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ABSTRACT 

AD analytic tolutloo U obtained for the acouitlc premre ttatlttlci In a clowd rectangular ibaped cavity 
behind a limply supported, rectangular plate excited by boundary layer turbulence. The connlbutioo of the 
cavity acouKie prenure U neglected at contributing tc the plate excitation, leaving only the turbulent prei- 
ture fluctuation! at the exciting force. The mathematical model for the turbulent premre rutlnlci U baied 
on that of Corcot, which agrees well with experiment. A byproduct of thli analyiii it an analytic tolution for 
the turbulent flow excited plate vibration velocity itatlitici. The plate velocity and cavity acounic prenure 
RatUtici are exprenedin the form of cron power spectral densities and power spectral densities. Dimension- 
less forms of the plate velocity spectral density and cavity acounic pressure spectral density ate developed. 

The dlmensionless plate velocity spectral density and dlmenslonless cavity acoustic pressure spectral den- 
sity were computed, by means of a digital computer, for selected values of dlmenslonless input parameters. 
From these computed dlmensionless specca, the effects of major parameters on the plate velocity spectral 
density and the cavity acoustic pressure spectral density were determined. 

A 'peak spectrum," constructed by connecting the major spectral peaks in the plate velocity or cavity 
acoustic pressuri .»lectra, proved to be a useful engineering concept. Knowledge of the 'peak »pectrum' is 
equivalent to knowledge of the maximum plate velocity or cavity acoustic pressure spectral levels for a par- 
ticular set of input parameters. Based on the computed dlmenslonless spectra, mathematical expressions are 
derived for the dlmenslonless plate velocity "peak spectral density" and the cavity acoustic pressure "peak 
spectral density" over a limited range of dlmensionless frequency. The computed simply supported plate veloc- 
ity "peak spectrum' compares well with the plate velocity "peak spectrum" constructed from experimental 
measurements on a fixed edge plate above the first plate natural frequency. No experimental data exists for 
the cavity acoustic pressure. 

Comparison of the computed dlmensionless cavity acoustic pressure spectral density at the plate and the 
dlmensionless turbulent pressure qwctral density allowed formulation of criteria under which the cavity acous- 
tic pressure wasnegligible compared to the turbulent pressure. As this analysis assumed the cavity acoustic 
pressure to be negligible compared to the turbulent pressure, the aforementioned criteria are, in effect, limits 
of applicability of this analysis. 
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INTRODUCTION 

Flow induced noise is largely responsible for limiting submarine and 

surface ship sonar performance, producing objectionable noise levels inside 

high speed aircraft, and producing relatively high vibration levels in the pro- 

pulsion systems of modern spacecraft which increase the probability of 

failure of system components.   Because of this wide variety of problems, 

theoretical and experimental research in flow noise and flow induced noise has 

increased in the past decade.   The research in flow noise has been aimed at 

defining a statistical model for the turbulent boundary layer pressure fuid/or 

velocity which provides the excitation to the mechanical system.   The research 

in flow induced noise has been primarily aimed at theoretical solutions for the 

response characteristics of various systems using mathematically tractable 

approximations to the turbulent boundary layer excitation.   Certain experimen- 

tal studies of flow induced noise in simple systems have also been performed. 

To date, although there is general agreement in the measurements of 

boundary layer pressure s* atistics, there is not complete agreement as to the 

mathematical model of these statistics.   Also, although a wide variety of ele- 

mentary flow induced noise problems have been studied, few have used any of 

the existing-, experimentally based, mathematical models for the boundary 

layer excitation. 



It Is the purpose of this study to add to the understanding of flow induced 

noise by investigating the effects of major parameters on the sound field pro- 

duced in a closed space behind a simply supported plate excited by boundary- 

layer turbulence utilizing an existing, experimentally based mathematical 

model of the turbulent wall pressure. 



II 

OBJECTIVES 

The objective of this study is to provide the submarine sonar systems 

designer with information concerning:   (1) the acoustic environment of sonar 

transducers; and (2) the major parameters which may affect this environment. 

The above objective has been attacked by means of an analytical study of 

the acoustic field in a closed space behind a simply supported, rectangular, 

flat plate which is excited by turbulent boundary layer pressure fluctuations. 

The closed space is bounded by five rigid walls and the flexible plate.   A 

sketch of the model used in this analysis is shown in Figure 1.   This model 

provides a fair representation of the acoustic environment of sonar trans- 

ducers in submarines. 



Ill 

TECHNICAL APPROACH 

3.1   Technical Background 

The purpose of this section Is twoiold.   First, It summarizes work In the 

field of flow and flow Induced noise.   Secondly, It provides justification for 

certain assumptions made In the analysis to follow. 

3.1.1   Theoretical Studies In Flow Induced Noise 

Early theoretical studies In the field of flow induced noise were directed 

toward a prediction of noise in aircraft fuselages [l, 2],   The mathematical 

models of the turbulent boundary layer in these studies were not based on 

experimental evidence.   During this same period, Lyon [3] studied the re- 

sponse of strings to random excitation, Bringen [4] derived expressions for 

the response of beams and plates to random pressure fields, and Kralchnan [5] 

studied the free radiation of sound from turbulent excitation of a series of thin, 

stiff flat plates.   Again, the excitation, although characteristic of boundary 

layer turbulence in certain respects, was not compatible with experimental 

data. 

Dyer [(>] was one of the first to study the coupled plate vibration-acoustic 

radiation t ruUem. He assumed the boundary layer pressure correlation func- 

tion to bo iti • product of a convccted spacial delta function, a fixed spacial 

■«" *•-.«,... • 



delta function, an amplitude, and a decaying function of time.   Although the 

delta functions were relatively poor approximations to the actual longitudinal 

and lateral pressure correlations, the convection and time decay were phe- 

nomena which agreed with experiments.   The above excitation was used in a 

normal mode approach to the prediction of the acoustic field in a closed space 

behind a simply supported, flow excited, flat plate.   The walls enclosing the 

space were pressure release surfaces.   Although Dyer's input waä*not precise, 

it provided insight into the behavior of the model considered and encouraged 

further work utilizing normal mode theory. 

A short time layer, Dyer [?] used the same model of the turbulent pres- 

sure correlation to calculate the displacement correlation function of a turbu- 

lence excited flat plate.   About this same time, Strasberg [8] used a mathe- 

matical model of the turbulent pressure correlation based on the data of 

Harrison [9] to predict the displacement spectral density of plates and mem- 

brances.   This was one of the first cases where experimentally based inputs 

were used. 

Powell [1.0] investigated the fatigue of structures excited by random pres- 

sure fields and indicated that the response cross spectral density is maximized 

when the incident pressure correlation matches the modal wavelength. Al- 

though this is a possible condition in spacecraft because of their high speeds, 

it is not likely to occur in submarines. 

Maldanik and Lyon [ll] studied the response of strings to moving noise 

fields using the Dyer delta function model for the pressure correlation. 

From 1960 to the present, an extensive research program in flow noise 



and flow Induced noise has been conducted at the University of Southampton. 

This program yielded a recent paper by Mercer [12] in the response of multi- 

supported beams to a random pressure field. 

Tack and Lambert [13] derived general expressions for the response of 

plates and bars to boundary layer turbulence. 

A recent paper by White [14] used an experimentally based expression 

for the turbulent pressure cross spectral density to predict the response and 

consequent sound radiation from a rectangular flat plate.   The response of the 

plate and the acoustic radiation are averaged over frequency bands so that the 

details of the response are bypassed, and only the effect of such gross param- 

eters as panel modal density and boundary layer characteristics are investi- 

gated.   White obtains very good agreement between theory and experiment 

within these assumptions. 

Bull et al. [is],   as a part of the University of Southampton effort, calcu- 

lated the displacement spectral density of flat plates due to turbulent excitation. 

They used a normal mode approach to the plate problem and an experimentally 

based expression for the turbulent pressure correlation as input.  Collier [l6], 

using an approximation to the turbulent pressure correlation function, calcu- 

lated the plate acceleration correlation functions and acoustic pressure field 

radiated from the plate into an infinite fluid space at rest. 

Pretlove [17] presents the theory, from a normal mode approach, for 

calculating the displacement spectral density of a simply supported panel, 

backed by a rectangular closed cavity.   In the forcing function for the plate, he 

makes provision for both the turbulent pressure and the resultant acoustic 



pressure in the cavity.   He does not, however, solve this problem (or any 

particular model of the turbulent pressure.   From his theory, however, he 

states that the effect of the backing cavity is most severe In the oases of thin 

panels covering shallow cavities. 

3.1.2 Experimental Studies in Flow Induced Noise 

Few experimental studies of flow Induced noise appear in the literature. 

El Baroudi, Ludwig, and Ribner [18] experimentally Investigated the displace- 

ment correlation properties of a flow excited plate and the resultant total sound 

power radiated into a reverberant room.   In a related effort, el Baroudi [19] 

measured the displacement correlation properties and displacement spectral 

density of thin flat plates excited by turbulent boundary layers. 

Bull et al. [15] measured the displacement spectra of thin flat plates due 

to turbulent excitation.   The plates were effectively mounted in a fixed manner, 

and the experimental results were compared to the theoretically predicted 

spectra for the simply supported case using an experimentally based model for 

pressure correlation as input.   As might be expected, agreement between 

theoretical and experimental results was not good. 

Maestrello [20] measured the sound power spectra radiated into a 

reverberation chamber from turbulence-excited plates.   In another paper [21] 

he measured the plate displacement correlation function for turbulence excited 

plates. 

3.1.3 Theoretical Studies of Flow Noise 

Flow noise, as used in this study, refers to the wall pressure fluctuations 



produced by a turbulent boundary layer.   The mathematical theory of pressure 

fluctuations in homogeneous, Isotropie turbulence is well developed [22, 23, 

24, 25, 26].  However, because of its extreme complexity, the problem of 

pressure fluctuations produced by a turbulent boundary layer has not been 

treated extensively. 

Kraichnan [27, 28], Lilley and Hodgson [29], and Sternberg [so] have 

made theoretical studies aimed at computing the mean of the turbulent wall 

pressure, but the space-time correlation properties (or their Fourier trans- 

form) are required In order to treat flow induced noise problems. 

Two attempts have been made to predict the correlation properties of 

turbulent wall pressure fluctuations.   Gardner [31] , starting with the Navier- 

Stokes equations, attempted to predict the wall pressure correlation by 

assuming forms for the various velocity correlations occurring in his expres- 

sions.   His results were in sharp disagreement with experiment.  White [32], 

claiming that Gardner's approach was sound and that mathematical errors 

were the cause of the discrepancy between theory and experiment, attacked the 

same problem through Gardner's approach.  White calculated the turbulent 

wall pressure cross correlation function, lateral and longitudinal cross spec- 

tral densities, and convection velocity.   White's predictions agree reasonably 

well with experiment except in the case of the wall spectral density where 

there is a large discrepancy between predicted and experimental results. 

White shows that the pressure cross spectral density is approximately equal to 

the product of the lateral and longitudinal cross spectral densities, which 

bears out a previous empirical prediction by Corcos [33]. 



3.1, 4   Experimental Studies In Flow Noise 

The first reliable measurements of turbulent boundary layer pressure 

statistics were made by Willmarth [34] in 1956.   Harrison [9] In 1958 pub- 

lished the first measurements of the wall pressure cross spectral density. 

Since these measurements, many experimenters have measured the turbulent 

wall pressure cross spectral density and correlation functions.   Extensive 

bibliographies of this work are presented by White [35] and Bull et al. [15], 

and only selected references will be presented in this study. 

Bakewell et al. [36]published extensive data of mean square pressure, 

pressure spectral densities, and pressure correlation functions from experi- 

ments in a 3-1/2-inch-dlameter turbulent air flow facility. 

Using both theoretical arguments and data obtained at the Ordnance 

Research Laboratory at Pennsylvania State University, Skudrzyk and Haddle 

[37] derived the following semi-empirical expression for the turbulent wall 

pressure spectrum as measured with very small transducers: 

<t>(<,)) =0.75 x 10"Vp?U'tf' 

P*Ub 

*U) - 1.5 x lo-V-!—i 
,„35*2 

U 
CJ< 1.256 ~ 

5* 

U 
<J> 1.256 — 

(3.1) 

where a  is a constant which takes on different values for different fluids. 

For water, 

and for air. 
a- 1.0 

a = 3.0 
(3.2) 

Although this expression is not in exact agreement with experimental data 

in shape because of the discontinuous nature of (3.1), it shows good agreement 
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with experimental data In both amplitude and shape at frequencies above the 

discontinuity and a reasonable approximation to the amplitude at frequencies 

below the discontinuity.   The agreement between (3.1) and experiment 1 data 

will be discussed further In Section 4.1. 

Wlllmarth and Wooldrldge [38] reported further measurements In 1962, 

designed to provide more detailed statistical properties of the wall pressure 

fields.   About this same time, Serafini [39] published new data of wall pres- 

sure measurements. 

Corcos [33, 40], using the data of Wlllmarth, Bakewell, and Serafini, 

stated that the turbulent wall pressure cross spectral density function could be 

expressed as 

Sp^.,..).4.UA^B^y-^c>. (3.3) 

Plots of    A(ai^/Uc)    and    B((jr)/Uc)    are also included in Corcos' work and 

are reproduced in Figures 2 and 3.   Corcos went on to predict the error re- 

sulting from the measurement of the turbulent wall pressure field with finite- 

size transducers and presented a means of correcting measurements for this 

error. 

Researchers at the University of Southampton have made extensive meas- 

urements of the turbulent wall pressure statistics.   The resulting reports are 

summarized in the 1963 report by Bull et al.[l5].   Wlllmarth and Roos [4l], 

incorporating Bull's data, reattacked the problem of resolution by finite-size 

transducers on the basis that Corcos' similarity form for the cross spectral 

density, equation (3.3), although accurate over a wide frequency range, failed 
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to provide accurate hydrophone size corrections at high frequencies.   Will- 

marth indicates that the reason for this limitation is that (3. 3) is inaccurate at 

small spacial reparations.   However, as Willmarth points out. wall pressure 

correlation measurements at small spacial separations have never been made 

because of experimental difficulties.   He therefore does not propose an alter- 

nate form to (3.3). 

Some of the data mentioned above have been obtained at the walls of circu- 

lar pipes and others at the surfaces of flat plates.   The lack of any significant 

difference between the pressure spectra obtained in both cases is indicated in 

a recent work by Schloemer [42], who measured turbulent wall pressure c'ata 

in the presence of favorable and adverse pressure gradients. 



IV 

THEORETICAL DEVELOPMENT 

The model treated In this analysis was a simply supported, rectangular, 

flat plate mounted tn an infinite rigid baffle and backed by a rectangular cavity 

with rigid walls.   Fluid flows over the top of the rigid baffle and plate, and the 

cavity is filled with an acoustic fluid.  A graphic representation of this model 

is presented in Figure 1. 

In order to determine the acoustic pressure field within the cavity, it 

would ordinarily be necessary to determine the vibration of the plate due to the 

combined turbulent and cavity acoustic pressure excitations. The cavity acous- 

tic phase velocity at the plate would then be equated to the plate velocity, re- 

sulting in an integral equation for the acoustic velocity potential.   The various 

constants resulting from the solution of this integral equation would be deter- 

mined by the remaining boundary conditions, which require that the acoustic 

phase velocity be zero on the rigid cavity walls.   Pretlove [l?] used an 

approach similar to the above in computing the plate displacement spectral 

density for a model identical to that described above.   However, Pretlove 

discovered that the cavity acoustic pressure had little effect on the plate dis- 

placement spectral density except in cases of thin plates covering shallow 

cavities.   For submarine applications, the plates covering the cavities are 

not thin and, therefore, in accordance with Pretlove's results, it is assumed 

12 
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in this analysis that the cavity acoustic pressure provides negligible excita- 

tion to the plate; that is, the only forces exciting plate vibrations are those 

associated with the turbulent boundary layer pressure fluctuations. 

The above assumption simplifies the problem considerably.   To compute 

the cavity acoustic pressure field, it is now merely necessary to compute the 

plate vibration velocity due to the turbulent boundary layer excitation and to 

equate this result to the cavity acoustic phase velocity at the plate.   The re- 

sulting acoustic velocity potential must also satisfy the zero velocity condition 

at the rigid walls.   Hence, it is only necessary to determine a model for the 

turbulent boundary layer pressure statistics in order to solve the above 

problem. 

Since the turbulent boundary layer pressure is a random phenomenon, 

the cavity acoustic pressure resulting from the boundary layer excitation of 

the plate will also be a random phenomenon.   Random processes are usually 

treated in terms of their space-time correlations or in terms of their sped ral 

properties in the frequency domain.   Collier's recent work [lö] on the vibra- 

tion and acoustic radiation of turbulence excited plates indicated certain com- 

putational difficulties arising from treatment of the statistical properties in 

the time domain.   Therefore, in this analysis, random variables will be 

described in terms of their spectral properties in the frequency domain. 

4.1   Mathematical Model of the Turbulent Wall Pressure Cross Spectral Density 

The mathematical model of the turbulent wall pressure cross spectral 

density selected for use in this analysis was that of Corcos[3:5] ,   which is 
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given by (3.3) and Is repeated here for reference. 

Spp(6r,.<.)-<l>UAfci\B/^y-'^^\ (3.3) 

Corcos' model was selected for two reasons.   First, its mathematical 

form Is such that space variables are separated, thereby easing computational 

difficulties.   Secondly, Corcos' model was used to theoretically predict trans- 

ducer size corrections which agree well with measurements over a wide range 

of frequencies.   Thus, subject to the limitation at high frequencies discussed 

In Section 3.1.4, Corcos' model of the turbulent wall pressure cross spectral 

density provided a realistic and mathematically attractive model for this 

analysis. 

Before proceeding further, It Is necessary to discuss the limitations in 

applicability of equation (3.3).   Since ^  and  »j  are relative coordinates, 

equation (3.3) tacitly assumes homogeneous stationary turbulence.   Therefore, 

Corcos' model of the cross spectral density Is strictly applicable only to the 

case of a flow having zero pressure gradient and constant boundary layer 

thickness.   However, equation (3. 3) can be used with good accuracy for turbu- 

lent flows In which slow boundary layer growth and small pressure gradients 

occur.   In this analysis, the flow is assumed to have the following charac- 

teristics: 

a. constant boundary layer thickness over the plate, 

b. zero pressure gradient. 

Corcos [33] also shows that the convection velocity is a function of the Strouhal 

Number     <,)^' U0 .   This relationship Is shown in Figure 4.   Since the variation 
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of the convection velocity is not large over a wide range of Strouhal Number, 

it is further assumed In this analysis that the convection velocity is a constant 

given by 

V   =0.65U (4.1) 
c o 

Figures 2 and 3 present curve fits to experimental data for the functions 

A(üj^/Ut.)   and   BCw^/U,,)  contained in (3.3).   From these figures, the follow- 

ing expressions have been selected to represent the  A  and  B functions based 

on a balance of curve fit and mathematical simplicity: 

■(r)"-',"'g 

V0.m|u^/uc| (4.2) 
W. i 

and 

(4.3) 

Note that equation (4. 2) fits the measured value of   ACwf/u ) very well, 

whereas equation (4.3) sacrifices some accuracy In fitting the experimental 

data in favor of mathematical simplicity.   The expression 

U < 

provides a much better fit to the experimental data than does equation (4.3), 

but Its use In the analysis to follow greatly Increased the mathematical com- 

plexity.   Hence, equation (4. 3) was selected to represent  B{üJTI/\JC). 

It remains to select an expression for QUo) in equation (3. 3) In order to 

completely specify the mathematical form of the turbulent wall pressure cross 

spectral density.   Lllley and Hodgson [29], and Skudrzyk and Haddle [37] have 

proposed expressions designed to describe the turbulent wall pressure spectral 

density.   The agreement of the Skudrzyk and Haddle expression with expert- 
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mental results is much better than the Lilley and Hodgson expression.   Fur- 

ther, the mathematical form of the Skudrzyk and Haddle model is quite simple. 

Hence, the Skudrzyk and Haddle expression for the turbulent wall pressure 

spectral density (equations (3.1) and (3. 2)) was used in this model and is re- 

peated here for reference: 

u 
"K.j -0.7? v lo'Vp'u'aT        o, < 1.2% — 

<t)UU l.S  x   lO^u2  <,J>1.2% — 

(3.1) 

where 
a - 1.0 for water 

a -  3.0 for air . 

Figure 5 presents a comparison of the experimental data of Bakewell [36] , 

Schloemer [42], and Bull [15] with the Skudrzyk and Haddle model.   The data 

are ior air rather than water because of the greater availability of air data. 

The agreement between the experimental data and the Skudrzyk and Haddle 

expression is poor at low non-dimensional frequencies but improves consid- 

erably above the cutoff frequency.   Although the data of Schloemer and Bull 

were obtained on flat plates and those of Bakewell in a pipe flow facility, the 

Skudrzyk and Haddle non-dimensional form brings these data into excellent 

agreement.   It may therefore be assumed that the parametric form of equa- 

tion (3.1) is valid, but the values of the constants and cutoff frequency could 

be considerably improved.   For this analysis, however, equation (3.1) was 

used in the original form to describe the turbulent wall pressure spectral 

density. 

Combining equations (3.3), (4.2), (4.3), and (3.1), the turbulent wall 
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pressure cross spectral density may be described by 

u 
oj < 1.256 — 

o  I' 
S    (^.IJ.w)-   15   x   lO-'a2-^—1    [e-''.l'l|-(f/Uc|Ie-0.7|a1VUe|]e.|(a1tf/Uc) 

tj> 1.256-^   • 
A* 

(4.4) 

Equation (4.4) is the mathematical model of the turbulent wall pressure cross 

spectral density used in the analysis to follow. For convenience of reference, 

the assumptions pertinent to equation (4.4) are summarized as follows: 

a. constant boundary layer thickness over thf plate, 

b. small pressure gradients. 

It is further assumed that the ratio of the convection velocity to the free 

stream velocity is constant as presented in equation (4.1). 

4.2   Development of the Plate Velocity Cross Spectral Density 

4. 2.1  Plate Velocity Response to a Deterministic Pressure 

The differential equation governing the displacement of the plate due to 

the turbulent boundary layer pressure excitation on the plate surface is 

DV w f r — ♦ f/—-=p(x,y,0, (4.5) 
dt ,1t2 

where 
0   is the flcxu'il rigidily, 

r   is the effective damping coefficient per unit area,  and 

ft  is the effective mass per unit area. 

The terms "effective mass" and "effective damping" as used above denotes 
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the muss und damping due to the combined effect of the plate and water.   In 

this treatment, for lack of detailed information concerning the effect of the 

water on mass and damping, the effective mass and the effective damping 

coefficient are assumed to be constants.   It is further tacitly assumed in 

equation (4. 5) that the turbulent pressure field is not affected by the plate 

motion.   The effects of cavity acoustic pressure on the plate and neglected, 

and the forcing function is only the turbulent pressure. 

The solution to equation (4. 5) for any arbitrary deterministic pressure 

field can be determined by a supeiposition of the normal modes of vibration 

of the corresponding free-undamped plate, governed by 

nV'w^i^-o. (4.6) 

The solutions to equation (4. 6) satisfying the simply supported edge con- 

ditions shown in Figure 1 are given by 

wU.y ,t) = amn(«,y) sin wmnf. (4.7) 

where the mode shapes and corresponding natural frequencies are given by 

a     («,y)= sin sin  (4.8) mn z-T ah \   •    i V ab D 

and 

-VH^H^] 
The normal modes,    a    ,   form a complete set of orthonormal functions: 

that is, 

,-t 
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It is now assumed that the solution to equation (4. 5), for any determinis- 

tic pressure, can be written as a sum of the normal modes, each multiplied by 

a function of time: that is, 

wU.y.t) -   Y u    (».y)T     '«). (4. 11; 

n 'I 

where  T      is to be determined. mn 

Substituting (4.11) into (4, 5) and utilizing (4.10), one finds that Tran(t) 

must satisfy 

-^%""ir+c-'T-'MiJ[,,«(,I'y,,)a"(,,y)a,<ly- (4'12) 

At this point, it is convenient to solve equation (4.5) by means of equa- 

tions (4.11) and (4.12) for two special cases.   For the first case, let 

P,(E ,r ,t) - 8 (i -1-) 8(y - yO eJ&,,. (4.13) 

that is, a concentrated load applied at   d ',y')   varying sinusoidally in time. 

Assume the solution can be written as 

w(«,y.t)-H(II.^y.y»eu-^ (4.14) 

Equation (4.14) is the defining statement for H(«,«', y ,y', <u), which is termed 

the complex frequency response. Solution of (4.12) with p^i.y ,t) defined by 

(4.13) results in the following solution via (4.11): 

wU.y.D-f;   °r<'^-<'^    .>*'• (4.15) 

Hence, comparison of (4.15) and (4.14) yields the following solution for the 
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complex frequency response: 

Hd.l.y.y .w)--   ^^p— . —-^- (4#16) 

::IK-W2)+T] 

As the second special case, consider the impulsive loading at d'.y) 

occurring at time  t': 

p/« ,y .0 - 5(i - i') S(y - y') 5(t - c') (4.17) 

and, define: 
Ö - t-t' 

im(%    v    l) 0 > 0 
(4.18) 

!w(«,y.t) e>o 

0 0<O . 

The solution of equation (4.12), when   p    is as given by (4.17), is 

T^)..^^^Cl.i.^i.-^;J^C2co.^11.^:Jöj. (4.19) 

The constants  c.   and   Cj  may be evaluated by applying initial conditions 

appropriate to an impulsive loading, with the following result: 

T"B(,)'7^a"a('V),,n^:^ 
e 

Hence, from (4.11) and (4.18) 

(4. 20) 

eT^2M    -     «„„(..y)a.B(.'.y') H       TTY 
..,,y.y.g)—^^ E j '"V^-y* (4-21) 

By use of (4. 21) and the principal of superposition for linear systems, the 
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plate response for any deterministic pressure excitation may be constructed. 

This is accomplished by considering the excitation pressure field to be the 

superposition (or summation) of an infinite number of Impulses in time and 

space.   Hence, for any deterministic pressure field, the response may be 

written: 

wU.y.O- f rrp.d'.y'.Ohd.i'.y.y'.e^d.'dy'dt'. (4.22) 

However, as  Ö = t - t, (4. 22) may be rewritten as 

w(i.y.t)- f"f f'p|(«'.y',t-ö)h(«.i'.y.y',ö)di'dy'd« (4. 23) 

In the acoustic problem, the velocity of the plate (rather than the dis- 

placement) will be required for the boundary value.   Hence, defining 

tf«.*',y,y'.0)- 
3h(«.«^y.y^ ^) 

dt 
(4.24) 

as the velocity response of the plate to an impulsive loading, from (4.24) and 

(4.21) the velocity response is found to be 

..fff/JM   "   a    (i,y)a   (i',y') 
Cd.i.y.y ,0)-—-— 2-       ,   

■■!V^¥ 

Defining the velocity field of the plate as 

^(«,y,0- 
(?w(«,y,t) 

dt 

e 

(4.25) 

(4. 26) 
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one may express the velocity response of the plate to a deterministic pressure 

excitation via (4. 25) and (4. 26) as 

4>(n,y,t).rCCpt*'.y'.t-9){(t,*.yy.e)4M'dy'de. (4.27) 

4.2.2  Plate Velocity Cross Correlation 

The plate velocity cross correlation is defined as 

Q^(«,..ry j.yj.t,,!,) - E l^d,^,.«,) 0(,ry2,t2)l (4. 28) 

and the turbulent wall pressure cross correlation as 

QPP («pij.ypYj.iptj) - El|>t(il,yl,t1)|»^«2,y2,tj)l , (4. 29) 

where   E  denotes the ensemble average. 

From (4.27) and (4.28), 

Q^^(«1.«2.y,.y2',i',2)-E 

fojojojojojo 

C(«1.«'1.y,.y'l,öl)^(.2.«
/

2.y2.y2.ö2)dö1dö2d! t'jdy^dijdy'j   , 

(4. 30) 

However, the plate velocity Impulse response is not a random quantity; hence 

the ensemble average applies only to the turbulent pressure field.   Thus, from 

(4.30) and (4. 29), the plate velocity cross correlation may be written as 

Qi*l*v*ryvyvti't2)m I n V\\   (i>'(*\'s'i'y\'v'2'ti-di't2-e2) 

Jojojojojojo 

<rU1.K',,y1,y'1,<?1)C(«2.«'2.yj.yJ.e2)dötde2dx'ldy'1d«'2dy'2 • 

(4.31) 
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From Section 4.1, the turbulent boundary layer pressure is assumed to 

be a homogeneous, stationary random process.   Therefore, the turbulent 

pressure cross correlation is a function of the difference between the spacial 

and temporal coordinates rather than the coordinates themselves.   Hence, 

(4.31) may be written: 

Q^(«,.«,.y,.y,^)- (ff (T rQpf((W.^el-e2)C{zlyl,yry\,el) 
JoJoJoJoJo Jo 

<(*2.*'2.yJ.y'2,e2)del4e2d*\dy\ä*'2dy'2 . 

(4.32) 

4. 2. 3   Plate Velocity Cross Spectral Density 

The cross spectral density is defined as the Fourier Transform of the 

cross-correlation function.   Hence, the plate velocity cross spectral density 

is defined as 

S^Uj.ij.ypyj.oi) i-f   Q^0(t1,«2.y1,y2.T)e-"*'TdT. (4.33) 

Multiplying and dividing equation (4.32) by e'"1^-^ and substituting into 

(4.33) gives the following expression for the plate velocity cross spectral 

density: 

w ,,,2,y,,yrw)'iTiirr^rQpp(r,'''T+örö2)e^Tt',"fl2,d(T+01^ 
^l,x[,yl,y\,ei)^^(x2,z'2.y2y2.ej)^

uSiieide2dx'lAy\ds'2dy'1 

(4.34) 

However, the term in brackets is easily recognized as   s   (^ , TJ', OJ); there- 

fore, (4.34) may be rewritten: 
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S^dpij.ypyj.w)- rr((*Spp(f',^.w)r<(«1.«'l.yiy|,tfl)«
,w*«dö| 

Jo Jo Jo Jo Jo 

f" <(,2..'2.y21y'2.02).-'
w9Jd«2d.'1dy'1dx'2dy'2 . 

(4.35) 

Since ^d, i',y .y, a»)   is zero for ö ^ o , the semi-infinite limits in  ^^   and  ö2 

may be replaced by infinite limits.   It is easily shown that 

C" ((w2X2,y2.y'2,e2)t-
iue2 de2 •i<aH(x2yvy1,y'2,a,) (4.36) 

J'OO 

and that 

{* C(*r*\,yry'l,0l)t
iueidei   --iWH(.1,i'l,yl,y'I.-<U)   . (4.37) 

Hence, 

H(»2,«2,y2,y
,

2,<1>)d«'1dy'ldx2oy2 , 

(4. 38) 

where  H («,«', y, y', 6>) is as defined in equation (4,16). 

The expression for  spp(f', »/'.w) was presented in equation (4.4).   Com- 

bination of (4.4), (4.38), and (4.16) results in 

no oo 

v       .     2    V   V inn*    l-n      qi     2"2' 

m = l   q=l   f    3 2\      '"''IW     2 1\      'ra'"l 
nM   . = ■   [Kn-w)-7j[(w,.-w)+-7j 

'  '   '!f "   "e-0.11VaVlIc)(|i2-«II>e-i(WUc>(»2-«i)e-0.7(w'Uc){|y2-y[|> 

o«n<«i-v'i>a„<s2'y2)d«'idy'jd,2dy'2f 

u 
m < 1.2% — 

5* 

ojojo 
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OU '" 

s4.^ti'x2'yi-y2''") '2A 

i   S»Y (    iK    j5< (i    (i.,y1)a .(i,,y.) 

a
mn(,'ryi)aqs<,t2-y'2'd'[')

dy'id«2<,y2} 

1.2*,— 

(4. 39) 

where 

A=0.-5x lO-'a2^;^*. (4.40) 

Equation (4.39) may be rewritten by recalling the definition of   arn,l(«.y)   from 

equation (4. 8) and defining 

I, 
m q 

, f,f,
r.o.nva*Uc)c|«2..||»r.|(a u^.i-M'^inü^Ll.inlZL^d,^ (4.41) 

and 

bfb . .     .i. nny, sny 

'■'""" ■■"- 

l2       =||   *•"•""   ,cMV2-v1l-SIn___Lsln__^dy.dy.?  . i       s"y2 , , , . (4.42) 
- sin '■■•   ''••    • 

b b 

mnx,        nrry.       q"«, «"V i 
nooo i. I     . *       . « 

, .,    j    «i     r»    sin  sin —r~s"i sin —;— 
IhAoi     *-i   T-« a b a b ,,      . IhAot     x^   V a b a o        i        i 

"^ ::-:;|;^n-^)-^.-^)+^]   - "' 
u 

to  - 1.256 ~ 

mnx,        nny,       qnx sny 
■3  i»     no    sin  sin—;—sin sin- 6ss s*^xi'x2'yi-y2'^) = -7:7:7(:r:~l   >' >^ ! ~r 2 —->■   ' 

/i a b mMq=ir     2 2^      '""IC     2 2^ irw1 ""*'"' 
"-'»-'^mn MJL11 ^J 

U 
OJ >  1.256 — 

(4.43) 

... -«-„.'- ^».fW^WrAHi.iMia» 
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It remains to evaluate   1,      and   l2      in order to complete the solution 

for the plate velocity case spectral density. 

From (4.41),   I.      is defined as 
mq 

'. - fT,-O.I»VaKJe)(l.J..|lv«^c)(«i-.1'> Sln __L Sln IJl d.Jdl'j • (4.41) 

Note that the Integrand depends on the absolute value of «2 - «',, and thus the 

integration must be performed over limits as shown in Figure 6.   The appro- 

priate values of the term containing the absolute value for each area of inte- 

gration are also presented in this figure.   Thus, by utilizing Figure 6, equa- 

tion (4.41) becomes 

eH«/ue)<o.1n.i)il tta L11   e(«/üc)(o.i».nijBio l_i d«'2| d.', 

rqrr«.   / /* 2                                ,         Bfrs. \ 
e^/Ue)(0.UVl>.j,in l_i I I     e(a./Ue)(0.lli+l)l1 iio » «U'jV d«,   . 

(4.44) 

The above integral may easily be evaluated from standard integral tables, and 

after extensive, but routine, simplification, (4.44) becomes 

I,     -—L—i«     1.0066 —R   cos (v-0.463 ir) 
' ■   q   ' e 

t.     »    •■^^ l(-l)"(-l)',-llfB     iva    „   -iv.i    ,*?^       / ^ + 11-0    1 [R  e' «-Re1 "1 + 2 co%\vm + v ) • qj _IB q j qm 

■ m-m 
_^1L e-0llM<-/Uc) [(.j)« el(a«/Uc*i'q+i/|B) + (_1)qe-l«-/Uc*v,+v1,>]li 

(4.45) 

where 

^P^0'"(ii:)']*00"'©,■ <4-«) 
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"    M—(61' 

(4.47) 

(4.48) 

(4.49) 

and   5      is the Kronecker delta. mq 

From (4.42),    12      is defined: 

e c   '  '    '    sin sir, dy , dy , 
b b       y'   ^ 

(4.42) 

Again, because of the appearance of the absolute value of the difference of the 

variables of integration in the integrand, the integration must be performed 

over limits as shown in Figure 7.   By applying arguments similar to those 

used in calculating  I.       one can show that 
mq 

»"FC
8"[2H)  (^'(^ 

^Hiil [(_!)" (_!)» - 1] (1 _ 5   1 +^[2 - [(-I)n . (-l)'le-07(wb/,Jc,]l 
b2 nt        b2   L 

(4.50) 

Here again,   S     is the Kronecker delta.  It shouldbe noted that the Kronecker 

delta was used in equations (4.45) and (4.50) to conserve space rather than 

writing separate expressions for m =q and m ^ q in (4.45) and, similarly, for 

n = s   and  iW s   in (4. 50).   Hence, in order that no confusion arise in evaluating 

I,       and  l2   , the effect of the Kronecker delta should be considered first. 
mq ns 
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Combining (4.43), (4.45), and (4.50), one finds 

s0^«1.«2.y1.y2^)--7-r7 2- 1*7  
...   2   2    ••    •'n •",—r—•'n s,n"   i l6Ao<    ^->  T*« • b a b 
W::i::i^n-^).^.-^.^] 

-R.I "" 
1.0066—-R    co»(i     -0.46^) 

*'   rr 

a" ' 

1 °"Hf^t)fl 
(21i:U_l)n(_,)'-llll  -5     l+ili^l[2-l(-l)"   ♦(-l)1lc0",C'bl>!) 

1.256-f 

90 00. I 1    iu      >,      sin 
mm.        ""Vi       S"11? srry. 

S, .(«    x , ,y , ,y T.CJ) 

i-.»   2 / tA'     »     «>     *"i sin —;—s,n s,n —r- 
UAci)    II.IO \      r*    ry                   a                   D                   a                     D 

n «1     *s\    r<'' ~ 'i'   ' ll^''-'        _ '''    ' *    

R  R    ) m 
m    q 

d - ,s 

11.« 

li 
1.0066 — K    cos (i     - 0.46U) q I • m m 

mq"" |(_ir (-1)1 - ll,.        ,    ,     imqff 
Rme"'i -R^"""-! ' '—  cos (r^ • rj 

.1' 

1 

[("■r)'(v)f-r)'(ir)] 
o.v± ,s th)t)t) 

f 21^ |(_0n (-!)•- llll -SJ .!ll£[2-l(-l)" . (-l)Me0-'("bl>!l 

«i > 1.256 — 

(4.51) 
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By defining 

A      - tan 
mn 

111 

[u,2     -o>2\ 
m n 

(4. 52) 

A      - tan 

tot 

-1  I' 

K.-3 
(4.5:J) 

^""Hf'^'fl lüliLH-6     l({_l)n(_|)'- H 
b2 

21^)2-l(-l)n fC-DMe0^"^ 

(4.54) 

2      /     v2 

'■■H^V (4. 55) 

2      /   _\2 

■-(^)^) 

(4. 56) 

^ 
T_..J(WL-W

2)2^ tn n        W        m n 
(4.57) 

-fT^ ' (4. 58) 

V 4 mn q^      1 
5      1.0066—R    cos (.„ -0.46^) 

mq l| m m 

J*      IJdJ     [   X} Ü R   e'^-Rqe  '''"I *    cos*.      t  im) 

mq^2 e.Q. iH(«»/Ue> [(_i)n< ei(u*/vc »"q »V + (-l)o e•i<aJ• 'U<: *''q*v»,l> «'' (^mn-^qi)   , 

(4. 59) 



ao 

equation (4.51) may be Bimplifled further.   The resulting expression for the 

plate velocity cross spectral density is given by 

■ irx,       oiry, qiri, siry, 
w    K    «in ^—— «in »in        ' sin 

l6Aw2   ^ ^ ' b • b „ .        IDAOJ      T-<   r~« - - a 
S. .(i, .«, ,y. ,y , .i.)) ■ >     > G     V 

n •! ol mn     qt     n     •     «     , 

oj < 1.256 — 
S* 

miri,       nfryj        qir«,        »fry. 
«,     »   »in ' sin ^^— »in        ■ gig 

J2Aw
2/LiA'   ^ V^ ' b • b s,..,.,..,„,.„.„,=^_ ZE—r-rrm—G"v— 

V   0 n>l ••! mn      q.     n      i     «      , 

U 
OJ> 1.256—- 

5* 

(4. 60) 

4. 2.4   Plate Velocity Spectral Density 

The power spectrum of the plate velocity,    <l)^(x,y, m) ,   may be defined 

in terms of the plate velocity cross spectral density as follows: 

•V«, .y i.";) - W« i •* i -v i -y i •"> • (4-61) 

Hence   from (4. 60) 

.  mm  .  "»"y  .  q"«  .   »"y 
"*     ,,»   sin    ■ i   sin •— sin •—• sin —— 

♦^(i.y.a>)-——■   V   2^    G--v 

^'.V —1  ^Ti T      T     P   P   R    R ,5•    "'"" nn       as      a      ■      ■      c n »1    •=! an      qi     o     •     ■     q 

U 
CJ < 1.256 — 

I»« . »"y  . i"« .   »"y 
*>     ">    sin —^ sin — sin — sin — 

b 
   G     V nt     nnqs 

R _ 
n = |   d 

«>     ao    sin —^ sin — sin — 

,WVtjJ    -jq., T^T^P.P.R. 

U 
üJ> 1.256-f 

5* 

(4. 62) 

•'   ■»»»•i.-ltj'ji.',,        »;   ■ .1     «..-, 
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The plate velocity power spectral density should be a real, even function. 

Hence, upon summation equation (4. 62) must be real in order that it be a valid 

solution for the plate velocity spectral density.   Substituting for  V      |   from 

(4.59) and rearranging, (4.62) for m ■„: 1.256 -£■   may be rewritten as 

.   mnn   .   PW        I"*   .    •"? 

1.0066 ^5mqRm C0i (^ -0.463^) ««WV 
c 

.    miri   .   »"y    .   q"«        »"y 

.tttt——*-—=—b-°.. ■ •1 o-l q«l ••! T     T     P   P   R    R 
■ a     qt     a     •     ■      « 

ÜSl2co.(w.+^)e«^«-V 
.2 ■        « 

miri  .  nffy   .   q»«  .   «"y 
•in — sin — sin — sto —— 

m        on       <m       on m L A L 

EEEE—=— -*.. 

(,.{    v^tUDN-l)«-!)       ew,»\.B-V.Re.«v.A,i.\1M,1 

*" [(v)'4: 
. m/n .  »"v . qff« .  «"y 

•in ^— sin —— sin — sio — 
• b • b     r - T.T.T T. — — *-rf    «-^   "   ^^ T        T       P     P    R      R 

m.l «-1 q.l  fl T«a '«i^n Pi R« K« 

«3^ e.0. liy<-./Uc) [(_1)"ei("«/Ue »v, ♦►„ ♦ \mn ■ \,^+ (»D^-l^t/UeHv,^,,» \„. \inn)]l 

(4. 63) 

Since  Gns   is a symmetrical matrix, that is, 

G     =G     , (4.64) 
n s sn 

the first summation group may be rewritten as 



:\2 

Bin   .   ""Y   ,   min   ,   «"y 
■in — nn —. sin — sin 

1 _**_    JL   J"1      *L ■ K ft k 

2 ^-»    Z^   Z-<   ZJ T        T       P     P     D      R        "~"      «• 
„■I  a.lm.l   •■! '«n  'm» rii ri RB      „ 

1.0066 —R    cos(u   -O.mrie^™-^ it        n m 
c 

.   airs   .   »"y   .   mm   .    any 
_    _  •»■ —. «o ■— sin — »in --- 

Ä Ä Ä • b • b 
"2   L*    2*   L*   imd T T        P     P     R 
■ •I  •■! m.l   na| »m,  iranrli 

ri ^B 

1.0066 —R    co»(u   -O^^^e'^""-^^ 
i j m m 

c 

airs   .   »"y   .   miri  .    »"y 
_    _   «in —■ «in — sin — sin —— 
Ä Ä • b • b 

*-i   2-*  *-*  i~* T       T      P    P    R     R 
«,.1  n.l mnl   ,.l l.o     m.1«      • ^B      m 

1.0066 —R    cosd.    -0.463»r) ile1(^'»>>-X™',te-ii;vn,n-^m«'! 
U       m m 2 

c 

■ irs     ofy  .  <^',,  .  '"y 
•in ——- sin ——» sin —— siu —  ■ 

b ao        ap       ac       ac Ah* 

.•I n-l q>l  •«! T,oT«i P» P» R« R« 

1.0066 — 5     R    cos d/    - 0.463/r)  cos (A     -A    ). 
trmqtn m mnqt 

(4. 65) 

By applying similar arguments to the last three summation groups, one can 

show that (4, G2) becomes 

mm:       nrry        qiri        swy 
■in —— sin -T— sin -r- sin —— 

b 
^(«^.^--j-r-, Z- 2- Z- 2- —T—T    P  P  R   R 

jlVb- m.l «»I «l-l  •■! T«n '«»^B K» R- K« 

1.0066—5     R    cos (i-    -0.463ff)cos (Amn - A, ) ■ rrnqm m mn q s 

—». cos Kv    + i-  ) cos (A      - A 
2 m q mnqt 

' [(¥)!-(?)l 
m q -> 

a 

(R     cos d'    + A   . - A    ) - R    ros It-    + A      - A     ) 1    m q mn q» o m qi mB 

wq"   .IMIM.5 iic>r .vm      /««a . \ - —— c c  l(-l)"' cos I— * v   +i'    + A      -A.I 
a, j Ij,^ q m mn q.y 

tl-D^cos/—+ 1.   + >     + A     -A   \1[ 
I (j q      m       q«      mn/   ( 

(4. 66) 
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for   üJ<I.2%^. 

By defining 

V - 1.0066—S     R    cos (1/   - 0.463») co« (A.   -O 
c 

+ ^cos(.    +.)co.U      -A    U(l-Ä     )^   Bl^lUjJj 
2 11 () mn qi m q 3 

a a' 

[R,, cos (i/   +A      -A    )-R   cos d'    +A     -A     )] m qmn qi q m q» m n 

mq 

a 
— e c l(-l)m cos I— + v   + v    ^A      -A    I 

/oj« 
f (-l)qros^ + w   +r    * A      - A    \1 1 q m qi m nf I 

(4.67) 

and noting that arguments applied to equation (4. 65) for OJ • 1.256 —■ are 

also valid for the frequency range a, • 1.2% —j , one may write the plate 

velocity power spectral density as 

mi»» . «"y  . q*«     »ffy 
oo      no    slQ   tto — sin —- sin — 

16Aw2   ^   ^, • b • b v« .y ,w)- 
^.2bJ m = l 

n »1 

I t G     W 
ns mnqt 

;    T„.T,.p. P. R. \ 

uo 
It) < 1.256 

o 

5* 

v« y Ol) m 
J2Aw2 

\    o f 
(10              fXj 

LE 
m = 1    q= 1 
n «1    isl 

.   mir» 
a 

sin 
ncy 

"b" 
sin 

qirs        siry 
  sin —— 
•            b 

G„. w 
mn qi 

T.. ^ y. ̂ T R.R 
4 

uo 
a> > 1.256 

O 

(4. 68) 
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4,3   Dfvelopmcnt of the Cavity Acoustic Pressure Cross Spectral Density 

4, 3. I   Cavity Acoustic Pressure due to an Arbitrary Plate Velocity Distribution 

The equations Kovt'rninR acoustic phenomena arc the momentum equation, 

f1"       W n 

'o   dt 

the continuity equation, 

^ + P    V.a = 0. (4.70) 
dt        •o 

and the equation of state, 

P..c2
Pi. (4.71) 

It should be noted that the subscript "zero" in the above equations refer 

to time average quantities, whereas non-subscripted quantites are the instan- 

taneous or fluctuating components. 

Reference to Figure 1, for an arbitrary plate velocity   ^(«.y ,t),   indi- 

cates that equations (4. ü9), (4. 70), and (4.71) must be solved subject to the 

following boundary conditions: 

u^O.y.z, t)   =0 

u^a.y.z.t)   -0 

uy(«.0.z,t)   =0 

uy(«,b, z,t)   =0 

u/i.y.O.t)   -0 

u^i.y.-d, t) - <A(«,y,t) (f) 

(4.72) 

Equation (4. 69) was derived on the basis of an inviscid fluid.   Hence, the 

acoustic field may be assumed irrotational, and the acoustic phase velocity 

may be defined in terms of a velocity potential  U'/)  as follow.-, 

i{t.y,z,i)mV4{s,y,z,t). (4-7:») 



.•Jf) 

Equation (4. 73) only specifies o to within an arbitrary function of time. 

Hence, in order that 6 be uniquely specified, it is necessary to further 

define 

P,(«.y,2.0--/> • (4.74) 
o ot 

Substitution of (4. 73) and (4. 74) into (4. 69) identically satisfies (4. 69).   It re- 

mains only to satisfy (4.70) and (4. 71).   Substituting (4. 71) into (4. 70), one 

finds that 

^7p*P.o
V-3"0. (4.75) 

c 

Substitution of (4. 74) and (4. 73) into (4. 75) results in the scalar wave equa- 

tion in  0 :  that is, 

V20-_L—-o. (4.76) 
c2 dt2 

Separation of variables techniques yields a solution to (4. 76): 

0(«,y,2, t) - (C. sin k « + C, cos k si [C, sin k y + C. cos k yl 

IC, sink* +CÄcoik zlC. e"1", 
f so I / 

where 

k;|+ky
2 + k*-k2. (4.78) 

Application of the boundary conditions (4. 72a) through (4. 72e) to equation 

(4.77), by means of (4.73), yields 

C,-C}-C,-0. (4.79) 

k   .11 , (4.80) 

f n 
kymT' (4-8l) 
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where   j   and   t   are Integers.    Further, by defining 

.„-kc (4.82) 

and by utilizing (4. 79), (4.80), and (4. 81), it is seen that 

0(1. y.*.«)-   £    C2   cosi-liC4   cos-^t.cosCk     z^e1   '. (4. 8;J) 
j.O i • t h it 
• •0 

Combining all the constants, one may assume that the solution for 0(x,y,2,0 

takes the form 

Vid.y.z.t)-    £   cos-^cos-^j     Y   {o>)co*(\i   i)e
ieu« J^_. (4.83 a) 

1-0 

Substitution of (4.83a) into (4. 76) readily shows that (4. 83a) satisfies the 

wave equation, and by applying the above arguments, boundary conditions 

(4. 72a) through (4. 72e) are satisfied.   It therefore remains only to satisfy the 

final boundary condition (4.72f):  that is, 

,A(,.y..)-    f   cos^cos^r  V^MU      s.nlk      (-d)]U'*«-iü-. (4.84) 

Let 

X.|(w)-k    (wlY.^^sinCk,   d) (4.85) 

Equation (4. 84) may be rewritten as 

Equation (4, 86) is essentially a two-dimensional Fourier cosine series in x and 

y ; hence xu.) may be evaluated by determination of the Fourier coefficients 

of (4. 8(1).   By utilization of the orthogonality principle, it may be shown that 

I      X .(.Oe'-'-^--   ( (   r4u,y,,)cos—cos— didy.      (4.87) 
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Transformation of (4. 87) yields 

•by»* 
X.fw) 2     I    \\    0(«.y>t)cosi cos—e-^'drndy-^.        (4.88) 

11 abd +50j)(l +50|)   J^JoJo • b JTn 

..(OJ) =    III  0(i, y,t)cos cos e       di dv  
" ab(l + 50|)(l .S^lk^^ink.^d   J.^J0 . b ^ 

Thus, from (4. 85) 

abd+ S0j)(l + S0|)klj|»«nk»jld   J.fcJbJo a b 

(4. 89) 

and using this result in (4. 83a) yields 

..       v    2 ^     )nx     '"yf00 coslt,
lt

z 
i//(x ,y ,z ,l) =    >     cos  cos  I        

"•b  £-n a bj.oo{1.50j)(l+50,)kljisink,.(d 

< I    i  r <i(x,y,t)cos— cos—  e^'dsdydtle'^'düj. 

'■5-U " " ' (4.90) 

The cavity acoustic pressure for an arbitrary, deterministic plate 

velocity is, from (4.74) and (4.90), 

lip.     2" •_   *. wcos k,    z 
p (x ,y ,z ,i) =  >     cos  cos  1 :  

.ab     U a bJ.!K(U50j)(l+S0|)k       sink       d 

a"fhr               ^x     '"y   < )  ■« 11   ö(x,y,t)cos cos e '"'dxdydt> c1   'do,' 

(4.91) 

4.3. 2  Cavity Acoustic Pressure Cross Correlation 

The cavity acoustic pressure cross correlation is defined as 

Q,,(*l.«2.yi.yrzi'22-,!t2) = F-[p/«i.yi.2i'ti>p/),ry2'z2',2)]. (4-92) 

From (4. SI) and (4.92), by utilizing the lav vledge that the only random quan- 

tity in the expression for pa(x,y,z,t) is the plate velocity, one may write the 

acoustic pressure cross correlation as 
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■ ■*('■ "       > I"», '"y, rnx, Iffy 

rr'a'b*    i-ii  (in " ' " 

i, (1 ios k .  ./ , ro» k ,     / , 
if    ' fi    - 

ßflUl  .  fi0|)(l  ■   -Sjd   .^^k^^Jk^.HMsmk^^is.nk,^! 

' "y i 

b 

f„s  Leo» 1 .•"'■,| e',",2dx1dy1dx2dy2di1dt2   c,u,i t-'■ '' J.-MUI S . 

(4. 93) 

From (4.28) and (4.32), however, 

E[«Mx,,y,>tl)<*(«,.yJ.t2)]-Q^(«1,.2.y1.yj.T) (4.94) 

Therefore, (4.93) becomes 

~4P;    ^ ^,      i"«!      '"Yi       '"«2      '"y. 
Q..(«i.«?.yi.yr»i''2'tPt2)- : :0, 2- Z) tos-rcos"r"cos~s~tos~r" 

|=n  im 

i., Q cos k,    z . cos k, ' z , Uoc ^ou <., W cos k,    z j cos k,     z , 

r'7''2       '"V: n 1 o » 
cos -j-'os c'-'l e"l"^dx1dy1dx:dy:dt1.lt,   f'"i c•l"t-, d.-dli V 

(4. 95) 

It is now of interest to examine the following portion of (4.95): 

(r V; ,»«, .,.y1.yrr)e-'-,ie-,n,2dc1dr2. (4.96) 

By recalling that        i, - t. . one may rewrite (4. 96); 

Py«^!,.»,^,.),,).-  •  p e-'^'^^'dt,. (4.97) 
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However, from (4,;j.')) 

1      f 
h*lt\''i'y\'*2'b')m -ZZ Q... <«,.«, •y1.yJ.'t c'-r.IT (4.33) 

Therefore, (4. 97) becomes 

V^S^U1(.ryi.y2.oJ)£e-"-!h"d.l. H-98) 

Finally, since 

I     r''-''"''.!!,  - 2rr5(oJ + n) (4.99) 

equation (4.98) becomes 

i2n)iiS^(xrrl,yi,y2,a)8(w + il) (4.100) 

Hence, (4. 93) becomes 

-(^r:)       4pa      »      M fnxl 'nyl '"«i «"y^ 
Q     (»1,«,,y,,y,.z,,z,,t1,f,) = 2. }     >    cos cos  cos  cos        ' 
^a»      I'   J" 1 •' 2'    1'2'1'2 j    j    , ^^   ^^ a k a k 

|rn  i = n 

(;.n cos It,   z . cos k,    z , 
if    ' re     *   

i JU (1 * V" ' Sot)(l * ^oP11 ' 5oI
)^1,

('-')k'M(fi) s'n k'l(
d s'n k'f,

d 

i (b('Cb(' '""i      lrry'      '"'J      
t'Tyi ) 

\\\\\    S<t><t>{*l'*l'V\'yl'n) cos—-cos—cos—^ cos—1 dxjdy^dyjj. 

Ä(w ♦ fl) c'"1" t^dudQ 

(4.101) 

Integration over u , and use of the identity 

lead to the conclusion that equation (4.101) may be written: 
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g4j(.,..,.>,.>•,,/,./ 
■   H\  •'   I1',       ^       ^ l"«! '">', fX, !"> 

l()S   ^^—   HIS   ——  IDS  —^— 

b •> I) -:--I:E-— 
\    7   ,C ll'        1-"     f   ' 

I 
Ü' tos k .    /. cos k .     / , 

I*    ' fl 

HI "„,)(l • ':,„t
),l ■'s,1,

)''/1,
t-i')l''f,

MM •""k/,,'i •"" k/f,'l 

hftrbft 
S^<«>-1 

,* Z-" * 1 

I^X! '">! rfx. Iffy, | 
, ,y , .y , .11) cos — cos cos  cos  «Ix .ilv.ilx.ilv,? 
•     '     2 a h i> b i    i    •    • | 

It should be noted that, from (4.78), (4.80), (4.81), and (4.82), 

dU . 

(4.102) 

k     i.-i 
il m (4.103) 

Thus, 

k,    (..)     k,    I-../I . (4.104) 

and the cavity acoustic pressure cross correlation may be written: 

•H\-'/'.",     ^, ^,         )"xi         '"Vi        "rx:        lr,Y: 
O     (i , ,x , ,y . ,y ,.' i .' ,. • )        —   /     }      cos cos   cos  cos  

\ •: ,i   I)        !        '" 

1 
V.' ios k,    / , cos k,     / , 

x (1  . «0|H1  . Snf)(|  .  5|)f)(l   . rt^lk^^mk^.m) sink,    d sink,^,! 

m l-x, »">■, ifx. Iffy, 
S+J.(I , ,1, .V , .y,.!}! tos cos  cos  1 cos 1   dx .dy dx 

,i h •i b t^'\ •"2"' 1 :d>:} 
e'^dfi. 

(4.105) 
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4.3.3  Cavity Acoustic PrcBsure Cross Spectral Density 

The cavity acoustic pressure cross spectral density is defined as the 

Fourier transform of the cross correlation: that is, 

'V/VW. •>■:•'!-'2 •"-)    —= f" Q.,(«|.«j.y|.yi.«pie2'T)e'U'TdT (4.106) 

Thus, from (4.105) 
«P,        £    ^          jiri,          tnyl          r»ri2          trry2 

S    (x. ,x,,y, ,y,,z . ,/ ,,(..)     —  z^,   / . cos co,  cos  cos  
ffa   b     I-"  tsfl a b « b 

/   C*-{*■ fl   co» It,   i j cos k,    i2 

rfrfT    , ,,   i"»!   »"Vi    tnx2   ,'ry2 i 
I   llll    St?^'x i .»j.y i .y i."'co» cos  cos  cos dxdydi,ily,l 
I Jojnjojo a b a b "    'J 

e'SiTdUc'-7dTi. 

(4. 107) 

If the expression for the plate velocity cross spectral density from (4. 60) is 

now substituted into (4.107) and subscripts are reassigned such that j, k, m . 

and n apply to the acoustics problem and q, r, s, and  t  apply to the plate, 

0f,       »      » jT7x. W^y, mfx, ""Vi 

s.^.jj'ypyj-«!^:-^—JTI L L cos-7-cos-r-cos "Tcüs IT 
^a   b     , = 0  m=o a b a b 

k=o   n = i) 

£1 
U   cos k,     z . cos k ,       z . 

-(I  t 5   )(1   •  ^    )(1   .  S     )(1  .  Sn   )k.     (iDk,      (Q) sin k,     d sin k,      d 
0i Ok 0m "n        ',1, 'mn ',!> '„„ 

q"«!      fyj      ""«2      «"y, 
sin sin sin  sin 

JS.   -i.   r^r^r^r^ a K a i, 
—-V      (UU.,(») 
(11)   I"-'       " 

*      "^ sin sin sin  sin — 
i 16A»'       y   y. f f"f fa                 a               b                 a                t 
\,\W h h )X\\ Tv(n)T$l(n)Pr(nyp,(n)R (niRj 

r= 1    1= 1 

)nx^ kr^yj m^x, nffy: "1 ""'1 
cos  COS   COS 

a b 

mffX, nrry, j 
 ^cos  ^ dx.dy.dx^y,}«-"     dll c'' '     dr 

a b 1     1    -    -J 

U 
11 < 1.2V) — . 



B( 
^(^.»..v,.>,,/,,/,,.„) 

)TX1 ^nyi amtj "nyi ',      Jt,     - I"«, K"y, ni"«; 

—^- / ,    /     cos co»  tos  (OS 

n 
k=0    n=» 

1J* cos k,     e . cos k ,      z , 
i k      ' m n *_ 

I     (1  . *   Ul  . Ä    )(1  . «     )(1 » 5n )k,    (U)k,      (fl) »ink,    d sin k,     d 
*•**> 11, nk Dm "n       ',1, 'mn '|k 'mn 

q^x,        tfyj         s^Xj ("Vj 
»in —— sin »in  sin —— ,   ,     •*.('"'      ■»•      „ »in sin »in  sin—— 

(   >,!\U    At A   y^   y«   f f*( {" " b ■» b       , vr   /m 
VaV'W h h JoJojbJ. T1,r(n)T.,(n)p|(n)p|(n)Rq(n)R,(n)V'«'-n  " 

Let 

r= I    is I 

]nx{ kTy, m"«, n»ry2 \      ,, T 
cos cos  cos  ^ cos  d« jdy^tjdyA c'      dQe"*    dr 

a b a b ; 

U 
11 > 1.256 

(4.108) 

qflx,         rfy!         sfx^         "^2 
I'       (x, ,x, ,y. ,y,)     sin   ■       sin »in  sin  (4.109) 

Ci AQ) V     .(Ql 
f      (SI)      2 2^  
^,,"       1 qr(i2)Tst(n)p/mp/n) R tn) Rt(m 

(4.110) 

wm 
/i" a " b" 

S! ■_ 1.2 V. 

If > 1.256 
U 

0 

F 

(4.111) 

I ^ x j         k rr y.         m IT x,         n " y, 
(,ikinn(xl •»•>•>'1 ■V''      cos  ''os  cos  " tON  ~ 

(4.112) 

^ 1 k tti n      I       : 

11    cos k ,     / . cos k ,       7. , 
I k       ' m n       * 

k,    (Sl^k,      (SlUmk,    dsink,      d 
1 k tu n 1 k m n 

(4.113) 
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From the above definitions, (4.108) may be rewritten as 

(tp 2 tm fK- 

S    (x. ,x, .y . ,y, ,z , ,z , ,(•■)     —  /       /     <> .      («. ,1, ,y, ,y,) 
"«   b     |i0   (n=0 

m: •jkmn^r'r 

(I . 5„)(1 ♦ S   )(1 . .S    )(1 . <S    I 
0, Ok Om "n 

\(U) 

-x. no 

£  E |\ I \ I  '■.„M(»r''ryrv:)f<,r,|(l!)<.|1<,nr,'x|.v,.y1.y;)^|.i>|.lv)>., 

r- I    i=l 
] 

r"     dnjr '      d7 

(4.114) 

The form of (4.114) indicates that the integration over  fi and the space vari- 

ables   «,.   x2,    yl,    and   y2    may be performed separately.   This is easily 

seen by rearranging (4.114) as follows: 

*P: 
■XI Tt "«. '■», 

■X) 'Xi go 

s
ilJ*\-*2-y\-y:-'r':-'-)    TT E   E   E   E 

(i ,      (x, ,x, .y. ,y,) 

'ra^b-1   "   "n  jTi   s~l   (1  • S„ )(1  . <S    )(1  . 5n   Xl  * 5, 
kzO    n = n    r= 1    1=1 

0l Ok flm On 

f
vJxi'x2'yi •y2) '-.kmJ11! •»2 -vi •y2)■d,, 1

dy1
d •2^2] 

£{£*,..„.„<'>•':•"> xinu^iDe'^dnlr—d. 

(4.115) 

Since the inverse Fourier transform is detined as 

f( 
v 2n J-f> 

F (to) e '      ddj , 

the integration over frequency of the bracketed terms in (4.115) results in 

vT?« .     <r..zr) MO I . ,(7). (4.116) 

y ** 
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When (4.110) It Insorted Into (4.115) and the Integration over  T Is performed, 

(4.115) becomes 

16^'      2     *    *     "" 

•   •> l -n   m    (I    q« I     ill 
Mn   n»0    I« I    |-| 

J w 0| Ok 0m On 

Jojoii   Fq'»*(,i'":,yi,y2) üik...(,,i'«J'ypVj) ^(«W^]. 

(4.117) 

It remains to perform the Integration over the spacial coordinates.   Using 

(4.109) and (4.112), by means of standard integration techniques, one finds 

that 

(i. «m + «Jm + 80 )(i + a0 )UU' ^"^WvyJ *^wvyl**M*H^ 
Oj Ok Om On w   ' 

1|2b2 (l-6q|Ml-«rk)(I-«tfflHl-5|n)qtStll-(-I),(-l)illl-(-l),l.-l)l,lll-(-l),(-irili-(-l)'(-nnl 

"^ a ♦ 5   )(1 +5    Ml v5n )(1 *5n )(q2-)2)(r2-k2)(S
2-in2)(t

2-n2) ~~ 
0) Ok 0m On     ^ 

(4.118) 

Let 

K 
ikfflnqrM 

(i_ft ni_5 Ki-ß   Hi-« )qrs,[i_(_n''(_i),i(i_(_nri_i)kiii_(_i)s(_iriii_(_i),(-nni 
qi rk »m in   ■ 

(I . 5   )(1 . SMI rTTuTT )(q2-j2)(r2-k2)(.s2-in2)(f;!-n;) 
Oj Ok 0m On     1 

(4.119) 

From (4.117) and (4.119), the cavity acoustic pressure cross spectral density 

is 
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16^ 
sii(«,.«:.y1.yj.«i.«2-cu'  —f- X(w)£ £ £ ]L ^.^»'«i^j'yi.yp 

k=ii   n«n   i» t   «■! 

»ikmB
(*l'X2'w)   ',f..("')K)kmn,r.i   . 

(4.120) 

I 

where   Gjkmn(«,(i2.y|.y2), g^...«,.«),^,,^)^^   and Ktkmn{ttt are defined 

in equations (4.112). (4.113), (4.110), (4.111), and (4.119). respectively. 

4.3.4 Cavity Acoustic Pressure Spectral Density 

The cavity acoustic pressure spectral density Is defined as 

"VVW"* * s
i,>i-Vyi,Viti,*r<'j) • (4.121) 

Hence, from (4.120), 

16^ 
«-.(«..y,.«..")-—-f» xu £ ttt Gii.»n<«i'«fy..yi) 

|:0   m=0   q«|    («| 
k:0    n>0    r«l    1=1 (4.122) 

«ikmn(zr*r^   fqr..(w)Kikm„q,.. 

From (4.112), it should be noted that if   x, - %2   and yi - y: • 

Gikm„(«r,,i>yi'yi) ■ G
1„n1k(xi'«i'yi'yi) - Gikm„(,ry.) • 

Further, from (4.113), If *, - *2 • 

B.       (z , .Z, ,Ci)) ' a      .. (z , ,z . ,w) - g .       (Z.,OJ). "ikmn       1      1 "mnik       1       1 B|kmn      1 

Finally, note that 

K = K ikmnqnl mnlkilqi ' 

(4.123) 

(4.124) 

(4.125) 

Hence, using (4.110), (4.111), (4.123). and (4.124) in (4.122), and dropping 

the subscripts on the spacial coordinates, one may express the acoustic spec- 

tral density as 

** ■ 
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•v'.'b' ft .v. ^ .4i V">I..I""V-II,,I"'",I"|".I-' 
kid   niO    i> I    i   I 

U o K  V.<'"> "^ 1.256^. 

l\'*2h2\V0)    fa   ho   ,.1    Al  T,f('*j)T.l(w)P»(t")Pl("j)Rq(,")R.(6l') 

ü 

kiO   niO    ri I    !■ I 

Kjkm«„..  V,,.^) W> 1.256 p 

(4.126) 

As in the case of the plate velocity spectral density, the cavity acoustic 

pressure spectral density must be a real, even function of frequency.   Thus, 

by substituting  v       from (4.59) and by investigation of the summation in the 

frequency range  w < 1.2)6 ^£ , arguments similar to those applied in Section 

4.2.4 along with equations (4.123), (4.124), and (4.125) show the first sum- 

mation group to be 

IKAp2 o2   Z    JS    JL    *    C,,,    d.y)«,.    U.u,)G(o,)K^     ,, J
0 V"»    ^"«    ^*«    ^-<        ikmn    '''Bikmn rt ikrrnqrn 

»VVb*   To h Tx h    T^MT.^P,^)^,. 

(J.0066 5    R   cosd^   -0.463»^)lc,(A•'^'A•«, 

2 2       <■> nu        ou (fc 
.2S6Ap^ to    ä   Ä   A   JS.    G..     (K.y)g.     (z.r.,)G„(6>)K .      ,, II '0 T**    ^    V^    r-« ikmn      '    "ikmn It ikmnqftl 

iUV.V    "•<> ^   •=' h     TJ-')T<trUu)Pt{ol)PtU.l)Rt 
nxo  k = 0    1= I    f= | 

[l.O'M&R^ co» (i'q - 0,46}i»)l e'^qfS''> 

2 2 ^B n« (W 0* 
2S6Ap* c,      ao    .«    Ä    «    G..     («,y)ii.L     (2,<J)G„(6J)K.1,      ,, *„ ^~«    T~«    C^    C-« ikmn      '    "(kmn ft ikmngrst 

TVTV    (to At. gT!  .4",    Tqr(o>)T%|(„J)P(<.)Pi(„,)Ri)(.,)Rs((.) 
k r n   n = 0   r= 1    »= I 

[1.0066 S    R   CO»(P   -0.46J>r)l    iir'^qr • ^.i> + e-'^q,-^.|) i. 
Q»   q ■» 2 ( I 

ksO   n»0   r= 1   1=1 

llOOOOR^ cos (^q - 0.463")! »'^«I'^q«'! 

2'.G\P
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Hence, the first summation group is 

216Apf <"'   A  A   A.   ^.   l*..    («.y)iL    (ii,i.j)(i„(...)K .      ,.     *j, ^*»    C^    ^    r^ ikmn       '    'ikmn ri ikitimii.i 

ff^'.'b1    ^ ««o MM  .••     T(4f(<.')T.,('.')Ht(..,)|M...)R|)(..)R.(..) 
kl«   nto    i   I    i    I 

11.0066 «^K,, co» (^-0.463*) co« (A^- Aj 

(4.127) 

Similar arguments applied to the remaining summation groups lead to 

i ,..J   -    - 2%Ap't **    Z (hi ■■K 
Gll1..

(«')'>l(k«l,
(l'w)c«(w) 

♦ {«.y.x.tü) s—y y y y """     "'""' 
.%J.2bJ   U &> MM  ...  rvMTJm)Pt(ü>)Pt 

k»o   niO    r« I   1=1 
(.,)R  (<,.)R (oj) 

M • 

^Vtr'"' K|kaaqr(t «j < 1.256 — 

5I2Ap2 o,J /   Ä
,V» »      S    ^.    * G.     («,y)i..     (J:.^)G  (OJ) 

♦ (K.y,«.«a)—li-fci) r r £ r ^,"'    ^  ^  
ffV

2.2bJ \VJ   fa mVn  ?n  fri    Tqf(W)ri,(W)Pr(cü)P|(oi)Rq(w)Ri 
IrsO    n»0    rs 1    t= 1 

^Vuh^ Kiliaaqr.t <J> 1.256--• 

(4.128) 

4.4 Non-DlmensionfJ Spectra 

The results c( Sections 4.2.4 and 4.3.4 are more useful from a practical 

viewpoint if they are expressed in a non-dimensional form.   The following sec- 

tions are devoted to expressing the plate velocity and cavity acoustic pressure 

spectral densities in non-dimensional forms. 

4.4.1  Dimensionless Plate Velocity Spectral Density 

The plate velocity spectral density (equation (4.68)) is a function of the 

following parameters and dimensions: 
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^ 
(^ 

Pi (TJ) 
u. © 
Ä* (L) 

• (L) 

b (L) 

u. © 
w« 

/FT\ 

■..r-T) 
n     (Ft) 

Note that only three dimensions (force, length, and time) are required to spe- 

cify the eleven input parameters.   It is therefore necessary to select a length, 

force, and time scale characteristic of the system.   Although there are many 

combinations of the eleven input parameters which result in dimensions of 

force, length, or time, the following were selected as characteristic dimen- 

sions because it was felt that they had the strongest effect on the plate velocity 

spectral density: 

• •  streamwise plate dimension (L) 

— •   lime for an eddy to traverse the plate 
c       in the streamwise direction (T) 

fiV »  -   fictitious force based on the mass of the 
plate (F) 
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By utilizing these characterlatlc dimenBlom, It is possible to specify 

dimonslonless Input parameters as follows: 

Oil 

v* - — 

^ .£ 

b*. * 

rg 

^7 
mil 

D 
D*  = 

2c)    a 

(4.129) 

Further, the spacial and frequency variables may bv similarly non- 

dimensionalized as follows: 

X      = 

yT = 

a 

y 
a 

iT 

(4.130) 

Based on the definition of (4.129) and (4.130), the quantities defined in equa- 

tions (4.46) through (4.49), (4. 52) through (4.58), and equation (4.67) may be 

rewritten in dimensionless terms as follows: 

RMa/)= HGnff)2 - 0.987<ü+2]2 + 0.0529o/4 1^ , (4.131) 

..Harv ic. •» • ...i      ..'..■n 

■ •   » 

.  ■ f. 
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. i I        O.llki' I ..   , ,,„. 
v     ■ ««•        ;     . 4. 132) 

[imn)1 - 0.987.„^J 

ii' ri m n 

t 

.mn-rMMfUD"- Uli -Ämol . mn*''i 2 - U-l)"' . (-I)n| f"""-'"'l . 

(4.134) 

P^o/JMiiiff)2 »((Ufc/bV . (4.135) 

^'"•'iPJ-T'tf^lT'      (4•136, 
n n 

W*.      (w*) = l.0066iü*8.m cos (i', - 0.463 IT) COS (A.. - A. ) 

+ 2jmff2 cos (i'i + vm) cos (A(k - kmn) 

^l>ai,)i*ffat("1)l("1)V1?[R*co«^, + A,.--A,||)-R* coiU^A,-^.)] 

-jlnT2e-0l,,to*[(-l)icos(cü+ + l'j+^+Aik-A(ii|i) + (-ircosU*+i.|+i/iii+AlllIi-Ai,v)l. 

(4.137) 

Further, by defining 

«l(.\yt.aJ
+) = ^-- . (4.138) 

a2U  a 

and utilizing the above definitions and equation (4.68), the non-dimensional 

form of the plate velocity spectral density can easily be shown to be 

www 
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♦Id*, y',«/)-4.38« lO^M'Ä * uJ««, .♦ 

niry  , «"y'* , ♦ 
_     _     lin »»ri* lin qifi* tin     ■    tin      ,   G*  (co*) W*   ..(CJ*) 

11 n !:  

u* 8* < l.9i2 , 

^(•♦^♦.«uM-S^xlO-'M2«4   Cü 5U2«/2,.*-' 

«     «,     «in ■»«* »in qiri* tin—tin —^ G^lw*) W^    («*) 
(,:. D D zz ,Ml '•|- T*   (w*)T*  («♦)P.*(w*)Pt(«4)RM<u*)R*(«*) 

**&> 1.932 . 

(4.139) 

4.4.2 Dimensionless Cavity Acoustic Pressure Spectral Density 

The cavity acoustic pressure spectral density is a function of all of the 

parameters affecting the plate velocity spectral density (see Section 4.4.1) 

plus the following additions: 

d(L) 

'■.(£) 
In addition, there is one more variable in the case of the acoustic spectral 

density, namely, the length dimension  (z) perpendicular to the  lane o: 'M 

plate. 

Since the plate vibration provides the excitation for the acoustic pressure 

in the cavity, it would seem reasonable to select the same characteristic 

■• 

1 

r 
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dimensions for non-dlmcnsionallzation of the cavity acoustic pressure spectral 

density as were used for the plate velocity spectral density.   The dimension- 

less input parameters for the cavity acoustic pressure spectral density are, 

therefore, those presented in equation (4.129) plus the following additions: 

d* - J (4.140) 

V 

Likewise, the variables are those presented in equation (4.130) plus 

«* = -. (4.141) 

Since the non-dlmensionalization has been performed with the same character- 

istic dimensions as in the case of the plate velocity spectral density, the 

dimensionless quantities defined in equations (4.131) to (4.137) are also appli- 

cable to the cavity acoustic pressure spectral density.   Noting that  K.k 

is already dimensionless, one needs oiJy to define 

^■U^j.^'-I^. (4.H2) 

L*      (a/)=k;    (e>+)k*    (w+).iok*   d'sink*    d+, (4.143) 
ik mn ik nn 

and 

W.y*,!*,**).-! 1—  (4.144) 

in order to specify the dimensionless form of the cavity acoustic pressure 

spectral density.   By use of equations (4.128), (4.131) through (4.137), and 

, 
nuutkjrin 

...!       "Äi 
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(4,142) through (4.144), the dimons'onloss form of the cavity acoustic apec- 

tral density can easily be thown from (4.128) to be 

n* Ho  JW  «.i ■TI f u|fc»iitw ' ' 
k«0    ■■0    r«l   la| 

co« iffi   coi «iri   cos coa co»k     s coalc      t 
b* b* 'Ik *•• 

w*ßf < 1.932 , 

ff
4 w»fr, ,4ij      u;.,^)       ( 

k«0    n>0    rsl    i>i 

kiry*        niry* 
co« iirx   coi mffi   co« co« co»k     i+co«k*     « 

b+ b* 'Ik 

T*r (Cü*)!;, {a)+)P;(w
+)Pt

+(a>+)R*(cü*)R;(<ü*) 

to*S* > 1.932 

(4.145) 
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RESULTS 

The following section presents plate velocity spectra and cavity acoustic 

spectra calculated from equations (4.139) and (4.145) by means of a digital 

computer for selected data cases.   The purpose of these calculations was 

threefold.   First, the calculated plate velocity spectral density may be com- 

pared with existing measurements of plate response to turbulent excitation, 

thereby providing a check on the validity of the analytic solution for the plate 

velocity statistics.   Secondly, the effects of all major parameters are not 

readily discernible from equations (4.139) and (4.145), and it was felt that 

calculated spectra for selected cases would better define these effects.   Fi- 

nally, it was necessary to check the range of validity of the assumption that 

the cavity acoustic pressure had negligible effect in the excitation of the 

plate. 

The spectral densities were selected for computation over the cross 

spectral densities because they were most easily computed and gave the de- 

sired results:  namely, the effect of major parameters on the cavity acoustic 

pressure statistics, and the range of validity of the above stated assumption. 

The computations were performed partially on the IBM 704 digital com- 

puter at the U. S. Navy Underwater Sound Laboratory, and the remainder on 

the IBM 7090 digital computer at the David Taylor Model Basin. 

54 
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5.1  Results of Plate Velocity Spectral Density Computations 

The plate velocity spectral density was computed from the dlmensionless 

equation (4.139).   Computations were performed on the IBM 704 digital com- 

puter by an Iterative process.   In all cases, the summation terms In equation 

(4.139) appeared to converge monotonically, and the solution was accepted if 

two successive Iterations agreed within three percent.   This tolerance was 

selected as a compromise between desired accuracy and reasonable computa- 

tion time. 

The dlmensionless plate velocity spectrum was generated by computing 

the spectral density at a dlmensionless frequency one cycle above each dlmen- 

sionless plate natural frequency, and at three points, equally spaced in fre- 

quency, between each pair of adjacent natural frequencies.   Peculiarities of 

the particular computer program used for the generation of the frequencies at 

which the spectral density was to be computed were responsible for the spec- 

tral density being computed at a dlmensionless frequency one cycle higher than 

the plate natural frequency.   The resulting error in the computed plate veloc- 

ity spectrum at plate resonances should be very small, except at very low 

frequencies or for very small values of damping. 

5.1.1 Comparison with Existing Experimental Data 

In order to check the validity of the analytically derived plate spectral 

density, it was desirable to compare the computed plate velocity spectral den- 

sity from equation (4.139) to available experimental data.   Unfortunately, all 

existing experimental information deals with fixed edge plates whereas equation 

■ •—   •>•*   ' '- 
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(4.139) pertains only to a simply supported plate.   However, the spectral 

levels for a simply supported plate should be of the same order of magnitude 

as those for a plate with clamped edges, even though the plate natural frequen- 

cies will be different in the two cases.   It was therefore decided to compare 

the general level of the spectrum predicted by equation (4.139) with available 

data for a clamped edge plate. 

Some of the mopt rHl^M»» experimentn! datn on the ♦'"*"''»»»'♦ flow »»xclta- 

tion of flat plates are those of Bull et aU [15]. Bull measured the displacement 

spectral density of 3.5 * 3.5 inch steel plates of varying thicknesses to turbu- 

lent boundary layer excitation in a wind tunnel.   Since no acoustic cavity was 

placed behind the plate, the effects of acoustic back pressure are negligible. 

Figure 8 presents Bull's measurements of the response of a 3.5 x 3.5 x 0.010 

inch plate to air flowing at a free stream velocity of 539 ft/sec.   The meas- 

ured displacement thickness was 0.172 Inch. The measurement was taken at 

a position 0.95 inch upstream from the trailing edge of the plate and centered 

in the lateral direction.   Bull measured the modal damping for the first two 

plate modes and found them to be 3.8 percent critical and 0.5 percent criti- 

cal, respectively.   He states, however, that the measurements were accurate 

only to +23 percent. 

Figure 9 presents the computer solution to equation (4.139), converted 

to the ratio of displacement spectral dennlty to turbulent pressure spectral 

density, for input data corresponding to Bull's experiment.   The dimension- 

less input parameters were 
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M - 0.099 
V . 1.94 (•••umrd) 

5' - 0.0491 
b* - 1.0 

D' 0.00174? 
t* 
  - 0.005 («ssumrd) . 
■ n 

Since  o,*    and  r*     are functions of n' and  b* they need not be independ- 

ently specified.   It should also be noted that  V*, which specifies the ratio of 

the free stream velocity to the convection velocity, is assumed to be constant. 

This assumption is not true in fact, since the value of u*  is a function of 

u)S*/vo    as shown in Figure 4.   However, computations are greatly simplified 

by assuming  U* to be constant.   Finally, note that the modal damping is 

assumed to be constant with frequency and equal to the value measured by Bull 

for the 2-1 mode.   In general, the modal damping is not constant, but this 

assumption eased computational difficulties.   In the computation of the spec- 

trum of Figure 9, the spectral densities were computed at radial frequencies 

0.005 cycle (that is, equal to the damping - critical damping ratio) above the 

plate natural frequencies, and at three points equally spaced in frequency 

between each adjacent pail* of natural frequencies.   This procedure resulted 

in more accurate spectral levels for the low values of damping being used. 

Figure 10 compares the theoretically derived spectrum for the simply 

supported edge condition (Figure 9) with Bull's measurements for the fixed 

edge condition (Figure 8).   Note that, as expected, the natural frequencies are 

not in agreement because of the different edge conditions imposed on the two 

cases.   Hence, the spectra for the two cases are not in exact agreement. 
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However, the envelopes of both spectra are in substantial agreement, especi- 

ally at the higher frequencies.   This fact lends credence to this analynls and 

to the ability of equation (4.139) to predict correctly the velocity spectral 

density of simply supported plates. 

For the higher plate modes, it seems reasonable that the modal stiffness 

and mass become less and less affected by the plate edge conditions.   Hence, 

for this linear system, it would further seem reasonable that a line connecting 

the major spectral peaks in the clamped edge case should be very similar in 

shape and amplitude to one connecting the major spectral peaks in the simply 

supported case, especially at the higher frequencies.   For purposes of discus- 

sion here, such a line will be defined as a "peak spectrum."   Figure 11 pre- 

Hents the "peak spectra" derived from Figures 8 and 9.   The agreement in 

shape is excellent above 700 cps, and the amplitudes*agree within 5 db.   This 

discrepancy in amplitude may easily be due to discrepancies between the 

assumed value of the damping used in the computed spectrum and the damping 

present at higher modes in Bull's experiment. 

From the above, it appears that the plate velocity spectral density pre- 

dicted by equation (4.139) is valid for the simply supported plate excited by 

turbulent boundary layer pressure fluctuations for cases in which the acoustic 

environment has negligible effect.   It may further be concluded that the "peak 

spectrum" of a flow excited plate is essentially independent of the plate 

boundary conditions at frequencies above the first few plate natural modes. 

From an engineering standpoint, this conclusion allows an estimation of the 

maximum flow excited plate vibration level above a certain frequency from 
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equation (4.139) without regard to boundary conditions.   Determination of this 

lower frequency limit will be treated in the next section. 

5.1. 2   Effect of Major Parameters on Plate Velocity Spectrum 

As stated in Section II, the objective of this study is to provide the sub- 

marine sonar systems designer with information concerning the acoustic 

environment of sonar transducers and the major parameters which may affect 

this environment.   Therefore, the data cases used to show the effects of the 

major parameters on the plate velocity spectrum were selected with the sub- 

marine application in mind.   It must be stressed that in all cases the effects 

of any plate-generated acoustic pressure have been neglected. 

The major input parameters for the dimensionless plate spectral density 

are presented in equation (4.129).   For the purposes of this discussion, the 

variables stated in equation (4.130) may also be considered major parameters. 

From the definitions of w*    and r*    , it can be shown that these parameters mn con 

are functions only of D*  and b*.   Further,  u* is assumed to be equal to 1.54 

throughout this analysis.   Hence, the only parameters which need be specified 

In order to obtain a solution to (4.139) are  M , S+, b*, r*, D+,«+, y+,  and the range 

of interest of u*. 

By inspection of equation (4.139) and equations (4.131) through (4.137), it 

is evident that effects of  b+, r*, D+,«+, y+, and  &/ are obscured by the summa- 

tion term in (4.139). However, the parameters M  and  8*   occur only outside 

of the summation, so that the effect of these parameters on the dimensionless 

plate velocity spectral density are immediately obvious. For most submarine 
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applications, b* will vary between 0.5 and 1.0, and it was felt that varia- 

tions in b* over this range would change the plate natural frequencies but 

would not significantly alter the general level of the spectrum. Hence, the 

effect of plate shape (b*) was not investigated in this study. This omission 

leaves only the damping (f+), the plate rigidity (D*), plate point of interest 

(x+,y*), and frequency (o/) as parameters to be investigated. The effects of 

each of these parameters will be discussed below. 

5.1.2.1  Effect of Plate Coordinates 

Dimensionless input parameters which fall in the range of interest for 

submarine applications are as follows: 

M = 18.9 

D+ = 10.3 

S* = 2.31 xlO'2 

b+ = 0.6667 

rf   ■=  0.1 r*      (assumed) . 
mn 

The position of maximum plate vibration is usually of greatest interest as far 

as plate coordinates are concerned.   It seems reasonable that the maximum 

level would occur at the center of the plate.   Hence, the effect of plate coordi- 

nates was investigated over the range of plate coordinates 0.2 <«+ <0.5, y* <0.5 

The frequency range of interest was selected to be   10 < a»* < 3000. 

Figures 12, 13, and 14 present dimensionless plate velocity spectra for 

the above stated case with plate coordinates (x*,y*) of   (1/5, 1/3),   (1/5,1/3), 

and  (1/2,1/3),   respectively.   These three spectra show significant differ- 

ences in shape below a dimensionless frequency of 1000 because of the points 

01 measurement falling on different plate modal nodes or antinodes.   A table 
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of the plate dimensionless natural frequencies below 1000 dlmensionless 

cycles is presented in Table 1.   Note, for example, that   t* - 1/2, y* - 1/3 

TABLE 1 

PLATE DIMENSIONLESS NATURAL 
FREQUENCIES BELOW o/ = 1000 

Input Parameters 

M -18.9            8*= 0.0231         | 

Df = 10.3            b+= 0.6667         j 

rf=0.1r!                           \ 

iü                                                                      i 1                                          "in                                        j 

1 2 3        i 
102.9 316.8 673.1    j 

198.0 411.8 768.1 

356.3 570.2 926.5 

578.1 791.9 

8631 

places the point of interest at the plate center; hence one would not expect to 

observe ^2. «41• ^41 • ^ •  etc'   However, this position is antinode for 

wt •. «"J., ea* ,   etc.    Figure 14 clearly shows resonances at the frequen- 

cies (from Table 1) associated with the 1-1,   1-3,  3-1,  and 5-1 modes, 

whereas the 1-2,  2-1,  4-1,  and 4-2 modes are not discernible.   Similar 

effects may be noted in Figures 12 and 13.   This fact further supports the 

validity of equation (4.139). 

Consider now the "peak spectra" derived from Figures 12, 13, and 14 

above the first plate natural frequency.   A comparison of these "peak spectra" 

is presented in Figure 15.   Inspection of Figure 15 shows negligible effect of 

plate coordinates on the dimensionless plate velocity "peak spectra density" 
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above the first plate mode.   It Is concluded, therefore, that plate coordinates 

in the range   0.2 < «* <0.5,y*   o.}V?  have no effect on the dimcnsionless plate 

velocity "peak spectral density."  This conclusion, in addition to the observa- 

tions made above concerning Figures 12, 13, and 14, supports the further 

conclusion that, above the first natural frequency, the effect of changing the 

point of observation on the plate (plate coordinates) is a change in shape of the 

dimensionless plate velocity spectrum without changing the general level of 

the spectrum. 

5.1.2.2  Effect of Plate Damping 

By utilizing the same input parameters listed in Section 5.1.2.1, the 

dimcnsionless plate velocity spectrum was computed for two additional values 

of damping at the midpoint of the plate it* - 1/2, y* « 1/3)  over the frequency 

range   10 < &/ < 3000 .  These additional values of damping were 0.01 r*     and 
C«II 

0.05 r*       The resulting dimcnsionless plate velocity spectra for these cases 

are presented in Figures 16 and 17, respectively.   Thus, Figures 14, 16, and 

17 show the effect of damping alone on the dlmensionless plate velocity spec- 

tral density.   Comparison of these figures shows that an increase in damping 

decreases the spectral density in the region of the natural frequencies present 

in the spectra, as would be expected.   The amount of this reduction in spectral 

level is most easily investigated by inspection of the dlmensionless "peak 

spectra" constructed from Figures 14, 16, and 17.   A comparison of the 

"peak spectra" for the three damping cases is presented in Figure 18.   It 

should be noted here that the first plate dlmensionless natural frequency (wjj) 
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1 932 falls above  w  - -—. and that the "peak spectra" presented in Figures 15 and 
o 

18 only apply above wt,.  Hence, any conclusion drawn from the dimensionless 

"peak spectra" apply only to dimensionless frequencies above   l.9U/S\ 

Figure 18 shows the effect of damping on the dimensionless plate velocity 

spectral density at the plate natural frequencies.   Note that the slope on the 

"peak spectrum" is also slightly changed as the damping is varied.   This 

effect may be a result of the computational procedure of computing the dimen- 

sionless spectral density at a dimensionless frequency one cycle higher than 

the plate natural dimensionless frequency.   Since the slope change, as noted 

above, was slight, it was not felt that this effect warranted a complete investi- 

gation.   The effect of damping on the slope of the "peak spectrum" will be 

discussed as it appears in Figure 18.   However, it should be kept in mind that 

this effect may have no physical basij. 

Figure 19 preserts the effect of damping on the "peak spectrum" over the 

range of damping   o.oi < -I— < o.l   for the dimensionless frequency of 200, 

which is equivalent to   ,„*!>' - 4.62.   This effect may be expressed as 

\     mn  ' 

(5.1) 

It is obvious from (5.1) that the "peak spectrum," and hence, the dimension- 

less plate velocity spectral density at the plate natural frequencies, varies 

inversely as the second power of plate damping at the dimensionless frequency 

of  4.62/S*. 

Figure 20 presents the variation in slope of the dimensionless "peak 

spectrum1' with damping over the same range of damping.   This effect may 

1 
,.., 
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be described by 

P\2    3       / /ino,4\ 
ION.O—r— T i-68-,t,lo»io(iTiL) c^o.;,.      (5.2) 

\      mn / ^(i •;•""■) . ^ I 932 

From (5. 2), IJ: is seen thK, for dimensionless frequencies above the first 

plate dimensionless natural frequency and above   l.932/5i,   the slope of the 

dimensionless "peak velocity spectrum" increases with the one-half power of 

damping. 

From the above, it may be concluded that the plate damping has a pro- 

nounced effect on the dimei.sionless plate spectral density at dimensionless 

frequencies corresponding to the plate natural frequencies present in the spec- 

trum.   The major effect of damping is to decrease the dimensionless spectral 

density at these frequencies according to approximately the inverse second 

power of the damping.   This conclusion was also reached by Bull et^al. [is] in 

their investigation on the flow excited vibrations of plates.   This lends further 

support to the validity of this analysis. 

5.1. 2.3   Effect of Plate Rigidity 

By use of the values of  M, £*, b*, and   t*   prescribed in Section 5.1.2.1, 

the dimensionless plate velocity spectral density was computed at the plate 

center (x+ - 1/2, y* = 1/3)  over the dimensionless frequency range of 11 to 

3000 for the additional values of D* of 5.15 and 15.45.   The results of these 

computations are presented in Figures 21 and 22, respectively.   The effect of 

a change in   D*  alone over the range 5.15 to 15.45 can be seen from Figures 
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14, 21, and 22.   Comparison of these figures shows that the prime effect of 

D* is to change both the dimensionless natural frequencies and the dimen- 

sionlese velocity spectral density at those natural frequencies present in the 

spectrum.   From consideration of basic vibration theory, this result is not 

unexpected. 

It is again instructive to examine the dimensionless "peak velocity 

spectra" derived from Figtres 19, 21, and 22.   Figure 23 presents this com- 

parison.   It is seen that the prime effect of the plate rigidity is to change the 

lower limits of applicability of the "peak velocity spectrum" without signifi- 

cantly changing the spectral level.   This becomes obvious when it is recalled 

that the "peak spectrum" for the application described here is only valid above 

the first dimensionless plate natural frequency, and it can be shown that the 

first plate dimensionless natural frequency varies as the one-half power of D+ ■ 

Comparison of the lower limiting frequencies in Figure 23 bear out this 

relation. 

5.1. 3 Dimensionless Plate Velocity "Peak Spectral Density" 

As previously stated, the dimensionless plate velocity "peak spectral 

density" is a useful engineering result in that it allows prediction of the maxi- 

mum plate velocity spectral levels.   Often this knowledge is sufficient to enable 

the engineer to make a decision concerning a design problem or an equipment 

specification.   It would therefore be desirable to derive an expression by 

which the dimensionless "peak plate velocity spectrum" could be predicted. 

Such an expression would have the further advantage that it would show the 
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effect of the major parameters on the dlmenslonless plate velocity spectrum 

at the dlmenslonless plate natural frequencies.   The results of the above sec- 

tions provide sufficient data for such a derivation over the range of param- 

eters pertinent to the submarine application. 

From equation (4.139) and the discussion in Section 5.1.2, it is obvious 

that the dimensionless plate velocity "peak speciral density" 14»^ (i*,y*,<•/)] 
p 

is proportioned to   M2 5*     for dimensionless frequencies above   1.932/5*. 

Section 5.1.2.1 further concludes that, in the range   1/' < «* < 1/2, y* - 1/3, 

the dimensionless peak spectral density is independent of the plate coordinates 

i*   and y*.    Hence, 

*; (.♦.yW).«;  (w*) l<.*<l,y>.i. (5.3) 
p P 5" 2 3 

Further, in Section 5.1.2.2, the effect of damping on the amplitude and slope 

of the dimensionless plate "peak velocity spectrum" was presented in equations 

(5.1) and (5.2).   Finally, Section 5.1.2.3 showed that the effect of D* was 

essentially that of shifting the lower dimensionless frequency limit of applica- 

tion of the "peak spectrum" concept. 

By noting from Figures IS, 18, and 23, that the slope of the dlmenslon- 

less "peak spectral density" is constant with dimensionless frequency on a 

semi-logarithmic scale, and by recalling that for the submarine application 

tut. > -—-,   it would seem reasonable from (5.3) and the above discussion to 

assume the following form for the plate velocity "peak spectral density": 

♦;p^-clMV2/-Il^,,^<'v,^-», i i 
5 =       '2 

(i)   > ^\i , a)T > -r;— > 

1 
3' 
1.932 

(5.4) 
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or, in logarithmic form i 

10 l«>«,o ♦*  {""> - C, + 20 lo|10 M - 20 log10 84 + 10 n log10 
p (6wit)^ 

♦       ♦ ♦ ^ 1«2 
5* 'XI 

(5.4a) 

where  C , n, and g(r*) are to be determined from (5.1) and (5.2). 

Using the values of M  and  8*  given in Section 5.1.2.1, comparison of 

(5.1) and (5.4a) yields 

■' -20 »»iio (^-V c2+10 $(^f\o$i0^r+ ,8 4 +10 n ,og'of7"V 
\coin/ \ciBn/ \cmn/ 

-101.5-: 

\     Bin / \     mnf \     m n / 

(5.5) 

from which 

n - -2 (5.6) 

and 

C2--199.9-10g/lil\log,0i^. (5.7) 

\ Cnin/ 

Substituting (5. 6) and (5.7) into (5.4a) results in 

10 log10*;p(a/) = - 199.9 + 20 log10 M - 20 log10S+ - 20 log.J-f-V 10 g/-il\log10 £E. 

\cinn/ \ cmn/ 

1 »1 ♦      1 

5 =      -2    '      2 

♦ -.    i + , 1-932 
CO     > tl), ,   ,  (J    >   

(5.4b) 

Comparison of (5.4b) and (5. 2) yields 

-68 

\mn/ \    mn/ 
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or 

(f) ■ ^'•«"«...(^ ,5.8, 

Substituting (5.8) into (5.4b) yields 

10 lo«jo K <w*) - -1999 + 20 ,0«io M - 20 loIio s* - 20 ,0lio e 
1      ♦    1      ♦    » 

(5.9) 

or, by a slight rearrangement, 

10 1og10<l>;  (w+) = -159.9-20 log 10 
p e-)-h'-(e1-® 

i    ♦   i    ♦   i - <«   <- . y  -- 
5"      =2    7      3 

♦ v ,> ♦ s 1-932 

where 

and 

5+ 

(5. 9a) 

'Irr^D'/V-^J (5.10) 
(^) 

m n 

2<n (5.11) 

Figure 24 compares the dimensionless plate velocity "peak spectrum" 

calculated from equation (5. 9a) to the computed spectrum of Figure 16. 

Agreement between the dimensionless plate velocity spectral density at the 

mmua&ummmtmmmm ■ >• i ■■* _ 
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plate natural frequencies and the dimensionless "peak spectrum" are seen to 

be excellent.   It may therefore be concluded that equation (5.9a) accurately 

represents the effect of major parameters on the dimensionless plate velocity 

spectral density at the plate natural frequencies and further predicts a plate 

velocity "peak spectrum" in agreement with results computed from equation 

(4.139). 

5.2  Results of Cavity Acoustic Pressure Spectral Density Computations 

The dimensionless cavity acoustic pressure spectral density was com- 

puted from equation (4.145). Computations were performed on the IBM 704 and 

the IBM 7090 digital computers by iterative processes.   Again, the summation 

terms in equation (4.145) appeared to converge monotonically in all cases. 

However, because of the octuple summation in (4.145), the computational time 

required for a spectral point was large, especially at the higher plate modes. 

Therefore, the solution was accepted if two successive iterations agreed 

within 20 percent.   This gave a computational accuracy to within ^1 decibel, 

which compares well with experimental accuracy.   Even with this fairly large 

tolerance, the computation of the dimensionless cavity acoustic pressure spec- 

tral density for a frequency corresponding to the 5-1 plate mode required more 

than 20 hours on the IBM 704 computer.   The IBM 7090 computer proved to be 

approximately eight times faster. 

Because of the large computer time required per spectrum, the dimen- 

sionless cavity acoustic spectrum was generated by computing the spectral 

density at a dimensionless frequency equal to each dimensionless plate 

...... 



70 

natural frequency plus the ratio of damping to critical damping, and at two 

points, equally spaced in frequency, between each pair of adjacent plate 

natural frequencies.   It will be recalled that the plate velocity spectrum was 

generated similarly, except that the spectral density was computed at three 

points, equally spaced In frequency, between each pair of adjacent natural 

frequencies.   This change results in a cavity acoustic pressure spectrum less 

precise than the plate velocity spectrum, but the computer time requirement 

dictated some time economies. 

It will be recalled that acoustic damping effects have been neglected in 

the derivation of equation (4.145), and that the only damping effects are asso- 

ciated with the plate.   It was thus felt that solutions of (4.145) at or above the 

first cavity acoustic natural frequency would not be physically valid.   Hence, 

computations of the dimensionless cavity acoustic pressure spectrums were 

confined, with two exceptions, below the first cavity acoustic natural frequency. 

To the author's knowledge, no experimental information exists for a case 

corresponding to the theoretical model treated here. 

The purpose of computing the dimensionless cavity acoustic pressure 

spectra from equation (4.145) was to show the effects of major parameters 

and to establish the range of validity of the assumption that the acoustic back 

pressure may be neglected. 

5.2.1  Effect of Major Parameters on the Cavity Acoustic Pressure Spectrum 

The data cases used to study the effects of major parameters were 

selected with the submarine application in mind.   Since the plate natural 



71 

frequencies and critical modal damping (<„*    and  r*    ) are functions of D* 

and  b*. and u' - 1.^4  throughout this analysis, the independent major param- 

eters affecting the dimensionless cavity acoustic pressure spectral density are 

,0   ,b   ,r   ,D   ,c   ,d  ,p   ,i   .y   ,x   , a»   . 

Inspection of equation (4.145) and equations (4.131) through (4.137), 

(4.142) and (4.143) shows that the effects of   h\t\D*,c*,d*tx*,y*,t*,   and «J* 

are obscured by the summation, whereas the effects of  M,£*,  and  p*   are 

explicit in (4.145).   The effect of the cavity dimensions,   bi   and d+, will be 

primarily that of redistributing the cavity acoustic natural frequencies, and 

since these computations were confined, for the most part, below the first 

cavity acoustic natural frequency, the effects of b*  and d*   were not 

investigated. 

As previously stated, the damping   (r+) present in this analysis is asso- 

ciated with the plate.   Note that the terms in equation (4.145) containing r* 

(namely,   A   ,T   ,*.,   ) occur in exactly the same combinations and are 

summed over the same range of indices as the same terms containing   r*   in 

equation (4.139).   If the concept of a "peak spectrum" is again introduced for 

the cavity acoustic pressure, it would seem reasonable from the above to sus- 

pect that the effect of damping on the cavity acoustic "peak spectrum" should 

be the same as that on the plate velocity "peak spectrum." Hence, from 

equations (5.1) and (5.2), it is assumed that 

I°».»*.; (>■-"• ^ c.-^./iplj 

: 
■..V«.-.'     ■■ 
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and 

10 log.» S  = c, t 5 loBlnf——I a,'> (D 

'0'%;i.-V.,-..../l'
C'-,'°'"|—) 

p \    mn / ♦     1932 

(5.13) 

where C,  is the acoustic pressure "peak spectral density" at a dimension- 

less frequency of   -^i, and   c2 is the slope of the "peak spectrum" with 

frequency.   These constants will be evaluated in a later section. 

From the above, it remains to investigate the effects of   D*, c*, «*, y*,z*, 

and  u> . 

5.2.1.1  Effect of Cavity Coordinates 

Dimensionless input parameters which fall in the range of interest for 

submarine sonar applications are 

M -- 18.9 

D* = 10.3 

5+ = 2.31 x 10-2 

b+ = 0.6667 

f+ = 0.1 r* 

c+ = 454 

d+ = 0.3333 

p* = 18.9 . 

Note that the first five parameters are the same as those listed, in Section 

5.1. 2.1 for the plate.   This set of parameters will hereafter be referred to 

as Case 1. 

The effect of plate coordinates ws investigated for the following sets of 

cavity coordinates   (x*,y*,z*): 

«mxm 
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Because of computer time limitations, the frequency range of interest was 

10 < <•/ < looo.   The first cavity acoustic dimensionless natural frequency is 

1426. The computed dimensionless cavity acoustic pressure spectral densities 

for the Case 1 parameters and the above listed coordinates are presented in 

Figures 25 through 28, respectively.   Close inspection of these figures re- 

veals very small differences between these spectra throughout the entire fre- 

quency range.   At the higher frequencies, it may be seen that the dimension- 

less cavity acoustic pressure spectral density is slightly greater at the bottom 

of the cavity   (z' = 0)   than at the plate (z*   -1/3).   Also note (from Table 1) 

that the 1-1, 3-1, and 1-3 plate modes appear in the cavity acoustic pressure 

spectra of Figures 25 through 28, regardless of cavity coordinates.   The 

above observations suggest that the dimensionless cavity acoustic pressure 

spectral density is nearly uniform with position (over the range of coordi- 

nates investigated) throughout the cavity at dimensionless frequencies below 

the fir^t cavity acoustic natural frequency.   This is further borne out by 

Figure 29, which compres the dimensionless cavity acoustic pressure "peak 

spectra" derived from Figures 25 through 28 above the first plate natural 

frequency.   It is seen that the effect of cavity position on the "peak spectra" 
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is very small in the range investigated; hence, it will be assumed 

«t»'   (x'.y*, /•,<-•)    <l)'   U/) 1 .„•.'♦    1 , _1 ,,,,♦ <o , 
\        r % 1' 2    *      i       i"      • 

♦ „ 1932 
ill        ■  tu . .     ,     U>       >  ——    . 

(5.14) 

From the above, it is concluded that, in the range of space variables 

1/3 < x+ < 1/2, y* = 1/3, -1/3 i z* i o,   the dimensionless cavity acoustic pressure 

spectral density is essentially uniform for dimensionless frequencies less than 

2/3 of first cavity acoustic natural frequency.   It is therefore assumed that 

the dimensionless cavity acoustic pressure "peak spectral density" is inde- 

pendent of space coordinates. 

5. 2.1. 2  Effect of Speed of Sound of Cavity Fluid 

A change of the cavity fluid involves a change in the values of c*   and p*. 

The effect of p\  as previously stated, is explicitly stated in equation (4.145). 

Hence, changing the cavity fluid provides a simple method of determining the 

effect of c*   on the dimensionless cavity acoustic pressure spectral density. 

To this end, the following parameters were selected: 

M  = 18.9 

S*   - 0.0231 

b*   = ■   0.6667 

r*   -- .   0.1 rc
+ 

=   18.9 

d* =  0.3333 

c* =   100 

P* =   0.0221   . 
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This set of parameters will hereafter be referred to as Case 4.   A summary 

of all parameter cases is presented in Table 2. 

TABLE 2 
PARAMETERS USED FOR COMPUTATION OF ACOUSTIC PRESSURE SPECTRA 

PARAMETER CASE 1 CASE 2 CASE 3 CASE 4    | 

M 18.9 0.51 0.0221 189 

S* 0.02J1 0.0202 0,0202 0.0231 

b' 0,6667 0.6667 0.6667 0.666" 

d* 0.3333 03333 0.3333 0.3333 

1           rVr* 0.1 0.1 0,1 0.1         1 

D* 10.3 0.0004 0.0259 10,3        1 
c* 454 5 5 100          ! 

+ 18.9 0.51 0.0221 0,0221   | 

^ii 102.9 0.641 5.16 102.9        1 

first acoustic 
natural frequency 

1426 15.71 15.71 314.2 

1932 
83.7 95.7 95.7 83.7 

The dimensionless cavity acoustic pressure spectral density was com- 

puted for the following dimensionless spacial coordinates  (x *, y *, z *): 

/I 1 1 A 
V2 3 6' / 

/i i i A 
\2 3 3 / 

The frequency range of interest was   10 < c/ < ?oo.    From Table 2, it is seen 

that this range includes the first acoustic natural frequency of the cavity.   The 

computed spectra for Case 4 are presented in Figures 30, 31, and 32. 
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Comparison of Figures 30 through 32 again BHOWH no effect due to cavity 

coordinates below a dimensionless frequency equal to 2/3 of the first cavity 

acoustic natural frequency.   Above this point, the acoustic pressure spectrum 

at the plate becomes higher than the spectrum at the bottom and middle of the 

cavity.   This result is not in agreement with the results of Case 1, which 

showed the cavity acoustic pressure spectrum to be slightly larger at the bot- 

tom of the cavity than at the plate.   This discrepancy is not understood, 

although it seems to be due to the change in cavity fluids. 

Note further that the cavity acoustic natural frequency appears as a sin- 

gularity in the spectra of Figures 30, 31, and 32. This is due to the absence 

of acoustic damping. 

Comparisons of Figures 25 and 30, 26 and 31, and 27 and 32 show a 

constant difference in the dimensionless cavity acoustic pressure spectral 

density (independent of frequency) out to a dimensionless frequency equal to 

approximately J/3 of the Case 4 cavity acoustic natural frequency.   From pre- 

vious discussion and equation (4.145), it was shown that ^''(«'.y *, z*, u*) was 

proportional to p* .   The above discussion indicates that the combined effect 

of p*   and   c*   is a constant difference in the spectra and is independent of 

frequency.   It appears reasonable, therefore, to assume 

n 
«TU4, y*, z', to*)      c*    • 

a ' 

where   n   is an exponent to be determined.    The difference between the 

dimensionless spectra of Case 1 and Case 4 is 84.9 db.   Therefore, from the 

above 

Mwa.'—nt i 
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<t>'(x'. y', z', ,.,') 
10 lo«ln —      84.9     20 I 

i0Vu\y'.z'....')i 

0«IO(-T)^ ,0n,o«iü(-TJ • (5-15) 

where the subscripts refer to the case number.   From equation (5.15) and the 

values of  Table 2, 

n     4 (5. U5) 

and thus 

<t'N.^y^z^ <,/>  c*1 (5.n) 

5. 2.1.3   Effects of Damping and Frequency 

As stated in Section 5. 2, 1, the only damping present is that of the plate, 

and the damping terms in equation (4,145) occur in exactly the same form as 

in the equation for the dimensionless plate velocity spectral density (equation 

(4.139)).   Therefore, it is reasonable to assume that the variation of the 

dimensionless cavity acoustic pressure spectral density with damping is the 

same as that of the dimensionless plate velocity spectral density. 

It will be recalled that the effect of damping was shown by means of the 

dimensionless plate velocity "peak spectra."   The "peak spectrum" concept is 

also useful from an engineering standpoint in examining the dimensionless 

cavity acoustic pressure spectra.   Because of the intended application of this 

work, the "peak spectra" are only derived for dimensionless frequencies above 

l.ov.' rS'    Further, as the plate boundary conditions affect the spectral density 

at the lower modes, and as the intent of the "peak spectrum" is to generalize 

the results into a useful engineering tool, independent of plate boundary con- 
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ditions, the "peak spectra" only apply above the first dimensionless plate 

natural frequency.   It was upon the above arguments that the assumed forms 

for the damping and frequency effects on the dimensionless cavity acoustic 

pressure 'peak spectrum" (equations (5.12) and (5. I.))) were based. 

From equation (5.12) and Figure 29, it can be shown that 

( ,   -20.1 . (5.18) 

From equation (5.13) and Figure 29, it can further be shown that 

C2   -93.5. (5.19) 

Hence, the effects of damping and frequency on the dimensionless cavity acous- 

tic pressure "peak spectrum" at dimensionless frequencies above 1.932/5* and 

(.|, may be written, taking account of equation (5.14): 

and 

(K   (a/) 
I0 1o*10       ' 

.,-2O,O,10ä:\ lOlo^o*;   („/)     -20.S-20 1o„10plJ-^ (5.20) 

**   U0<„') 
il 

p 

^,,log /i2£iiy (5.2i) 

5. 2.1.4   Effect of Plate Rigidity 

The plate rigidity  (O*) originates from the plate equations and, like the 

damping, occurs in exactly the same form in equation (4,145) as it does in 

equation (4. i;{9).   Therefore, by the same arguments used above, the effect of 

the dimensionless plate rigidity on the cavity acoustic pressure spectral den- 

sity should be the same as its effect on the plate velocity spectral density.   In 

Section 5.1. 2.3, it was shown that the plate rigidity redistributed the plate 

"nunriiwiiwwn ■! n 
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natural frequencies and altered the dimensionless plate velocity spectrum at 

these frequencies. Its effect on the "peak velocity spectrum" was to alter the 

lower limit of applicability because of the changes in cv I 1 (since the "peak 

spectrum" is only applicable above w ~ 
1
). 

The dimensionless cavity acoustic pressure "peak spectrum" derived 

herein will have the same limitations as the dimensionless plate velocity "peak 

spectrum." For the submarine sonar application, these limitations are not 

severe, but for aircraft and missile applications, the cavity acoustic pressure 

"peak spectra" lower limit will probably fall above the frequency range of 

interest; that is, the lowest frequency limit of application of the "peak spec

trum'' ( 1.<>3215') will probabl~· be near the upper frequency limit of interest in 

these applications. In an effort to provide some data in the range of interest of 

these applications, and to bette r define the e ffect of o· at frequencies below 

1.'>32151
• dimensionless cavity acoustic pt·essurc spectra were computed for 

two additional data cases. These wen:- Case s 2 and 3, and the parameters used 

are presented in Table 2. 

Figures 33 and 34 present the Case 2 r esults in the dimensionless fre

quency range 0 . 1 ..... w · 6 for the dimensionl ess coordinate s (1 / 2, 1/3, -1/6) 

and (1 / 2, 1/ 3, -1 / 3) , r espectively. Note, from Table 2, that the above fre

quency range lies below 1.93 21c5. and also below the first acoustic natural 

frequency of the cavtty . Again , these spectra show no effect of cavity coordi

nates as the highest frequency falls below 2/ 3 of the first cavity acoustic 

natural frequenc). 

Figures 35 and 36 present the Case ::: dim ensionless cavity acoustic 
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pressure spccira in the dimensionless frequency range   1.0    („'    w   for cavity 

diniensionless coordinates (1/2,  l/.'i. -!/()) and (1/2, l/.'J, -\/'.i), respec- 

tively.   Again, this frequency range falls below    IW/S*   but includes, in the 

case of Figure ;J5, the first two acoustic natural frequencies of the cavity. 

Comparison of Figures ;i.r} and ;}6 again shows no effectfi of cavity coordinates 

out to a dimensionless frequency equal to 2/3 of ihe first cavity acoustic 

natural frequency. 

Table 2 shows that  M,D*, and   p<   are the only parameters varied from 

Case 2 to Case 3.   The effects of  M   and   fi'   are known.   Hence, Cases 2 and 

3 may be used to show the effect of  D*   below the dimensionless frequency 

1.932/<5*.   Comparison of Figures 33 and 34 with Figures 35 and 36 again shows 

the shift in the plate natural frequencies with a change in  D'   as previously 

observed.   Hence, in order to show any frequency dependent effects of   D', 

it would seem prudent to show these effects relative to the first plate natural 

frequency.   Knowing the effects of   M   and  p',  and recognizing that the cavity 

acoustic pressure spectrum is independent of position for frequencies less 

than 2/3 of the first cavity natural frequency, one can show that, below this 

frequency, 

4)* (x\ y\ z\ tu* <",,), 
10 '^.o - ;  = 20 log,0 

r (x+.y+, ^ 01     <u 112 feH;°^}   ^ 
where the subscripts J and 3 refer to the Case numbers.   Figure 37 presents 

a construction of {(Dj.D*, oZ/w*,)  from Figures 34 through 37 for dimension- 

less frequencies below 2/3 of the first acoustic natural frequency.   As can be 

seen from Figure 37, the effect of  D*  is a rather pronounced function of 

tmmmm 



Hl 

frequency.   A precise description of this effect is difficult from the above data, 

and the large amount of computer time required to produce a spectrum pre- 

vented a more detailed study.   An approximation of the effect of  D*   at fre- 

quencies below   1 912 f>'   can be found by considering the effect to be a constant 

equal to the median value of the function shown in Figure 37.   In this case, one 

could assume 

*'(x*. y *, z", ../l     n,m 0<6)+<- , (5.23) 

where m  is an exponent.   The median value is shown as a dashed line in 

Figure 37, for which 

m =-2.48^-2.5. (5.24) 

Hence, as a rough approximation, the cavity acoustic pressure spectral den- 

sity varies inversely with the 5/2 power of  D*   for dimensionless frequencies 

below   1.932/5*.    Above this frequency, the effect of  Ii"   is most easily de- 

scribed in terms of the dimensionless cavity acoustic pressure "peak spec- 

trum," and this effect is to alter the lower limiting frequency via altering ",,. 

In conclusion, a change in  D*   changes all of the dimensionless natural 

frequencies of the plate and the associated plate velocity spectral densities. 

This effect is passed intact to the cavity acoustic pressure spectrum.   At 

dimensionless frequencies above the first plate natural frequency and above 

1.932/S*,  a change in   D*   merely changes the frequency range over which the 

dimensionless "peak spectra" concept applies; that is, the plate velocity or 

cavity acoustic pressure spectral densities are changed in such a way that the 

associated "peak spectra" are not functions of 1)'. However, as the "peak 

-■^»MI.^1 n<wwi.Kijr■*»•,,■>.? ..<■<■>*.■» ■*«■ »•—"■'■ 
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spectrum" concept has been shown to apply only above ■. ,,, and as u,n  is a 

function ol   i>'. the lower frequency limit of application ol the "peak spectrum" 

is affected by   D'    At frequencies below   1.032/5*, the precise effect of D' 

has not been completely investigated.   However, it has been shown to be fre- 

quency dependent, as might be suspected from the above.   If the frequency 

dependency is neglected, the effect of   n"   at dimensionless frequencies below 

1.952/&'    can be roughly approximated by 

«DM«*, y'. z4, 6/)- D* 
-S   2 

(5. 25) 

5. 2. 1.5  Dimensionless Cavity Acoustic Pressure "Peak Spectrum" 

As in the case of the plate velocity spectrum, the dimensionless cavity 

acoustic pressure "peak spectral density" is a useful engineering result, 

allowing predictio'n of maximum cavity acoustic spectral levels at dimension- 

less frequencies above   1.932/S*   and above the first plate natural frequency 

(CD,,). It will also be useful to use the dimensionless cavity acoustic pressure 

"peak spectrum" in the next section to determine the limits of applicability of 

equation (4.145).   The previous sections in addition to equation (4.145) pro- 

vide sufficient information to derive an expression for the dimensionless cavity 

acoustic pressure "peak spectrum. " 

From Section 5. 2.1.1, it was found that the "peak spectrum" was inde- 

pendent of cavity coordinates (in the range of coordinates examined) for the 

dimensionless frequency range between    1.932/5*   and 2/3 of the first cavity 

acoustic natural frequency.   From Section 5.2.1. 2, it was further determined 

4 
that the "peak spectral density" was pronortional to  c* .    Further, Section 
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5.2. 1.4 argued that for frequencies above   l.(H2 ß*   the effect of plate rigidity 

was to shift the lower limit of applicability of the "peak spectrum" in the same 

manner as was shown for the plate velocity "peak spectrum."   By utilizing 

this information and equation (4. 145), a general expression for the dimension- 

less cavity acoustic pressure "peak spectrum" may be written as follows: 

«DMfc/)-C1p
+W.V'(,,(r,.<„') l.^.l.y'      l.J.z'vO, 

•p lK * 2 3      3 

♦ ,     ( ,     1-932 
"'   >t"ii • "'    '~^~' 

(5. 26) 

where   (     is a constant,  and (i,(r,,(,.') is a function to be determined. 

Section 5.2.1.3 argued that the damping   (r*)   is associated with the plate 

and, therefore, should enter the equation for the acoustic pressure "peak 

spectrum" in the same manner that it entered the plate velocity "peak spec- 

trum."   Thus, from equations (5.4) and (5.8), it is atsumed that 

G'(,',„/)    (-^-)<" lü C|nn   • (5.27) 

*     mn' 

from which 

log.ndOOtVr*    )l 

1        ♦, 1       *      I        1        *     n -x   ' - , y    --,--<E<U, 
3 2 3      3" 

11     • g4 
*      1.032 

(5. 28) 

In the above,   K  is a constant to be determined.   The constants  c,   and  K 

can be determined from equations (5.20) and (5.21). 

    « -• 
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From equations (5. üH) and (.r),2l), 

-.„,,, Mo, J^    .oK.Mo^/l^y (5.29) 

from which 

K     -9.JV (5.;J0) 

Equation (ö. L'O) was based on Case I variables.   Hence, using Case 1 param- 

eters, from equations (5. 20), (5.28), and (5.30), one obtuins 

(5.31) 

-20,5- 20 1o8l0(i22Lj     lOlog^C, • 10nlog10(_llV 190 

from which 

n = -2 (5.32) 

and 

10IogI0 C,    -250.5 . ^35 -M„,10/i^|l„,10^y (5.33) 

From equations (5,28), (5.30), (5.32), and (5.33), by a slight rearrangement, 

the dimensionless cavity acoustic pressure "peak spectral density" may be 

expressed as 

10 lojt10 1)*   (<,/) - -210.5 - 20 1 -(f)--(^) 
*       mn / 

i     t i    ,   i 
- <. x < -. y     - • 
3 2           3 

'   ^ ♦  , n        ♦      '     ♦  ,  ^      ♦ 
, = ii         = 3    •i 

(5.34) 
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where  <<<'    is the first cavity acoustic natural frequency. 
'i 

Figure 38 compares the dimensionlcss cavity acoustic pressure "peak 

spectrum" computed from equation (5.34) to the dimensionlcss cavity acoustic 

pressure spectrum computed from equation (4. 145) for the Case 1 parameters 

at the cavity coordinates (1/2,   1/3,   -1/6).   The agreement is very good 

above   (,/    JV).   Thus, within the prescribed limits, equation (5.34) predicts 

a dimensionless cavity acoustic pressure "peak spectrum" that agrees well 

w.th the results of equation (4.145). 

5. 2. 2   Limits of Applicability of Theory 

At the outset of this analysis, it was assumed that the cavity acoustic 

pressure was much less than the turbulent pressure and thus provided negli- 

gible excitation to the plate compared to the turbulent pressure excitation. 

The calculated spectra and "peak spectra" of the previous sections provide the 

information necessary to check this assumption.   Again, it should be empha- 

sized that the calculated cavity acoustic pressure spectra'are probably not 

physically valid above the first acoustic natural frequency. 

Horton [43] shows that, if the difference between two random signals is 

10 db (that is, their ratio is a factor of 10), the sum of the signals is 1/2 db 

greater than the larger of the two original signals (a factor of 1.12).   Hence, 

if the turbulent pressure spectral density is 10 db larger than the cavity acous- 

tic pressure spectral density, the error in the calculated cavity acoustic pres- 

sure spectral density would only be 1/2 db.   This error is the limit of meas- 

urement accuracy.   Hence, it will be assumed that this analysis is valid where 

—«IWIlWjtti -Mfc'MWtO^*«*    ^J»-    "w- 

( 
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the cavity acoustic spectral density is 10 db less than the turbulent pressure 

spectral density. 

This criterion is most easily checked if the turbulent pressure spectral 

density (equation 3.1) is non-dimensionalized with respect to the same quan- 

tities as the cavity acoustic pressure spectral density.   Let  QMu*)  be defined 

by 

«Ma 

aVu3 

2.74x lO-'M1«* "^"IF" 

■2       -3 ,0,2 (5-35) 

From the above criterion and equations (5.34) and (5.35), the limit of 

applicability for dimensionless frequencies above    1.932/^   and u,, can 

quickly be established: that is, 

10Iog10 «tV) - 10 1og10 V (<,/) > 10 . (5.36) 

Substitution of equations (5.34) and (5.35) into (5.36) yields 

-163.^-20 loftu 

10 log.-c 
<tM-<^hW 

•10' 

63.*> - 5 1 
(100 r A 

—) mn r 

3 2 3       ^ 

. ,     1<'32 

(5. 37) 

It is seen from equation (5.37) that within the limits cited the limit of 

applicability turns out to be a lower frequency limit of application of the cavity 

acoustic pressure spectrum.   Use of the Case 1 parameters in equation (5. 37) 

results in a lower limiting dimensionless frequency of 403.   Figure 39 presents 
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a comparison of the Case 1 (linu-n.sionlcss cavity acoustic pressure "peak 

spectrum" and the dimensionless turbulent pressure spectrum for frequencies 

greater than   1.932/5',   It can be seen that equation (5.37) predicts very closely 

the frequency at which the cavity acoustic pressure spectral density becomes 

10 db lower than the turbulent pressure spectrum. 

For dimensionless frequencies below   1.932/5*, there were not sufficient 

computations made to understand completely the effect of plate rigidity. 

Therefore, an accurate applicability limitation for this analysis is not possi- 

ble in the frequency range.   However, if the approximation of equation (5. 25) 

is used, an approximation of the limit of applicability may bo made for fre- 

quencies below   1.932^6'    as follows. 

From the plate velocity spectra computations,  regardless of frequency, 

it seems reasonable to assume (as damping only occurs in the plate) 

"© .HWx'.v',,.',^)      -- (5-38) 

Also, regardless of frequency, from Section 5. 2. 1. 2, 

i 
<\[{x' .y ' ./' , r.'l     c'    . (5. 17) 

Further, over the range of spacial coordinates investigated, at frequencies 

below 2/3 of the first cavity acoustic natural frequency, 

•KU'.y'.z'../)    <I';(.,-). (5..'{9) 

By use of equations (5.38),  (5.17), (;j.;ii)), and (4. 145),  for frequencies below 

1.032 i*»', it seems reasonable to assume 



10 !»„,,, -I'M./)      (.,  . l0 1ogl0(ß*M2)-20lOg|0(I^lI —LA • lOlo^^d)'.../ 

(5,40) 

where  C,  and f(D', <-/) are to be evaluated.   From the arguments of Section 

5.2.1.4,   KD*, (./) may be approximated by 

fdV,.,/)   D' o/   -_1£. 

Therefore, equation (5.40) becomes 

10 log 10 «I'M.-/)      ( , . I0 1og10(^Mi)-20loSl0|~ LA-iMogn' 

»    m n   "        ' 

,     1.932 
(i       ■ ■     ■ 

(5.40a) 

It remains to evaluate   < ,.   To provide a conservative estimate of the 

limit of application, it is desirable to overestimate, rather than underesti- 

mate, the value of   (,.   Hence, the value of C,   will be evaluated at a fre- 

quency for which the cavity acoustic pressure spectral density is a maximum. 

From Case 3 data (Figures 35 and 3()) and equation (5.40a), using the value of 

the spectral density at  «/.,, one obtains 

<;,    -81.0. 

From Case 2 data (Figures .'!;'. and 1)4) and equation (5.40a), following the same 

procedure, one obtains 

(  ,      -8".H. 

In order that the estimate of the limit of applicability be as conservative as 

possible, the largest value of  ( ,   was selected.    Thus, an approximation to 

the cavity acoustic spectrum for the frequency range   "'    LOWS*   is given by 
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$'{,„']      -Hl') ■  Kl IOM,,, Ui'M-'l ■  20 loK,,.! ' -1 - 2S log.,, D 
/lOOr' 1     \      ,,. 

v     / ' 7 '       m ti      ' ' 

(5.41) 

Again, by use of tho criterion that tho cavity acoustic pressure may be neg- 

lected as a driving force to the plate if 

10 log l0^- 10. 

a 

from equations (5.41) and (5.35), the following equation must be satisfied in 

order that equation (4. 145) accurately predict the cavity acoustic pressure 

spectrum at dimensionless frequencies below   l.Vtt'f)* -. 

201,,,. fei -Ü ■ 2^ I.,, IV     -26.,, (5.42) 

\    r m n     ' * 

Using the applicability limitation of equation (5.42) with the parameters 

for Cases 2 and 3, it may be shown that Case 2 fails the criterion by approxi- 

mately (il db whereas Case '.i passes by approximately 12 db.    Figures 40 and 

41 compare the dimensionless turbulent spectrum to the computed spectrum of 

Cases 2 and 3, respectively, for dimensionless spacial coordinates (1/2,  l/.'i, 

-1/.'}).   Although the exact numbers of the applicability criterion calculations 

are not borne out in these figures, the conclusions of the calculations are 

supported. 

Therefore, it appears that equation (5.42) may be used as an approximate 

test to indicate, for a particular set of input parameters, whether or not 

equation (4. 145) will predict an accurate dimensionless cavity acoustic prcs- 

■ W •'HalWB''>*'•' i" **.**•   xTf ■WU 
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sure spectrum at frucjucncics below   I VM f>'    Al frLtjuenclcs above   I.9U ■->'. 

equation (5,.'17) should be used. 

It should also be noted here, that the above criteria must also be satis- 

fied for the calculation of the plate velocity spectral density by means of 

equation (4. l.'{9) if the back of the plate is backed by an acoustic cavity.    If the 

back of the plate is m vacuo or in contact with in unbounded fluid medium, the 

above limitations do not apply. 



VI 

SUMMARY AND CONCLUSIONS 

This study presents an exact solution for the acoustic pressure spectral 

density and cross spectral density in a closed space behind a simply supported 

plate excited by boundary layer turbulence.   Unlike previous work in flow in- 

duced noise in which models of the turbulent pressure field have been approxi- 

mated by simple mathematical expressions, this study utilizes an experimen- 

tally based model of the turbulent pressure field as an input. The mathematical 

expression for this model is presented in equation (4.4).   The major assump- 

tion made in this analysis was that the acoustic pressure produced in the 

cavity by the random, flow excited vibrations of the plate could be neglected, 

with respect to the turbulent pressure, as a forcing function on the plate.   This 

assumption greatly simplified the mathematics of the problem but necessitated 

an analysis to determine the range of validity of the results. 

Exact mathematical solutions of the cavity acoustic pressure spectral 

density and cross spectral density were determined under this assumption, 

and the result? were presented in equations (4.126) and (4.120), respectively. 

A useful byproduct of the mathematical analysis is a description of the plate 

velocity statistics, which are presented in the forms of the plate velocity 

cross spectral density and spectral density in equations (4. 60) and (4. 68), 

respectively.   It should be noted that the equations for the plate velocity 

91 
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statistics are valid, without restriction, when the back of the plate is in vacuo 

or is in contact with a free acoustic field in which the acoustic pressure on the 

plate can be demonstrated to be negligible with respect to the turbulent pres- 

sure excitation.   In all other cases, both the cavity acoustic pressure and 

plate velocity statistics given in equations (4.120), (4.126), (4.60), and (4.68) 

are subject to the restrictions imposed by the above assumption.   These re- 

strictions are discussed below. 

A prime objective of this study was to provide the submarine sonar de- 

signer with information describing the effect of major parameters on the 

environment of sonar transducers.   The model used in this analysis provides 

a fair representation of the acoustic environment of submarine sonar trans- 

ducers.   In order that maximum information be obtained from selected com- 

putations, the plate velocity spectral density and cavity acoustic pressure 

spectral density were rewritten in dimensionless form.   The dimensionless 

form of the plate velocity spectral density is presented in equation (4.193), and 

the dimensionless cavity acoustic pressure spectral density in equation (4.145). 

Parametric studies and the range of validity of this analysis were determined 

from these dimensionless forms. 

Computations of the plate velocity spectral density, made with a digital 

computer, compared well with existing experimental information.   A "peak 

spectrum, " constructed from the computed spectrum by connecting the major 

spectral peaks, proved to be a useful concept.   From an engineering stand- 

point, knowledge of the "peak spectrum" is equivalent to knowledge of the 

maximum expected plate velocity or cavity acoustic pressure spectral densities 

■ »■■    ii minmm 
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over some range of frequencies.   This information is often sufficient for 

making a design decision or writing specifications.   Comparison of the dlmen- 

slonless plate velocity "peak spectrum" with "peak spectra" constructed from 

experimental information further showed that, above the first plate natural 

frequency, the plate velocity "peak spectrum" was independent of plate bound- 

ary conditions. 

From computations of the dimensionless plate velocity spectral density, 

with input parameters applicable to submarines, dimensionless plate velocity 

"peak spectra" were constructed.   Analysis of these "peak spectra" enabled 

formulation of a mathematical expression for the dimensionless plate velocity 

"peak spectral density."  This expression is presented in equation (5.9a), and 

has the advantages that it shows the effects of major parameters on the plate 

velocity spectrum and allows a quick estimation of the plate velocity spectrum. 

It should be noted that the average time required for each plate velocity spec- 

trum, computed from equation (4.139) with the IBM 704 digital computer, was 

approximately 8 hours.   Thus, the "peak spectrum" concept represents a sub- 

stantial economic advantage. 

The dimensionless cavity acoustic pressure spectral density was com- 

puted at various positions within the cavity for four data cases with a digital 

computer.   These four cases, in addition to the aforementioned plate data, 

allowed determination of the effects of major parameters on the cavity acoustic 

pressure spectrum over the range of dimensionless frequency from approxi- 

mately   I'M: (V   to 2/3 of the first cavity acoustic natural frequency.   Above 

the first cavity acoustic frequency, the cavity acoustic pressure spectrum 

■ 
—«v<«* «»«im ttmurm «»(•*•* ■.*'•»»«*« 
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computed from equation (4.145) is not felt to be valid since acoustic damping 

effects were neglected in its derivation.   Again, the "peak spectrum" concept 

proved useful, and an equation describing the dimensionless cavity acoustic 

"peak spectral density" is presented in equation (5.34) over the range of di- 

mensionless frequency between   1.932/5' to 2/3 of the first acoustic natural 

frequency. 

This equation describes the effect of major parameters on the cavity 

acoustic pressure spectrum.   The extremely large amount of computer time 

required to produce each cavity acoustic pressure spectrum prevented accu- 

rate description of the "peak spectrum" over the entire range of frequency. 

Since the contribution of the cavity acoustic pressure as an exciting force 

on the plate in this study was neglected, the results may only be used where 

this assumption is borne out.   Comparison of the turbulent pressure spectral 

density and the cavity acoustic pressure spectrum was made to determine the 

conditions under which the results of this study are valid.   For dimensionless 

frequencies above 1.932/5*, the condition was in the form of a lower frequency 

limit, given by equation (5.37), below which the theory is invalid.   For dimen- 

sionless frequencies below l.932/5+, the condition of validity could only be 

approximated because of an Incomplete description of the effect of major 

parameters in this frequency range.   This approximate condition is presented 

in equation (5.42). 

In summary, the theoretical solution to this complex problem and the 

conditions for applicability have been obtained.   From selected computed plate 

velocity and cavity acoustic pressure spectra, dimensionless plate velocity 
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and cavity acoustic "peak spectra" have been derived which show the effects 

of major parameters on the plate velocity and cavity acoustic pressure spectra 

over a range of frequency of interest to the submarine sonar designer.   The 

"peak spectra" have been shown to be useful engineering tools in that they 

allow a quick estimate of maximum spectral levelH for a given set of input 

parameters.   The study of major parameters, specifically the plate rigidity, 

at dimensionless frequencies below   1.932/6*  should be completed.   There is 

also a need for extensive experimental work in this area to verify these theo- 

retical results and their range of application. 

Ml    —••-        *- 
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