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FOREWORD
By Dr Frederick H. Todd

This report is a wide-ranging account of the fundamentals of the potential flow of
frictionless fluids, and its value i3 greatly enhanced hy the large ..umber of actual exsmples
included in the text. It will be of great value both to the practicing engineer concerned with
fluid fﬁ;\vs and to the student.

Dr. Earle H. Kennard was formerly Chief Scientist in the Hydromechanics Laboratory at
the David Taylor Model Basin, and later head of its Structural Mechanics Laboratory. Through-
out his service at the Model Basin he devoted his efforts to the advancement of knowledge in
these fields and to the physics ol underwater explosions. The value of his work in these
areas and in the associated one of structural vibration is well attested by the many papers
and reports which he has published.

He has also devoted much time to the education and training of the younger members cf
the staff. His educational work, indeed, began much earlier as a professor at Cornell Univer-
sity, and unnumbered students have profited from his well-known text book on physics.

His colleagues have learned to respect his judgements, to enjoy his friendship and to
appreciate his wit, even though it is sometimes somewhat sharp!

This report is a typical example of Sarle Kennard’s clear, explanatory writing, com-
bined nevertheless with an admirable economy of words. It is a great pleasure to his many
friends and admirers to see it published while Dr. Kennard, though over 80 years of age,
is still active and still continuing to work in the field of structural vibration. We lock for-
ward to the privilege of making more of his work avaiiable to the profession of naval archi-
tecture through the medium of Model Basin reports, for it is upon such people as Dr. Kennard
and the results of their research that the reputation and imeage of the establishment depends.
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NOTATION

Constants

Constants; semi-axes of ellipse or e!lipsoid
Ellipticity of an ellipse

Force on a body

Force per unit length on a cylinder
Constant; sign of a function of a variable

A constant

A constant, real or sometimes complex
Moment or inertia

Equivelent moment of inertia of fluid moving irrotationally scound or irside a
rotating body

Symbol deroting that only the imaginary part, of the expression following it is to
be taken, with omission of the factor ¢

ST

A rea) constant; inertia coefficient

Direction cosines, or constants

Mass of a body

Equivalent mass of fluid moving around a body that is in translational motion

Values of ¥, M “taken per unit length of a cylindse, in cases of two-dimensional
motion,

Torque per unit length on a cylinder

Pressure in the fluid

Magnitude of particle velocity in the fluid

Component of the velocity in direction normal to a curve or surface
Components of velocity in the directions of polar coordinates r, 6,
Component of velocity in the direction of the tangent to a curve
Components of velocity in the directions of cylindrical! coordinates 2, @, w
Radius of a circle

Symvol denoting that only the real part of the expression following it is to be
taken

A polu: couvtdinate; in two dimensions, distance from a line; in ihree dimensions,
distance from a point

Denotes a surface
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Kinetic energy of the fluid

T, In two-dimensional motion, kinetic energy of the fluid between two planes of
flow unit distance apart

t Time; also, an auxiliary complex variable

U Uniform siream velocity at infinity; velocity of translation of a body

u Component of velocity in the z-direction

4 Same as U but always specifically parallel to the y-axis

v Component of volocity in the y-direction

w In three dimensions, component of velocity in the z-direction; in two dimensions,
waeg+ i

X, Y, 2 Components of force on a body

Xys Y;» 2, Components of force per urit length on a cylinder

z, ¥ Cartesian coordinates

2 In threo dimensions, the third Cartesian coordinate; in two dimensions, z = ¢ + iy
a, B,y Constants, usually angles

r Circulation around a curve or about a cylinder N

€ An angle

I For two dimensions, a complex variable; { = A — iu in secs 88-90, { = £+ ip in

secs. 81-86 and 106, and ¢ =- dz/dw in secs. 111-117; for three dimensions, a
spheroidal coordinate in secs. 137-138

) An elliptic coordinate in Secs. 81-86, 106
0 An angle
A A special coordinate in Secs, 88-90, 136, 141
A A, Paraholic coordinstes in Sec. 87
n Moment of n point dipole, o moment per unit length cf a line dipoie; a special
coordinate in Secs. 88-90, 107, 136, or a spheroidal coordinate in Secs. 137-138
v Dipole strength per unit length in Sec. 132; a special coordinete in Secs. 107, 136
¢ An elliptic coordinate in Secs. 81-8€ and 108
@ Distance from a line, sometimes used as a cylindrical coordinate
Density of the fluid, in dynamical units
¢ Velocity potential
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Y Streum function, for either two-dimensional or axisymmetric three-dimensional
motion

Anguiar velocity, in radians per second; angle about a line, used with z, & as
a cylindrical coordinate or with £, u as a spheroidal coordinate

Dyy Wyy @ Cemponents of angular velocity about the z-, y-, z-axes
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INTRODUCTION

In the work of the David Taylor Model Basin a need was folt some twenty
vears ago for a collection of the known typesof the potential flow of frictionless
fluids having a uniform and invariable density. The following report was intended
to meet that need in a form convenient for reference.

In Chapter I the chief principles needed in dealing with the potential flow
of a fneuonless fluid are deseribed. In this chapter, but not elsewhere, variation
of the fluid density 1s semetimes allowed. In Chapter 11 the use of mathematical
complex functions in dealing with two-dimensional problems is explained. Then
Chapter HI deals with two-dimensional cases and Chapter IV with three-dimensional
cases. Fometimes boundary conditions in the form of vortices or vortex lines are
allowed. Chapter V lists coefficients of inertia.

The fluid velocity in potential flow is assumed to equal the negative grad-
ient of the velocity potential, as in the textbooks of Lamb and of Milne-Thomson.
An older assumption was that the velocity equals the positive gradient of the
potential. The formulas given in this report can be adapted to this older assump-
tion by reversing in all formulas either the potential or all of the fluid velocities
wherever these occur.

It was found necessary, however, to limit =cmewhat the field that is covered.
The extensive literature in which incidental use i made of porential flow in treating
practical flow problems is not even listed. Curved line vortices have not been
included, nor interacting spherical boundaries. nor the thin curved stratum that is
discussed in Articie 80 of Lamb’s Hydrodynamics.

This report was finished during the last war, but its great volume was con-
sidered to make publication impractical at that time. Publication has finally been
effected. No additions have been made, however, to take account of literature
published since the war.
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CHAPTER |
FUNDAMENTALS OF THEIRROTATIONAL FLOW OF FRICTIONLESS FLUIDS

In this chapter the nature and properties of the irrotational or potential flow of friction-
less fluids will be discussed to the extent that is desirable for the understanding and use of
the material that forms the body of the report. This chapter may be regarded as an introduction
to the subject, but it does not aim at a comyplete exposition of the mathematical theory of the
potential, Further information on the mathematicaj side may be found in the textbooks of
Lamb! and Milne-Thomscn,? in MacMillan's or Kellog's ““Theory of the Potential,’*!2 or in the
periodical literature.

1. PARTICLE VELOCITY AND STREAM LINES

The velocity of the particles in a fluid may vary from point to point in a complicated
manner. By a particle of the fluid is meant a pertion so small that both its linear dimensions
and differences in the motion of its parts may be neglected. The motion of the fluid at any
instant can be described completely by specifying the particle velodity at each point.

At any given instant, a set of curves can be drawn such that at every point on a curve
its tangent has the direction of the particle velocity at that point. These curves are called
streamlines; the aggregate of them is sometimes called a flow pattern, Thus at any given
instant the particles are all moving along the streamlines as they exist at that instant.

If the stzeamlines remain fixed in position, the particles will continue to follow them,
and the streamlines will then represent the actual paths of the particles. If the motion under-
goes changes, however, the actual paths of the particles may be quite different from any of the
instantaneous streamlines. Thus in Figure 1, curves a, b, ¢ may represent stroamlines at a
time ¢, and curves a’, b’ ¢’ may be the streamlines at a later time ¢, whereas the actual paths
pursued by particles P, P, from time ¢ to ¢” are as shown by the heavy curves.

An important case in which the paths of the particles coincide permanently with the
stzeamlines is the case of steady motion. The motion of a fluid is called steady when the
particle velocity at each point in space remains constant. The velocity of a given particle
may vary, however, as it moves from point to point. Motion may be steady when referred to
one frame of reference and variable when referred to another. Thus the motion of the air
around an airplane in steady flight is a steedy motion as seen by the pilot, whereas at a
fixed p -at above the ground the velocity of the air changes as the airplane goes past.

IReferences are listed on page 396.
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Figure 1 — Two successive positions of
several streamlines and, shown by heavy
curves, the paths of two particles.

Figure 2 — Relation between the velocity and
its components.

In addition to stzeamlines, the concept of tubes of flow is sometimes useful. A tube of
flow is a slender filament of fluid whose bounding surface is composed of streamlines.
The particle velocity is a vector quantity. Its magnitude will be denoted by ¢; its com-

ponents in the directions of the z-, y-, z-axes of a rectangular Cartesian coordinate system will
be denoted by ¥, v, w. Thus

2

% =uf + 02 402 [1a]

The component ¢, of the velocity in a direction whose direction cosines are !, m, n can then
be written

g, =lu+mv +nw [1b]

as is evident from Figure 2, in which the component in the direction OP is represented by the
projection on OP of either the vector 0Q representing the velocity or of the broken line ORSQ,
whose segments represent u, v, and w,

Since ¢, u, v, and w may vary from point to point, and also with the time, they may be
regarded as functions of the four variables z, y, z, and ¢, In steady moticsn, however, every-
thing is a function of z, y, z only.

2. THE EQUATION OF CONTINUITY

A relation must exist between the motion of a fluid and changes in its density. If, for
example, more fluid enters a given volume than leaves it, the density of the fluid in the
volume must increase.

Consider a small cubical element of sides 6z, 8y, 6z whose center is situated at the
point (z, y, 2), as in Figure 3; let it be fixed in size as well as inposition in space. Fixing
attention first on the increase in mass due to flow through the two faces perpendicular to the

s v




z-axis, the amount of mass per unit time enter-

ing the cube through its left-hand face, per ?

unit time, is
a(py) 5z b2
~—2 0% 5ys (z,y.2)
(e ) ove:
where pu stands for the value of this quantity //L—- —_—
at the point (z, ¥, 2). The amount which 5z 8y y

leaves through the opposite face is

a(pu)sx
U+ — L) 5y s
(p Jz 2) yoz

The net increase in mass per unit time due to Figure 3 — Illustrating the equation of
flow in the z-direction is the inflow minus the continuity.
outflow or
d(pu
- ._(p__) 8;8.1/8
dz

In an analogous manner the net increases in mass per unit time due to flow in the y- and 2-
directions are, respectively,

a{pv) d(pw)
-—5;-83:83/82, ——f;;— oz dydez

The net increase in mass per unit time fex all three component directions must equal the
increase of mass per urit time within the cube, which is

9 (pbz 8y 82
o (pbz 8y 82)
As the sides of the cube are fixed, this can also be written

9p

dxdySz
3t °c Y

Collecting the terms and dividing through by the volume or 528y 82, we obtain the equation of
continuity,

dp dou) dpv) d(pw)
— + + + =
ot dz ay dz

0 Y2a]

This equation must be satisfied at all points throughout the fluid.

In the subsequert chapters on two- and three-dimensicnal flow we are mainly concerned
with fluids of constant density so that p does not vary in space or in time. For this case,
dp/dt becomes zero and the equation of continuity takes the form, after canceling out p,

Ju, v v 2b
az+ay+az (26]




3. EULER'S ZQUATIONS OF MOTION

The equations of motion for a fluid are the mathomatical equivalent of Newton’s second
law of motion, which states that the resultant force on any particle equals the product of the
mass of the particle by its acceleration. For convenience we may assume a fluid particle to
have the form of a cube whose edges are éz, 5y, 82 parallel to the z-, y-, z-axes as in Figure 4,
Considering the cube as a free body, the forces acting on it may be considered as made up of
three parts: compressive o« tensile, shear, and extornal forces, such as gravity. On each
face there may be two shear force components parallel to the coordinate axes.

Shear forces, in a fluid, are due to a physical property of the fluid known as viscosity,
by virtue of which it offers resistance to motien involving the production of sheating strain.
All actual fluids have viscosity, but in some fluids, cuch as water, the viscosity is quite
small. In many flow problems the viscous forces are so small as compared with other forces
that their effect may be neglected. This greatly simplifies the mathematical treatment of the
problem. Throughont this report, the assumption will be made that the viscosity is zero; this
is equivalent to saying that the fluid cannot sustain a shear stress, or that it is frictionless.

Let the pressute ot force pet unit area at the center of the cube be p, and consider the
two faces of the cube normal to the z-axis, Since the pressure will be a function of «, y, 2,
the average pressure on the left-hand face will be

. 9P 5z
p=p 3 2
and that on the right-hand face,
VY] ap 53:
po=py oz 2

The resultant force due to pressure in the positive z-direction will be the difference between
the pressures on these two faces multiplied by the area of a face or

dp
~— 8z 8y b2
dx

Let X be the ccmponent of the external

i , forces per unit mass of fluid in the z-direction.
LA LA F ¥ Usually the only source of external forces is
(:.;.a; gravity, The external fo.ce acting on the
| material in the cube in this direction is then
— 5y y pX Bz 8y 5z
&z

where p is the mass density. Here p must be
expressed in dynamical units, for example, in

. slugs per cubic foot or pounds sec?/ft%, As

the viscosity has been assumed zero, there can
Figure 4 - Illustra’ing Euler’s equation

. be no cther forces acting in the z-direction,
of motion.

and the resultant force on the material in the
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cube is 3
(pX ——2-)82: 8y dz
Jdz

This force is now equal to the mass of the particle in the cube multiplied by its acceleration
in the z-direction, which will be denoted by du/d:, Hence

a
(pX ——E)S:c 8y 8z = p dz 8y82ﬂ.
ox dt [39.]
du 197

a7 Poz

In this equation, u has reference to a certain particle of the fluid, which at a given in-

no interest actually to follow & particle in its motion; it is more convenient to regard v as a
function of position and time o

u(Z, ¥y 2, ¢)
without regard to the identity of the particle whose coordinates at a particular time ¢ are
reptesented by z, y, 2. Viewed from this mathematical standpoint, the change in v during the
time d¢ at the particle just considered may be written

du=§-’-‘dz+@dy+@dz + 9% gy
oz dy dz ot

Here dz represents the change in the z-coordinate of the particle during the time d¢; hence
dz = u dt. Similarly, dy = v d¢, dz = w d¢t. Hence, after dividing through by d¢,

du _du, ,9u , 09 ., 00 {3b]
di ot daz Yy d2

Here du/dt represents the rate of change of v at a given particle, whereas du/d¢ represents the
rate of change in u at a fixed point in space. The last three terms represent an effect due to
mction of the particle and are sometimes called convection terms.

Thus, Equation [3a] may be written, together with the analogous equations for the y-
and z-directions, in the form known as Euler’s equations:

-‘2’-‘+u£7-'.‘.+v§-‘-‘-+w-‘2'-‘-=/\’—l-?—’i

3¢
a dx  dy 9z P oz f3¢]
3,0, , 00, vy 1% [3d)
a dzr Jdy oz Py
v, yow, ,w, L dw_g 1 3
% Ve Py e P 3z f3e}

where X, Y, Z are the components of the external force per unit mass. These equations hold
whether the density of the fluid is constant ot not; in general, p is a function of 2, y, 2. and ¢,
For a fluid of constant density, Equations [2b], (3¢c], (3d], and [3e] constitute four
diffetential equations in four unknowns: u, v, w, and p. As arbitrary constants and functions
enter into the solutions of differential equations, boundary conditions are required in order to
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This force is now equal to the mass of the particle in the cube multiplied by its acceleration
in the z-direction, which will be denoted by du/dt. Hence

( X -——)83‘83/82 = p 52 5y 52 9L
d da (3a]
du g 19
dt P oz
In this equation, u has reference to a certain particle of the fluid, which at a given in-
stant occupies a certain cube but whose position in space varies. Usually, however, itis of
no interest actually to follow a particle in its motion; it is more convenient to regar. « as a
function of position and time or
u(Z, y, 25 ¢)
without regard to the identity of the particle whose coordinates at a particular time ¢ a:e
reprosented by z, y, 2. Viewed from this mathematical standpoint, thc change in u during the
time dt at the particle just considered may be written
du—a“dxqﬂa“dy«e@dz +a“dt
Jr dy
Hete dz represents the change in the z-coordinate of the particle during the time d¢; hence
dz = u d!. Similarly, dy = v dt, dz = w d¢t. Hence, after dividing through by d¢,

du _ du, ua_u_+va—”-+w-‘i'£ {3b]
dt gt 0z gy J2

Here du.’d¢ represents the rate of change of u at a given particle, whereas du/Jt represents the
rate of change in u at a fixed point in space. The lzst three terms represent an effect due to
motion of the particle and are sometimes called convection terms.

Thus, Equation [3a] may be written, together with the analogous equations for the y-

and z-direciions, in the form known as Euler’s equations:

g+u§£+v@+wa_g=x_i"_? [3¢c]
224 oz ay dz P oz
v, L, v, vy 19 (3d]
a Vet Vay ¥ az P 9y

Low, L dw, L ow_ 5 19 (3e]
at e dy 9z P 9z

where X, Y, Z are the components of the external force per unit mass. These equations hold
whother the density of the fluid is constant or not; in general, p is a function of z, y, 2, and ¢.
For a fluid of constant density, Equations [2b], [3c], [3d], and [3e] constitute four
differential equations in four unknowns: u, v, @, and p. As arbitrary constants and functions
enter into the solutions of differential equations, boundary conditions are required in order to
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remain closed, and the circulation about them must remain zero. Since a state of rest is a
state in which the circulation vanishes about all closed curves, the application of pressure to
the fluid can generate in it only irrotational motion. For this reason, the motion generated by

a moving ship in the surrounding water or by an airplane in the air is roughly irrotational,
except near the solid surfaces where friction plays a large role,

6. THE VELOCITY POTENTIAL FOR IRROTATIONAL FLOVW

Only irrotational motion will be considered hereafter. Its mathematical izeatment can
be greatly simplified by introducing the velocity potential.
If the motion is irrotational within a singly connected region, the integral

)

f 9, ds
by
taken along any path lying in the region and connecting two given points, P, and P,, depends
only on the positions of the points P, and P,. The integral is defined as in the last section;
the chosen direction of motion along the path is from P, toward P,.

To prove the statement just made, note that any two paths B, and B,, as illustrated in
Figure 6a, when taken together form a closed curve around which the circulation vanishes, so

that
) 4!
j @) 4.9, +f (B,) 9,4, =0
A F
But
2 l’o
7] ¢
|
|
\
r ,
ey P y
[)
1 r
Figure 6a Figure 6b

Figure 6 — Illustrating properties of the velocity potential.
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eliminate them and so make the solution determinate.

4. BOUNDARY CONDITIONS

At the boundaries of the fluid the continuity equation is replaced by special surface
conditions. For examplo, at a fixed boundary it is necessary that the fluid velocity have no
component normal to the surface. If !, @, n are the direction cosines of the normal to the
sutface, this condition requires that

lu+mv+nw=0 [4a]
at every point on the surface; compare Equation [1b].

If the boundary is in motion, the normal component of the fluid velocity at the surface,
or ¢, = lu + mv + nw, must equal the velocity of the surface normal to itself, This is equiva-
lent vo saying that the velocity of the fluid relative to the surface is wholly tangential, or that

a particle on the surface remains on the surface, A method of finding !, m, n when the equation
of the surface is given is derived in Sec. 135,

5. ROTATIONAL MOTION; THE CIRCULATION

In the kinematics of rigid hodies, a distinction is made between translational and
rotational n.otion, In rotational motion, all particles not on the axis go round the axis in
circles, An analogous but more general conception of rotational motion in a fluid can be
developed as follows,

Consider any ciosed curve ¢ drawn in the fluid, and choose a positive direction of
motion around the curve, as in Figure 5a. At each point of the curve, divide the particle
velocity into a component perpendicular to the curve and a component g in the direction of
the tangent tc the curve; let ¢ be taken positive when it has the same direction as the chosen
positive direction of motion around the curve and negative when it has the opposite direction.
In Figure 5a, ¢, is positive at P but negative at Q. Multiply each element of length ds along

qs

Figure a Figure b

Figure 5 — Illustrating the definition of the circulation.
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the curve by the value of q, at that element and add the products, thus forming the line inte-
gral

$ g, ds
where § indicates that the integration extends around the whyle curva, This integral is
called the circulation of the fluid around the curve C. It may be regarded as a measure of the
extent to which the fluid is moving in a rotational manner along this particular path,

The integral can 2iso be written ¢ ¢ _ds= §(udz + vdy + w dz) since the direction
cosines of ds are dz/ds, dy/ds, dz/ds and hence, by Equation [1b},

If the fluid is actually moving like a rotating rigid body, the circulation about any closed
curve lying in a plane perpendicular to the axis of rotation is equal to twice the angular
velocity of rotation w multiplied by the area enclosed by the curve. This is easily seen in the
special case of a circie whose axis is the axis of rotation, as in Figure 5b; hete ¢ = ¢, = wr,
where r denotes distance from the axis, and the circulation around the circle is

$¢, ds=fwrds=wrfds=wr(2r7) = 2(w) (n+?). The same result is obtained, by evaluation
of the integral, for a circle centered anywhere.

Motion of a fluid in which the circulation is zero around any continuousiy collapsible
curve is called érrotational motion ot flow. The significance of the coliapsibility of the curve
can be illustrated in the space occupied by the body of a doughnut. Any closed curve in this
space that is not linked with the central hole can be shrunk down continuously onto a point,
or can be deformed in continuous fashion into any other curve of the same type. Curves that
link with the hole, on the other hand, although continuously deformable into each other, can
never be shrunk below a certain mirimum size. .\ region in which closed curves fall into two
classes with respect to collapsibility is called doubly connected; a region in which all curves
are completely collapsible is called singly connected. In some cases there are more than two
such classes of curves. Regions in which there are at least two classes are called multiply
connected, In irrotational motion in a multiply connected region, the circulation is required to
vanish only about the closed curves that are coniinuously collapsible down to 2 point.

The great importance of irrotational flow a.ises from the following dyramical theorem,
which is proved in Sec. 33 of Lamb’s Hydrodynamics.?

Suppose that the fluid is frictionless, ard that its density, if not uniform and constant,
is at least a definite, fixed function of the pressure. Let the external forces be conservative,
as are those due to gravity; that is, the total work done by these forces on a given mass
vanishes when the mass is carried around any closed curve. Then the circulation around any
closed curve that is allowed to move with the fluid is consiant in time,

1t follows from this theotem that, if a mass of frictionless fluid acted on only by con-
servative forces heppens to be moving irrotationally at any instant, it will continue to move
irrotationally thereafter. Closed curves moving with the fluid may change their shape, but they




remain closed, and the circulation about them must remain zero. Since a state of rest is a
state in which the circulation vanishes about all closed curves, the application of pressure to
the fluid can generate in it only irrotational motion. For this reason, the motion generated by
a moving ship in the surrounding water o by an airplane in the air is roughly irrotational,
except noar the solid surfaces where friction plays a large role.

6. THE VELOCITY POTENTIAL FOR IRROTATIONAL FLOW

Only itrotational motion will be considerad hereafter. Its mathematical tzeatmont can
be greatly simplified by introducing the velocity potential.
If the motion 1s irrotational within a singly conr~_wd region, the integral

Py

f 7, @3

Py

taken along any path lying in the region and conrecting two given points, P, and P,, depends
only on the positions of the points P, and P,. The integral is defined as in the last section;
the chosen direction of motion along the path is from P, toward F,,.

To prove the statement just made, note that any two paths B, and B,, as illustrated in

Figute 6a, when taken together form a closed curve around which the circelution vanishes, so
that
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Figure 6 — Illustrating properties of the velocity potential.
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A Py
j (82) qs ds =—f (82) qsds
P2 Pl

since interchange of the limits reverses the direction of motion along the path and hence the

positive direction for 7 . Hence
P, 7

2 2
f (Bl) ‘Isds"’f (By) a4,
P, P

1
It follows that, if ¢ is defined as

0
¢ =f q,d, {6a)
P

zlong any path joining any point P to a fixed point Py, ¢ will be a single-valued function of the

coordinates z, y, z of P,

Furthermore,
) d ) P\ 19b\2 19 \2
u=-—(ﬁ, ‘U:-—-—(—ﬁ, w:——‘é, q2=('i) +(—é>+(—<ﬁ—) [Gb, C, d, e]
oz dy dz oz dy s

where u, v, w are the components of the particle velocity at P. For, let the path be drawn so
as to run from P straight to a neighboring point P’, which is displaced a distance §z from P
toward + 2 without change of y or 2, as in Figure 6b, Then, if §4 is the difference in the

values of ¢ at P’ and st P, pe

¢ = - f q, ds
P
since the path from P’ differs from that drawn from P only by the omission of the additional
stretch PP, But along this stretch ¢, = u, and is constant in the limit as P “approaches P,

Hence ,
P

Sp=-u f ds = - udz
P
Equation [6b] follows; and Equations [6¢c, d] can be similarly obtained.

The function ¢ thus introduced is called the velocity potential. 1If it is known at all
points, the particle velocity can be found from it by differentiation. The sign has been chosen
in such a way that the potential decreases in the direction of the particle velocity. The
relation between the velocity and the velocity potential is the same as the relation between
the electric intensity and the eiectrostatic potential.

Since the position of P is arbitrary, the velocity potential, like the electrostatic
potential, contains an arbitrary additive constant, A surface over which ¢ has a constant
value is called an equipotential surface. As the derivative of ¢ with respect to any element

—p—— -




of distance along the surface is zero, there can be no component of the particle velocity
tangent to an equipotential surface; compare Equation [6f] below. Thus the direction of the
velocity is everywhere norrizl to the equipotential surfaces; and, since the streamlines have
everywhere the direction of the velocity, the streamlines cut the equipotential surfaces per-
pendicularly.

Certain other relations between the velocity and the potential may be notea. The
component of the velocity in any given direction can be written

deb

9s =35 (of]

here d¢/ds is the space derivative of ¢ in the given direction or

9% _ lim A9

ds  As-0As
where As is a displacement in that direction and A¢g is the corresponding change in ¢. The
proof is similar to that of Equations [6b, ¢, d]. By integrating Equation [6f] it is seen that the
change in ¢ from one end to the other along any path is

Agp=~fg ds [6g]
where the integral is taken along the path.

It is often convenient to use spherical polar coordinates r, 6, w. Here r is the distance
from a fixed origin 0, 6 is the angle botween the liie Or and a fixed line or axis through 0, and
o is the angle between the piene containing @ and a fixed plane drawn through the fixed axis.
The definition is illustzated in Figure 7. A set of Cartesian coordinates is also shown having

y

.

(’l o.“))

Figure 7 — Illustrating polar coordinates.
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the same origin, the fixed plane as the zy-plane and the fixed line as the z-axis. It is evident
that

z=rcos ¥, y=rsinfcos w, 2=rsinfsinw {6h, i, j]

Any point P can be displaced in such a direction that only ox'\e of the coordinates r, 8, « varies.
The three mutually perpendicular directions thus defined may be called coordinate directions;
the corresponding elements of distance ds are dr, r+d@ along a circle through Oz, and r sin 0d w
along a circle of radius r sin @ and in a plane normal to Oz. From [6f] the components of the
velocity in these three directicns ars

b 1 9o 1 b

= - =4 = == — 6k, 1
7 or’ r g0 '@ rsin 0 Jdo (6k, 1, m]

In other cases, cylindrical coordinates z, @,  are useful. Here & denotes distance
from the z-axis and « denotes angular distance around this axis measured from a fixed plane
drawn through it; see Figure 8. Il the Cartesian axe. are drawn so that » is measured from

the zy plane,
Yy=@CoSw, Z=@Sinw [6n, o)

The elements of distance in the coordinate directions are now dz, dw and Gdw, and the com-

ponents of the particle velocity in these directions are

¢ 3¢ ] 9¢
GG I T R (o, 0,1

In all of these equations connecting the velocity potential with the velocity, the sign
is that of recent textbooks un hydrodynamics. An older usage must be noted in which ¢ is
defined as ¢ = fr,:: g, ds. Ther all differences between values of ¢ are reversed in sign and
the signs in equations equivalent to [6b, c, dl, [6f, g, {6k, 1, m], and (6p, q, r] are all positive.

y
?
z
Figure 8 — Illustrating cylindrical coordinates. = y P
W
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7. THE LAPLACE EQUATION

In an incompressible fluid of uniform density the velocity potential satisfies a very
simple differential equation. If the velocity potential ¢ is substituted from Equations [6b, c, d]

into the equation of continuity, Equation {2b], there results

i e e —= =0 {7a}

This equation must be satisfied at every point throughout the region in whicih irrotavional flow
exists. It is known as the Laplace equaticn and is often written in the symbolic formy2s =0
whero 72 stands for the differential operator
2 2 2
2,97 ,9° .39
ozt oy* az?

The Laplace equation is encountered in many other branches of physics, such as
electricity, heat flow, and elasticity, and the properties of its solutions are well known 1112, 16
Because of the linearity of the Laplace Equation, its solutions possess the following useful
properties. If ¢ is a solution, so is C¢ where C is any constant. If b, and b, are two solu-
tions, ¢, + ¢, 15 another solution; the particle velocity corresponding to ¢ + ¢, at any point
is the vector sum of the velocities corresponding to ¢, and to ,. These statements may be
verified by suistitution in the equation. Finally, if ¢, is a solution, so is ¢, = db/dz or
d¢ /3y or ¢,/ dz; for, after subdstituting ¢, for ¢ in Equation [7a), differentiating with
respect to z, for example, and changing the order of integration,

3 91 32 9 2 A
9z2 9% dy? gz 5,2 dz

Thus dé,/dz is another solution of the Laplace equation.

The problem of determining the motion of a frictionless, incompressible fluid under
given conditions thus reduces to the problem of solving the Laplace equation subject to
certatn boundary conditions. Any solution ¢ of the equation represents a possible type of
irrotational flow in which the components of the velocity are given in terms of ¢ by Equations
[6b, c, d]. Since the density of the fluid does not occur either in the Laplace equation or :n
Equation [ta] expressing the usual boundary condition, each type of flow can exist in a fluid
of any density. So long as the motion is not too rapid, gases as well as liquids can be assumed
to move approximately as if they were incompressible.

Once the velocity at each point is known, the distribution of pressure may be found

from the pressure equation to be ovtained presently.

12
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8. SOME PROPERTIES OF IRROTATIONAL FLOW

The following properties of the irrotational flow of incompressible fluids may be noted.
More rigorous proofs of some of them may be found in Milne-Thomson’s Theoretical Hydro-
dynamics? or elsewhere.!?
a. The distance betweon two given equipotential surfaces corresponding to slightly differ-
ent values of ¢ varies in inverse ratio to the magnitude of the velocity ¢.
For, 8¢ = - q & 5; if 8¢ is constant, 53w L

b. The streamlines arc concave toward the side on which the magnitude of the velocity ¢
is larger.
For on the concave side of a streamline neighboring equipotential surfaces, boing per-

peadicular to the line, must converge, as at P in contrast to @ jn Figure 9a; hence, by (a), ¢
is greater.

c. The velocity ¢ increases in the direction in which the streamlines converge, and hence

is greater noar the concave side of an equipotential surface than near its convex side.

For, if the streamlines convorge in a certain direction, such as £S in Figure 9b, the
associated tube of flow diminishes in cross section in that direction; but the same volunie of

an incompressible fluid must flow across every cross section of a tube; hence ¢ increases in
this direction.

d. In any given region, the maximum velocity must occur at a point on the boundary. The
same is true of the minimum velocity unless it is actually zero.
For, suppose a maximum value of g occurred in the midst of the fluid, as at T in Figure
9c. Then g would decrease in all directions from this point. But then the tube of flow contain-
ing this point would have to flare in both directions from T by (c), and would also have to be

concave inward over the sides of the tube, by (b), which is impossible. The proof for 2 nonzero
minimum is similar.

3
3, $
\
9y
: .
R
Figure a = Figue b - Figure ¢ -

Figure 9 — Illustrating some geometrical properties of streamlines and equipotential surfaces.
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o. Within a single connocted region the streamlines must begin and end on the boundary.
Hence, 1if the boundary is entirely stationary, so is the fluid.

For, otherwise, closed streamlines would necessarily occur, and this 1s impossible
under the conditions assumed; since, in going around a closed streamline in the direction of
the flow, the velocity potential would decrease continually. and herce it could not rewurn to
its iratal value upon returning to the starting point. Vurthermore, no streamline can end on a
stationary boundary, since there the normal component of the velocity must vanish.

f. Che flow within any rogion is uniquely determined 1f the velocity is given, in magnitude
and in direction, at all points on the boundary of the region.

Ior, if two different distributions of velocity satisfying the given conditions were
possible, a third one would also be possible in which the velocity is the vector difference of
the velocities in the given distributions. In this latter distribution the velocity would be zero
at all points on the boundary; hence, by (d), the velocity must vanish everywhere. It follows

that the two original distributions of velocity must be identical.

g. Ina singly connected finite region, the flow is uniquely determined if the normal com-
ponent of the velocity is assigned at all points of the boundary.

The proof is similar to that of (f). The difference between two types of flow satisfying
the given condition would be another in which the normal component. of the velocity vanishes
over the boundary, so that no streamlines could begin or end there; herce, as explained under
(e), there can be no sweamlines, and the two assumed distributions of velocity must be identi-
cal.

In all cases, the word boundary may refer either to a physical boundary or merely to a
geometric. surface drawn through the fluid. Furthermore, except where the contrary 1s
specified, the boundary may lie partly or wholly at infinity.

It may also be noted that differentiation of Squations [6b, ¢, d] leads to the equations

—_— - — =0, -‘9—"3-59—“-_-0, du _0v_y, [8a, b, c]

dz Jdy dz dz dy Iz
These differential equations may be regarded as an alternative characterization of irrotational
motion; for it can be shown by means of a theorem known as Stokes’ theorem that the circula-
tion vanishes around any closed curve drawn in a singly connecte-! region in which Equations
[8a, b, c] aro satisfied. The three left-hand members of the equations are the components of
a vector, which is called invector analysis the curl of the particle velocity and in hydro-
dynamics is often called the vorticity.

From Equaions [8a, b, c] it can be shown, furthermore, that in irrotational flow the
motion of any particle is compounded of a motion of translation and one of pure strain. Ina
pure straining motion there are three mutually perpendicular lines through any particle of the
material which do not change their directions; these lines are the strain axes. In rigid-
rotational motion, on tho other hand, only one line through a given particle retains its

14
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direction, namely, the line parallel to the axis of rotation.

9. THE PRESSURE EQUATICKN FOR IRROTATIONAL FLOW

Let the external forces por unit mass be given by

Y=-92 y__98 ,__9Q (9%, b, c]
9z’ ay dz

in terms of a potential function Q, as is true for forces due to gravity; and let the fluid have
the property that its pressure is a definite function of its density., Then, if the motion is
irrotaticnal, the equations of motion for a frictionless fluid can be integrated.

On these assumptions, Equation [3c] can be written, after replacing u by -~ d¢/dx in the

first terin,

2
-..__.a‘b+u va_"+w aQ

7~ VI P P

~la
p dx
or, by means of Equations [8b] and [8c], after changing signs,

936 du_ 3y _,aw_ a9 _19°
gz 9t 6:1: dx dr da pdz

Equations [3d]} and [3e] become similarly

_— .

89 L ou_,ov_ 0w 90 _ 1%
dyot dy dy dy dy p dy

and
9 0p _,du_,0v_ 0w 39 _ 19

Jdz d¢ az dz az dz P 9z

Let these last three equations be multiplied through by dz, dy, dz and added; and let the time
¢t be held constant. Then the first terms give

o 0 96, gy 0 9% .4 0 "j’gd(ﬁf:)
dz d¢ dy dt¢ dz dt a¢

d -
In general, d :—quould contain also.a term dt(%(;g); but here it is assumed that dt = 0. The

next terms in the equations give in the sum

Jdu o g, - 1 2) d - d(_l_ 2)
dz+ua dy+uazdz az( 2 . 2u
The remaining terms give similar results. Thus the final result is
2 2 2\ d
d(ff) —d(l‘- J2 02 9.2
3t 5 *75 T79) ”
This can be integrated to give
dp 9 1 5
—=— gt - Q+F(t Sd
[2-2-1p-a.re foa)
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where 1/2 =y + v 4w

Hore fdp/p can be evaluated when the law of variation of p with p is known. The
intogration ‘‘constant’’ F(¢) must be regarded as an arbitrary function of ¢, for the mathemati-
cal reason that the integration involved only z, y, and 2, and also for the physical reason that
¢ itself contains an arbitrary ‘‘constant’’ which may be supposed to vary with the time. The
presence of this arbitrary term in ¢ limits the usefulness of Equation [9d] in the general case.

If the density is uniform and constant,

dp p
f—;:; + constant

and
~=—=-2¢2-Q+F(¢), [9e]

where the arbitrary constant in the integral has been absorbed in £ (¢). In this case the
pressure itself contains an arbitrary additive constant: for it is well known that a uniform
pressure p, applied to the boundary of ar enclosed mass of incompressible liquid merely
raises the pressure throughout by the amount p, without affecting the motion. To fix the
pressure completely, therefore, its value on the boundary must be known. This value then
fixes F (¢) after the arbitrary additive function of ¢ that occurs in ¢ has been chosen. The
equation thus obtained is very useful.

If the only external forces acting are those due to gravity, it is sometimes convenient to
simplify the last equation by considering the pressure to be made up of two parts, p=p_ +p,
where p_ is the hydrostatic pressurothat would exist if there were no motion and p; is the
dynamic pressure due to changes in velocity. Whea there is no motion, Equation [9e] gives,

with p_ substituted for p and F (¢) assumed to ko constant,

ps +pQ - cunstant. {of]
If, then, p is replaced by p, + p, in Equation [9e] and p, then substituted from Equation [91],
the result is

=24 F () [9¢]

where the constant in Equation [9f] has been absorbed in F (¢). In Equation [9g], p is some-
times written for p ;.

When the only external forces are gravitational, if the z-axis is drawn vertically upward,
X=Y=0,Z=-~g, where g is the acceleration due to gravity. Hence Q is a function of 2 only,
and integration of {9c] gives

() = gz + constant,

Dynamical units are to be understood in Equations [9e] and [9g]. The pressure p or p,
may be in pounds per square foot, p in slugs per cubic foot, ¢ in feet per second, and ¢ in
seconds. The potential & would then be in feet squared per second, since the dimensions of

& are those of length times velocity or L27r-1.
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10. THE BERNOULLI EQUATICH FOR STEADY IRROTATIONAL FLOW

If the motion is steady, the constant of integration in ¢ can be chnsen so that d¢/dt = 0.

Then F(¢) reduces to a constant, and the pressure equation [9d] can be written

d
7,—p+1q2+9=0 [10a]

9
-~

where (' is a constant. Similarly, if p is uniform and constant and if the pressure at infinity

or on the boundary does not vary with time, Equations [9e] and [9g] become, respectively,

P 1 2 - 110b]
7+—2"1 +Q=0,

Pd 1 5

T+E(] +Q=20C. [10c]

The value of C, which is not necessarily the same in these three equations, may be
found from the known values of the other quantities at some one point, such as a point on the
boundary.

In many problems, the motion at infinity is one of uniform flow and @ = 0. Then, if U
is the particle velocity and p_, the pressure at infinity,

Po 1

C=— += U2
p 2

and from Equation [10b], for incompressible fluid,

p (V2 - ¢?) [10d]

o]

P=Po=

It is impurtant to note that the pressure difference, p - p_, at any point depends orly upon the
rolative motion between the fluid at the point and the fluid at infinity; in particular, it remains
the same if a frame of reference is substituted relative to which U is zero. It is physically
obvious that p — p_ cannot be altered by a mere change of the frame of reference; and it is
easily verified that the .esulting changes in Uand ¢ are such that the difference U% — ¢2
remains unchanged.

These are various forms of what is commonly called the Bernouili equation for irrotation-
al motion. For any type of steady flow, whather irrotational or not, equations identical in form
can be abtained for any one streamline, but in general the constant may vary from one stream-
line to another. In irrotational flow the constant ¢ has the samo value for all streamlines.

The Bernoulli equation holds throughout any region, large or small, throughout which
the motior happens to be irrotational. The region may even surround one or more cylinders
about which there is circulation; irrotationality in the neighhorhood of each point of the region

is all that is required.
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11. THE PRESSURE EQUATION FOR ROTATING BOUNDARIES

The foilowing special case may be ncted for reference. Suppose that incompressible
fluid 1s set into irrotational motion by the steady rotation of a solid boundary, internal or
oxtornal, the fluid being otherwise unbounded. Then the flow pattern will obviously be always
the same rclative to the boundary but at any point fixed in space variations will occur. The
distribution of values of the potential ¢ can be imagined to rotate with the boundary, but
otherwise to remain unchanged. Since the motion is not steady in space, the Bernoulli equa-
tion cannot be used. Lot the density p be uniforn.

Let 0 denote an angle of position about the axis of rotation and let the angular velocity
of rotation be w. Then that value ¢, of ¢ which, at time ¢, is at a point P is carried forward
by tho cotation during an interval dt to a point P’ at which @ is greater by d6 = wdt. At time ¢,
on the other hand, the value of ¢ at P“was

- b 70 - 3
¢-¢1+£de-¢, +w.a_.‘§dt.

Thus, during dt, ¢ changes at P’ by

b db
d¢=¢l—(¢l+w53d£)=-w?0dt
tience, at any fixed point in space,
9¢ 9¢
e —z 0 T 1lla
Y @ 30 @ qo [ ]

where @ donotes the distance of the point from the axis of rotation, and ¢4 = -(1/wY d¢4/90
and represents the transverse component of the particle velocity; see Equation [6r].
Thus Equation {9e] for the pressure p can be written, when the boundary rotates steadily,

P=p (0@ gy-Lq2-0)+p, [11b]
or, if Q =0, )
p=plw 5799-%-{12)+p0 {11c]
where p is either a constant or at most a function of the time.
These oquations can also b» written in terms of velocities relative to axes that rotate
with the boundary. The radial comonent of velocity ¢, *is the samic 2s ¢, the same omponent

taken rolative to fixed axes, but the transverse component is ¢4” = ¢g - @& Writing

g% = ¢ 1 g and then substituting ‘or ¢,

P =%p(w252 - q'z) +Po (11d]
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12. THREE-DIMENSIONAL SOURCES, SINKS, AND DiPOLES

Some important types of flow in incompressible fluid of uniform density will now be
discussed briefly in preparation for the detailed studies to be made in later chapters.

Suppose that incompressible fluid is flowing radially outward from a point P with a
velocity ¢ that is a function only of the distance r from P. Then, if a sphere of radius r is
drawn with its center ac P, a volume 47-2¢ of fluid flows outward from this sphere per se. .nd.
Since this volume must be the same for all sphores centered at P, #2¢g must be a constant, and
it is possible to write

9=— {12a]

where 4 is a constant. The volume of fluid flowing outward per second from P is then 4rA.
A velocity potential ¢ exists; for, if

At P, q is not defined and a singularity is said to occur. It may be imagined that there
is a source at P in which fluid is being created at the rate 4zA. In Lamb’s Hydrodynamics,
474 is called the strength of the source and is denoted by m; in Milne-Thomson’s Theoretical
Hydrodynamics,? the symbol m is used for A itself and is called the strength. If 4 is negative,
the flow is inward and a sink may be imagined to exist at P, in which fluid is being annihilated
at the rate 4z4. The term “‘source,” when not specifically contrasted with ‘‘sink,’” will be
intended in an algebraic sense, covering both sources and sinks. A flow of this type could be
produced by a sphere with fixed center whose radius varies with time.

To find the distribution of pressure in the fluid, substi.ute in the pressure equetion cr

Equation [9g] ¢ = A/r? and

Then

if for simplicity p is written for p;. Atr=e, p =pF(¢). Hence if p , denotes the pressure at
infinity (in excess of hydrostatic pressure), assumed uniform all round,

=__ 24 +p°° [120]

Other types of flow having a singulasity at P can bs obtained by differentiating Equation
[12b}, in accordance with the principle stated in Section 7. Thus, in Cartesian coordinates
with origin at P, replacing ¢ by ¢,,
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A Iy - Az
(@ + g% + Zz)l/z’ 9z

¢, -
(2:2 & 3/2 + 32)3/2

and dé,/dz is alsc a solution of the Laplace equation. Here z can also be replaced by r cos §
in terms of spherical coordinates with origin at P and the z-axis as axis. Thus, another solu-

tion of Laplace’s equation is (-u/A4) (3¢ ,/dz) or

u @ cos 0
2)3/2 2

é =

{12d]

(22 +y? +2 r

where p is a new constant.

The typn of flow thus defined is said to be due to a point dipole or double source at P,
also called a point doublet, because it can be produced by placing a source and sink of equal
strength close together and letting their distance apart decrease to zero while the product of
distance and the strength of the positive source is kopt equal to y. The line from which 0 is
measured is called tho axis of the doublet.

13. TWC-DIMENSIONAL FLOW

The flow is two-dimensional when there is ne variation of anything in & certain direction,
and when t