article 97; Reference 2, Section 15.27.)

123. LINE DISTRIBUTIONS OF POINT SOURCES

For some purposes it is useful to imagine point sources distributed continuously along

a line or curve. Let the algebraic strength of the sources per unit of length along the curve

be a , so that, from a length ds, 4:r cds units of volume of fluid are ermitted per second Then

from [119d], in which ads replaces A, the potential due to the sources on is at a distance r

from di will be ads,'r, and the total potential at any point (x, y, z) due to all sources on the

curve will be
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______________ - ~Axis of Symmetry

Figure 204 - Streamlines pitst, a rankine bolid at revolution, obtained from a
source and sink at, ± a.

=f ads [2a

where r denotes distance from ds to (x, y, z) and the integral is to be extended oveir the entire
curve. Both a and r may vary along the curve.

T/he uniformn line distribution. As an important special case, let a be uniform along

the x-ax is from x a to x b. In the integral for 0 write dx' for (is and --'tar the value

of x at (is. Ther.

f , r i( ,2+-21231),c]

a 1

%where a'denotes distance tram the x-axis. In this case ain antisymmetric stream function '

alsa exists; integration of [119fJ gives far it

V/ = 0j dx

See Figure 205.

Evaluation at the integrals gives
x, =

a In [(X,- X) + z) x



or , + x- a r+b
t dIn a Idn ( 123d1]

0= cc (r, - :) [M2el

where ra and rb denote distances from the ends of the line of' sourcos, o:

r [ [X _ )2  + 2]V

The identity of the two forms given for 0 is easily verified by eliminating x.

The components of velocity are, from 1118h,iI,

/ 1 ~ x-a - [123f~g]
O b ra G) a/r

since' Z 2 -r 2  (x-a)2 
= 2b - (x- b). 2

Thle equinotential or 0 surfaces are ellipsoids, the stream surfaces for 1'constant

are hyperboloids; all have commo.n foci at (a,0,0), (b,0,0).
If a <0, there is a line or sinks instead of actual sources. (See Reference 2, Section

15.24; Reference 7, p.60.)

'I124. LINE OF POINT SOUr~iCES IN A STREAM

Suppose that a uniform distribution of point sources exists along the stretch of the

x-axis fiom x - -a to x - 0, and that the fluid at infinity is also streaming at velocity U

toward regative xs; see Figure 205. From [119a,b] and [123d,e], in which now a -~-a, b -* 0,

r1 +x+a r+r 1 +a
tl &+ d In - = Ux + al n [124a]

r+ z r+ r1 -a

2

where

r = (x2 +Z;)1, r, = [(z +a) 2 4 ~2

and aceonotes distance from the z-axis. The volume of fluid emitted per second from unit

length of the line of sources is 4w' a. Let a and U have the same sign.
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_- c (z,1 ')

Figure 205 - A iine distribution ab of point
sources. See Section 13. b

The components of velocity are, using Equation [123f'g] with a= -a, b-0, ra r 1
, b r,

q - V+4 - L) , q3,= -(x. _ z) [124cd
1 1i

On the positive x-axis r n x, ri = x + a; and it is obvious from symmetry that q;-= 0.

Hence a stagnation point Q occurs where, to make q = 0,

a(¢ o
X=XQ = I + 4 - 1 [124e]

On the positive x-axis =aa; also, a = c t on the surface of revolution S defined by

2r:' (a+r-r) [124f]

U

By expanding r and rI in powers of V, it is readily shown that S crosses the z-axis perpendic-

ularly at Q. Since everywhere on S

do a (z _ +a ) a (Cos O _ Cos 01)< 0
dX U r rI  U"

the surface S is broadest at x = - o, where, since ( cannot increase without limit on S, r--r,

-. a and '0-+ 2vf a1/ . For the definition of 0 and 01 see Figure 206. Thus, if R is the

maximum r9dius of S;

_'1 , - [124g,h]

At the middle of the line of sources or at x -- a/2, where r= r, on S

UU R[124i1
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~AiiS of Sym-metry

Figure 206 - Dividing surface S for a Figure 207 - Streamlines for a uniform line
uniform line of sources in a of sources in a uniform stream. The
stream. See Section 124. heavy cur,-E, is the dividing surface

S. Se, Section 124. (Copied
from Reference 7.)

The surface S is a dividing surface, and the formulas may represent the flow past a
solid of revolution whose surface is S. Its shape depends upon the dimensionless quantity

ri/aU, and its size upon the length a of the line of sources, since [124f] can be written

so that, for fixed a/aU, all dimensions vary as a. If a - 0 while eta remains constant, the

shape becomes that of Sectior 121.

Streamlines drawn for equally spaced values of tp/@, for the same shape of S as in

Figure 206, are shown in Figure 207. Here -Q = 0.17 a, R = 0.90 a.

Changing the signs of both U and cc merely reverses all velocities and the signs of

q, and rp. To reverse the solid end for end, the z-axis may be drawn in the opposite direction.
(See Reference 2, Section 15.24; Reference 7, p.61.)

125. AIRSHIP FORMS

Any combination of sources and sinks immersed in a uniform stream, as in the last two
cases, gives rise to a dividing surface which separates the fluid in the stret:m from that be-
longing to the sources and sinks. This surface can be taken as the surface u-,' .olid body,

and the formulas for the combined field then represent streaming flow past this bo~i; or it may
be the surface of a shell containing within it the sources and sinks. In the latter case, the

introduction into the mathematical formulas of terms representing a uniform stream serves
merely to procure satisfaction of the boundary condition on the shell.

The dividling surface will be of finite extent provided the total strengths of sources
and sinks are equal. Otherwise it will extend to infinity, in the direction of the stream if
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sources predominate, so that fluid must be carried away on the whole, or in the opposite

direction if sinks predominate.

Figure 208 - Diagram for a source at 0 and
Q2 Q, a compensating line of sinks, in a

2tstream. See Section 125.

As a further example, suppose that sinks are distribted continuously and uniformly

along the x-axis from - c to 0 and that there is also a single source at the origin of strength

numerically equal to the total strength of the sinks, together with a superposed uniform flow

at velocity U toward negative x; see Figure 208.

Let - 4i--deante-the volume of fluid absorbed by the sinks on unit length of the

axis; a is thus a negative number -and f6presents algebraically the source density on the axis.

Then, if the volume emitted per second by the single source is 417A, 4rA = - 41aa and

AA = - _. [125a]

a

The total potential 0 and stream function Vi at any point P or (x,' ), where adenotes

distance from the z-axis, can be written, from [llga,b,d,f] and [123d,eI,

'u = U =+b2  In r = U[X+b2(+i -In -125b]
a J+X L a r+r 1 -a

r (T r)2 - a21_ b - r )] .[ 1 -a2 ,b 2  
[125c1U[Z2+P(r a 1- at

where b2  41/U and rt, r are the distances of P from the two ends of the line of sinks or, as

illustrated in Figure 208,

r = (x2+-2)A r=[(x+a)2+Zr2
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The.x-axis is q line of symmetry. The componeuts of velocity are

x - 1 2 a r= V) +2 [125d]

q$ =~r a2 r3  a\r -T

Compare [123fgl.

On the positive x-axis r= x, r 1  x +a, and

=U -1 + [125f1X2 ( + a)

Thus a stagnation point Q, occurs on the x-axis at z = 1, where

11
2 (1 +a) = ab2  [125g]

Again, where x<-a, r=-x, r I=-c-a,

and

' ( ab2 [1,511

+ X2 (4 a)

Thus a second stagnatio-, point (2 occurs at r 12 where 12 > a

and
1,22 (12 61 1 b [125i]

On the x-axis, except on the segment fi1 'I a to 0, , = 0. Furthermore, , = 0 on the

sur"tce. S whose eauation is

r r a2 - (rr)2
Z 2 = 1-hb2 L r.x 6 2 - [125j1

a r ar

By expanding r1 and r2 in powers of ZY, using the binomial theorem, and then dividing through

by Z2, it can be verified that S has rounded ends at Q1 and Q2" Its shape dapends only on the

value of b/a, while its size is pronortional to b, since the equation remains satisfied when b

and all linear dimensions inciudiug a are changed in the same ratio. The outline becomes

more slender, especially to%%ard the rear, as b/a is diminished.
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Figure 209 - Airship form constructed with use of a source and a line of sinks.
Streamlines due to the source and sinks alone are shown above, resultant

streamlines below. See Section 125. (Copied from Reference 8.)

Figure 210 - Two airship forms constructed by Fuhrmann.
In the upper two figures the assumed distribution of sources and sinks is plotted along the axis,

and streamlines due to them atone are shown above the axi-s; resultant streamlines in the flow past
the solid are shown bolow the axia. In the lower figures the calculated pressure distribution is
shown by a solid curve in comparison with pressures as observed on a modei in air, represented by
small circles. The flow is .rom the left. See Section 125. (Copied from Refs-rence :33.)



Some *i 'he streamlines on one side are shown in Figure 209, past tile lower side of a

bo!y with 4,a = 0.054.

Changing the sign of U in the formulas changes sources into sinks and vice versa, and

reverses all velocities.

To reverse the solid lengthwise, the x-axis way be drawn in the opposite direct.ion.

Other shapes can be obtained by using various distributions of sources and sinks along

the axis. It is not possible to produce in this manner any given arbitrary shas.e, but many

practical airship forns can be initated closely by Jividing the axis into segments and assuming

the proper source strength on each set.ment. Graphical methods for this purpose wore discussed

by Weinig. 2 28

Two shapes thus obtained by Vuhrmat1
2l z, hown in Figure 210. (See Reference 1.

Article 97; Reference 2, Section 16.25; Referenc, 7, ,.age 633; Reference 229.

126. SPACE DISTRIBUTIONS OF POINT SOURCES

The flow due to any assigned distribution of point sources can be found by integration

of the formulas for a single point source. The potential is mathematically identical with the

electrostatic potential due to a corresponding distribution of electrical charges in empty space;

each unit charge in the electrical problenm represents an emission of 4,r units of Nelume per

second in the hydrodynamical problem.

The potential due to an axially symmetric distribution of sources on a plane can be

expressed in terms of Bessel functions. See Reference 1, Article 102, where the particular

cases of a uniform distribution over a circular area and of a distribution proportional to

(a 2 _ 2)
- % are treated.

127. TRANSLATION OF A SPHERE IN INFINITE FLUID

Consider a sphere of radius a moving at velocity U through fluid that is at rest at

infinity, as illustrated in Figure 211. The boundary condition to be satisfied at the surface

of the sphere is that the fluid and the sphere must have a common component of velocity

normal to the surface. The magnitude of this component is U cos C in terms of angular

position ok the sphere measured from a radius drawn in the direction of motion.

-k known type of flow in which the radial velocity varies as cos 0 and in which the

velocity vanishes at infinity is that of a point dipole. The radial veloc;ty due to a dipole

located at the center of the sphere can be written, in terms of its mo,'nnt IL, as in f.l19h],

cos 0q , =  2 1 1 r

At r a this equals U cos 0 for all values of 0 provided p - a3/.
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UI Cos 0
U

a 0
0 Figure 211 - A sphere in ,.anslatioi:.

See Section 127.
U

Axis of Symrnmety Figure 212 - Streamlines due to a
moving sphere. (Copied from

Reference 1.;

Using also Equation [119g], the potent I 5 and stream function , in the fluid as thus

found are

a3 U cos0 a3 U sin 2 9
-= , 0 = [ 127.,b]

2 r2  2 r

The radial and tangential components of velocity are

ao 3V cos 0 1 ao a3 U sin 0
qr = - O- U - qo ..... ;0 [127,d]

rr 0 2 3
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and

q -+q - 1---sin L I7eJ

On the sphere q2  U2 (1- 3/4 sin 2 0), so tat q has the minimum value L'/2 at 0 = 7/2, where

the fluid is moving directly backward. At front and rear q = U.

The streamlines are illustrated for equally spaced values of 0/ in Figure 212.

The kinetic energy of the fluid, if its density is p, is

T = i r q2 2nsin OdO =P a3 U2  127f]
2 P. 3

Here, bocause.of the symmetry, a ring-shaped element of volume, represented

by 2ur2 sin OdOdr, has been employed. (See Reference 1, Articles 92, 96; Reference 2.

Section 15.32.)

128. STRFAMING FLOW PAST A SPHERE

The flow around a stationary sphere when the fluid at infinity has a uniform velocity U

is obtained from the results of the last section by imparting to everything an additional

uniform velccity - U. With appropriate terms added from [119a,b], in which r cos 0 and r sin 0

replace z and @, the total potential and stream function are

a3  1 a 3 \
UL( r+ 2r2 )Cos 0, 2/i=U ( r 2 -_'-j)Sin2 0 [128a,b]

\2r2/1 \r

Ilere, for U > 0, the flow at infinity is toward 0 =.

Thus 0 = 0 when 0 =G or 0 = r, and also Vir = a. This shows that a streamline

approaches along the radius 0 = 0, divides, passes around the sphere, reunites and continues

along the radius 0 = ir.

The velocity components of interest are

qr = - U 1- cos 0, q0 
=  U 1 + sin 0 [128c,d]

r3 ) 2r 3

On the sphere, where r = a, q I qoI = 3/2 101 sin 0, so that q has a maximum value of

3'/2 on the equator at 0 = vf/2. Stagnation points occur at 0 = 0 and 0 = 7r.

If the motion is steady, the pressure on the sphere, by the Berr.oulli equation, is
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p 1 P (U 2 _q 2 ) +p. =,I LIu2 I - 9. Sin12 )+ p. [12be]
2 2 4

whore p. is the pressure at infinity

Thus P = P,, at 0 =410 49 'and at 138 11 ' On the radii 0 = 0 or 0 itn, q 117,1I and

1 0 U2 3 a6

P=. p 2 (! -- +P" [1280]
P~ r6/

In the equatorial plane, where 3 = .7/2, q = Jq01 and

p -I / 2 1 a3 . +P [128g1
2 (r P 64r6

The streamlines are illustrated in Figure 213, on a typical plane through the axis of
symmi-try. The lines drawn are equally spaced at infinity and differ by equal increments of

the quaraity 01i(r sin 0). The curves labeled p- p. show on an arbitrary scale the excess of

Figure 213 - Streamlines past a sphere, and pressure distribution along the axis of symmetry,
over the sphere, and over the equatorial plane. See Section 12.
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pressure along the x-axis and over the sphere for positive x, also along the y-axis, whore

the prosuro is plotted horizontally with negative values toward the left. The pressure is

symmetrical on front and roar. For this reason it is obvious that there is no resultant force

on the sphere.

The sphere can be regarded as a Rankine solid for which the source and sink, while

increasin" indefinitely in strength, have come together to form a dipole.

The formulas will also represent the (low inside a spherical shell caused by a dipole

of moment it = a3 U/2 at the center. In this case both U and p. represent mathematical

constants.

Changing the sign of b reverses a!l velocities. (See Reference 2, Section 15.30.)

129. SPHERE WITHIN A CONCENTRIC SPHERE

If the moving sphere of Section 126 is surrounded by a fixed concentric spherical

shell of radius b, there are two boundary conditions to be satisfied by the field of velocity

in the inter'ening fluid: at r = a, q, = U cos 0; at r = b, qr = 0. In order to have two adjustable

constants, let a potential function be assumed of such a form as to represent the superposition

of unifoxm and dipole flow, namely, from Section 128,

U=U'r+ r2 cos O, qr =- = U'+ -- cos 0

whore the angle 0 is measured from the direction of motion, and the constants U' and 4 are

to be determined. The boundary conditions require that

2.A 2A
U, -=U,- U'+ -- =0

a3  b3

Solving for U' and A and adding the stream function 0, from [128b]

a3U 0 a3 U ([2 3 9

= + (r -)cos0, 0 3- 3) r2--)sin2 [l9a,b]
0- a3 2  ( b3 -a03

a3U a a3 U (
q. Cos 0, 0 = 1 -I sin 0 [129c,d]- (73 3 1) b3_-a3 2r 3 )

The possibility of satisfying the boundary conditions in this way for all values of 0

arises from the choice of a suitable fuiction for 6. The solution is exact, however, only at

the instant at which ilie centers of sphere and shell coincide. Streamlines for equally spaced

values of i are shown in Figure 214.3
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li//

- /~ Figure 214 - Streamlines due to a mov.:i
~7 sphere momentarily concentxic wit-h

_- ' surrounding stationary spherical
- / shell. See Sectioih 129.

The kinetic energy of the fluid is, from [17c], in which q, = 0 on the shell and r = a

on the sphere,

p =.dS 1 6 3 + 2a 3  3 U2  [129e]
2 f 3 b-a 3

The integration exterb, only over the sphere, where r = a, dS = Offa 2 sin 0 dO.

'-11 of these formulas hold momentarily only, as the center of the moving sphere passes

the center of the shell. (See Reference 1, Article 93.)

130. SPHERE AND A WALL; TWO SPHERES

The flow .aused by a small sphere moving in the presence of a rigid wall can be

found to the first order of approximation by elementary methods. Let a be the radius of the

sphere and x the distance of its center C from the wall; let it be moving at speed U in a

direction inclined at an angle a to a line OCT drawn perpendicularly away from the wall, as

shown in Figure 2ib. Using the method of successive approximation, let three flows be

superposed, as follows:

Figure 215 - Diagram for a small sphere
near a wall. See Section 130.
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1. Apsume first the flow caused by the sphere in unbounded fluid. Its potential is that of

a dipole at C or, as in Equation [127a),

a3 U cos 0

o F2

where r denotes distance from C and the angle 0 is measured from a line CQ drawn in the

direction of V.

2. To satisfy the boundary condition on the wall, add an equal dipole at the mirror image C'

of C in the wall, wt.h axis C'Q' in the plane QCT but inclined at an angle Tr - a to OT produced

backward; see Figure 215. The potential of this dipole is, similarly,

a3U cos 0,
,,2

where 0' is measured from C'Q.

3. UXt the sphere, since al/ is small, the partial flow due to 1 'is practically uniform,

with components of velocity u in the direction CT and v in i. perpendicular direction Olt lying

in the plane QCT where, from [127c,d), in which r = r'= 2x and 0 = 0'= n -a,

u= qr" C a3 U o a 3 U sin a. .. = t - -aU - I V=- 9 0=o
SX3  2 SX3

These two uniform components of flow, in interaction with the sphere, add a potential that may

be obtained from [128a] by first replacing U by -u and 0 by 01, where 01 is measured from CT,

then replacing U by -v and 0 by 02, where 02 is measured from CR, and adding the resuits.

The vall.o of this potential will be needed only on the surface of the sphere, whore r = a.

There its value is
a3U ,$a (1

2X- 7U cos01cos a +--cos0 2 sin)

The potential rk2 includes the variable part of q I'; a constant part equal to the value of q5,' at

the center C has been omitted, but this omission has no effect upon tle result to be obtained.

Now introduce also an angle (a, so that r, 0, w are polar coordinates with origin at C;

let o be measured from the plane QCT; see Figure 216, where P is any point on the unit

sphere about C. By projection of CP on CT and CR it is seen that.
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0!

r Figure 216 - Polar coordinates for a small
sphere near a wall.

cos 01 cos 0 cosa -sin 0 cos w sin a,

cos 02 = cos 0 sin a + sin 0 cos w cos a.

The kinetic energy T of the fluid may then ba found by substituting in Equation [17c]
+ 0 with r =a, also q,- U cos 0 and dS-- a2 sin OdOda,, and integrating over the

sphere. 
It is

-pfq, S rp [ 3 (a +Cos 2  . [130a]

The forces on the sphere may now be found by means of Lagrange's equation,

d (70T) aT

where q stands for any coordinate of the sphere and = dq./dt.

In terms of the Cartesian coordinates x and y of the center of the sphere, with

velocities U - V cos a, y = U sin a.,

1 3/ .3 a 3 2 3 1 )
3 ipa ~ 8 [3 .- ,) + ~+ 16 3IL3b

For x and y as coordinates, the generalized forces Q are simply the ordinary components of

the force on the fluid, or -X for x and - Y for y where X and Y are the components of the

force exerted by the fluid on the sphere, respectively away from and parallel to the wall.
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'raking q = x, then q y,

22 a3 3 a

di 3_ _ r= 3 + - _ up 4 i + _ -L 2 -X,

d~ [2 1P& 6, + 3 Ja3Y,

dtd no 3 1 3 38 X4 '

whence

2 n / 3 a3, 3 U2 Q6  2
X = - - pa 11+- -a"+- Ip+ - (2 cos 2 a -sin 2 a), [130c]

3 8 X3 16 X4

3 3 6
Y=- -- pa - - t+- p 2 -_ sillc COSa . 130d]3 16 X 3  8  X4

Here , j} are the components of the acceleration of the sphere. The term in U2 in X repre-

sents ai repulsion by the wall on a sphere moving toward or away from it, proportional to

1, 'X4 , or an attraction half as large on a sphere moving parallel to it.

(See Reference 1, Articles 98, 99, 137, 138; Reference 2, Section 16.30.)

Two Spheres

Instead of a wall. there may be a similar sphere centered at 0"and moving at speed U

in the direction 0' = 0, so as to secure complete symmetry of motion.

The general motion of two spheres of any size can be treated in terms of' series of

spherical harmonicsl; the motion has also been treated in terms of images by Hicks, 2 30

otherwise by Bassett,3 ' 231 and in terms of bipolar coordinates by Endo. 232

131. POINT DIPOLES NEAR A SPHERE

Consider two point dipoles located at (b1 , , 0) and (b,, 0, 0), with their axes parallel

to the -axis but oppositelv directed; let their moment- be 111 112 where P1 and 11 have

opposite signs. The resulting stream function, if the fluid is at rest at infinity, is, from

Equation [119k],

Pb = /I 1-2 [131a]
r3 r 3
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where

a= (y2 + a r, = [(x- b)2 2 = [(x - b)2 +2) 2]. [Ab, c,d]

The stream surface for 4 0 is given by

- p1/3, 1i or = k

where

k = (- 12/yl) 2 / 3 > 0,

or also, after replacing r, and r, by their equivalents,

(x - b2 + Z 2 = k [(x - b C)2 O "Z

or

( -k)(X 2 + -2) + 2(k b b x -kb? 2 b2.

This is the equation of a sphere.

Let the origin be ransferred to its center. Then the term in x disappears from its

equation: hence the new values of b, and b2 are such that k bi 02 b2 and Lie radius a of the
sphere is given by

a2 = =k b2 - = bI b2. [131e)1-k

Thus the dipoles are located at inverse points with respect to the sphere; see Figure 217
in which two alternative cases are illustrated. Either b. Or b2 musL exceed a.

The formulas may represent either, if bi > a, the flow around a sphere of radius a
caused by a dipole of moment p1 placed at a distance b from the center of the sph-re and
with its axis directed radially, or, if b! < a. the flow inside a spherical shell of radius a

caused by a dipole similarly placed inside it. In either case the x-axis is to be drawn from
the center througAi the location of the dipole; and the sez-ond dipoie, at a distance
b2 = a2lb, from thb center, becomes a fictitious one that can be regarded as the image of
the first. If t, > 0, the axis of the dipole is directed outward from the center. The potential
and stream function are
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r 2

Figure 217 - Point dipole t either outside
or inside of a fixed spherical surface.

See Section 131.

F__- b a X =b2 II 2 ( 1
r ) 3  r 3( Lr 3 \6)3 r 3

hal1f, g]

Here & is given by Equation [131a], with k taken from Equation [131e], and € is found by

comparison with Equations [119k] and [119o].
The velocity at any point can be found by adding vectorially the velocities due to

the twc dipoles.

On the sphere itself r2 /r, = a/bl by similar triangles, hence b 0 and

a2 _ b 2 A
- - , r=(a 2 + b2 - ab cos O) ,

& I r13 I

where 0 is the polar angle at the center measured from a line through the dipole. Thus on

the sphere

06 • i__9, 0
q0  ~ 2- _ =3( 2 ) 1 (

3 (a it*
qo= a o = (  - b ) ' r 5 la

and, since the velocity is tangential to the sphere, q = [O.
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If the dipole is at the center of a spherical shell. however, a limiting fcrm of 0 is

needed; for, as bi -, 0, b2 -, . Expanding by tLe binomial theorem in descending powers

of b25

3 2 2 + 2 )-3/2 2A32  23 -5/2

S (b2 b2 X+ (2) _ .....
r2'

2 '2 2 ~ 2hne(-2 b 2 X + IT,2 + i52) ..... = b23 + 3 b2"' x + ..

hence

b 13 (z - b2) r2 3 - a - 6 b2 -2 a- 6 x ..........

since bI b2 a2. The term _-a- 6 b2 contributes a constant term in qS and may be omitted.

Then, as b -. 0, Equations [131f,g} become

+27\Cos 0, 0=- 2 1 1131i,4) 2"t. a3]  ,, 3 a 3

with use of polar coordinates at the center of the sphere such that r = (X2 + ) ) , X = r Cos 0.

All other terms in the series vanish as b2 - r . The components of velocity are

. CosO q= 0,= q + i sin O.

Or ( r3  a r dO 3 a3

ii.3lk, lI

Thus the presence of the shell superposes a uniform backward flow, with components of
velocity - 2 t1 cos 0/a3 and 2 p p sin 0/a3 , upon the flow due to the dipole alone.

The force F on the sphere or shell is of magnitude

1 924npa 3 6b1 pt

IF - pfq2  cos 0 (21 a?, sin Od ) = 13 1h

2 (b2_a2)4( - a )

(The integration is long but, easy.) The force tends to draw the nearest part oi the sphere or

spherical shell toward the dipole.

Streamlines for equally spaced values of 0,, on a typicai half-plane through the axis of

symmetry or x-axis, are shown for an exterior dipole as solid lines in Figure 218.

(See Reference 1, Article 96; Reference 2, Section 15.43.)
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132. LINE OF TRANSVES. IOE

Suposetha pont ioe r itiue otnosyaogaln ihterae

lyig erpndculrl toth nebtiacomnpaeLothx-ise k-.algte

legu be v. The Streamleina due to tphn dipoles aona a sphere. Sxlaee Setio 131, a

found by writing in Equation [119s] it -= ' , ,y = z,- 0, 1 n 0 and m - 1, is

dS- v y x , .(a Y 2 + 22)'/ . [132a, bi

ma2+ -XX)3/

The total potential at (x, y, z) is then fdo which can be evaluated when ~'is known as a

function of x.
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If v is constant between x - c, and x . 02 and zero elsewhere,

C2  x M= c 2

y dx - X,"

2 - 2 3/2 -2 ra2 +(X X*)2)1/2
C- [( 2 + (X _ ) I V - "

Let co denote an angle about the x-axis measured from the xy-plane, so that x, -0, o constitute

cylindrical coordinates. Then y - 'cos o and

V
- (cos 01 - cos 02) cos W t1 2c]

where 01 and 02 are the angles between the positive x-axis and lines drawn to (X, y, z) from

the ends of the line of dipoles; see Figure 219.

-Figure 219 - A line of transverse
/) 02 point dipoles. See Section 132.

~ 2

If the dipoles extend over the entire x-axis, c, - 2 -. + c, 01 = 0, 02 r, and

2v 9vyCos (- - [132d]

z2

as for a uniform line dipole; see Sections 15 and 37.

If the dipoles extend only over the positive x-axis, 0, = but 6, 0 where 0 is

measured from the x-axis to a radius drawn from the origin, and

b= 2 (Il+cos ) cosc=- I + cos [o [132o)
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where r - - X2) 1 / 2 ; or, if r, 0, and (o are employed as polar coordinates,

v 1 + cos 0
cos 6). [132f]r sin 0

(See Reference 7, page 70.)

133. TRANSVERSE FLOW PAST A SOLID OF REVOLUTION

Let the uniform line of transverse dipoles on the x-axis as described in the first part

of the last section be immersed in a uniform stream having velocity V toward negative y.

For the stream, k - Vy V ~ cos to, hence the resultant potential is, from Equation [132c],

[V - (cos 0 -cos 02)] cos [133a]

Both the xy. and zx-planes are planes of geometrical symmetry; the equipouential sur-

face for 0 = - 61 is the mirror reflection in the zx-plane of that for S = 0,, so that the stream-

lines are symmetrically disposed. A third plane of symmetry is the bisector f the segment

cI c2 . All of the equipotential surfaces are asymptotic at infinity to planes perpendicular to

the y-axis; that for 5 = 0 is the zx-plane itself, on which w - 2 n/ 2 .

On any plane through the line of dipoles or the x-axis, the trace of an equipotential

surface is a curve defined by

V Z"+- (cos 01 - cos 02) - = constant. [133b]
to COS (0

Clearly the same geometrical set of equipotential curves cccurs on all of these planes but

the value of 0 attached to a given curve is proportional to cos co.

It suffices, therefore, to study the curves on the xy-plane, where Icos el = 1.

Assume Lhat V > 0, v> 0. Then, since cos 0- cos 02>0,itis clear that, on the part of

the plane on which y > 0, (b -, both as y = Z - and as y - 0 with x lying between c, and

c , so that 01 - 0, 02 -w n. Hence, in particular, on the line .x = (c1 + c2 )/2, a relative mini-

mi-n of S& must occur at some point Q; see Figure 219. From the character of the flow caused

by dipoles, it is clear that the fluid will flow away from Q both toward x > 0 and toward

x < 0, and hence that. the potential must decrease in both of these directions. The point Q

is thus a saddle point for q, and hence also a siagnation point, since the ao-component of the,

velocity vanishes by symmetry. On the hair-plane where y < 0, symmetrical relations occur.
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The equipotential curves will thus have the geiral character of those shown in Figure 220,

where the axes are so placed that = - c1. The broken lines show the equipotentials that

meet at Q.

Q C

Figure 220 - For a uniform line or transverse point dipoles in a stream flowing
perpendicularly to the line, traces of the equipotential surfaces are shown on a

plane drawvn through the line or dipoles and parallel to the stream.
The equipotential surfaces may be those or tbe transverse flow
past a certain solid of revolution w.hich is represented, in a
section through its axis of symmetry, by the heavy closed

curve. See Section 133. (Copied from Reference 7.)

The streamlines will be three-dimensional, in general, but in the xy-plane they will be

plane curves orthogonal to the equipotontial curves. Clearly there will be one streamline

which, approaching with y decreasing, divides at Q and passes around the line of dipoles

along a closed dividing curve C, then re-unites at the other stagiintion point and proceeds to
y .. The same geometrical curve C can be drawn on any plane through thc r-axis: and onI

all planes it will have the property that at any point the comw aen, of the veiocity iyi,,- ii',,

the plane will be tangent to the curve, since both this component and the curve C must be

perpendicular to the equipotential curve through the point. Trho surface of revolution generated

by rotation of the curve C about t.he a-axis is thus a dividing surface and may be taken as the

surface of a solid body. The formulas then represent the transverse flow past this body, or,

also, the flow caused by the line of dipoles inside of a similar shell.I

4I
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An example of the equipotential curves in the xy-plane is shown in Figure 220, where

c I - c, c2  - c and the heavy curve is C or the trace of the dividing .urface of revolution.

Further mathematical details will be given only for the case in which the line of

dipoles (-, ends to infinity in one direction.

Half-Infinite Solid of Revolution

Let the dipoles extend from x = 0 to x o. Then 01 = 0, where 0 is the polar angle

at the origin, cos 02 - and

( + = +cos 0) COS Go. [133c1

lere cos 0 =/r,r=( 2 + x2) /2 ,  =rsin 0. Hence,

-Xcos 9 c, [133d]ax r O 3

+' + (1+ cos 0 + sin 0 Cns 0) cos co, [133e]

1 06 V
%) --- = V + - (1 -Cos 0 sin co. [133f1
o V Lco -2

or
i + cos0

(, V sin 0 + + cos w, [133g]
Or 2  sin 0

I a /V 1+ Cos 0
= - 7 V cos 0+ 0os, [13hq0 = r r r2  sin" 20

( + - cos t' sin w. [133i]
i 0 rsinO r2 sin 2 0

The speed 7 may be found fromq 2 + 2 2= q2+ q2 2q" q + qc, q q

As x 0, r-, 0-. 0; hence qx 0 0, and, at = Jr2v/V, q_= 0 while q) = 2 V sin c.

The streamlines are thus tangent at x = + - to a cylinder of diameter 2 / 2v,'V. The solid of

revolution must, therefore, be asymptotic to this cylinder.

Some of the equipotential curves and streamlines in the xy-plane are showil in Figure

221; the heavy curve is the outline of the solid. The equipotential curves are extended in-

ward toward the line of dipoles. (In this figure V is denoted by U.)
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Fgure 221 - Similar to Figure 220, but the line of dipoles and the solid of revolution
extend to infinity. A few streamlines outside the bolid are shown by broken curves.

See Section 133. (Copied from Reference 7.)

An attempt to prcGuce forms resembling actual airship hulls more closely was made by
Lotz, 3 3 ",-ing a non:niform distribution cf dipoles on the axis, but point sources spread over
the 3urface were found to work better. (See Reference 7, page 69.)

134. POINT SOURCE NEAR A SPHERE

Problems involving given boundary conditions can often be solved by superposing
solutions satisfying the given conditions. Sometimes the process of superposition involves
an integration.

The field of a point source, for example, is easily obtained by integrating that of a
dipole. This corresponds to the fact that phyoical dipoles, each consisting of a source and
equal sink close together, can be laid out in a row so that each source is canceled b, a
superposed sink, except at the ends of the row.
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In this way a dipole located niear a sphere, as in Section 131, can be replaced by a

point source. In the formulas of Section 131 let b be replaced by x 1 and pI by -A dx,' where

A is a constant. Then the flow ic represented due to a dipole of moment -A dxl' located on

the element dxI of the x-axis at the position :. Let such dipoles be located on all elements

from x1 - c to + o; and integrate to obtain the flow due to all of them. The potential q and

stream function ' thus obtained are, from Equations [131f,g],

Xb (a.. )3 Xx21d

A L 1 a

f [ r1113 xI/) r 13 ]#dx,

where

x2  a2 /,T1 , rr (X x1')2 + - 2 112 [(X _ X2) 2 + .'2]1/2

Here z and a are the coordinates of a fixed point in space and are constant in the integration;

see Figure 222.

(z, )

a ' 2' '2 r

Figure 222 - See Section 134. 0 T2,  C 2  1 "

The first term of the integral for S6 can be e :aluated at once. In the second term take

z as the variable of integration with limits 0 and c2 where

C2 .al'/C, [134a]
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and integrate once by parts. Then

a 12 dx
= A + -- f e [134b]

where

1 c)2 ~211 1/2 = + 21 1/2
r I =- [(X - 01 +(2a / 2 r 2 -- [a- C 2)2 ' 2 I 2

This is the potential due to a point source oi strength A located on the x-axis at x = c ,

together with that due to another source of strength aA/c at x = c2 and a line of sinks of

uniform strength -A/a per unit length extending ftom the origin to the point X = c. The

second source and the line of sinks may be regarded as the image of the first source in the

rigid sphere of radius a. It must be assumed that c, > a.

Evaluating the last integral, and treating 0 similarly and dropping a useless constant

term,

= A + In --_=_A + In ,
a r 2 + 2 ) K C1 r2  a + r2 - 0l

.134c]

A+ - [134d, e(,- ;I r 2a

These formulas represent the flow in fluid that is at rest at infinity, caased by a

source outside a fixed sphere of radius a. With the origin at the center of the sphere, the

source is on the x-axis at x = c,; ar = V and denotes distance from the x-axis. If

A < 0, the source becomes a sink and all velocities are reversed.

On the sphere itself r = a, rl/r 2 = ale2 = ela by similar triangles, x = a cos 0 and

r2 = (a 2 + C- 2 ac 2 cos 0)1/2

in terms of the polar angle 0 measured from a radius drawn toward the source. Hence, on the

sphere, & = - A, which shows that the sphere is a stream surface, and

A /2c a
6 = - In [134f]

a ?2
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also

qo 2 + sin O, [134g]

a do ar 2  r2 (a + r)2 - c 2

and the pa-ticle speed I q = 1qoI.

In Figure 223 streamlines are drawn which leave the source in the same plane in

directions 22.5 . ig apart, and eventuaily become parallel to these same directions, which

are also indicated in the figure. (See Reference 1, Article 96; Reference 2, Section 15.40.)

ai

c2  C Axis of Symmetly

Figure 223 - Streamlines due to a point source at c, near a sphere. See Section 114.

135. BOUNDARY CONDITIONS IN ROTATION

The general boundary condition, that the fluid and the boundary must have a common

component of velocity normal to the boundary, can be put into a useful special form when the

boundary is rotating as a rigid body.

Let the boundary rotate at angular velocity o z about the z-axis. Then any point on it

located at (x, y, z) is moving parallel to the xy-plane with a linear velocity (,). + )

and, by similar triangles, as illustrated in Figure 224, its x and y components of velocity are

U=- , y, V=oX, IV=0
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Figure 224 - Velocity due to rotation.

A

The component Qn normal to the boundary, at a point on the boundary where the direction
cosines of its normal are 1, ni, n, is then

Qn = lU + mV + nW , co* (Mx - [y). 1135a]

For rotation at velocity o(, about the x-axis, or w about the y-axis, similarly,

Qn = (o (ny - raz), Q,, = Coy (1z - nx). [135b, c)

The three types of rotation may be superposed in order to obtain the most general type of
rotation about an axis through the origin.

The normal component of the velocity of the fluid, on the other hand, in terms of its

cartesian components u, v, w, is

q1 = lu + mV + nw .

Equating q, to Q, gives as the boundary condition for the most general case

lu + mv + nw = x (ny - mz) + eOY (lz - nx) (mx - ly). [135d]

It the equation of the surface of the boundary is given as

f (x, Y, Z) 0 0, [135ej
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the direction cosine.-O of its nornmal at any point x, y, a can he found a:,

df d f f
l=k - , m=k-- , n= : , [135f, g,hI]

ax dy az

where

Of[~~) 2 (ldf) 2 Of ~)2] 1/2 (3ik, ' / 13501

in order to make 12 4 in + n2 - 1. The sign of k must be determined by inspection.

For, if the point is displaced over the giken surface through an elementary distance

ds, %,hose components are dx, dy, dz, in the direction of a tangent whose direction cosines

are 1', in ', n ', from Equation (135e]

af Of Of o
(If dx -- + dy - + da y-= 0 .

Substituting here dx = I'ds, dy = m 'ds, dz = n'ds and multiplying through by k/ds,

a, of "O f
l'k f + rn'k L + n'k - = 0.

dx Oy az

Now a line can certainly be drawn through (x, y, z) whose direction cosines are 1, m, n as

defined by Equations [135t, g, h]. Then, from the last equation, l'l + m'm + n'n = 0, so that

the line thus drawn is perpendicular to the tangent whose direction is (1', in', n'). Since the

latter may be any tangent to the surface at (x, y, z), the line (1, rn, n) must be the normal to

the surface.

136. GENERAL FORMULAS FOR ORTHOGONAL CURVILINEAR COORDINATES

It is convenient at this point to generalize certain ideas and formulas so that they may

be used with any type of orthogonal coordinates.

A coor(inte system may be regarded as set up by means of three families of coordi-

nate surfaces. rhe surfae - of an) one famil do not cut each other, and are numbered with

the %alues of one of the courdinates. Usualiy the three surfaces that intersect at a given

point meet there orthogonally.

For example, for Cartesian coordinates the surfaces consist of three sets of parallel

plane. For the polar coordinates defined in Section 7, the surfaces are (oncentric spheres

3,40
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for r, cones for 0 and plares through the axis for (a. For cylindrical coordinates as defined in

Section 7 the surfaces are planes perpendicular to the axis for x, cylinders for ', and planes

through the axis for w.

At any point there are three coordinate directions, in each of which one coordinate in-

creases while the other two remain constant, see Figure 225. These directions are tangent

o the curves of intersection of the three coordianato surfaces through the point. If the coor-

dinates are orthogonal, the three coordinate directions at a given point are mutually perpen-

dicular, and they are also perpendicular to the corresponding coordinate surfaces.

V

Sd

Figure 225 - Diagram illustrating coordinate directions. See Section 136.

When the coordinate A of a point is given an elementary increase 3,. while tWe other two

coordinates remain fixed, the variables x, y, and z receive certain elementary increments which

can be written

8X\ x SX d\Cy SSX=(z8k

The total displacement of tOe point is then

and

2i ay\ 2 Oz 2] 1/2

9\ + +• [136a]
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Furthermore, lot 1, ni, n be tl-e direction cosines of the coordinate direction for A, which is

the direction of the displac, ment SsX. Then

E-rA = 1Ss, 8y,\ = i ( s\, OzA = nSsA.

SA ax A )y 3A Oz
I - , -, = A[136b,c,d]

&Ss OA OA , Ss

If the coordinate.- are orthogonal, 1, m, n are also the direction cosines of the normal to the

surface A , constant. The ratio bsA,'3A is easil calculated frow the formulas connecting the

coordinates with x, y, z.

For cartesian coordinates this ratio is unity. For spherical polar coordinates r, 0, a)

as defined in Section 7, &sr,'vSr = 1, 3sO/60 = r, &sl,'S8o =- r sin 9; foi, increasing a) by 8(A, for

example, displaces the point (r, 0, (,) through a distance r sin 0Ca along a circle of radius r

sin 0 whose axis is the polar axis. For cylindrical coordinates x, ', a) as defined in Section 7,

bs.'Sx-.-1, s 'Sa-- 1, Ss('J,& = - since the variation 8o produces a displacement' ,(

along a circle of radius Z.

In a fNow having a velocity potential 0, the component of the velocity in the coordinate

direction of any coordinate X can be written, from Equation [6f],

OA= 8A -0 [136e]qYA = os -s38 h

since in this diection ds = 5sX , d = 8A 9/5OA;

see Figure 225. If the three coordinates A, p, v are orthogonal, the magnitude of the vulocit.y

q is gEven by

222
q 2 = q,2 + q,2 + q 2

A general form of the Laplace equation may be obtained by expressing the continuity

equation for an incompressible fluid in terms of the orthogonal curvilinear coordinates XAP, v.

Consider the element, of volume bounded by the six surfaces that are defined by the following

equation;:

AA I  P ==

I=A1 + 6A P- JA + SA v + 8 V

where A,, PI, V, refer to any given point in :-pace. If SA, Si, Sv are small, the element is

sensibly rectangular in shape, as illustrated in Figure 226. Since the fluid is assumed to be

;ncompressible, as much fluid must enter this element as leaves it.
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Figure 226 - Illustrating the equation of
IS, continuity in terms of the orthogonal

curvilinear coordlinates A, it v'.

(XI I ILIV 1

Consider first the pair of faces approximately perpendicular to the coordinate direction

for A. The face at which XA, has sides of length 8sL, &8,, and an area Ssp Ss. Fluid is

entering the element across this face at a rate qA a.9Il asil. The rate at which it is leaving the

element across the opposite face, on which A =AI + SA, can be written

q,\0s P 38V + SA (qx asIt as,,.

The difference between this expression and the last, or

a
3A (qX &Sit &s,,),

is the net rate at which fluid is leaving the element by passing across this pair of faces.

Treating the other two pairs of faces in a similar way, and adding tale three expressions

thus found to obtain the total rate of outflow, which must be zero, it is found that

a9 a a
SA, -~ (q,\ sit s,) + ap -- (1 as,, asX) + Sv ~- (qv, asA as )t 0.

Dividing by 8Aaf, av and noting that ax, a,1, av are constants,

0 ~( Ls X q a (-X~
A -LI98 A) 1L -v -A 'a) - qJ8= 40. (136f]

This is the equation of continuity for an incompressible fluid expressed in terms of any

orthogonal coordinates.
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If the motion is irrotational, substitution in the last equation from such '-quations as

(1360l gives the Laplace equation for the potential 0:

o1 (8 X  0 0 a ( b%' &SA a , , ( s, \ s a, a- .
(4 & OA /1 5,\ V ) i1  h I s v

[136g1

In some problems the mass of fluid under consideration is actual., I,o,inded by s ,oor-

dinate surface. For example, let A be constant over the boundary. Then, provided the fluid

at infinity is at rest, furinula [17c for the kinetic energy T of the fluid can be written

I C &!Sl F)3. 1 'I_ 'h s 3sv  0€

T lit dv =
__f Ss 6 ( dtd 1136h1

wnere p is the density of the fluid and the surface integral extendis over the entire finite

boundary. For, the element of area. on the surface dS can be taken in the form of an elementary
rectangle with sides drawn in coordinate directions, so that along two opposite sides i

changes by dlt m Sit, and along the other two v changes by dv = 8v; see Figure 225. Thus dS

can be replaced by the area of this rectangle or

&s &t'sv = (& /8!pt) (sS)d~

SIL a ,, (8&11181L) dpfdu'.

The normal component of the velocity is q, = + q. where q\ is given by Equation [136e].
The sign in this latter equation is necessarily the same over the coordinate surface; and the

ab:'olute value -f the integral is taken because T is necessarily positive.
For axisynmmc!ric flow, the angle o around the axis of symmetry is usually employed

as one orthogonal coordinate: the other two, say X and it, then function as two-dimensional
coordinates on any plane drawn through the axis. Any orthogonal coordinates may be used for
A and it. The following relations between the A and i components of the velocity and the axi-

symmetric stream function 0 may be noted:

1 api, atb ax aq
q\ + - - = -_ - - , 136i,j1(' =  i all z &,A ax

where 'denotes distance from the axis, which may be expressed in terms of A and P. The
proper sign to use in these equations is easily chosen in a given case, or the following rule

may be used: at a given point, the upper sign is to be taken in both equations when the coor-
dinate direction for A is carried into that ror pt by a rotation of 90 deg in the direction from the

assumed positive end of the axis of symmetry toward the point as in Figure 227: otherwise,
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4i

Axis of Synmetfy

Figure 227 - Relations in axisym ntric flow.
See Section 136.

the lower signs are to be taken. The equations are easily obtained from the definition of ¢,

a. given in Section 16. For example, the flow between two circles drawn with the axis of

symmetry as axis and through two points (A, f) and (A + 8A, f) is 2ru8 ft -- ±-- rs\qF; insertion

of 8&, = BAOA/0A and division by 2:3sX gives Equation [136j1.

If a velocity potential 0 also exists, it follows by comparison of Equations [136i,j] with

Equation [136e] and its analog for q, that

8A 06 + 1 all 0b alla _5 1 SA aC
&A 'a _+ 1  p -, = + - [136k,1&sX ax Z 81L apl ' a ? -C asA (9A

The signs are explained under Equations 1136i,j]. Because of the symmetry, the third term

in the Laplace Equation [136g], in which now r = cu, disappears. A corresponding equation
for 0/ is obtained by substituting for dqS,'O and 095/dp from Equations [136k, 1] in the identity
d24)/O = d2 /OAO i;

/1 p ax Sa1 &SA SA3alp
-O+ T 0 [l36ml

OA\ a p \ M;A O/ 8 A &sI 0.
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137. OVARY ELLIPSOIDS (OR PROLATE SPIHEROIDS)

Problems involving an ellipsoid are most easil. handled in terms of some form of ellip-

.-oidal coordinates. Spec ial L, pes are used when two axes are equal.

For an ovary ellirsoid, or prolate ,;pheroid, the prolate-spheroidal coordinates 1, PI, w

are mo.t conveniently defined inversely, thus:

x- k1tt, y - Z'cos (o, z - -jsin w, [137a, b, c

1 '2 :2) 12
I= k) - ") (I21 , 2, [137d]

%%here k i5 an arbitrar. positi~e con.st..... and positive %alues of the radicals are intended. Thu.

r2 - 2  ,2 +2 k2 A-1). [1-72 1+ 2 + 2 + - k (2 I L

Here w is an angle representing position about the x-axis; C, it, and w are dimensionless,

%%hereas k represent. a fundamental length. The coordinate surfaces for Cand t are confocal

ellipsoids and hyperboloids of revolution, % ith foci on the x-axis at x -± k; their equations,

obtained by e!minating either / or C, are
x
2  

z2 2 -

+ - - - = -. [137f, g
k . t ( - itk 2 4 2  k{2 (421I) k 2 I'2  k(1 -p/ 2 )

The traces of the coordinate surfaces on any plane through the x-axis are confocal el-

lipses and hperbolas; it %%as seen in Section 61 that such curves cut each other orthogonally.

It %%ill be simplest to treat the tvmo hal'.es of such a plane as separate planes, distinguished

by complementary values of co. On each half-plane either _ and Z'or C and P then serve as

single-valued coordinates and Z> 0. Converient ranges of %alues for 4 and It, as indicated

in Figure 228, are: 1 = <, - I < it < 1.

The coordinates 4, p are simply the elliptic coordinates of Section 82 in disguise:

4-cosh ., it = cos ,, and here k = c. Formulas for 4and i in terms of x and y can be written

down at once from Equations [82e, fl.

The semiaxes of any C ellipsoid and its ellipticity are

a' = k4, b'= k (2_ 1) ' , e'3 ,'4. {1S7h,i,jl

In terms of these, x - a'p, " = b', y2. Also, k = a'e'. On the x-axis, for x > k, ! = 1,

x-k: for x<-k, p-- 1, x=-k4. For IxI 5k, = 1, a'= k and x kt. On the Z-axis,

p 0 and =k , - 1.
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Figure 228 - Choice of signs for
prolate-spheroidril coordinates.

See Section 137.
__p-u

K Axis of Symmetry

2122 2 1/2
Toward infinity, and, approximately, Z' k k(I - 12 1/ and r = (x f ) =k,

so that < = r/k, I, = =lC ~ = cos 0 in terms of the polar angle 0.

The elements of distance in the coordinate directions, calculated from Eqjuation [136a),

are

8sc k /2 a, a k t2 )/2 11,[137k, 11

63( = w (C.2 -1)1/2 (1 P 2)'/ 2 &J. [137m]

The coordinate direction for w is perpendicular to the plane through the x-axis; that for C. is
perpendicularly outward across the ellipsoids, that for pu is tangential to them and from P < 0
or x < 0 around toward pt > 0 or x > 0. These two directions make angles 0 C, 0OP with the

positive x-aixis such that 0 : OC:z u, -77/2 <0OI < i7/2, and, from Equations f136b,c,dI,

Cos OC. sin 0~ P= 2 1/2 [137n]

The components of velocity in the coordinate directions are, from Equation [136e1,

SC (0 sy8 ' (')GI 0[ 137o, p, q]
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i,.plae' oquation for the p)otential becomes, from Equation [136,fl,

,,d - 1) o 0 ( - ) ",-4 ( ,_ - 0; [ 13 70
o' V o eil L "I' (1 - 1,2 ) (4'2 1 ) ~ 2

and the antisymmetric *4ream function ,, defined on the basis of a positi e ais (ra% n toward

p 1 1, according to Equations [I36k, 1], is related to 6 as follows:

Sk ( - k(t 2 o) . 1137s, t

Supposo now, that a solid ellipsoid of revolution is given with a surface defined by

X2 y2+ z2

+ - 1, a > b. [137u]a2  62

Then its eilipticity is e = (a2 - b2)/2 la, so that b a r e2 and for this ellipsoid

a'= a, V = b, C = Co - a/k = I/e. Thus k = ea = ,/a2 b62, and on this ellipsoid21/
x = all,@= b(1- i ) •

Five cases of the flow around the solid ellipsoid will be treated. In each ca.,e q5 as

stated may be verified to satisfy Equation [137r], and 0, if it exists, to satisfy Equations

[137s,t]. The general case can be constructed by superposing flows of two or more of these

five types.

Case 1. 7'ranslation of a Prolate Spheroid Parallel to its Axis of Symmetry at velocity

U, toward p = 1, with q 0 in the fluid at infinity; see Figure 229.

0 jk Ul 4Cn 1 [137v]

g, k2 ( ) ,2 In ( ~ 137w]
224 - ---. In ,[3 v'

-- 1 In e In L [137x1
S2 2 2- 1 e)
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Figure 229 - Streamlines due to translation
of " rolate spheroid in the direction of p--

its axis. The foci are shown by dots. --- - /
Sev Section 137, Case 1.

i0
/

Now, for any number 4,

In In 1 -I / 1+ ' I: = / 1 -'

hence, expanding, for 1j > 1,

I4+1 1 1 1 1 1 t 1

-i 4 2C2 3e3 40 5e'\ 6 2e2 3e3

+  2 + .... [137y]

4e' 1 1 5
- + + .... [137z]e'_ e' 3 el5

Hence, if e -. 0 and thus C 0o e3 9 = g9 'o3, _ (2/3 + . ... )- -. 3/2. Again, as

e -, 1 and o - 1, both In (1 + e) and In (1 - e) become numerically negligible in comparison

with e/(1 - e2); hence g, - 0, gli/(1 - e 2) -# 1.

Toward infinity C4-o and, from Equation [137v], since 4-. r/c and k = ea,

=g, k Up I + .... ) e3 9 a3 C approximately.
; 23 r2
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'r'T, the flow becomes that of a dipole of moment e3 g1 a
3 7,'3 located at the center of the

ellil,, (id. if c i: small, the coefficier t e '3 becomes 1,'2, as for a sphere; see Section 127.

The velocity componenL are q 0 and

. _ /2( 12 + [137'

q= 1 U -~ u 2 '( - In [137b']

On the x-axis, i t 1, Ixl = k , q Jul and

u %=_ - - In ,; [137c 1

(X22H-k 2/

on the equatorial or yz-plane it = 0, v " k (2 )ul and

qg ! V 2 In [117d']
v -r + k2_-k G +P

on the equatorial circumference of the ellipsoid itself C= C4 1/e and

u q =-1  
U  In I+ e . [137e'I

A few streamlines for equidistant values of 0 are shown in Figure 229. Here

a,'b = 2, e = 0.866, g1 - 0.466.

The kinetic energy of the fluid, as found by substituting A, n for X, u, v in

Equation [136h1, using Equations [137k, 1, m] and [137v', k ae, b 2 = a2 (1 - e2),
Ji p2 dL = 2,"3, f 2  dol = 2n, and setting C = c0 = 1/e, is

u ip ab -2i. [37f']
3 1 _ e2

Case 2. Flow Past a Prolate Spheroid Parallel to the Axis of Symmetry. Let he fluid

at infinity flow at %elocity U toward it = - 1. Adding, from Equations [I19a, bi, U to 0 and

Uz- 2,'2 to t as given by Equations [137v,wJ, to represent the superposed uniform flow,
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Hence q()= 0, and, if a prime denotes values ats given by Equations [137a 's bi

an e _~ 1IL ~ 12) 12 qp -1 ( it 2

on the x-xsadin the yz-plane q = *ul and u = u' U.
On the ellipsoid itself, where 0 -) 1/'e, ~'=0, so that this is a stream surface.

Also, qC=0, q = q jl and(

/1 u1/2 e3qIU(aX2)1/

= :1e- - , [1370'
-,C2_1 C2 _ L2 e2 \a 2 -e2X2/

s inc e x = api. A s co 0c , ec- 0, e3 gl3/,adqi 3/)U X2" ,as for a sphere.
As C-a. 1, e 4*1, g 1 -+1- e2 and q -tU; the ellipse has then become a cylinder.

Some of the streamlines, for e 0.866, g, = 0.466, are showvn in Figure 230; they Ure
selected to be equally spaced at infinity. The excess of p~ressure above that, in the stream,

Figure 230 - Streamlities for flow past a prolate spheroid in the diretion of its major nxis.
The pressure is shown along the axis, over the sphe-.oid and outward along a minor

axis. The foci are shown by d~ots. See Section 137, Case 2.
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for stea(dy motion, is also plotted as p - p., on an arbitrary scale. It is shown along tile

-- axis, then over the ellipsoid, where p = p, at x = 0.807a, and along the y-axis, where

negative values are plotted horizontally toward the left.

Case 3. Translation of a Prolate Spheroid Perpendicularly to Its Axis of Symmetry

at velocity V toward positive y or w = 0; see Figure 231.

(b h k V ( 2 
- 1) 1 /2 (1 _2 ) / [ 1 In O+ . [1 3 7 1

C2 1 1
( 0  .- 2 - /- 1 1 + e e(1 -2e 2 )

I o 1 - ) 2 In 1-e e ) [137n ]

As e- 1, and 4-0, the logarithmic term becomes unimportant and -p0, h Al -e 2 )-11.

A.s e 0 and 40 -, e3 hi -. 3/4, as appears from Equation [137y1 and the expansion,

- - .*. [137n'
co( 2 C- 1)2 0C

0

ob

Figure 231 - Diagram for translation of a prolate spheroid in the direction of a minor axis.

V17 . X

It =
The foci are shown by dots. See Section 137, Case 3.
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Towad ininit C ~k. C2 _j,' /2

iTward, infinity d- r/k -,, (4.2 _ 1 -2 * and, trom Equations [13 7 y, z],
approximately,

2 t2) 1/2 C to 2 3 y
h i k V (1 - 3 e3 h a3 V [ [137o "]

since k = ae. The flow is again that of a dipole, but this time with its axis in the y direction;

and for small values of e agreement with the result for a sphere is obtained, since then

2 e 3 h - 1/2.

The velocity components in the coordinate directions are, from Equations [137o, p, q]

and Equations [137k, 1, m],

S1 - ' 2cosco [13 7 pi

% = h 1  - 2 _ 4 1 2 1 -

S 1 Iin -a. [137r']

q, = hV 2_ (2  2 )

On the axes th,' velocitv is in the direction of + V and q = IvI. On the y-axis, cos &j - + 1,

1 2

It --O, y=±+ k(4 2 -1) and

v ~ ~ ~ k ±k4=A 'Fn ~ + ±).~77 k2)I_ L, i- Y J2 k .Y
On the --axis I - 1, x = k~and

v=-hiV( k _ 1 In jj+ k
( 2 -k2 2 HTjj- k

which represents the limit of 7 q1 as iiIt -" 1 whiitee = 0. On the z-axis, t 0, ,.in co = ± 1,
2 11/2

hIk( -- _) and

/2 2 ,+k2k
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Over the surface of the ellipsoid itself, where C o and is constant, the transverse

component q, varies relatively in the same manner as over a sphere. Furthermore, around the

circumference in the ex-plane, where sin ) = ± 1, q is constant, since

/1-) i 4 1 1
= q -'-- -1 7 - -I V - In . [137u

2 2 2~1 2 i-ce)I I

The kinetic energy of the fluid, found from Equation [136h] in analogy with Equation

[137f ' but with use of the integrals 1-(1 - 112) dp =4/3 and f 2 cos 2 (o dc = , is
-1 0

T-- -,p,,ab2 . - n- In -- . [137v1l e 2  2 1 -e

Case 1. Flow Past a Prolate Spheroid Perpendicularly to Its Axi3 of Symmetry. Let the

fluid at infinity flow at velocity V toward negative yor it = 0, 0o = U. Adding Vy for the

unifo-m stream,

~kV(e _ 1) 1 2(1l_1,2) 1 /-2([1 4+ h In C)+ cos ow. [137-'ve- -- - 2 h, -1 cos

If a prime denotes values given by Equations 1137p, q, r'I; from Equations [137o,p,q],

q( 2¢v - 1, /2 e _1/

/ _ = co" Co. [13Txy']

q = q + V sin Co. [137z']

Everywhere v = v'- V, and on all thcee axes q = Ivi.

On the ellipsoid itself, where C = Co = 1ie, q4 -0 and

2e 3 h
I V it COS co 2e 3 hl V

q - e2 1/2 ( 2  1 ' q --- sin , 1137a' b"I
(1 -e) /  1-e /2 1 2 1 -e

where IL = z/a. The same remarks concerning q. apply here as in Case 3, except that here

around the circumference of the ellipsoid in the 2x-plane q - lq.1l where 1q.1 is given by
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Equation [137b"I with sin ( omitted. The coefficient 2 e3 1/(1 - e 2 ) becomes 2, as for a

cylinder, as e -. 1, and 3/2, as for a sphere, as e -. 0.

Case 5. Rotation of a Prolate Spheroid about an Equatorial Axis. Let the spheroid

represented by Equation [137u] rotate at angular velocity Q about the y-axis, in fluid at rest

at infinity.

At any instant, the velocity potential 0 can be expressed in terms of ellipsoidal co-

ordinates whose axes coincide with those of the ellipsoid, and the component of the fluid

velocity that is normal to the surface of the ellipsoid at any point will then be given by Equa-

tion [137o. The direction cosines of the normal to the surface, on the other hand, are, from

Equations [136b, c, d],

8' dx 8C dy 8t Oz

Substitution of these values for q, 1, m, n, and of wx = z = 0, (.= fQ, in Equation [135d]

gives &s the boundary condition at the surface of the rotating ellipsoid

0 z- -X [137c"I

From Equations [137a, ci

I 8Ox kOx 1-/

-=ky,- = kC(C 2  
- 1/2(1 _, 2)1 /2 sin w.

The following potential will be found to satisfy both the boundary condition and the

Laplace Equation [137rI:

S=A( 2 -1)"/2 (1 - /t2) 1/ 2 --C In C+1-3- -- sin &) [137d1"I]

A k2j2 (24'o2 -1) lz- 6 C° + 2 [137e"
i2 _) 

In1 1C

355



-%t la'e di-tances, using Equations i 137y, z],

2 Ap 22A zX 2,/,~' . .. (1-12 1  & -i - - Ae a _x

,3 5 C 5  5 r

approximately, since kC r and k ea. Thus the disturbance of the fluid extends effectively

to only a short distince.

The velocity components are

6L / L 7) (  -l)h sin f, 1f"I
k 2 .44 -1 1

A111 (3 + -- -¢ +/Cos n o

/ 1 3 -+ [13h "I

The pressure in thih; case can be found from Equation [11e] or Equation [11d]. The kinetic

energy is given in Reference 1 and in the table following Section 147, Case 29(3).

In the last three cases there is no axis of symmetry, hence no stream function exists.

An extensive comparison of the theoretical formulas for the pressure with observation,

resulting in general good agreement except in the wake, was reported by Jones. 234 (See

Reference i, Article 105, 106; Reference 2, Section 15.57; Zahm. 102, 174)

138. PLANETARY ELLIPSOIDS (OR OBLATE SPHERO!DS) AND CIRCULAR DISKS

For an ellipsoid of planetary form, or an oblatt, spheroid, the treatment of the last

section requires only minor modifications.

For this case, oblate-spheroidal coordinates 4, p. o are defined thus:

x - k2 y 7 o, 2 = ZTsin [, [138a, b, c]

- k( 2 ,1) 1/2 (1-L 2 )' / 2. [138d]
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The surfaces 4 constant arc again ellipsoids of revolution, hut those for i p constant are

now hyperboloids of one zhoot, with circular apertures lying in the yz-plane; the equations

are

2 -2 x2
1, - --- 1. [i38e, f]

k 2 2  k 2(L 2 I 1) k2 (l-t 2
) k2 1,2

In any plane through the x-axis the intercepts are orthogonal ellipses and hyperbolas with

connon foci lying on the focal ring defined by x = 0, - k. See Figure 232, on which again

only a half-plane is shown. Assume 4 > 0. Then - 1 1 , $ 1.

p0

4>0 4>0

=0

1= -t =  X

Axis ef Symmetry

Figure 232 - Choice of signs for oblate-spheroidal coordinates.
See Section 138.

The relation with the elliptic coordinates of Section 82 is now: k c, , sinh ,

p = sin q/; and x and y are replaced, respectively by Ziand x. Formulas for 4 and 1 in terms

of x and y are easily written down from Equations [82e, fl.

The polar and equatorial radii of any ellipsoid, in t:e x -nd Z L.rections, respectively,

and the eccentricity of it, meridian section sre

a.., c" 4(42+l)1/2, e, ,/Z2 :e2'e' (C2 + ', {138g, h, ii
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v. hence

"a,2 4' - aC"k - a -2_1, [138j, k

x-- a 'i, Z - c'(1 -i1 2 ) 1 / 2. [1381, ral

The elipsoid for £ - 0 is a circular disk of radius m - - k in the y2-piane, on which

k /I -p2; the remainder of the y2-plane is the hyperboloid it 0. on which S = k VT2T-1.

The hyperboloid for it - ± I is the entire x-axis, on which x = I kC.

To%%ard infinity, C--- and, approximately, Z - k4(1 ,z2)1/2, r- (X2 -. 2)1/2 k , so

that . r 'k, it - x 'k - . 'r = cos 0 in terms of the polar angle 0.

The coerdinate elements of distance are

k 8 85 3 = k/2 [138n, ol

=So - -w 8 k(C2 1)1/2 (1 -1,2)1/2 8(d. [138pI

The coordinate directions for .and it make angles 0, 0 with tie positive x-axis which lieIt

a - = < - and are given by

-os 0. -- si n 0;C [138q]

and th,, velocity components in the coordinate directions are given by Equations [137o, p, qi

or

$p a a06 Owa
q(- - q1I = - - - . [138r, s, 0

3S cai IL dw

The Laplace equation, and the relations betwee, 6 and 0 if 0 exists, are

2 [1 1 "- I 0, [138u1
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- k(I-pz2) 0,0 do k(2+, 1) - [138v, wIop ' op 04

Suppose now, that a solid ellipsoid is given whose surface is defined by

+ = 1, c > a. 1138x]

a2 c2

Tien its ellipticity is e = (c 2 -a 2) 1" 2/c; and for this ellipst d a'= a, c'= c, so that, if on

it C = C., from Equation [138j, k],

cc = a 4 a/k= al' =-e1Te, e =( 2 1 1 2  [138y, z, al

and on this ellipsoidI

x = alt, -c [138b, c']

Five cases of the flow around such an ellipsoid or oblate spheroid will be treated. The

general case can be handled by superposing flows of two or more of these five types.

Case 1. Oblate spheroid or Circular Disk, Moving Parallel to its Azis of Symmetry. Let

its velocity )e U toward I 1; see Figure 233. Then

IL=0

-- a Axis of Symmetry
iI  -- l t! - -1 X

It 02

Figure 233 - Diagram for translation of ar oblate spheroid in the direction
of its axis.
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,6 y2 k L(l -C cot -  ), 1138d'1

--- g2 k 2  U (, 2 + 1) (1 -/ 2 )  cot - 1d " , 1 8 '

( .d21 1/

"72- (ot - 0 . 2o - sin- ,'-e/i-e .)18'
/ /

If c 1, so that 40 - 0, g2 = 2,'n. As e-.0, and . e3 g -.3/ , as is easily verified by

using Equation 1138x "] and the series, obtained from Equation [33k] and valid for any real

number - 1,

1 1 1 1
cot - t t 1-=-- + - .... [138g']

Toward infinity, with use of the last series,

I 1 1 3 Cos 0
2 " -g2 = U - --2  2

approximately, since k = ec. Thus the flow is that of a dipole. As e-.0 and e 3g2 -. 3!2,

3- C3 U cos 0,'2- 2 , as for a sphere of radius c; see Section 127.

The velcity components in the coordinate directions are q= 0 and

q,- g2 Ut 2t2 cot -_ (d,138h "

g2 U _-,2- 1./2 cot [138i "

On the .r-axis, x ± 1, . ± k,4, q - lul and

( v t [ /" l [138j'
u q4 ' g2 U((o1 k X2+k2)"
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On the equatorial or yz-plane, t -0, --,. ki' + 1, q = Jul and

u q= -g2 U -sin - 1  ; [138k-I

in particular, on the circumference of the ellipsoid itself,

C-o. = k V-'+ - k'e and

u--q2U  e  sin- 1  [1381'1
e

For a figure, see Figure 234 as explained a little later.

The kinetic energy of the fluid, found by the method that was employed in obtaining

Equation [137f'1, is

2 3 u27rc392 c - 1-.2 sin 1  
[138m']

Circular Disk

If Co = 0, e = 1, a = 0 and the ellipsoid becomes a circular disk of radius c " k moving

perpendicularly to its surface. Then g2 = 2/n.. On t6e disk z= c(1-1t 2) 1/ 2 and b- -U 2 /2.

Also, on its front face, % = u = U and

2 U/1- 2 U Z"
qy-= - q it=_ 2  •138n 1

q' =7/ -2l = I C_2)1/2

Here it increases inward, -Uoutward, hence the negative sign. At the edge q-* -. On the

rear face p = -(1 -Z 2/C 2 )1 / 2 and the velocity is reversed.

The kinetic -',nergy of the fluid is, from Equation [138m ',

4
T = 4pc3 u 2 . [138o']

3

Some lines of flow near a moving circular disk, drawn for equidistant values of 0, are

shown in Figure 234.
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"rhe same diagram will serve to illustrate the motion outside of any oblate spheroid

placed so that its focal circle coincides with the perimeter of the disk, such as the one shown

ip outline b\ tile elliptical curte in Figure 234. The ellipsoid is assumed to be in translation

along its axis of symmetry. For, if k is fixed, variation of C0 changes only the factor of pro-

portionality q2 in 0k. which changes , at all points in the same ratio but does not alter tile

geometrical pattern of the -treamlines.

Figure 234 - See Section 138. Case 1. (Copied from Reference 1.)

Case 2. Flow Past an Oblate Spheroid or a Circular Disk, Parallel to its Axis. Let the

%elocitv of the fluid at infinity be U toward p -- 1. Adding to the expressions for b and '

in Equations [138d'. el1 Ux for 6 and C , '2 for ',

6 k I,[C+ g2 (1 - cot-' ),[138p '

0 -1 k U((2 1) )(l -l [I -92( e o t - l - 2 )+---[138q]

lere again q. - 0: and, if a prime denotes values as given by Equations [138h'to 1.38k'1,

- U (:2) q q 11  - (1 12 [138r, sI

Or, the x-axis and in the yz-plane q - and u - u'- U.
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On the ellipsoid itself, where t -, using the value of g2' / = 0, qC 0, hence

q = Iq i , and, after combining terms,

2 U /l-2t2 1/2 3  L Z. ... .-e392 U [138t",

q1  -2 1\-Y 2 c2 2e 2

from Equations [138y, z] and Equation 1138d1.

A circular disk is obtained again bysetting e = 1, Co- 0. Then on the disk q - tqw!

where q-equals 7 q and is again given by Equation [138n'1. In steady motion the excess

of pressure at points on the disk above that at infinity is

-p" 1(U 2 q2) =1Pu( 4 Z 2  [138u'1

2 2 2 -2

Thus p = p. at = 0.844 c.

Streamlines selected to be equidistant at infinity are shown in Figure 235 for an el-

lipsoid with Co = 0.577, e = 0.866, g2 = 1.628, and for a disk in Figure 236. For the ellips-

oid, 7 - p. is shown on an arbitrary scale; it vanishes at it = 0.68, -= 0.73 c. Values of

p - p. are shown along the x-axis and along the ellipsoid, also, plotted horizontally, along

the Z'-axis above the ellipsoid.

Figure 235 - Streamlines for flow past an oblate spheroid in the direction o. its axis
of symmetry. The distribution of pressure p is shown along.the axis, then over
the spheroid, and outward along a transverse axis. See Section 138, 'Case 2.
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Figure 236 - Flow past a circular disk. /

See Section 138, Case 2. c \__, _

Axis of Symmetry z

Case 3. Mlotion of an Oblate Spheroid Perpendicular to its Axis of Symmetry. At ve-

locity V toward positive y, as in Figure 237, if = on the ellipsoid,

c-h)k V (C2+1) 1/2 (1- 2l2cot-, C C COS, [138v 'I

\ C22+ 1

h 2 (cot- es. [138w 1

As e-0 and o-0 , e 3 h 2 3,' , as appears from the series (1 - e2) - 1/ 2 
= I + e 2 /2 + .... and

the series for sin- I e as obtained from Equation [33j]. As e-- 1 and o-0, h 2 -. 0. Thus 0

equals 0 for a disk, as it must.

Toward infinity, C-.r,'k = r,'cc and, using Equation [138g'] and the series

___ 1 /lW 1  1 1 ,t3x

42+1 1+

h~kVl~l21/2 cos *o 21
S h2 k (1-L) -- e3 h 2c

3 V -r3  [138y

approximatel,. which is the potential of a dipole with its axis parallel toy. As Co- , and

e ., 0, since e3,i 2 - 3/4, 0 -. c3 Vy/2r 3 , as for a moving sphere of radius c.
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oblate spheroid parallel to an equatorial V _
axis. Dots indicate traces of a focal

circle. See Section 138, Case 3.i=- A 0,Syet 1

0 "k

IC

The components of velocity in the coordinte directions are, from Equations [138r, s, t'

ai D t i t o aP2 f oca A2s Cof Syetry, [138z

OnThe omspndonntse ofpah velocity i in th riae direction arfom Eu ains =38r, sn the

q4 ~2  22 (C2+2 14o t ~

=I 2 / C2V,L 1~ (12cot7 CO co, [138lai
( 2.+,12 ) Z+1 )

qc h V (un -I C C)sin co.[18

On the y-axis and on the zxr-planc the velocity is in the direction of V 1 and q IvI. On the
y-axis cos 0 ±) 1, i = 0, y = ± k(C 2 + 1)1/2, = (y 2 /k 2 - 1)1/2, and

v ±q 4 h V(jk(y2 + k 2j )  _sin- k  1138c"I
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On tho x-axis x . ± k and, from the limit of -qt, as ;t - ± 1 with 'o = 0,

A2 k 2 + k (138d I

On the 2-axis i = 0, sin co ± 1, 2 -± k(C 2 + 1)1/2, and

v -. -h 2 V sin- 1 k - k k"138e

Over the surface of the ellipsoid itself, on which C = and is constant, the relative
variation of q. is similar to that over a moving sphere. Furthermore, around the circumference

in the transverse or zx-plane, the velocity q is uniform, since Isin (01 = 1, and, using Equa-
tions [138z, a'l,

q = qjI =h 2 V~ (sin-' e . [138-e2

The kinetic energy of the fluid, found by the method emplo ed in obtaining Equation

137f'1, is

T = Lphc3V2 e2 sin- 1 e-e . [138g"I3 h2

Case 4. Flow Past an Oblate Spheroid Perpendicular to its Axis of Symmetry. Let the

fluid at infinity flow toward negative y ot velocity V. Then, adding Vy in 5,

6= kV-(+ 1)1/2 (1 2)1/2 +h2 ot-i C_ c2 .. )]coso. C138h "'

If a prime denotes values given by Equations (.38z', a", b"1,

''( )cos / 2 + 1, 1/2 (138i
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q w + V sin (. [138k"]

On the y-axis and in the zx-plane q-- Ivl and v = t'- V.
On the ellipsoid itself, where 4 = Co, q " 0 and, using Equation [138w'] nd Equa-

tions [138z. a l1.

2e3h2V I COS Co [1381

(1-e)2 (1-e 2 +e 2i12 ) 1/ 2

2e 3 h2 V

q, sin w. [138m"]
(1 -e 2 ) 1 / 2

The same remark concerning the variation of q. applies here as in Case 3. Around the cir-

cumference of the ellipsoid in the zx-plane, q = lqj,[ anJ qc, is given by Equation [138m ']

with sinco = 1. As e-.0, the coefficient 2e 3 h2/(1-e 2)1/2-.3/2, as for a moving sphere.

Case 5. Rotatior of an Oblate Spheroid or a Circular Disk about an Equatorial Axia.

Let the angular velocity be fl about the y-axis. Then

=A(' + 1)1/2 1(1- it2)1/2 3- 1 -3 C cot- sin c, [138n

k 2 jj (22+ 1) cot- /.0-6C. - -6 . [138o"1

At 4 = 4o this satisfies the boundary cond ition stated in Equation [137c "), which is easily

seen to hold for planetary coordinates as well. The axes are assumed to share in the rotation.

At large distances from the ellipsoid where C is large, it is found, by expanding in

powers of 1/4 as in previous cases, using Equation [138g'], that approximately,

2 Ali 2 3 z
, - (1 -I2)1/2 sin (a e3c23 5 x
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The velocity components are

A 1L(1- 12)1 / 2 [-(2I2+ 1) cot -  
6- in ,

4k W+112 )1 / 2  2 ,'t4-3+ si , 1

A it (34 cot - 1 C-3+ cos oi. [138r"I

For a circular disk, obtained by letting a-.0, so that CO-.0 and k- c, A - 2c 2 
'l,

and on the disk itself y=c(1-fz2 ) 1/ 2 cos (,, =c(1-P 2) 1 / 2 sin (o, and C/L =±(c2-y2-z2)1/2.

Thus, on the side on which p' > 0,

4

-=4 9 z (c 2 _ y 2 _ z 2 )1 / 2 , [138s"]
3,7

and the y and z components of velocity tangential to the disk are

V d 4Q yz [138t"a'"" "y = 3n (c 2_ Y2 _ z2)1/2

w 4 y 2 +22 2  . [138u"]
6dz 3n (2 _Y2 _ Z2)1/ 2

On the opposite side of the disk 5 , v, and w are reversed in sign.

Over most of the disk the fluid flows rather as if to go round the axis in the direction

of rotation of the disk. Close to the edge the values of u and v are such that the radial com-

ponent of the %elocit) predominates, becoming infinite at the edge. and its direction is that

of a flow around the edge in opposition to the rotation.

The kinetic energy of the surrounding fluid of density p is

8 5
T = -[ p 3 . 138w"

45
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For, the velocity normal to the disk is that of the disk itself or q, = 1) z; hence writing

y - Z'cos (0, 2 ZTsin (a, and dS = Zrdr,, Equation [17c] gives, integrated over both faces,

T =-p0 qndS = P Q 2 &(C 2 - f2)1/2(J sin 2 (1(.

0 0

The pressure can be found from Equation [lie] or Equation [11d].

In the last three cases there is no axis of symmetry, hence no stream function exists.

(See Reference 1, Article 107, 109; Reference 2, Section 15.54, 15.55; Zahm.102,174)

139. CIRCULAR APERTURE

The oblate-spheroidal coordinates described in the last section may [ used also to

obtain the flow through a circular aperture in an ;te plane.

For this purpose k is taken equal to r, the .adius of the aperture, so that from

Equations [138a, b]

X= c(, 1= c(t 2 +. 1)l ' 2 (1 -i 2 )1/2; [139a, bi

and the ranges, -- <C<-, 0--p <1 are used, ;o that, as in Figure 238, IL= - on the entire

x-axis.

C' C)

.0 X >0

,.-I p-I

Axis of Synrietry

Figure 238 -- Flow l',rough a circular aperture in an infinite
plane using oLZate-spheroidal coordinates.
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Jn this wa) the discontinuity in the cocrdieates on the plane x - 0 's displaced to the

outlying part N here Z ,k f c, which is r ) a ri ,it; houndarN; the tko halves of each coordi-

nate ellipsoid meet there with oppo : values of C. The central part of the plane, on which

:k , represents a circular aperture. In the last section, discontinuities of it % ere allow-

ed to occur on the central disk of radius k, but this part was there enclosed in a rigid body.

Thus in each ca.e continuit of coordinates is preserm A throughout the entire space occupied

by fluid

It will be found that the differentia' Equations [138u] and [138v, wi are satisfied by

A cot -  , , - AcI. [139c. d]

The velocity is in the C-direction, so that q - jq j, and from Equations [138r, n]

% _ (C2 + )-I 1 2 (C2 + I2)"1/ 2  [139e1
c

On either face of the plane boundary, t = 0. x = 0 and Z-= c(42 + 1)1/2 or

± - 2 -c 2 ,'c; hence q = IqZ! and

A ±cA [139f]
.t Zri'-2 _ 2

The sign ± is to be taken the same as the sign of 4.
In tie plane of the opening C = 0, x = 0, ' ctl -it 2 ) 1 / 2 , q Jul, and

A A
u = % = [139g1

On the axis of symmetry or x-axis, iL = 1, x = cC, q = Jul and

A cA [i'39hl

c(4 2 + 1) z 2 +c 2

The verocity is thus infinite at tile edge of the opening.
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The volume of fluid flowing per second through the opening is, using Equation (139g]
for u,

Q= 21rf C urdZ7= 2n c.l. U390]
0

Some lines of flow for equidistant values of 0b arc, shown in Figure 239. By adding a
uniform flow parallel to the p~lane, more general cases can he treated.

(See Reference 1, Article 108.)

Figure 239 - Syr'a'netrical streamlines for flow through
a circular aperture in an infinite plane wall.

140. ROTATING ELLIPSOIDAL SHELL

Consider the fluid inside a shell whose surface is the ellipsoid

X2  Y 2
f (x Y, ) -+ - .- - 1 0.140a]

a 2  b2  C2

The dirsG-AiOl cosines of th- -- al at any point of the surface are, from Equations [136b, c, dl,

I 2k -, m 2k -, n k -.
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Let the ellipsoid rotate about the x. axis with angular velocity ).'. Then, by substitut-

ing for 1, ni, n in Equation [135d], and also u= -00,'0x, v= _0/'y, w -,'z, % -

the boundary condition to be satisfied by b is

- = .- ) yz.
a2  x b2 dy c2 dZ ,2 b2/

A solution of the last equation which is also a solution of the Laplace Equation or

Equation [7a] is

b2 _c 2

= ( yz. [ 140b1
b2 +c 2

The components of velocity are

b2 -c 2  2_C 2

U =0, V -- y . [140c, d, el
b2+C 2  b2+c 2

The flow thus proceeds in planes perpendicular to the x-axis, and it is the same in all of

these planes, except for variation in the size of the occupied elliptical cross section. The

flow pattern is, in fact, the same as that inside an elliptica! cylinder rotating about its axis,

as illust'ated in Figure 173.

The kinetic energy of the fluid is

T = - ~(,2 +a 2 ) ddydz=- pabc2. [4f
p 202 c2 ON 15 [140f]- o ,,+0+c

To evaluate the integral, substitute x = ax, y = br'cos 0, z = cr'sin 0.

Analogous results hold for rotation about the y- or a-axes; and by combining rotations

about the coordinate axes the general case can be represented of rotation about any axis

passing through the center of the ellipsoid.

The axes rotate, of course, with the shell.

(See Reference 1, Article 110; Zahm. 174)
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141. ELLIPSOID WITH UNEQUAL AXES

For the general ellipsoid with equation

x2  y 2 z 2+i. + - = 1, [141a)
a2  b2  C2

the appropriate ellipsoidal coordinates A1, A2, A 3 are defined in terms of x, y, z as the three

roots of a cubic in A, which can be written

x2  y 2 22+ + 2 =1. [141b]

a2 +k b2 + c2 +A

The use of these orthogonal coordinates in potential problems involves special functions

known as Lame' functions, and no further details will be given here.

For translation of the ellipsoid through fluid at rest at infinity, parallcl to one of its

axes, which will be taken as the a-axis without regard to its relative magnitude, the kinetic

energy of the fluid is found to be

T - . - r abep 2 , [141c)
2 - ao  3

o abc 7 a A [141d]

o a (a 2 +') 3 / 2  (b 2 + ) 1 / 2  (C2 "u ) I / 2

The defi ite integral can be expressed in terms of elliptic integrals, which are tabulated;

see Reference 3 or Reference 235, as listed later, where a> b > c.

For rotation at angular velocity w about an axis, here taken as the a-axis,

(b 2 c 2 ) 2 t,,o) 2

2(b 2 _c 2 ) + (b 2 +e 2 ) ( -Yo) 5abcpco

0o = a b c  [141f]

b (a 2 +A) 1 2b 2 +X)3 / 2 (c 2 +,) 1 [/2
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abc [111g]Y0 J (a2 +\)1/2 (b 2 +X)1 / 2 (C2 + X)3 / 2

If one axis is reduced to zero, the ellipsoid becomes an elliptical disk.

(See Reference 1, Articles 112-115; Durand, 3 Volume I, p. 293; Tuckerman; 2 3 5 Zahm. 174)

142. ELLIPSOID CHANGING SHAPE

If the semiaxes of the ellipsoid defined by the equation

X2 y2 22
- + - - -1 = 0 [142a]
a
2  62 c 2

change ith time at the rates a, 6. c, without rotation of the ellipsoid and with its center at

rest, and if a point moves with components of velocity i, , , in such a way as to remain al-

ways on the surface of the ellipsoid, then at this point Equation [142a] is always satisfied,

and, differentiating Equation 1142a] with respect to the time,

X. Y 2 2 Z2

-- + -Y +--. - a- -b -c 0. [142b
a 2  b2  c2 a 3  b3  C 3

Now according to Equations [135f, g, hi the direction cosines of the normal to the ellipsoid

at the point x, y, z are

l= a, =ky 2
I= 2k-, m=2k-, n=2k-,

a2  b2 c 2

where k is a ccnstant of proportionality. After substituting in Equation [142b], the combina-

tion 1i + m' + ni occurs; this cepresents the normal component of the velocity of the surface,

which must equal the same component of the fluid velocity or

lu + mv +nu'= - rn- + r.
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in terms of the velocity potential cI. Hence, after eliminating 1, m, n from the last expression,

Equation [142b] gives for the boundary condition for 0

X, 10 _ do z~ dqo X2 . Y2 22 .

S +__ +-a + - b - 0. [142c]
a2 dX b2 dy 12 20 3  b3  c3

This equation is satisfied by

X2+ y2 Z 2), [42d]
2 a C

whic!. is a solution of the Laplace Equation or Equation [7a] provided

- +- + --- 0.
a b c

But this is merely the condition that the volume of the fluid enclosed in the ellipsoid or

47 abc/3 shall remain constant, so that (d/dt) [loge (abc)] = 0.

The velocity components of the fluio are

u - do X, v= -y, w= -Z. [142e, f, g]
a 6a C

(See Reference 1, Article 110.)

143. FLOW PAST A PARABOLOID

Consider the steady flow parallel to the axis of a solid body having the form of a pa-

raboloidal solid of revolution. With dlae origin at its focus and the z-axis of cylindrical coor-

dinates along its axis, let the equation of the surface of the solid be

Z2 = a2 - 2az, [143a]

where 76 denotes distance from the axis. Its apex is at x - a/2 and it extends toward nega-

tive x. Let the fluid approach at velocity U from x = +c.
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It is convenient to introduce also parabolic coordinates A1 , A2 , nearly as in Section 87,

so that

X 2 (Al 2), A A A O, AO;

A, 7' ' X, h=/',r=x+ 2  [143b, c, d]

The surfaces, A1 = constant or A2 = constant, are confocal paraboloids opening, respectively,

toward positive and negative x. Their races on a plane through the axis are illustrated in

Figure 137. On the x-axis, A,= 0 and x= A,/2 for x 2 0, whereas A2 = 0 and z=-A 2 /2 for

X = 0.

By introducing also for the moment y =cos &) and 2 = E'sin a) where o is the angle

about the axis, it is found from Equation [136a] that

1 2  2s83 1 1
-- -- =(k+A /2 , =- : 143e, f]

&A I 5A2  = Al A 2 W

The surface of the given solid, on which x<a, is the paraboloid A 2 =Va; as is easily

verified from Equation [143c]. On this surface the stream function ', must. be constant. Fur-

thermore, in the surrounding space, as A2 -, m'o, x-,, and in the limit it is necessary that
-(1'2= UA2A2 / see Equation [119b] for a uniform stream. The differential Equa-

l 2 Euto[191Eqa
tion [136m] for 0 becomes here

-? + 0 - . [4g
O GI  A A2 2A 2 02  2 [1 4 3 g ]

This equation and the two boundary conditions are satisfied if

1. 2= U2,A 2 - a) 2 -a(r-x)]. [143h]
2 1" 2 2 ar-x,

Then 'P = 0 on the solid and also where x>0 on the x-axis.
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The corresponding potential, obtained by integrating Equations 1136k, 11, in which the

lower signs are to be taken if A = A1 , IL = X2 , and the components and magnitude of the velocity

are

6 U(,'-A') ~a" lnX = Ux - -aU ln(r4 X), t143i]

qx =  1 -z-- a , q + _. [143j, k, 1l

On the solid, since r + x - a, q2 = U 2(1 - a/2r).

The excess of pressure over that at infinity is everywhere positive. On the solid it is

p - p. = paU2/4r; on the x-axis ahead of it, where r - x,

P-P =. [143m]

The streamlines are illustrated on half of a plane thro.gn the axis in Figure 240. The

streamlines shown are equally spaced in the uniform stream and correspond to equal increments

of /Z5. The value of p - p.. at points along the axis and on the paraboloid is also shown, on

an arbitrary scale and for steady motion.

(See Reference 2, Section 15.58.)

p - PW P - p

Axis of Symmetry X
2

Figure 240 - Symmetrical flow past a paraboloid of revolution. The pressure
along the axis and over the paral'oloid is also shown. The focus is at 0.

See Section 143.
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144. AXISYMMETRIC JETS

A few cases of axisymmotric jets have been worked out by elaborate methods of approx-

imation. A weakly contracting jot was treated by Reissner. 2 36

Schack studied a round jet failing normally upon a plate; 2 3 7 his plot of the flow net,

labeled in terms of the older convention as to the signs of the velocity potential h and tile

stream function e', is reproduced in Figure 2.1. The figure shows half of a plane through the

axis Oi) of the jet; the plate lies along OA produced both ways.

A jet issuing through a round hole in the infinite plane bottom of a tank, under the in-

fluence of intprnal pressure but not of gravity, was studied by Trefftz. 2 3 8 His plot of the

flow net is reproduced in Figure 242; it also is labeled in terms of the older convention as to

the signs of 6 and 0/. The axis of the hole lies along the vertical line at A.

1/16 1/' 3/4
2 0 +1.-5

+2.00 
+

15- 0.75

S +0.5

+q.s5

+ 3.031

0 5 10 15 20 25 30 35 40

Figure 241 - Some streamlines anc traces of equipotential surfaces, in a plane through

the axis OD, for a round jet of fluid striking a rigid plate OA. The surface of the

fluid is at CB. See Section 144. (Copied from Reference 237.)
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' ') 0 4 0.0501

~i0 1014

051 F'igure 242 - Some streamlines and traces
of equipotential surfaci, in a plane through

0.2 the axis at A, for fluid issuing through a
,; 0.2028 round hole in an infinite plane wall, shown

in pnrt, as C0. The surface of the issuing
', 0.535 jet lies along CB. See Section 144.

, ') 0 2- - 0.3042 (Copied from Reference 238.)
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145. OTHER THREE-DIMENSIONAL CASES

The following cases of relative motion between bodies and fluid have been treated:

(a) A spherical bowl, - see Basset, 5 I. p. 149;

(b) An anchor ring, - see references on p. 156 of Reference 2.

(c) Solid produced by revolving a limacon about its axis, by Bateman, 240 
- see end of

Chapter V.

(d) Solids of revolution in general, by Kaplan. 2 1

(e) Certain special shapes of bodies by Koiossoff2 4 1 and Groenhill. 2 4 2

(f) Ellipsoid moving in a curved stream by Tallmien. 2 39

(g) A point source on a sphere, by Masotti, 2 4 3 or on the axis of an oblate spheroid or a
circular disk or near a round hole in a plate, by Nicholson; 24 4

(h) A line vortex near a spheroid, by Poggi; 2 45

(i) Motion of two spheroids, by Sen; 2 4 6

(j) Two coaxial circular disks in a stream, by Sircar 2 4 7 and Nomura. 2 4 8 The disks repel
each other in proportion to cos 2 6, where 6 is the angle between the direction of the
stream at infinity and the normal to the disks, and also experience orques tending to
increase cos 2 (3.
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CHAPTER V

COEFFICIENTS OF INERTIA

146. EFFECTS OF FLUID INERTIA.

When a solid body submerged in an incompressible nonviscous fluid is acted t'non by

an external force, an acceleration is produced which is less than that for the same body in a

vacuum, since the external force must also accelerate the fluid surrounding the body. It will

be shown that the effect of the fluid can be represented by assigning to the sol;d an equiva-

lent mass greater than the mass of the solid itself.

If the motion of the body is one of translation at. velocity U in a fixed direction while

the fluid is at rest at infinity, the velocity of the fluid at every point will be proportional to

U a.d its kinetic energy will be proportional to U2. Eence, the total kinetic energy of body

and fluid can be c.xpressed in the form

1
T (At + kM') U2  [146a]

where .It is the mass of the body,

,11' is the mass of fluid displaced by it, and

k is a constant or proportionality called the coefficient of inertia.

The value of k will depend upon the size and shape of the body and, in general, upon its orien-

tat,on relative to the direction of motion.

If F is the external force acting on the body in the direction of the motion, the rate at

which F does work must be equal to the rate of increase of the total kinetic energy;

dT dU
hence FU . if + k.11') U d-

dt dt

dU
and F = (1 + kM ') -- [46b]dt

Thus the acceleration produced is the same as ir the mass of the body were increased from

Mf to It + k It'. The added term k l' may be cusidered as an effective mass due to the pres-

ence of the fluid.

If V is constant, F = 0, so that no force is required to keep a body in motion provided

there is no fluid friction. The coefficient of inertia has significance in cases of acceleration

only.
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For a body rotating about a fixed axis, similar considerations hold. The kinetic energy

of body and fluid can be written

T = (I + WklW [146c)
2

where I is the moment of inertia of the body about the axis of rotation,

I' is the moment of ineetia of the displaced fluid when rotating as if solid, and

is the angular velocity.

The rate at which work is done then takes the form

dT 
di.-- (Il + kl') w dt-

where G is the torque acting on the body.

dtHance G = (I + kl') -dw - [146d)

This equation shows that no torque is required for constant angular rotation about a

fixed axis in an ideal medium. The constant A is here the coefficient of inertia for rotation

about the given axis, and its value for rotation is usually different from that for translation.

Two-dimensional flow, as described in Suction 1. an important special case of fluid

flow in which the motion occurs in a set of parallel planes, so that there is no component of

velocity or acceleration in the direction perpendicular to these planes. In two-dimensional

cases it will be understood that all quantities refer to the pcrtion of the body and of the fluid

that is contained between two planes drawn paiallel to the planes of motion and unit distance

apart, and T,, Mi, MI, 11, I, will be written as referring to this portion. The coefficient of

inertia, on the other hand, being merely a constant of proportionality, does not require a subscript.

It has been assumed that the motion is irrotational and ib therefore entirely determined

by the motion of the body. This assumption is essential. Furthermore, in defining the coef-

ficient of inertia, only one component of the force or torque was considered; and the discus-

sion was limited t0 certain special types of motion. It is of interest to consider how the coef-

ficient of inertia may be used in certain other cases; and certain other features of the force

action of fluids upon moving bodies may also be mentioned without proof.

For a given body of finite dimensions, with its mass distributed in any given manner,

it can be shown that there is always at least one set of mutually perpendicular directions,

fixed relative to the body, in any one of which the body can move through frictionless fluid

without the action of any.forces upon it and without exhibiting any tendency to rotate. These
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may be called directions of free translation. Directions perpendicular to a plane of geomet-

rical symmetry for the surface of tha body always have this property. As a general rule, if

the body moves in Pny other direction, the fluid exerts a torque upon it, and this torque must

be balanced by external forces if rotation is to be prevented. ir, cases of special symmetry

there may be many directions of free translation; and some bodies, such as can move

freely in any direction.

A force applied in a direction of free translation produces acceleration in that direction

only. A force applied in any other direction can be resolved into three perpendicular compo-

nents, each of which acts in a direction of free translation. Each component will then produce

a component of acceleration in its own direction, of tho same magnitude as if the other com-

ponents of force were absent; and the total acceleration will be the vector sum of the three

component accelerations so produced. It the coefficients of inertia-are different in the three

directions, the resultant vector force and the resultant vector acceleration will not be parallel.

As a simple example, to accelerate a massless thin disk through the fluid in a direction ob-
lique to its plane, the applied force must necessarily be perpendicular to the plane of the disk.

To prevent rotational acceleration, it may be necessary also to apply a suitable torque.

Besides pure translation, other types-of steady motion not requiring the application

of external forces are possible. The most important case is that in which the surface of the

body has twc planes-of symmetry and the line of intersection of these planes passes through

the center of gravity of the body itself and is a principal axis of inertia for the body. Then a

steady rotation is- possible about that axis; and a torque applied about such an axis generates

rotation about it in accord with the formula previously described. In special cases several or

many such axes of' free rotation may exist.

Two-dimensional motion may be further complicated by the presence of circulation about

the body, which then necessarily has the form of an infinite cylinder. In translational motion

the circulation gives rise to the familiar transverse force or lift; and the presence of circula-

tion may make steady rotation of the cylinder impossible in the absence of external forces.

Otherwise the statements that have been made for the three-dimensional case held also -for

two-dimensional motion.

In any case, the forces required to produce a given-acceleration, translational or rota-

tional, are independent of the motion already existing and are the same as if the fluid were

at rest. This is easily seen from the pressure equation, as stated in Equat;on [9e]. Accel-

eration of the fluid motion is equivalent, at any time t 1 , to thn superposition upon the flow

already existing at that time of an incremental flow that starts from rest. Since this added

flow does not alLer the velocities as they exist at time t1, its only effebt on the pressure at

time ti is to add to the value of a5/at a term that depends upon the acceleration but not on

the existing motion. It may happen that part of the total acceleration is actually due to hydro-

dynamical forces brought into play by the motion of the body through the fluid, such as the

forces that have just-been described; then the additional acceleration produced by the external

forces is the same as it would be if these hydrodynamical accelerations were absent.
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Jn the same way it can be seen that the forces required to produce two -., more types of

acceleration simultaneously are simply the %ector sums of the forces required to produce each

type separately.

In the last two chapters many expressions have been obtained for the kinetic energy,

kM'U 2/2 or kI'0
2 /2, of the fluid surrounding a moving or rotating body. To obtain k from these

expressions, it is only necessary to introduce the known vilue of M'or Pand to divide the

kinetic energy by M'U2/2 or I,2/2. The values of the kinetic energy and of k are collected

for con., enience of reference in a table following the next section. A self-explanatory picto-

rial representation of the body is appended in each case.

147. NOTE ON UNITS.

In the formulas a consistent set of dynamical units is understood to be employed, as

was explained in detail in Section 18. The coefficient of inertia k is a pure numeric.

To illustrate the use of the units the following problem will be solved.

An ellipsoidal body, with s-miaxes 6 feet, 3 feet, and 3 feet, weighing 25,000 pounds,

is suspended in sea water with its major axis vertical. When released, what will be its initial

acceleration? The density of see water is 64 pounds per cubic foot.

Solution: The resultant force on the body acts vertically downward and is equal to the

weight of the body minus the buoyant force.

4
Force = 25,000 -- Yr x 6 x 3 x 3 x 64 - 10,500 pounds.

The mass of the body is 25,000 - 776 slugs lb-sec 2

32.2 ft

The coefficient of inertia for prolate spheroids moving "end on," with a/b = 2.0, is k 0.209.
Hence the effective mass of the fluid is

4 64x 6 x 3 x3x 64 x 0.209 = 94.0 slugs,3 32.2

and the total effective mass of body and fluid is 776 + 94.0 = 870 slugs. From Newton's

second law of motion the acceleration is the resultant force divided by the mass or

10,500 = 12.0 ft/sec 2.

870
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148. TABLE OF ENERGIES AND INERTIA COEFFICIENTS

a, b, o Radius of a circle or semiaxis of an ellipse or ellipsoid,
or half-width or width of a lamina

e Ellipticity

k Coefficient of inertia, a dimensionless constant

In translation, k apparent. increase in mass

mass of displaced fluid

k2 T or2T1

Af'U 2  A1L.U2

In rotation, k= apparent increase in moment of Uiertia

moment of inertia of displuced fluid

27' 2T 1k - orl~ "a2  1'W2

I" Moment of inertia of displaced fluid rotating as a rigid body

about the assumed axis of rotation

See under T1

M" Mass of fluid displaced by body

M; See under Ti

T Kinetic energy of fluid

T1 I, 1: Values of T, I M' for fluid between two planes parallel to
the motion and unit distance apart, in cases of two-
dimentional motion

U Velocity of translation of body

0 An angle in radians

p Density of the fluid, in dynamical units

Angular velocity of rotation of a body, in radiri.. >r

second.

The fluid is assumea to surround the body and to be of infinite extent and at rest at
infinity, except where other conditions are indicated. In regard to units, see Sections 18, 147.
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A. TWO-DIMENSIONAL CASES

1. Circular cylinder in translation perpendicular to its axis:
1

T' = -p 7 a 2 U 2, as in Equation [68i0,

Ml'= prr a2, k=1.

2. Elliptic cylinder in translation parallel to .n axis, called the a-axis, either a>b as shown
or b>a:

T1 =-prr b2 U2, from Equation [8411,

Mx,= pn ab, k = b/a.

5. Plane lamina in translation perpendicular, to its faces:
i

T1 =Tpn a2 U2, as in Equation [86b],

LiikM 1 -=piar

4. Elliptic cylinder rotating about its axis:

1
T1 = - prt (a2 . . b2) 2 a 2, as in Equation [106z],

2q is of I =-pn ab(a 2 +b2), k ( •
a Rotation 2ab (a2 +b 2)

5. Plane lamina rotating about its central axis:K Axis of
Rotation 1 a4  2

i T, p; a ) as in Equation (106a'],
1

6. Plane lamina rotating about one idge:

T1 =-9 p,7 a4a) 2, as in Equation [106b'1iiAxis ol
Rotation with 8 = 1,

Apparent increase in moment of inertia 9 pr a4 /8

Moment of inertia of fluid displaced by a 3 pr a4 /2 4
cylinder of radius a rotating as if rigid
about a generator
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7. Fluid inside ell i;.tic-cylindrical shel' rotating about its axis:

Axis of 1 (a 2 - 62)2
Rotation T ,a 2, as in Equation [105m],Fud8 a2+b 2

2. +k2) ( :2-2)2.
i1' 8opuab (ak -a2+b2 = + . .

8. Fluid inside semicircular cylindrical shell rotating about axis of the semicircle

Axis of T 1 ~(~ 8 -. I pa 4 &2, as in Equation [102e],

Rotation 7 2

IIs -1,, k = 2= 0.621.

9. Fluid inside equilateral triangular prism rotating about its central axis:

Anis of 1 4Rotation TI - 4 0 2, as in Equation [103k],
1 8

Z \1; 4, k1

10. Lamina bent in form of circular arc, in translation at angle 0 with chord:

aFlu p sin as in Equation [78r].

11. Cylinder with contour consisting of two similar circular arcs; see Section 89.
0. 180

A -- - ees O.uss-sectiodlf P-rea S= [2(1-f) n+sin 2 0
2c -o de ees sin2 0

1. Translation Farallel to chord AB. r - p k SU2, - - -1.

2. T-anslation perpendicular to chord AB: 'r = pk su 2 , k + - -1.
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12. Cylinder with contour formed Zy two similar parabolic arcs meeting perpendicularly; see
--ction 91(d):

3 12 1

4K4

1. Translation parallel to chord AB: k- - 1 = 0.525.
n

3

8K'4

2. Translation perpendicular to chord AB: k- - - 1- 2.049.

Here K = 1.8541, the complete elliptic integral of modulus V172

13. Cylinder whose contour is formed by four equPi semicircles:

1
Af = (2+ n) ph 2; for translation in any direction

4

T -- LH .2 k .- _ K 2 _ 1 1.100.l2 2M +:2 r=2+

For K, see the preceding case. See Section 91(e).

14. Double circular cylind1er, each cylinder of radius a; see Section 90:

M'= 2 p a2 .

1. Translation parallel to line of axes AB: T1 .. pra2U2 .) =0.645.(6 6

2 T
2

2. Translation perpendicular to line of axes AB: T1 =pifa 2 U2  -1 I= -- 1= 2.29 0.

15. Cylinder of radius a sliding along fixed plane wall; see Section 90.

Fh~sid ( U.,. T 1 pr a 2 u2 u--77

Wall 2n 2

M1 = pir a k - - 1 2.290.
3
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to. Cylinder of rhombic cross-section, in translation along a diagonal; see Section 91(c).

Al = p s 2 sin 0

_0 1 20 r (3/2)
2 sin0 r i r +

Iire 0 is in radians and r stands for the gamma function.

17. Rectangular cylinder in translation paraLiild to a side; see Section 91(b) for references.

mk .,= apparent increase in mass,

EU
10l" p w 2 /4 or M1 for a plane lamina of width w.

h/w 0 0.025 0.111 0.298 0.676 1.478 3.555 9.007 40.03

A4'/Mo- 1 1.05 1.16 1.29 1.42 1.65 2.00 2.50 3.50

18. Circular cylinder with symmetrical fins:

T4 1 k M1 u 2I as in Equation [91g],

I 1 prD 2 ) k=l+

19. Cylinder of radius a in translation and instantaneously coaxial with enclosing fixed cylinder

of radius b:

Fixed I

b, T I pa 2U 2  
, as in Equation [104f]1 -2 P ~ 2 2 b 2 _a 2 .

Fluidb2+a 2
I',prt a2 , ,:

Ml'-pn ab 2 _a 2

20. Cylinder of radius a in translation in any direction across axis of enclosing fixed square
cylinder of side s, a/s small; see Section 91(1).

3 1 a 2

T Pi7 a2 12 1+ 6.38-...
2 S2 ,

ar2, a2

Fluid Af'. pr a k-' +6.88 2 ....
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21. Cylinder of radius a in translation in any direction near a fixed infinite wall, a/k small:

UT, - I pria 2U2  I + a .. , as in Equation [95g]

Fluid
7/777'2)r a2

Wall hf;~ - pr a2,~+-
2k 2

(Only the force required to accelerate the cylinder is considered here.)

22. Cylinder of radius a moving symmetrically between fixed infinite walls h apart, a/h rather

small:

WalT 1  pr a2U2 [+ 2 ( n) 2+..J as in Equation [46q]

12 2 2 a2

Wall77 Ipif, ra ,k=l+-

23. Plane lamina of width b moving symmetrically between fixed infinite rigid walls h apart,
b/A rather small:

Wall nb2 / 72,I,1 P 2 . . ... as in Equantion [651]
U ~~ 2 4 24h 2  /

Fluid

Wall For the general case, see Section 65.

24. For kiiietic energy around a Rankine cylinder, see Section 54.

B. THREE-DIMENSIONAL CASES

25. Sphere in translatory motion

T--paas in Equation [127f],
U3

Als-p a3,k
3 2
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26. Sphere moving perpendicularly to infinite rigid plane boundary, a/h small:

LFld T=-pa 1+- -+... I as in Equation [130a]
. ]_ h3with a -0,

4 ) ( 3 a3

M =-r 3'k- - 1+- - +o,

3 2 h3

Only the force required to accelerate the sphere is considered here; see Section 130.

27. Sphere moving parallel to infinite igid plane boundary, a/h small:

" h T r 3 (16 a wt 9dg
T=-pa + - - +... U2 , as in Equation [130a]

u3 \16 Pi3

with a -90 deg,

-4M= - a 3 ,  k= 1 (1 + .....

"3 P 2 \ 16 h3

28. Sphere moving past center of fixed spherical shell:
.7 3bV + 2a 3

T=- 3 pa 3 6 3 -a 3 U2, as in Equation [129e],
b ', b _a3

MFi r=np a, k1 I +2a

3 2 b3 -a 3

29. Prolate spheroid (or ovary ellipsoid), a>b; see Section 137:

Let e eccentricity of sections through axis of symmetry,

c 0 = 1-e 
2  n - 2e

e 3  1-e

o 1-e2  2 -e
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(t) Translation "end on":

U 2 o

(;-
M=-pabo

Al , = 4 O ft a b2 ,  k - k I  - . 0a

(2) Translation "broadside on":

2 Pl0
tU T = 2 pu ab2 U2

AM="4pn ab2, h 0

Sk 2- o

(3) Rotation about an axis perpendicular to axis of symmetry:

Axis of T1. kU 4 (2+6)
Rotation T=- k'h0

2 , I=_p, ab2 (a2 + b2)
2 15

I- ob -i a (a2 -b 2)2 )

(a2 + b2) [2 (a2 - g 2) - (a2 + b2) (go- _)

See Table 1, taken from Reference (1).

30, Oblate spheroid (or planetary ellipsoid), a < b, see Section 136, where b =c:

Let e = eccentricity of sections through axis of syiametry,

2,--o 3 e- VIe sin-le),

o =1 ViC---e sin1'c -e (-e2)].
e
3

(1) Translation "broadside on" or parallel to axis:

2 °

T=- pffab
2 U 2  - '

M=4 b2o0pi a k=k1  _o
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TABLE I

Coefficients of Inertia for Prolate Sphbroid

kI k2  k'

a/b Translation Translation Rotation about
"end on" "broadside on" Minor Axis

l.O0 0.500 0.500 0

1.50 0.305 0.621 0.094

2.00 0.209 0.702 0.240
2.51 0.156 0.763 0.367

2.99 0.122 0.803 0.465

3.99 0.082 0.860 0.608
4.99 0.059 0.895 0.701

6.01 0.045 0.918 0.764
6.97 0.036 0.933 0.805
8.01 0.029 0.045 0.840

9.02 0.024 0.954 0.865
9.97 0.021 0.960 0.883
C, 0 1.000 1.000

(2) Translation "edge on" or perpendicular to axis:

/ T= - p7 ab2 U2

I- b 3 2-Po

A f= 4 Pv ab2, k=k2 .-

(3) Rotation about axis perpendicular to axis of symmetry:
14

T= I= kOJ2, 4 ab 2 (a 2 b2 ),

(62-a2)2 (ao- o) 70

(a2 b2) [2 (b2 -a 2) - (a 2 + 2 ) (o-3o)I

See Table II, in which k, and k2 are from Reference (102).
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TABLE II

Coefficients of Inertia for Oblate Spheroid

ks ki  k'

6/a Translation Translation Rotation about
"edge on" "broadside on" Equatorial Axis

1.00 0.500 0.500 0

1.50 0.384 0.803 0.115

2.00 0.310 1.118 0.337

2.50 0.260 1.428 0.587

3.00 0.223 1.742 0.840

4.00 0.174 2.379 1.330

5.00 0.140 3.000 1.978

6.00 0.121 3.642 2.259

7.00 0.105 4.279 2.697

8.00 0.092 4.915 3.150

9.00 0.084 5.549 3.697

10.00 0.075 6.183 4.019

oo 0.000

31. Circular disk in translation perpendicular to its faces:

a I= p a3 U2, as in Equation [138o 'I;
3

(apparent increase in mass) 2

(spherical mass of fluid of radius a) 77

32. Circular disk rotating about a diameter; see Section 138:

8 52
4-5 p a s (a

(apparent increase in moment of inertia) 2

Axi (moment of inertia of sphere of fluid of 3
Rotation .. radius a or 8 pw a 5 /15)
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33. Elliptic disk of ellipticity e in translation perpendicular to its faces, a > b; References

(240) and (235):

T .pa2b U2, e= a 2 -b 2 ;
3E a

-. ._ (apparent increase in mass) k

(- pr a2 b = ellipsoidal mass of fluid with
3 axes a, a, b)

;7/2
E f 2 -e 2 sin2 0 dO, the complete elliptic integral of the second kind to modulus e;

0 for table, see Peirce (20).

a/b = 1 1.25 1.5 1.75 2 2.5 3 4 6 9

k" = 0.637 0.705 0.756 0.795 0.826 0.869 0.898 0.932 0.964 0.981

34. Ellipsoid, any ratio of the axes a, b, c; see Section 141:

00

Let, ao= abf 2 X)3/2 (b 2+ /2 (C2+) 1/2 ,

.ie a 2X)/2 (b2+)'2 (c2 +X)1/200

6 0 
= abc 1

.-f (a 2 +X) 1/ 2 (b2 +A) /2 (c 2 +A) 1 / 2

00

T=c 3d~ab
(1) Translation perallel. to the a-axis:

T =- pn abc, 2$

3 2 -c 0
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(2) Rotation about the a-axis:

b 2 (b2 -c 2)2 (Yo-3 0)~T= -p= abc co2

Axis of W 15 2(b 2 -C 2 ) + (b 2 +c 2 ) (' 0 Yo)
Ro,^Iion,

/i4 (b 2 -c 2 ) 2 (Yo-flo)I=- pnabc(b2 +c2), k'5
15 2(b 4 -C 4) +(b 2 +c 2 )2 (P8o-yo)

For the expression of col Pl Yo in terms of elliptic integrals, see N.A.C.A. Report 210

by Tuckerman (235) or Volume I of Durand's Aerodynamic Theory (3). Some values of k and of
k', distinguished by a subscript to denote the axis of the motion, were given by Zahm (174).

35. Fluid inside ellipsoidal shell rotating about its a-axis, any relative magnitudes of a, b, c

(see last figure):

2 (b 2 -02) 2

T= 15 p abc (b2 + 2 2  as in Equation [140f],

15 32+2)P'- - pu bc 2) k-- _ __c

36. Solid of revolution formed by revolving about its axis of symmetry the limason defined by
r = b (s + cos O)/(s2 - 1) where b and s are constants. The curve for s = 1 is a cardioid. A
few values of k are given by Bateman in Reference (240):

S=. 12 1.1 1.2 2 3 00

k = 0.578 0.573 0.569 0.548 0.527 0.500.
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