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FOREWORD

This report arose from an investigation into the noise properties of
optical correlation detectors as described originally by T. M. Chen and
A. Van der Ziel.1 The techniques were developed in a series of seminars on
Generalized Random Processes, given in the Solid-State Research Laboratory,
ARX, in the Fall and Winter of 1966-1967.
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ABSTRACT

The mathematical description of noise by means of Generalized Random
Processes is presented. The effects on the noise distribution of linear filters
(amplifiers) is discussed and related to conventional filter theory. The modifi-
cation of the noise by a quadratic device is then treated, and this formnalism is
then applied to the analysis of the noise performance of a correlation detector
and a conventional square-law detector. The conventional detector is shown to
have a superior signal-to-noise ratio.
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SECTION I

INTRODUCTION

All instruments are ultimately limited in their sensitivity by noise, and it
frequently is desirable to know quantitatively the effect of that noise. Further-
more, one is frequently interested in the probable outcome of a measurement
made on an ensemble of events, i. e., the description of the output of an instru-
ment when the inplit can have a range of forms with some probability distribu-
tion. It is the purpose of this report to present a most powerful formalism,
due to I. M. Gel'lfand and N. Ya. Vilenkin2, in a form suitable for application to
these problems. The basic concepts will be developed first, then applied to
linear devices. This will provide a description of both the device and the noise
or signals passing through it. -Then the formalism will be applied to the cornpu-
tation of the noise output of nonlinear (quadratic) devices, such as are commonly
used for detection and power measurement. Finally, the entire proceQure will
be applied to a specific problem: the comparison of a quadratic and a correla-
tion d;:tector. This will illustrate the technrique and, incidentally, demonstrate
the superiority of the simpler quadratic detector.

SECTION II

THE GENERALIZED RANDOM PROCESS

Fundamental to the formalism is the notion of a random variable, which
we define as follows: A random variable • is defined whenever we are given
a function Pi (x), where

and where

*1 V 60-P,

,c -1.

Several random variables , .or equivalently an n-dimensional random
variable -r (r,. _.. P.) is defined by the joint distribution function
P, (X, ... , x •- . ' X . -, 1 ,4.'. A function of a random
variable s. f- ) is de ined as follows: Let X be the set of all points such
that f(x) < y for x C X. Then P (y) = P-. (X) is the distributio,; function for V.
Joint distributions such as PIo' -J , I Zvi are explained more fully
by Gel'fand. The moments of a random variable are the values



where the last symbol is called the expectation of the argumnent. ,.LA is called
the mean, and ,ttx the variance of t .

The Generalized Random Process is now definable as a mapping 41 from
a certain function space K i the set of random variables, and possessing the
following properties: Denote the image of 4-(x) by Y(O . Then

a. 0110W)- r 4: p (* ) (Linearity)

b. < +=.~) NO. ' t4¼, )f~4 impliesa

.z, (.f- (D. , (continuity).

I.e. . a Generalized Random Process is a continuous linear random functional
on the space R of infinitely differentiable functions CR (t) having bounded
iuppcrts. Thc motivation is the following: if an apparatukdescribed by a
function Ce(t) is used to measure some random process , the result is a
random variable rtiW) , characterized by both the process f and the
apparatus function (q(t).

The principal quantities of interest are the mean )WIV) and the
correlation functional defined by

and

The most common example of a generalized random process is a
Gaussian process defined by the joint distribution function

where

and ((- )) is a non-degenerate positive-definite matrix, with

(Ai) - , X4 Some properties of the distribution Fk Jr) are

a. R•.)= 1.

b.

EF ce3



Thus, this is z mnean zero process, and is defined uniquely by the mat'i. A
which in turn ,i defined by the correlation functioa, •((pL) So specifying
the correlation function completely specifies the process. From the form of

8(cft4w) one sees that it must be a continuous bilinear positive definite
functional of its two arguments. The usual form for such a functional is

where 1(Sj) is a positive-definite generalized junction of two variables.

When I(W. I i)), .. .*r(C' and

(~(q' d5( (C• ( tM))) are identically

distributed, the process ( is called stationary. It can then be seen that

Then if X) 4-", W',L) 8(A3) are the Fourier transforms of fPIO.#
l(*-), and Bts-t-) respectively, one can write

Ch o) t ) T))'
where F3(A)_o0 so that B(i)4X - 'ý) is a non-
negative measure. A special case is the Unit Process, defined by

Hts-r)- Vs*) o = cIlA)(1)

where a(x) is the Dirac delta-function.

SECTION II

THE DESCRIPTION OF BAND-LIMITED NOISE

Unit Precess F, Iter FItere4A Noise
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Assume in Fig. I one has a filter of transfer function

so that if the input is ,lY,(W) the output is "r.(t)- (it' Fi t-t')-:( t').
Then if the input is white noise ( ý unit process), thi output at time t is a
random variable (Ht) and the correlation functional is

B(1Hs, Ht.)= of (-'H tt) ~ -)

or

13 s-t)=

I 4W e (S )~-0 - aL) ,2

Then, if the filter consists of seve" al sections, e. g.,

H(s-t)=J ' s-)Lt-)

where

then

so that successive linear processes can readily be introduced. Thus, for a
succession of filters, we have

F 3 ( ,- ) _ L I_ e, , wI ,a• I • • , , l r)•

for as many functions as are included. A useful concept is to define the
"spectral power density" of the result of white-noise + filter by the spectral
function

4



Then successive filtering is seen to modify the spectral power density by

(P ),- - 10/r -4, X

where (W) is the transfer function of the (n + 1)-st filter. In this
sense, the unit process is seen (from (1)) to have

SECTION IV

THE POWER IN A RANDOM SIGNAL

The power in a signal is proportional to the mean square of the signal, or

or

thus motivating the term "spectral power density" for f1'o) . The unit
process is thus seen to have a uniform distribution of p'ower over all frequency
ranges, hence an infinite total power. Passage through a filter then limits the
frequency range, giving a finite total power at the output. The idealization of
white noise to the unit process introduces no error, so long as the region of
uniform power distribution of the white noise is larger than the bandwidth of the
filter.

SECTION V

THE DISTRIBUTION OF THE SQUARE
OF A GAUSSIAN RANDOM SIGNAL

The signal is a random function (Nt) - (*) with a Gaussian
distribution of mean zero and with correlation function

5



The result of squaring is a random function vt) _ which is no
longer Gaussianly distributed. However, as we will be interested only in the
first and second moments of 1j(t), it will 5uffice to replace it with a Gaussian
process with the same first two moments (GV 257, corollary).* Accordingly,
we must compute

iik: EJj4,(0). W("V IOSA eX' f ~ -1 (C_1,()
where

Then we must compute

where

c"K Bcs,,s) IS(•,) 1 Lt t Bist)= IS.[B(t~s) jtt

In this and subsequent calculations we will need an extension of the calculation
of Gel'fand (GV 250, Eq. 5), or

d,( (A~)(, e'xf Cc{ (Cx,v) TA ( A&)= (2)

References are to page numbers in Gel'fand and Vilenkin. Z
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where COX is the Pum of all the principal 2 x 2 minors of AC- 1  For our
problerrm, (Ax,x) = (xy + yx)/ 2, or

A : • o I , •MR AC"= AB-- _ 6. 5 ,. ý.

d~~z I~r s I- ( bbtk'ý

Then frora Cs),

The power density spectrum of this process is then

•.,,= d -ew b(-) =

-
i AL C A tA~ +e

: ~(I C_ I4/ -+)€- a -Tr •

(4)

The -(u0) term arises from t] : DC power of the non-zero mean. If we
considereB1 instead the process -(S) we have a zero mean process
with

and
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If the squaring is followed by additional filtering (e. g., integration), then the
final signal has a mean

and a correlation function

(5)

where f(w) is the final filter function.

SECTION VI

THE DISTRIBUTION OF THE PRODUCT OF TWO
GAUSSIAN RANDOM SIGNALS

Consider two Gaussianly distributed random signals tls) -- (s) ,
and f,(sl- •(1) i•s.), where 'A(S) and -),Is) are in-
dependent but identically distributed zero-mean Gaussian signals with correla-
tion function

and where 03Z) is a common signal, independent of •9  and • IS) and
with correlation function

E I t (s) tmt) _ B (~)

We wish to compute the first two moments of the product of P.s)and ýjft) in
order to define an equivalent Gaussian process, as we did in Section V. With

(s) () is) we need :LYrs)t= •{,(s) .Is) - and

To compute these, we need the correlation functions

Ei t, s) F L(s) * s)Xt ( LC-))t E t ~CS) 0~1 13 'S 0



and

Thus, if we let (iCe1  V4 be the observed values of

the relevant correlation matrix is

b ,4I L'st bs

Si'tdsT• '0

To compute the mean {jS E ,()ns- .(s 1)we
use Eq. (2), where

A= o 0

c 0

[0 0 o C

To compute the correlation function, we have

D~s, t (0

Pei dKC~ddijeI4 (06-O#ý ~ft- e,9



By making the orthogonal transformation

L) 0

0%

L 0
we have

(Ccj,¾= ' •,.0 C .'.• a g (=*.,u)-

where

ut _ L) a oSt , 6st
&tb'. , •+ al ,b

Thus, the components (y,, y 2 ) are independent of the components (y 3 , y4 )"
Furthermore,

We obviously have

E I, Y-I E t: -A" b,+. b, E W - v. - o

and for we usc (3), where

0
C10i

10
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and similarly,

From these, we get

The power density spectrum of this process is then, like in (4),

Further, after subtracting the mean b we have

and after final filtering,

SECTION VII

A COMPARISON OF QUADRATIC AND
CORRELATION DETECTORS

The block diagrams of the two assumed experimental arrangements are
given in Fig. 2. .r the actual measurement, what is ordinarily recorded is the
actual signal at the output of the integrator. So the quantities of interest are
the mean of the (signal + noise) output and its variation, as compared to the
noise-only output. It is presumed that the equipment is sufficiently stable so
that a good determination of the noise-only means can be made. These means
can be subtracted from the output, e. g., by offsetting the recorder pen. Then
both outputs have mean zero in the absence of signal, and have rms deviations
6,64 for the correlation detector (CD) and 2'Qj for the quadratic detector
(OD) as given by (6) and (5) with _

II
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Correlation Detector (CD)

h(• .. &() +#I• w . fL .. Record~erSignal Am ir - San t L

Noise

Cuadratic Detector (QD)

fig. 2.

Thus, the noise-only variation in the QD is twice the variation in the CD. How-

ever, the signal input power is split between the two channels in the CD, so

that with the signal on, we must compare the re3ults of a flu)AL input to

each channel of the CD, while we have a e, (-) input to the QD.

The desired knowledge of the input signal is its mean power, as evidenced

by the shift in the mean of the output of the detectors when the signal is on.

Thus, when we substitute e(.)-# e '(uW) for etuw) in (4) and (5), we get

and a variation for the "(s) about its new mean of
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For the CD, when the input signal to each channel is ({1W)/i2 s we get

f 1

and (6) gives a variation about the new mean of

In both of the arrangements, the amplifier noise is regarded as white
noise limited by the amplifier response, so p(O) !:- for(taj•. The signal was
assumed to lie entirely within the amplifier btndwidth, or alternatively C 1(,A)
can be considered as the signal power density spectrum es O() multiplied by
the square of the amplifier transfer function,

The signal to noise ratio of the quadratic detector,

and the similar expression for the correlation detector

can be related in the critical case where p(,) > { since there
C• X-- _ and

I. e., the signal-to-noise ratio of the quadratic detector is 2-times as
large as the signal-to-noise ratio of the correlation detector.

These values can be easily obtained explicitly in the case where

c (WA)-= and the final filter is an integrator

dt•

IT J i- T
13



with transfer function i'a- 4I,)H (u)/((UP). This is the case
of a monochromatic signal of unknown amplitude incident on a noisy receiver.
Then

CL~

+ z

I hus, as T' , the dispersion is due to the dispersion in the quantities
being measured. For large T, furthermore, the ratio of output to dispersion
becomes the same for both devices, while for finite T and small signals it
favors the quadratic detector.

SECTION VIII

SUMMARY

A procedure has beer presented for analyzing the effect of any linear or
nonlinear device upon a Gaussianly distributed random signal. The signal was
seen to be representable in terms of its spectral power density e (w.),) the
power per unit frequency interval. The effect of any linear device was rigorously
shown to be the multiplication of the spectral power density by

where 4ew) was the Fourier transform of the filter's transfer function.
Furthermore, the power density in the output of any non-linear device was de-
rived in terms of the correlation fu.ctional

14



where *(s)4 - F(Ps)) describes the non-linear transfer function.
This correlation functional, in turn, could be used to define a Gaussian Generalizcd
Random process for calculations involving subsequent filtering, so long as only
the mean and second moment (power) were of interest. As an example, the
method was used to analyze the signal-to-noise properties of a quadratic and a
correlation detector, and somewhat surprisingly, demonstrated the superiority
of the quadratic detector. The process is clearly capable of extension to other
more complicated devices.

15



REFERENCES

T. M. Chen and A. Van der Ziel. Physica 31:1632 (1965).

2, I. M. Gel'fand and N. Ya. Vilenkin, Generalized Functions, Academic
Press, New York, 1964: Volume IV, Chapter II!.

16



Unclas sified
Security Classification

DOCUMEWT CONTROL DATA - R&D
( S t fca rl y rl . .to he• e fl • o f t Wl 1.. bt c y o f o b o t r,*. Ia nd nd f ai n g e no t ftt o n M u tt b . ol n t o md m o o n 6,t 1 0 . 0 ? &l 1 " p a to t t o W i c oleoj )

I ORIGI|ATNWG ACTIVItY (Coepofeto .tftho) '2& AIIoREPORT Jiffk C LAIB:PICATION

General Physics Research Laboratory ___ski____ied

Aerospace Research Laboratories 2b 00oUP

Office of Aerospace Research
3 REPORT TITLE

The Analysis of Noisy Non-Linear Devices by Meara of Generalized Random

Processes
4 01$CRIPTIVE NOTIES (Typop of #*e &W tnti•sio dalles)q

Scientific. Final.
5 AUTHOW•S) fLzat -ara.m , flmit nan. &P, ,.0.e

Shankland, Donn G.

S.O 7114-0005

61445014 2b. ZAnyt o-e.i,,. ,-h,-. ,,.,.,

d_ 681301 ARL 67-0048
10. A VA IL ABILITYY!.1MITATION NOYIC43,

I. Distribution of this document is unlimited.

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Aerospace Research Laboratories (ARP)

Office of Aerospace Research, USAF

_Wright-Patterson 
AFB, Ohio

13 ABSTRACT

"--The mathematical description of noise by means of Generalized Random

Processes is presented. The effects on the noise distribution of linear filters

(amplifiers) is discussed and related to conventional filter theory. The rnodifi-

cation of the noise by a quadratic device is then treated, and this formalism is

then applied to the analysis of the noise performance of a correlation detector

and a conventional square-law detector. The conventional detector is shown to

have a superior signal-to-noise ratio.

DD AO. 1473 Un_ _ _a __ __ed_

Security Classification

I I' I ' I I I I I ' 1 i ! r,!"i[ [ [ ! ! • •-----



Unclas sified
Securty Classification

it " '" - LINK A LINK8 LINK C

__ __ __O __ __ROLM___ WT ROLM WT ROLIE Wa

F 1. Generalized Random Processes
2. Noise
3. Correlation

,i

1. ORGINATNG ~INSTRtUCTZO;F
i OREGINATrNG. ACTIVITY- E.ntor the nan ae addres mposod by security classioication, using standard statementsof" the contractor. Imbcoutractor. igrantoe, Decartmentd of Do-. h l

feas. activity or oler otlanization (corporat e author) issuing (1) ' squstera may tain copies of this
thsrert.lRI report from DDC.-"
2.. REPORT SECUNTY CLASSIFICATION: Enter the Over- (2) "Foreign announcement and dissemination of this
!ll security clssifiaktion oa the report. Indicate whether
"Restrictel Data" is included, Marking is to be In accord- report by DDC is not suthcr-zed."
ance with appropriate security regulsations. (3) "U. S. Government agencies may obtain copies of
2h. GROUP: Autom-.,c downgrading i. specified in Do) Di- this report directly from D)C. Other qualified DDC26 GOP:Atoatcdonrain s pciie s O D-users sh/all request through
rective 5200. 10 mad Armed Forcca Industrial Mamual. Enter
the group number. Also. when applicable, show that optional
markings have beon tued for Gro•p 3 and Group 4 as author- (4) "U. S. military agencies may obtain copte, of this
ized. report directly from DC. Other qualified users

3. REPORT TITLE: Enter the complete report title in all sall request through
capital letters. Titles in all cases should be unclaselfied.
if s meawngful title cannot be selected withhlxt classifIca-
lion. show :itle classification in all capitals in parenthesis (5) "All distribution of this report is controlled. Qual-
immed'rntey followi.ng the title, ified DDC users shall request through
4. DECRIPTIVE NOTES: If oppropriate, enter the type of __,
report, e.g.. interim, progress. summary, annual, of fired If the r.port ha& been famsished to the Office of Technical
Give the i :iuaive dates when a specific reportitng period is Services, teportment of Commerce. for sale to the public. indi-
covered. cat* this fact and ent•r the pr;' -. if known.
S. AUTHOR(S)z Enter the name(s) of autbor(s) as shown on I L SUPPLMENTARY NOT se for additional explana.
or in 0f- r•tport. Enter test naa.e. fist name. middle initial, tory notes.
If .rtitary, Omaw ratk and branwh of service. T.he name of
thze principal ,uthor As an obsqoute minimurm requirement 12. SPONSORING MILITARY ACTIVITY: EtMr the name of

the departmental project office or laboratory sponsoring (paye
SREPORT DATE.• Erer the date of the report as day. iri for) the research and development. Include address.

month, year, or .north, year. If more than one date appears
on the report, use date of publication. 1.. ABSTRACT: Enter m abstract givinL; a brief end factual

summary of the document indicative of the report, even though
7a. TOTAL NUMBER OF PAGES: The total prge count it may also appear elsewhere in the body of the technical re-should follow n.omal pagination procedures. L4e., enter the port. If additional space is required. a continuation sheet shall
mnmber of pages containing information, be attached.

7b. NUMBER OF REFERENCEM Enter the totri number of It is highly desirable that the abstract of classified reports
references cited in the report. be unclassified. Each paragraph of the abstract shell end with
Sg. CONTRACT OR GRANT NUMBER: If approp•iate, enter an indication of the military security classification of the in-
the applicable number of the contract or grant under which formation in the paragraph, represented as (Ts). (s), (C). or (u)
the report was written. There is no limitation on the lencth of the abstract. How-
83, Mr. th 6d. PROJECT NUMBER: Enter the appropriate ever. the au',gested length is from ISO tV) 225 words.
military department identificetion. sitch as project rea-mber,
aubprojact raimber, system numbaes, tack number, etc. 14. Ks Y WORDS: Key words are technically meaningxil termsof short Phrusec that chaemctesrt* a report and sexy be utedl as
Pa. ORIGINATOR'S REPORT NUMBER(S): Enter the offn- i.dex entries for cataloging the report. Key words must be
cial report numbet by which the document will he identified selected so that no security classification is required. Identi-
and controlled by the ouilainatina r•ctivity This number must fiers, such as equipment model desivatjon. trade ase, military
be unique to this report. project code name, geogrnphic location, may be used as key
9b. OTiER REPORT NUMBER(S): If the report has been words but will Le followed by an indication of technical con-
assigned any other report numbffs (e,the, by the oriianator test. The ab. iment ef links, rules, and weights is optional.I or by the apoaracO. also enter this nuaub•i•s).
10. AVALLABILITY/LIMITATION ";%rt:CE- Enter any lira-

ISt jiob on further disser•inatoion of the rt port. other than those

Unclas sified
Security Classification


