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FOREWORD

This report arose from an investigation into the noise properties of
optical correiation detectors as described originally by T, M, Chen and
A. Van der Ziel.! The techniques were developed in a series of seminars on
Generalized Random Processes, given in the Solid-State Research Laboratory,
ARX, in the Fall and Winter of 1966-1967.
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ABSTRACT

The mathematical description of noise by means of Generalized Random
Processes is presented. The effects on the noise distribution of linear filters
(amplifiers) is discussed and related to conventional filter theory. The modifi-
cation of the noise by a quadratic device is then treated, and this formalism is
then applied to the analysis of the noise performance of a correlation detector
and a conventional square-law detector. The conventional detector is shown to
have a superior signal-to-noise ratio.
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SECTION 1

INTRODUCTION

All instruments are ultimately limited in their sensitivity by noise, and it
frequently is desirable to know quantitatively the effect of that noise. Further-
more, one is frequently interested in the probable outcome of a measurement
made on an ensemble of events, i.e,, the description of the output of an instru-
ment when the input can have 2 range of forms with some probability distribu-
tion. It is the purpose of this report to present a most powerful formalism,
due to I. M. Gel'fand and N. Ya. Vilenkin?, in a form suitable for application to
these problems. The basic concepts will be developed first, then applied to
linear devices. This will provide a description of both the device and the noise
or 51gnals passmg through it.-"Then the formalism will be applied to the compu-
tation of the noise output of nonlinear {quadratic) devices, such as are commonly
used for detection and power measurement. Finally, the entire proceaure will
be applied to a specific problem: the comparison of a quadratic and a correla-
tion detector. This will illustrate the technique and, incidentally, demonstrate
the superiority of the simpler quadratic detector.

SECTICN IT
THE GENERALIZED RANDOM PROCESS
Fundamental to the formalism is the notion of a random variable, which

we define as follows: A random variable § is defined whenever we are given
a function Py {x), where

P; (x)= Prcb.{_? <Ki

and where

P}(r.) < P; () ¥ x ¢ x2
Lim Pg (:()=C’ Liwm Pg D= 1

Xy - 0 X =p 400
Lam Pi— ()= PE (a). N
X q4—o
Several random variables E,,, ;.\or equivalently an n-dimensional random 2
variable E'(f-, F.‘) is defined by the joint distribution function
P;(x‘,... 3= rohif <X, }.‘4,...\}, A function of a random
variable' w = () is defined as follows: Let X be the set of all points such R
that {(x) < y for x € X. Then Pw(y) = Pr_ (X) is the distribution function for w. Y
Joint dxstnbutxons such as Prob § M ¢ 3 <xf are explained more fully
by Gel'fand.' The moments of a ran om variable are the values

/LL-.\:J x™dPyixy= Ef§ g™},
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where the last symbol is called the expectation of the argument. 4, is called
the mean, and A the variance of H

The Generalized Random Process is now definable as a mapping é from
a certain function space ¥ into the set of random varjables, and possessing the
following properties: Denote the image of “(x) by (¢) . Then

a. @(oﬂhfs\l): d@“"‘)*f‘IN) {Linearity)
b, Lim (q‘.'(i)‘.. ,‘m)()} (‘-pld) )(I}..f‘)) implies

w» o !

l'.;:?-, (@(c&.), . ..‘f(c(;,)): (@( ¢, )’ , .,’@(C{L )) {continuity}.

I.e., a Generalized Random Process is a continuous linear random functional
on the space K of infinitely differentiable functions (@ (t) having bounded
suppcrts. Thec motivation is the following: if an apparatug described by a
function C.P(t) is used to measure some random process , the result is a
random variable Q(q?) , characterized by both the process é and the
apparatus function (f(t).

The principal quantities of interest are the mean J}{ (Q/) and the
cerrelation functional 6(¢ {§/) defined by

Mg)= E L@} = j v el Pa tx)
and

BloY)- E{ Py Fv)- j xy APy (xyg) .

The most common example of a generalized random process is a
Gaussian process defined by the joint distribution function

Pr(@)= Pk {FerreX,, .. Fwiex), Z-X@...0X.,

where
Pr ()= fdut Ae J olx exp {":‘i (/\qx,!)}
(amy™r
and AQ ((A.,)) is a non-degenerate positive-deiinite matrix, with
(An x) = i A X, X: . Some properties of the distribution Pr (Z_) are
o i

a. PtfR )= 1
b, E{& @} Me)-c
.. E{E@T@)= Bi@,B)= A




Thus, this is & nean zero process, and is defined uniquely by the matrix A -
which in turn .s defined by the correlation function (@, ¥) . So specifying
From the form of

the correlation function completely specifies the process.
B(Cﬁ’k}') one sees that it must be a continuous bilinear positive definite

functional of its two arguments. The usual form for such a functiunal is
BGY) = Sagc(t Wisy Yi+) Bls,¢)

is a positive -definite generalized function of two variables.

where B(s,1)
When (E( W), L. s & (@ )}

and

are identically

(B(R ek ), (.., B(@a(xrh)))
distributed, the process @ is called stationary. It can then be seen that
B(4,w)= | didt @>40) Bis-r),

Then if Pla) , Wy, B are the Fourier transforms of Pls),
Yit), and B(s-#) respectively, one can write

By = de Ba) @y $uaa),

where B(1)2o0, so that B dA = d¢aa) is a non-
negative measure. A special case is the Unit Process, defined by

(1)

8‘5‘!’): 3(5"1‘)“ or CI(S'(A) = C/). »

where Q(x) is the Dirac delta-function.

SECTION Il
THE DESCRIPTION OF BAND-LIMITED NOISE

M; ../"'M/AAQ‘W&L Rtw) AL NAAL

Filtered Noise N

Uni T Precess Filter

h%. 1

TRt e - Rl




Assume in Fig. 1 one has a filter of transfer function
. ‘w (f"t.}
He (£)E H{t-t') = Sclu) Aiv) e ,
so that if the input iz UL (t) the output is Vitt)= id‘f’ Hit-t' ) (t).

Then if the input is_white noise { = unit process), thé output at time t is a
random variable @ (Ht) and the correlation functional is

B(Ms, He )= Jo&' H(s-t)H(t-t) = B(s-t),

or
Jwis-t) = -ilu[t-t')

Bis-t)= Jd{’dwc.!,k Kwre -Rj(,,‘)e -

t'u_‘(s't)

= L dee forrRewy |2,

o

Then, if the filter consists of seve: al sections, e.g.,

His-t)= Jd{‘ ls-eYL(t'-¢),
where

K (s)= Sd‘-w b K Lis)= J;{Q} e“”sj(w),

then

arfiw) = S we " Hiw) =

= gdqc‘ilcjuclf e"lwue“(“+t't.)-éw) eiﬂ v t{jpu) =

= [ow i) ][om Lewr],

so that successive linear processes can readily be introduced. Thus, for a
succession of filters, we have

cwis~t)

B, t)= #jdwe

for as many functions as are included. A useful concept is to define the
"spectral power density' of the result of white-noise + filter by the spectral
function

[o*.r-ém)lzla.rjlw,ll. . I.;nrz/w)lz,

. - T P S




F(w) = I:nrﬂm,)‘.

Then successive {iltering is seen to modify the spectral power density by

P Ton kel p e,

{my1)
where { fw) is the transfer function of the (n + 1}-st filter. In this
sense, the unit process is seen (from (1)) to have

{Du(w)‘—: 1.

SECTION 1V

THE POWER IN A RANDOM SIGNAL

The power in a signal is proportional to the mean square of the signal, or

W= EZ&;&)?}:&)}= B(He, H )= B¢, 1),

or
W= 1 ondrw t- w
gng‘“" w] L | dw pee),
thus motivating the term ''spectral power density'' for {«w) | The unit

process is thus seen to have a uniform distribution of power over all frequency
ranges, hence an infinite total power. Passage through a filter then limits the
frequency range, giving a finite total power at the output. The idealization of
white noise to the unit process introduces no error, so long as the region of
uniform power distribution of the white noise is larger than the bandwidth of the
filter.

SECTION V

gt

THE DISTRIBUTION OF THE SQUARE N
OF A GAUSSIAN RANDOM SIGNAL

The signal is a random function (He) 2 sf'ﬂ with a Gaussian
distribution of mean zero and with correlation function

(w(s-1)

Bis+)= E{}.(s)?ﬂ')}: #Jo‘we le).

5




The result of squaring is a random function (t) = -;z (t) which is no
longer Gaussianly distributed. However, as we will be interested only in the
first and second moments of WM {t), it will suffice to replace it with a Gaussian
process with the same first two moments (GV 257, corollary).* Accordingly,
we must compute

- E{\(e)}a E{i‘mk—- (t_acj_rl jdx x* exp {“:'{ (C’h’()} )

where
C”:B(t,t): b, . We obtain T\: be .

Then we must compute

D)= E iﬂ‘(s)mt)}: E {;‘(s){'(t)} =

= I‘—E—‘. 3c(x¢l;b x‘.a"px‘){—-} (CK)X)} )

awr

where

(Y
4

Biss)  BGt) | Llet Bis,t)= k.
B (t,9) B{txt)

In this and subsequent calculations we will need an extension of the calculation
of Gel'fand (GV 250, Eq. 5), or

' ) -} (2)
'%7'@/, Jd,( (Ax,'{)exp{--i- (Cx,x)}: Ta (AC )= a,,

(E—' Soh (Ax,t)le‘l’ {'} (C*,K)} = 3a’-Ha,, (3)
()2

&
References are to page numbers in Gel'fand and Vilenkin, °
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where @3 is the sum of all the principal 2 x 2 minors of AC™'. For our

problem, (Ax,x) = (xy + yx)/ 2, or

-

A < o ARz A
A=d b}, The ACzAB= 1 | bse b |

' 8] bc bst
Qa,= l)sr) A, = ‘.l"(bsfl"bol)-

Then from (3),
Ef‘m)mt)}z Dis,t)= AB'(s,t)+ b:

The power density spectrum of this process is then

e,_(w)z. Jdu e-iwu D(u) =

“MWUR Jau SIP U —— 2 _
=z-_lgdq¢f,.dve e’ plue § e+ ar b sw) =

= g%(cﬂu ((/t)c’(/-w) + orbl Sw).

v

(4)

The S(w) term arises from tk> DC power of the non-zero mean. If we
considered instead the process ‘(;) - )'( ) we have a zero mean process
with

Ef(n(n-ﬁ)(x(t)—i\&: Efnb)mt)k-i‘ = ARs,t),

and

er= 2 fo//*fwcw -



If the squaring is followed by additional filtering (e. g., integration), then the
final signal has a mean

Mg = larfoln = fax folbe,

and a correlation function

]).3_(5,*): #jdweiw‘s-ﬂ'm;(w)}l@(w) -

iw (S-t) 1 TR
-_:5'Lrgd'we faw el %%S{»C?"(C’"“’})
(5)

where f(w) is the final {ilter function.

SECTION V1
THE DISTRIBUTION OF THE PRODUCT OF TWO
GAUSSIAN RANDOM SIGNALS

Consider two Gaussianly distributed random signals F,IS’: f(s)* Wits)
and §, ) +hats), where f,1s) and f,(s) are in-
dependent but identically distributed zero-mean Gaussian signals with correla-
tion function

Eldwdiei= BG-t)= Efdhieohml,

and where CU) is a common signal, independent of Ji ) ang 4 1s) and
with correlation function

Etferfen}= B'(s,t),

We wish to compute the first two moments of the product of F.Vand $.(s) in
order to define an equivalent Gaussian process, as we did in Section V. With

?\(s)* F‘“) ;;(5) we need EL“(:)&: E{E(;)},ls)}= ﬁ and
Efnef= E {3,608 6)¢, E )} = Dis,¢).

To compuie these, we need the correlation functions

Eit )t lt)}-" E{({m-nl.(s)X{((-)-f J;(f))}: E { L g‘(t)} = B '(IJ. t),

8




and

E{i.m;‘ lf)}: Ef({(snxf.lﬂx;ﬂ)*J‘(t))}z E{t,ts)i., (+ )3-: Bis,1)+ B'ts,t).

Thus, if we let (%, % f,‘a(.,) be the observed values of
(5,0, £, t¢), F, 0, £, 9 B the relevant correlation matrix is
Ce 7
‘e ‘ b ; 1.2 c”
B = bot be LSQ' + bﬂ e BH - v
] i i
bset bse be + b ‘)sr b'o
|
be bs: b'o-f— be bY, ¢ bse
' .
L bSi‘ b}O b;'f LST b'of L -
To compute the mean 1\ (: )‘(5)} - E §| )E,(s)% Ea )2 (s)} we
use Eq. (2), where
r i - _' 7/
A:__{ (@) < [} o ) Sc Y‘:T,‘.AC =.b°.

o G &) (o]
! L&) O (&

O O o) O

.

To compute the correlation function, we have

Dis,t)= Ef Ly by E 1) §, u)} =

J‘C' SJ[.C[‘;([‘){IK\' (’(-i\x-s!-o) oxP {-1-!- (Cijx)} “

@

e




By making the orthogonal transformation

ﬁ:U*Z.—._& | o | o Ny,

%
po—}

(QeBay)= | Qbi+be  2b)+bs O
Abs 1bee ALY« b

o e b
i b be

Thus, the components (yl, yz) are independent of the components (y3, y4).
Furthermore,

X\ 3y = (Y.l*‘lsl)(\/:-‘/:)/‘-‘ .
We obviously have
E{vit= E{w'i=av/vbe 5 E{w}- E{ui-
and for Ez"lf y..‘g , we use (3), where

) C .
A- L

'
t
'
z e
|
i
I

i
on

©J

-

O o I

| O

»

- 10




E{YB‘YJ g": Bbst - "’E(L',Ji ‘b:)/‘f] = abslt + b: ,

and similarly,

EEvev'f= 2@karbe ) + (abtr by

From these, we get

Efneynee)}s Dis,t)= b+ Dby, byy + bse + bo'

Y -

The power density spectrum of this process is then, like in {4},

st gk (Ll « Qetrgimes + g oo ]+ amhe 1),

Further, after subtracting the mean b(': , we have

-D(f,'f)= bs:* 3 bse 5;{. + as;rl;

and after final filtering,

o3 & [dulounesm + 2 e +2egra el (©

SECTION VII

A COMPARISON OF QUADRATIC AND
CORRELATION DETECTORS

The block diagrams of the two assumed experimental arrangements are
given in Fig. 2. Ir the actual measurement, what is ordinarily recorded is the
actual signal at the sutput of the integrator. So the quantities of interest are
the mean of the {signal + noise) output and its variation, as compared to the
noise-only output. It is presumed that the equipment is sufficiently stable so
that a good determination of the noise-only means can be made. These means
can be subtracted from the output, e.g., by offsetting the recorder pen. Then
both outputs have mean zero in the absence of signal, and have rms deviations
Scn for the correlation detector (CD) and &g, for the quadratic detector

(QD) as given by (6) and (5) with e‘(w) =0,

dc,:: D{(C.S): Qlw Sc‘w ‘3"‘}(&)\1{5{} SJI‘ e(/()E-(/‘T;T} »

11




o = Dpls5)= a-';-_-Bd‘ul-’ma‘twﬂ‘{%Se{/uf&“’?ﬁ/"“’}"‘ 28cu . "

Signal —L
al=)

N\

£ ()
{Multiplierf{Integratcr H Erl

Correlation Detector (CD)

filw) Recorder

.Sunrinr l:”—‘%‘;,1

Signal
€)

Quadratic Detector (QD)

fig. 2.

Thus, the noise-only variation in the QD is twice the variation in the CD. How-
ever, the signal input power is split between the two channels in the CD, so
that with the signal on, we must compare the results of a ew) /o input to
each channel of the CD, while we have a € (w) input to the QD.

The desired knowledge of the input signal is its rnean power, as evidenced
by the shift in the mean of the output of the detectors when the signal is on.
Thus, when we substitute @(w)< € 'tw) for E(w) in (4) and (5), we get

DN g = #de eltw) = b ,

and a variation for the 1‘(;) about its new mean of

dem = gk [do torfeol" ] & (duLegdGmn - gt s (:i,n(:'(/f"-wﬂ}.

12




For the CD, when the input signal to each channel is e‘(w)/g , we get
'
A’V\c = —; gc"w C'(u)) = /2,

and (6} gives a variation about the new mean of
sy = ¥ Ty ey TR IR et | BB
e {ﬁ.;}ffw("ww A Sl (SAI42 wd}

In both of the arrangements, the amplifier noise is regarded as white
noise limited by the amplifier response, so (v = ‘an{(uﬂ‘}. The signal was
assumed to lie entirely within the amplifier bandwidth, or alternatively g'tw)
can be considered as the signal power density spectrum e‘ {w) multiplied by
the square of the amplifier transfer function,

e'rw): }.‘m—ﬂm)l"e,«u ).

The signal to noise ratio of the quadratic detector,

HY * &
J‘QN + 6(- (S #)
and the sirnilar expression for the correlation detector

—

Re= __Ade
| 6}: + gctsm)

can be related in the critical case where e(‘,.) >> ed( ) since there
2 2 s
O)s - &Su and

.&Q = l30, )/ LO‘, =[§)

Re 6@ z 262

I.e., the signal-to-noise ratio of the quadratic detector is ‘ 2 times as
large as the signal-to-noise ratio of the correlation detector.

These values can be easily obtained explicitly in the case where

e'lw,z e Sw-wo ), and the final filter is an integrator
t+ T
Tut) = a'_' dt' vy (t)
Tit-T

13




with transfer function hn 'f(u:)l‘z Sin (M"T)/(W'T‘) . This is the case

of a monochromatic signal of unknown amplitude incident on a noisy receiver.
Then

Ayg = a = AL,

o = 3#54,‘ e = A6k

Y
GQ‘K’N): 6@;‘;‘ -+ Qckélm) -+ 3‘(1

x 1 ]
Ociswny = Seny + 2 Llue) + 2*
T 2

Thus, as J == o=, the dispersion is due to the dispersion in the quantities
being measured, For large T, furthermore, the ratio of output to dispersion
becomes the same for both devices, while for finite T and small signals it
favors the quadratic detector.

SECTION VIl
SUMMARY
A procedure has been presented for analyzing the effect of any linear or
nonlinear device upon a Gaussianly distributed random signal. The signal was
seen to be representable in terms of its spectral power density é (w), the

power per unit frequency interval. The effect of any linear device was rigorously
shown to be the multiplication of the spectral power density by

'Qﬁktw)‘t

where “cu) was the Fourier transform of the filter's transfer function.
Furthermore, the power density in the output of any non-linear device was de-
rived in terms of the correlation fur.ctional

:D(.S‘t) = E {')1(5)7] lt)},

14




where N(s)= F(;(S)) describes the non-linear transfer function.

This correlation functional, in turn, could be used to define a Gaussian Generalized
Random process for calculations involving subsequent filtering, so long as only )
the mean and second moment (power) were of interest. As an example, the

method was used to analyze the signal-to-noise properties of a quadratic and a

correlation detector, and somewhat surprisingly, demonstrated the superiority

of the quadratic detector. The process is clearly capable of extension to other

more complicated devices.

.
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