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PREFACE 

In this Memorandum, some basic problems concerning flow 

networks are surveyed and extended to two more general 

structures:  frames of real vector spaces and blocking 

s ys terns. 
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SUMMARY 

This paper surveys some basic problems, theorems and 

constructions for flow networks, and shows how these can be 

extended to more general combinatorial structures. 

One of the generalizations can be roughly described 

as that obtained by replacing the vertex—edge incidence 

matrix of an oriented network by an arbitrary real matrix. 

This leads to the notion of a frame of a subspace of 

Euclidean n—space, a concept very closely allied to that 

of a real ma trie matroid. Our treatment relates matroid 

theory and linear programming theory, and thus provides 

another viewpoint on linear programming, and in particular, 

on digraphoid—programming. 

In the last part of the paper a very general combina- 

torial structure called a blocking system is given an axio- 

matic formulation.  These systems have arisen in a variety 

of contexts, including multi—person game theory and abstract 

covering problems.  It is shown that one of the network 

theorems surveyed in the first part of the paper extends 

to all blocking systems, and indeed characterizes such 

systems. 
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NETWORKS, FRAMES, BLOCKING SYSTEMS 

INTRODUCTION 

In this paper we survey a few basic problems, theorems, 

and constructions concerning flow networks, and describe 

how some of these can be extended to more general structures. 

The paper is divided into three parts. 

Most of the material of Part I, which deals with 

networks, can be found in Ford and Fulkerson [8], or in 

earlier papers by the same authors.  In the main, we limit 

the discussion in Part I to four network problems: maximum 

flow, minimum path, maximum capacity path, and the length- 

width inequality. 

Part II extends this discussion to arbitrary real 

matrices by making use of what we call the frame of a 

subspace of Euclidean n-space, a notion very closely related 

to that of a real matric matroid-  In particular. Part II 

can be specialized to a subclass of real matric matroids 

introduced and studied by Tutte [31], and called by him 

regular matroids. Regular matroids have been recently 

re-investigated by Minty [24], who has given another system 

of axioms for a dual pair of regular matroids.  The resulting 

structure is called a digraphoid in [24], where it is shown 

that some of the main theorems of network-programming 

generalize to digraphoid-programming.  Our treatment provides 

another viewpoint on digraphoid-programmingi and indeed on 



-2- 

linear programming in general.  It is shown in Part II that 

the main theorems of Part I have direct analogues for 

arbitrary real matrices.  We want to emphasize, however, 

that the special network algorithms of Part I do not, so 

far as we know, have such analogues.  Even for the case of 

digraphoid-programming, we know of nothing better 

computationally than the simplex method of Dantzig [3]. 

While the simplex method has proved to be a powerful tool, 

both theoretically and computationally, it is not yet known 

whether it is a good algorithm, in the technical sense 

stressed by Edmonds [6], whereas the network algorithms of 

Part I are good in this sense. 

In Part III a very general combinatorial structure, 

which we call a blocking system, is given an axiomatic 

formulation.  These systems have arisen previously in a 

variety of contexts, including multi-person game theory 

[29] and abstract covering problems [14, 21, 22].  They 

have recently been studied by Lehman [22], who has given 

conditions on a blocking system in order that a max-flow 

min-cut equality or a length-width inequality hold, and 

also by Edmonds and Fulkerson [7], who have shown that one 

of the network theorems of Part I extends to all blocking 

systems, and indeed characterizes such systems. 
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PART I.  NETWORKS 

1.  MAXIMUM FLOW 

Let G be a graph with edge set E and vertex set V. 

Both E and V are assumed finite*  The two ends of an edge 

may be distinct vertices or the same vertex; in the latter 

case the edge is frequently called a loop.  We also allow 

multiple edges joining the same pair of vertices, or 

multiple loops on the same vertex. 

It will be convenient in this section to orient G by 

distinguishing one end of each edge as positive and the 

other as negative.  For a loop these coincide*  If e e E 

has positive end u e V, negative end v e V, we sometimes 

write e ~ (u, v). For each edge e e E and vertex v e V we 

define an integer a(v, e) as follows.  If v and e are not 

incident, or if e is a loop, then a(v, e) ■ 0.  Otherwise 

a(v, e) ■ 1 or —1 according as v is the positive or negative 

end of e.  We call the resulting matrix the vertex—edge 

incidence matrix of G« 

Suppose now that each edge e c E has associated with 

it a nonnegative real number c(e), the capacity of e. Let 

s and t be two distinguished vertices of G. A (feasible) 

flow, of magnitude (or amount) a, from s to t in G is a 

real-valued function x with domain E that satisfies the 

linear equations and inequalities 

(1.1) Z/ a(v, e)x(e) ■ 
eeE 

a,  v = s, 
-a,  v = t, 
0,  v ^ s, t 
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(1.2) - c(e) ^ x(e) < c(e),  e e E. 

Thus |x(e)l can be thought of as the magnitude of flow in 

edge e; if x(e) > 0, the direction of flow in e agrees with 

the orientation of e; if x(e) < 0, the direction of flow 

is against the orientation of e.  The equations (1.1) 

stipulate that a units of flow leave s and enter t,  flow 

being conserved at all other vertices. We call s the source, 

t the sink.  The müximum flow problem is that of constructing 

an x that satisfies (LI), (1-2), and maximizes a. 

We can get rid of the asymmetry in equations (1.1) by 

adding a special edge e' to G joining s and t,   say e'~ (t, s), 

which returns a units of flow to s from t; we may take cfe') 

large*  In other words, by distinguishing one edge e' of 

a graph, the maximum flow problem may be viewed as that of 

maximizing x^') subject to (1.2) and the conservation 

equations 

(1.1') 2_/a(v, e)x(e) 
eeE 

0, v e V. 

For the moment, we shall continue to work with  (1.1)  and 

(1.2),  however. 

We refer to the graph G with capacity function c and 

distinguished vertex pair s,   t as a  (two-terminal)   flow 

network,  or briefly,  a network.     In general, we use the 

word network in this paper to mean a graph together with 

one or more real-valued functions defined on its edges. 
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To state the fundamental theorem about maximum network 

flow, we require one other notion about graphs, that of a 

cut. A cut K c E separating s and t in a graph G is a 

subset of edges that has some edge in common with each path 

joining s and t in G. We say that K blocks all such paths. 

(Here a path joining s and t is a sequence of distinct 

end-to-end edges that starts at s and ends at t* Edges may 

be traversed with or against their orientations in going 

from s to t along the path.) If all edges of K are 

deleted from G* the vertices s and t fall in separate 

components of the new graph.  It is intuitively clear that 

a in (LI) is bounded above by 

(1.3) c(K) - E c(e), 
eeK 

the capacity of cut K.  We can prove this from (1.1) and 

(1.2) by adding those equations of (1.1) corresponding to 

vertices in the s-component of the graph G' gotten from G 

by deleting edges of K.  The result is 

(1.4) a- E . x(e) - D_x(e)<c(K)i 
eeK*"      eeK 

where K (K ) consists of those edges of K with positive 

(negative) end in the s-component of G1 and negative 

(positive) end outside this component.  In words, for an 

arbitrary flow from s to t of magnitude a and an arbitrary 
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cut separating s and t,  the net flow across the cut  is a, 

which is consequently bounded above by the cut capacity. 

Theorem 1.1 below asserts that  equality holds in  (1.4)  for 

some flow and some cut,  and hence the flow is a maximum 

flow,  the cut a minimum cut   [9]. 

Theorem 1.1.    For any network the maximum amount of 

flow from source to sink is  equal  to the minimum capacity of 

all cuts separating source and sink. 

Theorem 1.1,  the max-flow min-cut theorem,   is  a 

combinatorial version,   for the special case of the maximum 

flow problem,   of the duality theorem for linear programs, 

and can be deduced from it  [4]-     Such a proof makes crucial 

use of the fact that the vertex-edge incidence matrix of 

an oriented graph G is  totally unimodular,   i.e.,  every square 

submatrix has determinant 0 or + 1.    A simpler proof of 

Theorem 1.1  is  the second proof given by Ford and Fulkerson 

[10].    This proof also  leads  to an efficient algorithm for 

constructing a maximum flow. 

Proof of Theorem 1.1:     It  suffices to establish the 

existence of a flow x and a cut K for which equality holds 

in   (1.4).     Let x be a maximum flow,   of amount a,   from s  to 

t.     Define a set U c V recursively as follows: 

(1.5a) s £ U; 

— 
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(1.5b)    if u e U and e ~ (u, v) is an edge such 

that x(e) < c(e), then v € U; if u e U 

and e ~ (v, u) is an edge such that 

x(e) > — c(e), then v e U. 

We assert that t 6 U ■ V — U.  For suppost not.  It then 

follows from the recursive definition of U that there is 

a path P from s to t such that x(e) < c(e) on edges e e P 

and x(e) > - c(e) on edges e e P~. Here P ■ P U P~, 

where P consists of those e e P whose orientations agree 

with the orientation of P from s to t. Let 

(1.6)    e - minCmin. (c(e) - x(e)), min_ (c(e) + x(e))] > 0 
eeP eeP 

and define 

!x(e), e i P, 

x(e) + c, e e P+, 

x(e) — e, e e P . 

Then x' is a feasible flow from s to t of amount a + e, 

contradicting the assumption that x was a maximum feasible 

flow.  Hence t e U, as asserted. Let K be the set of 

edges joining U and Ü, and write K - K+ u K~, where K+(K~) 

consists of those edges of K with positive (negative) end 

in U.  Then K is a cut separating s and t, and it follows 

from the definition of U that x(e) ■ c(e) for e e K , 

" 
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x(e) ■ — c(e) for e e K .  Hence equality holds in (1»4)« 

Notice that the proof shows that a flow x is maximum 

if and only if there is no x-augmenting path from s to t 

(i.e., a path P such that (1.7) yields a feasible flow x'). 

If we assume that the capacity function c is integral- 

(or rational-) valued, the proof provides a good algorithm 

for constructing a maximum flow. We can begin the 

computation with any integral-valued feasible flow from s 

to t, e.g., x(e) - 0 all e e E.  We then institute a search 

for a flow-augmenting path using the prescription of (1.5a) 

and (1.5b). A good way to apply this prescription is to 

fan out from s to all its neighboring vertices that can be 

put into U using (1.5b); then repeat the process by selecting 

one of these vertices, scanning it for all its neighbors 

not yet in U that can now be put into U, and so on. This 

way of searching for a flow-augmenting path is called the 

"labeling process" in [8], where it is described in terms 

of assigning labels to vertices as we put them in U; in 

terms of (1.5b), the label assigned to vertex v is u. 

(This simple process forms the basis for most of the 

network-programming algorithms described in [8].)  If this 

search is successful in finding t, the flow increment e 

of (1.6) is a positive integer, and hence x' of (1.7) is 

again an integral-valued flow.  If unsuccessful, the 

present flow is a maximum flow, and a minimum cut has been 

located.  Thus the algorithm terminates, and at termination 
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we have constructed an integral maximum flow and a minimum 

cut. 

Theorem 1.2.  If the capacity function c is integral- 

valued, there is an integral maximum flow. 

Theorem 1.2 is important in combinatorial applications 

of network flows. 

While we have taken the capacity constraints (1.2) to 

be symmetric about the origin, there is no real need for 

this assumption.  The constraints (1.2) can be changed to 

(1.2') b(e) ^ x(e) 1 c(e),  e e E, 

and handled in an analogous fashion provided they are 

feasible, that is, the constraint-set (1.1), (1.2') is nonempty. 

(Thus, for example, "one-way streets" can be incorporated 

in the model.)  Even the feasibility question can be dealt 

with by an appropriate modification of the argument used in 

the proof of Theorem 1.1, or by applying a version of 

Theorem 1.1 to an enlarged network.  For a detailed 

discussion of this and other extensions, e.g., capacities 

on vertices as well as edges, we refer to [8].  Here we 

shall simply state a typical feasibility theorem, the 

circulation theorem due to Hoffman [18]. 
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Theorem 1.3.  Let b(e) ^ c(e) for each edge e of a 

network G be given real numbers. The constraints (1.1') 

and (1.2') are feasible in G if and only if, for each 

subset U c V, we have 

E c(e) - E_ b(e) ^ 0, 
eeK       eeK 

where K    (K )  consists of those edges of G with positive 

(negative) end in U and negative  (positive)  end in V — U. 

Minty  [23]  has distilled from the above proof of the 

max-flow min-cut theorem and from other network algorithms 

of Ford and Fulkerson   [10,   11]  a theorem about graphs,  which 

Berge and Ghouila-Houri  [1]  have called "Lemme des Arcs 

Colores."    We call it  the painting theorem.     To state  it, 

we require some definitions.    A circuit C c E in graph G 

is  a minimal closed path in G,  that is,  a set of edges 

which forms a closed path and is minimal with respect  to 

this property.    A cocircuit D c E is a minimal cut,  that 

is,   a set of edges whose deletion increases  the number of 

connected components of G and is minimal with respect to 

this property.     (In terms of the  (0, + 1)-vertex-edge 

incidence matrix of an orientation of G,  a circuit 

corresponds to a minimal dependent set of columns of the 

matrix,  where  "dependent" means  "linearly dependent over 

the  reals."    If G is unoriented,  and the vertex-edge matrix 

" \ 
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ls taken to be a (0, 1) - matrix, then a circuit corresponds 

to a minimal dependent set of columns, where "dependent" 

means "linearly dependent over the Integers mod 2.") A 

painting of G Is a partition of the edges of G Into three 

sets R, W, B, and the distinguishing of one edge of the 

set R.  It may be viewed as painting the edges of G with 

three colors—red, white, blue—with one red edge being 

distinguished and painted dark red. 

Theorem 1.4.  Given a painting of an oriented graph 

G, precisely one of the following alternatives holds; 

(I) There is a circuit in G containing the dark red 

edge but no white edge, in which all red edges are 

similarly oriented. 

(II) There is a coclrcuit in G containing the dark 

red edge but no blue edge.  in which all red edges are 

similarly oriented. 

Proof:  Let e' ~ (t, s) be the dark red edge.  If 

e' is a loop, then (1) holds and (11) fails, by the 

minimality of a coclrcuit.  If t + s, define a subset 

U c V recursively by the rules 

(1.8a) 

(1.8b) 

s e U; 

if u e U and e ~ (u, v) is red or blue, then 

v e U; if u e U and e ~ (v, u) is blue, then 

v e U. 

_ 
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If t € U« there is an elementary (minimal, simple) path 

from s to t of red and blue edges in which all red edges 

are oriented in the path direction.  This path, together 

with edge e', provides the circuit of (i).  Conversely, if 

(i) holds, then t e U. It t i U,  consider the set of edges 

joining U to U - V - U.  These edges are either white or 

red, and any red edge is oriented from Ü to U, as e' is. 

Delete these edges.  The resulting graph has components 

U, Uj^ ..., lJk with t € Üj. The set of edges joining U 

and iL is the cocircuit of (ii).  Conversely, if (ii) holds, 

then t cannot be in U via (1.8b). 

To apply the painting theorem to the maximum flow 

problem, first add the return-flow edge e' ~ (t, s) to the 

network with c^') large.  Let x satisfy (LI'), (1.2). 

Paint e' dark red.  For other edges e:  If c(e) « 0, paint 

e white; if x(e) ■ c(e) > 0, paint e red and reorient e; 

if x(e) ■ - c(e) < 0, paint e red; if - c(e) < x(e) < c(e), 

paint e blue.  Alternative (i) of the painting theorem 

then leads to a flow-augmenting path, whereas (ii) leads 

to a minimum cut.  In this application the white edges 

play a pale role—they could have been deleted once and 

for all.  But there are other network—programming problems 

for which labeling algorithms that have been described 

[10, 11, 12, 23] can be viewed in terms of edge paintings; 

the role played by white edges is less passive in some of 

these. 

i 
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Before  leaving the discussion of maximum network 

flow,  we mention an alternative  formulation of the problem. 

This  formulation  is  in terms  of the path-edge  incidence 

matrix of an unoriented graph;   it was used in the first 

proof of the max-flow min-cut  theorem  [9].     Let "^ be the 

collection of all paths  from s  to  t    in G.    For each V e*P 

and e e  E define an  integer p(P,   e)  " 1 or 0 according as 

e e P or e  ^ P.    We call the resulting matrix the path- 

edge incidence matrix of G.     Let y be a real-valued 

function with domain 'P that  satisfies 

(1.9) E    y(P)p(P,  e)  < c(e),    e e E, 
Pe^ 

(1.10) y(P) ^ 0,     P ef». 

Thus y(P) can be thought of as the magnitude of flow in P, 

and (1*9) says that the total amount of flow in e cannot 

exceed its capacity.  Subject to (1.9), (1.10), we wish to 

maximize 

(1.11) S y(P). 
Pep 

This version of the problem might seem to be more restrictive, 

since if two paths P, and P« contain the same edge e in 

opposite directions, (1.9) insists that we add y(Pi) and 

y(P2) instead of "cancelling flows in opposite directions." 

— -' ^  —_  
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The two formulations are equivalent, however. 

If the capacity function c is integral valued, there 

is an integral-valued y satisfying (1.9), (1.10), and 

maximizing (1.11).  An edge-form of Menger's theorem [20] can 

be deduced from this: 

Theorem 1.5.  Let G be an. unoriented graph with two 

distinguished vertices s and t.  The maximum number of 

edge-disjoint paths joining s and t is  equal to the minimum 

number of edges in a cut separating s and t. 

2.  MINIMUM PATH 

Let 'L(e) be a real nonnegative number associated with 

edge e of an unoriented, connected graph G-  We shall think 

of ^(e) as the length of edge e.  The length of path P is 

(2.1) t(P) = B t(e) 
eeP 

The second problem concerning two—terminal networks   that 

we consider  is   the minimum path problem;     to find a path 

joining s and  t that has minimum length.    There are several 

good methods  known for doing this.     We describe one below, 

but  first we state and prove a  theorem that is a path—cut 

dual of the max—flow min—cut theorem.     Consider  the maximum 

flow problem in terms of the path—edge  incidence matrix. 

Suppose now  that we  form the cut—edge incidence matrix by 

defining d(K,   e)  « 1 or 0 according as  e e K or e  ^  K. 

Here K is  a  cut separating s and   t.     Let "K  denote  the 

  • 
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class of such cuts. Analogously to (1.9), (1.10), let 

y be a real—valued function with domain T^ satisfying 

(2.1) 

(2.2) 

S y(K)d(K, e) < Ue), 
kefi 

e e  E, 

y(K) > o, K e K 

Again we wish to maximize 

(2.3) S y(K) 
Ke»6 

subject to these constraints. 

The maximum value of (2.3) cannot exceed the length 

of a minimum path from s to t, because a path from s to 

t has some edge in common with each K e K. . 

Theorem 2.1. The maximum value of (2.3) subject to 

(2.1) and (2.2) .is equal to the minimum path length from 

s to t. 

The purely combinatorial version of (2.1) - (2.3) in 

which 1(e)  ■ 1 all e € E and y(K) - 0 or 1 all K e >d , 

asks for the maximum number of mutually disjoint cuts 

separating s and t. As was the case for the maximum flow 

problem, if I  is integral valued, there is an integral- 

valued y that solves the linear program (2.1) - (2.3). 

This will follow from the proof given below.  Hence the 

maximum number of disjoint cuts separating s and t is equal 

to the minimum number of edges in a path joining s and t. 
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Proof of Theorem 2.1.     Let rr (v)  be  the minimum path 

length  from s  to v,   for all v €  V.     Thus TT(V)  > 0 and 

TT(S) 0.  Let 0 n0 - n1 < n be the distinct values n 

assumed by n.  Partition V into n + 1 parts V«, V,, 

where 

'   Vn' 

Vi - {v e V|n(v)  - n.] . 

Thus  s  €  VQ.     Suppose  t €  V. .     We  then single out k cuts 

K-,,   K0,   ...,   K.   in )^   by letting K.  be the set of edges 
11                             j-l                        J j-1 

joining vertices of    U    V.   and vertices of V -    U    V., 
i=0    1 i-0    1 

j - 1,  2,   . .., k.    Define y(K.)  " ^j ~ "j-l' j  *= 1»   2,   . . .,  k, 

and y(K)   ■ 0  for other cuts  K e *d .     Then y solves   (2.1) - 

(2.3).     To prove  this,   it suffices  to show that y satisfies 

(2.1),   since clearly y(K)  > 0 all  K e A^ ,   and 

E y(K) 
Ke/kl 

k 
-   SCTT. 

j-l    J "j-l^  " nk ~ ^O ^ "k " TT(t:) 

Thus consider an edge e joining a vertex u of V. and a 

vertex v of V., where i < j < k, so that e belongs to each of 

the cuts  K..j. ,   K.,   but  to no other cut having positive 

weight  in  y.     Suppose  that 

y(Ki+1)  +  ...   + y(K.)   = n.   - TT.   > -f,(e) 

There  is  a path from s  to u of length n.;   adjoining e  to 

.^ 
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this path yields a path from s  to v of length rr.  + ^-(e)  < 

TTi + ^i "" "l^  " TTv  a contradiction.     If j  > k,  a similar 

contradiction results.     Hence y satisfies   (2.1)  and solves 

(2.1) - (2.3). 

For the case of a  planar two-terminal  network (that is, 

the graph G together with the additional edge e'  joining 

the terminals s and  t is  a planar graph),   where one can 

construct a dual  two-terminal network in which source-sink 

paths correspond  to cuts  separating s and  t in the primal 

network,   the duality between the maximum flow problem and 

the minimum path problem was no:ed in   [9],   and was exploited 

in developing a max-flow algorithm for such networks,   the 

"top-most path" method of  [9].    Theorem 2.1  for arbitrary 

two—terminal networks  is  due  to Robacker   [27].     From the 

point of view of Part II of this paper.   Theorem 2.1 and 

the max—flow min—cut theorem are abstractly the same. 

We return now to  the problem of constructing a minimum 

path joining s and  t.     The procedure we sketch here is a 

special case of a more general algorithm for constructing 

minimum cost flows  in networks   [11].     It evaluates  the 

minimum path length Tr(v)   from s  to v  for  all v e V,  and 

hence provides a solution y to  (2.1) -  (2.3).     We may 

suppose  in the description that there are no  loops or multiple 

edges  in G.    If edge e has  ends u,  v,  we write  the unordered 

pair  (u,  v)   for e and ^(u,  v)   for 1(e). 

To start out,   take n(s)  - 0.     Next  look at all edges 

(s,  v)   and find the minimum value of -t(s,   v)   for such edges. 

If v is a vertex yielding this minimum,   set TT(V)  - ^(s,  v). 
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The general step of the computation is as follows 

that n(u) has been defined for u € U c V. Let Ü 

compute 

Suppose 

V - U and 

(2.4) min  ITT(U) + ^(U, V)] «6 
ueU,veTI 

If the minimum in (2.4) is achieved for an edge (u, v), 

set n(v) ■ 6.  Repeat the general step until n(v) has been 

defined for all v € V. The number rr (v) defined in this way 

is the minimum path length from s to v.  A convenient way 

to do the calculation is to assign to vertex v the label 

(u, TT(V)), where u is some vertex for which the minimum 

in (2.4) is achieved. A minimum path from s to v can then 

be found by backtracking from v to s as directed by first 

members of the labels. 

At the conclusion of the computation, the numbers n(v) 

satisfy the inequalities 

(2.5) -^(u, v) < TT(V) - TT(U) < {-(u, v) 

for all edges (u, v) of G, and maximize n(t) - TT(S) subject 

to (2.5).  If we interpret l(u,  v) as the cost of transporting 

a unit of some commodity over edge (u, v), the number TT(V) 

can be given the economic interpretation of a price placed 

on a unit of the commodity at location v.  Inequalities 

(2.5) then say that no profit can be made by purchasing a 
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unit of the commodity at u and  transporting it  to v or vice 

versa.     Subject to  these restrictions,   the price difference 

TT(t)  — TT(S)  is  to be maximized.    Thus  the maximum value of 

n(t)  - TT(S)  subject  to   (2.5)   is equal  to  the minimum path 

cost  from s to  t.     In another interpretation,   Duffin has 

called  this result  the  "max—potential equals min—work" 

theorem   [5]. 

The assumption that edge lengths are nonnegative has 

been used in an essential way in this  section .     If edge 

lengths  are allowed  to be negative,  and if we ask for a 

minimum length simple path joining two vertices,   the problem 

Is much harder.     There are no known good algorithms  for 

constructing such a path. 

3.     MAXIMUM CAPACITY PATH 

Again we consider a  two-terminal unoriented network 

G with source s,  sink t,  and capacity function c.     This 

time we wish to  find a path P from s  to  t that has  the  largest 

flow capacity of all such paths,   i.e.,  we want to  find a P 

that achieves 

(3.1) max min c(e), 
Pef eeP 

where -P  is the class of all paths joining s and t. We 

call this the maximum capacity path problem. 

This bottleneck problem has been considered in [13, 19, 

26].  It is related to the minimum path problem in the sense 
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that methods for solving the latter can be modified to 

solve it.  But here we shall describe another easy way of 

solving the problem, one that extends to blocking systems 

(Part III).  This method of solution might be termed the 

"threshold method." It leads to the following min—max 

theorem concerning paths and cuts [13]. 

Theorem 3.1. Let G be a network with capacity function 

c and terminals s and t.  Then 

(3.2)    max min c(e) - min max c(e), 
Pe^ eeP      Ke ^ eeK 

where -f3 is the class of all paths joining s and t and 

-^ is the class of all cuts separating s and t. 

Proof.  If P e ^ and K e V , then P fl K is nonempty. 

Let e1 e P fl K.  Then 

min c(e) < c^') < max c(e) 
eeP eeK 

It  follows   that 

(3.3) max    min c(e)   < min    max c(e) 
Pe^   eeP ~ KeX   eeK 

To establish equality in  (3.3),  we can proceed  as 

follows.     Let c,   > c0 >   ...   > c    be the distinct values i   z        n 

assumed by the capacity function, and let c« be large. 
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Let G. be the network obtained from G by deleting all edges 

e satisfying c(e) < c., i - 0, 1, ..., n.  Thus GQ has no 

edges, and G ■ G.  Suppose G. is the first Gj   that contains 

a path joining s and t.  (We are tacitly assuming that i* 

is nonempty, although an appropriate interpretation of 

(3.2) holds if this isn't so.) Since G. has a path P e ^ 

and G._1 contains no path in "P,  we have min c(e) ■ c.. 
J i eeP       :| 

On the other hand, the edges deleted from G in forming 

G.i contain a cut K e 7t , whereas the edges deleted from 

G in forming G. contain no cut in "K,   and thus max c(e) ■ c.. 
2 e£K       J 

Consequently equality holds in (3.3). 

Thus to solve the maximum capacity path problem, we 

lower the threshold for edge capacities until a path 

joining s and t is produced. There are good algorithms 

for recognizing when this happens. 

Notice that no use is made of the fact that c(e) > 0. 

Indeed the solution depends only on the ordering of the 

edge numbers c(e), not on their magnitudes. 

An appropriate version of the threshold method can 

be used to locate a flow-augmenting path that yields the 

largest flow increment (1.6). Thus one way to solve the 

maximum flow problem is to successively find maximum capacity 

flow-augmenting paths by a threshold method. 

One can also show 

-, 
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(3.4)    min max c(e) ■ max min c(e) 
Pe^ eeP       KeK eeK 

For an interpretation, think of G as a highway map with 

c(e) being the maximum elevation encountered in driving 

over edge e. 

4.  LENGTH-WIDTH INEQUALITY. 

Duffin [5] has defined the notions of "extremal length" 

and "extremal width" for two-terminal networks having edge 

resistances and has shown that these are reciprocal quantities 

From this relationship he deduced a certain inequality con- 

cerning paths and cuts for a two-terminal network in which 

each edge has associated with it two nonnegative numbers 

't-(e) and w(e), the length and width of e.  An earlier, purely 

combinatorial version of this inequality in which l(e)  = 

w(e) - 1 is due to Moore and Shannon [25].  This version 

says that if X is the least number of edges in a path 

joining s and t and uu is the least number of edges in a 

cut separating s and t, then \uu is less than or equal to 

the number of edges in the graph.  More generally, let 

(4.1)    \ - min ^(P) « min  E 1(e), 
?£? ?eP   eeP 

(4.2) uu min w(K)  ■ min      S   w(e), 
KeTt' KeX   eeK 

where   "P is  the class of all paths joining s  and  t,   ^  is 

the class of all cuts separating s  and  t.     The number \ 

' 
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is called the  length of G,   JU the width of G,   relative  to 

s and  t.     The  length-width inequality asserts  that 

(4.3) \Uü <    Z)   {,(e)w(e) 
eeE 

A proof of (4.3)  can be given using either the max- 

flow min-cut theorem or its path—cut dual.     We use the 

former approach.     Interpret w(e)  as  the  flow-capacity of 

e.     Then by the max-flow min-cut equality,   there is  a  flow 

from s  to t of magnitude uu.     It  follows  that there is a 

function y defined on  Z0 satisfying  (1.9),   (1.10),   and 

E  y(P) 'JU. 

Thus 

)LU) - X    E   y(P)  <   E  MP)y(P) -    E    E  ^(e)y(P) 
?ei> PeP Pe"P eeP 

<    E   ^(e)    E   y(P)p(P,   e)  <    E   ^(e)w(e) 
eeE P€"P eeE 

Although the  length-width inequality appears weak, 

we shall point out in Part III  that the existence of a 

length—width inequality for a blocking system implies  the 

max-flow min-cut equality for the system. 

—i^- ■*■ 
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PART II - FRAMES 

Our aim in this part of the paper is to indicate how 

the theorems of Part I can be generalized to frames of 

subspaces of Euclidean n—space.  (We shall define a frame 

later on.  But it should be mentioned here that the word 

"frame" was used by Tutte in some of his early work on 

chain—groups and matroids in place of the word "matroid". 

We appropriate it, with his permission, for a more 

restrictive use.) The notion of a frame is closely related 

to that of a matric matroid.  Indeed a frame can be viewed 

as the structure obtained just prior to the matroid in 

making the transition from matrix to its matroid. 

Matroids were introduced by Whitney [35] as a gener- 

alization of dependence properties in graphs or in matrices. 

There is now an extensive and deep theory of matroids, 

mostly due to Tutte [30, 31, 32, 33, 34].  We require only 

the more elementary parts of this theory.  (Certainly Tutte'i 

Introduction to the Theory of Matroids [34] would suffice.) 

The generalization from Part I to Part II can be des- 

cribed roughly as that obtained by replacing the vertex- 

edge incidence matrix of an oriented graph by an arbitrary 

real matrix.   (More generally, we could consider matrices 

over any ordered field.) Thus we pass from the special 

network programs of Part I to general linear programs. 

Associated with every linear program there is a dual 

program.  Associated with every matroid there is a dual 

rr'f . 
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matroid.  Associated with every frame there is a dual frame 

Frame duality provides a bridge between matroid duality and 

linear programming duality.  The basic concept underlying 

duality in all three instances is orthogonality. 

Although the material of this part of the paper was 

developed independently by the writer, we doubt that much 

of it is new.  A recent paper by Rockafellar [28] contains 

a similar development, for example.  Our attention has also 

been called to work of Camion [2], and to a forthcoming 

book on networks by Iri.  Most of the notions and some 

of the results are either explicit or implicit in Tutte's 

work on matroids.  We believe that our treatment of the 

generalized maximum flow problem and the resulting length- 

width inequality for real matrices may be new, however. 

1.  FRAMES OF REAL SUBSPACES 

Let 1Z  be an arbitrary subspace of n—dimensional 

Euclidean space it   .  For the correspondence with Part I, 

a vector X - (x^, X2, ..., xn) in ?Pn should be thought of 

as a real—valued function on a finite set of "edges" 

E ■ {e^, e2, •••, e ] that maps e. into x., and "€ should 

be viewed as the row space of an m by n real matrix 

A = (ai^)' the "generalized vertex-edge incidence matrix". 

Let Y ■ (y^,  y^,   •••, yn) be a vector of :€.  The 

support S(Y) of Y consists of those e. € E such that y. \  0. 

A vector Y € ^P is called an elementary vector of < if it 

"f 
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is nonzero and if there is no nonzero vector X e "A such 

that S(X) is a proper subset of S(Y).  Thus if X and Y 

are two elementary vectors of ft having the same support, 

then X is a nonzero multiple of Y.  Consequently we may 

associate with £ a unique, finite set of lines, each line 

being determined by an elementary vector of 1Z.     We call 

this collection of lines the frame > ■ >(*e) of ^, 

and sometimes refer to an elementary vector F of ^ as a 

frame—vector of 76 . 

Let X and Y be vectors of ^2.  The vector X conforms 

to Y if xiyi > 0 whenever xi  + 0.  In particular, S(X) c S(Y) 

Lemma 1.1.  Let Y be a nonzero vector of JZ-     There 

exists an elementary vector F £f ^P that conforms to Y. 

Proof; If not, select Y ■ (y,, y^,   •-•,  yn) € < so 

that no elementary vector of X conforms to Y, and so that 

the number of elements in S(Y) is as small as possible 

consistent with this condition.  Let X ■ (x,, x«, •••, x ) 

be an elementary vector of Ä such that S(X) c S(Y). Let 

I c E denote the set of e. e E such that y. and x. have 

opposite signs. Thus I is nonempty.  Consider the vector 

Z = Y + aX, where 

= min  ( M > 0 
e.el \ xi/ 

The vector  Z conforms  to Y and  S(Z)  is properly included 

in  S(Y).     By the selection  of Y,   there  is  an  elementary 

-—■* m*       mm 
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vector F conforming to Z.  But then F conforms to Y.  This 

contradiction establishes the lemma. 

An important consequence of Lemma 1.1 is that any non- 

zero vector Y e ^ can be written as a sum 

(1.1) F1 + F2 + . . . + F^ 

of elementary vectors of "*, where each elementary vector 

F| in (1.1) conforms to Y, and two elementary vectors 

Fj, F. with i + j lie on distinct frame—lines of >€.  We 

call (1-1) a conformal frame decomposition of Y.  In general, 

such a decomposition is far from unique, of course. 

We return now to the matrix A ■ (a..) whose rows 

generate ^2 .  A (column) pivot on an element a,  ^ 0 of 

A is a sequence of elementary row operations on A that 

transforms A into a matrix A' ■ (a.1.) in which a/  ■ 1, 

a/; " 0 for i + k.  Starting with A, we can produce from 

it by a sequence of column pivots and deletions of zero 

rows a matrix R whose columns can be permuted to have the 

form 

(1-2) (I, B) 

If A has rank r, then R is r by n, the rows of R are a 

basis for 18,   and R contains an r by r permutation sub- 

matrix whose columns correspond to some S c E. Following 

— r 
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Tutte, we refer to such a matrix R as a standard representa- 

tive matrix of "ft.  Note that each row of R is an ele- 

mentary vector of tt.  The following theorem asserts that, 

conversely, any elementary vector of ft can be obtained 

from A by a finite sequence of pivots. 

Theorem 1.2.  Let F t)e an elementary vector of It- 

Then  there exists a standard representative matrix R of 36 

having a multiple of F a^ one of its rows. 

Proof.  Extend F to a basis "6  of Ig,   and write the 

resulting collection of vectors as a matrix having F as 

its first row, say.  Pivot on a nonzero coordinate of F. 

Consider the second row of the transformed matrix. This 

row has a nonzero coordinate in one of the columns 

corresponding to zero coordinates of the first row, for 

otherwise either F would not be elementary or f  would 

not be a basis.  Pivot on such an element.  Repetition 

of this process produces a standard representative matrix 

R of X? having a  multiple of F as its first row. 

In particular, an elementary vector of -€ can have 

at most n — r + 1 nonzero coordinates. 

Notice also that if 1? and J  are subspaces having 

the same frame >(*)= J(^),   then & = <4 . 

2.  MATROIDS 

A matroid  is a purely combinatorial structure defined 

on a  finite set  E.     There are a number of equivalent axiom 

— ■      i.r       i   ...i n   —^     ■      ...   ■■-.— . 
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systems for matroids.  One in terms of "circuits" is as 

follows.  Let C  he a  finite family of nonempty subsets of 

E.  Members of tf are the circuits of a matroid (E, £  ) 

if the following axioms hold: 

(2.1) No member of C is a proper subset of another. 

(2.2) Let e, and e« be distinct members of E, and suppose 

C, and C2 are members of G  such that e, e C, n C2 and 

e2 e Cl ~ C2 Then there exists Co e tf such that 

e C, c (C, U C0) - [e,] 

The motivation comes from graphs.  Let E be the set 

of edges of an unoriented graph G.  Then the collection £ 

of (graph) circuits of G satisfies (2.1), (2.2), and thus 

(E, (J) is a matroid.  Such a matroid is graphic.  The 

collection J^ of cocircuits of G also satisfies (2.1), 

(2.2), and thus forms a matroid (E,/?).  Such a matroid is 

cographic.  For another important example, consider the 

row space ^ of the m by n matrix A.  Take E ■ {e^, e^, 

..., e }.  Then the collection (? of supports of frame- 

vectors of ^ satisfies (2.1), (2.2) and is consequently a 

matroid (E,C).     Such a matroid is called a real matric 

matroid. 

Associated with every matroid (E,ff) there is a unique 

dual matroid (E, €*). A subset of E is a member of (S * 
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if and only if the cardinality of its  intersection with 

every element of (? is not  equal to  1,  and  it   is minimal with 

respect to this property.     The dual of the dual  is  the 

primal:     (£,(»**)  =  (E, <•).     In case   (E, ff)   is  a graphic 

matroid,   the cographic matroid   (E,^)  is the  dual: 

(E,^)  -  (E, <»*),   (E,^*)   =   (E, (•).     If   (£,6)   is a 

real matric matroid arising from a subspace it,   the dual 

matroid is the real matric matroid obtained from the 

orthogonal complement it*  of H.     Thus if & is the frame 

of ^, we call the frame 3>*  of it*  the dual of >. 

If J^ has standard representative matrix R ■ (I , B), 

th-.Mi a standard representative matrix for 1Z*  is R* ■ 

(B", — I  ).  A frame—vector of ^ can be viewed as 

rt^ resenting the coefficients of a minimal linear dependency 

among columns of R*. 

Let A = (a..) be the vertex—edge incidence matrix of 

an oriented graph G.  It is well—known that the matrix A 

has the total unimodularity property:  every square sub- 

matrix of A has determinant 0, 1, or —1.  One can deduce 

from this that each elementary vector of the row space It 

of A is a multiple of a vector having coordinates 0, 1, 

or —1.  Such a vector is called primitive.  Conversely, if 

a subspace it has the property that each elementary vector 

of >P is a multiple of a primitive vector, then ft is the 

row space of some totally unimodular matrix A ■ (an)'  ^n 

particular, a.. ■ 0, 1, or —1.  Such a space "* is called 
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regular and the corresponding matroid is a regular matroid. 

Thus regular matroids are precisely those real matric 

matroids generated by totally unimodular matrices.  The 

dual of a regular matroid is regular.  A dual pair of 

regular matroids is called a "digraphoid" in [24]. 

(It should be remarked, though we make no use of it 

here, that Tutte has shown that a regular matroid is a 

binary matric matroid, that is, a matroid generated by a 

matrix over the field of two elements, and has characterized 

regular matroids as a subset of the binary matric matroids. 

This characterization, which is in terms of certain excluded 

matroid minors—a matroid minor is not the same thing as 

a matrix minor—is deeper than the one above, also due to 

Tutte, of regular matroids as a subset of real matric 

matroids.  It can also be shown, as was pointed out to the 

writer by Edmonds, that a matroid is regular if and only if 

it is both a real matric matroid and a binary matric matroid. 

From this one can deduce that a (0, + 1)—matrix (I, B) is 

totally unimodular if and only if the binary rank of any 

subset S of its columns is equal to the real rank of S. 

This can also be proved directly.  It is also possible to 

give a characterization of regular matroids among those 

real matric matroids generated by (0, + l)-matrices in 

terms of a single excluded matroid minor: namely, exclude 

the self—dual matroid on a set of four elements, every 

triple of which is a circuit.  The problem of characterizing 
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regular matroids among all real matric matroids in terms 

of excluded matroid minors appears to be open, as does the 

more fundamental problem of giving necessary and sufficient 

conditions in order that two real matrices generate the 

same matroid.) 

The real matric matroid generated by the vertex—edge 

incidence matrix A of an oriented graph is a regular matroid. 

The nonzero coordinates of an elementary vector F of the 

row space X of A  pick out a cocircuit in the graph, two 

edges being similarly oriented in this cocircuit if the 

corresponding coordinates of F have the same sign.  Con- 

versely, each cocircuit of the graph can be exhibited in this 

way as an elementary vector of 7?.  On the other hand, non- 

zero coordinates of an elementary vector of It*  pick out a 

circuit in the graph, two edges being similarly orienced 

in this circuit if the corresponding coordinates have the 

same sign, and each circuit of the graph can be exhibited 

in this way. 

3.  GENERALIZED FLOWS AND CUTS 

Let A ■ (a.:*) be an m by n real matrix having row 

space •#.     For each e. e E = [e-,, e«^ •••, e }, let c. 

be a nonnegative real number, the capacity of e..  In 

analogy with (1.1') and (1.2) of Part I, we define a 

(feasible) flow X on A to be a vector X ■ (x-, , x«* . • • , 

x ) that satisfies the linear homogeneous equations 

2^> 
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n 

(3.1)     Yi  aijxj = 0, i = 1, 2, 

J-l 

and inequalities 

■ , m. 

(3.2) —c. <x. <c.,i=l, 2, , n 

Thus X e %*.     Clearly feasible flows exist, e.g. X » 0. 

The analogue of the maximum flow problem is to find a 

feasible flow X on A that maximizes some specified component 

of X, say x,, where c, « «.  We call such a flow a maximum 

ej-flow. 

Let K ■ (-1, k2> ... * k ) be an elementary vector of 

;f.  (Such elementary vectors exist unless the first column 

of A consists entirely of O's—this corresponds to the 

graphic case in which e, is a loop.) We say that K is an 

e,—cut.  There are finitely many such.  The capacity of an 

e,—cut K is defined to be 

n n n 

(3.3) E VJ " 2 VJ -s 
J-2 
kjX) 

J-2 
k.<0 

j-2 

k.c. 
J J 

If X is a feasible flow and K an e^-cut, then, since 

X e 1t* and K e It, we have 

n 

Ex.k. = 0, 
J J 

j-l 
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and hence,  by   (3.2), 

n 

(3-4) xi= E xjkj < E ikjcj 
j-2 j-2 

Theorem 3.1.     The maximum value of x,   subject  to 

(3.1) and  (3.2)  ijs equal to the minimum capacity of all 

e,—cuts. 

Proof.  It suffices to show that there is a flow and 

an e,—cut for which equality holds in (3.4). A proof of 

this can be given using either the linear programming 

duality theorem [3, 16] or Dantzig's simplex method for 

solving linear programs [3]. We sketch the former approach. 

Let X * (x,, Xn^ •••, x ) be a maximum ei—flow.  The duality 

theorem for the linear program at hand then implies that there 

exists an m-vector (TT,, TTJ* •••* n
m) such that the following 

"optimality" properties hold: 

m 

(3.5) i + E Vii ■0' 
i=l 

and, for j ■ 2,   ..., n. 

m 

(3.6)     J] n.a.. > 0 ^ x. = c. 

i-1 

m 

£ ^^ij  < 0 ^ Xj « - 
i=l 

'j' 

-sr-^ 
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Y - 

m m 

v i=l i-1     ' 
yi " yn) 

Thus Y e ^ .  By Lemma 1.1, there exists an elementary 

vector K ■ (—1, V.2>   • • • , k ) of * that conforms to Y. 

The properties (3.6) then hold for K and imply that equality 

holds in (3.4).  This proves Theorem 3.1. 

The simplex method constructs a maximum e-,—flow and 

a minimum e1—cut simultaneously.  Indeed, the method 

proceeds by a sequence of pivots on A, and at termination 

yields a standard representative matrix R of <, one of 

whose rows is an e,—cut of minimum capacity. 

If A is totally unimodular, then the coordinates of 

K in Theorem 3.1 are 0, 1, or —1, and we have a more purely 

combinatorial result: namely, the generalization of the 

max—flow min—cut theorem to regular matroids or digraphoids 

noted in [24].  Observe that the analogue of the integrity 

theorem, Theorem 1.2 of Part I, is valid for this case. 

Just as for the case of flows in networks, the assump- 

tion of symmetric capacity constraints can easily be dis- 

pensed with in Theorem 3.1.  The capacity constraints can 

be changed to b. < x. < c., and treated in a similar fashion, 

provided they are feasible.  The capacity of an e,—cut. 

K ■ (-1. V.j,   '••>  k ) is then defined to be 
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■ 

(3.3') 

n n 

1-2       1-2 
k.>0       k.<0 

The feasibility question is most conveniently disposed 

of by the following "generalized circulation theorem," the 

analogue of Theorem 1.3, Part I. 

Theorem 3.2.  Let A ■ (a^^) be an m b^ n real matrix, 

and let b. ^c, j ■ 1, 2, ..., n, be given real numbers. 

The constraints 

(3.7) 

n 

j-l 

a. .x. ■ 
ij J 

0, i = 1, 2, , m. 

(3.8) bj < Xj < cj ^ J * 1 ^ 2' • • • ' n 

are feasible if and only if, for each elementary vector 

K = (k,, k2, .••, k ) in the row space >r of A, we have 

(3.9) Ek.c. + V k.b. > 0. 

k.>0 k.<0 

Notice that   (3.9)  is really a finite set of  inequalities, 

since we need only choose  from each frame—line of   >8  one 

elementary vector and its negative in checking  (3.9). 

We  turn next  to  the painting theorem for  a real m by n 

matrix A ■   (a..).     Here we paint  the edges of E =   {e,,   e^, 

•••>   en^-   i.e.   the columns of A,  with three colors—red. 

' 
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white, blue—with one red edge being distinguished and 

painted dark red.  Two edges e., e. are similarly oriented 

in an elementary vector X ■ (x,, Xo, •••, x ) of a sub- 

space He:  ytn  if x.x. > 0; X contains e. if e. e S(X). 

Theorem 3.3.  Given a painting of E = {e, , By,   • • • >   e ] 

and a real m b^ n matrix A ■ (a..) having row space ft , 

precisely one of the following alternatives holds: 

(i) There is an elementary vector X of it* containing 

the dark red edge but no white ed^e, in which all red edges 

are similarly oriented. 

(ii) There is an elementary vector Y of )f containing 

the dark red edge but no blue edge, in which all red edges 

are similarly oriented. 

Proof.  Clearly both alternatives can't hold, since 

*t and *.* are orthogonal. 

Delete all white columns of A.  Pivot on blue columns, 

one after another in any order, until no more such pivots are 

possible.  (Vhese operations correspond to the "deletions" and 

"contractions" of edges in graph or matroid theory.)  Now 

delete all rows and columns of the resulting matrix that 

contain pivotal elements.  Call the remaining matrix A. 

Note that any blue columns of A consist entirely of O's. 

(A generates a matroid minor of the matroid generated by A.) 

Let Ii  denote the row space of A.  It follows from standard 

theorems on linear inequalities that (just) one of a pair 

of complementary orthogonal subspaces contains a nonnegative 
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' 

vector whose first coordinate, say, is positive.  Thus 

either ^P or %*   (but not both) contains a nonnegative 

vector whose dark red coordinate is positive.  Suppose 

Z e W.*  is such a vector.  Then Z can be extended to a 

vector Zen* such that white coordinates of Z are all 

zero.  In this caie (i) holds, by Lemma 1.1.  Suppose 

that Z c X is a ronnegative vector whose dark red 

coordinate is positive.  In this case Z can be extended 

to a vector Z e )€ such that all blue coordinates of Z 

are zero.  In this case (ii) holds> by Lemma 1.1. 

If A is totally unimodular, the elementary vectors 

X and Y of Theorem 3.3 can be taken to be primitive, and 

Theorem 3.3 reduces to the painting theorem for digraphoids 

[24]. 

We return now to the version of Theorem 3.1 with capacity 

constraints b. < x. < c-  How general is the class of linear 

programs encompassed by this theorem? The answer is not 

hard to see:  it includes all linear programs.  For, as is 

well known, any linear program can be put in the form 

(3.10) La..x. 
1J J 

j-l 

b^, i ■ 1, 2, . . . , m. 

Xi   > 0,  j  = I,   2,   . . . ,   n, 

n 

maximize ^^ ex. 

j-l 
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Introducing new variables x« and x .,, we see that (3.10) 

is equivalent to 

n 

(3.11)    £ a^x. -b.xn+1 = 0, 

j-l 
n 

Ec.x. ■ 0 
J J 

J-l 

-   *   <   XQ   <   '*> 

0 < X4 < 00' J "I* 2>     • • • i ni 

1 ^ xn+l ^ 
l- 

maximize XQ. 

The program (3.11) is a maximum flow problem on a subspace 

of JT 

Still following the discussion of Part I, Section 1, 

let us look now at the general version of the path—edge 

formulation of the maximum flow problem.  Is there an 

analogue of (1.9), (1.10), and (1.11) for an arbitrary 

real matrix? We shall see that there is.  Consider the matrix 

whose rows consist of all elementary vectors of  *C* of the 

form  (1, p2, ..., pn).  Let (Pkj)> k-1,2, ...,s, j=l, 

2,   ..., n, denote this matrix and let (IPi^l) be the matrix 

obtained by taking absolute values of elements.  We want 
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to show that the programs 

(3.12)   E yk* 'Pkj1 ^ V  j-l, 2, ..., n, 
k-1 

yk>o, 

s s 

maximize ^ yk''pkl' = Z) yk' 
k=l k=l 

and 

n 
(3.13)   2 ai.x. - 0, i - 1, 2, ..., m, 

j-l 

maximize x,, 

are equivalent.  Here we take c, = ».  Given a feasible 

solution Y = (y,, j^ •••>  ys) of (3.12), define 
s 

xj = 2 ykpkj *  Then ^j ^ xj - Cj and 
k=1
  n s    n 

E ^j^j -S  (E aijPkj  ykc0- 
j-l       k-1 vj=l     / 

Conversely, given a feasible solution X - (x,, X2>   •••» x
n) 

of (3.13), we use the conformal frame decomposition (1.1) to 

write 
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(3.14) y1P1 + ... + y^ + F1 + ... + Fh, yk > 0, 

where P,, ..., P are the first i  rows, say, of the matrix 

(p..)^ and each elementary vector in (3.14) conforms to 

X.  Define Yi. " 0 for the remaining rows of (Pui)«  It 

follows that 

k-l 

Thus (3.12) and (3.13) are equivalent programs 

In particular, if A is totally unimodular, then 

(lp, .|) is a (0, 1)—incidence matrix, and an integral X in 

(3.14) yields an integral Y solving (3.12).  Thus integral 

capacities lead to integral solutions in both programs. 

This observation establishes an analogue of Theorem 1.5, Part 

I.  That is, an analogue of the edge form of Menger's theorem 

is valid for regular matroids.  This has previously been 

shown by Minty in [24]. 

It seems likely that the relationship between (3.12) 

and (3.13) has implications for what is called the 

"decomposition principle" in linear programming.  We shall 

not pursue this point here. 

The only other problem from Part I that we want to 

examine in the context of Part II is the length—width 

inequality.  (The generalized minimum path problem is the 

frame—dual of the generalized maximum flow problem and thus 

presents nothing new.  Part III will be devoted to a 
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very general combinatorial analogue of the maximum capacity 

path problem.)  Let A ■ (a..) be a real m by n matrix with 

row space <, and suppose /., w. are given nonnegative 

numbers for j =2, ..., n.  Consider the collection 

^ * (Pi* ■•',   Pj.} of all elementary vectors of jp* 

that have first coordinate 1, and the collection 

ffm   {K, , ..., K 1 of all elementary vectors of "< 

that have first coordinate 1.  Let 

n 

(3.15)   X - min  ]£ \p   .1. 
K1^ j=2 

n 
(3.16)   uu - min  V |kh.w. | , 

l<k<s JB2 

where 

P^ ■ (1, p^* '''*  Pin^ i = 1* 2, ..., r, 

K. ■* \\.y  K. 2* - ' ' i   k. )^ h = i, L)   • > • t   s. 

We call \  the e,—length of A, and call uu the e^—width of A. 

Theorem 3.4. Let A = (a..) be an m b^ n real matrix 

having e^-length \ relative to. i. > Q, j = 2, ...,n, and 

e-.-width uu relative t£w. ^0, j »2, ..., n.  Then 

(3.17) 

n 

J-2 

srn 
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Proof.  By Theorem 3.1,. Part II (the generalized 

max—flow min—cut theorem) and the equivalence of (3.12) 

and (3.13), it follows from (3.16) that there exists a 

nonnegative r—vector Y ■ (y,, y^, •••> yr) such that 

(3.17)      ^  lyiPijI ^v J ' 2 

i-1 
,  n 

r 

i=l 
UÜ 

Thus we have 

\uu XE ^i ^ S E ipij^yii < E wj^ 
i=l i=.l j=2 j=2 

by (3.18), (3.15), and (3.17), respectively. 

Again if A is totally unimodular, then each P e >* 

and K e V is primitive; taking ^. = w. = 1 gives a direct 

generalization of the Moore—Shannon theorem for graphs 

to totally unimodular matrices.  In matroidal terms: 

Corollary 3.5.  Let (E, Ö) hfi a regular matroid fin 

n edges.  Let X(e) + 1 be the least number of edges in any 

circuit containing edge e, a;(e) + 1 the least number of 

edges in any cocircuit (circuit of the dual matroid) 

containing e.  Then X(e)t(e) < n — 1. 

• 
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PART III - BLOCKING SYSTEMS 

In Part I we described the maximum capacity path 

problem for a two-terminal network, gave a good algorithm 

for solving it, and presented a min—max theorem concerning 

paths and cuts for the problem.  Similarly, Gross [17] has 

described a good algorithm and a min—max theorem for the 

"bottleneck assignment problem": Given a square array of 

real numbers, find a circling of entries with exactly one 

circle in each row and in each column so as to maximize 

the value of the smallest circled entry.  For an interpre- 

tation, think of rows of the array as corresponding to 

men, columns to jobs on a serial assembly line, with the 

entry in row i and column j being the rate at which man 

i can process items if he is assigned to job j. The 

theorem established in [17] for this problem is the fol- 

lowing: Let I - {I, 2, . .., n], let "P be the set of 

permutations of I, let |C| denote cardinality of C, and 

let a.., i e I, j e I, be real numbers. Then 

max min a.   D/.x 
PeP iel    1'1^1; 

min max a 
A,BrI        ieA 

|A|+ B|=n+1 jeB 
tj 

The resemblance between these  two min—max theorems  is 

more than superficial.     They are,   in fact,   special cases 

of a general  theorem for a combinatorial structure which 

might be called a blocking system.     These systems have arisen 

-?- 
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in numerous contexts (see [21, 22, 29], for example), but 

the particular axiomatlzatlon and general min—max theorem 

presented in [7] and surveyed here, have apparently not 

been noted before. 

1.  AXIOMS AND EXAMPLES 

Let E be a finite set, and let "P and Jf be two families 

of subsets of E.  We call (E, f, K)  a blocking system 

(on E) if the following two axioms are satisfied: 

(1.1) For any partition of E into two sets Ei and EQ 

(EQ n E1 = 0 and EQ U E, = E), there is either 

a member of P contained in Ei or a member of 

^contained in EQ, but not both. 

(1.2) No member of ^contains another member of ^; no 

member of flf contains another member of li. 

The first axiom (1.1) can be phrased in terms of 

painting elements of E with two colors:  For any blue- 

red painting of E, there is either a blue P in ^ or a red 

K in ;f, but not both.  The second axiom (1.2) is more a 

convenience than a necessity for our purposes, as will be 

clearer later on. 

Observe that if (E, I9, H)   is a blocking system, then 

for each P e F and K € Tf, we have P n K f 0, by virtue of 

the last phrase in (1-1).  In other words, each member of 

^ blocks all members of "p,  and vice-versa.  Note also that 

the axioms (1.1) and (1.2) are self-dual:  Interchanging 

the roles of ^ and 7t alters neither (1.1) nor (1.2). 
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lf-P is  empty, then X'= [0]   satisfies (1.1) and (1.2). 

Examples of blocking systems abound.  Some reasonably 

interesting ones will be described.  But first we state and 

prove a theorem that indicates the great profusion of 

blocking systems.  Its proof provides another characteriza- 

tion of blocking systems. 

Following [7], we shall call a family / of subset? of 

E a clutter on E if no member of ^ contains another member 

of >. 

Theorem 1.1.  Let E be a finite set and let ^ be a 

clutter on E.  Then there exists a unique clutter V on E 

such that (E, "P, It)   is a blocking system. 

Proof.  Let K e ^ if and only If K 0 P f 0 for all 

P € "^ and K is minimal with respect to this property.  To 

verify that (E, "fi, X)  is a blocking system, it suffices to 

check (1.1).  Thus consider a blue-red painting of E. 

Suppose there is no blue P e ^.  Let R be the set of all 

red members of E that belong to some P € /ö.  Since there 

is no blue P e ^, we have R n P ^ 0 for every P € />. 

Hence there is a K e X such that K c R, i.e., there is a 

red Key.  If there were both a blue P e ^ and a red K e "A;, 

then P D K = 0, contradicting the definition of K-     Thus 

(1.1) holds and (E, Py K)  is a blocking system. 

To establish uniqueness, let (E, "P, K)  and (E, "P, fd) 

be blocking systems on E with fC^KC* •     Interchanging the 

roles of >^ and K*   if necessary, we may suppose K e X — T^' • 

' 

■ 
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Consider the partition E - K,   K of E.     By  (1.1)  applied 

to  (E, "P, K},  no subset of E - K is  a member of "P.     Hence 

by (1.1)  applied  to  (E, V, H*),   there is a  K'   G K%  with 

K' c K.     Now consider the partition E - K',   K*   of E.     By 

(1.2),   no subset of K*   is a member of K.     Hence by  (1.1) 

applied to   (E, 7*   K),   there is  a  ?'   e ^ with P' c E - K*. 

But  then P*   and K'  violate  (1.1)   for  the   blocking system 

(E, •?, X*)  and  the partition E - K',   K'   of E.     This con- 

tradiction proves Theorem 1.1. 

Thus  if "P is an arbitrary clutter on E,   the family 

ft * 1** ol all  "minimal blockers" of "P is  the unique 

family of Theorem 1.1,   and  X    ~   ?      -I9. 

The primary role of (1.2)  is  to obtain uniqueness  in 

Theorem 1.1.     Uniqueness could be achieved  in other ways. 

For instance,   instead of normalizing to clutters ^ and   1£ 

in Theorem 1.1,  we could normalize  to the  families   "P* 

and  )^+ of all supersets of members of P and   V,  respectively. 

Some examples  of blocking systems   follow. 

Example 1.     Let  E be the set of edges  of a graph G, 

■^  the  family of elementary paths joining two vertices  of 

G,   and K, the  family of elementary cuts  separating the  two 

vertices. 

Example 2.     Let E be  the set of cells  in an n by n 

array;   let "P be  the  family of subsets P c E having the 

property that there  is just one cell of P in each row and 

column of the array;   let X be  the  family of subsets Kc E 
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such  that K is  a p by q subarray withp+q=n+l. 

(That  (E, "P, X)   is a blocking system follows  from a well- 

known theorem of König  [20] which asserts  that in an n by 

n  (0,   l)-matrix,   the maximum number of I's,   no  two of 

which lie in the same row or column,   is equal  to the 

minimum number of rows  and columns   that contain all  the 

I's of the array.)    More generally,   let ^ be  the  family of 

subsets P c E such that   |P|   « t and P has at most one cell 

in each row and column.     Then  ^ is  the family of Bubsetin 

K c E such that K is a p by q subarray with p+q»2n-t + l 

Example  3.     Let E = [1,   2,   . . . ,  2k-l},   let -P be  the 

family of all k—element subsets  of E,   and let  ft * "P .     (In 

multi-person game theory,   this example is known as  the 

"straight majority game.") 

Example 4. Let E be the set of edges of a graph G, 

let "P be the family of maximal trees of G, anri let # be 

the set of all elementary cuts (cocircuits) of 5. (A 

tree of G is a subgraph of G that contains no circuit; a 

maximal tree is a tree of G tha t is maximal with respect 

to this property.) 

Example 5.    Let E be the set of edges of a graph G, 

let "P be the  family of circuits  in G,  and let X be  the set 

of cotrees   (complements  in E of trees) of G. 

Example 6.    Let E*  be  the set of edges of a matroid 

(E' , C),   let E = C'  - {e}   for some e e  E*,   and let J^ be 

the  family of subsets  P of E such that {e)  U  P e  C . 

— 
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Then^ is the family of subsets K of E such that {e} u K e Ä*. 

Here (E1, (**)  is the matroid dual to (E'.Ä). 

Example 7.  Let E be the set of vertices of a graph G, 

and let P be the family of pairs of adjacent vertices of G 

(two vertices are adjacent if they are joined by an edge.) 

Then X is the family of subsets of vertices K such that 

K covers all edges of G, and is minimal with respect to 

this property.  (In other words, ßS is the family of all 

"minimal blockers" of ^. ) 

It is frequently difficult, as illustrated by Example 

7, to find a useful description of the dual clutter X of 

a simply described clutter IP. 

One of the most important problems concerning blocking 

systems, a problem that arises time and again in applications, 

is the minimum covering or blocking problem:  Given a simple 

description of ^, find a good algorithm that constructs 

K € 7f such that |K| is a minimum.  For example, we might 

be given P explicitly, say in the form of an incidence 

matrix A ■ (a(P, e)), where a(P, e) = 1 or 0 according as 

e e P or e ^ P.  The minimum blocking problem then is 

equivalent to solving the following linear program in 

integers x(e) = 0 or 1: 

(1.3)     E a(P, e)x(e) > 1,   all P e />, 
eeE 

V» minimize 2_/ x(e) 
eeE 



« \ 
• . z-mfummamm 

-51- 

Various methods have been proposed for such problems, 

but no good algorithms are known.  Indeed, most of the 

methods that have been proposed can be shown to be bad: 

the amount of computational effort increases exponentially 

with the size of the problem. 

There is a good algorithm, however, for computing 

the following lower bound on the minimum in (1.3).  Consider 

the class Ä of all (0, 1)—matrices having the same row 

and column sums as A.  For A in CL,   let uu(A) denote the 

minimum in (1.3), and let 

(1.4) uu «■ min üU(A) 
Aea, 

The integer UJ has been explicitly evaluated by Fulkerson 

and Ryser in   [14],   and a very simple construction for a 

matrix A in Ö. such  that uuCX)   ■ uu has been given in   [15]. 

2.     THE MIN-MAX THEOREM 

The analogue of Theorem 3.1,   Part I,   is valid  for all 

blocking systems,   and can be viewed as characterizing 

blocking systems: 

Theorem 2.1.     Let  (E, p, X) he a blocking system,  and 

let  f be a  real—valued  function defined on E.     Then 

(2.1) max min  f(e)  = min max  f(e). 
?ef eeP KeV eeK 

Conversely,   if "p and "kare clutters on E such  that  (2.1) 
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holds for every real-^/alued f defined on E, then (E, "P, ft) 

is a blocking system. 

Proof.  The proof that (2.1) holds for a blocking 

system is entirely analogous to the proof of Theorem 

3.1, Part I.  In brief:  The left-hand side of (2.1) is 

less than or equal to the right—hand side since P D K is 

nonempty for each P € ^, K € Jf.  To establish equality, 

order the elements of E according to decreasing values of f; 

then paint elements of E blue, one after another, until 

the blue set first contains an element of P. 

(In other words, the threshold method establishes 

equality in (2.1) and simultaneously evaluates (2.1). 

It will be a good method for this evaluation in case there 

is a good method for recognizing whether an arbitrary sub- 

set of E contains a member of ^ (or a member of ^).) 

Conversely, let ^ and ;f be clutters on E and suppose 

(2.1) holds for every real-valued f defined on E.  Let 

f(e) = 1 or 0 according as e is blue or red.  Suppose there 

is no blue P e />.  Then 

max min f(e) = 0 = min max f(e). 
?£p eeP KeJIf eeK 

If there were no red K e *", we would have 

min max f(e) ■ 1, 
KeK: eeK 
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a contradiction. Hence there is a red K £ fC. On the 

other hand, if there were both a blue Pep and a red 

K e ^, then 

max min f(e) - 1, min max f(e) ■ 0, 
PepeeP KeX eeK 

contradicting (2.1).  Hence (E, P, ^) is a blocking 

system. 

3.  THE LENGTH-WIDTH INEQUALITY AND MAX-FLOW MIN-CUT 
EQUALITY 

Let (E, 30, J£) be a blocking system, and suppose 

1(e),  w(e) are two nonnegative numbers associated with 

element e e E.  Define the length of the system to be 

(3.1)        \ ■ min Z/ t(e), 
Pef> eeP 

and the width to be 

(3.2)        uu ■ min Z) w(e). 
Ke* eeK 

Following Lehman [22], we shall say that the length-width 

inequality holds for (E, "P, X)  if 

(3.3)        \uu < S t(e)w(e) 
eeE 

is  satisfied  for every pair of nonnegative   functions I,   w 

defined on E. 

r 
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For instance, if (E, "P, 7t)  is the blocking system 

of Example 1, we have seen in Part I that the length- 

width inequality holds.  It also holds for Example 6 

provided the underlying matroid is regular;  this is a 

corollary of Theorem 3.4, Part II.  On the other hand, 

the length-width inequality fails for the blocking 

system of Example 3. 

For each P € /'and e € E, define a(P, e) « 1 or 0 

according asecPore^P*  Now consider the linear 

program 

(3.3)     E y(P)a(P,e) < w(e),   e € E, 
Pef» 

y(P) > 0,      P e ^, 

maximize    Zy   y(P). 
PeP 

Clearly the maximum in (3.3)  is  less  than or equal to 

the width of (E, :P, fC).     If equality holds here for 

every nonnegative w defined on E,  we say,  as in  [22], 

that the max-flow min-cut equality holds for (E, f, 1C). 

Thus,   for instance,   the max-flow min-cut equality 

holds  for Example 1,   for Example 6 if the underlying 

matroid is regular, and fails  for Example 3, just as for 

the length-width inequality. .  This behavior is not 

accidental.     One of the main results  of  [22]  is  that the 

max-flow min-cut equality holds  for a blocking system 
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if and only if the length-width inequality holds. 

Consequently, if the max-flow min-cut equality holds 

for (E, f», *0, it also holds for (E, ^, Z*), since the 

roles of ^ and H are symmetric in the length—width 

inequality. 

In any event, the problem of evaluating the width of 

a blocking system for a given nonnegative function w is a 

generalization of the minimum blocking problem mentioned 

earlier.  It would be interesting to discover other 

significant classes of blocking systems for which the 

length—width inequality, and hence the max—flow min—cut 

equality, holds. 

—**"'.. 
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