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FOREWORD 

This report was prepared by Helmut Moritz, Professor, Technische 
Universität Berlin and Research Associate, Department of Geodetic Science 
of The Ohio State University, under Air Force Contract No. AFl9(628)-570l, 
OSURF Project No. 2122, Project Supervisor, Urho A.Uoüla, Professor, 
Department of Geodetic Science.   The contract covering this research is 
administered by the Air Force Cambridge Research Laboratories, Office of 
Aerospace Research, Laurence G. Hanscom Field, Bedford, Massachusetts, 
with Mr. Owen W. Williams and Mr. Bela Szabo, Project Scientists. 
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ABSTRACT 

This report is concerned with formulas for the determination of the earth's 

physical surface and external gravity field from free-air gravity anomalies to 

an approximation linear in the elevation and its derivatives. 

Part A considers integral equations and their linear solutions; Part B gives 

an elementary deduction of these solutions from the geometrically evident 

gradient solution; and the subject of Part C is an application to various gravity- 

dependent quantities and an evaluation of different solutions. 
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INTRODUCTION 

The present work is a continuation of an earlier report (Moritz, 1964). 

The previous report gave a discussion of the various formulations of the geodetic 

boundary-value problem, that is, the gravimetric determination of the geoid or 

of the physical surface of the earth, using either unreduced free-air anomalies 

or other anomalies that correspond to various gravity reductions.   The present 

report is exclusively concerned with "Molodensky's problem, " the gravimetric 

determination of the earth's physical surface and external gravity field from 

free-air anomalies.   The free-air anomaly Ag is defined as the difference 

between gravity g measured at ground and normal gravity y referred to the 

telluroid.   The discussion of the solutions of Molodensky's problem is in 

general limited to "linear solutions, " in which second and higher powers of the 

elevation (which is small as compared to the dimensions of the earth) and of 

the terrain inclination are systematically neglected.   This limitation to a 

"linear approximation" considerably simplifies the comparative study of the 

different solutions and is also justified for practical reasons. 

In Molodensky's problem the free-air anomalies are assumed to be given 

at every point of the earth's surface.   This distinguishes it from "Bjerhammar's 

problem, " the determination of the earth's physical surface and external gravity 

field from discrete gravity measurements, which is beyond the scope of the present 

report.   We have also disregarded methods, mainly proposed by N. K. Migal, 

T 
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that avoid the use of a normal gravity field: they are interesting conceptually, 

but less convenient practically and, as shown by Monin (1962), essentially 

equivalent to the usual methods, which do use a normal field. 

Part A considers various integral equations for the present problem, 

and their linear solutions.   Much of its subject matter can be found in the 

literature; it has been collected, supplemented, and presented from a unified 

point of view. 

Part B gives a deduction of the linear solutions from one particularly 

simple and obvious solution.   Here I have attempted to show that all linear 

solutions that I was able to find in the literature, and some more, can be 

derived in an elementary way, in tht sense that no integral equations are 

needed at all.   In this way the relation between the various, apparently so 

different, solutions is clarified.   This comprehensive deduction may claim 

some originality, although the general technique was anticipated, for a particular 

case, by Arnold and indirectly also by Molodensky. 

Part C considers the application of the various methods of solution to 

gravity-dependent quantities that are needed in geodesy.   A comparison and 

evaluation, both theoretically and with respect to practical application, is 

attempted. 

Mathematical details that would unduly interrupt the presentation have 

been relegated to two Appendices. 



1 
Formulas that might be new are, for instance, (63), (106), (261), (274), 

(277), and (297b).   It is quite possible, however, that some of them have been 

found before. 

The three parts of the report can be read fairly independently.   Readers 

interested only in a general view and in practical application may limit them- 

selves to Part C; and those who are afraid of integral equations may start with 

Part B, although they will probably have to refer to sections 1 and 3 for a full 

understanding. 



A.   THE INTEGRAL EQUATIONS 

1.   SPHERICAL FORMULAS 

For later reference we first state certain well-known integral formulas, 

which are valid if the boundary surface is a sphere. 

SPHERICAL HARMONICS EQUIVALENTS.   Let r (radius vector), 9 (polar 

distance) and X (longitude) be spherical polar coordinates in space.   Then r = R = 

6371 km is the radius of the mean terrestrial sphere, considered as the boundary 

surface.   Consider on this sphere a surface layer of density X(8, X)/2ffk, where k 

is the gravitational constant, and its potential Y(0, X) on the sphere.   These two 

functions are connected by the formula 

Y = l^f*' (1) 

where Y refers to a fixed point P and X to a variable point ?' that carries the 

surface element Rsda,  a being the concentric unit sphere;   l0 is the spatial 

distance and I/J the spherical distance between P and P', so that 

I,   =  2Rsin| (2) 

(Fig. 1). 

Representing the functions X and Y as series of spherical harmonics, 
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x(e, X) = £ x.(9, x), 
8=0 

(3) 

Y<e, x) =  s YB<9, x). 
n = o 

equation (1) is equivalent to the relation 

2R 
Y8<8, X) = ~j Xn<9, X) 

between the harmonic terms of degree n. 

Similarly Stokes'formula 

(4) 

Y " £ JJuS^)do (5) 

(Y represents the anomalous potential and U the gravity anomaly) is equivalent to 

Ya (9, X) = —■ 14(9, X) . (6) 

To obtain the formulas inverse to (1) and (5), we consider the elementary 

inversion of the corresponding relations (4) and (6): 

RXn =(n+£)Yn , 

RUn =(n- DYn 

or 

(RX -iYfc    = nYn , 

(RU + YJt   = nYn  . 

Both equations are of the form 

Z»   =nYa) 

which is the spherical harmonics equivalent of the integral formula 

(7) 

(8) 



(Heiskanen and Moritz, 1967, sec. 1-18).   Outside the integral, functions (such 

as Z) always refer to the fixed point P under consideration; inside the integral, 

functions (such as Y) are in general variables of integration, and therefore the 

value of this function at P is then explicitly denoted by the subscript P (such as 

YP). 
■ i 

Now the inversion of (1) and (5) is straightforward.   By means of (7), (8), 

1 
and (9) we obtain 

o      e 

APPLICATION TO THE ANOMALOUS GRAVITY FIELD.   The spherical- 

harmonic expansion of the anomalous potential in space may be written 

T =    Z   ( ~ )        Tn , (12) 
n=2     V   r." 

first and second degree terms being omitted as usually.   Differentiating we find 

9T       °° Rn + 1 

-sr-.E«1*1» ?^T-- 
The gravity anomaly in space is given by 

dT     2T        a R» + 1 

1 

We write this as 
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and differentiate with respect to r: 

m. -l*+nfr + 
By setting r = R we specialize these formulas for the mean terrestrial 

sphere which approximates the earth's surface: 

Ag=    5   Ag,    =    5   ^T,   , (13) 

I? =-5„E(n+2,A&- (M) 

The corresponding integral formulas are 

Ag . -I-i.   rrZ-J&da. (15) 
^ ROT--      £n

3 

The first is identical vith (11), the second is derived in the same way, using (14), 

(8), and (9). 

Equation (16) expresses the vertical gradient of the gravity anomaly in terms 

of the gravity anomaly itself; equation (15) is the inverse of Stokes' formula. 

INTEGRAL EQUATIONS.  By applying Green's identities to a spherical 

boundary surface one obtains the integral equation 

T . |R    rr I da = ~r   T^ da  ; (17) 
a a 



T" T 

see, e.g., (Moritz, 1964).   Its solution is Stokes' formula (5): 

T = JJ    [T Ag Sty) da . (18) 
a 

Another integral equation is obtained by representing T as the potential 

of a surface layer.   Denote the product of surface density and gravitational 

constant by tp; then 

T = R2 TJ f da . (19) 
a   *"> 

~ + 7T + Ag   = 0 (20) 3r        R       ^ N 

and taking account of the discontinuity of the normal derivative of a surface potential 

we obtain the integral equation for <p , 

*-f.fr£ *>°i*- <21> 
a 

see, e.g., (Heiskanen and Moritz, 19o7, sec. 8-6).   Inserting (19) into (21) we 

find 

"•SFC^D- <22> 
Expressing T by Stokes' formula (18) we obtain 

3_ 
T 

a 

as a solution of the integral equation (21). 

f ° 2? £«♦£;/*«<♦>*) (23, 

r 

; Inserting this into the boundary condition 
■ 
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GREEN'S SURFACE IDENTITIES.   Let U and V be two functions defined 

on an arbitrary surface S.   Then die relation 

10 

JjD(U. V)dS =  - JU-^ds-J/UAiVdS (24) j 
Si C Si 

I 
holds.   Here C is a closed curve on the surface, Si is the part of the surface S 

I 
that is enclosed by C, ds is the line element of C, dS is the surface element of 

S, v is the tangent to S that is normal to C, D is ßeltrami's mixed differential 

parameter, and A2 is Beltrami's second differential parameter for the surface. 

See (McConnell, 1931), p. 189, eq. (69); the notation is slightly different. 

If the surface is referred to orthogonal parameters Uj  and u2,  so that 

the line element is represented by 

ds2   = hi2 dux2 + h| dus2 , (25) 

then the differential parameters are 

n/iT xn -   l    au   av .   i    du _av ,_M D(u'v) "n? iuT äu7+"h7 iu7^u7' <26) 

A«(F) ■ rr-r^CM£) + MK—^ . <27> hihg   LauiVhi öui y       augVhs^u,   /   ' 

Formulas for general non-orthogonal surface parameters are given in (McConnell, 

1931) on p. 187. 

If the surface were a plane, then ui = x and u3 = y, and 

5* v> ■ ^ £ + f if • 
A2(F)= 0   +-TT  . (29) äx dy 

u!~- .,.■   - ' 
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Hence we see that (24) is the two-dimensional analogue of Green's first 

identity in space; see, e.g., (Moritz, 1964, sec. 2.1).   Therefore (24) is called 

Green's theorem for a surface. 

If S is a closed surface, and if the curve C is contracted to a point, then 

Si, taken to be the exterior of C, becomes the whole surface S, and the first 

integral on the right-hand side of (24) reduces to zero.  As a limit there remains 

[fD(U, V)dS  =  -  J7UA2VdS 
S S 

(30) 

Because of the symmetry of D, also 

JjD(U, V)dS  =  -  JJVAsUdS. 
S S° 

(31) 

In these identities the functions F, U, V are supposed to be continuous and 

twice differentiable in the region considered:  Si in (24) and S in (30) and (31). 

The function 

V -i v    r (32) 

where l is the distance of a variable point P' from a fixed point P on the surface, 

satisfies this requirement everywhere except at P, where l/l becomes infinite. 

In this case it may be shown that (31) still holds: 

1 A2F 

whereas (30) must be slightly modified: 

J/D(F .i>-PRF-F,)A,(i)dS. 

(33) 

(34) 

11 



As we shall see by equation (39), A2(l/4) has a strong singularity (like 1/X3), 

which is, so to speak, neutralized by subtracting from the function U its value 

VP at the fixed point P.   To prove (34) and (35), exclude first P by a small 

circle C of radius e, apply (24) and let subsequently e - 0. 

These formulas hold for an arbitrary closed surface that is sufficiently 

smooth.   Now we shall specialize these general formulas to the sphere r = R, 

whose line element is given by 

ds2   = R2 (d^ +sin2edX2). 

so that 

ui   = e , u2   = A , 

hi   =  R, hs   =  Rsin0 . 

Then (26) and (27) become 

D(U,V)=^(ueV9,-^UAVx), 

^<F> = F(Fecota+Fee+^ukFu)' 
where  UQ  = 3U/98, VQQ= b3V/?tf, etc. 

Alternatively we may refer the sphere to coordinates $ (spherical distance 

from P) and a (Azimuth in P); see Fig. 2.   These coordinates 0 and a exactly 

correspond to 8 and A,  the origin being now the fixed point P instead of the 

north pole.   Hence, alternatively, 

D(U, Vl'afu.V. +—Vr U V ), R   V   i/i  ip    sui tp     a as 

^36) 
AS(F)  = rs f F.cotrt + F,, +—TT   F     ") • N R   V   0      v      00    sin 0     ooty 

(35) 

12 
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Figure 2 

13 



For the sphere we have I - i0 = 2R sin *•, so that 

i     —L 
la       2Rsin "0 

5" » (37) 

(38) 

This follows by straightforward evaluation of (36) for the particular function (37). 

14 
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2.   INTEGRAL EQUATIONS FOR THE ANOMALOUS POTENTIAL 

In (Moritz, 1964) we have derived two different but equivalent integral 

equations, which are both due to Molodensky.   We shall recall the n.ain steps of 

the derivation, which we also need to derive a third alternative integral equation. 

Our starting point is equation (49) of (Moritz,  1904): 

T-i J'TT<1('7)-7£ldS-°- «« 2ff  J   I     on V. i /    i dn J 

S is any known surface approximating the physical surface of the earth, such as the 

norn.al surface as defined in (Moritz, 19o4, sec.   2.3) or Hirvonen's telluroid.   (In 

the previous report cited we have used the symool Z instead of S,   but this notation 

is somewhat avkward.)   The outward directed norn.al to S is denoted by n, and I 

is the spatial distance between a fixed point P and the variable surface element dS 

(Fig. 3). 

Consider an arbitrary function F in space.   Its norn.al derivative may be 

expressed in two alternative ways; see equations (18') and (21) of (Moritz, 1964): 

dF dF 
g- = cos/3— -D(F, h)cos/3, (41) 

where h is the elevation of the terrain and ß is its angle of inclination. 

In a local cartesian coordinate system, the z-axis pointing vertically upward, 

the x-axis pointing north and the y-axis pointing west, the expression D(F, h) is 

defined as 

15 
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Figure 3 
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D(F, h)  = —■   —   + — — . (43) 

The expression D(F, h) is defined in the same way, the derivatives along the 

surface 

ax      ax '  ah ax *       av   " av + 7h ^7 (44) 

asF _ aF    a_F ah <VF   . aF     aF ah 
ay       ay      ah ay 

replacing the horizontal derivatives aF/ax and aF/3y.   Other expressions for D 

and D will be given below.   The vertical derivative of F is 

& = & (45) ah     az • (4S' 

Equation (41) thus expresses the derivative of F along the surface normal n (which 

is not in general vertical) as a linear combination of the vertical and horizontal 

derivatives. 

For F = T we have 

^ - - rn. (47b) 

where y is normal gravity and £ and TJ are the componei :s of the deflection of the 

vertical.   Hence 

D(T, h)      " y (^ tan^ +rjtan/3a ), 

where 

(48) 

tanA   =1«   -*   -| (49) 

17 

T 



are the inclinations of a north-south profile and an east-west profile, respectively. 

Inserting (41), with D(T, h) expressed by (48), into (40) we obtain 

T-5[/ [K*Hi?sf ]«■• 
-^ JfyrAg-yUtanft +f?tan/32)]cos0dS , 

(50) 

which is our basic integral equation in the first form; it is identical with equation 

(48a) of (Moritz, 1964). 

Secondly we use (42), again setting F = T.   Molodensky (Molodenskii   et 

al., 1962, p. 85) proved that for two functions U, V 

rTD(U, V)cosj3dS = - JPUA2 Vcos/3dS 
S S 

=  -   f,rvA2Ucosj3dS , 
S 

where, in our local coordinate system, the expression A2F is approximately 

defined by 

(51a) 

(51b) 

A2F  = h2F   L d2
2F 

ax' *y* 
(52) 

more rigorous expressions will be given below.   By (42) and (46) we obtain 

= 7-^r-Ag + -|£T)-7D(T, h)cosj3. I  ST 
£   3n 

From the definition of D it follows that 

(53) 

~^T 7Zf 1 jDd.h)  =D-(?h)-TD(?h) (54) 

Now we substitute (53) and (54) in (40) and apply (51a), with U = T/i.   The result is 

18 
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_      1    fN    ä/'h     lay       1 -f 1    . \        . 
_ ... y   3h   £cos/3 

(55) 
cosft 

2ff   JJ   £cos/3 

which is the second form of the basic integral equation; it is equation (48b) of 

(Moritz,  1964). 

A third form is obtained by using, instead of (54), a different transformation: 

;D(T, h) = -D(T, h -hP) 

= 5(T, ^)-(h-hP)D(|, T) 

= D(T, ^7^)- D^(h -hp)T, Jj + TÖQ, h).    (56) 

The possibility of these manipulations follows again from the definition of D.   In 

agreement with (51) we have 

JjD(T,^)cos/3dS  =  -   J7^ A2Tcos/?dS , (57) 
S S 

rjD |~(h - hP)T, j]cos/3dS  =  - Cf (h - h„)TA2 ( j)cos0dS . 
"S £ S l (58) 

Again we substitute (53) in (40), but now we apply the transformation (56) and use 

(57) and (58).   The result is 

+ D(i   h)cosßlTdS = ±   rjAg-(h-ly)A3TcoS^ 
V£       ^ J 2lt   S '«»0 (59) 

19 
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Tds = ± rr -^4- ds. 
21T    J iJ    I. can R 



This is a third form of the basic integral equation. 

Alternative expressions may be obtained by applying (42) to the function 

1/i: 

Kfi—h   ^CTJ-DCT-MCOS/J. (60) bnKls    cos/?    bh\ts\ls^ 

On this substitution the basic equations (50), (55), and (59) become 

T.±   frr    *    ±ri)-Ii££2££.ö('i   h)cosßlTdS - 
d 

=  2ff   iT j[Ag--y^tanft +T7tan/32)]cos/3dS, (61) 

T-i r JL ±( l\.k*X       l      -infl 
lit  ^l^Tß^lJ-yfh Ic^sl ^D^j.h^cos^- 

-^A^TdS  = -j-   fr-^L-dS, (62) 

T"T" —4 ST-   7 J        IT 7-^7 +01" MA?     7 )cos/3 TdS = 2TT   -«• L cos/3 oh s. i y   y öh  icosß .IS 

= 2^   .', "TT^Tä C Ag - (h - hP) A3 Tcos2 j3 ] dS . (63) 

These equations are more explicit and therefore better suited for practical 

solution; the tiiird form has even become simpler because the Ü term cancels out 

in (63). 

The disturbing potential T may be determined from any of these integral 

equations.   The necessary data are:  Ag and the deflection components £ and r\ 

in (61); Ag only in (62); and Ag and A3T (which is essentially the anomalous 

20 
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gradient of gravity) in (63).   Equations (61) and (62) are due to Molodensky; (63) 

might be new. 

The solution of these equations, including practical aspects, will be discussed 

in sec. 4. 

THE OPERATORS D,  5,  AND Az •   First of all, the reader should be 

warned that the operators D and A2 as used in this section are not absolutely 

identical with those denoted by the same symbols in sec.  1, although they «»re 

closely related.   Therefore, the integral formulas (30) and (51) are very similar 

but not identical; note the factor cos/3 in (51). 

The reason is that in the present section the differential parameters D, D, 

and Aa (even when referring to a surface S) are essentially defined in terms of a 

three-dimensional coordinate system. It is convenient to use some simple system 

of orthogonal curvilinear coordinates q1, qs, q3, such that the surfaces q3 = const, 

are approximately level surfaces, q: is approximately the latitude, q2 is approxi- 

mately the longitude and qj is approximately the elevation. Then the line element 

will be given by 

ds2   = hx
2 dqi

3 + hs2 dq2
2 + h3

2 deb2 , (64) 

where hlt h3, hg are functions of qx, q2, % (they should not be confused with the 

elevation h).   Then the following definitions hold (Molodenskii   et al., 1962, 

pp. 83-85): 

D(U'V)  -h?5E    *h   V    öq3   öq,     ' <65) 

D(U, v) = A |£ ^ + A Is0 %r> <66> hi     oqx   dqx       hg     dqs   dqa 

21 



As we have seen, dgF denotes differentiation along the surface.   If F is a function 

defined on the surface S only,   F = F(qx, o^), then 

if, however,   F is originally a function defined in space,   F = Ffax, qg, q3), and 

if the surface S has the equation q3   = h(qx, q^), then 

^F   =  ^F(Q, , <b , h(q, , <h ) ) 

^F(a1, qg, q3)       dF(qlt Cfc , q3)   öh 

*h äqs *h 

or briefly, 

M   -. f   +   £   Ä  . (o8D, 
oqi dq1        0CJ3   oOj 

For surface functions such as the elevation h or the reciprocal distance l/.£, defini- 

tion (b8a) holds; for space functions such as the anomalous potential T, definition 

(08b) must tx- applied. 

The definitions (bb) and (o7) reduce to (2b) and (27) only when the surface S 

under consideration is a surface q3   =  const, (with h3 = I, which can always be 

achieved by a suitable choice of coordinates q,3).   Then ß = 0 and (51) reduces to 

(30) or (31).   Broadly speaking, this holds when S is approximately a level surface, 

which the physical surface of the earüi obviously is not. 

The conditions to oe satisfied by the functions entering in (51) are the same 

as for (30) and (31):   the functions U and V are supposed to be continuous and 

22 



twice differentiable over the whole surface S.   The function F = l/£ has a 

singularity at P and does not therefore everywhere satisfy these conditions. 

In spite of this fact, eq. (51a) still holds for U = 1/f, whereas (51b) must be 

modified by replacing V by V - Vs, in order to neutralize the strong singularity 

of Ae (1/f).   This is in complete analogy to (33) and (34) and is proved in the 

same way.   This fact was used in the transformations necessary to derive 

(55) and (59). 

As an example, we consider the geodetic coordinate system tp (ellipsoidal 

geographic latitude),  X (ellipsoidal longitude), and h (height above the reference 

ellipsoid).   The line element in these coordinates is given by 

ds2   =  (M + hf dp2 + (N + h)2 cos2 odX2 + dh2 (69) 

(Molodenskii et al.,  1962, p. 10), where 

M  = (a* cos2«) +b?»8irta«>)3Ä (70) 

is the meridional radius of curvature and 

N  =  (a^os^+b* sin2«))1'2 (71) 

is the east-west radius of curvature of the ellipsoid, whose semi-axes are a 

and b.   Hence 

qx=(P, <fe   = X , q3=h; 

hx   = M+h, h2   = (N + h)cos<p, ha   =   1 . 

23 i 
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Equation (66) thus becomes 

D(U' V)      (M+hf   d<p    55   ^^(N + hfcos3^   aX   ax    '       {   ' 

For (67) we find 

Aa(F) = I rja/^ + hjcosy ^F x 
al '      (M+h)(N+h)cos<pLa<A    M+h b(p J 

aX V(N + h)cos<p   aX J\   ' K   ' 

Differentiation of M and N with respect to <p is straightforward (their derivatives 

with respect to X are even zero), but it should be noted that according to (68b) 

_da /(N +h)cos(p\ _ _d_ ( (N + h)cos<p\    d r (N + h)cos<p\ ah 
dip \      M + h     J ~ dtp\       M+h    )   ShV       M + h    )dp ' 

(74) 
*2.(       M+h     ^ .   _d_ (    M +h        ^ _öh 
a;    ~ ~~"~ ^ "   ~ '" "   """ ' ~~~  
kf       M+h     ~\ _ _d_ ^    M +h        \ _9h 
>XV(N+h)cos^'      dh V(N+h)cos<p/ SX    ' 

If the reference ellipsoid is considered as a sphere (spherical approximation, 

see next section), then 

M  = N  = R , 

and we are left with 

D«U,V, = ^(M|y+    ,    MM}, (75) 
K     V   ^0    7)0 cos  p    3X    dX    J 

Aa(F)  =4f-^  tancp  +   äf  ■+ 1—||f ^), 
R   v   ap =)<p2      cos3«)    ax** y' 

(76) 

in formal analogy to (35); note that for the sphere 

0  =  9Ö3 - 9 . (77) 

In the local cartesian coordinate system we have the expressions (43), (44) 

and (52) already given. 
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3.   VARIOUS APPROXIMATIONS 

SPHERICAL APPROXIMATION.   The geodetic integral equations become 

simpler and can be solved more easily by applying certain approximations which 

are permissible from the point of view of accuracy. 

Usually, the gravity field of an ellipsoid of revolution is taken as the 

normal field.   The flattening of any suitable reference field is small.   Hence, 

when dealing with ellipsoidal quantities, it is convenient to use series expansions 

with respect to the flattening f or a similar small parameter. 

Our integral equations deal with quantities of the order of T, which are very 

small themselves.   In these integral equations it is therefore possible to neglect 

all terms containing f, f2, etc., as a factor of T.   This is the spherical approxi- 

mation.   The error in the height anomalies £ (sec. 15) of this spherical approxi- 

mation is thus of the order of 

iC = 0.003C • 

If £ = 100 m, this amounts to 0.3 m. 

A convenient visualization of the spherical approximation is furnished by 

plotting the heights h above the reference ellipsoid as the heights above a mean 

sphere of radius R; see Fig. 4.   It should be kept in mind, however, that this is 

only a visualization, which has no counterpart in reality.   It would be plainly wrong 

to say that the earth is referred to a sphere instead of an ellipsoid, at least in the 

literal geometrical meaning. 
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Consider a definite case.   The true radius vector of ?' (Fig. 4a) is given 

by 

rtrue =a(l -£e/3sin2<p + • • • ) + h 

= R(l + ie/£-£e/2sin2(0 + - • • ) ■+h , (78) 

where 

2        i_2 
/3     -   a     - b 

is the square of the second excentriciry and 

is the mean radius of the earth.   Neglecting e'2 we get 

r  = R+h 

as the spherical approximation of (78).   This corresponds to the geometrical 

interpretation of Fig. 4b. 

In agreement with (78'), we have to the same approximation 

t-fr <7» 

(78') 

and 

with 

- = (r3 +rP
3 -2rprc;os0)"* 

r  = R + h, 

rP   = R + hp . 

(80) 

(81a) 

(81b) 
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Hence we   btain by differentiating (80) 

dh V7y " dr \lJ " /3 

JLf J>> = JL/^iA rP - rcos^ 
an, ^U    arP Viy " "    f3 

This is easily transformed into 

dK7)-sztJfe£- <82b> 
From the spherical approximation 

JcM 

(83) 

we further find 

I iz  = .1 
y äh r 

Hence, in (62) and (63) we may set 

i-flViäi Ia-L+itLL£! (84) 
ahU/   y ah   /       2ri 2rr      ' 

The spherical approximation of the operators D and A2 is, of course, given by 

(75) and (76). 

PLANAR APPROXIMATION.   Comparing (78) and (78') one might object that 

it is illogical to neglect the term 

{^-~£ sin >p je    R , 
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which may become as large as 

-|e'2R=  - 14 km , 

when at the same time hf which is 8 km at its maximum, is retained. 

That this objection is not valid may be seen by considering the consequences 

of completely neglecting h .   Then the earth's surface would be represented as a 

sphere, and all mountains and hills would be leveled.   This would amount to 

neglecting also the inclination of the terrain, which may attain 45" and mere 

in steep hills and mountains.   This is clearly inadmissible. 

So, while it would be permissible to neglect the elevation as such, it is not 

possible to do so on account of the rapid changes of h, which cause the inclination. 

In other words, one may neglect h whenever it does not enter through its horizontal 

derivatives 

- - tanft , - = tan/J2 

or through similar expressions. 

Such an expression is 

S^   » <85) 

where i0 is the chord, corresponding to I , of the sphere r = R (Fig. 4b): 

t0   =  2Rsin|. (86) 

For small distances i0, the quantity (h - hp) /£0 is of the order of the inclination 

]8, as Fig. 5 shows. 
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As a definite illustration   consider (78'), which may be written 

-<-£)• (87) 

Neglecting h/R, which at most becomes 

h   =   8km        =   o 001 
R       6x10^ km *UI* 

introduces a relative error of less than 0.1 $.   However, neglecting tan/J when 

ß = 45° causes an error of 100 % ! 

From what has been said it appears rearonable to make an additional 

approximation, which we shall call planar approximation:  The elevation h is 

neglected when it causes a relative error of only n/R.   It cannot be neglected 

when it occurs through the expression 

(h -M/fa 

or indirectly through the inclination ß (that is, through its horizontal derivatives), etc. 

Let us consider some definite cases.   The distance I is given by the rigorous 

formula 

I2   = r3 +rP
3 - 2rPrcos0 . (88) 

As a spherical approximation we have r = R + h, so that 

i,3   = (R+hf +(R + hpf - 2(R+h)(R+hP)cos0 . 

fhis is easily transformed into 

£3   = 4(R + h)(R+hp)sinai + (h - h,f 

and finally into 

= i a l~i . h+hp   ,  hph^^h -hp^  -i l" L1+ R  +-F-\-r-J J. (88') 
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where /„   = 2Rsin-£-.   This is the spherical approximation of (88).  By 

neglecting h except in the term 

a 

(T*) 
we obtain 

f  -4.»[l+(i^)].4.»+{»-lvf 

as the planar approximation of (88). 

As a second case, consider (84), which may also be written 

JL flV-^i m   —   -  fo " Mfr+rP) 
ah \t; ' y oh i. '"   2r£   " 2r£3 

The planar approximation is obtained by putting r = rP   = R: 

a r i N   i ay l _  3    h - h, 
Sh \7y~ y öh £     2R4 "    & 

(88*) 

(89) 

where  I is expressed in terms of l0  by (88'). 

Neglecting h/R within the parentheses of (87) may be interpreted, in a 

formal mathematical manner, as letting  R - °° (within the parentheses!), that is, 

as performing the formal transition from a sphere to a plane.   The expression (85) 

will Decome large only if £0 is small, that is, in the neighborhood of P.   In this 

neighborhood, however, the sphere may be replaced by its tangent plane.   Similarly, 

(88") resembles the plane formula of Pythagoras.   These facts indicate that the 

planar approximation may be visualized in the way of Fig. 6:  the elevations h 

above sea level or above the ellipsoid are superimposed on a plane.   This inter- 

pretation furnishes a convenient name for the approximation considered. 
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This name, planar approximation, however, should not be taken too literally. 

The transition to the plane, R -»», can only be performed in expressions of the order 

of the elevation h, but nr  generally. 

We may thus summarize the different approximations that are consistent 

from the point of view of accuracy: 

Normal field (normal potential U, normal gravity y, etc.):  strictly 

ellipsoidal formulas. 

Anomalous field (anomalous potential T, gravity anomalies Ag, etc.): 

main part (not depending on h):  spherical approximation, 

correction terms (order of h):  planar approximation. 

In view of the conceptual difference between spherical and planar approxi- 

mation it is remarkable that the accuracy requirements corresponding to the 

spherical approximation for T, etc., entail the planar approximation for the 

correction terms in a quite conclusive manner. 

LINEAR APPROXIMATION.   Using the planar approximation, we may 

expand the expressions involved into power series with respect to 

h - K 
, tan/3  , (90) 

and similar quantities.   Neglecting terms of second and higher degree in these 

quantities and retaining only the linear terms is called linear approximation. 

The linear approximation to cosß is 

cos/3  =   1 , (91) 
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=  (l + tana0)"*   =   1 -i—8 

because 

cos0  =  (l + tan*^) *   =   l-5tan"/3+' * * 

differs from  1 only by terms of second and higher degree in tan ß. 

As a linear approximation, we further have 

I  =   £0 (92) 

for the same reason, according to (88"). 

Thirdly we use the surface element dS, which we shall also need subsequently, 

to further illustrate the meaning of the various approximations. Fig. 7, in which 

the profile is taken along the maximum inclination ß, shows that, as a spherical 

approximation, 

dScos/3 = i^da , 

where da is the element of solid angle (surface element of unit sphere).   Hence 

we have: 

spherical approximation: dS  = r** sec ß do , (93a) 

planar approximation:       dS  = Ra sec ß do , (93b) 

linear approximation:       dS  =  Ra do . (93c) 

The linear approximation takes account of the main part of the effect of 

topography.   Usually it should be sufficient in practice.   Furthermore, the 

relation between the different solutions as considered in the present report is 

most obvious when the discussion is limited to the linear approximation, the 

relations for higher approximations becoming rapidly more complicated.   There- 

fore, we shall here limit ourselves to linear solutions. 
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4.   LINEARIZATION AND SOLUTION OF THE INTEGRAL EQUATIONS FOR T 

By means of the spherical, planar, and linear approximation, using 

equations (89), (91), (92), and (93), we transform the basic integral equations 

(61), (62), and (63) into 

Ra 

27  SS[ 
3       h - h, _ -{ i 

a   - 2R£o       £° 
£Xf.-0]™ = 

= 7T  jT — Ug " y (£ tanfr +r;tan/33) ] da , 2rr    -  £0 L 

T-£ rrf 2lT  «»'- L 2R£n 

h - hP        - ^ 1 
 T-  - 2D I   — ur-">-£-]T*- 

_RT    c," Ag da, 

(94a) 

(94b) 

R       < '-• T-^   J 2ff   J<J 
a 

h - h 
L 2Rifl 

^ + (h-hP)A2(j-)]Tda = 

■€   .fir"   CAg-(h-hp)A2T]da. 2ff   ^ £ 
(94c) 

The operators D and Aa in these equations may be identified with those 

of sec. 1, defined by (26) and (27) or, as a spherical approximation, by (35).   The 

reason is that (35) differs from (75) and (76) only by 92F/d<p being replaced by 

dF/o<p, etc.   Now, for surface functions such as l/£0 or h, these two derivatives 

are identical, according to (68a).   For space functions such as T, they differ by a 

term linear in h, according to (68b), which, when multiplied by h - hp, becomes 

quadratic and therefore negligible in the linear approximations.   This happens for 

the expression (h - hp )A2 T; all other operators D and A2 involve only surface 
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functions.   Hüs proves our assertion. 

Hence we may use (38) and (39).   The integrand on the right-hand side of 

(94c) then becomes 

r     3       h-hPj-     ,   . A   f 1 N -| ■       {    3     .  h - hp \ 

2R^o  V     6     R    >> *     2Ri0 ' 

because, as a planar approximation, the term (h - hp)/R may be neglected. 

All these facts being taken into account, the integral equations (94a, b, c) 

become finally 

T'if ^77**»   rrI7 to-yte^Ä +r?tan)32)]da - 

2?T 
L4   . Sh 
3^h   -   — a* h - h5 - sin Tdo; (95a) 

T    3R   r  T   , R3    ,,   1   , T_4T  ^7* =5T :j77(^-TA2h)da - 
a a 

1    /- 
2T  ^17(h-^-2sin^)Tda; 

4TT 

a 

T 

oh 
5 

da  = 
Rf    r, J_ 
2,    • **„ [Ag " (h -hp)A3T]da . 

(95b) 

(95c) 

SOLUTION.   These integral equations may be written in a unified form 

3R    .,    T Rs 

4TT e0   *    '   2ff    -' 
a a 

Ag+Pi 
da+q,    (1*1, 2, 3) (96) 
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where 

Pi   =-y (£tanft + T7tan&), 

qi = "^^P"Ch"hp'sln^JTda; 
CT *9 

ft> =■ TA2h » 

qa = - 2Ü   JJ 
a 

1 
^o3 

(h - hp - 2 

Pa   = -(h-l iP)A a T, 

Qa   = 0 

are small correction terms of linear order. 

(97) 

They are readily solved in two steps.   As a first step, we disregard q. 

and determine an approximation T0  of T from the equation 

lo       4ff   ^!  Z0   *      2tr   JJ       ü0      * * (98) 

This is a purely spherical integral equation of type (17), whose solution according 

to (18) is 

T0   «J*   fJ(Ag+Pl)S((i))da   . (99) 
a 

We then put 

T = T0 + Tx (100) 

and substitute in (96), obtaining 

o a a 
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The first two terms on the left-hand side cancel with the first term on the right- 

hand side because of (98), and there remains 

T*-« XT? da""- (101) 
a 

This integral equation for Ti is of type (21), so that its solution according to (23), 

replacing Ag/2ff by q,, is 

Tl   = q' +~8ir JT q* S W * * <102) 

a 

Combining T0 and Tx we have 

T = *F   .rj(^ + Pi+^)s(0)da+qi. (103) 
a 

Consider now the third term between the parentheses of (103), 3qt /2R. 

Since q, is divided by R in this term, it is tempting to neglect it as a planar 

approximation by formally letting R -<*>.   This formal argument is not entirely 

convincing, but the fact that 3qt /2R is negligible nevertheless holds true; the 

proof is rather lenghty and will be deferred to Appendix I.   Hence we are left 

with the simple formula 

T  = ~   //(Ag+p^SOMda + q,  • (104) 
a 

Using (97) we may as follows summarize the equivalent linear solutions found: 

T =~ rj[Ag -y(£tanft + T? tan/32) ] S(0) do- 
er 

"I  H J?(*-*>•*** fi)?*'' <105> 
a 
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T = -§  IT (Ag -TA3 h)S(0)da 
4ff   "" 

a 

"I //i7(h-,,'"2sin*|)Tda; <106) 

T =—-  JJ [Ag-(h-hp)AaT]S(^)da. (107) 
a 

A "zero-order" approximation to T is given by Stokes' integral 

R_   « 
41T 
- jj AgS(^)da; 

obviously this value may be used to represent T in the small correction terms 

Pi and qt . 

Expressions for second-order terms were given by Arnold (1959a) and Koch 

(1965). 

41 



5.   THE INTEGRAL EQUATION FOR THE SURFACE LAYER 

A considerably simpler integral equation was obtained by Molodensky in 

an indirect way, which is familiar from an application to the simpler boundary- 

value problems of potential theory (Kellogg, 1929). 

The anomalous potential T is expressed as the potential of a surface layer, 

or coating, on the earth's physical surface S (or on any known surface close to it 

such as the telluroid): 

T - Hü \ dS , (108) 
S 

where cp is the density of the layer (it incorporates the gravitational constant). 

It is known from die theory of surface layers that the potential and its 

tangential derivatives are continuous on the surface S, whereas the derivative 

along the normal, dT/dn, is discontinuous there: if we approach S from the 

outside, the limit of öT/än on S is 

C£>. --'■*♦//•£(?;*. <109) 

which is different from the value on S, 

an"  " U üän7W dS; 
s 

hence the discontinuity has the value  - 2>7<p.   For another direction, which encloses 

the angle ß with the normal, the discontinuity is   - 2ircp cos/3 ; this is a consequer  e 
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of the discontinuity - 2jrp of the normal derivative and the continuity of the 

tangential derivatives.   Let this direction be the vertical; then ß is the angle of 

inclination of the terrain.   Hence the limit of the vertical derivative on S is 

(|I;r2^coS^//0^-(i)dS. (110) 
o 

By substituting (108) and (110) into the boundary condition (46) we find 

2„0cos^[J-(l).(i|r)-±]wdS^,        (m) 

which is to be considered as an integral equation for the unknown surface density 

<p, the gravity anomaly Ag at the earth's surface being given. 

In agreement with our notational convention, quantities outside the integral 

always refer to the fixed point P; those inside the integral refer to the variable 

surface element dS unless they are marked by the subscript P. 

If we compare the above integral equation with those obtained previously, 

that is (61), (62), and (63), we see that (111) is much simpler, but we also 

recognize an essential difference: in (111) the differentiation d/dh is referred 

to the fixed point P, whereas in the former equations it was referred to die 

variable point dS. 

SPHERICAL APPROXIMATION.   In agreement with (84) we have 

r3 -r\ 5   ri\ Y 1 djy-\ j.        3      r • 
ohp ^JJ   \y bhJp I ~ 2rP"jß    2rP 

jf3 » 

because £ is symmetric with respect to r and rP.   Using this expression and (93a) 
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we find 

2ir<pcos0 -   rr^T77   +£-JZL-} i* secß<pdo * Ag (112) 

as the spherical approximation to (111). 

PLANAR APPROXIMATION.   In agreement with (89) we have 

a   r IN   ^ 1  d2N  J. 3_ +  h - hp 
9hp W/' "Vy dh^ |       2R4 / ,3 » 

and the surface element is given by (93b).   Hence 

,.»r 3R   ,   Rs(h - hp) -i 
2TT0COS/3 - JJ\j_ Yi   +      > sec/fyda = Ag (113) 

a 

is the planar approximation of our integral equation. 

LINEAR APPROXIMATION.   By setting  i = £0, cos/3 = sec/3 = 1 we obtain 

the integral equation 

»* - T irf *= ^+RS
 

rJ,iLr*t ** (ii4) 

or 

where 

a 

_ „2    ,. •>  h - h0 Gi   = R   ,M —rr <o da, (116) 

and (108) becomes 

■ RS .0" Ä 

a 
T = Rs   j]' f-  dr , (117) 

*0 
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is consistent with the planar approximation.   Hence we are simply left with 

a       ° 

Thus the combination of (118) and (120) constitutes another linear solution 

of Molodensky's problem. 

A very elegant method for finding higher-order approximations, which is 

also applicable to other geodetic integral equations, is described in (Molodenskü   et 

al., 1962, pp. 120-3) 

45 

where,as usually,  L0 = 2Rsin(<y/2). 
i 
i 

SOLUTION.   Comparing (117) with (19) and (115) with (21) we see that the 

corresponding equations are identical if Ag is substituted by Ag + Gj .   Making 

this substitution in (18) we therefore obtain 

T  = -|    r :"  (Ag+G^S^Jdff (118) 

a 

as the solution of the system of equations (115) and (117). 
I 

Since Gx is a small correction term, we may in (116) approximate <p by (22), 
i 

so that 

Ra  „,. h - hP A     , 3T N , /llrtV 

a 

In Appendix I it is shown that neglecting 

R     f>r>h-hp   •-T^     ■ 

* " -IT (!) * 
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6.   BROVAR'S GENERALIZATION 

Molodensky expressed the anomalous potential T as the potential of a 

surface layer (108): 

T =  TJ # dS. (121) 
S   l 

The formal reason why this is possible is that 1/4 is harmonic as a function of P, 

and therefore, according to the theory of linear partial cifferential equations, T 

is also harmonic (that is, a solution of Laplace's partial differential equation). 

Brovar's (1963c) idea is to replace 1/4 by a different harmonic function E, 

arriving at 

T =   fj <pEdS. (122) 
S 

This representation is valid since T will be harmonic if E is, for the same 

reason as above.   We may consider (122) as the potential of a generalized surface 

layer, and the surface function <p as a generalized surface density. 

Then, outside the surface S we have as a spherical approximation 

JL       IT <-     r. _öE     .   2E\ dS . (123) 

The function E may be selected in such a way that the "kernel" 

Ag' =™ ■ 77   =^ «VärT " TJ 

K  =  -  M   .   2E (124) 

^r« r„ 

has a suitable form. 

tor 

E «A 
I (125) 

4b 



we had, according to (112), 

3 iL-rp! 
2r„ £ 2rP L3    ' 

that is, a linear combination of the simpler functions 

(126) 

1 r2 - r 2 

-   and      p   e    , (127) 

We shall now try to find functions that are proportional to only one of these 

functions (127). 

To arrive at a suitable generalization, we may start from the spherical- 

harmonic expansion 

7  --   2     -T*r   Pn (costf), (128) 
*       n = o    rp 

considered as a harmonic function of the point P in space.   The series (128) 

remains harmonic when the individual terms are multiplied by constant 

coefficients A„ ,  provided it converges.   Hence we may use the representation 

E  =   I  \   -4TT P„   (cos0)   . (129) 
n= o rp 

Then the kernel (124) becomes 

K  =   I    (n - 1) \  -~TS   Pn   (cos tf,)  . (130) 
n= o rP 

According to (82b) »ye have 

r2   -  rp
2 ± 

M3 3r, 
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By means of (128) we obtain 

1   " ;£-   =   Z   (2n + 1) -frr Pn (cos 0 ). 
rp* • =o 

(132) 

Hence if we wish to have 

K  =  -- ±* 
a        2 1   "? rp2

3      » 

we must take 

\   = 
2n + 1 

n - 1 (n f 1); 

for 

K  = 
r,£ 

we have 

A.   = 
1 

n - 1 (n*l) 

(133a) 

(134a) 

(133b) 

(134b) 

This is seen by comparing (130) with (132) and (128), respectively. 

The coefficient kx  remains undetermined:   the value n = 1 is an "eigenvalue. " 

This gives rise to slight complications, which will be skipped over here; see 

(Brovar,  1964b) and also (Moritz,  1965a). 

Both cases (134a, b) will now be considered.   The first case is of great 

practical significance, whereas the second presents several features of 

theoretical interest. 

THE KERNEL (rc - r.-3)/^.   In agreement with (134a) we take 

4ff     =J   n - 1     r? 
(135) 
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where the prime following the summation sign is to indicate that the term   n = 1 

is omitted; the factor l/4ff i.-; irrelevant.   The series (135) may be summed to 

give the generalized Stokes' function: 

1  - h   =±  [s(rp,<t, r)-^ 

1    r 2       5r 31 
7Z     T _ 7^   cos ii - -~r 4ir   Lt        r, r( 

3r 
77   "" ~ ~" 2r5 i 

,   ,       Xp   • rCOSt; + i   1 /,-^v cos 4) £n  -* -—*       ; (136) 

see (Moritz, 19ö5a,equations (50) through (54)). 

The density of the generalized surface layer in this case is denoted by  \ 

instead of 0, so that (122) takes the form 

T  =   M   X E, dS . (137) 
S 

Thenthe kernel will be given by (133a), multiplied by l/4ff, so that (123) 

becomes 

^rif^"- (138> 
According to (136), the main singularity of Ej  is that of l/l; the second, 

logarithmic, singularity has no effect in the present situation, as will be seen 

later.   Hence the function E behaves like 

Wi <139> 

as  A- 0, that is, as Papproaches the surface S.   Therefore, the vertical derivative 
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(140) 

of (137) will have on S the same discontinuity as the potential of a simple layer 

(the function T itself will be continuous).   According to (110), this discontinuity 

is - 2ttocosß; in agreement with (139), X takes the place of 2ff<p, so that now the 

discontinuity is - Xcos/3 .   Hence (138) becomes on S 

21   + IT . _Xcos/J     1    |.px il{k!  dS 
drP        rP 

K    to   M rP£
3 

Since the right-hand side of this equation is equal to -Ag, we obtain the integral 

equation 

*cosß--£i H * Li^-dS = A* <141> 

for determining X from Ag. 

The planar approximation is 

Xcos/3  -  ~   jTA -—^  sec/3da  = Ag . (142) en    cc x 
a 

Since the kernel becomes zero for the sphere (h = hp = 0), the second term will be 

small, so that this equation lends itself to an iterative solution: 

X(l)  = Agsec/3, (143a) 

X(1*:)=sec/3JAg + ^-  ;r\(1) ^ sec^do]   . (143b) 
a 

We shall be satisfied here with the linear approximation 

a 

of which the solution is 
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A  = Ag + -~    rr ^Y^   Agda. (145) 
a 

According to (120) this is 

A  = Ag+Gi • (145') 

Let us now consider the linear approximation to Ex  if P lies on i±e surface 

S itself.   To this approximation we have £ = L = 2Rsin (^/2), so that (136) 

reduces to 

u    _    i   r 2       5 3t0 

3          , „     R- RCOSü +C0N 
-  -cos^n    2R       ) 

and finally, exlcuding the zero-degree harmonic, to 

E-    =~   S U ) (146) 

where S(#) is the ordinary function of Stokes.   Hence equations (137), (145'), 

and (146) again lead to the solution (118) considered in the preceding section. 

If P lies outside the surface S, then (146) no longer holds (not even as a 

linear approximation), and (136) must be applied.   In this case we have 

R8 

a 

this equation provides a simple and useful formula for computing the external 

gravity field. 

Hirvonen (1960) considered the zero-degree approximation that underlies 

this method: he uses a function that is essentially equivalent to (136) but disregards 
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the linear term Ga.   Brovar (1963c, 1964b) gave the integral equation (141) 

and solved it by the method of Molodensky mentioned at the end of tht preceding 

section. 

THE KERNEL 1/L  Here we use the function 

Es   =   E' hrr P„ (costf), (148) 
B"o   n - 1   rP

a 

in agreement with (134b).  Incidentally, this function is related to Ex according to 

(135), which may be written as 

by 

From this fact we can easily deduce a closed expression '-.r Eg ; using (136) we 

find 

I r    /", . ,   rP - r cos^i + I *\ 
^ = " 77 -77\l + in      2rP        ) 

cos^ (150) 

The density of the generalized surface layer in this case will be denoted by 

Rju, so that (122) takes the form 

T =R '•' ^EgdS. 
S 

Then the kernel will be given by (133b), so that (123) becomes 

■ ji-aj rrüdS. 5rp     rP     rP   - •- i 

(151) 

(152) 
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(Strictly speaking, the kernels corresponding to Ex and Eg  contain a spherical 

harmonic of the first degree, but this harmonic will integrate to zero in (138) 

and (152), so that we can disregard it here.) From the interpretation of (151) 

as the potential of a volume distribution it follows that neither T nor dT/drp 

will undergo a discontinuity if P crosses the surface S (p. 57).  Hence even for 

P on S equation (152) holds, so that, with the planar approximation R/rP = 1, 

[jföS  = Ag (153) 

is the desired integral equation for determining ß from Ag. 

This integral equation is formally the simplest considered so far.   This 

does not necessarily mean that it is the most practical.   Integral equations of die 

first kind, such as (153), are less tractable than those of the second kind 

(Courant and Hilbert, 1953, p. 159).   (All of our previous integral equations 

were of the second kind.) The linear solution, however, is easily found. 

As a linear approximation we have 

R8jyf-dcr = Ag. 
i. 

(154) 

which is a strictly spherical equation.   It has the form (1), so that its inversion 

is given by 
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Comparison with (16) shows that 

M 2fUr      2R;  » (156) 

so t***t, apart from a constant factor and a small additional term, u is essentially 

equivalent to the anomalous vertical gradient of gravity.  It is well known that this 

vertical gradient is much more irregular than the gravity anomaly itself.  This 

confirms what has been said above about the tractability of (153), being an integral 

equation of the first kind. 

It would be possible to use (155) with (151), but it is more practical to con- 

sider the linear approximation of Ea rather than its rigorous expression.  We have 

r = re + (h - hp); 

hence 

where 

.-   = ±     T.'   -i- 
r?    r.=o   n " i K      n - l 

corresponds to the strictly spherical case.   Differentiating (148), setting 

r = rP   = R,   remembering the well-known spherical-harmonic expansion of 

Stokes' function and neglecting very small terms we find 

b 
** = 4  £' J2_   p   - -L £   2n + 1 P   - s(4>) 
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We substitute 

Eb   = V +5$r S(4>) (h-h?) (157) 

in (151) and use (156), neglecting the second small term which is in agreement 

with the planar approximation.   Thus we find 

T = R3 jj M V *r + |   M* p (h - hP) S (ih) da 
a a 

= R3   M  M^Cda -£ J7^ (h-h,)S(*)da. 
a a 

The first term on the right-hand side is strictly spherical and must therefore 

be identical with Stokes' integral: 

R3 JJ ß E2° da  = ^   JJ Ag S (tfi)dtr . (158) 
a a 

Hence we finally have 

T =^ JT[^-^<h-^>] s<*>* <l59> 
a 

as the linear solution of (153). 

The integral equation (153), without solution, was given by Brovar (1964a), 

A PHYSICAL INTERPRETATION.  As Brovar (1964a) pointed out, a function 

similar to Es can be interpreted as the potential of a certain volume distribution. 

We shall now give such an interpretation to Es itself (Brovar's E2 is different 

from ours). 
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The potential of a volume distribution is given by 

T"     )   U 0(>T''*'<X') x^alüB'dB'dX' dr' (160) 
r/=o or 

(th? gravitational constant is taken to be unity).  Assume the density o to have the 

fornr. 

p(r', 6',X') = f(r/)t/(6/, X'). (161) 

Then (160) reduces to 

T ■ JJ v F da , (162) 
a 

where 

F «   | «j f (r')r'" dr'. (163> 

Using (128) this becomes 

p  .   I   P. (cos»)     *  f(r')r-"dr'. (164) 

In order to simplify the interpretation, we assume that the anomalous potential T 

does not contain spherical harmonics of degrees zero and one.   Then the sum in 

(164) can start with n = 2.   Furthermore we set 

f(r') = r'~* .    . (165) 

Thus (164) becomes 

F =  £, -AT  ^TFT   
P>. (COS»). n =a   n - 1    rp

r' 

Comparison with (148) shows that, apart from zero-degree and first-degree 

-f^&i&i:^>^ 



harmonics left out of consideration, 

* I 

F  «  §£   =  ^   . (166) 
r R 

Hence (162) becomes 

T - ±    ffi/ E2da 
R   J. 

and, with (93b) 

T -  rr t/cos]3 _, T  =   ! !  —53"*  Es dS- (167) 
S      R 

Comparing this with (151) we see that 

V = R4 n sec/3 . 

Hence the material density of the fictitious volume distribution that produces T is 

P  =CT>
>
) Msec/3; (168) v r • 

it increases towards the center. 

Hence the function E2 may be considered to correspond to the potential of 

a volume distribution, and the generalized Stokes' function (136) corresponds 
I 

according to (149) to the linear combination of the potentials of such a volume dis- 

I tribution and of a surface layer.   Since the potential of a volume distribution is 

I 
j everywhere continuous together with its first derivatives, there is no discontinuity 

of (152) on S, and the discontinuity of (138) is solely due to (139), which represents 

the surface layer. 
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7.   BJERHAMMAR'S INTEGRAL EQUATION 

The approach of Molodensky (sec. 5) and its generalization by Brovar (sec. 6) 

use surface layers on the physical surface of the earth. Bjerhammar (1964) attempts 

the representation of the external gravity field by a layer on the reference ellipsoid 

or, as a spherics* approximation, on a sphere.   For this purpose it is necessary that 

the external gravity field can be analytically continued down to sea level.   This gives 

rise to certain theoretical and computational difficulties which, being irrelevant to 

the linear approximation, will not be discussed here; see (Moritz, 1964, 1966). 

The external gravity field is thought to be generated by a set of fictitious 

gravity anomalies Ag* on the sphere representing the reference ellipsoid.   The 

actual gravity anomalies Ag on the earth's surface as obtained by measurement are 

then related to Ag* by the usual "upward continuation integral" (e.g., Meiskanen 

and Moritz, 1967, sec. 6-8): 

_ R*(r,    - R3) 
z&p - —\r     ..' ~y * • *£ 

4ffrs a 
(169) 

The notations are evident from Fig. 8.   The function Ag on the earth's surface being 

given, this equation is a linear integral equation of the first kind for Ag*.   The 

peculiar simplicity of this equation rests on the fact that the integration is now 

rigorously extended over a sphere.   It was suggested by Bjerhammar (1964). 

Once Ag* has been found, all computations can be done directly, nothing 

but spherical formulas being involved. 
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For solving (169) it is convenient to transform it into 

($*. +.££J£L n Xj*. »      (no, 
a 

by a simple Wick, which may be found in (Moritz, 1965b) or (Heiskanen and 

Moritz, 1967, sec. 8-10). 

As a linear approximation we have 

hence (170) reduces to 

AgP*  - AgP   - (- | Ag?  + g JJ^-^  da) h, .      (171) 
a ° 

The solution of this equation, to the same accuracy, is obviously expressed by 

a ° 

On the other hand, a linear Taylor expansion gives 

-^  h. 

(172) 

Ag*   = Ag (173) 

The comparison of (173) and (172) provides an independent derivation of (16). 

Arnold (1965) obtained the linear solution directly from (169) by an 

approach whose mathematical justification is more difficult. 

To get higher approximations for Ag*, the integral equation (170) may 

be readily solved by an iterative method similar to (143a, b).   As a planar 

approximation, (170) reduces to 
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«f*-kffj-;ttL^£ *, 
o       r 

with the iterative solution 

Ag*W   = Ag , 

a £ 

Details may be found in (Madkour, 1966) and (Moritz, 1966). 
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ß.   TOE LINEAR SOLUTION AS A CONSEQUENCE 
OF TOE GRADIENT SOLUTION 

8.   TOE VERTICAL GRADIENT OF GRAVITY 

in Part B we shall derive the linear solutions obtained in Part A, and also 

others, fron, a simple and intuitively evident formula which uses "free-j 

anomalies at eea level" 

-air 

Ag*  = Ag dAg 
ah h   . 

As a preliminary step we consider now various expressions for the anomalous 

vertical gradient of gravity, dAg/dh.  As a spherical 

dAg _ dAg 
öh dr     * 

approximation, 

(175) 

EXPRESSION IN TERMS OF Ag.   In sec. 1 we have found the expression (16), 

which may be simplified as 

läf-gff*^   *. 2v   JO        ^ 
o 

(176) 

because the small term (-2Ag/R), when multiplied by h and subtracted irom Ag 

according to (173), will produce a term of the order of h/R and can therefore 

be neglected as a planar approximation. 

Since the integrand of (176) decreases rapidly with increasing distance, 

we may replace the sphere by its tangential plane and compute the anomalous 

gradient by the integral 
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-00 a=o s=o (1/7) 

which is formally extended over the whole plane; instead of x and y also polar 

coordinates 

s  = Vxa +y2 , 
(178) 

a = arc tan-^-   , 
x 

may be used.   The origin of the coordinate system is at P. 

EXPRESSION IN TERMS OF T OR g .   Inserting (83) into (46) and 

differentiating with respect to r gives, as a spherical approximation, 

2£& = . J*T   .  2 ÖT       2 
9r dT       r   är      7 ' ' 

This equation is added to Laplace's equation AT = 0, which in spherical 

coordinates r, <p, X takes the form 

aaT      2   dT      tanw   dT       1   daT 1 daT 
ö?"     r   dr      "1*     3p      7" äJT      r"cos*p   dX* " 

The result, on setting r = R, is 

3A£_  2T   ,    1   /- .      % dT   ,   d3T _       1        d8T \     /17Qv 
ör       R        R" V.        ^ dp      dp cos  p   dX    • 

The first term on the right-hand side can be neglected as a planar approximation, 

and according to (35), with <p = 90   -6, there remains 

(180) 

By Brans' theorem we have 

(181) 
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Hence (180) becomes 

aT8G^C 
(182) 

as 
EXPRESSION IN TERMS OF f AND n.   We write (182) more explicitly 

ddft =   G 
^K = ^ (f-tan^, ^ +^4 + -V ~t ) (183) dr       R    \. dp     dp        cos p  dA   y 

and express the horizontal derivatives of £ in terms of the components £ and 

77 of the deflection of the vertical by the relations 

d«        RC. er = - dp dA R?7 cos p . 

Thus we obtain 

**8 - IT = GC-|tanv--^i.  . -       dq       \ dT ^R      v    Rdp       RCOS^öäJ- 

It is again convenient to introduce 
tangential plane coordinates by 

Rdp = dx  ,     RcospdA   = dy  , 

so that 

(184) 

(185) 

^G(W-if-f2). dx 

änce G Cis of the order of *. the first term „„ ^ ^.^ ^ ^ 

negligible as a planar approximation, and mere remains 

a«     G^+rv>- >y ^ (186) 
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This formula was used by Mueller (1961). 

GENERAL REFERENCE SURFACE.   The vertical gradient of gravity 

itself is according to a theorem of Bruns given by 

dH 2gJ-2w3, (187) 

d/öH is the derivative along the plumb line,  g is gravity,  J is the mean 

curvature of the level surface at the point considered, and w is the angular 

velocity of the earth's rotation. 

The vertical gradient of normal gravity is correspondingly given by 

22 = - 
ah 2yj - 2w2 , (188) 

where a/ah is the derivative along the normal plumb line, and J is the mean 

curvature of the normal level surface. 

We divide (187) by g and (188) by y and take into account that 

gdH = ydh = dW, (189) 

where W is the potential.  Hence, we find 

dW J g     ' 

32   =  -21   -   2^ 
aw J y   • 

so that 

aw    aw   aw u   J)      u \g   y J ' 

Using (189) we finally obtain 
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g (190) 

Hie difference of the mean curvatures of the actual and the corresponding 

normal level surface can be expressed in terms of g , which is the vertical 

distance between these two surfaces.   This is a purely geometrical problem, 

which will be solved in Appendix II«   The result is 

J - J = "(2J* -K) C-*A8C. (191) 

where K is the Gaussian curvature. 

Equations (190) and (191) hold for an arbitrary reference surface.   For 

a sphere, their combination reduces to (182), small terms having been 

neglected. 

EXPRESSION IN TERMS OF HORIZONTAL DERIVATIVES OF Ag.   We may 

write (176) as 

dAg _ Rf    ..   . r i N 
*   " 2Ü  Jj  (Ag-Agp)As(^-)  da, (192) 

since by (39), neglecting the second term on the right-hand side as a planar 

approximation, 

)= i? (193) 

The right-hand side of (192) may be transformed by Green's surface identity 

(34), so that we obtain 

dh    =  " 27 H  Ö (Ag, — ) da . (194) 
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By (38) we have 

because, as a planar approximation,   Rsin^  =   2Rsin"*- - t0.   We further 

have 

rrf = -^cosa + -f£-sina, (196) Rotf>       dx dy 

where dAg/äx and Ag/dy are the horizontal derivatives of Ag in a north- 

south and an east-west direction, respectively, and or is the azimuth. 

By means of (195) and (196), equation (194) becomes 

a ' 

which expresses the vertical derivative of Ag in terms of its horizontal derivatives 

of first order. 

Equation (194) may be further transformed by Green's identity (33). 

The result is 

which expresses the vertical derivative of Ag in terms of its horizontal 

derivatives of first and second order. 
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9.  THE GRADIENT SOLUTION 

Let us consider the analytical continuation of the external gravity field down 

to sea level.  The corresponding gravity anomaly at sea level, which will be 

denoted by Ag*, is related to the surface free-air anomaly Ag by 

Ag*  = Ag ah (199) 

plus hie-her order terms. 

This analytical continuation was called "free-air reduction to sea level" 

in (Moritz, 1964, sec. 6.4). 

Once Ag* is known, the quantities pertaining to the external gravity 

field can be computed by purely spherical formulas.  In particular, the 

anomalous potential is given by Stokes' formula for external space: 

R T(r, 0, X)=^-    JJ Ag* S(r, 0, R) da, (200) 
a 

where the notation of (136) is used. 

This formula gives T outside the physical surface S, and also on S 

itself.  Hence the height anomaly 

T 

is found by 

C(r, 6, A) = 4ffG J7 Ag* S(r, 0, R) da (201) 

It is more convenient to use the linear approximation to this formula. 
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Since 

r = R + h • 

we have 

C(r. 9, X) = C(R, 9, X) +|£   h. 

Now, £ (R, 8, X) refers to sea level and is therefore given by the ordinary Stokes' 

formula.  Hence, taking also (199) into account, we obtain 

This formula gives the height anomaly £ =£ (r, 6, X) at the earth's surface. 

Since various expressions for dAg/äh have been given in the preceding 

section, there remains to determine d£/dh.   By differentiating the original 

Bruns formula £ = TA' we find 

K = ± fl\=±*I    i 12 T =.i^.iI+JLö2i T>, 
th      öh ^y/     y öh      y5 ah y^ dh   y  dh     J* 

so that by (46) 

j !£•-?'-£• <*»> 
Inserting this in (202) and multiplying by G we find 

I 
T=il JT(^-^VS(^"h^' (204) 

a 
i 

which is our basic formula, the 'gradient solution." 

Higher approximations to (200) may be found by the integral equation 

approach of sec. 7, but as we have just seen, the linear solution (204) can be 

derived in an elementary way. 

REDUCTION TO POINT LEVEL.  The sea level has no preferred position 
i 

in this problem; reduction to any other level may be used.  If this level has the 
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elevation h, above sea level, then h must be replaced by h - h„.  If we 

put h = h,,   reducing to the level surface passing through the ground point P 

under consideration ("point level"), then h,   = hp,   and (204) reduces to 

T = « jr[*-H>-M]s<#>*. 
a (205) 

since h in the last tenn of (204) is. according to our convention, identical 

with h„ so that h - h,   =h, - hp   = o. 

The advantage of (205) over (204) is its simplicity, its disadvantage i 

that the point level varies from point to point. 
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10.   ARNOLD TYPE SOLUTIONS 

The starting point is (205), the vertical gradient being expressed by (18C); 

T =7flT   SI ^-(h-h,)A3T]  S(0)da. 
a 

(206) 

We write this in the form 

where 

T = ^   SS A*S(*)dor + öT, (207) 

R 
6T =  ~4J SS (h-hp)Aa TS(0)da. (208) 

a 

As a planar approximation we have 

lV'        i, (209) 

(Appendix I) and hence 

2ff    -TJ* 1^       AsTdff- 

By means of Green's surface identity (33) this is transformed into 

(210) 

a        -   -o (211) 

With 

■^ D(T.h) + (h-h,)D(T.^) 
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this becomes 

»•yJIr» (T. h)* + f- JJ*-MD"(T, f >. 
"      ' " (212) 

In agreement with (48) we have 

D(T, h) *  D(T, h) = - y (£ tan ßx +T) tan ß9 ), (213) 

and in analogy to (195), 

ST 
Rdtf)   ' 

(214) 

where 

Rdi  " y RöJ"   --yUcosa+nsina) (215) 

because  -d£ /Rd# is the radial deflection component corresponding to the 

azimuth a. 

Hence (212) becomes 

Ra 1 
6 T = " 2n   N F y {i ten ßl +rf tan "■ > * 

,   R     pc   h - h»       . 
2T7 -'J      i "   y (£ cos a + 7? sin a) da , 

and using (209), 

6T =  " 4ff   JJ y^tan/3a   + 77 tan /Ja ) S ty)da 
a 

+ 2JT JT "Y^   y (£ cos a + 77 sin a) do . (216) 
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Inserting this into (207) we obtain 

R 
T = ~ÜT   II ^-y(Ctan)3:   + ntanßa) ] S(tf>) da 

+ — IT - " "" 2ff JJ    | s     y (? cosa + »7 sin a) der. (217) 

A slightly different form is obtained by transforming the second member 

of (212) using 

0 ' 

By Green's idendty (34), using (193), we find 

|/;D[(b.ft.,T.ijd,..Ä   jT(h-h,,TAs(-i.) 
OP Vüa */ 

= " 2ff  U "T^ T * •      (218a) 
a      • 

Corresponding to (214) we have 

vi8      y        V   a*   ' 

so that 

R 
-^T    ff TD f-i- , h^tkr = ^!    rr sin(6   dh 

2ff   -J ^o  . njder      2ir   J/ l/  äf Tda .   (218b) 
a 

Hence the second term in (217) may be replaced by the sum of (218a) 

and (218b), so that we obtain 

*p ..,   *» 
= 4ir  JTEAg-yCetan/Si  + »7 tan0a ) ] S(4>)do 

|//-C»0»-IV--»#U)T*. (219) 
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For later reference we note as a by-product the relation 

(220) 

which is the deeper reason for the equivalence of (217) and (219). 

Equation (211) may be transformed in still another way.   It is easily 

verified that the relation 

KV''O-5l>-1*>T-£]*5(£-0-"5(r-,0 
holds.   The second term on the right-hand side is transformed by 

!/jD(£.h>.-ff/.riTA.h*<.4. 
AH JTTAshS(0)da, 

the first and third term by (218a) and (218b).   Using the 

6 T in (207) we find 
expression so obtained for 

R T = 4ff  JT^S-TA, h)S(0)da 

£rr4rri 2ff   '    L*   \t h-hp ^sin^fM 
S0y Tda. (221) 

The linear solutions (206), (217), (219), and (221) are equivalent.   Three 

of these, (206), (219), and (221), have been obtained earlier as solutions of 

integral equations:  (107), (105), and (106).   An inverse transformation, leading 

from the form (217) to (206), was published by Arnold (1959b).   The solution 

(219) was derived by de Graaff-Hunter (1960). 
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11.   MOLODENSKY'S SOLUTION 

We start from the gradient solution (204), 

T = £.""(>-!hih)s(*><k'-h*K- (222) 

which we try to convert into the form 

T  = ~  JT (Ag + G: ) S ($ ) da ; (223) 
a 

the expression for G x  is to be determined. 

Since the inverse of Stokes' formula is expressed by (11), we have 

from (223) 

T       R2    p-  T- T, *+^   ..i-^JJ^U.* (224) 

Inserting (222) and taking account of the fact that (11) and Stokes' integral are 

inverse we find 

The term Ag will cancel, and hAg/R can be neglected as a linear approximation. 

There remains 

a ° 

On expressing dAg/dh by (176) this becomes 

Gl   = |f JJ ij [-^ (Ag " Agp ) +hAg - hp Ag, ] da , 

(225) 
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and finally 

Gx   «f   JT^Ag*. (226) 

The combination of (223) and (226) constitutes Molodensky's linear solution, 

which we have derived from integral equations earlier in this report (sections 5 

and 6).   The relation (225) between Gj  and the vertical gradient was established 

by Molodensky   et al. (1962b) in a somewhat different way. 

We have presented this derivation here in order to obtain Molodensky's 

solution as a formal consequence of the gradient solution (204). The following 

derivation, however, is still shorter. 

Denote by S'  the level surface that passes through the point P 

of the earth's surface S (Fig. 9), and denote the anomalous potential on S'  by 

T'  and on S by T.   Then, for two corresponding points on the same vertical 

such as B and B' we have 

T = T'+~ (h-hp) 

= T'+(-Ag-^)(h-lv) 

or, as a planar approximation, 

T = T' - Ag (h - hp). 

This is substituted into (224) with the result 
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The first two terms on the right-hand side give the gravity anomaly 

Ag' on the level surface S'.   Since the point P under consideration lies 

both on S and on S',  we have for this point Ag'  = Ag.  Hence the first 

two terms on the right-hand side will cancel with the first term on the left- 

hand side, and there remains the relation (226) which was to be derived. 
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12.   TRANSFORMATIONS OF MOLODENSKY'S SOLUTION 

By means of (193) we may write the Molodensky correction (226) in the form 

Gl   =2^^(h'hp)^AaG"L)dff' (227) 
a 

which lends itself to transformation by means of Green's identity (34).   The 

result is 

Gl   = "S JjD[(h-h,)^,f ]da. 
a 

In agreement with (195) this is 

O»   'S   Jf7*i[»-Wi»]*. (228) 
a     -     * 

This is an alternative form of (226).   Its interest is mainly theoretical, 

because it serves as a starting point for further transformations. 

By differentiating the product between brackets we find 

Gx     = Gn tGa , (229) 

where 

0»   -|/;^0.-M^f-*. (230) 

r      _ R*   rP Sinti) Aäh.JR3
PPlA     dh     .      „_,. Gla - äF JJ 17 ** äy da '5? JJ17^ M? *• (231) 

The term Gia, when inserted in Stokes' integral, gives rise to a term 

T"   " i IIG» S») * J S   JJ °f da , (232) 
or a     • 

according to (209). 
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Being satisfied with the planar approximation, we may in these small 

correction terms extend the integration formally over the Infinite plane. 

Introducing plane polar coordinates (178) and using the notations of Pig. 10 we 

have 

Tl3(0)*a?   J    I    G™t'a) sdsdtt=^   J     /   Gia(s,ff)dsda, 
or=o s«o 0=0 s=o     (233) 

Gx.fe.a)^    7       F   pr|f Agfe'.a'Js'ds'da'. (234) 
a =0   s'=*>   °       ° 

Here 

consequently 

JG0
8
  = s8 + s'3 - 2s s' cos (a' - a); 

ill   - Mi. ÜL +    J   Üa, Hi 

(2J5) 

becomes 

öh    _ s'-scos(a' -a)    dh     ,   s sin (gf -a)      dh       ,__.. 
SS if a? + 1  7b7-i236) 

Substituting (234) into (233) and taking (236) into account we obtain 

T..W " £   f }    *      j-fr {[*'- scos(a' -«,] f£ + 
cr=o s=o« =0   s =0  ° 

+ssin(a' - a)-p||r } Ag(s', a'Js'ds'do/ 'dsda.     (237) 

We shall now perform the integration over s and a first; with respect to this 

integration, Ag, dh/ds', and dh/s'do/ f>re to be considered a? constants.   By 

standard methods of integration we find 

80 

. 



Figure 10 
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according to (209). 
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r     ds J  17 8=*>     ° 
J* L s3 + s/a - 2s s' cos (a' - a) T3/a ds = 

is    sin       " "— 

and 

8^0     ° 2s/sina5L^a 

so that 

i JE0 S     _  , a a   -a s' 2 sin8 

; 

2ff       °> # v        / \ n 
r      c  sr- t cos (qf-q)   ,   .        2ir 
J     j    JT^ <-dsdq=p-. 

q=o s=o ° 
(238) 

Similarly we find 

2ir     oo 
(.       c s sin (q   - q)     .   .        _ 
J     J  p i   ds da = O (239) 

q=o  s=o 

by performing the integration with respect to q first. 

In view of (238) and (239), equation (237) reduces to 

2ff        « 
1 

S TTTP Ag<s',q')s'ds'da'. T"(0) = 2t   J      ,J  s' as 
q =o    s =o 

If we now return to the sphere, s ds' da' becomes R3da, and s' becomes jß0, 

so that we obtain 

T" -% H<*m *■&//*!& s»)*. .00     w      4TT JJ  ** ROW, 
a * 

(240) 

■.m,,.f,l-*^W' *   Vr -1^ * 
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Substituting (229) into (223) and taking (240) into account we find 

a * 

or, to the same accuracy, 

T = il  J/^+Gll)(l^)s(^)da. (241) 

The term dh/Rd# is the radial inclination of the terrain. 

An expression for Gu has been found in (230).  It may be transformed 

by means of (220), in which T is replaced by Ag.   We readily obtain 

Gai   = 2Ü N't* (h"h> "sin^ff) A*6" ' <2*2> 
a   ° v 

Hence, (241) with Gx expressed by (230) or (242) constitutes another 

linear solution of Molodensky's problem.  A form essentially equivalent to the 

combination of (241) and (242) was obtained by Brovar (1963a,  1964b) by solving 

an integral equation. 

«i i 

t --ainfc mw^pM 
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where 

R3 

Oi   Oa 
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ffi   Oa "la 

13.  A CONNECTION WITH THE TERRAIN CORRECTION 

Pellinen (1964) suggested a solution of the form 

T "£ JJ (Ag+G')SW,)da + t. (243) 
a 

a ** 

and t is a correction term, which will be considered in what follows. 

It will be useful to denote by the subscript O the point at which T is to be 

computed, and to use the subscripts 1 and 2 for distinguishing the variables 

of integration.  Hence Molodensky's formuias (223) and (226) may be written 

T»   = £   If £Agi + (G>>i 3  S(0ol)dq , (245) 
0*1 

((hh   «fjj   JJ ^^AgadtT,. (246) 

The advantage of this new notation is that now (246) can be substituted into (245) 
| 

without danger of confusion: 

T'=4l?  tfO^+tf   N*^  ^*%)S^o1)do1. (247) S 

It is readily verified that the following equation, given by Pellinen (1964), 

is equivalent to (247): 

01 Oa 

JJ n***   ^'^)[S<V)'S(^)1dOjd(fc.       (248) 

..»&'•.. '42 
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where 

It is of the form (243).   Unfortunately the expression for t -- the last 

integral on the right-hand side --is impracticable since S(#0l) and S(l>,2) 

are singular at the point 0, and there is apparently no direct way of avoiding or 

neutralizing this singularity. 

Therefore we shall proceed differently. We consider the gradient 

solution (204), the vertical gradient being expressed by (176). Using our 

present notation we may write it 

ffi <?a 12 (249) 

We form the arithmetic mean of the equivalent equations (247) and (249) and 

perform some elementary manipulations.   The result is 

-  2 hc^o • (250) 

This equation has the form (243), the correction term  t being given by 

1 =4^ JKSf^da-fhAg, (251) 

G ^ 47 JJ   "7^  CkT " h4T  JT     JF*   da ' <252> 
a       ° a       ° 

these equations are written in our old notation. 
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Although the new expression for t does not contain singularities, it 

does not look very promising; still, under certain conditions of practical 

significance it reduces to a surprisingly simple form. 

AN ADDITIONAL ASSUMPTION.   Experience shows that the free-air 

anomalies Ag can often be represented by a linear relation 

Ag=a+bh (253) 

where a and b are approximately constants,  to addition,    b is often 

approximately equal to the Bouguer gradient 

b = 2irkp =*  O.llmgal/meter (254) 

(k = gravitational constant, p = density), so that a is essentially nothing else 

than the Bouguer anomaly, which in this case is largely independent on local 

irregularities of topography.   In statistical terms this expresses a correlation 

of the free-air anomaly with elevation. 

By substituting (253), with constant a and b, equation (252) reduces to 

J25 a 

so that 

\ °" - € JT ¥> * • 2ff    -JJ     £, 

To the same accuracy we have as a planar approximation 

2    .   _      h       R3   rr h -h. 
äG   " ' R" » JJ TT *• 

0" 
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By (5) and (11), the inversion of this equation is Stokes' formula: 

h "\ "s JTG"S<*><*. 

so that 

a 

Since Stokes' integral is known to suppress the zero-degree spherical harmonic, 

this equation will hold only if h does not contain such a harmonic, that is if 

J-Jhda = O. 
a 

If this is not true, then we must obviously subtract the mean elevation 

*. -a? JThd° 
a 

from  h, so that we finally have 

^tfc'su,)* = -§(h-hj. 

Hence (251) becomes 

(256) 

t * -- a(h-hj - - hAg (257) 

Usually the zero-degree harmonic of Ag is assumed to varish.  By (253), this 

gives the condition 

° * 4? Jv  ^gdcr = a+bh, , 

87 



from which 

and 

a = -bh. 

Ag = b(h-hj. 

Then (257) reduces to the very simple form 

t = - - Ag(h-h,), 

so that (243) becomes 

T=-^   SS CAg+C')S(*)dc-i Ag(h-h,). 

(258) 

(259) 

(260) 

(261) 

Let us now consider the quantity G'  under the assumption (253). 

Substituting this relation into (244) and expressing b by (254) yields 

G'  »ikpR'JjÜL^ü!   da, (262) 
a ° 

which may be shown to be essentially identical with the conventional terrain 

correction for "deviation from the Bouguer plate." This interpretation, which 

was given by Pellinen (1964), furnishes an important link with conventional 

methods. 

Obviously the quantity  a in (253), being the Bouguer anomaly, is not 

a true constant for the whole earth, as was assumed in the derivation of (260). 

However, for (256) to hold as a planar approximation it is sufficient for a to 

be, loosely speaking, a local constant, or rather a quantity that varies relatively 

slowly.   Then h,   is not the average height over the whole earth, but rather some 
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local average, which we may consider to be defined by (258) where a is the 

Bouguer anomaly and b is the Bouguer gradient. 

To get an estimate of t, consider its effect on the height anomaly 

C = T/G.   This effect is by (260) 

.C.M.H0..M, 

or by (259) 

ÖC  = 

2G 

35  (h-h,)2. (263) 

If h - h,   =  1000 km, which is a very extreme case, then 

6£  = 5 cm . 

Hence, in those cases where Ag satisfies a relation (253) to a sufficient 

accuracy and extent for (261) to hold, we can probably always neglect the term 

t altogether and use the formula 

R T = fv   tfCAg+G') SW*. (264) 

that is, adding to Ag the terrain correction G'  instead of the Molodensky 

correction Gx. 

This solution is of particular interest from the point of view of deflections 

of the vertical; see sec. 15. 
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C.   DISCUSSION AND APPLICATIONS 

14.   HEIGHT ANOMALIES 

In the preceding Parts A and B we have found expressions for the anomalous 

potential T at the physical surface of the earth.  These formulas give directly 

the height anomaly £ as well, since by Brims' theorem 

C  = £ (265a) 

or, as a spherical approximation, 

C  = j? . (265b) 

where y is normal gravity and G an average value of y for die whole earth. 

We shall now collect the main expressions for T previously found, it 

being understood that by dividing them by the constant G according to (265b) 

we obtain expressions for £ . 

A.  GRADIENT SOLUTIONS (sections 8 and 9) 

'•T=£lf(>-Th-h)s«')d<'-h*s a 

a-r-£ ;ih-^fO.-h,)]s(Wda 
a 

Vertical gradient 

a)    by measurement 

b)  *£L = §. PP *g-ffi ^ 
'     ^h        2ff   JJ        H0

3        w 

a 
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ah 
c>   "T?- = A2 T = GAaC 

e)    $&   = R?    rr    1    sb&g aA_ 
ah       2ir   JJ  7? K'fx   cosa + -fs sina^) da 

a      *° 

B.    MOLODENSKY TYPE SOLUTIONS (sec. 11) 

m*    F  ~Tlt   JJ   <A8+Gi)S<0)<to 
a 

R2 

a) G>    "I  JJ^Agda 

b) G,    = —   ?? siail)    a   rÄ i 
2»r   JJ ^7^  ä? |_(h-hp)AgJ da 

C   BROVAR TYPE SOLUTIONS  (sec. 12) 

IV. T = A   ff 
5 i/("+o»>0*&><♦>* 

b)    G       - —    f*P      ^    ^ ^ 'i x 11 "* 2»r JJ  lj{h'h* "8fa*vä) ^g 30y "*d° 

D.   ARNOLD TYPE SOLUTIONS (sec. 10) 

V,T " 4? Ste'Yittanßi +n ten ßa)] S(0)da + K 
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Ra h - h 
a)   K = 2ff   I!-pr y(Ccosa+r;sina)da 

1   r. 

VLT S 4?   J/^-TAah)S(0)dff 
a 

E.   PELUNEN TYPE SOLUTIONS (sec. 13) 

VU* T =^ H (^g+G')S(0)da + t 
cr 

G, .fgjj»-*>> ft •*,>,» 

a) < = if  JTG"  S(*)da - |hAg, 

da 

G"   = 
ft ° /» *0 ^ a      - a 

b)   t = - | Ag (h - h, ) 

For notations the reader is referred to the sections mentioned, in which these 

solutions have been derived. 

Without exception, these solutions consist of the original Stokes' 

integral and a correction, which assumes very different forms.   We shall 

briefly discuss these forms. 

now 
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As for the gradient solutions, the basic difference between I and II is that 

I uses sea level (or any other fixed reference level), whereas II uses a point 

level that varies from point to point.   Form II is somewhat simpler, but I is 

more suitable for large scale data processing. 

The vertical gradient ?£g/5h entering in these formulas may be obtained 

from measurements (a), but the respective techniques and instruments are still 

at the experimental stage.   The most practical form of computing it is probably 

from gravity anomalies using formula (b).   Equation (c) expresses it in terms 

of the disturbing potential T or the height anomaly (or, approximately, the 

geoidal height) £,   but since second horizontal derivatives are involved, the 

knowledge of £ must be so detailed and accurate that the use of this equation 

is hardly feasible in practice.   Equation (d), which expresses dAg/dh in terms 

of the components £ and V °* tne deflection of the vertical, is more useful 

practically; even astro-geodetic deflections may be used.   Form (e) requires 

as data the horizontal derivatives of Ag, which could in principle be directly 

obtained by torsion balance measurements.   Otherwise in (e), just as in (f), 

the gravity anomaly Ag could be used, but these two expressions are definitely less 

practical than (b). 

Molodensky's solution III is very simple and practical when Gx is 

expressed in the form (a); (b) has only theoretical interest. 

An advantage of the solutions of type IV over those of type III is that 

the integrals entering in G xl are better convergent than those entering in G x. 
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Mathematically speaking, the integrals IV a, b are absolutely convergent, whereas 

die integrals III a, b only converge conditionally (Brovar, 1963a).  This 

advantage is made up by the fact that IV is more complicated than HI, the 

inclination of the terrain entering directly. 

The Arnold type expressions have a certain theoretical significance, 

since they are essentially solutions of the original integral equation for the 

anomalous potential T (sections 2 and 4).   The forms V a and VI have a certain 

esthetic priority since they express die correction to Stokes' integral only in 

terms of £ and TJ or only in terms of T , respectively.   The practical signifi- 

cance of these expressions is small.   (We have chosen the name "Arnold type 

solutions" because Arnold (1959a) was among the first to find one of these 

solutions; later (195%) he transformed this into the gradient solution, which 

he recommends for practical use.) 

The interest of the solutions of Pellinen's type rests in the fact that VII 

contains the expression G' which (1) converges better than Molodensky's Gx 

and (2) has a close relationship to the conventional terrain correction.  How- 

ever, the general expression (a) for the correction t is impractical.  Chly in 

the case that the gravity anomalies are strongly correlated with elevation does 

this expression reduce to the simple form (b); in this case, furthermore, the 

term  t may even be completely neglected in practice.  Although this condition 

for (b) to hold will very often be fulfilled in practice, it should be kept in mind 

that VII b is not universally valid to a linear approximation as all the other 

solutions are. 
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As a conclusion, for practical application we are left with the gradient 

solutions I and II, the gradient being computed by (b) (in exceptional cases, 

the use of (d) might possibly be feasible) and with Molodensky's solution III a. 

In spite of formal similarity, the solution II is not of the form III,    since Gl 

is a functior only of its position on the earth's surface, whereas 

j -&<"*> 
depends, in addition, also on the computation point.   For the same reason, II 

i 
is somewhat inferior to I and III with respect to large-scale (.umputauons; 

■ 

however, this form is eminently suitable for deflections of the vertical, as we 

shall see in the next section.  A drawback of III a is the strong and direct 

dependance of G! on elevation, in particular on inclination since (h - hp )/£„ 

is of the order of inclination.   This drawback is avoided in the slightly longer 

form I, since I b does not contain the elevation as III a does. 

The Brovar type solutions IV a, b show certain interesting features 

which make them worth to be further investigated, although they seem 

definitely less practical than Ilia. 

The solution VII deserves further study in view 01 its relation u> 

conventional methods; in the following section we shall see that it has also 

particular interest for computation of deflections of the vertical. 

_.JB*»-~ 
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15.   DEFLECTIONS OF THE VERTICAL 

According to equation (16) of (Moritz, 1964) the components £, rj of the 

deflection of the vertical are given by 

> dx       y 

T? = * i      - ^ tan 0a , 

(266) 

where, as usually, 

tan &   = !£ ,    tan ßa   = |£   , (267) 

the derivatives  ö/äx and  d/dy being taken along the local horizon in a northern 

and an eastern direction. 

Each deflection component thus consists of two terms:  (1) a derivative 

of the height anomaly and (2) a term depending on the inclination of the terrain. 

The derivatives b £ /dx and ö C /dy are found by differentiating any of the solutions 

listed in the preceding section.   We shall here limit ourselves to the most important 

types A, B, and E; the other types may be treated in the same way. 

Let us start with Molodensky's solution III: 

C  = $r   JJ (Ag+G1)S(4,)d<r. (268) 
o 

Differentiation of Stokes' integral gives Vening Meinesz1 formula, to which 

according to (266) the inclination terms must be added.   The result is 

{*} = -L_  rr (to + co jf{cosa} do-^j^M; (269) 
I rj J       4irG   JJ   ^*       l' d 4>   I sin a/ G  I tan ß2 1     v 
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in the second tern., y has been replaced by mean gravity G.   An equivalent 

forii.uk is found in (Molodenskii   et al.,  1962a, p. 124). 

In the second place we consider the gradient solution I: 

e-«feJ.r(*-^S>*tt>*-£ti*. (270) 
a 

Differentiation of the second term on the right-hand side of this equation and 

use of (267) give 

öxVG        gy      G        *x        G  ^cix 

, Ü   ^S   + £S  tan ft 
G     dx G Pl 

Hence we obtain 

* 1       ff/',      dAg  u\ dS ,    ,h  *Ag   ,  Ag      „      Ag 
«  =47C   JJ^"fh hJ7f C08,vda + Gar  +ftan^.ftan^3. 

The inclination term cancels out, and there ren.alns 

If)/      4wG  •UVag    Oh   Vdtfi  IsinaJ  w   G UAg/*y J ,u/1' 

Let us now compare (269) with (271).   Theoretically, these two solutions 

are completely equivalent.   This does not mean, however, that they are equally 

suited for practical application.   In both cases the correction terms may assume 

large values.   As an example, consider (269), assuming Ag = 100 mgal and 

ßl   = 45 .   Then 

«? tan ft   =   10T*   =   20" . u 
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lb have a comparable situation for (271), consider an elevation h = 1000 m and, 

again, an inclination ßx   = 45 , assuming a linear dependence of the free-air 

anomaly on elevation, 

Ag =a +b h , 

with b = 0.1 mgal/m.   Then 

öAg      . dh ^f=b- = btanÄ, 

so that in (271) 

t M&   ±   10-4   ±   20' 
G    dx 

as before. 

The essential difference between (269) and (271) is that the correction 

term in (269) is independent of elevation, whereas the correction term in (271) 

is proportional to elevation, so that by a suitable choice of the reference level 

it can be made as small as we like.   By reducing the free-air anomalies to 

point level (sec. 9) it becomes zero; then (271) becomes simply 

{*}-i^[*-!^-M]dv
s{r:}*-    ™ 1 o 

This result could also have been obtained by formal differentiation of the 

gradient solution II, but the mathematical justification of this procedure is 

not immediately obvious. 

Summarizing we may say that the correction term in both (269) and (271) 

show an undesirable dependence on the inclination of the terrain.   In (269), this 

dependence is direct; in (271) it is indirect, through an approximate linear 
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dependence of the free-air anomalies on elevation.   In (269), the effect of 

inclination cannot be removed or mitigated in any way; whereas in (271) it 

can be made smaller by reckoning the elevation from an average level 

approximating the terrain rather than from sea level, and it can be made 

zero by reckoning the elevation from point level, thus arriving at (272). 

The correction to the simple Vening Meinesz' formula for £ is 

according to (272) expressed by 

1       r»c dAg   „     .   . d S 
IZG   H fh   (b"hP> jrcosorda 

according to (269) by 

ife n °i Sf«*«* 4flG ■^f tan ßx , 

(273a) 

(273b) 

and according to (271) by 

J£F rr^fh^cos^da+^ f=f . 4rrG    <•'*    3h       d ib G    öx a Y 
(273c) 

This correction is computed by (273a) as a single small term, whereas in (273b) 

and (273c) it is obtained as the difference of two larger terms computed in a 

different way and consequently affected by errors which may seriously endanger 

the result. 

TRANSFORMATION OF MOLODENSKY'S FORMULA.  It is, however, 

possible to transform Molodensky's formula (269) in such a way as to eliminate 

the computational problems caused by the explicit   occurrence of the inclination. 
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whence 

Using the notation of sec. 13, we equate (273a) and (273c): 

or, by (176), 

^C¥S 'So Ills r/i? »• «• -***]£.««** . 
This identity holds for arbitrary functions h and Ag.   We may, therefore, 

interchange h and Ag; with dh/3tx  = tan & we thus obtain 

This expression is substituted in (273b), and G   is expressed by (246).   The 

result is 

which is a correction term to be added to the simple Vening Meinesz formula 

for £; it is equivalent to any of the expressions (273). 

Hence we obtain, in our usual notation, 

where 

1       2ir JJ ^TT- <&g - AgA) da (275) 
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is a new correction term which differs from the Mobdensky correction G x   by 

Ag - Ag» taking the place of Ag.  Here AgA   is the gravity anomaly at the point 

at which £ and 17 are to be computed, whereas AgP would be the anomaly at 

the point to which G,   refers. 

USE OF TERRAIN CORRECTION.  We shall finally consider the solution 

VII b of the preceding section: 

*   = 4^G    JJ(^g+G')S(4))da-^  Ag(h-h.), (276) 

which holds when there is a sufficiently strong correlation of the free-air 

anomalies with elevation; then 

G' =—  IT ft-*1?) (Ag-Agp)  . 
4ff    JJ «3 

a ° 

will be approximately equal to the terrain correction (sec. 13), 

Differentiating the second term on the right-hand side of (276)gives 

By (259) this becomes 

~  2G    ö7 *    V + 2G01    MS7 

» - b (h - h.y — = ^ ^-   = &   tan fl G b(h    *' äx       G    dx G   '"Pi • 

This term cancels precisely with the second term on the right-hand side of the 

first equation of (266), so uiui mere remains 
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REVIEW.  We shall now collect the results so far obtained and classify 

them in the same way as the solutions of sec. 14, but prefixing the letter D to 

the roman numerals, so that the solution DI for deflections corresponds to 

the solution I for T or £ . 

A.   GRADIENT SOLUTIONS 

DU-   «-53 JJfc-fi?<''-'">]St«»<"* 

Dm. 

B.   MOLODENSKY TYPE SOLUTIONS 

«   =47G SS(*S + G0 —-cosada-^f tMnßl dip 

where Gl   ^SISL^i^^ 

Dm'-    *   =4¥G   ;j'(Ag+Gi)5TC08Oda 4ffG   J'1 ^6       x'd0 

«hare G,   . £.   n JLlM gt ' jfe> 
2» JJ da 

DVII 

E.   PELLINEN TYPE SOLUTION 

b«       «  =4?G   JK^+G')^cosada 

/   = R~ pp(h-hp)(Ag-Agp) 

(7 

where G'   = — IT 
4rr JJ 

«,3 
da 
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As compared to Sec. 14, the present collection contains not all solutions given 

there but only those which are believed to be most significant for the computation of 

deflections»  Only expressions of the deflection component £ are given, the corre- 

sponding expressions for rj being evident.   Here A is the point at which £ and y\ are 

to be computed. 

For practical application those solutions that do noc contain the inclination 

tan ßi or the horizontal derivative dAg/äx are preferable for computational reasons 

given above (a small term should not be computed as the difference of two larger 

values obtained in different ways).   Therefore, DII (reduction to point level) is 

preferable to D I, and D III' is preferable to D III. 

A comparison of the expression (179) for dAg/äh with that of Gl given above 

shows readily that the gradient solution O II is computationally simpler than D III'. 

In addition, Gx and Gl depend strongly on the irregularities of topography. 

The Pellinen type solution D Vllb, when applicable, shares the computational 

advantages Of D II and D III'.   Moreover, G' is a true function of position just as Gl, 

having a unique value at every point of the earth's surface (and being consequently 

representable by a map or, say, by a set 5'x 5' mean values), whereas (dAg/dh)(h-h*) 

and depend, in addition, on the computation point A.  On the other hand, the 

applicability of D I, D II, O III, and D III' is unrestricted (as long as the linear 

approximation is sufficient), whereas D VUb presupposes a strong correlation of the 

free-air anomalies with elevation. 

Formulas of a different type will be given in sec. 17. 
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16.   SPHERICAL HARMONICS 

The conventional formulas for computing coefficients of spherical 

harmonics of the earth's external gravitational potential require the free-air 

gravity anomalies to be given on a sphere.  As far as the anomalous gravity 

field is concerned, it is permissible to identify this sphere with the reference 

ellipsoid — this is the s i^rical approximation — but not with the physical 

surface of the earth to which the free-air anomalies primarily refer, because 

the inclination of the terrain is not negligible; cf. sec. 3. 

The free-air anomalies at sea level as defined in sec. 9, 

Ag* » Ag - *ff h , 

however, are directly suited for computing the spherical-harmonic coefficients 

by means of the spherical formulas, since they refer to the reference ellipsoid 

which is represented by a sphere. 

Let Ag*   be a Laplace surface harmonic so computed from Ag*, then 

the harmonic  Tn  of the same degree n of the a--malous potential will be given 

by 

n - 1 Ag? (278) 

Hence the gradient solution (free-air reduction to sea level) is the most direct 

method for computing spherical harmonics. 

Let us now consider Molodensky's solution (sec. 11).   The connection 

between the anomalous gradient and the Molodensky correction Ga is according 
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to (225) given by 

^h = °.-f/f^V^*- 
t ! 

According to sec. 1, equations (8) and (9), this formula is equivalent to the 

following relation between the corresponding harmonics of degree n: 

(" ^h   h\ = (Gl)" + R (hAg)" ' (279b) 

so that by (193) 

Ag,*   =  Ag, +n(|Ag^    +(Ga)„ . (280) 

The sum of the first two terms on the right-hand side is equal to the n-th degree 

harmonic of the quantity 

Ag + n-  Ag=fl + n~>)Ag. 

For lower degrees n   (up to n = 5, say), the second term is of the order of 

h/R and is consequently negligible as a planar approximation.   For higher 

degrees n this is not true, because of the large factor n.   (Since a factor such 

as n always corresponds to some kind of differentiation, this is closely related 

to the fact that the elevation as such may be negligible, but not so its horizontal 

derivative, the inclination.) 

Hence, for lower-degree harmonics, 

Ag*    = (Ag + Gx)n (281) 

or 

(-Th1 0 ■ W. • <282> 
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This meins that the Molodensky correction can be applied to obtain in a simple 

way harmonics of lower degree.   For higher harmonics (281) does not hold.   If 

we would still wish to apply G1 in this case, we would have to use the complete 

expression (280).   This expression, however, involves the spherical-harmonic 

expansion of the product hAg and is, therefore, impracticable. 

The relation (279b) was pointed out by (Molodensky  et. al, J962b). 

USE OF TERRAIN CORRECTION.   Let us consider solution VDb of 

sec. 14: 

T--J JT (Ag + G')S(0)d(T-jAgAh, (283) 

where 

Ah » h - h, , (284) 

hg being a mean elevation of the region considered.   In exactly the same way as 

we derived (225) from (222) and (223), we obtain from (283) and (223) the relation 

(285a) 

in fact, all we have to do is in (225) to replace -h 9Ag/9h by G' and hAg by Ah Ag/2. 

This is equivalent to the relation between spherical harmonics 

n 
(G,)n   -  (G')„   "  ^   (AhAg)n . 2R (285b) 

Since Ah is at most of the order of h, we may to this equation apply the same 

reasoning by which we deduced (281) from (280), finding that for lower harmonics 

Aft*    - (Ag+G')n , (286) 
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because then 

(G')B   - (G^   "(-^ 0   • (287) 

This interesting relation between the lower harmonics (only those!) of three so 

different quantities was derived by Pellinen (1962, 1964) in different ways. t 
j 

The main importance of the relation (287) rests in the fact that G' 

may in many cases be identified with the conventional terrain correction, 

according to (262), which can be computed from the topography only, no 
i 
i 

gravity anomalies being needed.   In view of the as yet imperfect global gravity 

coverage this furnishes a convenient means of estimating the correction (287) 

to the lower harmonics corresponding to the linear approximation; for a 

practical estimate see sec. 18. 

FIRST-DEGREE HARMONIC.   From (278) follows that the first-degree 

harmonic Agx*   must be zero; otherwise the corresponding harmonic Tj would 

be infinite.   According to (287), 

Ag*    «(Ag-^fO  «(Ag + G,),   +  (Ag+G'h   -  O.      (288) 

This condition is satisfied by the gravity anomaly Ag.   It may be shown that for 

any of the integral equation of Part A, except (169), to be solvable a condition 

equivalent to (288) must be fulfilled. 
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17.   THE EXTERNAL GRAVITY FIELD 

If the gravity anomalies are given on a level surface, then the external 

gravity field can be computed by well-known spherical formulas such as (200) 

(Heiskanen and Moritz, 1967, chap. 6).  Since the free-air anomalies Ag refer 

to the physical surface of the earth, the most natural way is to reduce them to 

a level surface such as to sea level, to obtain free air anomalies at sea level 

Ag'-Ag-ff h (289) 

according to sec. 9.   This expression for Ag* is valid to a linear approximation; 

higher-order approximations may be found by an iterative solution of Bjerhammar's 

integral equation by (174 a, b). 

Then the disturbing potential outside the earth is given by (200): 

T(rB, fi, X)  = ~r JJ Ag* S (rp, 0, R) da 
a 

(290) 

where 

r„   - R + hp , 

hp being the elevation above sea level of the point P at which T is to be com- 

puted.   By (135) and (136) we have 

S(rp, Ü, R)  =   £ 2n+ 1      R" 
1 = 2 n - 1    r„ '7£   P„ (COB ib) ; (291) 

a closed expression is obtained from (136), on replacing r by R. 

The gravity disturbance vector 

6 * grad T 
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is found by forming the partial derivatives of (290) in the usual way (Hirvonen and 

Moritz, 1963; Heiskanen and Moritz, 1967, chap. 6). 

In certain cases, such as for computation of gravity anomalies at flight 

elevations, it may be of advantage to reduce the surface anomalies Ag to a 

level surface at a mean elevation of the area under consideration, rather than 

reducing them to sea level.   Reduction to point level is theoretically possible, 

but less convenient for practical application. 

Instead of analytical continuation to some level surface we may also use 

the Molodensky correction Gx.   Li this case Ag*, eq. (289), is replaced by 

Ag + G:, and instead of (290) we have 

T (rp, 6, X)  = — fr (Ag + Gt) S <r,, tf, *) dor, (293) 
cr 

where 

»   2n + 1     rn 

s(rp, 4>, r) = z ——r rrrr P„ (cos4,) (294) 
n=2     n      l    Tf> 

in agreement with (135), equation (136) providing a closed expression. 

This follows from Brovar's method expressed by equations (135) to (147) 

of sec. 6»   The difference between (147) and (293) is only that (293) suppresses 

the zero-degree harmonic of T, which seems to have become customary practice 

in geodesy, while (147) retains it. 

The sum Ag + GT in (293) is by (137) only a linear approximation to X sec ß 

(because dS = R2 dg sec ß); higher approximations for X are obtained by an 

.^erative solution of (142) by (143a, b). 
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Whereas the solution (290) admits of a simple geometrical interpretation, 

being essentially a spherical formula, such as interpretation is not possible for 

(293), since 

r = R + h (295) 

is not a constant, but a variable dej. ending on the topographic elevation h.   It is 

the spherical approximation to the radius vector of the earth's physical surface 

(Fig. 4b).   For practical application, the variability of r constitutes a slight 

disadvantage of (293) as compared to (290). 

As for other methods, the direct application of Molodensky's surface 

layer (sec. 5) and the use of Green's identities, similar to the way in which 

the integral equations of sec. 2 have been obtained, leads to complicated and 

impractical formulas (Brovar, 1963b; Moritz, 1965b). 

APPLICATION TO HEIGHT ANOMALIES AND DEFLECTIONS OF THE 

VERTICAL. The formulas just given for the external gravity field are applicable 

down to the earth's surface and also on the earth's surface itself.   The height 

anomaly £   is then obtained by dividing the anomalous potential T by mean 

gravity G, and the components £, 77 of the deflection of the vertical are 

obtained as the horizontal derivatives of f. 

Hence (290) and its horizontal derivatives give the formulas of 

Bjerhammar 

C = "SF JJ Ae* S <rp» *> R) * ' <296a) 

I«/      4trG JJ ag a 4 t sin « J °° * 
(296b) 
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and from (293) we obtain the formulas 

R2 

C * 4ffG 
ITA sec0S(rp, tf, r) da , (297a) 

UJ-rio.^-' 
a S (rp, $, r)   .-cos <y 

*ll> IsinrvJ G        I tan A,/     *       ' 

Equations (296a, b) and (297a, b) are written in such a way that are 

also valid for higher approximations to Ag and X,  which may be obtained 

iteratively using (174a, b) and (143a, b), as mentioned above.   The quantity r 

is expressed in terms of the elevation by (295), and since the computation point 

P lies now on the earth's surface, we hav 

rp   = R + hp , (298) 

■here hp is the topographic elevation at P. 

The solution (296a, b) corresponds to free-air reduction to sea level 

and was given by Bjerhammar (1964); eq. (296a) is identical with eq. (201) of 

sec. 9. 

The solution (297a, b) was published for the zero-order approximation 

X cos ß = Ag, SJL =tO = fa by Hirvonen (1960).   Higher approximations to X were 

found analytically by Brovar (see sec. 6), of which the linear approximation 

X sec ß * Ag + Gj (299) 

was used in (293). 

The second term on the right-hand side of (297b) is due to the dis- 

continuity of the normal derivative of the function (137) on the physical surface 
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of the earth S.  As we have seen in sec. 6, this discontinuity along the surface 

normal has the magnitude - X.   In (140) we have used the vertical component 

- X cos ß of Ihis discontinuity; now the (negative) horizontal components 

- X cos 8 tan ß1 and - X cos ß tan ßs figure in (297b), since 

ill «      1    3T 
? * "G3X   *   n * " G  *y 

and, according to (Moritz, 1964, sec. 2.4), the unit normal vector n is given 

by 

n = ( - cos ß tan & f - cos 8 tan 8Z, cos 8) . 

The functions S(rp, $,r) and hS (rp, tf>, r)/9ji have been given a 

computationally convenient form by Hirvonen (1960).   He sets 

t » — -   R+h 

R + hp    * 
(300) 

Then we have 

(301b) 

R*S<rp,tf, r) = r^r^* 1 - 3D - tcos^S + 3 in 1 + D'2
tc0s^] , 

(301a) 
3S(rp, ib, r) r 2        6 A . D-1 + tcosri)       . 

a& L D3      D D sin2 # 

1 + D-tcosj/)    "1 

where 

D8   =  1   -  2tcostf) + t? . 

These expressions may also be used in (296a, b) if t is understood to 

be R/rp instead of (300). 
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It is evident that the system (296a, b) is considerably simpler than 

(297a, b).   The quantity r is variable, whereas R is a constant; above all, 

however, the expression (297b) for the deflection of the vertical explicitly 

contains the inclination of the terrain, which is undesirable as we have seen 

in sec. 15.   In fact, the linear approximation of (297b) leads to (269), in the 

same way as (296b) corresponds to (271) or (272). 

Since neither the inclination nor the horizontal derivatives of Ag enter 

in (296b), this expression shares the accuracy advantage of (272); in addition, 

(296b) is rigorous in the sense that it is not restricted to the linear approxi- 

mation.   On the other hand, the functions S(rp, $, R) and BS(rp) &, R)/?» $ 

are more complicated than the simple Stokes and Vening Meinesz functions, 

so that the main practical significance of (296a, b) is its suitability for higher 

approximations. 

The major disadvantage of the system (297a, b), corresponding to the 

method of Hirvonen and Brovar, is the inclination term in (297b). This term 

would be missing if the deflection components £ and r) were computed outside 

the earth; the computation point could be as close to the earth's surface S as 

we like, as long as it does not coincide with S . Hence we are tempted to try 

instead of (297b) the formula 

where c is an arbitrarily small, but nonzero, positive number; we could, for 
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Instance, choose e ■ 1 cm.   This is certainly possible, but unfortunately the 

simplification, as compared to (297b), is only apparent: if we try to evaluate 

the effect of the innermost zone in (302), we shall find expressions which 

contain the Inclination after all, and even in much the same way as (297b) does. 
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18.   CONCLUSIONS AND RECOMMENDATIONS 

in the preceding sections we have tried to draw conclusions as to the 

suitability of various linear solutions for practical use.   We may summarize 

the results in the following list. 

Gradient Molodensky 
Solution Solution 

height anomalies excellent (I b) excellent (in a) 

deflections of vertical excellent (D II) good (D 10') 

spherical     f low excellent good 

harmonics      high excellent poor 

external field excellent good 

The designations lb, III a, DU, and D HI' refer to «,1. J classification of 

sections 14 and 15.   The other solutions of sec. 14 can be ruled out 

practically because they are less simple, except the Pellinen type solution VII b, 

which will be considered later. 

According to the above table, the best all-purpose method is the gradient 

solution.   As downward continuation, or free-air reduction, to sea level it is 

ideal for those quantities that are computed on a global scale such as spherical 

harmonics and height anomalies (or, which is basically the same, geoidal heights). 

For deflections of the vertical a slight modification, reduction to point level, is 

appropriate.   Here the sea-level anomalies Ag* are not used directly, which 

gives to the computation of deflections of the vertical a slightly special character, 

but this is also in conformity with the fact that deflections are not usually computed 
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on a global scale.  Anyhow, the vertical gradient 9AgAh is used for free-air 

reduction both to sea level and to point level. 

Computing this gradient in other ways than (b) is not recommended for 

general use. 

Molodensky's solution m, the correction Ga being computed by (a), is the 

most straightforward expression for the height anomaly, although the practical 

evaluation of G1 is more problematical than that of dAg/dh because Ga is 

strongly affected by the irregularities of topography.   To get gocd results for 

the deflections of the vertical, the modified expression D IQ' should be used rather 

than Molodensky's original formula D m. Molodensky's method is of great importance, 

but on the whole the gradient solution, being simpler and more versatile, appears 

to be preferable in practice. 

The solution VII b, using free-air anomalies combined with a term G' 

which is essentially the terrain correction, is fairly well suited for computing 

height anomalies, deflections of the vertical, and lower-degree spherical harmonics. 

It is, however, not so universally applicable as the other linear solutions since it 

presupposes a strong correlation between free-air anomalies and elevation (see 

sec. 13).   The main importance of this solution rests in the fact that it furnishes 

a link with conventional methods.   Since the terrain correction oan be computed 

without needing gravity, estimates of G' are easily obtained,   m addition, we 

have seen in sections 13 and 15 that the use of Ag + G', free-air anomalies 

modified by adding the terrain effect, in Stokes' and Vening Meinesz' integrals 

without further corrections furnisher height anomalies and deflections of the 
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vertical at the physical surface of the earth in the sense of Molodensky, at 

least to a better approximation than if genuine free-air anomalies Ag were used. 

This result is quite gratifying since in the past Stokes' and Vening Meines z' 

integrals have sometimes been evaluated using free-air anomalies conventionally 

"corrected" by the terrain effect; it is, however, surprising that the results 

are not geoidal heights and deflections of the vertical at sea level, as one might 

assume, but height anomalies and deflections at ground level. 

This solution is not suited for computing the external gravity field and 

spherical harmonics of higher degree.   Therefore, there is no reason for using 

it on a larger scale. 

PRACTICAL SIGNIFICANCE OF LINEAR CORRECTIONS.   The solutions 

discussed here consist of spherical formulas such as Stokes' integral, plus 

small correction terms.   The question arises as to the practical significance 

of these corrections.   Studies of mathematical models, such as given in 

(Arnold, 1960), (Molodenskii   etal., 1962a) and (Molodensky  etal., 1962b), 

are useful for understanding extreme situations, but they may tend to give an 

exaggerated picture.   For this reason they should be complemented by test 

computations in selected areas. 

As for height anomalies, Arnold (1960) has obtained a correction of -0.2 m 

for Mt. Blanc, elevation 4807 m.   This small value, which is probably less than 

the error due to the spherical approximation (sec. 3), seems to indicate that for 

height anomalies the refinements of Stokes' formula are in general of little 
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significance, although we shall subsequently see that there is also evidence to 

the contrary. 

hi any case, matters are entirely different for deflections of the vertical. 

It should be carefully kept in mind that 0.2" in the deflection correspond to a 

linear displacement of 6 meters, and that the effort necessary to obtain the 

deflections to an accuracy of 0.2" is incomparably greater than that required 

for the equivalent accuracy of 6 meters in the height anomaly.   Fig. 11 indicates 

that small deformations (corresponding to small corrections to g) may give 

rise to considerable changes of inclination (corresponding to corrections to £ 

andtj).   Consequently, it is in the case of deflections of the vertical that the 

refinements of Molodensky's theory are of real practical significance.   Except 

in flat country, the linear corrections to Vening Meinesz' formula are indis- 

pensable if an accuracy of + 0.2", corresponding to an accuracy of + 10 m for 

the absolute position in space, is aimed at. Again, the reader is referred to the 

examples of (Arnold, 1960). 

As for spherical harmonics, especially those of lower degree, it might 

be expected that the effect of the linear corrections is insignificant, still more 

so than in the case of the height anomalies.   The estimates of Pellinen (1962), 

however, indicate that this effect is very considerable, of the order of 15 - 20 4 

of the harmonic coefficients themselves.   This surprising result seems to imply 

that also height anomalies may be noticeably affected by these corrections.   This 

point would probably deserve closer examination. 
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Figure II 
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ADEQUACY OF THE LINEAR APPROXIMATION.   The opposite problem 

is whether the linear approximation is practically sufficient or whether higher 

approximations should also be considered.   This question, just as the preceding 

one, is actually beyond the scope of the present report; still, a few arguments 

may be offered.   It all depends on whether the inclination may be considered 

small or not.   An inclination ß of 45°, so that tan & = 1, is obviously not small, 

but this is certainly an exception.   The average inclinations are usually small 

even in mountainous areas; some kind of averaging is inherent in any topographic 

map and in any map of gravity anomalies, however dense the gravity survey may 

be.   Still, the fact that the gradient solution is not directly affected by the terrain 

inclination may be adduced as an argument for preferring it to a solution such 

as Molodensky's, in which Gx  strongly depends on the irregularities of the 

terrain. 

Certainly, formulas for higher approximations are available.   However, 

the question as to their practical applicability and to the genuineness of the 

results so obtained comes up.   Higher approximations correspond to the use of 

higher derivatives of the gravity anomaly field and of the topography.   It is well 

known tht t errors of a given function are increasingly magnified by successive 

differentiations.   An example well-known from geophysical prospecting is the 

second derivative ^Ag/^h2, where different methods may yield results that 

diverge by more than 100 * . 
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These computational difficulties endanger much more than theoretical 

difficulties the use of higher approximations.   Such theoretical difficulties are, 

for instance, the impossibility of rigorous downward continuation to sea level 

and the corresponding mathematical instability of Bjerhammar's integral 

equation (sec. 7), or question of the analytical convergence of the series 

expressing the complete solution of Molodensky's integral equation (Molodenskii 

et al., 1962, pp. 122-3), which apparently has not yet been decided.   But over 

these problems, interesting as they are from a mathematical point of view, we 

should not forget that we are looking for numerical accuracy, mathematical rigor 

being only a tool to attain this accuracy.   (It is well known from mathematics that 

analytically divergent, "asymptotic, " series yield perfectly useful numerical 

results!) 

In keeping with this, close attention must be paid to the effect of inter- 

polation errors, which are present even with a dense gravity net.   In this respect, 

conventional methods of gravity reduction may have advantages;   isostatic and 

Bcuguer anomalies are smoother and easier to interpolate than free-air 

anomalies.   Gravity reduction can indeed be incorporated in the "new theory," 

but this topic will not be considered here. 

RECOMMENDATIONS.   Based on the preceding arguments, the gradient 

solution is suggested for practical application.   For computation of height 

anomalies, spherical harmonics, and the external gravity field, downward 

continuation to sea level is appropriate, using formulas such as (204) and (290); 

the sea-level anomaly Ag* is computed by (199) and (177).   For deflections of 
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the vertical the formula (272), which corresponds to reduction to point level, is 

suggested.   To combine these two different free-air reductions, to sea. level and 

to point level, in a manner suitable for large-scale automatic processing, it is 

suggested to compute and store; 

surface free-air anomaly Ag, 

correction   - -77** h , 
an 

sea-level free-air anomaly Ag* , 

anomalous gradient —-r ; 
an 

the latter being needed for the deflections of the vertical explicitly, that is not 

only in the form of the correction - (dAg/ah) h. 

If a higher approximation is desired, the sea-level anomalies Ag* may be 

computed by the iterative solution (174 a, b); then the height anomalies and 

deflections of the vertical are obtained by (296a, b).  As a matter of fact, these 

formulas for £, £, and r) can also be applied if Ag* is computed by the linear 

approximation (199). 

These recommendations are based on purely theoretical considerations 

and are consequently of a somewhat preliminary nature, although they appear 

plausible.   These theoretical considerations should therefore be supplemented 

by comparative computer studies. 
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APPENDIX I 

PLANAR APPROXIMATIONS 

PLANAR APPROXIMATION TO STOKES' FUNCTION.   As a planar 

approximation, the first term on the right-hand side of (16) was neglected 

to get (176).   In the same way we may neglect the corresponding terms in 

equations (10) and (11), whereby they become identical.   To this extent, 

also their inverses (1) and (5) are equivalent, so that the planar approximation 

to Stokes' function is 

SU>)  = 
2R 

(303) 

SIMPLIFICATION OF (103).   In sec. 4 we have found the solution (103): 

T  = £  JT (Ag + P< +
1RO 

SWda + (l*- (304) 
a 

We shall now show that the term 3q{ /2R between the parentheses is negligible as 

a planar approximation. 

According to (97) we may set 

-qx = A + B, (305a) 

-qg   =  A + 2B , (305b) 

where 

a 

»2 

A-SU-J7,h-h')T*' 

»--£u£-♦!!**■ 

(306a) 

(306b) 
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Let us first consider the term A.   Its effect on T is 

a 

If we compare A with Gt, eq. (226), we see that the only difference is that Ag 

in Gj is replaced by T in A.   By comparing (222) and (223) we find 

* // Ga 8<*) da - - £ j; *£ h 8(*) da - h Ag ; 

whence, on replacing Ag by T, 

(308) 

5;jA8U)«b--5J,;^hS(*)da-hT. 
a a 

so that (307) becomes 

e_ R    p» 3h  ^.       2T\ 0/)VJ      3h   _ 

a 

Now the integrand is of the order of (h/R) Ag which is negligible with respect 

to the gravity anomaly Ag, which is the main term of the integrand of (304), 

and the last term of (308) is of the order of (h/R) T, which is negligible with 

repect to T.   Hence the complete effect 6TA  is negligible as a planar approxi- 

mation. 

As for B, the comparison of (306a) and (306b) shows that A and B are 

of the same magnitude since sin & ?h/^ is of the same order of magnitude as 

h - hp for small i0.   Therefore we may conclude that the effect ftTB will be 

of the same order of magnitude as ftTA and will consequently be also negligible 

as a planar approximation. 

The weak spot in this argument in that the above-mentioned equality of 

orders of magnitude of sin </> dh/<ty and h - hp holds for small /„ (of the order 

of a few kilometers) only.   It is therefore desirable to have an independent check, 

although the computations will be somewhat lengthy. 
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We consider the effect of qa, which by (305a) is the combined effect of A and B: 

fiTc   = 6TA + 6Te ; (309) 

we shall set 

a 
(310) 

By (220) this is equivalent to 

CT 

or 

C  =  D + E (311) 

where, by (38), 

»■•^//^!?*-'S/J»"('-i)*' (312a) 
CT 

_       R    cr sintli    .   9T    , ,„ Ä E = * I? "if h 71 * * <312b> 
or * 

The transformation of (312a) by means of (33) yields 

CT 

Since AgT = *Ag/?h by (180), this becomes 

R2 

2ir   JJ  ;   'v *h / 
CT       e 

and since this integral is the planar inverse of (176), the expression for D 

reduces to 

D - h Ag ; (313) 
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■-. ^■-e^f''^.!9^rj^c^~^,^"y^7VS¥,_^nt,^ 

hence the effect on T is In analogy to (307) given by 

ftT> ■ SJTS*8«*)* (314) 

As for (312b} the effect of E is 

eTc -^ xrfi s<*>* 

a 

Now (312b) corresponds to (231), h replacing Ag,  and T replacing h.   Hence 

the integral 

R 
* JT ES <tf) da, 

which corresponds to (232), is by (240) equal to 

a 

so that the effect of £ becomes 

(315) 

be 

Adding (314) and (315) according to (311) we find the effect of C = -qx to 

«T.       JL   cc 3h r £        * T N 
(316) 
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Since all components of the "gravity disturbance vector" grad T will be of the 

same order of magnitude, the horizontal component 

will be of the order of the vertical component 

*T       .       2T 
*r B     R 

and consequently of Ag  itself.   Hence the effect of C, eq. (316), is negligible 

as a planar approximation for the same reason as (308) is. 

As a by-product we find the effect of B by subtracting (308) from (316) 

tobe 

R    „. 3h   r 5T       2T 3h 
*T° -t tfSCÄ   H >*>*♦»*• (317) 

whose planar approximation is likewise zero. 

Hence (304) reduces in fact to 

T  = ~    fj (Ag + Pl)S(^)da + qt 

a 

which is identical wifi (104). 
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APPENDIX H 

i 

MEAN CURVATURE 

We shall now derive the formula (191) for the difference of mean curvature 

between two surfaces S and S, whose distance, measured along the normal to S, 

A formula for a similar purpose is eq. (8) of (Weatherburn, 1930, p. 173); 

however, it is laborious to adapt it to our present case.   Therefore we shall 

proceed in a more direct manner. 

Denote the position vector of S by x and its normal vector by n .   Then 

the relation 

AgX = - 2Jn (319) 

holds, where A-, is the surface Laplacian defined in sec. 1.   This formula is 

equivalent to expressions given in (Weatherburn, 1927, p. 231) and (McConnell, 

1931, p. 203, example 3), only the notations for mean curvature aie different. 

Our J corresponds to the negative of McConnell's H and of Weatherburn's J/2. 

We shall use a tensor notation equivalent to McConnell's, except that we 

are using ordinary instead of Greek indices for surface tensors, and a notation 

such as x , without any indices, for space vectors.   Then (319) may be written 

k 
2Jn = -a<^M   =  -»"0?N -{;,}?.). (320) 
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where 

a,,   = x, • x, (321a) 

5s the first fundamental tensor of the surface, and x, and x, , denote partial 

derivatives with respect to the surface coordinates.   The second and third 

fundamental tensors are, as usually, 

bn   = - x, • Kj   » x, , • n , (321b) 

c,,   = n, • n,   =   - n,. • n , (321c) 

with the relation 

otJ   = a*1 blkb,, (322) 

connecting the three fundamental tensors.   If K is the Gaussian curvature of 

the suriace, then 

a! i  3j ,   - b! ■ b, ,   =  4J2 - 2K . (323) 

These relations may be found in any textbook on tensor analysis, such as 

(McConnell, 1931). 
—♦ 

The position vector x of S is evidently given by 

x = x + £ n . (324) 

By (324) and (321 a) we have for the first fundamental tensor of S 

lti   = a,, -2Cb13 , (325) 

retaining only terms linear in £.   The contravariant fundamental tem.or is 

given by 

a11   = a1 ^ + 2rb!' , (326) 
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since by (325) and (326) 

&ti a*k  - &ls aJk   * ft,k . 

We further set 

where we need not evaluate the linear residuals r,k  . 

Multiplying (320) by n and taking (321b) into account we find 

2J - -a«JbtJ . 

Let us now multiply the equation corresponding to (320), 

2Jn =  - a'J   x.   , 

by n .   Then, since as a linear approximation 

n  •   n = cos ß ■   1 , 

we have 

2J  =  - a**   XJ.J • n*  . 

By differentiating (324) we find 

X1 > J     '!   X (3 

k T   - 
xt (u) 

(327) 

(328) 

(329) 

so that 

X.J +Ctj n + Ci«j + Cjn, +Cn i J 

{n}  (Xv +Ckn + Cnk) -A,*!  xk • 

<»,,-» = btl +Cn -Cc«j -{tJ} Cx 
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By means of this equation and of (326) we obtain from (329) 

2J  = - (a'* + 2£b!')(*>,. + I,,, -C<s,.) 

= 2J-2^b!J b., -a" C,,.. +Ca'": c,, , 

so that 

J  = J - (2J2 - K) C " I A- C . 

Thus the derivation of (191) is finished. 

This equation, without derivation, was given in (Moritz, 1962). 

A similar formula was published by Marussi (1957). 

' 

(330) 
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