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ABSTRACT

This report is concerned with formulas for the determination of the earth's
physical surface and external gravity field from free-air gravity anomalies to
an approximation linear in the elevation and its derivatives,

Part A considers integral equations and their linear solutions; Part B gives
an elementary deduction of these solutions from the geometrically evident
gradient solution; and the subject of Part C is an application to varjous gravity-

dependent quantitics and an evaluation of different solutions,
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INTRODUCTION

The present work is a continuation of an earlier report (Moritz, 1964).
The previous report gave a discussion of the various formulations of the geodetic
boundary -value problem, that is, the gravimetric determination of the geoid or
of the physical surface of the earth, using either unreduced free-air anomalies
or other anomalies that correspond to various gravity reductions, The present
report is exclusively concerned with "Molodensky's problem, " the gravimetric
determinator of the earth's physical surface and external gravity ficld from
free-air anomalies. The free-air anomaly Ag is defined as the difference
between gravity g measured at ground and normal gravity y referred to the
telluroid. The discussion of the solutions of Molodensky's problem is in
general limited to "linear solutions, " in which second and higher powers of the
elevation (which is small as compared to the dimensions of the earth) and of
the terrain Inclination are systematically neglected. This limitation to a
"linear approximation" considerably simplifies the comparative study of the
different solutions and is also justified for practical reasons.

In Molodensky's problem the free-air anomalies are assumed to be given
at every point of the earth's surface. This distinguishes it from "Bjerhammar's
problem, " the determination of the earth’s physical surface and external gravity
field from discrete gravity measurements, which is beyond the scope of the present

report, We have also disregarded methods, mainly proposed by N. K. Migal,
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that avoid the use of a normal gravity field: they are interesting conceptually,
but less convenient practically and, as shown by Monin (1962), essentially
equivalent to the usual methods, which do use a normal field.

Part A considers various integral equations for the present problem,
and their linear solutions. Much of its subject matter can be found in the
literature; it has been collected, supplemented, and presented from a unified
point of view,

Part B gives a deduction »f the linear solutions from one particularly
simple and obvious solution. Here I have attempted to show that all linear
solutions that I was able to fird in the literature, and some more, can be
derived in an elementary way, in the sense that no integral equations are
needed at all. In this way the relation between the various, apparently so
different, solutions is clarified. This comprehensive deduction may claim
some originality, although the general technique was anticipated, for a particular
case, by Arnold and indirectly also by Molodensky.

Part C considers the application of the various methods of solution to
gravity -dependent quantides that are needed in geodesy. A comparison and
evalvation, both theoretically and with respect to practical applicaton, is
attempted,

Mathematical details that would unduly interrupt the presentation have

been relegated to two Appendices.
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Forniulas that might be new are, for instance, (63), (106), (261), (274), %
(277), and (297b). It is quite possible, however, that some of them have been
found before.

The three parts of the report can be read fairly independently. Readers

a-s

interested only in a genecral view and in practical appiication may limit them~

selves to Part C; and those who are afraid of integral equations may start with
Part B, although they will probably have to refer to sections 1 and 3 for a full

understanding.
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A. THE INTEGRAL EQUATIONS

1. SPHERICAL FORMULAS
For later reference we first state certain well-known integral formulas,
which are valid if the boundary surface is a sphere.

SPHERICAL HARMONICS EQUIVALENTS. Let r (radius vector), 6 (polar

distance) and A (longitude) be spherical polar coordinates in space. Then r =R =
6371 km is the radius of the mean terrestrial sphere, considered as the boundary
surface. Consider on this sphere a surface layer of density X(8, A)/2rk, where k
is the gravitational constant, and its potential Y(8, A) on the sphere. These two

functions are connected by the formula

Ra r X ’
== 1
o i o 9T (1)
(0]
where Y refers to a fixed point P and X to a variable point P’ that carries the

surface clement R®do, o being the concentric unit sphere; £, is the spatial

distance and y the spherical distance between P and P/, so that

¢, = 2Rsm§ (2)

(Fig. 1).

Representing the functions X and Y as scries of spherical harmonics,
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i Yo, n = % v.6 0, |

. equation (1) is equivalent to the relation

2R

Y60 = 5

X, 6 2) 4)

between the harmonic terms of degree n. ‘

Similarly Stokes'formula

==t
o=l ug U S¢)do ©)

(Y represents the anomalous potential and U the gravity anomaly) is equivalent to
_ R
Y6, 2) = =7 L6, 1) . (6)

To obtain the formulas inverse to (1) and (5), we consider the elementary
inversion of the corresponding relations (4) and (6):
RX, =(n+%)Y,,
RU, =(-1Y,
or

(RX - %Y), = nY, ,

)
(RU+Y) =nY, .
Both equations are of the form
Z, =nY,, ()

which is the spherical harmonics equivalent of the integral formula

e |
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(Heiskanen and Moritz, 1967, sec. 1-18). Outside the integral, functions (such
as Z) always refer to the fixed point P under consideration; inside the integral,
functons (such as Y) are in general variables of integration, and therefore the
value of this function at P is then explicitly denoted by the subscript P (such as
Y. ).

Now the inversion of (1) and (5) is straightforward. By means of (7), (8),

and (9) we obtain

x=—-%j s (10)
g
Y R Y-Y,
Uz-i-gﬂ‘—zoa_'do' (ll)
(o4

APPLICATION TO THE ANOMALOUS GRAVITY FIELD. The spherical-

harmonic expansion of the anomalous potential in space may be written

_ - B n+l
T=2 () %, (12)

first aad second degree terms being omitted as usually. Differentiating we find

aT o o) Rn+1
= n=22 n+1) 775 JU

The gravity anomaly in space is given by

We write this as
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- 2(RY"
%= £(7) %
and differentiate with respect to r:

3 © l{n‘bz
gAf'= 'nfz(n+2)-1;;?Ag, .

By setting r = R we specialize these formulas for the mean terrestrial

sphere which approximates the earth's surface:

M=§A&=§a%n, (13)
=2 n=
% - -lRé(mz)Ag, : (14)

The corresponding integral formulas are

T R

B2l
Ag:'i'aﬂ‘—[g-fdoo (15)

0 ]
E.:-.z_ég..‘.R_a ["Ag-AgP 16
; R 2,,{;73—""' =

The first is identical with (11), the second is derived in the same way, using (14),

(8), and (9).

Equation (16) expresscs the vertical gradient of the gravity anomaly in terms

of the gravity anomaly itself; equation (15) is the inverse of Stokes' formula.

INTEGRAL EQUATIONS. By applying Green's identities to a spherical

roundary surface one obtains the integral equation

3R ~T , _R . Ag :
(R = f,' D do = 5~ L(.JF 7 do ; (17)

- b Sy B 5 < O35 - el
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see, e.g., (Moritz, 1964). Its solution is Stokes' formula (5):

R

T=4—"

[T ag s¢) do . (18)
Y

Another integral equation is obtained by representing T as the potential
of a surface layer. Denote the product of surface density and gravitational

constant by ¢; then

T=R£d. (19)
o -]

Inserting this into the boundary condition

oT |, 2T
8r+R+Ag=0 (20)

and taking accouat of the discontinuity of the normal derivative of a surface potential

we obtain the integral equation for ¢,
R oL
0 {! i do = —- Ag; (21)
(0
see, e.g., (Heiskanen and Moritz, 1907, sec. 8-6). Inserting (19) into (21) we
find
1 3T
= 5 (as+35). 22
Expressing T by Stokes' formula (18) we obtain
0 = o (Be+i [[ogs(p)do
2n 8 ~a w ) ‘23)

as a solution of the integral equation (21).
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5, GREEN'S SURFACE IDENTITIES. Let U and V be two functions defined

on an arbitrary surface S. Then the relation

f [[D@, Vds = - jugvl'ds-ﬂ Uk VdS (24)
; 5 C

holds. Here C is a closed curve on the surface, S, is the part of the surface S
that is enclosed by C, ds is the line element of C, dS is the surface element of
S, v is the tangent to S that is normal © C, Dis Beltrami's mixed differential
parameter, and A: is Beltrami's second differential parameter for the surface.
See (McConnell, 1931), p. 189, eq. (69); the notation is slightly different.

If the surface is referred to orthogonal parameters w, and uz, SO that
the line element is represented by

ds® = h®du® +hide’ , (25)

then the differential parameters are

— 3 1 3
B, vy = & U 2V, U dV

ek —— 26

TN T s e e
1 [ h 3E 3 rhy 3F

F) = [:—— —_ + Ay of 27

820F) = i L 5w Gy aun /¥ 3 hﬁ%\/, (27)

Formulas for general non-orthogonal surface parameters are given in (McConnell,
1931) on p. 187.
If the surface were a plane, then u; =x and u; =y, and

bu, v =2 X+ YN

3 ox | dy dy ' (28)
A, @)= ZE L XE (29)
ox ay

10
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Hence we see that (24) is the two-dimensional analogue of Green's first
identity in space; see, e.g., (Moritz, 1964, sec. 2.1). Therefore (24) is called

Green's theorem for a surface.

If S is a closed surface, and if the curve C is contracted to a point, then
S, taken to be the exterior of C, becomes the whole surface S, and the first

integral on the right-hand side of (24) reduces to zero. As a limit there remains

{fD(, v ds = - [[ua.vds . (30)
S S

Because of the symmetry of ]5, also

[[D(, V)ds = - [[va.uds. (31)
S S

In these identites the functions F, U, V are supposed to be continuous and
twice differentiable in the region considered: S, in (24) and S in (30) and (31).
The function

=1
V"z) (32)

where £ is the distance of a variable point P’ from a fixed point P on the surface,
satisfies this requirement everywhere except at P, where 1/¢ becomes infinite.

In this case it may be shown that (31) still holds:
5F 1 - . rré=k
[JDF, 3 )as = - [[=2=as, (33)
S S
whereas (30) must be slightly modified:

(156 Dise-gre- psu (s,
S
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As we shali see by equation (39),

which is,

Az(1/1) has a strong singularity (like 1/¢3),

80 to speak, neutralized by subtracting from the function U its value

U, at the fixed point P. To prove (34) and (35), exclude first P by a small

circle C of radius ¢, apply (24) and let subsequently ¢ — Q.

These formulas hold for an arbitrary closed surface that is sufficiently

smooth. Now we shall specialize these general formulas to the sphere r = R,

whose line element is given by

ds* = R® (dff +sin°0d)?),

so that
u = 9 »
hl = R’

Then (26) and (27) become

D(U, V)

Az (F) =

Uz =A:

&
|
=
2]
—
=}
D>

-7 (Ueve 1LEmITe U)\V)\>’

1 1
R (Foeotd +Fg + s By, ).

= = 2 i
where U6 = dU/38, UOG °U/36, cte.

(35)

Alternatively we may refer the sphere to coordinates ¥ (spherical distance

from P) and a {Azimuth in

P); sce Fig. 2. These coordinates ¥ and ¢ exactly

correspond to 6 and A, the origin being now the fixed point P instead of the

north pole. Hence, alternatively,

D, =

AQ(F) =

-5<F¢c0t¢b+Fw+—g— F ).

( v+ﬁ—uv

{

12

(36)




North Pole

Figure 2
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For the sphere we have £ =4, = 2R sin% » 8o that

1
1 _
T © mmiz : (37)
—~ 1N _ _sind OF
(R )% 5 2
1N 1, 1
22(3,) = 3T - )

This follows by straightforward evaluation of (36) for the particular function (37).

14
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2. INTEGRAL EQUATIONS FOR THE ANCMALOUS POTENTIAL

In (Moritz, 1964) we have derived two different but equivalent integral
equations, which arc both due to Molodensky. We shall recall the n.ain steps of
the derivation, which we also need to derive a third alternative integral equation.

Our starting point is equation (49) of (Moritz, 1904):

T-EIJ;I'[T%<%>-%2FT]dS=O. (40)

S is any known surface approxin:ating the physical surface of the earth, such as the

norn.al surface as defined in (Moritz, 1904, sec. 2.3) or Hirvonen's telluroid. (In
the previous report cited we have used the syn.ol ¥ instead of S, but this notation
is son.ewhat avkward.) The outward dirccted norn.al to S is denoted by n, and £
is the spatial distance between a fixed point P and the variable surface elen.ent dS
(Fig. 3).

Consider an arbitrary function F in space. Its norn.al derivative may be

expressed in two alternative ways; see equations (18') and (21) of (Moritz, 1964):

oF _ 3F |

Sn = cos B3 ~D(F, h)cos B, (41)
3F _ 1 dF =

S = 5ocF o - D(F. hcos g, 42)

where h is the elevation of the terrain and B is its angle of inclination.
In a local cartesian coordinate system, the z-axis pointing vertically upward,

the x-axis pointing north and the y-axis pointing west, the cxpression D (F, h) is

defined as




A S0 MR S 0 T s L N R i

Figure 3

16




oy

3F 3h oF 3h
D == = + ===,
(F, h) x dy dy (43)

The expression [—)(F, h) is defined in the

surface

BaF_a_F+aFah

™ @ 3h

’

same way, the derivatives along the

%F _ 3F _ 3F h

EEEAE R

(44)

replacing the horizontal derivatives OF /ox and d3F /dy. Other expressions for D

and D will be given below.  The vertical derivative of F is

3F _ 3F
dh 3z’

(45)

Equation (41) thus expresses the derivative of F along the surfacc normal n (which

is not in general vertical) as a linear con;
derivatives.

For F =T we have

T | o+l

Sh Ag+_ya]T,
3T 13y

— = - +_ = -
= v 55 T
3T _

a_;--yn’

hination of the vertical and horizontal

(46)

¢ , (47a)

(47b)

where ¥ is normal gravity and € and n are the componer s of the deflection of the

vertical. Hence

D(T, h) “y (£ tanp +ntanf; ), (48)
where
tan B, = 2—:, ianB,; = %3 (49)
17
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are the inclinations of a north-south profile and an east-west profile, respectively.

Inserting (41), with D(T, h) expressed by (48), into (40) we obtain
L 129y _°£§
T rf EG- ¥ 3h ] Tes

= o J;.rTl[Ag'Y(ﬁtan& +ntanBs)] cos BdS ,

(50)

which is our besic integral equation in the first form; it is identical with equation
(48a) of (Moritz, 1964).
Secondly we use (42), again setting F = T. Molodensky (Molodenskii et

al., 1962, p. 85) proved that for two functions U, V

DU, V)cosBdS =- [fUA2VcosBdS (51a)
S S
= - "TVAzUcosBds, (51b)

where, in our local coordinate system, the expression A;F is approximately

defined by

2
AzF = 62 F +
ax? 3y°

2
3°F 52)

more rigorous expressions will be given below. By (42) and (46) we obtain

LaT . 1 - 1
T co‘sB\ 3 T)- DT, hcosp. Sl

From the definition of 15 it follows that
D(T, h) = 66, h)-Tﬁ(%,h). (54)

Now we substitute (53) and (54) in (40) and apply (5la), with U = T/¢. The resultis

18
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T ; A GPE y 3h chosB D((3» h )cosp
(55)
_cosB =L oprBg
L Az h ] s 2n -” LcosB ds .

which is the second form of the basic integral equation; it is equation (48b) of

(Moritz, 1964).

A third form is obtained by using, instcad of (54), a different transformation:

%B(T, h) %B(T, h-h,)

h-h N o Lyl
51,85 ) 0-n 54, 1)

-7 h-h - 17 =r1
L () - EN £ .
D(T. =52 )-D 0 -h)T, 7 [ +TD(5, h) (56)

The possibility of these manipulations follows again from the definition of D. In

agreement with (51) we have
-7 h-h h-h
&0 "2 - LA
[f D(T, ~ )cos Bas = ‘[Sj " A, TeosBdS (57)
[(B[(-1)T, S Jcospds = - [[ (- h)TA, (7 )cospds .
Y £ £
S S (58)
Again we substitute (53) in (40), but now we apply the transfamation (56) and use

(57) and (58). The result is

P IEIORY W NG ET

+D\ h)COSB]TdS = 2:’ [‘PAg mch:s)BAa Tcos® B

(59)

19




This is a third form of the basic integral equation.
Alternative expressions may be obtained by applying (42) to the function

1/e:

9y
)

./

“wsp (1) B(grn)eons. )

Onthis substitution the basic equations (50), (55), and (59) become

R 13ycosf =1 )
2n S»'[cosﬁ an( ) v dh 1 D(l s h>COSﬁ]TdS
1 1
=5 [[ 702 -7 (ganp, +ntanBz)] cospds , 61)
S
L oer Bty lay 1,501 N )
T 2 _h,l [COSB 3h E) y 3h ZcosB 2D 7 h/COSB
cosB 1 _ 1 e _og

1 13 1 1~
‘Z>-;J = +(h-hp)Azi-Z)cosB:|TdS=

P

1.
Y 'S'u.osB

[Ag - -h)A: Tcos®BldS. (63)

These equations are more explicit and therefore better suited for practical
soluton; the third form has cven become simpler because the 5 term cancels out
in (63).

The disturbing potentdal T may be determined from any of these integral
cquations., The necessary data are: Ag and the deflection components £ and 7

in (61); Ag only in (62); and Ag and Az T (which is ¢ssentially the anomalous

20
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gradient of gravity) in (63). Equations (61) and (62) are duc o Molodensky; (€3)
might be new.

The soludon of these equations, including practical aspects, will be discussed
in secc. 4.

THE OPERATORS D, D, AND A.. First of all, the rcader should be

warned that the operators D and A as used in this section are not absolutely
identical with those denoted by the same symbols in sec. 1, although they are
closely related. Therefore, the integral formulas (30) and (51) are very similar
but not identical; note the factor cosf in (51).

The reason is that in the present scction the differential parameters D, 5,
and A; (even when referring to a surface S) are essentially defined in terms of a

threce-dimensional coordinate system. It is convenient to use some simple system

of orthogonal curvilinear coordinates q,, Qz, qs, such that the surfaces q, = censt,
are approximately level surfaces, q; is approximately the latitude, qz is approxi-
mately the longitude and q, is approximately the elevation. Then the line element
will be given by

ds® = h?dq,® +ho® dg® +hy® dgy”? (64)
where hy, hy, h, are functions of q,, qz, q; (they should not be confused with the

elevation h). Then the following definitions hold (Molodenskii et al., 1962,

pp. 83-85):
- U 3V _ hy 23U v
D(U’ V) %2 1 a(h +h22 aq{? aq}.’ : (65)
D = U uV RQU RV
D, W) % 3q, 3q, * f’ 3G ¥’ (66)

21
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Ax(F) =

2 7 Eh__aa_> he %E)]_ (67)

hy hz [ 591 hy dq
As we have seen, o, F denotes differentiation along the surface. If F is a function

defined on the surface S only, F =F(q,, @), then

RF _ oF(@, g)

3 68a
3q, 3q (68a)

if, however, F is originally a function defined in space, F =F(q,, a2, ), and

if the surface S has the equation g3 = h(ay, qo ), then

32F _ 3F(,, g, h )
0 3q,

— BF(Ol v Gy Qs) BF(ql, ¢, Q3) oh
= + -
aql BQS 3(]1

or bricfly,

9, F AF &  2h
Lo = = 4 = = 08b
9q, 9q, 3q: 30, REL

For surface functions such as the elevation h or the reciprocal distance 1/¢, defini-
tion (68a) holds; for space functons such as the anomalous potential T, definition
(68YH) n-ust be applied.

The definitions (06) and (07) reduce to (26) and (27) only when the surface S
under consideration is a surface gz = const. (with hy = l, which can always be
achieved by a suitable choice of covrdinates qz ). Then 8 =0 and (51) reduces to
(30) or (31). Broadly speaking, this holds when S is approxin.ately a level surface,
which the physical surface of the earth ooviously is not.

The conditions to oe satisfied by the functions entering in (51) are the samie

as for (30) and (31): the functions U and V are supposed to be continuous and

22
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twice differentiable over the whole surface S. The functdon F = 1/€ has a

singularity at P and does not therefore everywhere satisfy these conditions.
In spite of this fact, eq. (5la) still holds for U = 1/£, whereas (S1b) must be
modified by replacing V by V - V,, in order to neutralize the strong singularity
of Ac (1/(). This is in complete analogy to (33) and (34) and is proved in the
same way. This fact was used in the transformations necessary to derive {
(55) and (59).
As an example, we consider the geodetic coordinate system ¢ (ellipsoidal
geographic latitude), A (ellipsoidal longitude), and h (height above the reference

ellipsoid). The line element in these coordinates is given by
ds® = M+h)P dg + (N +h)® cos® 0d2\® +dh® (69)

(Molodenskii et al,, 1962, p. 10), where

M = a®b” (70)
(a® cos® ¢ +b® sin® ¢ )37

is the meridional radius of curvature and

a2

- @2 cos® o +b° sin® o)/

N (71)

is the east-west radius of curvature of the ellipsoid, whose semi-axes are a

and b. Hence

q, ©, G = A, qs = h;

(=2
>
1
(]
[

M+h, h, = (N+h)cose, hy
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Equation (66) thus becomes

For (67) we find

_ 1
A, (F) = M +h) (N+h)cos(p[a(p<

e LR
3X \(N+h)cosp 3

~ = l,éa_l.lﬂ+ 1 . KU RV
2  (N+hPcosfo d3Xx A

g_lj +h!cos_¢2 BaF E

M+h 3Q

(72)

(73)

Differentiation of M and N with respect to ¢ is straightforward (their derivatives

with respect to A are even zero), but it should be noted that according to (68b)

(N +h2cosg

(N +h)cosg> (N +I:4QC(;1SQ> ah<
+

30 M+h
( _Mth Y3 M+h 3h
(1'+h)(.09go dh \\ (N +h) cos ¢/ dA

(74)

If the reference ellipsoid is considered as a sphere (spherical approximation,

see next section), then

M =N=R,

and we are left with

1 .”'SQU E)eV 1

U 2V

DU \Y% <’
( ) = R\ 3o A cos @ AX DA

i ( »F 50F 1 3F
-] - ——  tan + + —
R O ¢ 7 050 AN

Az (F) = YE P

in formal analogy to (35); note that for the sphere

o =90 -6.

(75)

(76)

(77)

In the local cartesian coordinate system we have the expressions (43), (44)

and (52) already given.
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3. VARIOUS APPROXIMATIONS

SPHERICAL APPROXIMATION. The geodetic integral equations become

simipler and can be solved more casily by applying certain approximations which
are permissible from the point of view of accuracy.

Usually, the gravity ficld of an cllipsoid of revolution is taken as the
normal ficld. The flattening of any suitable reference ficld is small. Hence,
when dealing with ellipsoidal quandtics, it is convenient to use series expansions
with respect to the flattening f or a similar small parameter.

Cur integral equations deal with quantitics of the order of T, which are very
small themselves. In these integral equations it is therefore possible to neglect

all terms containing f, f°, etc., as a factor of T. This is the spherical approxi-

mation. The error in the height anomalies [ (sec. 15) of this spherical approxi-
mation is thus of the order of

f¢ = 0.003C .
If £ = 100 m, this amounts to 0.3 m.

A convenient visualization of the spherical approximation is furnished by
plotting the heights h above the reference ellipsoid as the heights above a mean
sphere of radius R; see Fig. 4. It should be kept in mind, however, that this is
only a visualization, which has no counterpart in reality. It would be plainly wrong
to say that the earth is referred to a sphere instead of an ellipsoid, at least in the

literal geometrical meaning.
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Consider & definite case. The true radius vector of P’ (Fig. 4a) is given

by
Teewe =a{l ~3e®sin®+°* * )+h
=R(1+£—e'2-ée’2sin2<p+' **)+h,
where
2 2 - b
el = S

is the square of the second excentricity and

1s the mean radius of the earth. Neglecting ¢’? we get

r = R+h

as the spherical approximation of (78). This corresponds to the geometrical

interpretation of Fig. 4b,

In agreement with (78'), we have to the same approximation

-

oh  5r
and

_;. = (® +1,% - 2r, rcosy )-é
with

r = R+h,

T, = R+h, .

27
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(78)

(18")

(79

(80)

(8la)

(81b)




Hence we btain by differentiating (80)

) e
TR D)

This is easily transformed into

5? -
an( )' '_25 —zr—[f" (82a)
D 1N 1 r"
T )= s 2r,,:; : (82b)

From the spherical approximation

3 kM
we further find

. (83)

Hence, in (62) and (63) we may set

3 2 - r*
—— + R
3h ( ) ah z 2ry 2rg® B
The spherical approximation of the operators D and A; is, of course, given by
(75) and (76).

PLANAR APPROXIMATION. Comparing (78) and (78 ') one might object that

it is illogical to neglect the term

%-%sinﬂo)e”’R I
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which may become as large as

e’?R= - 14km,

1
3
when at the same time h, which is 8 km at its maximum, is retained.

That this objection is not valid may be scen by considering the consequences
of completely neglecting h . Then the earth's surface would be represented as a
sphere, and all mountains and hills would be leveled. This would amount to
neglecting also the inclination of the terrain, which may attain 45° and mere
in steep hills and mountains. This is clearly inadmissible.

So, while it would be permissible to neglect the elevation as such, it is not

possible to do so on account of the rapid changes of h, which cause the inclination,

In other words, one may neglect h whenever it does not enter through its horizontal
derivatives

dh _ dh _
d3x — ta'nBl ’ ay tanﬁz

or through similar expressions.

Such an expression is

i (85)

!
where £, is the chord, corresponding to £, of the sphere r = R (Fig. 4b):

2, = stmg, (86)

For small distances 4,, the quantity (h - h, ) /4, is of the order of the inclinadon

B, as Fig. 5 shows.
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As a definite illustration consider (78), which may be written
71 4R
B =l R{Tare )i 87)

Neglecting h/R, which at most becomes

h - 8 km
R 6 x 10° km

= 0,001,

introduces a relative error of less than 0.1 ¢, However, neglecting tan 8 when
B = 45° causes an error of 100 % !
From what has been said it appears reaconable to make an additional

approximation, which we shall call planar approximation: The elevation h is

neglected when it causes a relative error of only n/R. It cannot be neglected

when it occurs through the expression

(b - h,)/L,

or indirectly through the inclination B (that is, through its horizontal derivatives), etc.
Let us consider some definite cases. The distance ¢ is given by the rigorous
formula
2 =27 +r,° -2r,rcosy . (88)
As a spherical approximation we have r = R +h, so that
2 = R+hP+@®R+h )P -2(R+h) R +h,)cosy .

fhis is easily transformed into

2 = 4(R+h)(R+hP)sin°.g).+(h-h,)°

and finally into
a _ ,al , hth hh rh-h~ ,
2 =g, [1+ = +T{,.+<L°")], (88°)
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where £, = 2 Rsin-gl. This is the spherical approximation of (88). By

neglecting h except in the term
(h - h, \?
n)

we obtain

2 o= 42 [l+<hl;h’ )3] = ¥ +(h-h, P (88")

as the planar approximation of (88).

As a second case, consider (84), which may also be written

3 _(h-h)(rtr,)

2ri 2r3 *

The planar approximation is obtained by putting r =r, = R:

2 ly 1yl __3 h-h
3n\1./) yot 2Rt T F ¢ (89)

where i is expressed in terms of ¢, by (88").

Neglecting h/R within the parentheses of (87) may be interpreted, in a
formal mathematical manner, as letting R — = (within the parentheses!), that is,
as performing the formal transition from a sphere to a plane. The expression (85)
will become large only if ¢, is small, that is, in the neighborhood of P, In this
neighborhood, however, the sphere may be replaced by its tangent plane. Similarly,
(88" ) resembles the plane formula of Pythagoras. These facts indicate that the
planar approximation may be visualized in the way of Fig, 6: the elevations h
above sea level or above the ellipsoid are superimposed on a plane, This inter-

pretation furnishes a convenient name for the approximation considered.
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This name, planar approximation, however, should not be taken too literally.
The transidon to the plane, R ~», can only be performed in expressions of the order
of the elevation h, but nc zenerally.
We may thus summarize the different approximations that are consistent
from the point of view of accuracy:
Normal field (normal potential U, normal gravity ¥, etc.): strictly
ellipsoidal formulas.

Anomalous field (anomalous potential T, gravity anomalies Ag, etc.):

main part (not depending on h): spherical approximation,

correcton terms (order of h): planar approximation.

In view of the conceptual diffcrence between spherical and planar approxi-

mation it is remarkable that the accuracy requirements corresponding to the

spherical approximauon for T, etc., entail the planar approximation for the

correction terms in a quite conclusive manner.

ILINEAR APPROXIMATION. Using the planar approximation, we may

expand the expressions involved into power series with respect to

h - h,
< tanf , (90)

and similar quantitics. Neglecting terms of second and higher degree in these

quantities and retaining only the linear terms is called linear approximation,
The linear approximation to cos g is

cosB = 1, (91)




N

because
cosf = (l-l-tan’B)-é = 1-3tan’ g+ * *
differs from 1 only by terms of second and higher degree in tan g.
As a linear approximation, we further have
L= 4 (92)
for the same reason, according to (88").

Thirdly we use the surface clement dS, which we shall also need subsequently,
to further illustrate the meaning of the various approximations. Fig. 7, in which
the profile is taken along the maximum inclination B, shows that, as a spherical
approximation,

dScosB = *dg,

where do is the element of solid angle (surface element of unit sphere). Hence

we have:
spherical approximation: dS = r° secfdo , (93a)
planar approximation: dS = R?secfdo, (93b)
linear approximation: dS = Rdo . (93c)

The linear approximation takes account of the main part of the effect of
topography. Usually it should be sufficient in practice. Furthermore, the
relation between the different solutions as considered in the present report is
most obvious when the discussion is limited to the linear approximation, the
relations for higher approximations becoming rapidly more complicated. There-

fore, we shall here limit ourselves to linear solutions.
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4, LINEARIZATION AND SOLUTION OF THE INTEGRAL EQUATIONS FOR T
By means of the spherical, planar, and linear approximation, using
equations (89), (91), (92), and (93), we transform the basic integral equations

(61), (62), and (63) into
R aar 3 h‘hv Y
T Jlmg == "PUis h)]Tew =

3
= 2R7 ‘“L[Ag -y (¢tanB, +ntanBy) ] (94a)

R g
—2," P 20 Cb, (%b)

c

R 3 bk

T2 J;u[zlu,, 7 e h°)A2< )] e
ap 1
JJ‘T [Ag'(h’hP)AzT]dU- (%4c)
o ]

The operators D and A - in these equations may be identified with those

of sec. 1, defined by (26) and (27) or, as a spherical approximation, by (35). The
reason is that (35) differs from (75) and (76) only by 3, F /3¢ being replaced by

dF /3¢, etc.. Now, for surface functions such as 1/¢, or h, these two derivatives
are identical, according to (68a). For space functions such as T, they differ by a
term lirear in h, according to (68b), which, when multiplied by h - h,, becomes
quadratic and therefore negligible in the linear approximations. This happens for

the expression (h - hy; )A; T; all other operators D and A, involve only surface
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functions. This proves our assertion.
Hence we may use (38) and (39). The integrand on the right-hand side of
(94c) then becomes

h-h

s e ema ()] Tk ¢ -

3 i, 1h-h + 3T
“%Re, Ut R T=Re.

because, as a planar approximation, the term (h - h, )/R may be neglected.

All these facts being taken into account, the integral equations (94a, b, c)

become finally

3R ..T, R .
Tom. %% [ag - y(gtanB, +ntanf;)]do
g g
(K "L/h-h smqb-)Tdo (95a)
am - z:‘& ? ’
o SRR B s A o -
4m [ 1,0 m e zo Aé’ 2
o
R ”-lqj ‘- -2s1n¢ >T(b (95b)
2n i, ’
o
R TR L
r-R o fw-k f, (A= (1) 8, T)do (95¢)

SOLUTION. These integral equations miay be written in a unified form

3R .+ T, _ R .. Agt+p .
T W09 0 =/ d+q (71,23 (%)
g ag 2
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where

pp ==y ({anp, +nuanf,),

2
=K o 1 - cingy N
q, = Jnga <h h, smwbw>'l‘do,
o)
P2 =- TAE h ’
(97)
=-53 .“.‘_.l_<h h, 2smw Tdo :
W™ 5 L3 ) g
o)
Pa = '(h'hP)Az T,
q3 =0
are small correction terms of linear order.
They are readily solved in two steps. As a first step, we disregard q,
and determine an approximation T, of T from the equation
g r _9_ g + pl
Lo e {J e G (98)

This is a purely spherical integral equation of type (17), whose solution according

to (18) is
T, == [[ (ag +py) S @) do (99)
° 417 .O 1 .
We then put
T=T +T) (100)

and substitute in (96), obtaining

3
T, - & jj-ido+'r1 R pw= [ R,
g )
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The first two terms on the left-hand side cancel with the first term on the right-

hand side because of (98), and there remains
R oD oL
T [T . 0= a. (101)
c
This integral equation for T, is of type (21), so that its solution according to (23),
replacing Ag/2m by q,, is
- 3 oer
Ty =q +E’ L q S (¥)do. (102)
o
Combining T, and T; we have

T == :4% £J”<Ag+p1 +%>S(d))do+ql. (103)

Consider now the third term between the parenthesesof (103), 3q,/2R.
Since q, is divided by R in this term, it is tempting to neglect it as a planar
approximation by formally letting R =+, This formal argument is not entirely
convincing, but the fact that 3q, /2R is negligible nevertheless holds true; the
proof is rather lenghty and will be deferred to Appendix 1. Hence we are left

with the simple formula

T = [Tag+p)S@)do+a . (104)
Y
Using (97) we may as follows summarize the equivalent linear solutions found:

T =3 ([ lag -y (gtanpy +ntanfs)] S () do
g

R .« 1 . dh
™ uf' F; (\h - h, =siny g:,)) Tdo; (105)
o




T =

T =

R orr ag - Ta, by S(¥) do

4" v

o

2
-% LE{“ z—:;(h-h, - 2sm¢§%)'rdo; (106)
= ([ lag-t-h)asTISE)do . (107)

o

A 'zero-order' approximation to T is given by Stokes' integral

R

47

" ags@)do;
0

obviously this value may be used to represent 1" in the small correction terms

Expressions for second-order terms were given by Arnold (1959a) and Koch

(1965).
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5. THE INTEGRAL EQUATION FOR THE SURFACE LAYER
A considerably simpler integral equation was obtained by Molodensky in
an indirect way, which is familiar from an application to the simpler boundary-
value probleins of potential theory (Kellogg, 1929).
The anomalous potential T is expressed as the potential of a surface layer,

or coating, on the earth's physical surface S (or on any known surface close to it

such as the telluroid):
T = ,Lf % ds , (108)

where ¢ is the density of the layer (it incorporates the gravitational constant).
It is known from the theory of surface layers that the potential and its
tangential derivatives are continuous on the surface S, whereas the derivative

along the normal, 3T/dn, is discontinuous there: if we approach S from the

outside, the limit of 3T/3n on § is

CSTDQ = - 2mp + %Iw;?;p—(%) ds, (109)

which is different from the value on S,

]

2T 271N s
dn «Lvrwbn, N /dS,

hence the discontinuity has the value - 2v¢. For another direction, which encloses

the angle B with the normal, the discondnuity is - 2m¢ cos 8 ; this is a consequer..'e
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of the discontinuity - 2m¢ of the normal derivative and the continuity of the
tangential derivatives., Let this direction be the vertical; then B is the angle of

inclination of the terrain. Hence the limit of the vertical derivative on § is
):- 2m06cos B+ o2 (l)ds (110)
\\ h § dh, \ ¢ -
By substituting (108) and (110) into the boundary condition (46) we find

2"“’°°S‘3'5' L3n ( > ('y ah/ z] = Ag, (LILY

which is to be considered as an integral equation for the unknown surface density
¢, the gravity anomaly Ag at the earth's surface being given.

In agreement with our notational convention, quantities outside the integral
always refer to the fixed point P; those inside the integral refer to the variable
surface element dS unless they are marked by the subscript P.

If we compare the above integral equation with those obtairned previously,
that is (61), (62), and (63), we see that (111) is much simpler, but we also
recognize an essential difference: in (111) the differentiation 3/3h is referred
to the fixed point P, whereas in the former equations it was referred to the
variable point dS.

SPHERICAL APPROXIMATION. In agreement with (84) we have

21 la_z> 3,27
3h, \ y oh/) 1 2,4 2r,£3 :

because £ is symmetric with respectto r and r,. Using this expression and (93a)

&

o
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Al %K

-

we find
2rpcosfB - TS +ra  secfpdo = Ag (112)
oy N2 2r, )

as the spherical approximation to (111).

PLANAR APPROXIMATION. In agreement with (89) we have

(- , h-h
dh, \ 1. P 2Rz P

and the surface element is given by (93b). Hence

Ra(h hw)]

2rpcosp - l‘j'[ secfpdo = Ag (113)

is the planar approximation of our integral equation.

LINEAR APPROXIMATION. By setdng i = £,, cosp = secf = 1 we obtain

the integral equation

amp - R T2aw = og+R et S (114)
2 R ok -
g (o)
or
R o L
® 4,, L W=y Bg*Gy), (115)
o
where
. h-h
G, =R l| -‘-2-—3-9 o do, (116)
0 2
and (108) becomes
T =R 22 dr , (117)
0_ {e]
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where, as usually, (, = 2Rsin (¥/2).

SOLUTION. Comparing (117) with (19) and (115) with (21) we see that the
corresponding equations are identical if Ag is substituted by Ag + G, . Making
this substitution in (18) we therefore obtain

T =— 7 (ag+6G)S(y)do (118)
o

as the solution of the system of equations (115) and (117).

Since G, is a small correction term, we may in (116) approximate ¢ by (22),
so that

R® -~ h- h,,
G, 2"°|6 St )do (119)

In Appendix I it is shown that neglecting

BE o - h, T
do
2 <
c )

is consistent with the planar approximation. Hence we are simply left with

G = o J“h L agdo (120)

Thus the combination of (118) and (120) constitutes another linear solution
of Molodensky's problem.

A very elegant method for finding higher-order approximations, which is
also applicable to other geodetic integral equations, is described in (Molodenskii et

al., 1962, pp. 120-3).
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6. BROVAR'S GENERALIZATION

Molodensky expressed the anomalous potential T as the potential of a

surface layer (108):

T = [[ % as.
S

(121)

The formal reason why this is possible is that 1/¢ is harmonic as a functon of P,

and therefore, according to the theory of linear partal cifferendal equatons, T

is also harmonic (that is, a solution of Laplace's partial differential equation).

Brovar's (1963c) idea is to replace 1/4 by a different harmonic function E,

arriving at

»

T = |, oEdS.
S

(122)

This representation is valid since T will be harmonic if E is, for the same

reason as above, We may consider (122) as the potential of a generalized surface

layer, and the surface function ¢ as a generalized surface density.

Then, outside the surface S we have as a spherical approximation

%?:) ds .

T 2T
Age = A1, i

The function E may be selected in such a way that the "kernel”

K = - OE _ 2E

o) 1) g8

has a suitable form.

[¢9]
[}
o | —

N
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we had, according to (112),

- 3 G = r,:
K = 2r, ( 2r, (2 (1260)

that is, a linear combination of the simpler functions

rf-r.-
£3

-(lj and (127)
We shall now try to find functions that are proportional to only one of these
functions (127).

To arrive at a suitable generalization, we may start from the spherical-

harmonic expansion

Lo P, (cos ), (128)
P

considered as a harmonic function of the point P in space. The series (128)
remains harmonic when the individual terms are multiplied by constant

coefficients A,, provided it converges. Hence we may use the representation

E= %A -5 P (osg) . (129)
o]

n= Ip

Then the kernel (124) becomes

= r

K = Zo n-1) A T3 P, (cosy) . (130)
n= P

According to (82b) we havz
il d 1 1

- —————L—-: - ——— -— - emarnm—

rp £° 2 dr, <IZ> f (131)
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By means of (128) we obtain

- 3 e <)
SEh . % @a+l) S B (cost ). (132)
I, 2 =0 Iy

Hence if we wish to have

2 2
K = -_r_....§2_ , (133a)
I, 4
we must take
2n +1
A =05 n#1); (134a)
for
K 5 133b)
rp (
we have
1
A, =n-] n#1l). (134b)

This 1s seen by comparing (130) with (132) and (128), respectively.

The coefficicnt A, remains undetermined: the value n =1 is an "eigenvalue, "
This gives rise to slight complications, which will be skipped over here; see
(Brovar, 1964b) and also (Moritz, 196%a),

Both cases (134a, b) will now be considered. The first case is of great
practical significance, whercas the second presents scveral features of
theoretical interest.

THE KERNEL (r° - r.2)7<°. In agreement with (134a) we take

I -
E: 4n “_3__

n+l F ]
' 5TT TR (cosy), (135)
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where the prime following the sumn.ation sign is to indicate that the term n =1

is omitted; the factor 1/4m is irrelevant. The series (135) may be sumnied to

give the generalized Stokes' function:

E,

1 n __l"
v I:S(rp.u. o= |

—1-[2-22 cosy - 34 =
1 £ r, ) ;7

I -rcosq’,-+i‘| .

3r .
-;5- cos Y in or IR (136)

see (Moritz, 1965a, equations (50) through (54)).

The density of the generalized surface layer in this case is denoted by A

instead of ¢, so that (122) takes the form

T = T \E, dS .

h (137)
s

Thenthe kernel will be given by (133&),_ multiplied by 1/4m, so that (123)

becomes
ﬂ + EI = _1_ J‘f‘ A __ra ._L_r 5 ds 138)
dr, T 4n SJ r, 4° ‘ (

According to (136), the main singularity of E;, is that of 1/¢; the second,
logarithmic, singularity has no effect in the present situation, as will be seen

later. Hence the funcdon E behaves like

1

oy, (139)

as £-0, that is, a5 Papproaches the surface S. Therefore, the vertical derivative
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of (137) will have on S the same discontinuity as the potential of a simple layer
(the function T itself will be continuous). According to (110), this discontinuity
is = 2mpcos B; in agreement with (139), X takes the place of 21, so that now the
discontinuity is = Acosf8 . Hence (138) becomes on S

3T | 2T _ _ 1 e
v + Acos B+ g"—n—z’L ds, (140)

Ip

Since the right-hand side of this equation is equal to -Ag, we obtain the integral

equation
1 r: - ]
AcosB - = [T A ——# ds = Ag (141)
n 3 re £

for determining A from Ag.

The planar approximation is

R® ~», h-h _
AcosfB - - SO -——-flg secfdy = Ag . (142)
o

Since the kernel becomes zero for the sphere (h =h, =0), the second term will be

small, so that this equation lends itself to an iterative selution:
)\(1) = Agsecf, (143a)

{ -
) E-P—hﬁ secB do] . (143b)

: - 2
)\(“')= sccBLAg+2R? b(;;i‘)\

We shall be satisfied here with the linear approximation

v h -1
A-%tgx—zr—;ﬁ do = ag, (144)

of which the solution is

S0

= r.. __.r_




T

2

_ R° .. L-h,
A =agto= Ag do . (145)

According to (120) this is

)\ = Ag"’G] . (145')

Let us now consider the linear approximation to E, if P lies on the surface

S itself, To this approximation we have £ = 2. = 2Rsin (§ /2), so that (136)

reduces to
E - _L :/_2 = é C€os - 3L° -
: am L g, R VO RT

3 R - Rcosy + (s
R cosy Ln 2R )

and finally, exlcuding the zero-degree harmoaic, to

S )
E. = S )

(146)
where S(¢) is the ordinary function ot Stokes. Hence equations (137), (145'),
and (146) again lead to the solution (118) considered in the preceding section.

If P lies outside the surface S, then (146) no longer holds (not even as a

linear approximation), and (136) must be applied. In this case we have

-]
T Lr <Ag+cl>[s<r,.¢.r>-$]do; (147)

this equation provides a simple and useful formula for computing the external

gravity field.

Hirvonen (1960) considered the zero-degree approximation that underlies

this method: he uses a function that is essentially equivalent to (136) but disregards
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the linear texm G, . Brovar (1963c, 1964b) gave the integral equation (141)

and solved it by the method of Molodensky mentioned at the end of the preceding

section.

THE KERNEL 1/4 Here we use the function

B =3 2 o sy, (148)

in agreement with (134b). Incidentially, this function is related to E; according to

(135), which may be written as

_ _-L V) r“ i V) 1 r"
B = T I o B tw T PR B
by
_ 1L ,3 . 1
E, = ™ + an E, 217? cosy . (149)

From this fact we can easily deduce a closed expression "~r E;; using (136) we

find

£ r
= - - 1+
E; ;r 7\ in

Ip = rcosy + 4
- cos ¥ .
]

o, (i50)

The density of the gencralized surface layer in this case will be denoted by

Ry, so that (122) takes the form

T=R:’" pExdS. (151)
S

Then the kernel will be given by (133b), so that (123) becomes

3T _2T _R rrp
R : 1
® ‘Sf = ds (152)
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(Strictly speaking, the kernels corresponding to E, and E, contain a spherical
harmonic of the first degree, but this harmonic will integrate to zero in (138)
and (152), so that we can disregard it here.) From the interpretation of (151)
as the potential of a volume distribution ;i follows that neither T nor oT/dr,
will undergo a discontinuity if P crosses the surface S (p. 57). Hence even for

P on S equadon (152) holds, so that, with the planar approximation R/r, =1,

If£as = ag (153)
S

is the desired integral equation for determining u from Ag.

This integral equation is formally the simplest considered so far. This
does not necessarily mean that it is the most practical. Integral equations of the
first kind, such as (153), are less tractable than those of the second kind |
(Courant and Hilbert, 1953, p. 159). (All of our previous integral equations
were of the second kind.) The lirear solution, however, is easily found.

As a linear approximation we have
Ra .E. ‘b = 154

which is a strictly spherical equation. It has the form (1), so that its inversion

is given by
- R' npe .
21:“--‘235--27“951:?& Q. (155)
S
S3

K




e

Comparison with (16) shows that

you - L (2 3

2:: TIRET WA (156)

so that, apart from a constant factor and a small additional term, y is essentially

equivalent to the anomalous vertical gradient of gravity. It is well known that this

vertical gradient is much more irregular than the gravity anomaly itself, This
confirms what has been said above about the tractability of (153), being an integral
equation of the first kind.

It would be possible to use (155) with (151), but it is more practical to con-

sider the linear approximation of E, rather than its rigorous expression. We have

r =r,.+(h-h);

hence
E, = Ee°+a—F3 th-h),
or
where
S =L B B (cosy) T3 T = B (cosd)
E2 s =0 D=1

corresponds to the strictly spherical case, Differentiating (148), setting

r = r, = R, remembering the well-known spherical-harmonic expansion of

Stokes' function and neglecting very small terms we find

%k . L g/ n 2n + _S5@)
or E‘Egﬁ 3'gi_nlp"'m ’

_ <

4 - - ro g addtis
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We substitute
1
Ee = E° +5p% S(¥) G -h,) (157)

in (151) and use (156), neglecting the second small term which is in agreement

with the planar approximation. Thus we find

T=R [pE’d +§ S pG-h)S@)d
g g

“n o R an
R U pEdo - o T2 m-h)s@)d.
g g

The first term on the right-hand side is strictly spherical and must therefore

be identical with Stokes’ integral:

R [[pE d=n [Tags@d., (158)
(o4 (o4
Hence we finally have
T Jf [0 - 280 -1y ] s) a0 (159)

as the linear solution of (153),
The integral equation (153), without solution, was given by Brovar (1964a).’

A PHYSICAL INTERPRETATION. As Brovar (1964a) pointed out, a function

similar to E; can be interpreted as the potential of a certain volume distribution,
We shall now give such an interpretation to E; itself (Brovar's E; is different

from ours).

55

2 RUA
4

e et ot gt e 2




The potential of a volume distribution is given by

r ! ? !
T = ]‘ ”‘ o(r 'f LA ) r'? 8in@’'d6’d\’ dr’ (160)

ri=0 O
(th= gravitational constant is taken to be unity). .Assume the density p to have the
form.
pc’, 8, X)) = 1@ v @', \). (161)

Then (160) reduces to

T=[[vFdo, (162)
(84
where
F = I —:f(r')r" dr’. (163)

Using (i28) this becomes

4
F=§ Blose) Fogqypnedg, (164)
n=0 1‘,' s

In order to simplify the interpretation, we assume that the anon.alous potential T
does not contain spherical harn:onics of degrees zero and one. Then the sum in
(164) can start with n = 2. Furthermore we set

fie’)y = ', . (165)

Thus (164) becomes

-1
F = %_37‘__!_1_ ;FTT P, (cosy).
r= P

Comparison with (148) shows that, apart from zero-degree and first-degree
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harmonics left out of consideration,

F=%’*=—"%. (166)

T = 1_1{ [Tv Eado
and, with (93b)
T = If l’i%ié E, dS. (167)
S

Comparing this with (151) we see that
v = R psecB.

Hence the material density of the fictitious volume distribution that produces T is

p =<!;{-,jusecﬁ; (168)

it increases towards the center.

Hence the function E, may be considered to correspond to the potential of
a volume distribution, and the generalized Stokes' function (136) corresponds
according to (149) to the linear combination of the potentials of such a volume dis-
tribution and of a surface layer. Since the potential of a volume distribution is
everywhere continuous together with its first derivatves, there is no discontinuity
of (152) on 5, and the discontinuity of (138) is solely dueto (139), which represents

the surface layer,
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7. BJERHAMMAR'S INTEGRAL EQUATION
The approach of Molodensky (sec. 5) and its generalization by Brovar (sec. 6)

use surface layers on the physical sucface of the earth. Bjerhammar (1964) attempts

the representation of the external gravity field by a layer on the reference ellipsoid

or, as a spherica. approximation, on a sphere. For this purpose it is necessary that
the external gravity field can be analytically continued down to sea level. This gives
rise to certain theoretical and computational difficulties which, being irrelevant to
the linear approximation, will not be discussed here; see (Moritz, 1964, 1966).

The external gravity field is thought to be generated by a set of fictitious
gravity anon.alies Ag* on the sphere representing the reference ellipsoid. The
actual gravity anomalies Ag on the earth's surface as obtained by measurement are

then related to Ag* by the usual "upward continuation integral" (e.g., Heiskanen

and Moritz, 1967, sec. 6-8):

8, 3 _ .3
ag, = At "R oo A8t
anr, o L

(169)

The notations are evident from Fig. 8. The function Ag on the earth's surface being
given, this equation is a linear integral equation of the first kind for Ag*. The
peculiar simplicity of this equation rests on the fact that the integration is now
rigorously extended over a sphere. It was suggested by Bjerhammar (1964).

Once Ag* has becn found, all computations can be done directly, nothing

but spherical formulas being involved.
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For solving (169) it is convenient to transform it into

41 r,

2 2.2 _p3 -
<r—l}> Ag* = Ag R (™ -RY) 'L"j‘ A_g‘Ea_A_gl‘. do (170)

by a simple trick, which may be found in (Moritz, 1965b) or (Heiskanen and
Moritz, 1967, sec. 8-10).

As a linear approximation we have
R 2h
T 2 . Ra = 2Rh s = =1]1- =t
4 4 <rP R ’

hence (170) reduces to
2 R® ..Ag* - Ag?
agt = o5 - (g ot * 57 [JEE do)n, . a7
o- ]

The solution of this equation, to the same accuracy, is obviously expressed by

2 2 -
Agr = Ag,-(-RAg,-f-zI—{_n- fr M’—m)m .
o

3 (172)
0
On the other hand, a lincar Taylor expansion gives

Ag* = Ag __aa_ﬁ& h. (173)

The comparison of (173) and (172) provides an independent derivation of (16).
Arnold (1965) obtained the linear solution directly from (169) by an
approach whose mathen:atical justification is more difficult,
To get higher approximations for Ag®, the integral equation (170) may

be readily solved by an iterative method similar to (143a, b). As a planar

approximation, (170) reduces to
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- R® .rog* - ag?
ag* = ag-n {;r—lé__ do
with the iterative solution

Agttl) = Ag ,

w L]

(1) o Auslt)
s(t+1) - LB ag* gy
Ag Ag - h o ﬂ, T =

Details may be found in (Madkour, 1966) and (Moritz, 1966).
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B. THE LINEAR SOLUTION AS A CONSEQUENCE
OF THE GRADIENT SOLUTION
8. THE VERTICAL GRADIENT OF GRAVITY
in Part B we shall derive the linear solutions obtained in Part A, and also
others, from a simpie and intuitively evident formula which uses "free-air

anomalies at gea level”
ag* = ag - ey

As a preliminary 8tep we consider now various expressions for the anomalous

vertical gradient of gravity, dAg/3h. As a spherical approximation,

%%3 - %‘f . (175)

EXPRESSION IN TERMS OF Ag. Insec. 1 we have found the expression (16),

which may be simplified as

a R3 n i3
R L
o

because the small term (~2Ag/R), when multiplied by h and subtracted Irom Ag
according to (173), will produce a term of the order of h/R and can therefore
be neglected as a planar approximation,

Since the integrand of (176) decreases rapidly with increasing distance,

we may replace the sphere by its tangential plane and compute the anomalous

gradient by the integral
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o) 1 - 1 - Ag,

W ow P Rey gy | | s,
- =0 g=o0 (177)

which is formally extended over the whole plane; instead of x and y also polar

coordinates

= ,/xa +y?,

(178)

a arc tan-i- :

may be used, The origin of the coordinate system is at P,

EXPRESSION IN TERMS OF T OR . Inserting (83)into (46)and f

differentiadng with respect to r gives, as a spherical approximation,

5 i
aag _ _ T _ 23T, 2 |
dr ar A '

This equation is added to Laplace's equation AT = O, which in spherical :
coordinates r, ¢, A takes the form

3*T . 2 1 - A
T tiw P T Py O | |

The result, on setting r = R, is

O,D
~
—
iy

2
g . 2T \ L (L 3T (2T 1 TN (19
or ?+§5<tan"' a<p+a<p +cos © dA ) kL

The first term on the right-hand side can be neglected as a planar approximation,

and according to (35), with ¢ = 90° - 6, there remains
= £ AT, (180) '

By Bruns' theorem we have

T =vf 2 G¢, (181)

63

SN




e TR Y IS St v et

]

which for the Present purpose may be identified with the geoidal undulation,
Hence (180) becomes
L Q. Az L.

3r (182)

EXPRESSION IN TERMS OF £ AND n. We write (182) more explicitly

as
3

and express the horizontal derivatives of ¢ in terms of the components § and

n of the deflection of the vertical by the relationg

E-1 S 8L . |
a0 R¢, N Rncose,

Thus we obtain
& _ sk -2 | o7 ,
or o (R e R Rcosgpd ) ) (184)
It is again convenient to introduce tangential Plane coordinates by
Rdp = dx , Rcospdr = dy , (185)
so that
d4g _ £ - %8 on
dr G( el dx ay> '
Since G¢ is of the order of Ag, the first term on the right-hand side js
negligible as a planar approximation, and there remains
98 _ (3%, 2
oh G dx +ay s ° (186)




This formula was used by Mueller (1961).

GENERAL REFERENCE SURFACE. The vertical gradient of gravity

itself is according to a theorem of Bruns given by
3 - L9, 7-24°
T 2g)-2w", (187)

9 /3H is the derivative along the plumb line, g is gravity, -J_is the mean !

curvature of the level surface at the point considered, and w is the angular

velocity of the earth's rotation.

The vertical gradient of normal gravity is correspondingly given by

2 - -2y) - 207, (188)
dh
where 3/dh is the derivative along the normal plumb line, and ] is the mean '
curvature of the normal level surface. i

We divide (187) by g and (188) by ¥ and take into account that

gdH = ydh = dW, (189)

where W is the potential. Hence, we find

]
0 _ .,7 . uw
sw - T2 -29-
a
3Y o _o1 . oW

so that

i
| Mg _ 38 Y _ . m. . ,arl 1 t
|= aW “aw “aw - "20-D 2‘°<g'y>‘

Using (189) we finally obtain
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9 _ Loy - » &g
>h 2y(J - D+ 2w T

(190)

The difference of the mean curvatures of the actual and the corresponding

normal level surface can be expressed in terms of { , which is the vertical

o A N SN T N

distance between these two surfaces,

This is a purely geometrical problem, = 5
which will be solved in Appendix L. The result is =
T-1=-ef-x)¢-2a,¢, (191)
where K is the Gaussian curvature, %
Equations (190) and (191) hold for an arbitrary reference surface. For
3
| a sphere, their combination reduces to (182), small terms having been :
| i
| i neglected,
| |
| ! EXPRESSION IN TERMS OF HORIZONTAL DERIVATIVES OF Ag. We may
| |
| ‘ write (176) as
| ¢
1
o R* P
| —‘-‘g - H (g - Ag,) A, | —) do, (192) 4
f since by (39), neglecting the second term on the right-hand side as a planar 3
approximation, i
Fly . i
Az ( Qo) ¥ - (193)

i

The right-hand side of (192) may be transformed by Green's surface identity

(34), so that we obtain

g . K =1
= M(yjo( L) @, (194)
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By (38) we have

5( ) ﬂ_A& 1 g

(195)
Ra
) ¥
because, as a planar approximation, R siny = 2Rsin-é£ = L. We further
have

R3Y 3x cosa + 3y sinq , (196)

where 0Ag/dx and Ag/dy are the horizontal derivatives of Ag in a north-

south and an east-west direction, respectively, and ¢ is the azimuth,

By means of (195) and (196), equation (194) becomes

BAS -— ﬂ" (—AE b5 +-Ag sina ) dr,  (197)

which expresses the vertical derivative of Ag in terms of its horizontal derivatives

of first order,

Equation (194) may be further transformed by Green's identity (33).

The result is

3
%%15=2RTH—A-§Mdo, (198)
o L]

which expresses the vertical derivative of Ag in terms of its horizon:al

derivatives of first and second order,
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9. THE GRADIENT SOLUTION
Let us consider the analytical continuation of the external gravity field down

to sea level. The corresponding gravity anomaly at sea level, which will be

denoted by Ag®, is related to the surface free-air anomaly Ag by

sg* = og - Lk (199)

plus hicher order terms.

This analytical continuation was called "free-air reduction to sea level"

in (Moritz, 1964, sec. 6.4).

Cace Ag® is known, the quantities pertaining to the external gravity
field can be computed by purely spherical formulas. In particular, the
anomalous potential is given by Stokes' formula for external space:

R2
T(r,0,)) = & J;J“ Ag* S(r, ¥, R) do, (200)
where the notation of (136) is used.

This formula gives T outside the physical surface S, and alsoon S

itself, Hence the height anomaly

=L
(e
is found by
_ K .
E(r, 6,2) = o= [[ ag* s(x, ¥, R) do . (201)
g

It is more convenient to use the linear approximation to this formula.
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Since
r = R+h>

we have

Z(x, 6, )) =c(R,e,x)+§§ h.

Now, £ (R, 8, \) refers o sea level and is therefore given by the ordinary Stokes'

formula. Hence, taking also (199) into account, we obtain
= R_pp /A, 008 :14
¢ = 3G {,J \88 - 5 h) S@)do+p h. (202)

This formula gives the height anomaly £ ={ (r, 6, \) at the earth's surface.
Since various expressions for 3Ag/3h have been given in the preceding
section, there remains to determine 9d{/dh. By differentiating the original

Bruns formula ¢ = T/y we find

Y G
c¢h oh \‘y

so that by (46)

L _ .48 .. 58 .
3 2 = (203)

Inserting this in (202) and multiplying by G we find

Toge [(a-SFn)smr-nae, (204)

which is our basic formula, the 'gradient solution, "

Higher approximations to (200) may be found by the integral equation
approach of sec, 7, but as we have just seen, the linear soiution (204} can be

derived in an elementafy way.

REDUCTION TO POINT LEVEL. The sea level has no preferred position

in this problem; reduction to any other level may be used. If this level has the
69
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elevation h, above sea level, then h must be replacedby h - h,, If we

put h =h,, reducing to the level surface passing through the ground point P

vnder coneideration ("point level"), then h, = h,, and (204) reduces to

T=§,-£T[Ag-%%(h-m]swm. (205)

gince h in the last term of (204) is, according to our convention, identical

with hp.wdnt h'h, =h"'hp 30.
The advantage of (205) over (204) is its simplicity, its disadvantage is
that the point level varies from point to point,

s
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10. ARNOLD TYPE SOLUTIONS

The starting point is (205), the vertical gradient being expressed by (180}
T=or [ ae-0-0)aT] Sy a. (206)
o

We write this in the form

T=2 Ugf AES(W)do+5T, (207)
where
6T = -:3; Jo-n)a, Tsa. (208)
o

As a planar approximation we have

3R

JORS (209)

(Appendix I)and hence

2 -
5T = - RE If hT'-‘ﬂ A, Tdo.
o

(210)
By means of Green's surface identity (33) this is transformed into
R? = h-h
= e -—-—L
5T zr({fn(zo T ) @ . @11)

With

bR 1) -5 (r At ).

5ok 5 Te Y
"L PO W et e-n)b (T )
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this becomes

R 1 = R? = 1
0T =5 [J ¢ D(mw + & £jm-m)D<T.E)w.

g (212)

In agreement with (48) we have

D(T,h) 2 D(T,h) = -y ({ tan B, +ntanB,), (213)
and in analogy to (195),

5(r. L) .-.smg 3T , _ 1 3T

D@'Z) S T.}" 3% .7 Rap ° (214)
where

RaaTd) 2y Raacw =-y( cosa+nsinx) (215)

because =3[ /Roy is the radial deflection component corresponding to the

azimuth a.

Hence (212) becomes

2
1
8T = - o= [J =+ y (€ wnp, +ntnps) do
o °
3 -
+%'- DFJ‘" h—ﬂ-é‘z y(Ecosa + nsina) do,
-}

and using (209),
- R
5T = = i de' y(ttanB, + ntanBy) S (¥)do
o

2 -
+ RE ff _?th Y( cosa + nsina) do. (216)
o -]
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Inserting this into (207) we obtain

T g I (5 y Gung, +nunga) ) s)
o

2 3
+R;.,U‘hT'~l’h y(gcosa + psina) do. (217)
o )

A slightly different form is obtained by transforming the second member

é of (212) using

(h-n,) B (T, l%) =D [(h-n,)T, ] -1+, h).

By Green's identity (34), using (193), we find

2 il 2 . .
ww JI B{(h-h)T, 4 Joo=-5 Jm-nra,(Pe
(04 J o °

2 s
= e, (s
o -]

Corresponding to (214) we have

2, 2% 3y °*
S0 that
R3 - 1 Ra i oh
- H TD(\E’h>da = 5= j‘f%’:# T Tdo , (218b)

C
Hence the second term in (217) may be replaced by the sum of (218a)
and (218b), so that we obtain

T =% [ (ag-y( wanp, +tnwng; )1S(p)do
(4

3

-%Hﬁ@-m-mwg—z)rm. (219)
g
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For later reference we note as a by-product the relation

ff—"%?(h h.)aTda-—J'fﬂ{h “ty - siny ) T,
(220)

which is the deeper reason for the equivalence of (217) and (219),

Equation (211) may be transformed in still another way. Itis easily

verified that the relation

R

6(—“7'}', ©)=B[(h-n)T, i—]ﬁ(% h)-2T5<%, h)

holds, The second term on the right-hand side is transformed by

R = 7" R .1 . _R
> {fD(K, h)do-‘--ji 2[}[‘;: TA;hd7='G-_gTA2hS($)do,

the first and third term by (218a) and (218b), Using the expression so obtained for
6 T in (207) we find

[ (88~ TA: h)S(¥) do
o

LS N 1
= (ryr o5 (o by - 2siny aw)Tdo. (221)
The linear solutions (206), (217), (219),

and (221) are equivalent. Three

of these, (206), (219), and (221), have been obtained earlier as solutions of

integral equations: (107), (105), and (106). An inverse transformation, leading

from the form (217) to (206), was published by Arnold (1959b). The solution

(219) was derived by de Graaff-Hunter (1960).
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11, MOLODENSKY'S SOLUTION
We start from the gradient solution (204),

=R e, 388 |
T = o {;\Ag = h) S(¥)do - hag, (222)

which we try to convert into the form

IS % df‘z (Ag+G,)S(¥)do; (223)

the expression for G, is to be determined.

Since the inverse of Stokes' formula is expressed by (11), we have

from (223)
T R? T-T,
8g+Gy = ~¢ - 5= [[ =3+ do . (224)
g °

Inserting (222) and taking account of the fact that (11) and Stokes' integral are

inverse we find
Ag +G, = Ag - __gh+_Ag+ — ‘J‘_As_.g‘_“ﬁ.a’.do.

The term Ag will cancel, and hAg/R can be neglected as a linear approximation.

There remains

G = -2En [y 8 (e (225)

On expressing 3Ag/dh by (176) this becomes

G, =% ,rzo%'['ha (Ag'Agp)+hAg'hpAg.]do.
(0]
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and finally

a -
6 =% [J . (226)
o

The comhination of (223) and (226) constitutes Molodensky 's linear solution,
which we have derived from integral equations earlier in this report (sections S
and 6). The reladun (225) between G, and the vertical gradient was established
by Molodensky et al, (1962b) in a somewhat different way,

We have presented this derivation here in order to cbtain Molodensky's
soludon as a formal consequence of the gradient solution (204). The following
derivation, however, is still shorter.

Denote by S’ the level surface that passes through the point P
of the earth's surface S (Fig. 9), and denote the anomalous potendal on S’ by

T’ andon S by T. Then, for two corresponding points on the same vertical

suchas B and B’ we have

T

oT
T'+a—h' (th-h)

' - - 2— -
T +< g -7 )(h he )
or, as a planar approximation,

T=T -6gMh-h).

This is substituted into (224) with the result

.1 R T -T R® oyh-h
b +Gy = - 2n-£~rTL‘b+2n~g_E?‘Agd°°
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The first two terms on the right-hand side give the gravity anomaly
Ag’ on the leve: surface S’. Since the point P under consideration lies
bothon S andon S’, we have for this point Ag’ = Ag. Hence the first
two terms on the right-hand side will cancel with the first term on the left-

hand side, and there remains the relation (226) which was to be derived.
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12, TRANSFORMATIONS OF MOLODENSKY'S SOLUTION

By means of (193) we may write the Molodensky correction (226) in the form

G = & [f&-nyaga, (Dw.
[0

(227)

which lends itself to trarsformation by means of Green's identity (34). The

result is

G, = -%;— il E[m-h,)Ag,Ilo-]dc.
(v

In agreement with (195) this is

2 : -
G =5 JJ ot S 0-nag ]
0]

(228)

This is an alternative form of (226). Its interest is mzinly theoretical,

because it serves as a starting point for further transformations.

By differentiating the product between brackets we find

G, Gi; +Gy ,

where

2 q
Gy =5 [[ FE -0y 2L o,
0]

2 3
CP =%‘J‘J‘%n:$Agg—$d0
o

: B

2n

The term G;5, when inserted in Stokes' integral, gives rise to a term

Tia =%IIG13 S(y)do ¢ % J‘I%a do,
o o °°

according to (209).
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(230)
3h
Ry ¥ @D
(232)
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Being satisfied with the planar approximation, we may in these small
correction terms extend the integration formally over the infinite plane,

Introducing plane polar coordinates (178) and using the notations of Fig. 10 we

have
1 ¥ 2 66 R
Tia(0) =5 [ [ - sdsdr=5- [ [ Gi3(s, )ds ar,
a=0 §=0 a=0 80 (233)
1 2 = 1 dh N I D I
Gia(s, @) =5= ,f —r —- Ag(s’, a') s’ ds’ da’. (234)
y. S 0,% o, .
a'=o0o s’=0
Here
2, =s®+s?-25s' cos(a'-a); (25)
consequently
dh _ 38, Ah . _1 3¢ 3h
5. - 37 357 T 57 347 3¢
becomes
dh _ s’-scos(a’-a) 3h | ssin(a’-a) _3h
Y A s’ T, soa &%)

Substituting (234) into (233) and taking (236) into account we obtain

Tl

: P dh
M@ =px [ T [ ]
= =0

1 ! !
- Q - +
= {[s scos(a’ - a)) Y

+ssin(a’ - a) ?%%T}Ag(s', a’)s’ds’dd *dsda. (237)

We shall now perform the integration over s and a first; with respect to this
integration, Ag, dh/ds’, and dh/s’dd ~re to be considered as constants, By

standard methods of integration we find
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L. -] . -]
| l—d'§-=J"'[s’+s'3-Zss'cos(a'-a))‘a’ads= la,_
s=0 ° o 28"31n3-—2-£
and
(-]
.r 8 = 1
- ?
s ° 2s'sin“'2a
so that
T 1 l-cos(a’-a) 1
frrfl'-s:os(a"a)]ds=—r — .5,
0| §  2gin? ¢ 8
2
2n o
8 -acos(a -qa) _ 2n
[ dsda = =7 . (238)
Q=080 ‘

Similarly we find

J‘ j‘ ﬁi_n_(g__l ds da = (239)

a=0 S0
by performing the integration with respect to « first,

In view of (238) and (239), equation (237) reduces to

x e
Ta©@ =% | [ 52 ags’ al)s'das da’
12 n Mos’ ds ’

a= s'=o

If we now return to the sphere, s ds’ da’ becomes R®dg, and s’ becomes ¢,,

so that we obtain

€ ep L, 23h R
et Jo gy o gy swao, o

according to (209).
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Substituting (229) into (223) and taking (240) into account we find

T =t Ff(Agmn +og F37) S do

or, to the same accuracy,

- jf <Ag+Gn)Q+RM)sw)da. (241)

The term 3h/R3y is the radial inclination of the terrain.

An expression for G,; has been found in (230). It may be transformed

by means of (220), in which T is replaced by Ag. We readily obtain
. R* 1 ., dh~
Gy = o {f—i:g—_ (h h, -siny T3 ) Agdo - (242)

§
Hence, (241) with G, expressed hy (23C) or (242) constitutes another
linear solution of Molodensky's problem, A form essentially equivalent to the

combination of (241) and (242) was obtained by Brovar (1963a, 1964b) by solving

an integral equation,

i
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13. A CONNECTION WITH THE TERRAIN CORRECTION

Pellinen (1964) suggested a solution of the form

T == JJ s +6)s o+, (243)
where
r = R = =
o - B J;J«(h ) a8) o b

and t is a correction term, which will be considered in what follows,
It will be useful to denote by the subscript O the point at which T is to be
computed, and to use the subscripts 1 and 2 for distinguishing the variables

of integration. Hence Molodensky's formuias (223) and (226) may be written

T, s o I Gt @n ] 501 (25)
1
2 -
G = R ‘”‘ B__;_‘.L Agz doz . (246)
2n & £y 2

The advantage of this new notation is that now (246) can be substituted into (245)

without danger of confusion:
_R R® o bg-h N
Tooge [0 3 |l Bl s o) SWad @ @47)
1 F

It is readily verified that the following equation, given by Pellinen (1964),

is equivalent to (247):

r = " 1Y .
! =4—I:r.£I|LA81 +%'- £% h)‘%faL %‘)daa]s(d"ol)d("l
1

3 L I - &
'I{{W' T I e (he hl)LSﬂw?;a) SWerdl o dg . (248)

(o O 12
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It is of the form (243). Unfortunately the expression for t -- the last
integral on the right-hand side -- is impracticable since S(¢,,) and S(¥.z)
are singular at the point G, and there is apparently no direct way of avoiding or
neutralizing this singulari'y.

Therefore we shall proceed differently, We consider the gradient
solution (204), the vertical gradient being expressed by (176), Using our
present notation we may write it

T, = "R— bl\Agl rrhl -%'__SA-EL (bz)s(d’al)dol h, ag, -
o (249)

We form the arithmetic mean of the equivalent equations (247) and (249) and

perform some elementary manipulations, The result is

= £ Ir [ +-— I"J" t ) @
1451
Ra/ - Y -
+ E&Agl ff‘lhr—gl doz - Iy Jur Q&Q_Asgl' dog )13‘4’91)@1
0 12 as 12 =
1
- 3 hoog. . (250)

This equation has the form (243), the correction term t being given by
t == [[G"S(y)do-5hag (251)
4n s 2 i

where

G’ Agz;’- Jj—%- do - h— jjé&#'- (252)

these equations are written in our old notation,
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Although the new expression for t does not contain singularities, it
does not look very promising; still, under certain conditions of practical
significance it reduces to a surprisingly simple form.

AN ADDITIONAL ASSUMPTION. Experience shows that the free-air

anomalies Ag can often be represented by u linear relation i
Ag =a +bh (253) 4

where a and b are approximately constants. In addition, b is often

approximately equal to the Bouguer gradient 4
b = 2rkp = 0,11 mgal/meter (254)

(k = gravitational constant, p =density), so that a is essentially nothing else
than the Bouguer anomaly, which in this case is largely independent on local

irregularities of topography. In statistical texms this expresses a correlation

of the free-air anomaly with elevation,

By substituting (253), with constant a and b, equation (252) reduces to
G” =—a ['J—T&ua, (255)

so that

Lo |

R®
== _5‘1:
0
To the same accuracy we have as a planar approximation

R® h-
ng——;‘kﬁo do .

2 2. b
aG- R
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By (5) and /11), the inversion of this equation is Stokes’ formula;
-.2.,R "
B =l 2 [ gc:uwan

so that

R . .

g

N

Since Stokes' integral is known to suppress the zero-degree spherical harmonic,
this equation will hold only if h does not contain such a harmonic, that is if

J[hdo = O,

If this is not true, then we must obviously subtract the mean elevaton
4n
c

from h, so that w~ finally have

R e s@ar = -2(h-n) 256)

ar J v 2 ‘ (

c
Hence (251) becomes

t=--;-a(h-h,)--;-hAgo (257)

Usually the zero-degree harmonic of Ag is assumed to varish, By (253), this

gives the condition

& =L =
O—G..-‘i; 3gdg = a+bh, ,
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from which

a =-bh (258)

Ag =b(-h). (259)

Then (257) reduces to the very simple form

t=-300-h), (260)

so that (243) becomes

o 3 ) ‘W‘.Awu.—m”

R 1
T=7 [/ g+G)S(¥)do-5 agm-h). (261)
o
3
_ Let us now consider the quantity G’ under the assumption (253). i

Substituting this relation into (244) and expressing b by (254) yields

6l =

[ ] o

kpre [ LBk o, (262)
o o
which may be shown to be essentially identical with the conventional terrain
correction for “deviation from the Bouguer plate.” This intcrpretation, which
was given by Pellinen (1964), furnishes an important link with conventional
methods,

Obviously the quantity a in (253), being the Bouguer anomaly, is not 2
a true constant for the whole earth, as was assumed in the derivation of (260).
However, for (256) to hold as a planar approximation it is sufficient for a to

be, loosely speaking, a local constant, or rather a quantity that varies relatively ‘

slowly. Then h, is not the average height over the whole earth, but rather some
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local average, which we may consider to be defined by (258) where a is the
Bouguer anomaly and b is the Bouguer gradient.

To get an estimate of t, consider its cffect on the height anomaly
{ = T/G. This effect is by (260)

og =L =22 oy,

or by (259)

b
5 (B-h)F. (263)

6C

If h-h = 1000 km, which is a very extreme case, then
6 = 5cm.
Hence, in those cases where Ag satisfies a relation (253) to a sufficient
accuracy and extent for (261) to hold, we can probably always neglect the term

t altogether and use the formula

= -45" [J@g+G") s do, (264)
o

that is, adding to Ag the terrain correction G’ instead of the Molodensky
correctdon G,.
This solution is of particular interest from the point of view of deflections

of the vertical; see sec, 15,
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C. DISCUSSION AND APPLICATIONS

14, HEIGHT ANOMALIES
In the preceding Parts A and B we have found expressions for the anomalous
potential T at the physical surface of the earth, These formulas give directly

the height anomaly { as well, since by Bruns' theorem

L= y (265a)

L = a' ’ (265b)

where vy is normal gravity and G an average value of y for the whole earth,
We shall now collect the main expressions for T previously found, it
being understood that by dividing them by the constant G according to (265b)

we obtain expressions for { .

A, GRADIENT SOLUTIONS (sections § and 9)

R oo ay - 288 .
4 ‘Lj’@g 3h h) S@)do-hag

I. T =

LT = o ‘EP[Ag-a?E (0 -h,)]sW o

Vertical gradient

a) by measurement

dag _ R . - A
b g I

-
]

et




il

c) %‘%{1 =A:T = Ga,g
g _ g2 L2
U SH (3 L
® 3h "% u(gf?(ax cosat3y sing ) @

&

i R® » Az (A)
n = 21r~£J - do

[+ %4

B. MOLODENSKY TYPE SOLUTIONS (sec. 11)

UL T =2 i (ag+G1)S(b)d
o

a) Gl o - J'-ji h'

_ R sin d
BY Gy == Zf;fTo?- W[(h'hp)Ag] do
C. BROVAR TYPE SOLUTIONS (sec. 12)

V.T =2 ) (Ag"'Gn)(l"'Raw)SW)da

2 2
a) G, “% Hsﬁﬂ (h'hp)%éf do
o Q

b) G EJ’IL’h-h-smw~)Agdc
11 2" i ﬁoa & 4
D. ARNOLD TYPE SOLUTIONS (sec. 10)

V.T = — ﬂ[Ag "Y(&tan B, +ntanB,)]S(y)do+K
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£ cos a+n sin o) do

R .-h-
0 K=y TNy

R | A 3h
b) K =- X oj?‘\h h, - sin § 6#») Tdo
R

VLT =-— £jmg-TAa h) S (y) do

R? 3h
- & ‘g‘-zs(h-h, "2siny 35) Tdo

E. PELLINEN TYPE SOLUTIONS (sec. 13)

vn.T=%£j<Ag+c')S(¢)dc+t
G' =— [fl-h 7.5 do
a)t=4—§£rc;"sw)do-%hAg,
% =4L:<Ag £th:yhldo-h £j937:-é&w)

b) t=-%Ag(h-h,)

For notations the reader is referred to the sections mentoned, in which these
solutions have been derived,

Without exception, these solutions consist of the original Stokes'
integral and a correction, which assumes very different forms. We shall now

briefly discuss these forms,
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As for the gradient solutions, the basic difference between I and I is that
I uses sea level (or any other fixed reference level), whereas Il uses a point
level that varies from point to point. Form ll is somewhat simpler, but [ is
more suitable for large scale data processing,

The vertical gradient dAg,/2h entering in these formulas may be obtained
from measurements (a), but the respective techniques and instruments are still
at the experimental stage, The most practical form of computing it is probably
from gravity anomalies using formula (b). Equaton (c) expresses it in terms
of the disturbing potential T or the height anomaly (or, approximately, the
geoidal height) {, but since second horizontal derivatives are involved, the
knowledge of { must be so detailed and accurate that the use of fhis equatioﬁ
is hardly feasible in practice, Equation (d), which expresses 3Ag/dh in terms
of the components £ and 7 of the deflection of the vertical, is more useful
practically; even astro-geodetic deflections may be used. Form (e) requires
as data the horizontal derivatives of Ag, which could in principle be directly
obtained by torsion balance measurements. Otherwise in (e), just as in (f),
the gravity anomaly Ag could be used, but these two expressions are definitely less
practical than (b).

Molodensky's solution III is very simple and practical when G, is
expressed in the form (a); (b) has only theoretical interest,

An advantage of the solutions of type IV over those of type Il is that

the integrals entering in G,, are better convergent than those entering in G,.
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Mathematically speaking, the integrals IV a, b are absolutely convergent, whereas

the integrals IIl a, b only converge conditionally (Brovar, 1963a), This
advantage is made up by the fact that IV is more complicated than III, the
inclinadon of the terrain entering directly,

The Arnold type expressions have a certain theoretical significance,
since they are essentdally solutions of the original integral equation for the
anomalous potential T (sections 2 and 4). The forms V a and VI have a certain
esthetic priority since they express the correction to Stokes' integral only in
terms of £ and 7 or only in terms of T, respectively. The practical signifi-
cance of these expressions is small, (We have chosen the name "Arnold type
solutions” because Arnold (1959a) was among the first to find one of these
solutions; later (1959b) he transformed this into the gradient solution, which
he recommends for practical use,)

The interest of ne solutions of Pellinen's type rests in the fact that VII
contains the expression G’ which (1) converges better than Molodensky's G,
and (2) has a close relationship to the conventional terrain correcgjon, How-
ever, the general expression (a) for the correction t is impractical. QOnly in
the case that the gravity anomalies are strongly correlated with elevation does
this expression reduce to the simple form (b); in this case, furthermore, the
term t may even be completely neglected in practice. Although this condition
for () o hold will very often be fulfilled in practice, it should be kept in mind

that VII b is not universally valid to a linear approximation as all the other

soludons are.
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As a conclusion, for practical application we are left with the gradient
seolutions 1 and II, the gradient being computed by () (in exceptional cases,
the use of (d) might possibly be feasible) and with Molodensky's solution Iif a.

In spite of formal similarity, the solution II is not of the form 11, since G,

is a functior only of its position on the earth's surface, whereas
. %88 .
Sh, (hohe)

depends, in addition, also on the computation point, For the same reason, 1l
is somewhat inferior to 1 and lll with respcct to large-scalc coinputations; i
however, this form is eminently suitable for deflections of the vertical, as we
shall see in the next section. A drawback of Il a is the strong and direct
dependance of G, on elevation, in paxzticular on inclination since (h - h,)/¢,
is of the order of inclination. This drawback is avoided in the slightly longer
form 1, since 1b does not contain the elevation as Ill a does.
The Brovar type solutions IV a, b show certain interesting features
which make them worth to be further investigated, although they seem
definitely less practical than Illa.,
The soluticn VII deserves further study in view oi 1ts reliuon o
conventional methods; in the following section we shall see that it has also

particular interest for computation of deflections of the vertical,
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15, DEFLECTIONS OF THE VERTICAL
According to equation (16) of (Moritz, 1964) the components ¢, n of the

deflection of the vertical are given by

=.3 . &
E 3X y MBI »
(266)
=. 28 .4
’7 ay .y tanﬁa ]
where, as usually,
tanBl - ax 1 ta'nﬁa ay 1 (267)

the derivatives 3/dx and 3/dy being taken along the local horizon in a northern
and an eastern direction,

Each deflection component thus consists of two terms; (1) a derivative
of the height anomaly and (2) a term depending on the inclination of the terrain.
The derivatives 3¢ /xx and 3 /dy are found by differentiating any of the solutions
listed in the preceding section, We shall here limit ourselves to the most important
types A, B, and E; the other types may be treated in the same way,

Let us start with Molodensky's solution Iil:

g = ;,RE [T g +G,)S (y)de. (268)

g
Differentiation of Stokes' integral gives Vening Meinesz' formula, to which

according to (266) the inclination terms must be added. The resuit is

€1 . _1_ dS rcosa _Agftan B .
n} = e [ @600 Gy Lsinaf @ S Ly )+ @9

9
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in the second tern:, ¥ has been replaced by nean gravity G. An cauivalent
for..uia is found in (Molodenskii et al., 1962a, p. 124).
in the second place we consider the gradient solution I:

= R_ 728 )
¢ mc L\ SE1) S @) do - = hag. (270)

Differentiation of the second tern: on the right-hand side of this equation and
use of (267) give

;) -,

] b
"Ix G M)

1 3Ag 1 Ah
— +-- w———
G : AX G Agax

h oAy, A
G 5K + G tan Bl .

Hence we obtain

S S

A
£ = 3o R

n QA N5 dS h A
Pl . 028 B L3 - 28
EJ,J Ag Sh h) . cos rvdo+G = Gtan,B1 G tan B,.

The inclination term cancels out, and there ren.ains

{3} = me a3 )5 {Sna} g {3a8my b

Let us now compare (269) with (271). Theoretically, these two solutions
are completely equivalent. This does not mean, however, that they are equally
suited for practical application. In both cases the correction terms may assume
large values. As an example, consider (269), assuming Ag = 100 mgal and

1074 20" .

%tanﬁx
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To have a comparable situation for (271), consider an elevation h = 1000 m and,
again, an inclination g8, = 450, assuminga linear dependence of the free-air
anomaly on elevation,

Ag=a+bh,

with b =0.1mgal/m. Then

3Ag _ oh _
X bax btan § ,

so that in (271)

?‘.958:‘10-4520”

as before.

The essential difference between (269) and (271) is that the correction
term in (269) is independent of elevation, whereas the correction term in (271)
is proportional to elevation, so that by a suitable choice of the reference level
it can be made as small as we like. By reducing the free-air anomalies tc

point level (sec. 9) it becormes zero; then (271) becomes simply

{E} =74‘"IE._f [Ag‘%%,g(h'ho)]:-f N . (272)
o

n sin o
This result could alsu have been obtained by formal differentiation of the
gradient solution II, but the mathematical justification of this procedure is
not immediately obvious.
Summarizing we may say that the correction term in both (269) and (271)
show an undesirable dependence on the inclination of the terrain. In (269), this

dependence is direct; in (271) it is indirect, through an appraximate linear
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dependence of the free-air anomalies on elevation. In (269), the effect of
inclination cannot be removed or mitigated in any way; whereas in (271) it
can be made smaller by reckoning the elevation from an average level
approximating the terrain rather than from sea level, and it can be made
zero by reckoning the elevaton from point level, thus arriving at (272).

The correction to the simple Vening Meinesz’ formula for £ is

according to (272) expressed by

1 5 ds
e .”SATF (- h,) Gy cosado (273a)
(o}
according to (269) by
o= II G % cos ado - 28 tanp, (273b)
o

and according to (271) by

h o
3h " dy G ox ° (273¢)

This correction is computed by (273a) as a single small term, whereas in (273b)
and (273c) It is obtained as the difference of two larger terms computed in a
different way and consequently affected by errors which may seriously endanger

the result,

TRANSFORMATION OF MOLODENSKY'S FORMULA, Itis, however,

possible to transform Molodensky's formula (269) in such a way as to eliminate

the computational problems caused by the explicit occurrence of the inclination.
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Using the notation of sec. 13, we equate (273a) and (273c):

N e -hy 98 =
L 4G glf Kah}“" o) gy cosado,

”’( )hl ay cosado+99-<—A-&)

whence

%'(%‘), 4ﬂG ” B, <a ) ay cosa dny

or, by (176),

< ) 4ﬂcff[2,rf—3ho(Aga - Agy)dog d'bcosatbl.

This identity holds for arbj trary functions h and Ag. We may, therefore,

interchange h and Ag; with dh/ax = tan B, we thus obtain

AGg"‘(tanBl)g ;'"E d‘[‘[zﬂ ffﬂ 3 Ag, (hy hl)doa]dd) cosado, .

This expression is substituted in (273b), and G is expressed by (246). The

result is

e H[ﬁ ! %‘(Aga - 4g,) (hg ‘h)doe]d—scosadc
411G 2 o £ ° 1 dw ’
0 Oz
which is a correction term to be added to the simple Vening Meinesz formula

for £; itis equivalent to any of the expressions (273).

Hence we obtain, in our usual notation,

3 <1948 [cos a
{ } 411'G du (M +Gl)d¢‘ {sina} do , (274)
where
f —5‘ (Ag - &gy ) do (275)
100
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is a new correction term which differs from the Molodensky correction G, by
Ag - Ag, taking the place of Ag. Here Ag, is the gravity anomaly at the point
at which £ and g are to be computed, whereas Ag, would be the anomaly at
the point to which G, refers,

USE OF TERRAIN CORRECTION. We shail finally consider the solution

VII b of the preceding section:

= oo i (Ag+G') S(¥)do -5 Ag(h-h), (276)

which holds when there is a sufficiently sirong correlation of the free-air

anomalies with elevation; then

H (.- hy) (Ag 88) 4o
411

will be approximately equal to the terrain correction (sec. 13),

Differentiating the second term on the right-hand side of (276)gives

=[5 agm-n)] =

T ax
_ L gy .y 4L, 2
TG x @oh) *os sg 3T

By (259) this becomes

Y AP S
=% ax ®°h)t 35 G-h) T
=L -ny o0 _ Ag Sl _ A
Ghh-R) T =T 3% ° G @A

'This term cancels precisely with the second term on the right-hand side of the

first eyuauwvn of (266), so uial tiere remains
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{ } = 4wG ”(Ag‘m‘) d¢ cine) 9 277

REVIEW. We shall now collect the results so far obtained and classify
them in the same way as the solutions of sec. 14, but prefixing the letter D to

the roman numerals, so that the solution D1 for deflections corresponds to

the solution [ for T or (.

A. GRADIENT SOLUTIONS

DIL. ¢ éa IT<Ag- ‘)_78) cos a do+ kT4

ox

Q=

DI, ¢

ws T3 0-00]55 cosado
a

B. MOLODENSKY TYPE SOLUTIONS

DIll, ¢ =F1G-J;J(Ag+c )wcosado-% tan 8,

where G, = gfvrﬂ—%‘:);ég' do
o -]

' S ST ds
DUl', ¢ = 2= j;l (Ag+G1) wcosado

- 2 A
where G1 :,ER? ‘J'\J» (h hp)ﬁ(Aag AgA)

E. PELLINEN TYPE SOLUTION

DVIL b, = oo £J‘ (ag +G' )—w cos a do

' Ra = P
where G =;—J‘_f(h h,)ﬂ(Aag Ag:)
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As compared to Sec. 14, the present collection contains not all solutiors given
there but only those which are believed to be most significant for the computation of
deflections. Only expressions of the deflection component ¢ are given, the corre~
sponding expressions for n being evident. Here A is the point at which ¢ and g are
tc be computed.

For practical application those solutions that do no: contain the inclination
tan B, or the horizontal derivative 3Ag/dx are preferable for computational reasons
given above (a small term should not be computed as the difference of two larger
values obtained in different ways). Therefore, DII (reduction to point level) is
preferable to D I, and D III’ is preferable to D III.

A comparison of the expression (179) for 3Ag/oh with that of 61 given above
shows readily that the gradient solution D 1l is computationally simpler than D III’.
In addition, G, and 61 depend strongly on the irregularities of topography.

The Pellinen type solution D VIIb, when applicable, shares the computational
advantages of D11 and DIII’. Moreover, G’ is a true function of position just as G, ,

having a unique value at every point of the earth's surface (and being consequently

representable by a map or, say, by a set 5'x 5’ mean values), whereas (ag/ah) (h-h,)

and depend, in addition, on the computation point A. On the other hand, the
applicability of DI, D II, D III, and D 111’ is unrestricted (as long as the linear
approximation is sufficient), whcreas D VIb presupposes a strong correlation of the

free-air anomalies with elevation.

Formulas of a different type will be given in sec. 17.
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16. SPHERICAL HARMONICS

The conventional! formulas for computing coefficients of spherical
harmonics of the earth's external gravitational potential require the free-air
gravity anomalies to be given on a sphere. As far as the anomalous gravity
field is concerned, it is permissible to identify this sphere with the reference
ellipsoid -- thie is the s~t.crical approximation -- but not with the physical
surface of the earth to which the free-air anomalies primarily refer, because
the inclination of the terrain is not negligible; cf. sec. 3.

The free-air anomalies at sea level as defined in sec. 9,

A
Ag* *As-%—hg h,

however, are directiy suited for computing the spherical-harmonic coefficients
by means of the spherical formulas, since they refer to the reference ellipsoid
which is represented by a sphere.

Let Ag* be a Laplace surface harmonic so computed from Ag*, then
the harmonic [, of the same degree n of the a~ ~malous pctential will be given
by

R
n-1 o8 - (278)

T =

Hence the gradient solution (free-air reduction to sea level) is the most direct
method for computing spherical harmonics.
Let us now consider Molodensky's solution (sec. 11). The connection

between the anomalous gradient and the Molodensky correction G, is according
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to (225) given by

hAg - (Mg)o
0,2

dg . (279a)

_dg . _ . R
TR 2nJ;r

According to sec. 1, equations (8) and (9), this formula is equivalent to the

following relation between the corresponding harmonics of degree n:
(-228 1) =(G,), +2 (o), , (279b)
~ Ah % R
so that by (199)
Bag)
Ag * = Ag, + n(EAg ) G,), . (280)

The sum of the first two terms on the right-hand side is equal to the n-th degree

harmonic of the quantity
h h
Ag+nR Ag—<1+nR3Ag.

For lower degrees n (up to n = 5, say), the second term is of the order of
h/R and is consequently negligible as a planar approximation. For higher
degrees n this is not true, because of the large factor n. (Since a factor such
as n always corresponds to some kind of differentiation, this is closely related
to the fact that the elevation as such may be negligible, but not so its horizontal
derivative, the inclination.)

Hence, for lower-degree harmonics,

Lg* = (Ag+ Gy), (281)

or

A
-—af h)n = (G,), - (282)
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This means that the Molodensky correction can be applied to obtain in a simple
way harmonics of lower degree. For higher harmonics (281) does not hold. If
we would still wish to apply G, in this case, we would have to use the complete
expression (280). This expression, however, involves the spherical-harmonic
expansion of the product hAg and is, therefore, impracticable.

The relation (279b) was pointed out by (Molodensky et. al, }962b).

USE OF TERRAIN CORRECTION. Let us consider solution VIIb of

sec. 14:

Ty J‘I‘ (Ag + G) S (p) do - } Ag Ah, (283)

where

=h-h , (284)
h, being a mean elevation of the region considered. In exactly the same way as

we derived (225) from (222) and (223), we obtain from (283) and (223) the relation

Ah Ag - (Ah A
G, = 4" .”‘ g ( g)’da

(285a)

in fact, all we have to do is in (225) to replace -h 3Ag/dh by G’ and hAg by Ah Ag/2.

This is equivalent to the relation between spherical harmonics

(Gy)y = (G"), - 5 (ahog), . (285b)

Since Ah is at most of the order of h, we may to this equation apply the same

reasoning by which we deduced (281) from (280), finding that for lower harmonics

Agr = (6g+G'), (286)
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because then
= = { = _.gaA 287
(G')n (Gl )n ( At hvn . ( 8 )

This interesting relation between the lower harmonics (only those!) of three so
different quantities was derived by Pellinen (1962, 1964) in different ways.

The main importance of the relation (287) rests in the fact that G’
may in many cases be identified with the conventional terrain correction,
according to (262), which can be computed from the topography only, no
gravity anomalies being needed. In view of the as yet imperfect global gravity
coverage this furnishes a convenient means of estimating the correction (287)
to the lower harmonics corresponding to the linear approximation; for a
practical estimate see sec. 18.

FIRST-DEGREE HARMONIC. From (278) follows that the first-degree

harmonic Ag} must be zero; otherwise the corresponding harmonic T, would

be infinite, According to (287),

1Y
gt = (le '_éfhi =(0g+Gy), + (Ag+G'); = O. (289)

This condition is satisfied by the gravity anomaly Ag. It may be shown that for
any of the integral equation of Part A, except (169), to be solvable a condition

equivalent to (288) must be fulfilled.
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17. THE EXTERNAL GRAVITY FIELD

If the gravity anomalies are given on a level surface, then the external

gravity field can be computed by well-known spherical formulas such as (200)

(Heiskanen and Moritz, 1967, chap. 6). Since the free-air anomalies Ag refer

to the physical surface of the earth, the most natural way is to reduce them to

a level surface such as to sea level, to obtain free air anomalies at sea level

Ag* =Ag-'§-%gh

(289)

according to sec. 9. This expression for Ag* is valid to a linear approximation;

higher-order approximations may be found by an iterative solution of Bjerhammar's

integral equation by (174 a, b).

Then the disturbing potential outside the earth is given by (200):

2
T(,, 6,0 = ;= [[ Ag*S(r,, 4, R do,
g

where

r, = R+h,,

(290)

h, being the elevation above sea level of the point P at which T is to be com-

puted. By (135) and (136) we have

2n + 1 R
n-1 r %

S(r,, v, R) = §

n=2

P, (cos ¥) ;

a closed expression is obtained from (136), on replacing r by R.

The gravity disturbance vector
_5 = grad T
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is found by forming the partial derivatives of (290) in the usual way (Hirvonen and
Moritz, 1963; Heiskanen and Moritz, 1967, chap. 6).

In certain cases, such as for computation of gravity anomalies a. flight
elevations, it may be of advantage to reduce the surface anomalies Ag to a
level surface at a mean clevation of the area under consideration, rather than
reducing them to sea level. Reduction to point level is theoretically possibie,
but less convenient for practical application.

Instead of analytical continuation to some level surface we may also use
the Molodensky correction G,. In this case Ag*, eq. (289), is replaced by

Ag + G,, and instead of (290) we have

T(r,, 6, A\) = 5 [T (ag+G)S(r,, ¢, 1) do, (293)
o

where

S(rp, o 1) = T

e——n_ 1 _r w+1 P, (cos ) (294)
== P

in agreement with (135), equation (136) providing a closed expression.

This follows from Brovar's method expressed by equations (135) to (147)
of sec. 6, The difference between (147) and (293) is only that (293) suppresses
the zero-degree harmonic of T, which seems to have become customary practice
in geodesy, while (147) retains it.

The sum Ag + G, in (293) is by (137) only a linear approximation to ) sec 8
(because dS = R® dg sec 8); higher approximations for A are obtained by an

werative solution of (142) by (143a, b).
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Whereas the solution (290) admits of a simple geometrical interpretation,
being essentially a spherical formula, such as interpretation is not possible for
(293), since

r = R+h (295)
is not a constant, but a variable dey'ending on the topographic elevation h. It is
the spherical approximation to the radius vector of the earth's physical surface
(Fig. 4b). For practical application, the variability of r constitutes a slight
disadvantage of (293) as compared to (290).

As for other methods, the direct application of Molodensky's surface
layer (sec. 5) and the use of Green's identities, similar to the way in which
the integral equations of sec. 2 have been obtained, leads to complicated and
impractical formulas (Brovar, 1963b; Moritz, 1965b).

APPLICATICN TO HEIGHT ANOMALIES AND DEFLECTIONS OF THE
VERTICAL. The formulas just given for the external gravity field are applicable
down to the earth's surface and also on the earth's surface itself. The height
anomaly ¢ is then obtained by dividing the anomalous potential T by mean
gravity G, and the components £, n of the deflection of the vertical are

obtained as the horizontal derivatives of ¢.

Hence (290) and its horizontal derivatives give the formulas of

Bjerhammar
Rz .
¢ = 4G Ifogt s, v R, (2962)
b
{0 [ : ¥ 95(r,, Y, R) fcosa
{n} anG J;rAg* 30 {ana)%: (29Eh)

110




5
-

and from (293) we obtain the formulas

&= —4:; ffxsecBS(r,, v, 1) do, (297a)
o
€ A S(l‘ ' tb, cot oy _Acosf rtanB, _
{n 4,,(;, ”X secf in o { Bp_}' (297b)

Equations (296a, b) and (297a, b) are written in such a way that are
also valid for higher approximations to Ag and ), which may be obtained
iteratively using (174a, b) and (143a, b), as mentioned above. The quantity r

is expressed in terms of the elevation by (295), and since the computation point

P lies now on the earth's surface, we hav

r, = R¥h,, (298)
here h, is the topographic elevation at P.

The solution (296a, b) corresponds to free-air reduction to sea level

and was given by Bjerhammar (1964); eq. (296a) is identical with eq. (201) of

sec. 9.

The solution (297a, b) was published for the zero-order approximation
A cos §= Ag, B, =0 = 8, by Hirvonen (1960). Higher approximations to A were

found analytically by Brovar (see sec. 6), of which the linear approximation

Asec =A4g+ G, (299)
was used in (293).
The second term on the right-hand side of (297b) is due to the dis-

continuity of the normal derivative of the function (137) on the physical surface
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of the earth S. As we have seen in sec. 6, this discontinuity along the surface
normal has the magnitude -~ \. In (140) we have used the vertical component
= A cos 8 of this discontinuity; now the (negative) horizontal components

-lcosgtanp, and - ) cos g tan B, figure in (297b), since

3

3 1 3T

X n G Ay

Q) e

£=-

and, according to (Moritz, 1964, sec. 2.4), the unit normal vector 1 is given

by

n = (-cospgtanfB  -cosfBtan B cosR).
The functions S(r,, ¢,r)and as (r,, ¥, r)/3y have been given a
computationally convenient form by Hirvonen (1960). He sets

R+h
Ren, (300)

t = X
rP
Then we have

RS(r,, 4, 1) = 5[ 2+ 1-3D - teosy((5+ 3 mttDLBIN],

(301a)
3S(r,, ¥, r) 2 6 D-1+tcosy
sl 7 LR LD S T e 0 -8 -
B Ay sm'b‘:D?*\D*\?’Dsin"’e") 8
1+D-tcosy
29 1+D 2tcos ] (301b)

where
D?P =1 -~ 2tcosy+t2.

These expressions may also be used in (296a, b) if t is understood to

be R/r, instead of (300).
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It is evident that the system (296a, b) is considerably simpler than
(297a, b). The quantity r is variable, whereas R is a constant; above all,
however, the expression (297b) for the deflection of the vertical explicitly
contains the inclination of the terrain, which is undesirable as we have seen
in sec. 15. In fact, the linear approximation of (297b) leads to (269), in the
same way as (296b) corresponds to (271) or (272).

Since neither the inclination nor the horizontal derivatives of Ag enter
in (296b), this expression shares the accuracy advantage of (272); in addition,
(296b) is rigorous in the sense that it is not restricted to the linear approxi-
mation. On the other hand, the functions S(r,, ¢, R) and 3S(r,, ¢, R}/3 Y
are more complicated than the simple Stokes and Vening Meinesz functions,
80 that the main practical significance of (296a, b) is its suitability for higher
approximations.

The major disadvantage of the system (297a, b), corresponding to the
method of Hirvonen and Brovar, is the inclination term in (297b). This term
wouid be missing if the deflection components ¢ and n were computed outside
the earth; the computation point could be as close to the earth's surface S as
we like, as long as it does not coincide with S . Hence we are tempted to trv

instead of (297b) the forimula

- _.R_ AS(r, + €, ¥, T)
{fp} " 4nG g“ecﬁ = we y :?nsa do , (302)

where ¢ is an arbitrarily small, but nonzero, positive number; we could, for
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instance, choose ¢ = 1 cm. This is certainly possible, but unfortunately the
simplification, as compared to (297b), is only apparent: if we try to evaluate
the effect of the innermost zone in (302), we shall find expressions which

contain the inclination after all, and even in much the 3aame way as (297b) does.
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18. CONCLUSIONS AND RECOMMENDATIONS
in the preceding sections we have tried to draw conclusions as to the
suitability of various linear solutions for practica: use. We may summarize

the results in the following list.

Gradient Molodensky
Solution Solution
height anomalies excellent (Ib) excellent (III a)

deflections of vertical excellent (D I} good (D IO')

spherical { low excellent good
harmonics high excellent poor
external field excellent good

The designations I b, Il a, D I, and D IIT' refer to ...: classification of

sections 14 and 15. The other solutions of sec. 14 can be ruled out

practically because they are less simple, except the Pellinen type solution VII b,
which will be considered later.

According to the above table, the best all-purpose method is the gradient
solution. As downward continuation, or free-air reduction, to sea level it is
ideal for those quantities that are computed on a global scale such as spherical
harmonics and height anomalies (or, which is basically the same, geoidal heights).
For deflections of the vertical a slight modification, reduction to point level, is
appropriate. Here the sea-level anomalies Ag* are not used directly, which
gives to the computation of deflections of the vertical a slightly special character,

but this is also in conformity with the fact that deflections are not usually computed
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on a global scale. Anyhow, the vertical gradient 3Ag/>h is used for free-air
reduction both to sea level and to point level.

Computing this gradient in other ways than (t) is not recommended for
general use.

Molodensky's solution III, the correction G, being computed by (a), is the
most straightforward expression for the height anomaly, although the practical
evaluation of G, is more problematical than that of 3Ag/3h because G, is
strongly affected by the irregularities of topogrszphy. To get gocd results for
the deflections of the vertical, the modified expression D II' should be used rather
than Molodensky's original formula D III. Molodensky's method s of great importance,
but on the whole the gradient solution, being simpler and more versatile, appears
to be preferable in practice.

The solution VII b, using free-air anomalies combined with a term G’
which is essentially the terrain correction, is fairly well suited for computing
height anomalies, deflections of the vertical, and lower-degree spherical harmonics.
It is, however, nct so universally applicable as the other linear solutions since it
presupposes a strong correlation between free-air anomalies and elevation (see
sec. 13). The main importance of this solution rests in the fact that it furnishes
a link with conventional methods. Since the terrain correction gan be computed
without needing gravity, estimates of G’ are easiiy obtained. In addition, we
have seen in sections 13 and 15 that the use of Ag + G’, free-air anomalies
modified by adding the terrain effect, in Stokes' and Vening Meinesz' integrais

without further corrections furnishes height anomalies and deflections of the
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vertical at the physical surface of the earth in the sense of Molodensky, at
least to a better approximation than if genuine free-air anomalies Ag were used.
This result is quite gratifying since in the past Stokes' and Vening Meinesz'
integrals have sometimes been evaluated using free-air anomalies conventionally
"corrected' by the terrain effect; it is, however, surprising that the results
are not geoidal heights and deflections of the vertical at sea level, as one might
assume, but height anomalies and deflections at ground level.

This solution is not suited for computing the external gravity tield and
spherical harmonics of higher degree. Therefore, there is no reason for using

it on a larger scale.

PRACTICAL SIGNIFICANCE OF LINEAR CORRECTIONS. The solutions

discussed here consist of spherical formulas such as Stokes' integral, plus
small correction terms. The question arises as to the practical significance
of these corrections. Studies of mathematical models, such as given in
(Arnold, 1860), (Molodenskii et al., 1962a) and (Molodensky et al., 1962b),
are useful for understanding extreme situations, but they may tend to give an
exaggerated picture. For this reason they should be complemented by test
computations in selected areas.

As for height anomalies, Arnold (1960) has obtained a correction of ~0.2 m
for Mt. Blanc, elevation 4807 m. This small value, which is probably less than
the error due to the spherical approximation (sec. 3), seems to indicate that for

height anomalies the refinements of Stokes' formula are in general of little
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significance, although we shall subsequently see that there is also evidence to
the contrary.

In any case, matters are entirely different for deflections of the vertical.
It should be carefully kept in mind that 0. 2" in the deflection correspond to a
linear displacement of 6 meters, and that the effort necessary to obtain the
deflections to an accuracy of 0.2" is incomparably greater than that required
for the equivalent accuracy of 6 meters in the height anomaly. Fig. 11 indicates
that small deformations (corresponding to small corrections to £) may give
rise to considerable changes of inclination (corresponding to corrections to ¢

and n). Consequently, it is in the case of deflections of the vertical that the

refinements of Molodensky's theory are of real practical significance. Except

in flat country, the linear corrections to Venirg Meinesz' formula are indis-
pensable if an accuracy of + 0.2", corresponding to an accuracy of + 10 m for
the absolute position in space, is aimed at. Again, the reader is referred to the
examples of (Arnold, 1960).

As for spherical harmonics, especially those of lower degree, it might
be expected that the effect of the linear corrections is insignificant, still more
so than in the case of the height anomalies. The estimates of Pellinen (1962),
however, indicate that this effect is very considerable, of the order of 15 ~ 20 ¢
of the harmonic coefficients themselves. This surprising result seems to imply

that also height anomalies may be noticeably affected by these corrections. This

point would probably deserve closer examination.
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ADEQUACY OF THE LINEAR APPROXIMATION. The opposite problem

is whether the linear approximation is practically sufficient or whether highci
approximations should also be considered. This question, just as the preceding
one, is actually beyond the scope of the present report; still, a few arguments
may be offered. It all depends on whether the inclination may be considered
small or not. An inclination B of 45°, so that tan 8 = 1, is obviously not small,
but this is certainly an exception. The average inclinations are usually small
even in mountainous areas; some kind of averaging is inherent in any topographic
map and in any map of gravity anomalies, however dense the gravity survey may
be. Still, the fact that the gradient solution is not directly affected by the terrain
inclination may be adduced as an argument for preferring it to a solution such

as Molodensky's, in which G, strongly depends on the irregularities of the
terrain.

Certainly, formulas for higher approximations are available. However,
the question as to their practical applicability and to the genuineness of the
results so obtained comes up. Higher approximations correspond to the use of
higher derivatives of the gravity anomaly field and of the topography. It is well
known thi't errors of a given function are increasingly magnified by successive
differentiations. An example well-known from geophysical prospecting is the
second derivative "?Ag/>h®, where different methods may yield results that

diverge by more than 100 7.
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These computational difficulties endanger much more than theoretical
difficulties the use of higher approximations. Such theoretical difficulties are,
for instance, the impossibility of rigorous downward continuation to sea level
and the corresponding mathematical instability of Bjerhammar's integral
equation (sec. 7), or question of the analytical convergence of the series

expressing the complete solution of Molodensky's integral equation (Molodenskii
et al., 1962, pp. 122-3), which apparently has not yet been decided. But over
these problems, interesting as they are from a mathematical point of view, we
should not forget that we are looking for numerical accuracy, mathematical rigor
being only a tool to attain this accuracy. (It is well known from mathematics that
analytically divergent, 'asymptotic, " series yield perfectly useful numerical
results!)

In keeping with this, close attention must be paid to the effect of inter-
polation errors, which are present even with a dense gravity net. In this respect,
conventional methods of gravity reduction may have advantages: isostatic and
Bouguer anomalies are smoother and easier to interpolate than free-air

anomalies. Gravity reduction can indeed he incorporated in the ""new theory, "

but this topic will not be considered here.

RECOMMENDATIONS. Based on the preceding arguments, the gradient
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