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ABSTRACT

An analytic solution is obtained for the acoustic pressure statistics in a closed rectangular shaped cavity
behind a simply supported, rectangular plate excited by boundary layer turbulence. The coatribution of the
cavity scoustic pressure is neglected as contributing tc the plate excitation, leaving only the turbulent pres-
sure fluctuations as the exciting force, The mathematical model for the turbulent pressure statistics is based
on that of Corcos, which agrees well with experiment, A byproduct of this analysis is an analytic solution for
the turbulent flow excited plate vibration velocity statistics, The plate velocity and cavity acoustic pressure
statistics are expremed in the form of cross power spectral densities and power spectral densities, Dimensjon-
less forms of the plate velocity spectral density and cavity acoustic pressure spectral density are developed,

The dimensionlem plate velocity spectral density and dimensionless cavity acoustic pressure spectral den-
sity were computed, by means of a digital computer, for selected values of dimensionless input parameters,
From these computed dimensionless spectra, the effects of major parameters on the plate velocity spectral
deasity and the cavity acoustic pressure spectral density were determined,

A “peak spertrum,” constructed by connecting the major spectral peaks in the plate velocity or cavity
acoustic pressurc wectra, proved to be a useful engineering concept, Knowledge of the “peak spectrum” is
equivalent to knowledge of the maximum plate velocity or cavity acoustic presure spectral levels for a par-
ticular set of input parameters, Based on the computed dimeasionless spoctra, mathematical exprestions are
derived for the dimensionlcs plate velocity “peak spectral density” and che cavity acoustic presure “peak
spectral density" over a limitedrange of dimensionles frequency, The computed simply supported plate veloc-
ity "peak spectrum” compares well with the plate velocity “peak spectrura” constructed from experimental
measurements on a fixed edge plate above the firm plate nstural frequency, No experimental data exists for
the cavity acoustic pressure,

Comparisoa of the computed dimensionless cavity acoustic pressure spectal density at the plate and the
dimensionless turbulent pressure spectral density allowed formulation of criteria under which the cavity scous-
tic presure wasnegligible compared to the turbulent presure, As this analysis assumed the cavity acoustic
premute to be negligible compared to the turbulent presure, the aforementioned criteria are, in effect, limits
of applicability of this analysis,
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Plate and acoustic cavity dimensjor in x-coordinate
(longitudinal) direction

Plate and acoustic cavity dimension in y-coordinate
(1ateral) direction

Dimensionless plate and acoustic cavity dimension

defined in equation (4. 129)

Speed of sound in acoustic medium

Dimensionless speed of sound defined in equation (4. 140)
Acoustic cavity dimension in z-coordinate (depth) direction
Decibel [10 log, , ®(w)]

Dimensionless cavity dimension defined in equation (4.140)
Defined by equation (4.110)

Defined by equation (4.113)

Plate displacement response to a unit impulsive force
Square root of minus one

Acoustic wave number defined in equation (4, 78)

Acoustic wave number in the x-coordinate direction
Acoustic wave number in the y-coordinate direction

Acoustic wave number in the z-coordinate direction

viii



k: (w?)
k

P,

Dimensionless acoustic wave number in the z-coordinate
direction

Turbulent boundary layer wall pressure

Cavity acoustic pressure

Effective plate damping coefficient per unit area
Critical plate damping coefficient for the m-ns mode
Dimensionless plate damping coefficient defined in
equation (4.129)

Dimensionless critical plate damping coefficient for the
m-nsb mode

Time coordinate

Time at which impulsive force occurs

Acoustic phase velocity vector

Acoustic phase velocity in the x-coordinate direction
Acoustic phase velocity in the y-coordinate direction
Acoustic phage velocity in the z-coordinate direction
Plate displacement in the z-coordinate direction
Longitudinal spacial coordinate

Dimensionless longitudinal spacial coordinate defined by
equation (4. 130)

Lateral spacial coordinate

Dimensionless lateral spacial coordinate defined by

equation (4. 130)
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I
INTRODUCTION

Flow induced noise is largely responsible for limiting submarine and
surface ship sonar performance, producing objectionable noise levels inside
high speed aircraft, and producing relatively high vibration levels in the pro-
pulsion systems of modern spacecraft which increase the probability of
failure of system components. Because of this wide variety of problems,
theoretical and experimental research in flow noise and flow induced noise has
increased in the past decade. The research in flow noise has been aimed at
defining a statistical model for the turbulent boundary layer pressure and/or
velocity which provides the excitation to the mechanical system, The research
in flow induced noise has been primarily aimed at theoretical solutions for the
response characteristics of various systems using mathematically tractable
approximations to the turbulent boundary layer excitation. Certain experimen-
tal studies of flow induced noise in simple systems have also been performed.

To date, although there is general agreement in the measurements of
boundary layer pressure s'atistics, there is not complete agreement as to the
mathematical model of these statistics. Also, although a wide variety of elc-
mentary flow induced noise problems have been studied, few have used any of
the existing;, experimentally based, mathematical models for the boundary

layer excitation,




T

It is the purpose of this study to add to the understanding of flow induced
noise by investigating the effects of major parameters on the sound field pro-
duced in a closed space behind a simply supported plate excited by boundary
layer turbulence utilizing an existing, experimentally based mathematical

model of the turbulent wall pressure.



Il
OBJECTIVES

The objective of this study is to provide the submarine sonar systems
designer with information concerning: (1) the acoustic environment of sonar
transducers; and (2) the major parameters which may affect this c¢nvironment,

The above objective has been attacked by means of an analytical study of
the acoustic field in a closed space behind a simply supported, rectangular,
flat plate which is excited by turbulent boundary layer pressure fluctuations,
The closed space is bounded by five rigid walls and the flexible plate. A
sketch of the model used in this analysis is shown in Figure 1. This model
provides a fair representation of the acoustic environment of sonar trans-

ducers in submarines,




I11
TECHNICAL APPROACH

3.1 Technical Background

The purpose of this section is twoiold, First, it summarizes work in the
field of flow and flow induced noise, Secondly, it provides justification for

certain assumptions made in the analysis to follow,

3.1.1 Theoretical Studies in Flow Induced Noise

Early theoretical studies in the field of flow induced noise were directed
toward a prediction of noise in aircraft fuselages [1, 2]. The mathematical
models of the turbulent boundary layer in these studies were not based on
experimental evidence, During this same period, Lyon [3] studied the re-
sponse of strings to random excitation, Eringen [4] derived expressions for
the response of beams and plates to random pressure fields, and Kraichnan [5]
studied the free radiation of sound from turbulent excitation of a series of thin,
stiff flat plates. Again, the excitation, although characteristic of boundary
layer turbulence in certain respects, was not compatible with experimental
data,

Dyver [G] was one of the first to study the coupled plate vibration-acoustic
radiation 1 rui.'lem, He assumed the boundary layer pressure correlation func-

tion to bhe un» product of a convected spacial delta function, a fixed spacial



(5]

delta function, an amplitude, and a decaying function of time. Although the
delta functions were relatively poor approximations to the actual longitudinal
and lateral pressure correlations, the convection and time decay were phe-
nomena which agreed with experiments, The above excitation was used in a
normal mode approach to the prediction of the acoustic field in a closed space
behind a simply supported, flow excited, flat plate., The walls enclosing the
space were pressure release surfaces, Although Dyer's input was,not precise,
it provided insight into the behavior of the model considered and encouraged
further work utilizing normal mode theory,

A short time layer, Dyer [7] used the same model of the turbulent pres-
sure correlation to calculate the displacement correlation function of a turbu-
lence excited flat plate. About this same time, Strasberg [8] used a mathe-
matical model of the turbulent pressure correlation based on the data of
Harrison [9] to predict the displacement spectral density of plates and mem-
brances. This was one of the first cases where experimentally based inputs
were used.

Powell [10] investigated the fatigue of structures excited by random pres-
sure fields and indicated that the response cross spectral density is maximized
when the incident pressure correlation matches the modal wavelength, Al-
though this is a possible condition in spacecraft hoccause of their high speeds,
it is not likely to occur in submarines,

Maidanik and Lyon [1 1] studied the response of strings to moving noise
fields using the Dyer delta function model for the pressure correlation,

From 1960 to the present, an extensive research program in flow noise
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and flow induced noise has been conducted at the University of Southampton,
This program yielded a recent paper by Mercer [12] in the response of multi-
supported beams to a random pressure field.

Tack and Lambert [13] derived general expressions for the response of
plates and bars to boundary layer turbulence.

A recent paper by White [14] used an experimentally based expression
for the turbulent pressure cross spectral density to predirt the response and
consequent sound radiation from a rectangular flat plate. The response of the
plate and the acoustic radiation are averaged over frequency bands so that the
details of the response are bypassed, and only the effect of such gross param-
eters as panel modal density and boundary layer characteristics are investi-
gated. White obtains very good agreement between theory and experiment
within these assumptions,

Bull et al. [15], as a part of the University of Southampton effort, calcu-
lated the displacement spectral density of flat plates due to turbulent excitation,
They used a normal mode approach to the plate problem and an experimentally
based expression for the turbulent pressure correlation as input. Collier [16],
using an approximation to the turbulent pressure correlation function, calcu-
lated the plate acceleration correlation functions and acoustic pressure field
radiated from the plate into an infinite fluid spacz at rest.

Pretlove [1 7] presents the theory, from a normal mode approach, for
calculating the displacement spectral density of a simply supported panel,
backed by a rectangular closed cavity. In the forcing function for the plate, he

makes provision for both the turbulent pressure and the resultant acoustic

- oo R B L ay



presrure in the cavity, He does not, however, solve this problem for any
particular model of the turbulent pressure. From his theory, however, he
states that the effect of the backing cavity is most severe in the cases of thin

panels covering shallow cavities.

3.1, 2 Experimental Studies in Flow Induced Noise

Few experimental studies of flow induced noise appear in the literature,
El Baroudi, Ludwig, and Ribner [18] experimentally investigated the displace-
ment correlation properties of a flow excited plate and the resultant total sound
power radiated into a reverberant room. In a related effort, el Baroudi [19]
measured the displacement correlation properties and displacement spectral
density of thin flat plates excited by turbulent boundary layers.

Bull et al. [15] measured the displacement spectra of thin flat plates due
to turbulent excitation, The plates were effectively mounted in a fixed manner,
and the experimental results were compared to the theoretically predicted
spectra for the simply supported case using an experimentally based model for
pressure correlation as input, As might be expected, agreement between
theoretical and experimental results was not good.

Maestrello [20] measured the sound power spectra radiated into a
reverberation chamber from turbulence-excited plates. In another paper ['21]
he measured the plate displacement correlation function for turbulence excited

plates.

3.1.3 Theoretical Studies of Flow Noise

Flow noise, as used in this study, refers to the wall pressure fluctuations




produced by a turbulent boundary layer. The mathematical theory of pressure
fluctuations in homogeneous, isotropic turbulence is well developed [22, 23,
24, 25, 26], However, because of its extreme complexity, the problem of
pressure fluctuations produced by a turbulent boundary layer has not been
treated extensively,

Kraichnan [27, 28], Lilley and Hodgson [29), and Sternberg [30] have
made theoretical studies aimed at computing the mean of the turbulent wall
presswre, but the space-time correlation properties (or their Fourier trans-
form) are required in order to treat flow induced noise problems.

Two attempts have been made to predict the correlation properties of
turbulent wall pressure fluctuations. Gardner [31], starting with the Navier-
Stokes equations, attempted to predict the wall pressure correlation by
assuming forms for the various velocity correlations occurring in his expres-
sions, His results were in sharp disagreement with experiment, White [32].
claiming that Gardner's approach was sound and that mathematical errors
were the cause of the discrepancy between theory and experiment, attacked the
same problem through Gardner's approach. White calculated the turbulent
wall pressure cross correlation function, lateral and longitudinal cross spec-
tral densities, and convection velocity, White's predictions agree reasonably
well with experiment except in the case of the wall spectral density where
there is a large discrepancy between predir.ted and experimental results,
White shows that the pressure cross spectral density is approximately equal to
the product of the lateral and longitudinal cross spectral densities, which

bears out a previous empiric¢al prediction by Corcos [33].



3.1.4 Experimental Studies in ¥low Noise

The first reliable measurements of turbulent boundary layer pressure
statistics were made by Willmarth [34] in 1956, Harrison [9] in 1958 pub-
lished the first measurements of the wall pressure cross spectral density,
Since thege measurements, many experimenters have measured the turbulent
wall pressure cross spectral density and correlation functions. Extensive
bibliographies of this work are presented by White [35] and Bull et al. [15],
and only selected references will be presented in this study,

Bakewell et al. [36] published extensive data of mean square pressure,
pressure spectral densities, and pressure correlation functions from experi-
ments in a 3-1/2-inch-diameter turbulent air flow facility,

Using both theoretical arguments and data obtained at the Ordnance
Research Laboratory at Pennsylvania State University, Skudrzyk and Haddle
[37] derived the following semi-empirical expression for the turbulent wall

pressure spectrum as measured with very small transducers:

U
®(w) =0.75 x 107*a? p] U} 8" w g 1.25(»?87°

2U(J U (3‘ 1)
MR, w>1.256 —=
5

D) = 1.5 x 107 a2
(1)38‘2

where a is a constant which takes on different values for different fluids,

For water,

and for air, 3.2)

Although this expression is not in exact agreement with experimental data

in shape because of the discontinuous nature of (3.1), it shows good agreement
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with experimental data in both amplitude and shape at frequencies above the

discontinuity and a reasonable approximation to the amplitude at frequencies
below the discontinuity, The agreement between (3. 1) and experiment. ! data
will be discussed further in Section 4.1,

Willmarth and Wooldridge [38] reported further measurements in 1962,
designed to provide more detailed statistical propertics of the wall pressure
fields, About this same time, Serafini [39] published new data of wall pres-
sure measurements,

Corcos [33, 40] , using the data of Willmarth, Bakewell, and Serafini,
stated that the turbulent wall pressure cross spectral density function could be

expressed as

Spp(f-"] w) = (b(u,)A(:_;_{)B(:;_Z)e‘““’f Uc? | (3.3)

4 <

Plots of A(wé/U.) and B(wn/U.) are also included in Corcos' work and
are reproduced in Figures 2 and 3. Corcos went on to predict the error re-
sulting from the measurement of the turbulent wall pressure field with finite-
size transducers and presented a means of correcting measurements for this
error,

Researchers at the University of Southampton have made extensive meas-
urements of the turbulent wall pressure statistics. The resulting reports are
summarized in the 1963 report by Bull et al.[15]. Willmarth and Roos [41],
incorporating Bull's data, reattacked the problem of resolution by finite-size
transducers on the basis that Corcos' similarity form for the cross spectral

density, equation (3.3), although accurate over a wide frequency range, failed
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to provide accurate hydrophone size corrections at high frequencies, Will-
marth indicates that the reason for this limitution is that (3. 3) is inaccurate at
small spacial reparations. However, as Willmarth points cut, wall pressure
correlation measurements at small spacial separations have never been made
because of experimental difficulties. He therefore does not propose an alter-
nate form to (3. 3).

Some of the data mentioned above havebeen obtained at the walls of circu-
lar pipes and others at the surfaces of flat plates., The lack of any significant
difference between the pressure spectra obtained in both cases is indicated in
a recent work by Schloemer [42], who measured turbulent wall pressure dlata

in the presence of favorable and adverse pressure gradients,



v
THEORETICAL DEVELOPMENT

The model treated in this analysis was a simply supported, rectangular,
flat plate mounted in an infinite rigid baffle and backed by a rectangular cavity
with rigid walls, Fluid flows over the top of the rigid baffle and plate, and the
cavity is filled with an acoustic fluid, A graphic representation of this model
is presented in Figure 1,

In order to determine the acoustic pressure field within the cavity, it
would ordinarily be necessary to determine the vibration of the plate due to the
combined turbulent and cavity acoustic pressure excitations. The cavity acous-
tic phase velocity at the plate would then be equated to the plate velocity, re-
sulting in an integral equation for the acoustic velocity potential., The various
constants resulting from the solution of this integral equation would be deter-
mined by the remaining boundary conditions, which require that the acoustic
phase velocity be zero on the rigid cavity walls, Pretlove [17] used an
approach similar to the above in computing the plate displacement spectral
density for a model identical to that described above. However, Pretlove
discovered that the cavity acoustic pressure had little effect on the plate dis-
placement spectral density except in cases of thin plates covering shallow
cavities, For submarine applications, the plates covering the cavities are

not thin and, therefore, in accordance with Pretlove's results, it is assumed

12
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in this analysis that the cavity acoustic pressure provides negligible excita-
tion to the plate; that is, the only forces exciting plate vibrations are those
associated with the turbulent boundary layer pressure fluctuations,

The above assumption simplifies the problem considerably. To compute
the cavity acoustic pressure field, it is now merely necessary to compute the
plate vibration velocity due to the turbulent boundary layer excitation and to
equate this result to the cavity acoustic phase velocity at the plate. The re-
sulting acoustic velocity potential must also satisfy the zero velocity condition
at the rigid walls, Hence, it is only necessary to determine a model for the
turbulent boundary layer pressure statistics in order to solve the above
problem.

Since the turbulent boundary layer pressure is a random phenomenon,
the cavity acoustic pressure resulting from the boundary layer excitation of
the plate will also be a random phenomenon, Random processes are usually
treated in terms of their space-time correlations or in terms of their spect ral
properties in the frequency domain. Collier's recent work [16] on the vibra-
tion and acoustic radiation of turbulence excited plates indicated certain com-
putational difficulties arising from treatment of the statistical properties in
the time domain., Therefore, in this analysis, random variables will be

described in terms of their spectral properties in the frequency domain,

4,1 Mathematical Model of the Turbulent Wall Pressure Cross Spectral Density

The mathematical model of the turbulent wall pressure cross spectral

density selected for use in this analysis was that of Corcos[33], which is
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given by (3. 3) and is repeated here for reference.

Spp( f!"c(ﬂ) = ‘b((u) A(;_’JE) B(in—")c-“wf ’UC‘, (30 3)

U
c

Corcos' model was selected for two reasons, First, its mathematical
form is such that space variables are scparated, thereby ecasing computational
difficulties. Secondly, Corcos' model was used to theoretically predict trans-
ducer size corrections which agree well with measurements over a wide range
of frequencies. Thus, subject to the limitation at high frequencies discussed
in Section 3. 1.4, Corcos' model of the turbulent wall pressure cross spectral
density provided a realistic and mathematically attractive model for this
analysis.

Before proceeding further, it is necessary to discuss the limitations in
applicability of equation (3.3). Since £ and n are relative coordinates,
equation (3. 3) tacitly assumes homogeneous stationary turbulence. Therefore,
Corcos' model of the cross spectral density is strictly applicable only to the
case of a flow having zero pressure gradient and constant boundary layer
thickness. However, equation (3. 3) can be used with good accuracy for turbu-
lent flows in which slow boundary layer growth and small pressure gradients
occur, In this analysis, the flow is assumed to have the following charac-
teristics:

a, constant boundary layer thickness over the plate,

b. zero pressure gradient,

Corcos [33] also shows that the convection velocity is a function of the Strouhal

Number 8" U,. This relationship is shown in Figure 4. Since the variation



of the convection velocity is not large over a wide range of Strouhal Number,
it is further assumed in this analysis that the convection velocity is a constant
given by

U, =0.65U_. (4.1)

Figures 2 and 3 present curve fits to experimental data for the functions
Alwé/U) and B(wn/U.) contained in (3.3). From these figures, the follow-
ing expressions have been selected to represent the A and B functions based

on a balance of curve fit and mathematical simplicity:

ACJ;{)H-&H*IW“C: (4.2)
and ‘
B(Sg)=e-o.7'uwvcl. (4.3)

Note that equation (4. 2) fits the measured value of A(wé/U) very well,
whereas equation (4. 3) sacrifices some accuracy in fitting the experimental
data in favor of mathematical simplicity. The expression

R -
w

¢ l+l.4-—r’
8]

<

provides a much better fit to the experimental data than does equation (4. 3),
but its use in the analysis to follow greatly increased the mathematical com-
plexity. Hence, equation (4, 3) was selected to represent B(wn/U ).

It remains to select an expression for ®(w) in equation (3. 3) in order to
completely specify the mathematical form of the turbulent wall pressure cross
spectral density. Lilley and Hodgson [29], and Skudrzyk and Haddle [37] have
proposed expressions designed to describe the turbulent wall pressure spectral

density, The agreement of the Skudrzyk and Haddle expression with experi-
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mental results is much better than the Lilley and Hodgson expression, Fur-
ther, the mathematical form of the Skudrzyk and Haddle model is quite simple,
Hence, the Skudrzyk and Haddle expression for the turbulent wall pressure
spectral density (equations (3.1) and (3. 2)) was used in this model and is re-

peated here for reference:

U
d(w) =0.75 ~ 10 a? pj UL & w £ 1.256 =
5 3. 1)
ZUo U
D)= 1.6 « 1075 a2 2 w> 1.2 —
wl5"? 5

where

a 1.0 for water

3.0 for air .

a

Figure 5 presents a comparison of the experimental data of Bakewell [36] ,
Schloemer [42], and Bull [15] with the Skudrzyk and Haddle model. The data
are jfor air rather than water because of the greater availability of air data,
The agreement between the experimental data and the Skudrzyk and Haddle
expression is poor at low non-dimensional frequencies but improves consid-
erably above the cutoff frequency., Althoug: the data of Schloemer and Bull
were obtained on flat plates and those of Bakewell in a pipe flow facility, the
Skudrzyk and Haddle non-dimensional form brings these data into excellent
agreement. It may therefore be assumed that the parametric form of equa-
tion (3. 1) is valid, but the values of the constants and cutoff frequency could
be considerably improved. For this analysis, however. equation (3.1) was
used in the original form to describe the turbulent wall pressure spectral
density.

Combining equations (3. 3), (4.2), (4.3), and (3.1), the turbulent wall
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pressure cross spectral density may be described by

S, ) = 075 |0"u’p"U‘:5‘ [c’”"” wE l‘clt-0,7|wv7,’l1t|]c-i(w.{ U

UO
w$1.2% — »
5
PH
S (£ = 13 x 100 a? =2 [eomsloevdJorlon/ud] guwe vo
44 (“\5‘2 U
w>1,2% - .
s

(4.4)
Equation (4. 4) is the mathematical model of the turbulent wall pressure cross
spectral density used in the analysis to follow. For convenience of reference,
the assumptions pertinent to equation (4.4) are summarized as follows:
a. constant boundary layer thickness over the plate,

b. small pressure gradients,

It is further assumed that the ratio of the convection velocity to the free

stream velocity is constant as presented in equation (4. 1),

4,2 Development of the Plate Velocity Cross Spectral Density

4,2,1 Plate Velocity Response to a Deterministic Pressure
The differential equation governing the displacement of the plate due to

the turbulent boundary layer pressure excitation on the plate surface is

4 dw ’w
Dvw+rx¢pﬁ=p'(x.y,t). (4.5)

where
D is the flexural rigidity,

t is the effective damping coefficient per unit area, and

p is the effective mass per unit arca.

The terms "effective mass'" and "effective damping' as used above denotes
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the mass and damping due to the combined effect of the plate and water. In
this treatment, for lack of detailed informution concerning the effect of the
water on mass and damping, the effective mass and the effective damping
coefficient are assumed to be constants, It is further tacitly assumed in
equation (4. 5) that the turbulent pressure field is not affected by the plate
motion. The effects of cavity acoustic pressure on the plate and neglected,
and the forcing function is only the turbulent pressure.

The solution to equation (4. 5) for any arbitrary deterministic pressure
field can be determined by a supeiposition of the normal modes of vibration

of the corresponding free-undamped plate, governed by

DVA‘W ‘o -;T -0, (4. 6)
de*

The solutions to equation (4. 6) satisfying the simply supported edge con-

ditions shown in Figure 1 are given by

w(x,y,0) =a_ (x,y)sinw_t, 4.7)

where the mode shapes and corresponding natural frequencies are given by

mry  nnx
sin

sin

a  (x.y)=

(4.8)

Vv ab

RORC)

The normal modes, «_ . form a complete set of orthonormal functions:

that is,

b ra
J’ J umn(x.y)um(x.y)dx dy =5mq5m. (4.10)
(A 1]
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It is now assumed that the solution to equation (4. 5), for any determinis-
tic pressure, can he written as a sum of the normal modes, each multiplied by

a function of time: that is,

~

wix,y.t) = z um"(x,y)Tm"(l), “4.11;
-

n =l
where T isto be determined,
Substituting (4.11) into (4. 5) and utilizing (4.10), one finds that T, (0)

must satisfy

diT dT > ,e
d':- 45 d:' + o»:.'l'-. -%IL p‘(x.y,t) a..(x,y)dxdy . 4.12)

At this point, it is convenient to solve equation (4. 5) by means of equa-

tions (4.11) and (4. 12) for two special cases. For the first case, let

P(x.y,0) =8(x-x) 5y ~y)e'“", (4.13)

that is, a concentrated load applied at (z',y’) varying sinusoidally in time.

Assume the solution can be written as

w(z,y,t) = H(x,x'y,y, ) e!®". 4.14)

Equation (4. 14) is the defining statement for H(x,x’,y,y,w), which is termed
the complex frequency response. Solution of (4.12) with p (x,y,r) defined by

(4. 13) results in the following solution via (4, 11):

: ) I(x'y) ) n("’y’) lwe

SRS -Zal (w? - itw ¢
ael H w..-w ¢ T

Hence, comparison of (4.15) and (4. 14) yields the following solution for the

(4. 15)
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complex frequency response:
=, 0a0(T.y)0na(x'y’
Hix,x'y .y’ @) 1 Gnn'X,Y)0na " y) ) 4. 16)
::: (m:. ~0d) ¢ 22
As the second special case, consider the impulsive loading at (x’,y")
occurring at time t’:
P(x,y,0) = 8(x~x)8(y -y) 8(t -t") (4.17)
and, define:
6 =t-¢t
wix,y,t) 6>0 @.18)

h(‘v”vay’oO) ={
0 6<0 .

The solution of equation (4.12), when p 1s as given by (4.17), is

T, (0= e""““[cl sin Jw:. -(L)I 6+C, t:ost2 -(—'—)z 0]. 4.19)
I 20 \2u

The constants C, and C, may be evaluated by applying initial conditions

appropriate to an impulsive loading, with the following result:

e-¢8/2u 5 a
T'“(t)-_—z- a-u(l',y') sin Yo, - 2—“ 9 . (4. 20)

nyo? -(=
mn 2“

Hence, from (4,11) and (4. 18)

10/ & ag,(x.y)aualr’y)
h(x.x'y .y 0) =& $ %aalXY)aan(xy) w:n_(L)lo 4. 21)

' J_(_z_“)’

By use of (4. 21) andthe principal of superposition for linear systems, the

£
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plate response for any deterministic pressure excitation may be constructed.
This {8 accomplished by considering the excitation pressure field to be the
superposition (or summation) of an infinite number of impulses in time and
space. Hence, for any deterministic pressure field, the response may be

written:

t { ]
w(z,y,t)= 1 fi p.(x'.y'.t')h(x x,y,y,0)de dy’ de’. (4. 22)
@,
However, as 6 -t-t’, (4, 22) may be rewritten as

L d}
'(‘ Y yt) - l Li’p'(!',y',l'a)h(x ,l',y 'y:' o)d‘:dy:do (4. 23)

In the acoustic problem, the velocity of the plate (rather than the dis-

placement) will be required for the boundary value. Hence, defining

In(x,x’y.y’, 0) (4.24)

{x,x'\y,y’,0)= 7

as the velocity response of the piate to an impulsive loading, from (4,24) and

(4. 21) the velocity response is found to be

e <0/ = a JTy)ag (x°y) e \
‘v v 0) _e__-._ -[—
{(x,x"yy,y’, 6) U Z - ‘J Zp ost:n (2#) 6

ms]
s =l

6>0
(4. 25)
Defining the velocity field of the plate as
dw(z,y,t ‘ (4. 26)

¢(x,y,t) = P
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one may express the velocity response of the plate to a deterministic pressure

excitation via (4. 25) and (4. 26) as

B(x,y,0) S.s:fp,(l'.y'.t-o) {x.x'yy’, 0)dx' dy’dd. (4.27)
]

4,2,2 Plate Velocity Cross Correlation

The plate velocity cross correlation is defined as

Qug (51157 Y ot ypty) = E [dlxpy 1) dlx ey pe))] (4.28)
and the turbulent wall pressure cross correlation as
Qpp (’lvxryloy 2v'lvt2) - E[Pl(!l'yptl)P((' 2')' zvtz)] ] (4' 29)

where E denotes the ensemble average,

From (4.27) and (4. 28),

b
Quo (X Xy Y ptyty) = E [Fﬂ £rrP.(x'pY‘l"l =0 )p(xpy pty=0)
0JoJoJoJo Jo

((! 1 vl'l Yy .)"l ’ ol) 4('2 vl'z Y, rY;o 02) d ()ld ozdl', d)"l dx'zdy'z] .

(4. 30)
However, the plate velocity impulse response is not a random quantity; hence
the ensemble average applies only to the turbulent pressure field. Thus, from

(4.30) and (4. 29), the plate velocity cross correlation may be written as

b
Qpe (XpXpy py ptppty) = S‘YS ﬂ‘r Qpp (27:35,y7 .54, =6,.t,-6)
oJoJoJoJo Jo

{(xy %y, 07,00 48,05y, 0,)d0,d0,dx) dy) dxydy) -

(4.31)
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From Section 4, 1, the turbulent boundary layer pressure is assumed to
be a homogeneous, stationary random process. Therefore, the turbulent
pressure cross correlation is a function of the difference between the spacial
and temporal coordinates rather than the coordinates themselves. Hence,

(4. 31) may be written:

b b L]
Q¢¢(l|-lz'Y1oYz.7) - jﬂrjjj rQ'p ({,,”o'7+ol_02)4(‘“‘;”'”']'0')
0/0 0J0

{(x5,%3.y,,y3,0,)d6,d6,dx| dy’ dsdy; .

(4.32)

4,2,3 Plate Velocity Cross Spectral Density
The cross spectral density is defined as the Fourier Transform of the
cross-correlation function, Hence, the plate velocity cross spectral density

is defined as

(" clw
SPPICITLI A0 PR -EX-Q¢¢(’I"2-Y1'Y2' T)e T dT. (4.33)

Multiplying and dividing equation (4.32) by ¢ “(“1-%) and substituting into
(4. 33) gives the following expression for the plate velocity cross spectral

density :

b bprs o
PP PO A0 P -ifiLs-g.{ L S Q”(f‘,q’,'r+0l—02)e"“’(”6"02)d('r+ 01-02)}
0J0 ' \/Zn J-oe a

Cxyxiy gy 'ol)"lwl (x;x5.,,5%. 6 el d6,d6,dx dy dxdy;

(4. 34)
However, the term in brackets is easily recognized as Spp(ﬁ', 7', w); there-

fore, (4.34) may be rewritten:
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YdTd)
s@é('l "z'yl'yZ'w) ¥ ELL&) SPP(f"""w)r ‘(‘l v"| .Ylvyll.ol)e""ei dol
0

=~ . . “wh Y.
S((lznlz.yz.yz.oz)ew2d02dxldyldx2dy2.
0

(1. 35)
Since {(x,x,y.y,w) i8s zero for 6 <0, the semi-infinite limits in 0, and 0,

may be replaced by infinite limits, It is easily shown that

s ((xzut’szpy’zoez)c.lwozdaz 'iw“(’zv';v)'2 'y'z'w) (4' 36)
and that

S {(!| "‘l .)’l.y'l.ol)clwel dol - -imH(ll.x'I ,yl,y'l,-w) . (4.37)
Hence,

Sealty XYy ) = .1:](11: W8 5o (£ @ H(x X1y 1y} )
H(x,.1%.5,07500) dr) dy\dsfay),
(4. 38)
where H(x,x",y,y", @) is as defined in equation (4, 16),
The expression for Sm,(ﬁ'. n’,w) was presented in equation (4.4). Com-

bination of (4.4), (4.38), and (4. 16) results in

amn(xl 2 l) “qs('z ’y2)

Ew -w%-EﬁBwl-w%+Eq
mn [ qs 1

brarbp. PR ’o PR
{ ijjj &0 1IN 13- x{]) il Uelage x () -0.7w /UMy 3=y i)
1o/ 0J0,/0

INCRATNER AL A

Sgol® Xy 1y ) = Ao’ Z Z

Uo
1



"mn(‘l "'1)"q-('z 'y 2)

)"':i

') mz=1 q=1 m )
2] s=] (m = (”2) = ][u = (uz) + ol
mn K u

ijjjﬂ 08U a3 x (D il Uekag-a 0.7 Uiy 3oy iy

a_ (x} 'y'l)aq‘(x'z wyy) dxdy dx'zdy'z}

'tw(‘l T EN A ,yz,m) - 240! (

Uo
> 1,25 —
&

(4. 39)

where

A=0"5%x10"%a plb“B (4. 40)

Equation (4. 39) may be rewritten by recalling the definition of «_ (x,y) from

equation (4. 8) and defining

On o0 . mnrx’ nx
l| =s.sl c'o.“‘(mc‘”l'z'"hr'i(“ UeKr2- 1) giq : sin il dl;d!'z (4-41)
ma - JoJo
and
beb e nry’ sy’ 4,
I = 07 Ldllyv2 v sin L sin 2dy' dy’, : (4.42)
Zns b b 1772
o mrx, nmy, qmx, smy,
16A0? & & sin : sin B sin . sin B
S¢¢(xl'x2'yl'y2'w)= 2 2.2 2 Z . m
p'a b® m=1 q=1 2 2) ll’m ( 2 2) 1t q ns
n=1s=1 @ -w’) - # mq.-m +
Uo
W l.ZS()—.'
= b
2 SRR 1 m”xlsin nﬂylsinq"x2 sin AL
00 fuN &S & M Ta b a b
Spalx, X,y ¥, —f— I, 1
(X XY Yy w) = “zazbz(U') mzzl ?;1 i) ) it 2
° n=1 s=1 (uz —mz) D —> (m - )0 ——
mn u qs Hn

UO
w > 1.256 —
s

(4.43)

Lt e B i U SN PP Rt - { 3
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It remains to evaluate 1, and I, inorder to complete the solution
mq ns

for the plate velocity case spectral density,

From (4.41), 1, is defined as

mq

I '_i:j. c.o.““wc’(l'z"'ihe'“wlu‘)"i'"') sin 2 sin ikl dx;dx’, . (4.41)
1 a a 1772 *
mq N

Note that the integrand depends on the absolute value of x) - x|, and thus the

integration must be performed over limits as shown in Figure 6, The appro-

priate values of the term containing the absolute value for each area of inte-

gration are also presented in this figure., Thus, by utilizing Figure 6, equa-

tion (4. 41) becomes

5 arsx’ 4 , nx’
I ef etwmvoous-nsg 2" U iy T 02 g L
l.‘ Y a 2 1

2 qrx), 2 ; mrx|
+-[ e'(“/Ug’(O.ll’#')lz sin £ { e(wlut)(o'"””.l sin dxfl} dx'z .
a a

(4. 44)
The above integral may easily be evaluated from standard integral tables, and

after extensive, but routine, simplification, (4,44)becomes

1, = 5_.1.0066 =R -0.46
Taq - q{ i Uc - €08 (v- 3m
2 _ym(ie 2
+(1-8, ]nqn ep2(-ne -1l [R_e'Ya-R e'“’"']+2mq,7 cos(v_+v.)
q 2 m q 2 q m
a [(m"z (q,, 2] a
2/ \a
mq n’ 0. 113 (wa/Ug) -i(we/
L e0 ()L el(wa/Ue +vqevg) | (L)) i(u8/Ug ¢+ vgevp)]h,
2
a
(4. 45)
where 5
ﬁ. 2 4
mn

(4 <

. -Vl\r)z o087 (U_u_))] + o.osn(l,ﬁ) : (4. 46)
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N (R R
-
T [EY e ()]
)

T T e (@]

and 5mq is the Kronecker delta,

(4.48)

(4.49)

From (4.42), 1, Iis defined:

ns

b b o, e any’ sny’
1 - &0 Uc)d.z n\) &b lsin 2 dy’ dy’, - (4.42)
znl b b | 2

Again, because of the appearance of the absolute value of the difference of the
variables of integration in the integrand, the integration must be performed
over limits as shown in Figure 7. By applying arguments similar to those

used in calculating l,m one can show that
q

STErETEae AR (S AT

U
c

5
s

2
U IS VT ! PR (G (-n-le-O-”wwvcﬂz.

b? b
(4.50)
Here again, 5 _ is the Kronecker delta. It shouldbe noted that the Kronecker
delta was used in equations (4. 45) and (4. 50) to conserve space rather than
writing separate expressions for m=q and m # q in (4, 45) and, similarly, for
n=s and n#s in (4,50). Hence, in order that no confusion arise in evaluating

I and 1, , the effect of the Kronecker delta should be considered first.
n

mq
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Combining (4. 43), (4.45), and (4.50), one finds

mnx, amy, qmx,  smy,

16Aw? = & a b b
Ses(®) X0y Y0 = Zl 2: - - _
HE I -, o 2]

_'_{5 1.0066 22 R cos (11 - 0.463n)
R R mq U m m
e q <
2 2
mqr’ ((_1)™ (—1)9 - . g 2o,
v -5 ) 97" {(-D™ (-1) l‘lR eiva - Rge'tm L ‘)

)

T o
mqn®

- - e Ued T PLE Verlgtim', (=])9eM- lcovqotm\‘}
a-

| : I ORTS-IP I PY (R T LA WY
[(ow _) (M)][G) N (i_")] Ve U/ \*/ \*

U b (¢ b
c <

2 2
L AR (U M P = R (CTV A (-n'le'“-"“""'r‘]‘
b* b

U

w £ 1.256 =

mnxl ) ﬂ"yl ) qﬂlz Sﬂy2

. oo o . .
32“‘“2 (“5 ~ ~ sin a sin b sin 2 sin b
Sem Xy e = (_:) 2 Z

2 sz U : i
p-a 8 m=] q=3| 2 2) Itw ( 2 2) (1 {"
n=l szl (o2l € -T mq‘—m + T

——{3 10066 22 R cos (1 = 0.463m)
mq l' m m

m q ¢

qun2

mqT (D™ (=19 - HiR evacRoetimij
N T

( o) s al
e
mqrr"

e PO UL LI CAN TP LR Lesigrimd . (o])9et(+0 l'c"'q"m‘l}

cos ("q i)

: ! - - o.asi'bﬁns 2fo- 2} (25 (2
v b v b

c

+

b* 2

LTI L TN R ":". G- (4)’1:“’”‘“’“'4"

Uo
w> 1,25 —
5

(4.51)
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By defining

(I (4.52)

[ {7]

A =tant — . (4. 53)

2 & 04 2
6 =035®s l2for 2\ 22 Y] 211 -5, M- (-D* -]
ns Uc ns Uc b b bZ ns
(4. 54)

2 '
, 8T {2 —(-D" (-n*le"’-"‘"“c’} :
b2

2 2
P =fo7 =)+ 1‘.’1> . (4. 55)
" ( Uc) (b
2 2
IR (R ;(‘_”) . (4. 56)
U, b
2
T, - ‘Fmgm-ml)’ +(£“_' (4.57)
u

2
T, = ‘Fq - 2% +(T) (4.58)

v ={5 10066 2 R cos (1 - 0.463m)
mq U m m
C

mnqs

qun2

m ﬂ2 m q_ . :
y @97 (=07 (D 1I[R e - Rgeml s

e :

2
mqn e.o.lli(mn/Uc) [(_l)m ei(w'/'Uc’Vq”’m‘ A (_|)q¢‘““"/UC”'qu‘]} ei()\mn- qu) ,

82

)

cos lir vy

¢ (1 -

(4.59)
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equation (4,51) may be simplified further, The resulting expression for the

plate velocity cross spectral density is given by

arz, any, qnx, sny,
9 ~ o 810 s sin b sin o sin b
16Aw I
S, Mx 2.y .y, w= ZZ G V
D A R A N 222 b ne mnQqe
niad” mel as) Tan Tas B P R R,
w<1.25%6— °
- s
. D"ll . nﬂyl . q”xz '”yz
) 5 o~ o~ 310 5 sin b sin o sin b
32Aw° fu o~
S: .‘-“l"z’yl'y?m)n 2 W2 e Z Z Gnl vmnqo
pu-a b Un m=1 q=1 T T P PR R
0=l 8=l mn "qs a8 e m 4
Uo
w>1.2% —-
s
(4. 60)

4, 2,4 Plate Velocity Spectral Density

The power spectrum of the plate velocity, @,(x,y,w), may be defined

in terms of the plate velocity cross spectral density as follows:

0¢(ll.ylow)‘S¢¢(!l.!l.)'lny|.w)- (4’61)
Hence. from (4, 60)
[ 3 any qnrx sy
6A 3 : : slnTsststm—
16Aw
O, (x,y,0)= 2 Z G _V
¢ 2.2 ns mags
p'a‘h :z: r::: Tnn T" Pn P. R. Rq
Uo
w51.256— ’
= 8
3 5_‘ ] IS linegsinwsinq.ﬂsins?"y
2A0° fw -
o(lym)-—(‘)zz G .V
' A2l 2 w2\ - - ne mnqs
ulabi\U, :;:‘:;} Taa Tae PaPa Ry Ry
w>1.2% —-
&
(4. 62)
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The plate velocity power spectral density should be a real, even function,
Hence, upon summation equation (4. 62) must be real in order that it be a valid
solution for the plate velocity spectral density. Substituting for /2. from

U
(4.59) and rearranging, (4.62) for < 1.2% ?‘3 may be rewritten as

., mnux any qnx sny
sin 510 —— $i0 = 3i0 —

16Aw? 3 : b : >
0 (x,y,m)-“ { Z Z 2 z T,.T. P P, R_R, G,,

m=] as| qu] eu} o

1.0066 8—’ 5. R, cos (u_ -0.463m eAma-Aeo

[4

mrx any qrx  snmy
a b

LEEnR T ,,

mz]l asl q=] enl T.n T“ Pn P. R- R‘
2mqn? g A
cos (v +v ) el mor A qe)
.2 b

mrx any qnx sny
a b a

o S,

*1 T, T, P P R_R

™M

20>

m=] ns]l gq»

-q"[@n'(n‘-n gwokm..o 4w..NrA“n

HCETi

mrx . 07y Q7 smy
$i0 e 8i0 T sin T- $i0 —

ii ii fi T_. T PP, R, R, . Cas

ms]l asl q- ssl

(1-8,9)

2
BAT | 0. 11%wa/Ue) [(_])® @ilwn/Ug vvg +vp + Amn-Aqe, (=1) 8@/ Uewvqevgs A gq- )\mn)]} )

al

(4. 63)

Since G__ is a symmetrical matrix, that is,

G . =G (4. 64)

v
ns sn

the first summation group may be rewritten as
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. m , ony  mpx , STY
SIff —mmm 1IN e Bl e $1) ———
a0 a b

%iiiz T.,Tm.P.P.R:R,, : ¢

me] aslme] o8]

wa

1.0066 T R, coslv - 0.463m) ¢ /P ma Amed
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. mmx , SMY  anrx , any
i e $i0) ~mee B0 = Bi0) ——e
s b

R

™M

L]

.3 - b
G
-lmzl nel Tm.T P P. R. Rm sn

mn" g

1.0066 :J—).- R"l cos (Vm - 0_463”)ci(>\m- - Ama)
L4
mnrx anry mex sny

in $i0 == 3i0 —— $i0 —
b a

Hgl

- ]
z T T P PR R : Gn'
o=l o ms a 8 m m

10%6 :;—. Rm (o4 23 (Vm —0.463’1) %[cl(xmn'xmn)o e‘“ )\mn' >\ms)]

[4

. mmx , Awy  q7E _ smy
sin 10 e $10 = Sl — -
SN 2 g w el i
ozl am) gnl a=) T.an.pnP.R. Rq os

1.0066 =25 R _cos (v_ - 0.463m) cos (A__ =\ ).
U mq m m mn qs
¢ (4. 65)
By applying similar arguments to the last three sumraation groups, one can

show that (4. 62) becomes

px . 07y _ qnz _ smy

sin $i0 —— $i ——— $in —

16A0? & .
Oty =mm, 2 1 3 3 G,,

p'a’bs msl asul qul osl T-anuPn P.R- R‘

wa

1.0066 o= qu R_ cos (vm - 0.463n) cos (Amn - /\q.)
¢
2mqn? 72 f(1)m™(_1)9 -
+ mq‘ﬂ cos(vm+v)cos()« —)\.)«(l—ﬁm)mq (2t -1l

“‘ 7 (-

[Rm cos (l’q + '\mn = Aqs) - Ro ros (um + Aq‘ -A )

—mQﬂ‘ c""“”"' l'c‘[(_”m e 2‘ . -
al Uc q m mn qs
+(-l)qcos((ig+u +1 + A=A )]2
U q m qs mn
c

(4. 66)
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for w< l.Z%%.

By defining

wa
Y onqs ™ 1.0066 = qu R_ cos (um -0.463n) cos (A - )\q‘)
c

2mqn? TR I i (2 Vel S L)

T @)

+ cos (vm + vq) cos (Amn - Aq

[Rm cos (uq + Amn - )\q') = Rq cos (vm + Aq. = Am")]

2
_ﬂ &0 1stwarlic) (-1)™ cos w—.+v +v +A=A
U 9 m mn qs
c

2
+(-l)qros(w—a+v +U_+ A=A )]
U q m q ma
[4

(4. 67)

and noting that arguments applied to equation (4. 65) for w - 1.256 l-;‘ﬂ are
Uo
also valid for the frequency range « > 1.25 i one may write the plate

velocity power spectral density as

., mex Oy  qmx = smy
$in -——— $ip == $i —— Sin —

16Aw? . b s b
“z.zbz

M2
=

ns mngs

P (xy,0) -
Tmn Tq- Pu Po R- Rq

» 0
"o

U°
w <1.256—
= 8‘

AR @ osi
32Aw? fud . L a b ,
op(l,y.w)- SN — Z Z: Gnl‘MHQl
“‘a.b e n s m
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4.3 Development of the Cavity Acoustic Pressure Cross Spectril Density

4,3.1 Cavity Acoustic Pressure due to an Arbitrary Plate Velocity Distribution

The equations governing acoustic phenomena are the momentum equation,

dd

1

p.o-a—!+ Jp.ﬂo, (4.69)
the continuity equation,

dp

2o, Vedn0, (4. 70)

gt o
and the equation of state,

p.uczp.. (4.71)

It should be noted that the subscript '"zero" in the above equations refer
to time average quantities, whereas non-subscripted quantites are the instan-
taneous or fluctuating components,

Reference to Figure 1, for an arbitrary plate velocity ¢(x,y,v), indi-
cates that equations (4. 69), (4.70), and (4. 71) must be solved subject to the

following boundary conditions:

ul(O,y,z,t) =0 (a)
u (a,y,z,t) =0 (b)
uy(x,O. z,t) =0 (c) @. 72)
uy(x,b,Z,l) =0 (d)
u,(z,y,0,t) =0 (e)

u (n,y,~d,t) = d(x,y,0) ).

Equation (4. 69) was derived on the basis of an inviscid fluid. Hence, the
acoustic field may be assumed irrotational, and the acoustic phase velocity

may be defined in terms of a velocity potential (¢ as follows.

i(x,y,z,t) = Vidx,y, z,0). (4.73)

. mm s rwW -y




Equation (4. 73) only specifies v to within an arbitrary function of time.
Hence, in order that

v be uniquely specified, it is necessary to further
define

Jdlx,y,z.t)
PNy, Z,0) = =p ———.
[+]

ry (4.74)

Substitution of (4.73) and (4. 74) into (4. 69) identically satisfies (4. 69).

It re-
mains only to satisfy (4.70) and (4. 71).

Substituting (4. 71) into (4. 70), one
finds that

lapl

V.d=0. )
T TP " (579

Substitution of (4. 74) and (4. 73) into (4. 75) results in the scalar wave equa-
tion in ¢ : that is,

v2¢_clz‘f7'f-o. (4.76)
Separation of variables techniques yields a solution to (4. 76):
Y(x,y,2,0 =[C, sink x+C,cos k1] [C, sinky +C, cos kyy]. @.77)
[Cysink,z +C cosk z] C,elket,
where
k+klekl=n? (4.78)
Application of the boundary conditions (4. 72a) through (4. 72e) to equation
(4.77), by means of (4, 73), yields
C,=C,=C =0, (4.79)
L, -‘_." , (4. 80)
k, ooy (4. 81)
o

&2 F K VT i’

J
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where ; and t areintegers, Further, by defining
() = kC (4. 82)

and by utilizing (4. 79), (4.80), and (4. 81), it is seen that

= i ' .

V(s,y, z,t) = Z C, cos'—"-C‘ fosietd C,cos(k, 2)Cre *. (4.83)
jn0 i a ! b l"
t=0

Combining all the constants, one may assume that the solution for v/(x,y,z,0

takes the form

= ] tny (™ .

V(s,y,z,t) = 2 cos ,T" cos % Y"(m) cos(l , z)e'“! "‘L . (4. 83a)
=0 "t vin
t=0

Substitution of (4. 83a) into (4. 76) readily shows that (4. 83a) satisfies the
wave equation, and by applying the above arguments, boundary conditions
(4. 72a) through (4. 72e) are satisfied. It therefore remains only to satisfy the

final boundary condition (4, 72f): that is,

= jimx ey (™ . lorndd) 4. 84
d(x,y,t) = “Zo cos — cosT B Yi!(w)%—kl"sm [kl"(-d)]%e ‘sz_" . (4. 84)
1=0
Let
x"(w) = klil(w) Yi!((u) sin(kzi.d)' (4. 85)

Equation (4, 84) may be rewritten as

i"! '"y 5 jwt dm (4 86)

COS —— 0S5 —— .\'i!(w) c
a b J. vanm

Mz

D D

é(x,y,0) =

=

Equation (4. 86) is essentially a two-dimensional Fourier cosine series in x and
y; hence X(.) may be evaluated by determination of the Fourier coefficients

of (1.86), By utilization of the orthogonality principle, it may be shown that

~ h ea .
, v or da rx tr
J‘ X ylen e . L = - i ss A(x,y,0) cos,—- cos——y dx dy. (4.87)
= v2n  abil. ho.)(l + 80!) b Jo a b

U



Transformation of (4. 87) yields

4 e jns '”Y we dt
X, (w) = d(x,y,t) cos —— cos—e dx dy —. (4. 88)
t .b(l+60I)(|+8M) o Jo s b JIn

Thus, from (4. 85)

4 =t i"‘ ."y «jwt d(
Yi!(w) = - é(x,y,t) cO8 —— cOS—¢ dx dy
ab(1 *50’)“ 080!)k1|!5'nklnd 9 0 a b \Iiﬂ

(4. 89)
and using this result in (4. 83a) yields
iy : ' = cosk, z
Yix,y,z,1) = : Z cosl_r,"x cos ”yj il :
mab "::: a b ) « »80,)(1 +80!)k,nsm kli!d
~(r jrx tny . o
{ é(x .y,t)cos-—; cosT ¢! 'dxdydt}e' ‘do .
- J0JO (4. 90)
The cavity acoustic pressure for an arbitrary, deterministic plate
velocity is, from (4.74) and (4. 90),
=2ip, . ' = weos k, z
)7 X my i
p,(x.y,z,t) = = cos — cos —j -
rab ":Z:: a b _N(I.BO')(I »Sot)k,‘.sm k,i!d
= b jmx iry ‘ i
{ S(x.y, 1) cos—— cos — ¢ '“"! dxdydt} e'“'da .
L~ JoJo a b
(4.91)
4.3.2 Cavity Acoustic Pressure Cross Correlation
The cavity acoustic pressure cross corr:lation is defined as
Qualxpxyyyyzyiz it ty) = E[P.."‘I'YI'ZI"l)Pa("z'V:'z:"z)] . (4.92)

From (4. 51) and (4, 92), by utilizing the kn' ~ledge that the only random quan-
tity in the expression for p_(x.y,z,u is the plate velocity, one may write the

acoustic pressure cross correlation as
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-w;‘ F A )X, Py, x, 1y,
Q"(ll.lz.y|,y1,ll,1).|l.(‘,) _— cos cos cos ~ cos 3
7a b OEN * a b
=0 =0
~ P wllcov k, Sz cos k,” 2,

o (1. 8 HI ¢ o ')(l , ﬁ qu orc)m)k,"(m)k,"(”) sink, d sin k,“d

jnxl 'nyl

cos
b

~ Papheaprhes
I ISS&S .; (;(xl,)l()u(x,),.:]cus "
~JuJoJoJo

t7x try, ‘
S cer L T ' ydy dx dy dv de ,] ¢ et dmdn}

a b
(4. 93)

COS

From (4. 28) and (4.32), however,
(4. 94)

F‘[é('l'yl"l)é(!l'yl‘(l)] = Qe lxyixyyyy, )

Therefore, (4.93) becomes
-4;)2 £ X 1 'ny rmx try
| 3 2

Q,_(x,.xz.y,.y,.z,.zz.t,. 1)—’_)-% Z }: cos l(‘os COs —— cos

ma“b® =0 p=zo b a
=0 =0
w1 cos k, g1 €08 k,'z,

|!d sin k,”d

{1\'{"(1 + 50i)(l + 80')(1 RN LY B 50')k,'!(m)k,"(ﬂ) sin k,

~ pbparhea '"),l
[
01 J0J0JO

rrx, tny,
Tt TR gy (dy dx dy dt dt] T ”dmdﬂ}

inx,

cos

cos cos
(4. 95)
It is now of interest to examine the following portion of (4. 95)
5\ S‘ Q,.tx  x,y y,. e g iiley de dt, (4. 96)
By recalling that : , -, . one may rewrite (4.96):
S\ QU e R 'S‘ RITRINTI (4.97)
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However, from (4, 33)

s¢¢,(ll,12.yl-y2.w)- = j. Q.‘.'('l"."yl'y)‘,) ('.""(’7_ (4.33)
V2t Jw
Therefore, (4.97) becomes
\-:7-—" 5¢,¢(x,.12.y,.y2.m) s . et '“H'd(l . (4.98)
Finally, since
5 R LA P YOR ) (4. 99)
equation (4, 98) becomes
(2”)3 2 S¢¢’(‘l’12'yl’y2'n) 5(“’ " n)' (4. 100)
Hence, (4.93) becomes
-(2m’ Pl XA imx, Iry 1y tn
Ty 1 2 Y2
Q. (X X0y Y52 .2,,t,8,) = T ;;(os cos - cos —— cos
=0 (=0
j'xSm «‘Qcosk,' ycosk, =z,
). (1. 8(“)(1 4 80')(1 8,00 B )k, !(m)k,”(m sin k,‘!d sin k,"d
brarbea jmx, 'y, rTx, try,
{isss de(xl.xz,)'l.yz.ﬂ) €OS ——— cos 5 cos a. cos 5 dxldyldxzdyz}
0/0,/0

Slw+ ) '“M c'nlz dwd(l .

(4.101)

Integration over «, and use of the identity

lead to the conclusion that equation (4, 10%) may be written:
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'P‘\',"; b by ,n;l '”-Vl mx, iy,
Q8 xy Wy, e, ) - — (O8N = 08 COp —— (08
VTt RSN ‘ b - 2
| EXLE N

v
) cosk, 7 cosnk, 7
00l e

s‘ 03 0o, e 008 0, ek, (D sk, dsink,
afbpa 17x, bry, (X, tny,
{I]fljn SeplE 3y Y D) cos ——cos T h. iix l"l"l"":‘l"'l}
e
(4.102)

It should be noted that, from (4. 78), (4.80), (4.81), and (4, 82),

k, o) - ] 4,103
k] " 4 b (4. )

Thus,

k) kg o (4.104)
and the cavity acoustic pressure cross correlation may be written:

) -H\T ‘ i 2‘\: o 17X, ‘ 'nbyl - rﬂﬂxl con try,

Qu.(x Xy ¥y, 2.2,

-0
b1

\"_I b-

1" cos k, g7 1 08 k,”I:

- ‘
j\ (. .Smm . ;‘in')(l a0 0 0k, Mk, () sin k’l!d sin k,”d

17X, '"-VI 17X, try,

hfafbes
{SﬂsSS S:’(xl,x‘,,yl,y:.Q) ol —— vak a cos —— cos
04070

dx I(i)'ldx:(l)':}

e 7an.

(4.105)
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4,3.3 Cavity Acoustic Pressure Cross Spectral Density
The cavity acoustic pressure cross spectral density is defined as the

Fourier transiorm of the cross correlation: that is,

Sy Y2z, ) - _I_ Qu('l"z'yl'yz'zn'lz'”"'N‘Td"' (4.106)
Van Jm
Thus, from (4, 105)
BPZ o jm tn n
) £ jrx 2] rnx, tny
S,y Y, 22,0 - °2 Z Z cos ! cos cos cos 2
ﬂn‘b 1=0 =0
t=0 =0

{Jﬁ. ~ Q:coskl z, cos k,’ z,
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bpafbea 17X, My, 1y, y,
[ \ Sea X x,y y, D cos — cos m cos ~——— cos b dxldyldx:dy‘,]

140 J0 JO

e Td e d'r}-
(4.107)

If the expression for the plate velocity cross spectral density from (4. 60) is
now substituted into (4.107) and subscripts are reassigned such that j, k, m,

and n apply to the acoustics problem and q, r, s, and ¢ apply to the plate,

2 oo ~
8p, = ~ inx, kry, mx, nny,
S (x,%,,Y Y202y, Z,5.0) ¢ = 2 E cos cos cos - cos
l' 2' l’ 2' lO 2' b
o malb? 120 m=0 a b a b
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ji7x  kay, mrx, nry, s
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1 £1.25 —
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)7 kry mrx, nry
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Let
qrx, my, smx, try,
I"q’“(xl Xy aY,) o sin sin sin sin ’
LW G D \’q”((m
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1 q,(m T MDP )P Rq(ﬂ) R ()
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2240° (06 U
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pratbhe \U s
17X, kry, mrx, nry,
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d

G, ()

: TaQ e 7 dr

UO
>1.2% — .
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(4.108)

(4.109)

(4.110)

(4.111)

(4.112)

(4.113)



From the above definitions, (4.108) may be rewritten as

Soxpyyy gz, ) ) 2 t ('|kmn('l'l2'yl'y2)
b =0
k=0 npz0
o o g,kmn(zl.zz.ﬂ)
S {5 )
e . (1 50|)“ + 80“)“ 3 8()'")“ ‘ 8"")

E Z [I.Imsl S, “qead B XYy y)”qm(m O lnnl ¥ %0y 0y ) dx 1"”1"'.‘"”.']

e d(l}('." T dr

(4.114) !

The form of (4.114) indicates that the integration over {1 and the space vari-
ables x,, x,, y,, and y, may be performed separately, This is easily

seen by rearranging (4.114) as follows:

Hp;‘ 3 O8NS G (x,,%,.y,.y,
)kma T1*T2071072
SadlpEypy ) Z Z Z 2, (e8I o8 MWL d V18 )
Z BB e e 0 o' %, 0n

b o o g
[555&) qm(" X)0¥p0¥,) (;.umn('l"‘2'Y|'Yz"d'1dyld‘:dyr]

I {S Rik'ﬂn(zl'zzv(n X(Q)f (Q)e“ Tdn} lu’f 7‘

(4.115)

Since the inverse Fourier transform is detined as

f(7) - I__I Flw) e dw ,
\ 2

the integration over frequency of the bracketed terms in (4.115) results in

\ﬁg (21.22.7)\”)! (7). (4.116)

ykmn qest
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When (4.116) 1s insorted into (4,116) and the integration over 7 ls performed,

(4. 115) becomes

l(ﬂ’: - ~ o~ ™
0

2 i 2 (;llmn('l'll'yl')'))
a‘h 130 m*0 gs) ez

k80 ns0 g3} ¢-|

SNy e

|
50')(1 + 5m)(l N Bom)(l ‘ 50")

b fapbrs
SoIoSvSu Farad®%09 1Y) G ol®y03p0y,0y,) da ndyl"'zd)'?]'

(4.117)

lih““(l ' .l).m) X{w) lq"l(m) [“ )

It remains to perform the integration over the spacial coordinates, Using
(4.109) and (4.112), by means of standard integration techniques, one finds

that

brapbra

1

(1+8)1+8)1+8 )1+8 )Soﬂvso Farnd®10%2091.9)) Gjumalmy 21 ) diydy duydy,
0i ok om ()

a2p? (1-8 )1-8 )1 -8, W15 qrst [1 (=D (=D~ (=D\ (DML (-0 DN - D=1

n a8 ) (18 V(18 V(148 ) (@ -iHN -k -’ -ad
(4.118)
Let
K'kmnqru

(=8, 018 )0 =5 31 =8 dqrst [1=(=D =D (=D D W=D DM - 0=

g )8 08, (148 1(q? =i r? -k (s?- NP -n?)
(4.119)
From (4,117) and (4.119), the cavity acoustic pressure cross spectral density

is
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l()p:

L] ~ L 3 ~
LTI S TS R IR PR —”-‘-2 X(“')t f: f: t

O luma®19209, )
150 ma0 g=) ez
k50 nu0 g5} v

“ikmn(l go¥ o) 'qm("') K'hmnqu(

(4.120)

where Gihmn(’l"zvyl'YJ)'liknn('l"z-“’)"qw(“’)-X(“‘) and Kjluunqm are defined

in equations (4,112), (4,113), (4.110), (4.111), and (4.119), respectively.

4,3.4 Cavity Acoustic Pressure Spectral Density

The cavity acoustic pressure spectral density is defined as

G (x .y, z00) =S, (xxy0y,.2,.2,,0)

(4. 121)
Hence, from (4. 120),
16p} = -
P (x,.y,2,,0) = ‘° X(w) i Z z Z Giymn (X370,
” is0 m=0 q=l =1
l:tg n30 q::l :=l (4.122)
silxﬂlcl(ll'zl“") fq'"(w) Kiimnqln .
From (4,112), it should be noted that if x -x, and y,-y,,
Giuma B X yay) =G (xxy 0y =G (x Ly (4.123)
Further, from (4.113), if z,=2,,
BivmnZ 2 @ =8, (202 0) =g, (2.0, (4.124)
Finally, note that

itkmngqrst = mnjkstqr’

(4. 125)
Hence, using (4.110), (4.111), (4,123), and (4. 124) in (4.122), and dropping

the subscripts on the spacial coordinates, one may express the acoustic spec-
tral density as

-
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(4.126)

As in the case of the plate velocity spectral density, the cavity acoustic
pressure spectral density must be a real, even function of frequency. Thus,
by substituting Varat from (4. 59) and by investigation of the summation in the
frequency range w <1.2% ;_’g , arguments similar to those applied in S8ection
4,2, 4 along with equations (4.123), (4.124), and (4.125) show the first sum-

mation group to be
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Hence, the first summation group is
3 2 ~ a ~ ~ .
286Ap, ‘m i i«: 2 i (o“m”(l.y)l“m"(hm)(-n(m)K‘"mq“'
”“‘!.)b: |lﬂ msi Q'l X .r ’(UI)-I..((‘AI)','(“))P (('I)R (I'J)R‘(hl)
PTRT IR TS IR TR ' 4
{1.0066 SQ.KQ con (v - 0.463m cos (A - ALl
(4.127)
Similar arguments applied to the remaining summation groups lead to
2%Ap2 W 2 2 3 = G, (xy) (z,0) G, ()
O. (x.y.z.w) - —te 2 2 jikmn y 'lhmn n G.
ntp?alb? (30 ma0 451 oo Tq'(m)T"(w)Pl(lu)P'(w)R (w)R (w)
k50 nm0 ¢s) (=) g
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S12Ap? ! e m oA = G,..69 g, (2,0)G ()
®, (xy.z,0) - __,,_(_u_.s_') YD D B AL Sl W
np?alb? \U / %0 mso0 qz1 s=l Tq,(m)T"(w)P'(w)P'(m)Rq(w)Rl(w)
20 n=0 ¢3) =1
UO
'qut(u" Kll-uqrn w > 1.2% ;;'
(4.128)

4.4 Non-Dimensionsal Spectra

The results of Sections 4. 2.4 and 4. 3.4 are nore useful from a practical
viewpoint if they are expressed in a non-dimensional form. The following sec-
tions are devoted to expressing the plate velocity and cavity acoustic pressure

spectral densities in non-dimensional forms,

4,4.1 Dimensionless Plate Velocity Spectral Density
The plate velocity spectral density (equation (4, 68)) is a function of the

following parameters and dimensions:
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Note that only three dimensions (force, length, and time) are required to spe-
cify the eleven input parameters, It is therefore necessary to select a length,
force, and time scale characteristic of the system, Although there are many
combinations of the eleven input parameters which result in dimensions of
force, length, or time, the following were selected as characteristic dimen-
sions because it was felt that they had the strongest effect on the plate velocity

spectral density:

a - streamwise plate dimension (L)

2 . time for an eddy to traverse the plate
¢ in the streamwise direction (T)

pUZn - fictitious force based on the mass of the
plate (F)



By utilizing these characteristic dimensions, it is possible to specify l

dimensionless input parameters as follows:

U0
80
bO

w!
m

uU:lz

49

(4.129)

Further, the spacial and frequency variables may b= similarly non-

dimensionalized as follows:

clg FYRCIE YT

"

(4.130)

Based on the definition of (4. 129) and (4. 130), the quantities defined in equa-

tions (4.46) through (4.49), (4. 52) through (4. 58), and equation (4. 67) may be

rewritten in dimensionless terms as follows:

2
R (0*") = {[@m)? - 0.9870** 1" + 0.0529 w** V!

(4.131)
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by g | SR . (4. 132)
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(4. 134)
P! W) =(@m’ +(0.70'bY’ (4. 135)
ot \2 2 T wt Y)Y
T;"(wmi[(%") -,] [ -'_.L]z , (4. 136)
w e} wt
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(4.137)
Further, by defining
®¢ (, 0' yt' w#)
o (x'y' w') = —_— (4.138)
a‘lU_a

and utilizing the above definitions and equation (4. 68), the non-dimensional

form of the plate velocity spectral density can easily be shown to be

2| W AT PAGRAIA NG ¢ ¥ ) R Wy s
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(4.139)

4,4.2 Dimensionless Cavity Acoustic Pressure Spectral Density
The cavity acoustic pressure spectral density is a function of all of the
parameters affecting the plate velocity spectral density (see Section 4.4.1)
plus the following additions:
()
cl{ =
T
d (L)
Tz
Pu, (FL_4
In addition, there is one more variable in the case of the acoustic spectral
density, namely, the length dimension () perpendicular to the lane ¢. 'he

plate.

Since the plate vibration provides the excitation for the acoustic pressure

in the cavity, it would seem reasonable to select the same characteristic

e e R NI TN FTMT R i
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dimensions for non-dimensionalization of the cavity acoustic pressure spectral
density as were used for the plate velocity spectral density, The dimension-
less input parameters for the cavity acoustic pressure spectral density are,

therefore, those presented in equation (4.129) plus the following additions:

a
*

]
Cl.,

a

(-9
-
[ ]

(4.140)
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Likewise, the variables are those presented in equation (4. 130) plus

N
n
» N

(4.141)

Since the non-dimensionalization has been performed with the same character-
istic dimensions as in the case of the plate velocity spectral density, the

dimensionless quantities defined in equations (4.131) to (4. 137) are also appli-
cable to the cavity acoustic pressure spectral density. Noting that k.

jkmnqrse

is already dimensionless, one needs oi.ly to define

N2 3 k %
k:“(w’)=[(%) - (jm -(b_")’] , (4.142)

Ufma @ =k} (0K} (o) sink d*sink} d*, (4.143)
j& mn ik mn
and
d’.(l’.y’,z’,w’).
¢ xtyhzthet) = . (4.144)

a? “2 U 3
in order to specify the dimensionless form of the cavity acoustic pressure

spectral density, By use of equations (4.128), (4.131) through (4,137), and
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(4. 142) through (4. 144), the dimensionless form of the cavity acoustic spec-

tral density can easily be shown from (4, 128) to be

B 8 &(GLI (K

-3
¢zt y'zhe') e MP'INQ’ t 2 ot Jkmaqret
4 ﬂ‘ 0 msd gul 90} u! (w?)
ks0 as0 rel 9] fsma
kny* myt
cos jnz* cos mnx* cos Y cos —~ cosk® z'cosk’ z*
b* b* in fma

T!, )T} @)P (") P} (@R (@R} (@)

w8 <1.932,

L) L] ] ] *
¢(x* y’ st 5.112 x lo.zp’zﬂzb'.’m’-,g : t 2 G:l(w.)';m(“’ )Klk--qm
'Y ’ . ’ D |
"‘ s X qsl ss] U".-n(w’)

ka0 a=0 r=] (s}
kny* any*
cos = cosk® z'cosk' z
b* b* ik ‘ma

+

cos jnx* cos mnx* cos

T! @) T}, (@")P! (") P! (0)R? ("R (0")

w* 8> 1.932.

(4. 145)
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RESULTS

The following section presents plate velocity spectra and cavity acoustic
spectra calculated from equations (4.139) and (4. 145) by means of a digital
computer for selected data cases. The purpose of these calculations was
threefold, First, the calculated plate velocity spectral density may be com-
pared with existing measurements of plate response to turbulent excitation,
thereby providing a check on the validity of the analytic =solution for the plate
velocity statistics. Secondly, the effects of all major parameters are not
readily discernible from equations (4. 139) and (4. 145), and it was felt that
calculated spectra for selected cases would better define these effects. Fi-
nally, it was necessary to check the range of validity of the assumption that
the cavity acoustic pressure had negligible effect in the excitation of the
plate.

The spectral densities were selected for computation over the cross
spectral densities because they were most easily computed and gave the de-
sired results: namely, the effect of major parameters on the cavity acoustic
pressure statistics, and the range of validity of the above stated assumption,

The computations were performed partially on the IBM 704 digital com-
puter at the U, S. Navy Underwater Sound Laboratory, and the remainder on

the IBM 7090 digital computer at the David Taylor Model Basin,

54
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5.1 Results of Plate Velocity Spectral Density Computations

The plate vciocity spectral density was computed from the dimensionless
equation (4, 139). Computations were performed on the IBM 704 digital com-
puter by an iterative process. In all cases, the summation terms in equation
(4. 139) appeared to converge monotonically, and the solution was accepted if
two successive iterations agreed within three percent. This tolerance was
selected as a compromise between desired accuracy and reasonable computa-
tion time,

The dimensionless plate velocity spectrum was gencrated by computing
the spectral density at a dimensionless frequency one cycle above each dimen-
sionless plate natural frequency, and at three points, equally spaced in fre-
quency, between each pair of adjacent natural frequencies. Peculiarities of
the particular computer program used for the generation of the frequencies at
which the spectral density was to be computed were responsible for the spec-
tral density being computed at a dimensionless frequency one cycle higher than
the plate natural frequency. The resulting error in the computed plate veloc-
ity spectrum at plate resonances should be very small, except at very low

frequencies or for very small values of damping,

5.1,1 Comparison with Existing Experimental Data

In order to check the validity of the analytically derived plate spectral
density, it was desirable to compare the computed plate velocity spectral den-
sity from equation (4. 139) to available experimental data, Unfortunately, all

existing experimental information deals with fixed edge plates whereas equation
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(4. 139) pertains only to a simply supported plate, However, the spectral
levels for a simply supported plate should be of the same order of magnitude
as those for a plate with clamped edges, even though the plate natural frequen-
cies will be different in the two cases. It was therefore decided to compare
the general level of the spectrum predicted by equation (4. 139) with available
data for a clamped edge plate,

Some of the moct raliahln cxvynrimental data on the tuvhnlent fle excita-
tion of flat plates are those of Bull ¢tal, [15). Bull measured the displacement
spectral density of 3.5 x 3.5 irch steel plates of varying thicknesses to turbu-
lent boundary layer excitation in a wind tunnel, Since no acoustic cavity was
placed behind the plate, the offects of acoustic back pressure are negligible.
Figure 8 presents Bull's measurements of the response of a 3.5 x 3.5 x 0,010
inch plate to air flowing at a free stream velocity of 539 ft/sec. The meas-
ured displacement thickness was 0,172 inch, The measurement was taken at
a position 0. 95 inch upstream from the trailing edge of the plate and centered
in the lateral direction, Bull measured the modal damping for the first two
plate modes and found them to be 3.8 percent critical and 0,5 percent criti-
cal, respectively, He states, however, that the measurements were accurate
only to +23 percent,

Figure 9 presents the computer solution to equation (4. 139), converted
to the ratio of displacement spectral density to turbulent pressure spectral
density, for input data corresponding to Bull's experiment, The dimension-

less input parameters were
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M - 0.099

U' = 1.54 (assumed)
5 - 0.0491

b* - 1.0

D' - 0.001745

+
:— = 0.005 (assumed) .
'-ﬂ

Since «. and r:" are functions of D' and b' they need not be independ-
ently specified, It should also be noted that U*, which specifies the ratio of
the free stream velocity to the convection velocity, is assumed to be constant,
This assumption is not true in fact, since the value of U* is a function of
w&‘/Uo as shown in Figure 4, However, computations are greatly simplified
by assuming U* to be constant, Finally, note that the modal damping is
assumed to be constant with frequency and equal to the value measured by Bull
for the 2-1 mode. In general, the modal damping is not constant, but this
assumption eased computational difficulties, In the computation of the spec-
trum of Figure 9, the spectral densities were computed at radial frequencies
0,005 cycle (that is, equal to the damping - critical damping ratio) above the
plate natural frequencies, and at three points equally spaced in frequency
between each adjacent pait of natural frequencies. This procedure resulted
in more accurate spectral levels for the low values of damping being used.
Figure 10 compares the theoretically derived spectrum for the simply
supported edge condition (Figure 9) with Bull's measurements for the fixed
edge condition (Figure 8). Note that, as expected, the natural frequencies are
not in agreement because of the different edge conditions imposed on the two

cases. Hence, the spe.tra for the two cases are not in exact agreement,
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However, the envelopes of both spectra are in substantial agreement, especi-
ally at the higher frequencies, This fact lends credence to this analysis and
to the ability of equation (4. 139) to predict correctly the velocity spectral
density of simply supported plates,

For the higher plate modes, it seems reasonable that the modal stiffness
and mass become less and less affected by the plate edge conditions, Hence,
for this linear system, it would further seem reasonable that a line connecting
the major spectral peaks in the clamped edge case should be very similar in
shape and amplitude to one connecting the major spectral peaks in the simply
supported case, especially at the higher frequencies. For purposes of discus-
sion here, such a line will be defined as a "peak spectrum, ' Figure 11 pre-
sents the '""peak spectra" derived from Figures 8 and 9. The agreement in
shape is excellent above 700 cps, and the amplitudes'agree within 5 db, This
discrepancy in amplitude may easily be due to discrepancies between the
assumed value of the damping used in the computed spectrum and the damping
present at higher modes in Bull's experiment.

From the above, it appears that the plate velocity spectral density pre-
dicted by equation (4. 139) is valid for the simply supported plate excited by
turbulent boundary layer pressure fluctuations for cases in which the acoustic
environment has negligible effect. It may further be concluded that the ""peak
spectrum' of a flow excited plate is essentially independent of the plate
boundary conditions at frequencies above the first few plate natural modes.
From an engineering standpoint, this conclusion allows an estimation of the

maximum flow excited plate vibration level .bove a certain frequency from
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equation (4. 139} without regard to houndary conditions, Determination of this

lower frequency limit will be treated in the next section,

5.1.2 Effect of Major Parameters on Plate Velocity Spectrum

As stated in Section 11, the objective of this study is to provide the sub-
marine sonar systems designer with information concerning the acoustic
environment of sonar transducers and the major parameters which may affect
this environment, Therefore, the data cases used to show the effects of the
major parameters on the plate velocity spectrum were selected with the sub-
marine application in mind, It must be stressed that in all cases the effects
of any plate-generated acoustic pressure have been neglected,

The major input parameters for the dimensionless plate spectral density
are presented in equation (4, 129), For the purposes of this discussion, the
variables stated in equation (4, 130) may also be considered major parameters,
From the definitions of «_ and r; it canbe shown that these parameters
are functions only of D* and b*, Further, U' is assumed to be equal to 1,54
throughout this analysis, Hence, the only parameters which need be specified
in order to obtain a solution to (4.139) are M, 8*,b*,¢*,D*,x*,y*, and the range
of interest of «*.

By inspection of equation (4. 139) and equations (4. 131) through (4.137), it
is evident that effects of b*,r',D*,x*,y*, and o' are obscured by the summa-
tion term in (4, 139), However, the parameters M and &' occur only outside
of the summation, so that the effect of these parameters on the dimensionless

plate velocity spectral density are immediately obvious, For most submarine
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applications, b*' will vary between 0.5 and 1.0, and it was felt that varia-
tions in b' over this range would change the plate natural frequencies but
would not significantly alter the general level of the spectrum, Hence, the
effect of plate shape (b') was not investigated in this study., This omission
leaves only the damping ('), the plate rigidity (D*), plate point of interest
(x*,y", and frequency (') as parameters to be investigated. The effects of

each of these parameters will be discussed below,

5.1,2.1 Effect of Plate Coordinates
Dimensionless input parameters which fall in the range of interest for

submarine applications are as follows:

M = 189

D' = 10.3

5* = 2.31x107?
bt = 0.6667

t* 0.1r! (assumed).

mn
The position of maximvm plate vibration is usually of greatest interest as far
as plate coordinates are concerned, It seems reasonable that the maximum
level would occur at the center of the plate, Hence, the effect of plate coordi-
nates was investigated over the range of plate coordinates 0.2 <x* <0.5,y" <0.5.
The frequency range of interest was selected to be 10 <w* < 3000.

Figures 12, 13, and 14 present dimensionless plate velocity spectra for
the above stated case with plate coordinates (x*,y*) of (1/5, 1/3), (1/3,1/3),
and (1/2,1/3), respectively, These three spectra show significant differ-
ences in shape below a dimensionless frequency of 1000 because of the points

ol measurement falling on different plate modal nodes or antinodes, A table
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of the plate dimensionless natural frequencies below 1000 dimensionless
cycles is presented in Table 1, Note, for example, that x'=1/2,y'=1/3

TABLE |

PLATE DIMENSIONLESS NATURAL
FREQUENCIES BELOVW o' = 1000

Input Parameters

M=189 5t = 0.0231
D*'=10.3 b* = 0.6667
tt=0.1¢]
mn -
wmn
S 1 2 3

1 102.9 316.8 673.1
2 198.0 411.8 768.1
3 356.3 | 570.2 | 926.5
4 578.1 791.9
] 863.1

places the point of interest at the plate center; hence one would not expect to
observe w},,u},,w},,»},. etc. However, this position is antinode for
w}, @], @y,, etc, Figure 14 clearly shows resonances at the frequen-
cies (from Table 1) associated with the 1-1, 1-3, 3-1, and 5-1 modes,
whereas the 1-2, 2-1, 4-1, and 4-2 modes are not discernible. Similar
effects may be noted in Figures 12 and 13, This fact further supports the
validity of equation (4.139).

Consider now the ""peak spectra" derived from Figures 12, 13, and 14
above the first plate natural frequency. A comparison of these ''peak spectra"

is presented in Figure 15. Inspection of Figure 15 shows negligible effect of

plate coordinates on the dimensionless plate velocity "peak spectra density"

S e e ene vV aeh @ o,
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above the first plate mode. It is concluded, therefore, that plate coordinates
in the range 0.2 <x* <0.5,y*-0.333 have no effect on the dimensionless plate
velocity ""peak spectral density." This conclusion, in addition to the observa-
tions made above concerning Figures 12, 13, and 14, supports the further
conclusion that, above the first natural irequency, the effect of changing the
point of observation on the plate (plate coordinates) is a change in shape of the
dimensionless plate velocity spectrum without changing the general level of

the spectrum,

5.1,2,.2 Effect of Plate Damping

By utilizing the same input parameters listed in Section 5.1. 2,1, the
dimensionless plate velocity spectrum was computed for two additional values
of damping at the midpoint of the plate (x* -1/2,y* - 1/3) over the frequency
range 10 <w' <3000. These additional values of damping were 0,01 r:m‘ and
0.05 r:mn The resulting dimensionless plate velocity spectra for these cases
are presented in Figures 16 and 17, respectively. Thus, Figures 14, 16, and
17 show the effect of damping alone on the dimensionless plate velocity spec-
tral density, Comparison of these figures shows that an increase in damping
decreases the spectral density in the region of the natural frequencies present
in the spectra, as would be expected. The amount of this reduction in spectral
level is most easily investigated by inspection of the dimensionless ""peak
spectra' constructed from Figures 14, 16, and 17. A comparison of the

"peak spectra' for the three damping cases is presented in Figure 18, It

should be noted here that the first plate dimensionless natural frequency (w;,)
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falls above o'~ }% and that the ""peak spectra' presented in Figures 15 and
18 only apply above «},. Hence, any conclusion drawn from the dimensionless
"peak spectra' apply only to dimensionless frequencies above 1.932/5*.

Figure 18 shows the effect of damping on the dimensionless plate velocity
spectral density at the plate natural frequencies., Note that the slope on the
"peak spectrum' is also slightly changed as the damping is varied. This
effect may be a result of the computational procedure of computing the dimen-
sionless spectral density at a dimensionless frequency one cycle higher than
the plate natural dimensionless frequency. Since the slope change, as noted
above, was slight, it was not felt that this effect warranted a complete investi-
gation, The effect of damping on the slopc of the "peak spectrum' will be
discussed as it appears in Figure 18, However, it should be kept in mind that
this effect may have no physical basis,

Figure 19 presents the effect of damping on the ""peak spectrum' over the
range of damping 0.01 < HL <0.1 for the dimensionless frequency of 200,

Cmn

which is equivalent to «*'8* - 4.62. This effect may be expressed as

1 1 462 100
10 log %p(E'E'T) - - 1015 -20 loglo(’—'-). 6.1)

<
mn

It is obvious from (5, 1) that the ""peak spectrum, ' and hence, the dimension-
less plate velocity spectral density at the plate natural frequencies, varies
inversely as the second power of plate damping at the dimensionless frequency
of 4.62/5%.

Figure 20 presents the variation in slope of the dimensionless ''peak

spectrum'’ with damping over the same range of damping. This effect may
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be described by

1 1
o) (. ! )
zfv » *
P 2 3 100 +
10 log,o -68.5 + Slogm(-'—'- w'> e, (5. 2)
o, LI TP <2h . 1.932
p\2 w >T.

From (5. 2), it is seen tha., for dimensionless frequencies above the first
plate dimensionless natural frequency and above 1.932/5', the slope of the
dimensionless '"peak velocity spectrum' increases with the one-half power of
damping.

From the above, it may be concluded that the plate damping has a pro-
nounced effect on the dimer.sionless plate spectral density at dimensionless
frequencies corresponding to the plate natural frequencies present in the spec-
trum, The major effect of damping is to decrease the dimensionless spectral
density at these frequencies according to approximately the inverse second
power of the damping. This conclusion was also reached by Bull et al, [15] in
their investigation on the flow excited vibrations of plates. This lends further

support to the validity of this analysis,

5.1,2,3 Effect of Plate Rigidity

By use of the values of M,5',b*, and * prescribed in Section 5,1.2,1,
the dimensionless plate velocity spectral density was computed at the plate
center (x*=1/2,y'=1/3) over the dimensionless frequency range of 11 to
3000 for the additional values of D* of 5,15 and 15,45, The results of these
computations are presented in Figures 21 and 22, respectively. The effect of

a change in D* alone over the range 5.15 to 15,45 can be seen from Figures

TS oA e mp——
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14, 21, and 22, Comparison of these figures shows that the prime effect of
D* is to change both the dimensionless natural frequencies and the dimen-
sionless velocity spectral density at those natural frequencies present in the
spectrum, From consideration of basic vibration theory, this result is not
unexpected,

It is again instructive to examine the dimensionless ''peak velocity
spectra" derived from Figures 19, 21, and 22, Figure 23 presents this com-
parison, It is seen that thc piime effect of the plate rigidity is to change the
lower limits of applicability of the ""peak velocity spectrum' without signifi-
cantly changing the spectral level, This becomes obvious when it is recalled
that the "peak spectrum’ for the application described here is only valid above

the first dimensionless plate natural frequency, and it can be shown that the

first plate dimensionless natural frequency varies as the one-half power of D*.

Comparison of the lower limiting frequencies in Figure 23 bear out this

relation,

5.1.3 Dimensionless Plate Velocity '"Peak Spectral Density"

As previously stated, the dimensionless plate velocity ""peak spectral
density" is a useful engineering result in that it allows prediction of the maxi-
mum plate velocity spectral levels, Often this knowledge is sufficient to enable
the engineer to make a decision concerning a design problem or an equipment
specification, It would therefore be desirable to derive an expression by
which the dimensionless ''peak plate velocity spectrum’ could be predicted,

Such an expression would have the further advantage that it would show the
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effect of the major parameters on the dimensionless plate velocity spectrum
at the dimensionless plate natural frequencies. The results of the above sec-
tions provide sufficient data for such a derivation over the range of param-
eters pertinent to the submarine application,

From equation (4. 139) and the discussion in ‘3ection 5.1, 2, it is obvious
that the dimensionless plate velocity "peak speciral density" lo;pu' el
is proportioned to M? 8"2 for dimensionless frequencies above 1.932/5*.
Section 5.1, 2.1 further concludes that, in the range 1/S<x'51/2,y* =1/3,
the dimensionless peak spectral density is independent of the plate coordinates
x* and y'. Hence,

! (x*,y*ho')=0! (0% l *<l' ’.l_ 5.3
d,pxym ¢pw ’Sx_zy 3 (5.3)

Further, in Section 5.1, 2,2, the effect of damping on the amplitude and slope
of the dimensionless plate 'peak velocity spectrum' was presented in equations
(5.1) and (5.2). Finally, Section 5.1, 2,3 showed that the effect of D* was
essentially that of shifting the lower dimensionless frequency limit of applica-
tion of the ""peak spectrum' concept.

By noting from Figures 15, 18, and 23, that the slope of the dimension-
less "'peak spectral density" is constant with dimensionless frequency on a
semi-logarithmic scale, and by recalling that for the submarine application

1.932

wi, > = it would seem reasonable from (5. 3) and the above discussion to

assume the following form for the plate velocity ""peak spectral density'':

. 2 ’-2 -g_’_ i 9‘("/':]"\)
O N e (5.4)
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or, in logarithmic form:

+ 4+
10 log,, 0;’&»’) =C,+20log, M-20log,, 6+ 10n lo;lo(':—)o 10 3(;_:._) log,o *
c [
mn mn

(5. 4a)
where C,,n, and g(r*) are to be determined from (5.1) and (5. 2).
Using the values of M and &' given in Section 5.1,2.1, comparison of

(5.1) and (5. 4a) ylelds

100« et 4.62 et
~101.5 - 20 log (:'_:)= C,+10 ’(.* )103,0? +58.4+ 100 loglo(T-).
mn “mn “mn

(5.5)
from which
n=-2 (5. 6)
and
i 4.62
C,=-199.9-10 g(: )logw el (5.7)

Substituting (5. 6) and (5. 7) into (5. 4a) results in

+

+ ‘ot
lOIogm(Dép(w’) ==~199.9 + 20 log,, M - 20 log,  &* - 20 logw(—)+ 105( . )logm O

L4
l’: [’ 4.62

mn mn

(5. 4b)

Comparison of (5.4b) and (5. 2) yields

00 + +
68.5 + S log o [ Y- 10 g [
re 2

mn mn
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or

s(,'—) -635+0510.,°('°°' ) 5.8)
rt rt ’
mn -

Substituting (5. 8) into (5. 4b) yields

v

10 log, O;p (w*) = -199.9 + 20 log,, M - 20 log,, 8* - 20 log,, ( )

o)

1,1,

-<xt¢c=, = -,

sEXs30Y 7y
1.932

+ + +

W W, 5

or, by a slight rearrangement,

+ B M MM
10 log ®; (w*) = -159.9 - 20 log , (EOL BT) [68'5 +5log g (_1(30' )]loglo (—‘:682)
¢ <

5*
(5. 9a)
where
2 VDr ("'2 ‘,‘) (5. 10)
b
and
¢ 2w, (5.11)

Figure 24 compares the dimensionless plate velocity ""peak spectrum’
calculated from equation (5. 9a) to the computed spectrum of Figure 16,

Agreement between the dimensionless plate velocity spectral density at the
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plate natural frequencies and the dimensionless ''peak spectrum' are seen to
be excellent, It may therefore be concluded that equation (5, 9a) accurately
represents the effect of major parameters on the dimensionless plate velocity
spectral density at the plate natural frequencies and further predicts a plate
velocity ""peak spectrum' in agreement with results computed from equation

(4. 139),

5,2 Results of Cavity Acoustic Pressure Spectral Density Computations

The dimensionless cavity acoustic pressure spectral density was com-
puted from equation (4. 145), Computations were performed on the IBM 704 and
the IBM 7090 digital computers by iterative processes. Again, the summation
terms in equation (4, 145) appeared to converge monotonically in all cases,
However, because of the octuple summation in (4, 145), the computational time
required for a spectral point was large, especially at the higher plate modes.
Therefore, the solution was accepted if two successive iterations agreed
within 20 percent. This gave a computational accuracy to within +1 decibel,
which compares well with experimental accuracy. Even with this fairly large
tolerance, the computation of the dimensionless cavity acoustic pressure spec-
tral density for a frequency corresponding to the 5-1 plate mode required more
than 20 hours on the IBM 704 computer, The IBM 7090 computer proved to be
approximately eight times faster.

Because of the large computer time required per spectrum, the dimen-
sionless cavity acoustic spectrum was generated by computing the spectral

density at a dimensionless frequency equal to each dimensionless plate
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natural frequency plus the ratio of damping to critical damping, and at two
points, equally spaced in frequency, between each pair of adjacent plate
natural frequencies, It will be recalled that the plate velocity spectrum was
generated similarly, except that the spectral density was computed at three
points, equally spaced in frequency, between each pair of adjacent natural
frequencies, This change results in a cavity acoustic pressure spectrum less
precise than the plate velocity spectrum, but the computer time requirement
dictated some time economies.

It will be recalled that acoustic damping effects have been neglected in
the derivation of equation (4, 145), and that the only damping effects are asso-
ciated with the plate. It was thus felt that solutions of (4. 145) at or above the
first cavity acoustic natural frequency would not be physically valid, Hence,
computations of the dimensionless cavity acoustic pressure spectrums were
confined, with two exceptions, below the first cavity acoustic natural frequency.

To the author's knowledge, no experimental information exists for a case
corresponding to the theoretical model treated here,

The purpose of computing the dimensionless cavity acoustic pressure
spectra from equation (4. 145) was to show the effects of major parameters
and to establish the range of validity of the assumption that the acoustic back

pressure may be neglected.

5.2.1 Effect of Major Parameters on the Cavity Acoustic Pressure Spectrum
The data cases used to study the effects of major parameters were

selected with the submarine application in mind. Since the plate natural
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frequencies and critical modal damping (»! and r:mn) are functions of D'
and b', and U'=1.54 throughout this analysis, the independent major param-
eters affecting the dimensionless cavity acoustic pressure spectral density are
M. bt D' et d et uxt iyt 2t et

Inspection of equation (4, 145) and equations (4. 131) through (4. 137),
(4.142) and (4.143) shows that the effects of b*,¢',D*,c*,d*,x*,y*, 2", and o'
are obscured by the summation, whereas the effects of M,5', and p* are
explicit in (4.145), The effect of the cavity dimensions, b* and d4*, will be
primarily that of redistributing the cavity acoustic natural frequencies, and
since these computations were confined, for the most part, below the first
cavity acoustic natural frequency, the etfects of b* and 4* were not
investigated.

As previously stated, the damping (') present in this analysis is asso-
ciated with the plate, Note that the terms in equation (4, 145) containing «*

(namely, A_ T ) occur in exactly the same combinations and are

mn' “mn’ wIhan

summed over the same range of indices as the same terms containing ' in
equation (4.139), If the concept of a ""peak spectrum' is again introduced for
the cavity acoustic pressure, it would seem reasonable from the above to sus-
pect that the effect of damping on the cavity acoustic ""peak spectrum'' should
be the same as that on the plate velocity "peak spectrum,.' Hence, from

eq.ations (5.1) and (5. 2), it is assumed that

100¢*
10 log,, @ (x'. y'oz', 4:‘2) - C, - 20log,, (—') (5.12)
P

I”
<
mn
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and
4 + + + +
’ ’ ’ )
0_p(x yhzhw 1005 L
lOloglo =C2+5105l0 w' >y,
¢ x'y' 2" 100" (¢
mn + 1932
) O e———— g
50

(5. 13)

where C, is the acoustic pressure 'peak spectral density' at a dimension-

less frequency of 4_6’3. , and C, is the slope of the ''peak spectrum" with

S
frequency. These constants will be evaluated in a later section.

From the above, it remains to investigate the effects of D*,c',x*,y*,2",

and o'.

5.2.1,1 Effect of Cavity Coordinates
Dimensionless input parameters which fall in the range of interest for

submarine sonar applications are

M - 189

D* = 10.3

§ = 2.31 x10°2
b* = 0.6667

et = O.lr:mn
ct = 454

d* = 0.3333

pt = 189.

Note that the first five parameters are the same as those listed in Section
5,1, 2,1 for the plate, This set of parameters will hereafter be referred to
as Case 1,

The effect of plate coordinates w~s investigated for the following sets of

cavity coordinates (x*,y',z*):
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Because of computer time limitations, the frequency range of interest was

10 <w' <1000. The first cavity acoustic dimensionless natural frequency is
1426, The computed dimensionless cavity acoustic pressure spectral densities
for the Case 1 parameters and the above listed coordinates are presented in
Figures 25 through 28, respectively, Close inspection of these figures re-
veals very small differences between these spectra throughout the entire fre-
quency range, At the higher frequencies, it may be seen that the dimension-
less cavity acoustic pressure spectral density is slightly greater at the bottom
of the cavity (z*=0) than at the plate (z* = -1/3). Also note (from Table 1)
that the 1-1, 3-1, and 1-3 plate modes appear in the cavity acoustic pressure
spectra of Figures 25 through 28, regardless of cavity coordinates, The
above observations suggest that the dimensionless cavity acoustic pressure
spectral density is nearly uniform with position (over the range of coordi-
nates investigated) throughout the cavity at dimensionless frequencies below
the firat cavity acoustic natural frequency. This is further borne out by
Figure 29, which compres the dimensionless cavity acoustic pressure "peak
spectra' derived from Figures 25 through 28 above the first plate natural

frequency, It is seen that the effect of cavity position on the ""peak spectra"
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is very small in the range investigated; hence, it will be assumed

|
¢ x",y' 2w D (W) - x'le -
G R ' *p 3 2 37 3

(5.14)
From the above, it is concluded that, in the range of space variables
1/3<x* <1/2,y' =1/3,-1/3 <2' <0, the dimensionless cavity acoustic pressure
spectral density is essentially uniform for dimensionless frequencies less than
2/3 of first cavity acoustic natural frequency, It is therefore assumed that
the dimensionless cavity acoustic pressure '"peak spectral density' is inde-

pendent of space coordinates,

5.2.1.2 Effect of Speed of Sound of Cavity Fluid

A change of the cavity fluid involves a change in the values of ¢* and ,'.
The effect of p*, as previously stated, is explicitly stated in equation (4. 145),
Hence, changing the cavity fluid provides a simple method of determining the
effect of ¢' on the dimensionless cavity acoustic pressure spectral density.

To this end, the following parametcrs were selected:

M= 189

5t = 0.0231
b* = 0.6667
tt = 0.lr:mn
D* = 189

d' = 0.3333
¢t = 100

pt - 0.0221 .
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This sct of parameters will hereafter be referred to as Casc 4,

of all parameter cascs is presented in Table 2,

A summary

TABLE 2
PARAMETERS USED FOR COMPUTATION OF ACOUSTIC PRESSURE SPECTRA

PARAMFTER CASE 1 CASE 2 | CASE 3 | CASEA4
M 18.9 0.51 0.022]1 18.9

8! 0.0231 0.0202 0.0202 0.0231

b* 0.6667 0.6667 0.6667 0.666

d' 0.3333 | 0.3333 0.3333 0.3333
NI 0.1 0.1 0.1 0.1
D’ 1n.3 0.0004 0.0259 10.3

[\ 454 5 5 100

p' 18.9 0.51 0.0221 0.0221
wy, 102.9 0.641 5.16 102.9
natunal foaveney | 1426 1571 | 1571 | 3142
":# 837 957 | 957 83.7

The dimensionless cavity acoustic pressure spectral density was com-

puted for the following dimensionless spacial coordinates (x*,y*,z%):

The frequency range of interest was 10 <w* <500.

that this range includes the first acoustic natural frequency of the cavity.

From Table 2, it is seen

computed spectra for Case 4 are presented in Figures 30, 31, and 32,

The

-t
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Comparison of Figures 30 through 32 again shows no effect due to cavity
coordinates below a dimensionless frequency equal to 2/3 of the first cavity
acoustic natural frequency. Above this point, the acoustic pressure spectrum
at the plate becomes higher than the spectrum at the bottom and middle of the
cavity, This result is not in agreement with the results of Case 1, which
showed the cavity acoustic pressure spectrum to be slightly larger at the bot-
tom of the cavity than at the plate. This discrepancy is not understood,
although it seems to be due to the change in cavity fluids.

Note further that the cavity acoustic natural frequency appears as a sin-
gularity in the spectra of Figures 30, 31, and 32. This is due to the absence
of acoustic damping.

Comparisons of Figures 25 and 30, 26 and 31, and 27 and 32 show a
constant difference in the dimensionless cavity acoustic pressure spectral
density (independent of frequency) out to a dimensionless frequency equal to
approximately 2/3 of the Case 4 cavity acoustic natural frequency. From pre-
vious discussion and equation (4.145), it was shown that ¢'(x'.y',2*, ") was
proportional to p’z. The above discussion indicates that the combined effect
of p* and ¢' is a constant difference in the spectra and is independent of

frequency. It appears reasonable, therefore, to assume

n
+ + 4+ + + *
Pty iz e

where n is an exponent to be determined. The difference between the
dimensionless spectra of Casc 1 and Case 4 is 84,9 db, Therefore, from the

above
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+

diix',y' 2" w') [N <
10 log o —— — 84.9 20 log |, —) 100 log,,(—]} . (5. 15)
Q_(l.y.z.m )y A c;

where the subscripts refer to the case number, From equation (5. 15) and the

values of Table 2,

n 4 (5. 16)

and thus

4
‘t’;(x'.y'.z'. w') vt (5.17)

5.2.1,3 Effects of Damping and Frequency

As stated in Section 5. 2. 1, the only damping present is that of the plate,
and the damping terms in equation (4. 145) occur in ¢xactly the same form as
in the equation for the dimensionless plate velocity spectral density (equation
(4.139)). Therefore, it is reasonable to assume that the variation of the
dimensionless cavity acoustic pressure spectral density with damping is the
same as that of the dimensionless plate velocity spectral density,

It will be recalled that the effect of damping was shown by means of the
dimensionless plate velocity "peak spectra,’” The "peak spectrum'' concept is
also useful from an engineering standpoint in examining the dimensionless
cavity iacoustic pressure spectra, Because of the intended application of this
work, the "peak spectra" are only derived for dimensionless frequencies above
1.93) 8. Further, as the plate boundary conditions affect the spectral density
at the lower modes, and as the intent of the "peak spectrum' is to generalize

the results into a useful engineering tool, independent of plate boundary con-
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ditions, the "peak spectra' only apply above the first dimensionless plate
natural frequency. It was upon the above arguments that the assumed forms
for the damping and frequency effects on the dimensionless cavity acoustic
pressure 'peak spectrum' (equations (5.12) and (5. 13)) were based.

From equation (5.12) and Figure 29, it can be shown that

C, -205. (5. 18)

From equation (5. 13) and Figure 29, it can further be shown that

C, =935. (5. 19)

Hence, the effects of damping and frequency on the dimensionless cavity acous-
tic pressure "peak spectrum' at dimensionless frequencies above 1.932/8* and

wy, may be written, taking account of equation (5, 14):

10log,, &) (w') =20.5-201log,, ('00' ) (5. 20)
p rf
and
¢! (") —
10 log ,, —2——— 935, S log . (5. 21)
Yo 100" ‘°(;
p mn

5.2.1.4 Effect of Plate Rigidity

The plate rigidity (D') originates from the plate equations and, like the
damping, occurs in exactly the same form in equation (4. 145) as it does in
equation (4, 139), Therefore, by the same arguments used ahove, the effect of
the dimensionless plate rigidity on the cavity acoustic pressure spectral den-
sity should be the same as its effect on the plate velocity spectral density. In

Scction 5,1, 2,3, it was shown that the plate rigidity redistributed the plate
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natural frequencies and altered the dimensionless plate velocity spectrum at
these frequencies, Its effect on the ""peak velocity spectrum' was to alter the
lower limit of applicability because of the changes in «], (since the "peak
spectrum is only applicable above «],).

The dimensionless cavity acoustic pressure 'peak spectrum' derived
herein will have the same limitations as the dimensionless plate velocity '"peak
spectrum, " For the submarine sonar application, these limitations are not
severe, but for aircraft and missile applications, the cavity acoustic pressure
"peak spectra" lower limit will probably fall above the frequency range of
interest; that is, the lowest frequency limit of application of the '"peak spec-
trum' (1.932/8%) will probably be near the upper frequency limit of interest in
these applications. In an effort to provide some data in the range of interest of
these applications, and to better define the effect of D* at frequencies below
1.932/86", dimensionless cavity acoustic pressure spectra were computed for
two additional data cases. These were Cases 2 and 3, and the parameters used
are presented in Table 2,

Figures 33 and 34 present the Case 2 results in the dimensionless fre-
quency range 0.1 <’ s 6 for the dimensionless coordinates (1/2, 1/3, -1/6)
and (1/2, 1/3, -1/3), respectively, Note, from Table 2, that the above fre-
quency range lies below 1.932'5" and also below the first acoustic natural
frequency of the cavity. Again, these spectra show no effect of cavity coordi-
nates as the highest frequency falls below 2/3 of the first cavity acoustic
natural frequency.

Figures 35 and 36 present the Case 5 dimensionless cavity acoustic
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pressure specira in the dimensionless frequency range 1.6 o' - 30 for cavity
dimensionless coordinates (1/2, 1/3, -1/6) and (1/2, 1/3, -1/3), respec-
tively. Aguain, this frequency range falls below 1932/6° hut includes, in the
casc of Figure 35, the first two acoustic natural frequencies of the cavity,
Comparison of Figures 35 and 36 again shows no cffects of cavity coordinates
out to a dimensionless frequency equal to 2/3 of ine first cavity acoustic
natural frequency,

Table 2 shows that M. p*, and p' are the only parameters varied from
Case 2 to Case 3, The cffects of M and p° are known, Hence, Cases 2 and
3 may be used to show the effect of D' below the dimensionless frequency
1.932/8*. <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>