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PREFACE 

Under certain conditions of flow near a slender body, when surface 

injection rates are large and are not dependent on convective heating, 

it may be possible to "blow off" the boundary layer.  The flow field of 

such a body can then be investigated using an inviscid flow model, if 

the resulting shear layer is sufficiently thin. 

This Memorandum considers a special class of such problems called 

"Blowhard Problems," where the injectant layer is thicker than the shear 

layer, but thin enough to preserve the slenderness of the effective 

body produced by the injection.  High mass-transfer rates might be 

achieved by transpiration through porous walls or by ablation due to 

radiation heating.  The results of this Memorandum should be useful in 

the interpretation of wind tunnel tests and in the prediction of aerody- 

namic or re-entry performance under conditions of high mass transfer. 

One of the authors, J, D. Cnle, is a professor at the California 

Institute of Technology, and a consultant to The RAND Corporation. 
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ABSTRACT 

A simple model is presented for the analysis of inviscid flow 

fields over slender bodies accompanied by high rates of surface mass 

transfer.  This model assumes a thin, inviscid injectant layer, which 

is separated from the outer flow by a contact discontinuity.  Inviscid 

boundary-layer equations are shown to be applicable within the injectant 

layer, and the pressure gradient is found by matching pressure and flow 

direction at the dividing streamline.  Using stream-function variables, 

an Abel integral equation is derived, and the inverse problem of de- 

termining the injection distribution from the shape of the dividing 

streamline is solved analytically for supersonic and hypersonic flow 

over flat plates and cones. 
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I.  INTRODUCTION* 

The problem considered in this Memorandum is the construction of a 

model of flow past bodies with high rates of mass addition or hard blow- 

ing at the surface.  Blowing is considered "hard" when the velocity com- 

ponent normal to the wall is an order of magnitude larger than that 

usually expected in a boundary layer with no blowing.  Under such cir- 

cumstances the boundary layer can be expected to blow off the body and 

become a free shear layer separating the blown flow from the free-stream 

flow.  As a limiting case corresponding to high Reynolds numbers, this 

free shear layer can be regarded as a slipstream, and the inviscid flow 

outside the slipstream can be matched to the inviscid flow within it. 

The flow between the slipstream and the wall is essentially rotational. 

Under various simplifying assumptions, solutions can be obtained for 

this inner flow layer and matched to suitable external flows.  In this 

section we present some details of the general concepts employed.  In 

Section II the basic approximation and the solution are given for the 

simplest case.  Additional special cases appear in Sections III and IV, 

and the general conclusions are presented in Section V. 

It is well known that the structure of both turbulent and laminar 

boundary layers can be changed dramatically by fluid injection from the 

boundary.  Injection reduces skin friction and heat transfer, increases 

boundary-layer thickness, and destabilizes the laminar boundary layer. 

Theoretical evidence^ ' indicates that the laminar boundary layer on a 

flat plate "blows off" the wall when the blowing rate is such that 

.  1/2 P v w • 
p ~ CO oo 

v     / v 

U   \U x 

Injection rates higher than this cannot be treated by boundary-layer 

theory. 

Some highlights of this Memorandum were presented orally at the 
Fluid Dynamics Division of the American Physical Society Meeting in 
Hawaii, September 1965. 
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(2) 
Some experimental evidence^ ' indicates that the low-speed turbu- 

lent boundary layer on a flat plate "blows off" at an injection rate 

p v /p U of approximately .02.  Within classical flat-plate laminar 
w w °° °° 
boundary-layer theory, blow-off appears as a singularity; it is not 

possible to obtain solutions to the boundary-layer equations that sat- 

isfy the given boundary conditions beyond the blow-off point.  Reference 

3 contains a discussion of the effects of mass injection on incompres- 

sible boundary layers and an investigation of the blow-off singularity 

on a flat-plate boundary layer with a constant injection rate. 
(4) Pretsch   examined the Falkner-Skan flows for asymptotically high 

injection rates and favorable pressure gradients.  He demonstrated that 

solutions are possible for arbitrarily large injection rates, and showed 

that skin friction approaches zero as ß/(-f ), where (f ) is the wall 

injection rate in the appropriate similarity variable and ß is the pres- 

sure-gradient parameter.  Pretsch also showed that neglecting the vis- 

cous terms in the equation of motion for high injection rates produces 

an inviscid balance between inertia and pressure gradient.  The result- 

ing inviscid equation, solved by Pretsch, has a discontinuity in vortic- 

ity at the dividing streamline.  In addition, for certain values of ß, 

the shear becomes infinite at the dividing streamline, making it neces- 

sary to introduce a viscous shear layer at the dividing streamline to 

resolve this singularity.  An extension of Pretsch's original inviscid 

analysis to the details of the shear layer is given in Refs. 5 and 6. 

More recently, Libby   and Vinokur   have discussed the problem 

of the stagnation region of a sphere in hypersonic flow when mass is 

injected from the surface of the sphere.  Their papers treat the prob- 

lem of inviscid flow with mass addition within the framework of 

hypersonic, constant-density, blunt-body flow.  Their solutions are 

characterized by two regions separated by a surface of discontinuity -- 

the dividing streamline.  The inner region consists of mass injected 

from the wall, and the outer region of fluid that has passed through 

the bow shock wave.  The inner flow may be rotational or irrotational, 

depending on the manner of fluid injection, whereas the outer flow is 

rotational because of the curvature of the shock wave.  Since there is 

a stagnation point in the flow through which the dividing streamline 
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passes, the total pressure, static pressure, and flow direction are 

continuous as the discontinuity is approached from either the inner 

injection zone or the outer shock layer.  Vinokur found that the thick- 

nesses of the shock layer and the injection layer are functions of the 
2    2 

nond intension a 1 injection momentum p V /(p V ) alone. 
W W    ra c° 

(9) 
Ting   has recently considered a model of distributed injection 

on a flat plate, with the restriction that the inner flow is incompres- 

sible and potential and the outer flow is linearized. 

In this Memorandum we consider the effects of mass transfer on 

flows that, in the absence of mass transfer or viscous effects, would 

have a pressure gradient of zero along the surface.  Examples of such 

flows are supersonic wedge and cone flows.  For such flows, high injec- 

tion rates could result in blow-off, making it necessary to re-evaluate 

the usual procedures of boundary layer theory. 

According to boundary-layer theory (as some typical Reynolds num- 

ber approaches infinity), the inviscid flow around the object is first 

calculated, establishing a velocity and a pressure field for the bound- 

ary layer.  This inviscid flow typically slips along the solid surface, 

and a viscous boundary layer along the surface must be introduced to 

satisfy a no-slip condition.  In this theory, blowing must vanish as 

Re -» °°.  Higher-order interaction effects, such as flow due to displace- 

ment thickness, can then be calculated. When the blowing rate is suf- 

ficiently high this approximation scheme may not be suitable.  The first 

step in a more appropriate calculation scheme is to find the inviscid 

flow past the object with blowing.  This flow contains a dividing 

streamline, off the body surface, which separates the injected fluid 

from the oncoming stream (see Fig. 1).  In inviscid theory, there is 

a jump in tangential velocity across the separating streamline.  The 

flow in the injection layer is generally rotational, but may to the 

first approximation be considered inviscid.  The viscous boundary layer 

becomes a free shear layer which resolves the discontinuity at the 

dividing streamline. 

In the following sections we consider a simple case of this type 

of flow, in which blowing produces only a thin region. An assessment 

of orders of magnitude shows that the flow in the blown layer can be 
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owning ^e 

Iniectant layer 

Fig.   1   --  Injection into  supersonic  flow  (inviscid model) 
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described by inviscid boundary-layer equations.  These equations are 

simple enough to provide an explicit relation between the distribution 

of blowing velocity, the distribution of pressure, and the shape of 

the dividing streamline.  If, in addition, there is some simple rela- 

tion between shape and pressure, as for example in linearized super- 

sonic flow, then explicit values of all the quantities can be found. 

This simple theory should be applicable whether the shear layer 

is laminar or turbulent, so long as it is thin relative to the region 

of blown flow. 

It should also be noted that the case of strong suction is com- 

pletely different from strong blowing; the boundary layer always oc- 

curs at the wall.  However, since the boundary layer does not occur on 

a streamline of the inviscid flow, the boundary-layer equations are 

ordinary differential equations and the boundary-layer thickness is 

0(1/Re). 
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II.  INCOMPRESSIBLE INNER LAYER 

Consider flow past a flate plate (x > 0) in a uniform stream with 

velocity U.  Assume as boundary conditions a distribution of blowing 

velocity q (x,0) along the plate and a tangential velocity q (x,0) = 0. 
y TC 

The latter condition is not necessary but is believed to correspond 

to the correct limit of the viscous flow equations unless special pre- 

cautions are taken with the blowing.  These boundary conditions intro- 

duce rotation into the injection layer.  The additional boundary condi- 

tion can be accommodated, since the location of the dividing streamline 

is not known in advance but must be found as part of the solution to 

the problem.  The conditions to be satisfied across the separating 

streamline are continuity of pressure and direction of flow. 

Let the dividing streamline be represented by 

y = 6S(x) (2.1) 

where S(0) = 0, S(l) = 1, and 6, the basic small parameter of the prob- 

lem, is the thickness of the blown layer at a unit distance downstream 

of the nose.  The thickness of the layer tends to zero as 6 -» 0, cor- 

responding to the disappearance of both blowing and the pressure and 

tangential velocity perturbations.  In order to obtain approximate 

equations valid within the thin layer, distances normal to the wall 

must be measured in terms of the thickness of the layer.  That is, a 

coordinate 

y = f (2.2) 

is held fixed as 6 -»0.  Assume now that the flow in the thin layer is 

incompressible (more precise conditions for the validity of this assump- 

tion will be given later).  Thus the following forms of asymptotic ex- 

pansions in 5 can be assumed for the flow quantities in the thin layer: 

qv(x,y;6) 
- = a(6)u(x,y) + ... (2.3) U 
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if-  (x,y;ö) ß(6)v(x,y) + (2.4) 

P(x,y;ö) - po 

p u 
=  e(ö)p(x,y) + (2.5) 

The continuity equation is nontrivial for ß = 6a, and the tangential 
2 

momentum is balanced between inertia and pressure gradient for e = a ; 

ß = a6 

2 e = a 

(2.6) 

The resulting approximate equations are 

öu  dv continuity:  •*?—I = 0 (2.7) 

x-momentum:  u -5—I- v 
du .   du 

öy 
(2.8) 

y-momentum:  0 = 
öy 

(2.9) 

where 

a =  density ratio (of order one) = Pra/p . 

Thus we obtain essentially the inviscid version of the Prandtl 

boundary-layer equations.  Hence the results above still apply to a 

curved surface with an arc-length x and a normal distance y, so long 

as the radius of curvature is larger than 0(6) in characteristic units. 

A consequence is that the pressure in the layer p is only a func- 

tion of x: 



p = P(x) (2.10) 

and we obtain the further simplified equations 

ÖU + ^ = 0 (2.11) 
dx dy 

du ,   du      ~ dP /o io\ 
Uöx-+ V• - ~a  S (2-12) 

We can now estimate the Mach number M* in the inner layer by using 

2      uV(6)pm 
M4 ~ YaPro[l+ ...] ~ <a  <6> <2-13> 

We see that if the external Mach number is fixed as 6 -» 0, then the 

flow is incompressible, although compressibility must be taken into 

account in the hypersonic case (M -><»).  We can also estimate the 

neglected viscous-stress terms in Eq. (2.8) by calculating the ratio 

A2 
d  q 

|i             X 

P         -v   2                     0"V w     oy                       ro a 
dq nx 

"x    dx 
a(6)624 (62a)(Re) 

(2.14) 

We assume that the Reynolds number based on the characteristic length 

(i = 1) is large enough to make the ratio in Eq. (2.14) much less than 
2 

one.  For the theory to apply, Re must be regarded as Re(6) » 1/(6 a). 

Thus for a given Reynolds number the theory is consistent when 

2- « a62 « 1 (2.15) 

That is, the layer must be thin, but not too thin. 
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The system of Eqs. (2.11) and (2.12) is now to be solved with the 

boundary conditions 

? X 

v(x,0) = vw(x),   u(x,0) = 0            (2.16) 

It is convenient at first to regard P(x) as known and to see if some 

relation can be found among v (x) , P(x), and S(x).  This is most easily 

done if we introduce a new coordinate that is constant along a stream- 

line in the blown layer.  Let the stream function i|i(x,y) be defined by 

u(x,y)  = %   v(x,y) = - 4| (2.17) 

Then on the surface (y = 0) 

vw(x) - -||(x,0) 

or 

x 
%   (x) =    *(x50) = -fv (?)d| (2.18) 
W °  W " 

0 

Let x (\|i) be the x-coordinate where a streamline enters the flow at 

y = 0; that iä, the inverse function of Eq. (2.18) (see Fig. 2). 

Using v to represent the velocity at the plate, we have 
w 

, * Hill 
dx  = VF 

or 

* 
x   Ü)     = 

ill }      dY 
'    "J   v  (Y) 0    wv  ' 

>> 

(2.19) 
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it 
The problem can be formulated in the (x ,x) plane (Fig. 2) where the 

surface y = 0 is x = x, the separating streamline is x =0, and 
* 

0 £ x £ x. 

We apply the following transformations from (x,y) to (x,x ): 

|JU JL. ^ 

d   d , dx  d     ö     dx  d     d , v(x,x )  d  /0 - . 

w 

4^-A - -iii^l-L (2.21) 
dy  dy dx       v (x )  dx 

dö       *  d u^+ v--u(x,x) ^ (2.22) 
dy 

Thus the tangential momentum equation (2.12) becomes, in the new coordi- 

nate, 

0U      „ dp /"> 0-3% u^ = -as (2.23) 

This can be integrated to give the approximate version of the Bernoulli 

equation if the no-slip condition 
f"  } 

u(x*,x*) = 0 (2.24) 

is taken into account.  This approximate Bernoulli equation is: 

•| u2(x,x*) + CTP(X) = CTP(x*) (2.25) 

The horizontal component of the flow is 

u(x,x*) =  (2CT)
1/2

(P(X*) - P(x))1/2 (2.26) 
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x, y, variables 

(a) 

x, x'"', variables 

(b) 

Fig. 2 -- Coordinate transformations and boundary conditions. 
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^ This result implies that the solution is valid only for a favorable 

pressure gradient with P(x ) > P(x). 

Next the shape of the dividing streamline is calculated by inte- 

gration across the streamlines. 

For x = constant, 

j•   j  * v   (x )        . 
~           d*             djf dx w%    '       *                        f0  97N dy = r = T*~u" =  " ~—*Tdx               (2-27) 

dx u(x,x ) 

Thus,   integrating Eq.   (2.27),  with  the boundary condition that the 

dividing  streamline  originates at  the nose  [y =  S(x)   for x    = 0],  we 

obtain 

x    v  (?) 
y(x,x )    =    S(x)  - J   -^Tfy d? <2-28> 

Using the Bernoulli equation (2.26), we replace the tangential velocity 

in the last expression by its equivalent in terms of pressure; 

y(x,x*) - S(x) - -7S72 / 7— "    xi/2dg     <2-29> 
(2a)1/2Q  (p(§) - P(x)); 

Finally, this last expression can be evaluated on the surface where 

x = x and y = 0 to provide a relationship among S(x), v (x), and P(x) w 

i   *     v (?) 
S(x)  = —L-j-J- 2     dg (2.30) 

(2a)i7/ o (P(?) - PCx))17 

In general, the relation between the pressure and the shape of the 

dividing streamline depends on the nature of the external flow.  It 

is therefore convenient to express v (x) as an integral over P,S, since 

Eq. (2.30) is an integral equation of Abel type for v (!) (see Appendix 

for details): 
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x     „ I, 

V*> - - ^*>W I J ,   ° <?„WS «      C2.31) 
0 (P(C) - P(x)J 

Equation (2.31) is the basic answer to our problem, and provides the 

desired information in an inverse form.  The blowing distribution v (x) 

can be found for a given P(x), S(x). 

We shall now apply this theory concretely by specifying the outer 

flow and its perturbations.  First, we can fix the order of magnitude 

a,ß,e of the perturbation by constructing a model of the outer flow. 

For example, consider flow past a flat plate and conditions for which 

linearized subsonic or supersonic theory is valid; that is, 

« 1 (2.32) 

(I 
2   | ^1/2 

Then it is well known that the pressure perturbations in the outer flow 

are of the same order as the body thickness or shape; that is, 

e(8) = 6 

1 12 
Qf(ö)  =  ö- , (2.33) 

3/2 
ß(6) a 6J/ 

The last equation relates 6 to the order of magnitude of the blowing 

velocity: 

q (x,0)\2/3 

-^  1 (2.34) 

To ensure the self-consistency of the theory, the following more 

precise estimates of Reynolds number and blowing velocity can now be 

obtained from Eq. (2.15): 
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(£) 
2/5 
« 6 « 1 

or 

/ax3/5    q (x,0) 

eJ U 

If this theory is to supersede classical boundary-layer theory 
1/2 

(for a  = 1), it is necessary that q /U > l/(Re)   .  This condition 

ensures that the thickness of the blown layer, 6, is greater than a 
1/2 

characteristic thickness of the shear layer, l/(Re) 

Thus, for linearized external flow, the basic expansion [(Eqs. 

(2.3) through (2.5)] becomes 

qx 1/2 
•f  (x,y;6)  = 6i/Z u(x,y) + ... (2.35) 

/ (x,y;6) = 63/2 v(x,y) + ... (2.36) 

p(x,y;6) - p^    M 

 5  = 5p(x) + ... (2.37) 
P U 

The simplest results are obtained for linearized supersonic (M > 1) 

external flow, where the following relation between pressure perturbation 

and local slope is valid: 

P(x) =  S/(X\/2 (2.38) 

Thus, the blowing velocity and shape of the dividing streamline 

can be expressed in terms of a given pressure distribution from Eq. 

(2.31): 
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/ „   xl/2 x 
S(x)  =  (l£ - lj   JP(§)d§ (2.40) 

0 

We next apply the foregoing method to some specific examples. 

Example 1 -- Ogive Nose 

Let the pressure distribution be given by 

P(x) = aQ - ax   0 < x < 1 (2.41) 

Then Eq. (2.39) gives 

1/2 x   a - a | 
v„(x) = -^ i2a(M: - 1) )        J 7—^ Sr72 d§ (x)  = • - l/cu'~   "x ' 
w 

0 ^a1(x - I)) 

-    i (W. - l))1'2^)1/2 fox1'2 - | a.3'2}.       (2.42) 

and Eq. (2.40) gives 

S(x) =  (*£ _ i)   {aoX . I 3lx
2} (2.43) 

The normalization S(l) = 1 gives the following relation between 

a and a • 

ao - \ \ + , i  l ,i/2 <2-44> 
(4 - 0 
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However, the condition of favorable pressure gradient requires that 

a > 0 

so that the solution is only valid for 

ao>; i - —2 <2-45> 
M - 1 

It is seen from this example that an ogive-like layer with a con- 
2    1/2 

stant slope 8 (M - 1)   a at the nose is produced by blowing which 
1/2°° 

causes ~ (x)   to vanish as x ->  0; however, it is the curvature of 

the ogival layer near the nose which determines the required injection 
n4*l 

distribution as x-»0.  For example, for S to be Ax - Bx  , and P to 
/ o 

be A(n + l)Bx , it is necessary that v ~ x   as x -» 0.  The injection 

velocity must vanish as x -» 0 in order to maintain the finite slope of 

the injection layer. 

Example 2 -- Power-Law Nose 

Let 

P(x) =  l ~  " .- x"n (2.46) 
1/2 

tä -  0 

S(x) = x1_n   n < 1 (2.47) 

Then 

x     --n . .1/2 r( -r-) .  ._ 
f  |  je    (TT)    \n  2/ l-n/2 _   ., ... 

J   1/2 d§    = n Vl\      X 0<n<2       (2.48) 
,-n -nV" " r(± S       -  x      J \n 
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so  that 

{2a\l/2 1 r\n "  lJ  „ ,3/2-3n/2 ,,._. 
v,(x)  = {-)        — Ö74  °/l\  <J" - n)   x (2.49) w 

There is a finite rate of mass addition only for n < 2/3.  The often- 
-1/2 , u , -1/3 «,   2/3 used case where v ~ x    corresponds here to p ~ x   , S ~ x  . w 

Note however, that because P -» » as x -» 0, the Bernoulli integral (2.26) 

indicates that u -» ro on the dividing streamline.  The solution is prob- 

ably not valid near the dividing streamline for these cases, and the 

calculation of a free shear layer would require further discussion. 

The order of magnitude of the jump in tangential velocity at the 

separation streamline can be calculated.  Since the external velocity 
1/2 

is U + 0(6) and the tangential velocity in the blown layer is 0(6)   , 
•k 

the jump in tangential velocity [q] is expressed in terms of u(x,x ) as 

U Cq]Tang =  1 " (6)1/2u(x>°) = 1 - (26a)1/2[P(0) - P(x)]  (2.50) 

Within the context of this thin-layer theory, the vorticity is always 

finite and is introduced at the wall by the stagnation pressure gradi- 

ent of the injectant; the skin friction coefficient is 

a1/2 OP 
,l/2„   v  dx 6  Re   w 
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III.  OTHER EXAMPLES OF INCOMPRESSIBLE INJECTION LAYERS 

In this section we consider two further examples of inviscid flows 

with mass transfer at the surface, which are characterized, like the 

flat plate in linearized supersonic flow, by incompressible flow in 

the thin injection layer. 

HYPERSONIC WEDGE FLOW WITH DISTRIBUTED BLOWING 

The simple theory presented in Section II can be readily extended 

to the problem of supersonic flow past an inclined flat plate (wedge), 

with distributed mass injection along the surface of the wedge. We con- 

sider only the case where the injection-layer thickness 6 is small com- 

pared to the original wedge height 9. 

According to the theory of supersonic flow past a slightly per- 

turbed wedge, flow quantities in the outer flow can be expressed as 

qx(x,y) = U2[l + eu(x,y)] (3.1) 

qy(x,y) =. U2ev(x,y) (3.2) 

P(y) = P2 + ep2Ü2P(x,y) + ... (3.3) 

where e is a small parameter determined by the magnitude of the pertur- 

bation, and the subscript "2" refers to conditions behind the original 

shock wave. 

The condition of tangential flow at the outer edge of the injectant 

layer is replaced by a boundary condition on the original wedge surface, 

and the perturbed shock jump conditions are given along the original un- 

perturbed shock wave of the wedge.  Reference 10 contains a complete 

discussion of this theory. 

A solution of the wave equation with appropriate boundary condi- 

tions results in the following equation for the pressure; 

/   \        P9U„   r      ro      n 
»(x,y(x)J = P2 +     1/2 [y<x) + 2 2 ^V(k

nx)J    (3-4) 
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where 

X    = reflection coefficient 

k = ratio of the x-coordinate where a wave originates near the 

wedge to the x-coordinate where the wave intersects the wedge 

y(x) = dimensional perturbation measured from the wedge surface. 

If this result is specialized to the hypersonic limit, M -» m, 

9     - 0, MB     -a»  then 
wedge      °° wedge    ' 

X  - X 

Y 

w -1) 
1/2 

1 + Y 
\2(Y - 1) 

1/2 
(3.5a) 

k - k 
1 - (X - ly 

2Y  / 

1 + (Y - n1/2 (3.5b) 

Equation (3.4) becomes 

/     .    .     \ p^x,öscx); 2       PooUoo 6/     2Y   Nly'2r    / °°    n    ,     n (Y +  1)9" X _-    1 + ^{y-^j)      [_S '(x) + 2 2 AnS'(knx) 
I n=l 

(3.6) 

where the shape of the bounding streamline is Y(x) = 9(6/8)S(x), and 

6/9 « 1. 

Inner Flow 

The injected fluid is assumed to leave the surface with a constant 

temperature T . This assumption is not essential to the analysis, how- 

ever, and the theory remains valid for moderate variations of wall tem- 

perature. 

We introduce a new coordinate y = y/6.  Consistent orders of mag- 

nitude for flow variables in the injection layer are as follows: 
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,RftT  x
1/2

/KNl/2 

**<*>»     "     (-P)       (1)      U(X'?)+   •'• (3'7a) 
*w 

,R„T  x
1/2   /RN3/2 

q(x,y)    -     (-p)      e(|)      v(x,y) +   ... (3.7b) 
*w 

V  +   1       Poo  CO 9- ~ 
p(x,y)    =    ^Tr-ep(x,y)+... (3.7c) 

0 w 

w , 

P(x,y)    -    ^4~i PjlV  {l + I ps(x,y) +   ...} (3.7d) 

where R,.   is  the universal gas constant and u    is  the molecular weight 
0 w 

of  the  injectant.     The  equations of motion then become 

x-momentum: u _H + v _Z    -     _ __£  (—) (3.8) 
ox -,~ dx     \- / dy p 

continuity: IMi + IMl    =    0 (3.9) 
dX    dy 

ÖPS    „ (3.10) 
y-momentum:      =0 

dy 

If we assume a perfect gas with an isentropic exponent Y , then the 
w 

entropy equation can be written 

PY 

If the wall temperature is constant and the injection Mach number is 

small, then the flow is incompressible, since p = 1 + 0(6/9).  The 
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boundary conditions at the wall become u(x,0) = 0, v(x,0) = v (x). 

The boundary conditions on the dividing streamline, y = S(x), are 

v(x,S(x) 

ulx,S(x) 
= S'(x) (3.11) 

and 

PsU,S(x) 
2Y 

.Y 

1/2 
s'(x) + 2 Z ^ns'(knx) 

n=l 
(3.12) 

As in Section II, the equations of motion and entropy reduce to those 

of an inviscid, incompressible boundary layer.  The density is constant, 

and there is no pressure gradient across the layer. 

In terms of the mass flow ratio per unit area, m - (pq ) /praU , 

the requirement that 6/9 « 1 results in the following estimate: 

m = >3(t 
3/2 

R_T 
0 w 

w 

1/2 

or 

m w ^°° 
1/2 2/3 

-• Q3 \T U Tl 8   oo ^w 
00 

« 1 

or 

m « M 9 I—  00 \T p, 
CO ^w 

1/2 
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For a fixed Mach number M , a fixed mass flow m, a fixed wedge angle 9, 

and a fixed wall-to-free-stream temperature ratio T /T , this implies 
* ^J   CO' . ~ 

that 

1/2 1/3 m 
^w 

Thus, the injection of a light gas into a heavy one produces greater 

induced pressure effects than does the injection of a heavy gas into 

a light one.  For example, pressure perturbations due to the injection 

of helium into air are predicted to be about twice those for air into 

air. 

The flow in the injection layer is governed by the same equations 

as those given earlier, and we obtain the simple Bernoulli equation: 

~  (x,x*) + Ps(x,x*) = ps(x*) (3.13) 

where x is defined in Eq. (2.19).  The height of the dividing stream- 

line is again 

i       x v  (|) 
s<x> " 7*i( ,./   ,,W*dS <3'14> 

where 

1/2 
PS(X)    =     (T^T)      {s'00 + 2 S\V(knx)} (3.15) 

n=l 

As before, an inverse representation of the solution is possible:  S(x) 

is assumed, the resulting pressure distribution is calculated from Eq. 

(3.15), and Eq. (3.14) then becomes an Abel integral equation for v (x) 
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Example 

If 

S'(x) = 
N 
Sax 

n=0 

n 
(3.16) 

then 

Ps(x,0) = Y - 1 

1/2 N 
Z 

n=0 

1+Un 

1-Äk" 
00 CO 

n a x 
n (3.17) 

If the blowing results in an ogive-like injection zone, 

S = ax " a
2 y 

S  =  a - a2x 

*     where a  a > 0 (3.18) 

The pressure formula gives 

Y -   1 

1/2 1 + \ 1 + X k 
CO CO    CO 

1 -  X    al  "   1  -  K k    32 
CO CO    CO 

(3.19) 

and  from the Appendix,  v  (x)   is  then 

v      =    + i, W TT LAY -   1 
2       A1/2 1   +   \A, 

X  1  -  X k    X  a2 X  2 
CO    CO 

1/2 
? (31 -   a2g) 

J x -   | 
d§       (3.20) 

or 

v  (x) 
wN  ' TT LAY 

xl/2  1 + U 

^;   r TT x a2 x 2. 
1/2r i/2 x '     X  a.   X  2 

1 
3/2  v   n     y 4~ x X  a2 X - 

(3.21) 
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= 1 (3.22) 

or 

= 2 k - 4 (3.23) 

HYPERSONIC NEWTONIAN FLOW PAST A POROUS CONE 

Another example of the "blowhard" problem is provided by super- 

sonic or hypersonic flow past a porous cone when the injection rates 

are high. We restrict our attention to the study of hypersonic flow 

past a porous slender cone of angle 9, and use the Newtonian formula 

for the calculation of the pressure distribution on a perturbed cone. 

As before, the "blown" layer is assumed to be thin relative to the 

thickness of the original cone. 

Newtonian slender-body flow corresponds to the limits 9 -» 0, 
2 2 

Y -+ 1, and 1/M 9 (Y - 1) -» 0.  The Newtonian formula, including impact 

and centrifugal force terms, is 

TT2 

ra>  oo 
P  = 

/2   , rr 
r  + ] (3.24) 

where the profile shap i'e i-s r 

If the injectant layer height 

= r(x) and primes indicate d/dx. 

at x = 1 is 6, then 

r = C* • (I) X + Ur ) S(X) (3.25) 

where 6/9 « 1.  The initial height and the normalization condition 

are given by: 
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S(0) = 0,    S(l) =  1 (3.26) 

This pressure formula then becomes 

1 CO oo   2 92{l+2|s'(x)+(i)xf W + o(|)}   (3.27) 

The following orders of magnitude are appropriate for the flow 

variables in the inner layer: 

VwN 6 , ~. 
—; e u(x,y) 
'w 

(3.28a) 

,R„IA
1/2 /c\3/2 

J 'w 
(3.28b) 

2 2 
p U Q 

P = 1+9 Ps(x,y) + •• (3.28c) 

P = 
p U 9 1 00 00       _     ^ 

-2R-T— p(x.y) 
0 w 

w 

(3.28d) 

The equations of motion become, in boundary-layer coordinates, 

du    du 
ox    dy 

Ü2 
dxp 

(3.29) 

a r   / v 1     ö 
•T— r„(x)u H  

dy 
(_r0(x)v =  0 (3.30) 

P =  1 (3.31) 
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= 0 (3.32) 
äy 

where y = y/6 and r_(x) = x9. 

By introducing a stream function defined by 

|i = urQ(x),    ^x = -vr0(x) (3.33) 

we obtain the simplified Bernoulli equation of Section II: 

2 

^ (y- (x,t) + P(*,+)) = 0 (3.34) 

We also introduce the variable x , which marks the location of the 

origin of the streamline t on the surface of the cone; 

, *      * d^ 
Vx>dx    =   -7TFT (3-35) 

w 

The height above the cone surface, y(x,i|0, can be obtained from 

r0(x)dy = ^ (3.36) 

or 

* x* r (§)v(§) 
:0(x)y(x,x )  = r0(x)S(x) - J  U u(^x)  d§      (3.37) 

Introducing the Bernoulli equation, Eq. (3.34), we obtain the height 

S(x): 



-27- 

* 'n(5)vM(S) 
d§ (3.38) Vx>s<x>   "  77072^7"^ 77W2 

(2)   0 ^Ps(§) - PS<
x)/ 

We now consider a solution to the inverse problem of finding the 

blowing distribution which leads to a prescribed S(x). 

From the Appendix, 

(2,1/2    "    ndJo(ps(5)-PsW)1/2 (3'39) 

An especially simple example of the application of the theory 

corresponds to 

p(x) = aQ - axx (3.40) 

then 

0, v    30    al 2 
s(x) =• Y" x " T x 

,  v ,       Y  0Nl/2  1  /       1/2  Y 4 3/2  y   8 1 ,_   ... vw(x)     =     (a;LX2) -|aQx XI-a1x X —J- (3.41) 

Since S(l) =  1,   then 

a2    =    | aL -  5 > 0 
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IV.  COMPRESSIBLE INNER LAYERS 

If the limit of the gas density as 6 -» 0 is not a constant, we 

must consider the effect of compressible inner layers.  Examples of 

these are surfaces which, in the absence of injection, have favorable 

pressure gradients, or situations in which the hypersonic parameter 

MÖ -» °°.  In this section we derive the simplified inviscid equations 

of motion corresponding to a compressible inner layer.  The free stream 

is assumed to be hypersonic. 

The following consistent set of expansions is assumed valid as 
~ 2      2 

6 -» 0, with y fixed (it is assumed that M -* °°, M e(6) -» &,   and 6 -» 0) : 

R T  1/2 

"w 

R T 1/2 

S = ("irO   6v(x'?) <4-2> w 

T 
J-    = t (x,y) (4.3) 
w 

P(x,y) = P U2De(6)P(x,y) (4.4) 

PU2 
CO  CO _^       r^ 

P =  R T  e(6)P(x»y) (4.5) 
0 w 
rw 

T~   =  t(x,y) (4.6) 
w 

where x and y are boundary-layer coordinates along and normal to the 

surface.  With these expansions, the momentum equation balances inertia 1 
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and pressure-gradient forces, the continuity equation is preserved, 

and the normal pressure gradient öp/dy(x,y) -» 0 as 6 approaches zero. 

The momentum equation becomes 

du ,   du 
u "5—h v -5- ox    ay 

1 d£ 
(4-7) 

The continuity equation remains 

•^ (pu) + — (pv) = 0 
Oy 

(4.8) 

and the energy equation becomes 

u ^o + v 
öto 

äx     öy (4.9) 

The total enthalpy, in nondimensional form, is then 

~        ~   Y - 1 2  ~ 
tQ(x,y) = t(x,y) + 2Y  u (x,y) (4.10) 

and the equation of state becomes 

p- = P(x?y) 

t(x,y) 
(4.11) 

Von Mises variables are introduced, replacing x,y by x,' 

formation formulas are 

The trans- 

= pu (4.12a) 

x 
= -pv 



dy dy 

The momentum equation becomes 

»30- 

a     ö   d  ä . 
^ = ^+^3? <4'12b) 

d^ d 

u|± (u,t) + -& (x,i|r) = 0 (4.13) 
0X       pöx 

and the energy equation becomes 

St 
u-g^ =  0 (4.14) 

The integral of the total energy equation is then t (x,t) = t (ty) , where 

tn(ty) is a known function of if  corresponding to the wall temperature. 

The momentum equation can be integrated, giving: 

2 *± 
T V0 " T (x'^ = K(*> x p(Xj1,) '      (4,15) 

Changing variables to x,x , where x marks the location on the 

surface where the t streamline enters the flow, we obtain: 

p(x ,x )v (x )dx  = -dij» (4.16) 

At a point on the surface where x = x , u = 0 and p = p(x ,x ) 

Thus 

*. 

Y-l 

u2(x,x*) - 2t()(x*,x*) X -L {l - [-**=£]  }     (4.17) 
P(x ,x ) 
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* 
In order  to  locate  the point x,y corresponding  to x,x  ,  we use 

~ di|f 
dy    =    — 

pu 

dy    - 
*    * „    *    * 

.  v(x »x Mx  >*, 1 dx" 
_,     "k "k 
p(x  ,x)u(x  ,x) 

(4.18) 

Noting that 

1/Y, *    s 1/Y, *    * 
2 (x  »*)    =    P      (x  ,x ) 

P(x  ,x) p(x  ,x ) 
(4.19) 

then 

dy    =    -v  (x ) 
w p(x  ,x) 

1/Y dx 

u(x  ,x) 
(4.20) 

Equation  (4.20)   can be integrated  to  yield 

* 
ft 

y(x ,x) =    S(x) - f   v (S)[*$£*H N '      J       wN /Lp(§,x)J 

1/Y df 

u(S,x) 
1/2 

(4.21) 

Since y(x,x) = 0, 

s(x)   =   1^ p v(5){£iLSl} 
2Y  \        0 LP(§>X)J 

1/Y d§ 

t0(S) 1 - 'P(S.X) 
.p(S,5)-l 

Y-l 
Y 

ÖV2 

(4.22) 
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Example -- Power-Law Nose, e(6) = 6' 

Let 

S = x ,    n < 1 (4.23) 

For a power-law effective nose shape, hypersonic small-disturbance theory 

yields 

p = A X x 
n 

2(n-l) 
(4.24) 

The injection distribution is v = v x ; Eq. (4.22) is used to determine 
w   m '  n  N   ' 

v and m as follows: 
m 

Y -   1/        0* 

x 

m >J 
nT§" 

2(n-l) 
Y 

-XJ 
d§ 

1 - (f)^>* ¥ 
-T75   (4-25) 

or 

,1/2 ( 2Y     V7   .     y    n Y    nH-1   f 
vrnv   fcox X   "  Vm x x    J 

m+- ^  (n-1) 

ü  \ -  (X)"2^"1) x ¥ 
,1/2 

dX 

(4.26) 

where A =  |/x.     Therefore 

n    =     1 + m (4.27) 

m 

1/2 

(4.28) 

0   U -  ,B 
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where 

A =  m + £ (n - 1) 

B =  -2(n - 1) X Y - 1 

We note that 

! 
0 M 

XAdX 
1/2    B = - r B J 

A+l-B 
1 A     v   B 
dx X x 

1 - x 1/2 
(4.29a) 

B „/A + 1  T 
\ B  + 2 

(4.29b) 

where F is the gamma function. 

Example -- Two-Dimensional Stagnation Point 

Although this is not strictly a blowhard problem, it can be treated 

by the thin-layer inviscid theory as follows: 

s(6) = 1 

p~ PQ[1 - ax ] + (4.30) 

v  = constant 
w 

S(x) = w 
,1/2 

[i - f (S)2 + 7 (x)' 
I 

[tQa 1^1  (x
2  .   I2) 

1/2 d|   (4.31) 
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S(x)    = 
v X 

w s (2a)"2 i   (v 1/2^2 .   ej
n i% (4.32) 

1 
1__x 

<2)i'2(V)i/2J(iVx*y/2 
dX (4.33) 

x£ 
<2>1/2<V>1/2       2 

(4.34) 
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V.  COMPRESSIBLE AXISYMMETRIC FLOW 

The rotationally symmetric version of the compressible blowhard 

equations for a hypersonic free stream is derived in this section.  A 

boundary-layer coordinate system is used and an additional parameter 

R/S is introduced (see Fig. 3). 

r = y cos 9 + Rr_(x) 

~    ~        R 
r = y cos 9 + g rQ(x) 

R T 1/2 

«x - (-rO U(X
'
5) (5-1} 

s - (irf)  6v<x>y> <5-2> 

T 
if-    =  t0(x,y) (5.3) 
w 

p(x,y) = PmU
2e(6)|)p(xJy) (5.4) 

f- =  t(x,y) (5.5) 
w 

The inviscid balance between inertia and pressure gradient becomes 

3u ,   du       1 dp ,r   c\ u öi+ v~ " -Idx" (5-6) dy      p 

The continuity equation becomes 
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Fig. 3 -- Coordinate system for axisymmetric flow. 
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(urp)x + (vrp)~ = 0 (5.7) 

and the energy equation becomes 

ut. + vt.~ = 0 
Ox    Oy 

(5.8) 

The equation of state is p = p/t.  The boundary conditions are; 

y = 0,    v = vw(x),    u - 0,    t0 =  t0w   (5.9) 

y = s, 
v =  dS 
u    dx 

Introducing the stream-function variables 

pur (5.10) 

pvr = - i(i 

we obtain the compressible Bernoulli equation, which gives us 

Y-l 

2  * *     Y 
U (X ,x)   =  2tQ(x ) X y-Lj 

Y 
I  _BJX>X )- 

p(x ,x ) 
(5.11) 

where 

dx 
d* 

* * (5.12) 
p(x ,x ) X vwrQ(x ) 

In order to locate the point (x ,x), we must obtain the y coordinate 

from 
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rdy = — (5.13) 
pu 

or 

~2 2 
Y  cos 9(x) + | rQ(x)y = \  cos 9(x) + rQS X | 

•A.   .JU 

;4^  d§     (5.14) 
p(§,x)u(§,x) 

The edge of the "blown layer" is determined from 

o 

For practical applications, it is anticipated that R/6 ~ 0(1).  Further 

analysis, involving the introduction of a pressure formula for the 

outer flow, leads to the formulation of an inverse problem like those 

in the preceding sections. 



-39- 

VI.  CONCLUSIONS 

A simple theory has been proposed for the analysis of hypersonic 

or supersonic flows over cones, flat plates, and wedges, where there 

is continuous mass injection from the surface.  The mass transfer rates 

are assumed to be low enough to preserve the slenderness of the effec- 

tive body produced by the injection but high enough to lift the boundary 

layer off the wall.  Since a favorable pressure gradient is necessary 

to drive the flow in the injection layer, the theory applies only to 

those injection distributions that cause the pressure distribution to 

fall. Mass transfer must be provided externally; among the possible 

methods are:  surface ablation caused by externally applied thermal 

radiation, transpiration through porous walls, or a reaction occurring 

at the boundary. Mass transfer caused by convective heat transfer is 

excluded from the theory because the heat transfer rates are zero for 

high blowing rates. 

Additional extensions of the theory might entail (1) calculation 

of the inviscid flow past the point where the injection has stopped, 

(2) calculation of the viscous corrections for a finite Reynolds number 

(which will require a pressure correction due to a viscous displacement 

thickness), and (3) estimates of aerodynamic coefficients for bodies at 

small angles of attack. 

An unsolved basic problem of the elementary theory is whether solu- 

tions exist for constant blowing or constant pressure or both.  Pre- 

sumably this type of flow in two dimensions demands a more accurate 

theory.  One example for flow over a cone with constant blowing is 

given in Ref. 11.  When the assumptions of the present theory are sat- 

isfied, the examples discussed in the preceding sections can be compared 

with the results of other, more elaborate numerical analyses.  Compari- 

son of theory with experiment is not yet possible, since the injection 

distributions of the present work have not yet been simulated in wind- 

tunnel tests. 
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Appendix 

SOLUTION OF THE INTEGRAL EQUATION (2.30) 

The basic integral equation to be solved in the region x ^ 0 is 

(2.30): 

i/o        x     v (?) 
(2a)i/ZS(x)  = J7 H _ d§ (A-i) 

o (P(S) - P(x))17/ 

Equation (A-l) is transformed into an Abel-type equation by regarding 

P(0) - P(x) as a new variable.  Let 

M, = P(0) - P(§) 

(A-2) 

T] = P(0) - P(x) 

assuming that P(0) is finite and that JJL,T| are monotone functions. Then 

m"M^>) - ?^H i/o  dH (A-3) 
ö  en - MO ' 

In this  form the  equation is  a  standard Abel  type  (Ref.   10)   and has  the 

solution 

(  rr\C\ d* (2g)1/2   d    "l    sfgQjQJ       , ,.   ,x 

o O - n) 

Integration by parts and the use of S(0) = 0 thus yields 

-.(-a») a • ^?4^1 dTl TT        J  --_ Nl/2
d^ <A~5> 

0       01 -   M-) 
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The reintroduction of the original variables of Eq. (A-2) gives 

the final result: 

"   W 0 (P(l) - P(x)W2 

which is identical to Eq. (2.31). 
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