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ABSTRACT 

A branch and bound algorithm for finding the minimal 
cost symmetric assignment is discussed.  The matching 
problem in graph theory and the Chinese postman puzzle 
are all special cases of the symmetric assignment problem, 
and hence this algorithm can be applied to solve them. 
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Introduct ion:     The well   known assignment  problem   is  to 

n       n 
minimi ze     7=    T      T    C.A.. 

i=l   j=l      'J      'J 

n 
subject to Z x.. = 1, for j = 1. ..., n 

i = l  IJ 

n 
T    x. . = 1 , for  i = l n (l) 

x.. > o 
U = 

where n  is a given positive integer and  C = (c.)  is a given  n x n cost 

matrix. C  denotes the transpose of C . Any feasible solution to the assignment 

problem can be represented by the matrix  X = (x..) where the x..  satisfy x |J/ 'J 

conditions (l). 

Consider a matrix X = (x..)  of order n x n , in which only one of the 

elements in each row and column is equal to 1, while all the remaining elements are 

zero. Such a matrix is a permutation matrix and is called an ass ignment.  Every 

assignment is a basic feasible solution of the solution set of (l) and vice versa. 

We use the letters a, b to denote assignments. 

Occasionally it is convenient to denote an assignment by the set of its unit 

cells, i.e., the cells in the matrix X  representing the assignment which have 

unit entries in them.  All the other cells have zero entries in them of course.  Thus, 

a = fC J,) (". Jn)} (2) 

where ].>••••]   is a permutation of the numbers  1, 2, ..., n  is an assignment. 

Correspondingly we shall write  (i, j) e a or  (i, j) ^ a  to indicate that in the 



matrix X representing the assignment CL , the entry in the cell (i, j) is one 

or zero respectively. 

Let ^-((j) denote the cost corresponding to assignment a  ,  w.r.t. the cost 

matrix C . Hence for the assignment in (2) 

ZC (a) = \  Crj r=l  J r 

when there is no ambiguity about the cost matrix, or when we are referring to the 

original cost matrix in (l) we will ignore the subscript and write Z(a) instead 

of Zc(a) • 

If a is the assignment in (2) 

a = {(j,. "). ••.. (jn. n)} 

is another assignment and it is known as the reflection of g   . 

An assignment b is called a symmetric assignment (SA in abbreviation) if 

b = b,  i.e., whenever it contains a cell  (i, j) it should also contain the cell 

(j, i) . Let K denote the set of all SA. The symmetric assignment problem is 

the problem of finding the minimal cost (optimal) SA. 

The special case of the symmetric assignment problem in which the diagonal 

cells bear infinite cost is equivalent to the optimal matching problem in graph 

theory [5]- The famous Chinese postman puzzle can be formulated as a matching 

problem and hence as a special case of the symmetric assignment problem (pointed 

out by Professor D. Gale). 

X 



Term!nology: 

Diagonal Cell: Any cell along the principle diagonal, i.e., a cell of the form 

(i, 0^ is cal led a diagonal cell. 

Node:  A node is a subset of K of the following form 

node N = fall SA wh ich conta in  (I. , ],)(].. i.) .•• (i , j ) (j , i ) and wh ich 

do not contain  (m , p^Cp^ m ) ... (m , p )(p , m )} . (3) 

Then the cells  (i , ],)(],. i,) ... (• . j )(j , i )  are said to be the cells 

specified to be contained in the node , and the eel 1s  (m , p )(p , m ) ... (m , p ) 

(p , m ) are said to be the cells specified to be excluded ^rom the node. The 

letters M,N will be used to denote the nodes. 

For simplicity we can write down the node N  in equation (?) as 

N " f (^ > V^j, - i,) ••• (ir. Jr)0r' ',.);('", , PJHPJ ~y   ■ ..(nTTp^) (pTTnT)} 

the bar above a cell indicating that it is specified to be excluded from the node. 

n admissible unspecified cell at node  N  is any cell which is unspecified at node 

N and which does not lie in a row or column of a cell specified to be in that node. 

Branching from node N with the admissible unspecified cell  (i, j).  Suppose 

node N  is given by (3) and let  (i, j) be an admissible unspecified cell at  N . 

Then ne i the r  i nor j equa1 any of  i.,..., i , j,,..., j  .  Then we can 
j   -i ^       r   1      J r 

part it ion N as 

\ 
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N = N1   U N2, V   N2    dis-ioint' where 

N]  " {('p  ],)(]! •   ',)   •••   {'r.  Jr)(Jr'   ',.)('. j)(j.   0;(ny  ?,)(?,.  m1)... (nis,  PS)(PS.  "T)} 

N2 *  ^'r  Jp^l'   '^•••^i
r'  J   ^Jr'   

i
r)''(m

1 '  FjKpJ^  m1)...(ms,   PS)(PS. ™s)i*>  j)(j.   ')} 

This operation of partitioning Into two disjoint subsets is known as branching from 

node N with the admissible unspecified cell  (i. j) • The nodes N. and N. will 

be called the branches emanating from node N . 

Reducing the matrix C , method .':  This operation proceeds as follows 

(1) Subtract from each element the minimal element in its row. 

(2) In the resulting matrix, subtract from each element the minimal element in its 

column.  Suppose this leads to a matrix C. , then all the elements in C. 

are nonnegative and each row and column of C  contains at least one zero element. 
.       C,   + C{     ' 

(3) If    C.     is  not  symmetric,   let    C.   =  =  .    Then    C.     is a  symmetric matrix 

with all   nonnegative elements. 

(i)    Suppose    C,     contains some  rows with  no zero element at all.     Pick one of them, 

sey  row     ',   •     By symmetry column     i.     also has no zero element. 

(5) Subtract  the minimum element   in  row     i.     from each element   in  that  row. 

(6) In the  resulting matrix subtract  the minimal  element   in column     i.     from each 

element   in  that  column. 

Since the operation  in (5)  alters only the diagonal  element     (i.,  i.)     in 

column     i.   , at  the end of step  (6),  either a pair of symmetrically placed zero 

cells,  say  (I.,  j)    and    (j,   i.)    are created  in row    i.    and column    i.     respectively 

or the diagonal   cell     (i.,   i.)    becomes a zero cell.    Suppose the  result   is    C-  . 



. 

'      C2+CI 
If    C       is not  symmetric  let    C     =     .     By symmetry   C       contains all   the zero 

■ 
cells of       C      and at   least one additional  zero cell   in each of row     i       and   column 

i.   .     If   C      has some  rows and columns without any zero entries  repeat  steps 

(i+),   (5),   (6) with    C2     replacing    C]   . 

Repeat  this process  until   finally a  symmetric matrix   C       is obtained which 
n 

consists of all nonnegative elements such that each row and column of C  contains 
H 

at  least one zero element. 

CR     is known as  the  reduced matrix obtained  from    C   .    The sum of all  the 

numbers  subtracted  from the  rows and columns during the various steps   is  known as the 

reduction of the matrix    C   . 

Reducing the matrix    C   ,   method 2:     Using  this method the operation of reducing 

C    proceeds as  follows. 

(1) Using the cost matrix    C     find the optimal  assignment by the Hungarian method   [] ]. 

The Hungarian method  transforms    C    by adding constants  to  its  rows and columns 

until   finally a matrix    C.     is obtained which consists of all  nonnegative elements, 

with at   least one zero  in each   row and column.    The optimal  assignment   is  contained 

among the zero cells of    C 

T 
'      Cl  +C1 

(2) If    C.     is  not  symmetric,   then repeat step  (l) with    C    =  r     in place of    C   . 

Repeat this process as many times as necessary until  the final   transformed 

matrix    C.    with  nonegative elements and containing at   least one zero  in each  row 

and column,   is  symmetric. 



The  sum of the costs of all   the  optimal  assignments  as  they are obtained   in 

the  successive steps,   in known as the  reduction of the matrix    C  .    The final 

transformed matrix    CR    is  known as  the  reduced matrix obtained  from    C  .     It 

can be seen that  the operation of  reducing    C    by method 2 might   involve some more 

work than  that by method  1.     However,  the  reduction of    C    obtained by method 2   is 

likely to  be  larger than that obtained under method  1  and  this helps   in  improving 

the efficiency of the algorithm. 

It  has been proved  in theorem 6 that the  repetition of  steps  (1) and  (2) 

of  method  2 have to be carried out only a small   number of times before obtaining 

CR   .    Hence    CR    is obtained  from    C     in a small  number of steps. 

The   remaining cost  natrix at node    N   :     Suppose node    N     is given by equation 

(3).    Then the matrix obtained by striking off the  rows and columns    i.,   ...,   i   .   L, 

...,  j       from    C    and  replacing  the cost elements   in the cells     (m.,  p )(p.,  m.)   ... 

(m   ,  p )(p    m  )    by   infinity  (or a very very large positive number)   is  known as the 

remaining   cost matrix of node    N  .    The  reduced matrix obtained  from this matrix   is 

known as   the  reduced  remaining cost  matrix at node    N    and   is denoted by    CN R   . 

The   remaining cost matrix of    K     is    C    itself,  and  the  reduced remaining cost 

matrix of    K     is    C     . 

The evaluation of an admissible unspecified cell at a node. Let (i, j) be 

an admissible unspecified cell at a node N . Then its evaluation at node N is 

defined  to be    9^.(1, j) where 
N 

6M(i, i) = Sum of the minimal elements in row i and column  i 0^ ^ D 
after 

excluding the element in  (i, i) 



eN   (i. j) 

or 

or 

Sum of  the minimal  elements   in  rows     i    and    j    and  columns     i    and 

j     in    C,. D    after excluding the     (i,  j)th    and    (j,   i)th    elements; 

if these minima occur at distinct  places 

the diagonal  element   in    (i,   i)     plus the sum of the minimal  elements 

in  row    j     and column    j     in    CN R    after excluding  the     (if  j)th    and 

(j ,   i) th    elements;   if minimum   in row    i    end column     i     after the 

exclusion occurs at the diagonal   cell     (i,   i)    and the  diagonal 

element at     (j , j)     is not the minimal   in  row    j    and  column    j    after 

the exclusion 

the  sum of  the diagonal  elements     (i,   i)    and    (j , j)     in    C.. R     if 

those elements are the minimal   ones   in  rows     i, j    and  columns     i,  j 

after excluding the cells     (i,  j)    and    (j,   i)   . 

Since the  reduced matrix contains all   nonnegative elements,     6M('»  j)  > 0 

for ell  admissible  unspecified cells.    Also since  'he  reduced matrix has at  least 

one zero element   in each  row and column,     6N('»  j)  = 0    unless    (i,  j)     is a zero 

ce11   in    C 
N.R  * 

The mathematical  theory 

Lemma  1:     If    n     is even,  the total  number of SA which do not contain any diagonal 

ce11s  is    nI/ 2 

Proof:    An SA which does  not contain any diagonal  cell  consists of  pairs of cells 

like    (I, j)(j,   I),   I >* J   •    when    n    Is even the total  number of ways  In which   n 

n/2 
objects can be paired  In this manner Is    nl/ 2 which Is therefore equal to the 

total number of SA without dny diagonal  cells. 

( l^mc 



■ 
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Theorem 1: The total number of possible SA is 

I     (?) (n - r) J/2(n ■ r)/2 . if n  is odd 
r=l 
r odd 

l     (?) (n - r) :/2(n _ r)/2 , If n  is even. 

r  even 

Proof:  This follows by using lemma 1 and the fact that if n  is odd, any SA 

must contain an odd number of diagonal cells and if n  is even, any SA contains 

an even number of diagonal cells. 

Theorem 2:  Let C. be the matrix obtained by adding a constant -t- to each element 

is a row (or column) of C .  If b  is an optimal SA w.r.t. cost matrix C then 

it is also an optimal SA w.r.t. cost matrix C.  and vice versa. 

Proof:  This is actually a restatement of a similar theorem for the general assign- 

ment prob1em [1]. This follows easily because 

Z- (a) = Zc(a) + I  ,   for all assignments a , 

and I     is a constant. 

Theorem 3:  If C is not symmetric the optimal SA w.r.t. cost matrix C is also 

optimal w.r.t. the cost matrix C = (C + C )/2 . 

Proof:  This follows from the fact that 

Zr(b) = Zr,(b) , for all beK . 

\ 



Theorem ^:    The reduction of    C     is a lower bound on the cost of any SA. 

Proof:      If    beK    then by theorems    2 and 3 

Zr(b)  =  reduction of    C + Z     (b) 

But  since each element   In     C       is    > 0   we have    Z     (b)  > 0  . QED 
R     - CR   - 

In general, corresponding to any node N let 

LB(N) = original cost elements of all the cells specified to be contained in the 

node + reduction of the remaining cost matrix at node N . (k) 

Then from theorem k we see that LB(N)  is a lower bound on the cost of any SA in 

N . We have the following theorem on the lower bounds of the branches after 

branching from a node. 

Theorem 5:  Let  (i, j)  be an admissible unspecified cell at node N , which is a 

zero cell in C.. . . Let  N, , N. be the branches when N  is partitioned w.r.t 
N ,K I Z 

(i.   j)    • 

N^  {beN  :   (i, j)eb,   (j,   i)eb} 

N2=   {beN  :   (i. j^b,   (j,   i)^b}   . 

Then     (I) LB(N2) > LB(N)  +  eN(i, j) 

(ii)    Let    C        be the matrix obtained by striking off the  rows     i,  j    and columns 
1 

j,   i     from   C and  let    C be the matrix obtained by  replacing the entries   in 

the cells    (i, j)    and    (j ,   i)    of   C by  infinity  (or a very  large positive 

number).    Then 

---•».-**, «c *. 
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LB(N.)  = LB(N) + reduction of    C,. 1 N1 

LB(N0)  = LB(N) +  reduction of    C., 
2 N2 

Proof:  (i)  This follows from the fact that by definition  beN => beN and 

(i, j) ^b, (j. i) ^b . 

(ii)  These follow the fact that  (i, j) which is admissible unspecified at 

N  i s a zero eel 1 in C.. _ . 
N , K 

Theorem 6:  In reducing any matrix C by method 2, step 2 need not be applied more 

than twice. 

Proof:  Suppose C.  is the transformed matrix obtained when step 1 is applied to 
C + C^ 

i   n   1 
C •  If C.  is symmetric we are done.  Otherwise we find C =    which is 

a symmetric matrix with nonnegative elements. 

Let  a be an optimal assignment w.r.t. cost matrix C  . Let C  be the 

i 

transformed matrix obtained when step (l) of method 2 is applied to C  .  Then 

for any assignment b 

Z , (b) = Z ,(a) + Z- (b)     (by the Hungarian method) 
C,      C,     C2 

But        z i(a) = z i U)     because C  is symmetric . 

Hence      Zr (a) = Zr (a) = 0 . 
C2     C2 

Since    C      has all  nonnegative elements  this   implies  that the entries 

in the matrix     C       in  the cells of   a     and   a     are all   zero.     This 

V 
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,  c„ + c 
T 

'2   2 
implies that in C =  =  there exists at least one zero cell in each row and 

i 

column (corresponding to the cells of a and  a) and hence C- = CR . 

Theorem /:  Let  N be any node. Let  a be the minimal cost assignment in N . 

(i)  If N contains only a single assignment, then it must be a  and 

Z(a) = LB(N) . 

(ii)  If method 2 is employed for reducing matrices then Z(a) = LB(N) . 

Proof:  (i) This follows from the way LB(N)  is defined in equation (U). 

(ii) Z(b) = LB(N) + Z.   (b) 
LN,R 

for all assignments b  in N , by theorem 5 and 

T-r       (a) = 0      (by Hungarian method) 
CN,R 

Therefore  Z(a) = LB(N) . 

Algorithm: 

Stage 1:  Find  LB(K) .  If this is found by using method 2 for reducing C , the 

algorithm terminates if there exists an optimal assignment which is symmetric. 

Otherwise branch from K . 

General stage m:  At this stage K has been partitioned into several nodes. Any 

node which has not been branched is called a terminal node at this stage.  In the 

course of the algorithm a lower bound on the cost of the minimal SA in each node 

(corresponding to equation CO) has been obtained. A terminal node which has 

/ 
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the least value of the lower bound among all the terminal nodes is known as a 

minimal terminal node at this stage. 

Optimality criterion:  The algorithm is terminated whenever there exists a minimal 

terminal node which contains only one SA or when there exists a minimal terminal 

node in which the optimal assignment is an SA (if method 2 is used fcr reducing 

matrices). 

If the optimality criterion is not satisfied at this stage, then 

(i)  find out the minimal terminal node with the least cardinality (i.e., which 

has the maximum number of cells specified to be contained in it, among all the 

minimal terminal nodes at this stage).  Suppose it is node N 

(ii)  find  (i, j) , an admissible unspecified cell at node  N  such that 

(a)  (i, j)  is a zero cell in C., R and 

(b)  6N(i. j)  's maximum among all the cells 

satisfying  (a) . 

(iii)  branch from  N w.r.t.  (i, j)  and find the lower bounds of both the 

branches using theorem 5- 

(iv) go to stage  (m + 1) . 

These computations are repeated until the optimality criterion is satisfied. 

The optimal assignment (or the only assignment) in the minimal terminal node at 

the final stage, which is an SA, is an optimal SA. 
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Justification for the algorithm:     At each stage  the  terminal   nodes are mutually 

disjoint  and  their union   is    K   .     So  the optimal   SA has  to   lie   in one of the  terminal 

nodes and   it   is more  likely  to   lie   in a  minimal   terminal   node  than   in any other. 

This   is  the   reason for branching  from a  minimal   terminal   node at  each stage. 

Also   if  the optimal   assignment   (or  the only assignment)   in a minimal   terminal 

node   is an  SA  then that  SA must  be  an optimal   SA by  theorem 7-     This  proves  the 

validity of  the optimal ity  criterion» 

It  can be  seen that  the efficiency of  the algorithm   improves   if we could 

guarantee   that we  reach   rapidly a  minimal   terminal   node which  contains a  single  SA. 

When a   node     N   is  branched as   in  theorem 5   it can be  seen  that   the cardinality of 

N       is  far  greater than  that of    N     .     Hence we choose the  cell     (i,  j)     for branching 

N   ,   in  such a way  that  the   lower  bound of    N       is made as   large as  possible.     By 

(i) of theorem 5,   the    611(1» j)     can  be  used to achieve  this   propose and  this   is 

what we used   in step  (li)  of the general   stage of  the algorithm.     The  reason  for 

branching   from the minimal   terminal   node with  least  cardinality   is also to help 

in  reaching  a  minimal  terminal   node with a  single  SA  rapidly. 

Finally method 2  for   reducing  matrices helps   in obtaining a  more precise   lower 

bound on  the  cost of the minimal   SA   in any node.    And   It  helps   In checking whether 

the optimality criterion   Is  satisfied  at a much earlier  stage.     Thus eventhough 

method 2 might   Involve more computatinal  work at each node,   it  may  require much 

less  branching  before the optimal   SA   is   found.    Thus  the  use of method 2  for   reducing 

matrices might   lead to a more efficient  algorithm,  especially when    n    Is  large. 

- 



A numerical   example: 

]k 

1 2 3 k 5 6 7 8 9 10 

1 10 9 73 25 3 76 52 1 35 7 

2 9 63 87 79 29 3 6 11 80 94 

3 73 87 1 5^ 68 7^4 32 Mf Mt 82 

k 25 79 5^ k] 8*t 98 ^5 V 46 85 

5 33 29 68 8k 5 23 12 11 32 49 

6 76 3 7^ 98 23 78 52 98 96 56 

7 52 6 32 ^5 12 52 19 39 64 92 

8 1 11 kk kj 11 98 39 3 98 27 

9 35 80 kh ke 32 96 Sk 98 59 91 

10 7 9^ 82 85 ^9 65 92 27 91 14 

138 

138 

138 
1(2.6) .(6 2) 

Method 1 has been used 

to reduce matrices. 

Lower bound corresponding 

to each node is indicated 

by its side. 

166 

(7^6).(6.2), 
V        (3.3) 

(TO .(577)) 

(2,61^6,2).^ 
0.2)       / 

172 

139 
c (2.6).(6.2).(3.3) 

(4.q).fq.4) 

(2.6)^(6.2),(3.3)] 

r (2.6),(6.2).(3,3) 
l(4.9).(9:4);(lt8)>(8. 

146 

rif-o 

(2.6),(6.2).(3^3).(4.9)      > |r(2.6).(6T2).(3,3).(4.9).(9.4)    \ 
.4),(1,8),(3,1).(5.7).(7,5), V (1.8).(8.1) .(5.5).(7.7).(10.10)J 

ÜMOL    '     > ^ 

\ / 

139 

alternate optimal solutions 



15 

The Chinese postman  problem: 

This   is  the problem of  finding  the minimal  distance   route passing through each 

edge of a connected undirected graph and  then returning to the origin.     Hence  such 

a   route   is also called an  Edge Covering Tour  (E.C.T.   in abbreviation).      It   is 

assumed that the distance associated with each edge of  the graph  is  nonnegative. 

We denote the graph by    G  .    We shall  call  the  nodes of the graph as vertices  to 

avoid  confusion with the  nodes defined   in the branch and bound algorithm.     A vertex 

of  the graph at which an odd  number of edges are   incident   is known as an odd vertex. 

If there are no odd vertices  then there exists an E.C.T.   in which each edge of the 

graph   is travelled exactly once.     Such an E.C.T.   is  known as an Euler cycle. 

Obviously  if an Euler cycle exists   it  gives  the minimal  distance E.C.T. 

If the graph contains  some odd vertices  then their  total  number   is even.     Let 

them be numbered    1,  2 ,   ... ,  2n  . 

Lemma  2:     There exists a minimal   E.C.T.   in which  no edge of the graph    G    will 

be  travelled more than  twice. 

i 

Proof:     Let    t    denote  the minimal  E.C.T.     Obtain a  new graph    G      by drawing 

each edge of    G    as many times as   it   is travelled   in    t   .    Then    t     is an 
i 

Euler cycle of    G    . 

■ 
Hence each odd node of    G    has become an even node   in    G    .    Therefore,   the 

i 

number of repeated edges  in    G      Incident at each odd node in   G    is odd, and the 

number of repeated edges  In    G      incident at each even node in   G    is even. 

• i 

Now obtain a new graph    G       by drawing each edge of   G   once if it occurs an 
i i 

odd number of times   in    G      and twice  if  it occurs an even number of time  in    G 

■ 



11 '     12' nl'    n2 

the paths   in    T       between any pair    (i   .1   i  o^    ""Jst be a shortest route between t0 r        r-c 

that pair    ('   ••   '  ^^    on    ^  • 

16 

By  the above property  it   is clear that all nodes are even nodes  in    G 

11 

So ;,<,.-, an Euler cycle    t        which  is an E.C.T. of    G  ,  and the total  distance 

11 11 

travelled  in    t is less than or equal  to that   in    t  .     Also  in    t        each edge of 

G    is travelled either once or twice. 

Lemma 3 "•     There exists an optimal   E.C.T. ,    t0  , on the graph    G    with the following 

property.     No edge of    G    is travelled more than twice.     Let     T        be the set of 
t0 

edges of    G    which are travelled twice   in    t0 .    Then the set of odd vertices of 

G    can be partitioned  into pairs     ('11.   '15)  •••   ^'   1•   '   0     such that the edges 

in    F form    n    different edge disjoint paths connecting each pair of odd 
t0 

vertices above. 

Proof;     Let    G        be the graph obtained by adding the edges of    T        to    G  .    Then 
* t0 t0 

tn    is an Euler cycle  in G       .     Hence  if    i     is an odd vertex  in    G  ,  then    F 
U t0 0 

must contain a path from i     to some other odd node    j   .     Suppose along this path 

in     F there  lie two other odd  vertices     r,  5   .    Adding all   the edges of this 
t0 

path to    G    leaves    r,  s    odd still.    Hence by the assumptions   in the hypothesis 

F        must consist of another path between    r    and    s   .     But  then the    E.C.T., 

t     ,  obtained by deleting all   the edges along both these  paths   in    F        between 
\ t0 

r    and    s     is  likely to be better than    t- . 

Hence we can assume that  there exists an optimal  E.C.T.,    t-,  , with the 

property mentioned   in the   lemma.     Also   in any of  the paths   in    F        between a  pair 
t0 

of odd  nodes,   not more than one other odd node can lie. 

Lemma k:     Let    tn    be an optimal   E.C.T. with the property mentioned  in  lemma  3- 

Let     (<,,.   ',.,)   •••   ('   1.   '9)     be a corresponding pairing of odd vertices.     Then 

1 

■ 
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Proof:     The result   follows obviously because   if  the path   in    F        between the pair 

of odd vertices were   not  a   shortest   route   in     G    between that pair,   then a better 

E.C.T.     can be obtained by  deleting the existing path   in    T        and   replacing   it 
t0 

by  the shortest   route. 

Lemma 2,3.*+ together   imply that  the optimal   E.C.T.  corresponds   to a minimal 

cost  SA with  the  matrix of  shortest   route distances  between odd  vertices as   the 

cost matrix.   [Pointed out  by  Professor 0.   Gale.] 

Algorithm for  the  Chinese postman puzzle: 

Let    c.   = ry   ,   a very   large positive number 

c.   = total   distance of  the  shortest   route on 
|J 

graph    G    from odd  vertex     i     to odd  vertex    j    , 

i, j - 1 , 2, ..., 2n . 

CMc,.) 

v 

Find the minimal SA corresponding to the cost matrix C  .  If the minimal SA is 

(v V (jV V •-• (v V (v in) 

then obtain a new graph by duplicating all   the edges along the  shortest   routes of 

(i   ,   j   )   (i   ,  j   )   ...   (i   ,   j   )     respectively.     The  new graph obtained  has an Euler 
112       2 n       n 

cycle, which  gives  the optimal  E.C.T.  on    G   . l_ 

The proof of  the  algorithm follows   from  lemmas  2,3.^- 

■ 

. 
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