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FOREWORD

This report was prepared by the Research Division of
American Optical Company, Southbridge, Massachusetts, under
contract Nonr U4875(00), Optical Inhomogeneities in Pumped Lasers,
for the Office of Naval Research, Washington, D. C., as part of
Project Defender.

Principal contributors to this report were C. J. Koester,
Introduction, Review of Previous Work and overall compilation of
material; E. Snitzer, Thermally Stable Cavities; L. W. Smith,
Calculation of Temperature Profile; S. M. Bergmann, Effect of the
Laser Field on the Index of Refraction of the Laser Rod; and
D.W. Cuff, End Region Stress Analysis.

The rerort is published in two volumes, the first

uiclassified and the second, a classified supplement entitled
optical Inhomogeneities in Pumped Lasers(U), Volume II.
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ABSTRACT

This report delineates efforts expended during the one
year period of contract Nonr 4875(00), entitled Optical Inhomo-
geneities in Pumped Lasers, which required an analysis in depth
of the...al distortion of wavefronts in large laser rcds and discs.
Two approaches for elimination of this distortion were considered:
(1) Establishment of a uniform temperature throughout the laser
during pumping and (2) Development of athermal glass parameters.
Elements of both approaches were found necegsary to solve the
problem. 1In separate sections of the report detailed treatments
are given to Thermally Stable Cavities, Temperature Prcfile
Calculations, the Effect of the Laser Field on Index of
Refraction of the Laser Rod, and finally an Analysis of End
Region Stress.

A classified supplement published separately as Volume II
of this report completes the research findings under this project.
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1. INTRODUCTION and SUMMARY

The effort in this program has been a theoretical
analysis of the thernal distortion problem in glass laser rods
and discs. The goal has been not merely analysis, however, but
rathier a more thorough understanding of the causes of wavefront
distortion, leading tr more effective athermalization.

There are two basic approaches to eliminating wavefront
distortion due to thermal effects: (1) Attempt to establish a
uniform temperature throughout the laser during pumping.

{2) Develop a glass in which the change in length due to

thermal expansion is balanced by the (negative) change in index
with temperature. The nature of the cavity must be considered in
arriving at the glass specifications. Also the effects of stress-
birefringence must be removed or reduced to an acceptable level.

For a numb2r of reasons it is desirable to use both
approaches. The first method by itself will probably not be
sufficient since it does not appear likely that a perfectly
uniform temperature distribution can be achieved. The second
approach is capable in principle of athermalizing an infinitely
long rod or a thin disc. But in any rod of finite length there
will be end effects which depend on the magnitude of the thermal
gradient. A method for calculating these end effects is developed
in Section 6.

Relativeiy uniform temperature distribution is desirable
for another reason. Both temperature distribution and distribution
of inversion are governed by the distribution of absorbed pumping
energy. If the latter is uniform, both of the former will be
uniform or very nearly so. And uniformity of inversion is
important to give a laser emission wavefront which is uniform
in intensity as well as in phase. Uniformity in intensity is
desirable to give the best possible far-field pattern, and to
reduce non-linear effects in the laser material which in turn
will cause phase distortion o the wavefront. The import of
non-linear effects is discussed in Section 5.

The calculation of temperature profiles in Section 4
was originally intended to (a) develop the method of calculation,
(b) show the magnitude of the temperature gradient problem, and
(c) provide input data for the end effect calculations. The
calculations showed that an unclad rod of radius R has a minimum
temperature at or near the surface, with a substantial gradient
in the vicinity of R/n, where n is the index of refraction
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Water or glass clad rods have a maximum tempe-ature just inside
the surface (at 0.8 R and 0.9 R respectively). The most uniform
+temperature distribution is for the glass clad rod. An ur~xpected
result of this wo.x was that it pointed out a potential method of
improving s'bstantially the pumping uniformity. That method is

to use a clzdling of about the same index as that of the laser
core glass but of a thickness somewhat less than that chosen for
the example /0.5 R). Additional calculations would be necessary
to establieh the optimum cladding thickness and index.

In Section 5 the formalism is developed to allow calcu-
lation of index of refraction changes due to electrostriction,
photoelastic effect, and Kerr effect whnn the laser field
distributior in the rod is giten.

End-effecc studies were undertaken to establish under
what conditions they are negligible, and what form they take when
they are non-negligible. In a typical rod configuration, the end
effects become important only when the glass has been athermalized.
However, in this important case the end effects can result in
several wavelengths distortion of the laser wavefront. For the
unclad rod; the steep temperature gradient gives rire to an optical
path distortion which is not proportional to the temperature distri-
bution. Therefore, it does not lend it-elf to correction by
adjusting the glass parameters. However, in cases where the
temperature gradient is less severe, the calculations indicate
that it would be possible to comper.sate for the end effects
almost completely by proper choice of glass parameters.
Specifically, a value of q is chosen which is slightly less
negative than the value a, which is optimum for an infinitely
long rod. The difference, a,-®, , dzpends, of c,urse, on the
length of the rod.

Analysis of the limiting cases of infinitely long rods
(plane strrin) and thin discs (plane stress) provides insight into
the athermalization problem. The analyses of Quellie! and of
Snitzer? have been utilized to compute the thermal coefficient
of optical path for several laser glasses in rod and immersed
disc cavities. This work confirms that athermalization is
possible for a long rod, but that it is substantially ea.ier
to accomplish for an immersed disc. The required indices for
the immersion fluid are close to that of water. Methods for
removing the stress-birefringence effect are given.

In all phases of the work it was assumed that essentially
a single pumping pulse is to be used. That is, no considerations
of cooling time, or steady state temperature distribution were
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entertained. The analyses would therefore apply to cases in which
the temperature cof the rod returns to ambient before the next shot
and in which the absorption of pumping light provides the only
heating effect during the time pericd of iaterest, namely the
period of lasing,

RO

HH

SHHRH I

LI

P OO M4 P

R LTI T

W
MRS e

i "mgﬁﬁ




2. REVIEW OF PREVIOUS WORK

The proklem of calcuiating optical path differences
induced by temperature gradients in pumped laser rods has been

formulated by Snitzer.® The analysis indicated that there exist
relations between the thermal expansion coefficient a, the index

coefficient a,, a~d other glars constants which will yield an
athermalized condition. 1In the writing of a proposal* for the
present contract this formulation was improveu ané extended to
include both radial and tangential polarization.

Walsh® has studied the photoelastic effects in a long
laser rod under the conditioi:s of constant heat production and
surface cooling. E-~ has also estimated the distortion of the
end face under these conditions. Quelle® has formulated the
calculation of optical path differences and has shown mathe-
matically that the athermalization condition c¢an be independent
of the temperature distributicn if a Pockels type glass is
assumed. This glass has a zerc value of the str::ss-optical
coefficient.

The distribution of pumpirg energy in a laser roAd has
been considered by several authors. McKenna’ treated the case
of an absorbing rod with a transparent sheath, the absorption
coefficient having a given value for all pumping wavelengths.
Sooy and Stitch® also tormulated the calculation of the pumping

energy distribution ir a laser . d with three-dimensional pumping.

Skinner? studied experimentally the distributicn of pumping
snergy in a ruby rod using two-dimensional pumping. Borrelli
and Charters!® calculated pumping energy distribution in unclad
glass laser rods.

Experimental determination >f thermal distortion of

wavefronts has been accomplished by Welling, Bick rt,and Andresen.l!

They have shown that single flashlamp pumping produces large

asymnetries in the optical path, but that four flashlamp pumping

produces 2 1early circular symmetric pattern. They have 3hown
experimentally the development of the path differeaces during
the pumpiio pulse, and their dependence on diameter, doping
concentration, and surface finish for ruby and neodymium glass.

Work at American Optical Company under contract

Nonr 3835(00) has been direc*>d in part toward the attairment of

a high c¢_*ical quality glas. which will also have a low thermal
distortion coefficient. Data for a few cf the glasse~ studied
under this contract are included in Section 3.
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5. THERMALLY STABLE CAVITIES

A serious problem in large lasers is the thermal
distortion of the cavity due to non-uniform pumping. Glasses
can be made with an index of refraction variation of no greater
than + 0.8 x 10"® across a 25 mm section, which corresponds to
2.5 fringes .n a one meter length rod. However, when the glass
is pumped, substantial changes in index of refraction occur.,!!
The result is the frequently encountered frustration in attempting
to produce a high intensity, diffraction limited beam. Just abo.e
thre: hold narrow beams are possible, but for increased pumping
the thermal distortions increase. More energy is produced but
in a wider beam. If a strong mode selection scheme!?® is used
the output rapidly levels off with increased pumping.

In order t~ obtain diffraction limited beams from the
end of laser devices the cavity should not distort while pum; ing.
If the temperature of the laser rod changes uniformly durlng
pumping there will not be any distortion of the wavefront within
the rod. By placing flashtubes symmetrically about the rcd a non=-
uniform azimuthal heating can be avoided. A non-uniform radaial
heating of the rod is almost inevitable i reasonable rod sizes
and neodymium concentrations are used. However, by the proper
design of the total resonant cavity and with properly chosen
glass compositions one can minimize the effect of non-uniform
heating. :

Due to pumping of the laser a temperature gradient is
produced from the center to the edge. The distortion of the cavity
arises because of three factors. The change in terperature leads
to an elongation because of the finits coefficient of expansion of
the glass. With a change in temperature the index of refraction
in general also changes. Finally, thermal gradients wiuinin the
glass produce stresses which result in both a change in index of
refraction and birefringence. The expansion coefficient a and
‘he thermal coefficient of index @, are Iunctions only of t’.e

amperature of the point under consideration, but the indices of
refraction produced by the stiains are dependent on the shape of
the rod and the details »>f the temperature distribution.

For glasses, the index of refraction always increases
in compression, but @, can be positive or negative. The effects
producing the index change can be made to cancel each other by
an appropriate glass composition with the correct negative value

of a,.
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There are two geometries with cylindrical symmetry
that are of interest for which approximate solutions can readily
- be calculated. One is the long rod in which the length L is much
larger than the radius a. The other is the disc configuration
with L << a. The description is similar to that g.ven by
F. W. Quelle.!?

For the solid rod, the total optical pathlength Py(r)
for a typical ray parallel to the axis and displaced a distance r
from the center and with its plane of polarizaticn in the radial
direction is given by

P (r) = nL { 1+ [;nT -(% (e, +eg) + %-Er)] ; » (1)

wherz T is che difference in temperature between the center and a
poiat at a distanca r from the center. A cylindrical coordinate
system is used with the z direction along the rod axis. The €'s
are the strains. The quantities q/v and p/v are the strain-optic
coefficients which relate the change in index of refraction to the
strains in the directions parallel and perpendicular, respectively
to the plane of polarization of the light. The notation is the
same as used by Morey.!® The corresponding expression for
tangential polarization is

Pe(r) = nL {1 + [anT - (% (ez + er) + :I—’ee)]} . (2)

For an isotropic medium the prinzipal strains are
related to the stresses o byl4

B! - )
E_ = ] o, s(ae +0,)

= E-1 i
€g = E 0g s(cr + az)

]
] (3)

= 1 [ -
e, = E o, s(cr + ce)]

where £ is Young's modulus and s Poisson's ratio.

For a long rod with the end effects neglected, the
problem is one of plane strain. If the ends are free of traction
so that they can move in response to thke heating, the condition
that applies isl®

o, = 0_ + Og. (4)
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In arriving at Egs. (7) - (9) for the long rod end
effects were neglected. If the rod is very long the end effects
are small and the problem reasonably approximates that of plane
strain. On the other hand, if the length is much shorter than
the diameter the "end effects" predominate and the constraiuts
correspond fairly closely to plane stress.

Analysis of these equations shows that there are tlree
ways to achieve simultaneously athermalization and freedom from
stress-~birefringence. They are:

(1) Athermalize for either the radial or tangential
polarization. This would also require mode selection so that
only one polarization is able to oscillate.

Conditions Long Rod D.sc
Radial AP (r) =0 (Eq. 7) AP_‘(x) = O (Bq. 12)
. . r r
Polarization (15)
Tangential APe(r) = 0 (Eq. 8) APG’(r) = 0 (Eq. 13)
Polarization

(2) obtain a Pockels glass, i.e., a glass for which
P = g. Quelle® has shown that the condition for athermalization
for a long rod is then

2a P
n {an + I (1-2s) "7}- 0 (xrod) (16)
This expression is obtained from Quelle' s equation by noting that
9 p q = 2 -l 8 !
B, = g [(1-3) T8 V] 5 (1-2s) : for a Pockels glass.
Equation (16) can also be derived from Eq. (9) by letting p = q.

For the stacked disc case, athermalization of a Pockels
glass dictates the following relation

o +a {.n.gp_ (14s) + B (1-2s)} =0 (aisc) (17)

(3) Rectify the stress-birefringance effect.

On passing once through a rod with a radial temperature
distribution a phase difference [AP.(r) - APg(r)] is introduced
between the radially polarized ray and the tangenti~lly polarized
ray at the same ra’”.us r. Now if the two rays pass through a 90°
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polarization rotator, the radially polarized ray will be converted
to tangential polarlzation, and vice-versa. If the two rays are
rassed again through the same rod, or through an identical rod, the
phase difference betweven the two rays will be remcved.

For a single xrod the cavity is shown in Fig. 1. On each
round trip, the light parses through the 45° Faraday rotator,
thereby undergoing a 90° rotation of the plane of polarization.

End Reflactors

45° Faraday
Rotator

Figure 1. Schematic of a laser with a rectifying Faraday rotator.

Another m-thod can be used when tbere are two identical
laser rods in either an oscillator or an amplifier. It employs a
90° optical rotator between the two laser rods, as shown in Fig. 2.

AAAAANY

Mirror g0° Mirror
Rotator

Figure 2. Use of a 90° optically-active rotator to rectify
stress-birefringence in a laser system.

This rotator can be of crystalline quartz, for example, cut
perpendicular to the optic axis. Other optically active
materials can be used.
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In these cases, the birefringence is automatically
cancelled, and the athermalization conditions are found from
Egs. (9) and (14):

o [3-5sp 1-3s9
rod % *1-s [ 2 v 2 v ]- Y (18)
disc a_ +a [n;n' (14s) + 138 B4 L8 g.] =0 (19)

The possibilities of achieving athermalization by these
approaclies are explored more fully below. At this point some
general comments are in order,

The conditions for athermalization, Egs. (15) - (19),
can be regarded as requirements on the ratio on/a. This is
because s, p/v, and q/v do not depend strongly on the glass
composition. Bridgman!® measured several glasses, incluvding
Jead silicates, borosilicates, and alkali earth silicates and
found that Poisson's ratios, varies from 0.19 to 0.26. Furthermore,
the quantities in braces in Egs. (7) - (9), (12) - (14) are not
sensitively dependent on s. A number of references on the stiain-
optic coefficients are given in Morey.!* Pockel's measurements
indicate p/v = q/v = 0.42 for a silicate glass containing
approximately 754 by weight of Pb0.!7 Fror the more common
glasses the strain-optic coefficients are smaller; q/v decreases
more rapidly than p/v. A light rlint silicate (5&.3 wt ¢ Sio,,

33 Pbo, 1.5 B,0,, 3 Naj0, 8 K,0) has the values p/v = C.306
and q/v = 0.213, and for a borosilicate crown (68.2 wt ¢ sio,,
10 B,O,, 10 Na,0, 9.5 K,0, 2 Al,0,) p/v = 0.269 and q/v = 0.147.2°

To obtain an estimate of the regquirnd an to reduce the
various AP's to zero, typical values for the parameters are assumed.
The strain-optic parameters are taken as p/v = 0.3 and q/v = 0.21
and Poisson's ratio as s = 0.25. A linear expansion coefficient
of a = 1078 °C is assumed. If the temperature T varies as rp,
then R/T = 1/(p + 2); for a quadratic dependence of T on the radius,
p=2and R/T = 1/4. With these values for the parameters the
braces in Egs. (7) - (9) are equal to zero for a, = -42 x 1077 /°C,
-34 x 16-7 /°c, -38 x 1077 /°C, respectively. For the stacked discs
in air, the braces in Egs. (12) ~ (14) are equal to zero for
an = =56 x 10-7/°¢c, =50 x 10°7 /°¢c, -£3 x 1077 /°C, respectivaly.
Note that the required values of a, are all negative. In most
silicate glasses a, is not sufficiertly negative to satisfy any
of the conditions for zero pathlength difference between rays at
the center and at the edge of the rod. If the temperature is
higher at the edge than at the center the pathlength is greater

11
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at the edge and furthermore, radially polarized light propagates
mere slowly than light with tangential polarization. If the
quantity in the briuces is not zero but is reduced to 10°7/°C,
three fringes at 1.06 u would appear between center and edge if
T = 10°C for a meter length rod made from a material of index
n=1.5,

At low temperature Qp is negative because expansion of
the glass reduces the amount of polarizable material per unit volume
at high temperatures, this is more than offset by the increased
thermal population of higher vibration states of the ground
electronic state, which appears to shift the fundamental ab-
sorption band of the material to longer wavelengths and thereby
increases tre index of refraction. The temperature T, at which
on = 0 is a function of the glass compoaition and wavelength.

It increases with increasing N through the visible and near
infrared. For most glasses T, is less than room temperature
at 1 u, but it is above 300°K for a few, such as the silicates
with high barium content.

Molby?° and Prod' homme2?! give values of an in the visible
region of the spectrum for various glasses. Measurements were made
in this laboratory at 1.06 p by using a thin plate of the glass to
be measured as the end reflector of the laser cavity.?? Laser
emission occurs at those wavelengths at which the plate thickness
and index give an odd number of A/4. From the shift in wavelength
of the laser lines as a function of temperature of the plate and
by independent measurements of the expansion coefficient of the
glass, ¢, was determined. Room temperature valueg for various
glasses were between 29 y 10-7 /°C and -41 «x 10-7 /°c. The positive
values were for dense lead silicates. High barium content silicates
gave the large negative values.

DISCUSSION

(1) Athermalization for radial or tangential polari-
zation. 1t is necessary to mode-select a field distribution with
axially symmetric polarization, such as the TE,, or TM,, modes.
For example, the TM,, mode is radially polarized in the electric
vector.

Its intensity distribution is [J,(u,r/a)]®, where u, is
the first zero at 3.832 of the first order Bessel function J,. If
one end of the glass rod is cut in the form of a Brewster angle
cone and a plane mirror placed at the proper distance, all the
modes excapt the family T, (m > 1) are discriminated against.

The lowest order member of this family could then be selected
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by other means, such as a limited aperture at the other reflector.
This approach has several disadvantages. First, it is difficult
to make cones with good optical quality. Second, the beam is a
hollow cone, which is not as desirable as the lowest order HE,,
mode. Third, the requirements on an depend on R and hence on the
details of the temperature distribution.

(2) For a Pockels gliss, the required values of a, are
calculated as follows. In Egs. (16) and (17) substitute the
typical values p/v = 0.45 and s = .25, n = 1.5, n’ = 1.33.

From Eq. (16): a = -0.6 a (rod)
From Eq. (17): a = -.367 a (disc)

The original Pockels glass has a positive value of a,. Efforts

to obtain a negative value for a, in a Pockels glass will be
reported under contract Nonr 3835(00).

- (3) Rectification of the stress-birefringence effect
appears at present to be the most promising approach. In order to
compare the various possible configurations and available glasses,
the thermal coefficient of optical pathlength, _1 dPf , is

nL 4T
i _abulated below. The expressions are obtained from Egs. (9) and

(14) for the average optical path P, for the rod and immersed disc
cases respectively.

(rod) ;1;%-‘; =c t 3 ‘;_s) [(3-53) §+ (1-3s) %]
~a + .383 a
a (disc) :—LZ—E'- @ +a [n;n' (1-8) + 1;38 _‘1?’_+ 1_;_5_%]
L ~a_ +a [&!';’l'— 125 + .1162]
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TABLE I

Thermal Coefficient of Optical Path for a Long Rod, a Disc in Air
(n’ = 1.0), and a Disc Immersed in Water (n’ = 1.33)

(Rod) (pisc)
1 gp 1 ge’
Glass n o % nL 4T AL dT

n'=1.0 n'=1.33
3835¢ 1.51 103-10-7 ~22:10-7 11.8:10°7 14107 -3.1-10"7

1203 1.52 122 -28 18.8 38.2 5.3
1204 1.57 119 -41 4.6 26.8 -4
1263 1.52 1il2 =32 11 28.8 -1.5
1270 1.53 114 -36 7.7 2.3 -%.,2
1276 1.62 111 -28 14.6 38 9.9

Constants used: % = .30, %.. .21, s = .25, except 3835.

*For 3835 B _ a5 1. 13, 5 = .205.
v v

Several conclusions are apparent from this table. For
the rod case a number of experimentzl glasses have a lower thermal
coefficient than the standard 3835 glass, number 1204 being a
factor of three lower. The disc in air is considerably poorer
than the long rod. But the disc immersed in water (n’ = 1.33)
appears very attractive. The value -1.5 * 107 for glass
number 1263 means that for a 1 m length of glass, nL = 1.52 m,

a 20°C temperature differential between center and edge of the
disce would produce an optical path difference of

AP’ = nL g_g’m = 1.52 ¢« 10° (-1.5 - 10-7)
* "N = 4,56+ 10 cm = 4.56 nm

Furthermore, the numbers in the last column of the table
suggest that it may be possible to find either (a) a glases compo-
sition which is precisely athermalized ( 1 gp’

nL 4T

for the water immersed disc, or (b) an immersion liquid with
index n’ which will exactly athermalize an existing glass.
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For the constants p/v, q/v, and s assumed above, the
required index nL for the immersion liquid is given by

a + .116 «
n‘=nj|l + n

1.25 a
The required indices for a few gla.ses are listed below

Glass Required n’
3835 1.36

1203 1.38

1263 1.34

The required indices are all within the range attainable
with water solutions of inorganic materials.

. The general expression of the required index, n’, is
obtained from Bq. (19)

]
[-l‘- + 148 + 2238
a 2
The assumption has been made that the index of the
liquid does not change during the pumping cycle. B8ince there
.. can be very little heat transfer to the liquid from the laser
glass during the pumping period, the assumption implies that the
. liquid is non~absorbing to the pumping radiation.

n

. (pisc) n’

[Te]

P,1s
A (20)

<

e

o WML R A
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4, CALCULATION OF TEMPEKATURE PROFILE

4.1 ASSUMPTIONS AND DEFINITIONS

If we may assume that the tempera*ure change in a laser
rod is proportional to the radiation-heating effect due to ab-
sorption of radiation from an adjacent flashtube, then the
calculation of the temperature profile reduces to a calculation
of the distribution of heat production in the laser rod.
Measurements on a large variety of glasses®3'?* ghow that the
specific heat capacity is sufficiently constaiut over the tempera-
ture range expected in the laser rod so that the proportionality
may be assumed.

A computer program has been written by which to calculate
the distribution of heat producticn. The program, written in the
FORTRAN language for an IBM-360-30 computer, allows for three
different homogeneous media to be placed between the flashtube
and the laser rod. Cylindrical geometry and polished refracting
sur faces ave assumed so that all boundaries between media form
infinitely 'ong, cylindrical surfaces concentric with an
infinitely long, cylindrical laser rod.

It is assumed that the flashtube and reflector produce
a volume of isotropic radiation (called the source hereafter) in
which the rod and its cladding media are immersed (no variation
with azimuth about the axis of the laser rod).

It is assumed that the radiant flux absorbed by the
laser material goes entirely into exciting the doping ions to
higher energy levels plus a radiative decay that produces the
laser radiation,

It is assumed that each photon absorbed results in a
photon of laser radiation while the rest of the energy is converted
to heat.

It is assumed that the transmissivity of the laser
material does not change significantly with change in populaticn
density of excited states of any of the ions.

The effect of multiple passes of the radiation through
the rod are not taken into account by the program. This effect
will be most noticeable for weakly absorbing and/or small diameter
rods. Partial compensation for this omission can be carried out
by (1) increasing the overall energy content of the flashtube
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spectrum and (2) adjusting the spectrum to favor the weakly
absorbed wavelengths.

Parameters, which affect the distribution of heat
production, and whach must be specified at the time the program
is run, are: (1) the product of the radius times the absorption
coefficient for the laser rod and each layer of its cladding,
(2) the refractive indices of the media, and (3) the spectral
radiance of the sourc~.

The following definitions have been aduapted from
references (25, 26):

radiant flux - rate of transfer of radiant enerrv, specified in
watts

radiant trgnsmittance - or simply transmittance, is the ratio We /Wi
of the transmitted flux tc¢ the incident radiant flux.

spectral transmittance - the radiant transmittance evaluated for
a particular wavelength of the incident energy.

transmissivity = the value of the internal transmittance for a
unit thickness of a non-diffusing substance.

absorption coefficient - Bouger's law stztes that equal layers of
an imperfectly transparent material will absorb equal fractions
of the radiant energy entering them. If this law is zpplied
to infinitesimal layers and if the losses are integrated, the
radiant flux at a distance x within the medium, for the
wavelength A, is found to be P = P, exp(-a(2)x), where P,
is the flux of wavelength A entering the first layer and
a(M) is the absorption coefficient.

radiangce - the radiant flux or power per unit solid-angle-in-the-
direction~-of-a-ray per unit projected-area-~perpencicular-to-
the-ray. It has the same value at any point along th2 ray
within an isotropic medium in the absence c¢f losses by
absorption, scattering, or reflection. (It may be helpful
to note that radiance is analogous to the photometric
quantity luminance or photometric brightness).

spectral radiance - the radiance at any specific wavelength.
Typical units are watts/cm®-steradian per millimicron.

spectral irradiance - radiant flux incident per unit area of a
surface at any specific wavelength. Typical units are
watts/cm® per millimicron.
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4.2 CERIVATION OF THE BASIC EQUATION

tical pumping of laser rods subjects the laser material
to a distr._ution of energy density; power is extracted from the
radiation field in the form of heat and laser radiation. Cons:ider,
then, the simple one-dimensional case of an elemental volume of
cross section dA and length df. Let the energy density due to
radiation in the wavelength incerval dM centered on the wavelength
% be unifcrm and of strength dE in the volume GA * df. Let it
ar:se from collimated radiation propagating along the direction
df. Then the radiation in the volume dA * df will move a
distance At * c/n, in time At, where n; is the refractive index
of the medium aad ¢ is the velocity of light in vacuum. If the
medium is absorbing with a linear absorp.’:: coefficient a, (7),
the energv W = dE * dA * df will be diminished to

W = anacht/n1 (21)

in its passage through the medium. The energy absorbed will be

Wi W=W =W (l-e-acht/nl) 2 (22)
or, for a short time interwve.

w & W, = at, (23)

n,
That is, the energy absorbed per unit of time, or the r :r loss
will be

w/At = Wa,c/n, . (24)

This power loss occurs in the volume dA *+ df, so the power loss
per unit volume is

Ap’ = w/At/(dA © df) = @,cdE/n, . (25)
of <his loss, only the fraction (1-A/A,) goes into thermal
agitation of the medium, where Ay is the wavelength of the laser

radiation. The heat production per unit volume due to the radi-
ation in the waveleagth interval dA is

dp = a, é%~dE(1-A/ke) watts /em? (26)

where dE is termed the spectral energy density.

18




The spectral energy density at a point M can bhe found
as follows; Let the pointi be contained in a surface element dA
tvrough whicli the spectral irradiance is Hy(A). The partial

energy density due to that raaiation is

aE() = H,(N) n, (A)/e (27)

The total spectral energy density for incoherent radiation would
be found by adding up 211 such contributions at the point M.
Suppose, however, that the spectral irradiance Hv(A) is due to
radiation contained in a solid angle dw centered around the normal
g to the surface element dA. Then the spectral irradiance Hy(M)
at M, being the {lux dF passing through dA could be exXpressed as

HM(A) = dF/dA = NM(7.,0) do, (28)

where Ny(M,0) is the spectral irradiance at M due to radiation in
the wavelength interval dA. That is, Ny(7,0) is the radiant flux
per unit solid angle in the direction of the normal per unit
projected area perpendicular to the normal. The summation of

all such contributions at the wavelength N bacomes

ae, (M) =2 [ 5,00 ao. (29)

Now, NyiA,0) is the spectral radiance at the point M
withir the laser rod and is ~ot known directly. But, in the
homogeneous medium of the rod with index ni(K) and absorption
coefficient a, (A\) the spectrai radiance along a given ray
diminishes according to the exponential decay law exp(-a, £).
Thus, the spectral radiance NM in a given direction at M must

be a diminution of the spectral radiance N, in the same direction
just inside the surface of the laser rod;

NM(A;U) = N, (N,0) exp ["'01 (A)d1(°)] s (30)

where d, (o) is the pathlength of the ray from the surface to the
point M.

in the absence of reflection los. ~s, the spectral radiance
N, would be?33

N1 = Na(n1/n2)2: (31)

where N, is the spectral radian~e in the direction specified by
g and Snell's law, and n, is the refractive index of the material
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surrourding the laser rod. N, is dininished from this value by
the Fresnel coefficient of transmiseion T{g).

3
Do (M), ()

1
N, (2,0) = 2(0) N, (2,0) = (32)
3
The ray may be traced baci. through the various cladding media, in
this way, to the isotropic source volume., €Such a source, by
definition, has a spectral radiance N,(A) which is independent

of the angle of exit from the source.

For a general jth ray,
B0 ) = L) n? exe [~ e e |, (33)

where Tj(?\) is the product of the transmission coefficients at
the interfaces encountered by the jth ray, om(?) is the absorption
coefficient of the m_h medium along the ray, and d(m,j) is the
pathlength in that medium for that ray.

Equations (29) and (33) yield

3
n,

@y (M) = = [7,00) 5,(0) exp [- Se (Malm,3) 4o, (3%)

The integration indicated in Eq. (34) was done numeri-
cally by dividing the angular space about M into anvula. intervals
and summing the contributions from all the intervals. Because of
symmetry we need integrate over only one quarter of the space so
it becomes convenient to express dw in terms of the polar angles vy
and a, where Yy is measured from the axis of the laser rod and a is
measured in a plane normal to the axis. Thus,

dw = sinydady. (35)

Let a »e incremented in the fashion

1/2 oo (8a) 180°-1/2 Aa, (36)
and let y be decremented in the fashion

90° ~i/24y (By) 1/2 &y, (37)

Then no ray with polar angles (a,y) lies in any of the planes Xy,
yz or xz, (a measured from the x-axis, y measured from the z-aris),
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yet the intervals are regularly spaced about M. Equation (34%)
becomes
n ()

dE,, = -

2; Tj(R)No(K)sinyjAaAy
]
. @ - K ’- 8
xp [ %“m( )a(m J)] (38)

The total b2at production per unit volume in the laser
rod can be found by substituting Eq. (38) into Eq. (26) and inte-
grating over the wavelength range of the radiation from the scurce
contributing to the energy density EM'

B, = fo (A (1-2/2) 0,2 (0) daby

L T 005,00 exp [- Zam(')\)d(m,j)] simyah. (39
3 m

Equation (39) is the basic equation for the computation
of the distribution of heat production in the laser rod. The
integration over wavelength was done numerically using Simpson's
rule. The operations required to apply the equation form a four-
fold nest of loops:

1. Trace the selected ray from the point M(x,0,0)
in the laser rod back to the source for a chosen
wavelength. Compute the transmission coefficizats
at each of the interfaces, and evaluate the contri-
bution of the flux arriving at P from the selected
direction (innermost loop).

2. Change thes angles specifying the ray anc. do
(1) again. Keep repeating these operations until
all the flux in the interval dM arriving at M has
been accounted for.

3. Add the energy from this wavelength interval
to the energy contributed by other intervals
according to Simpson's rule for numerical inte=-
gration. Repeat the entire loop for each of the
wavelength intervals required to cover the
operative spectrum of the source. 5

. 4, Repeat the entire calculation for various
points M(x,0,0) along the radius of the laser
rod selected to best show the distrikution of
= heat production.

o
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4.3 POLISHED IASER ROD WITH CLADDING AND ISOTROPIC RADIATION
WITHOUT MULTIPLE REFLECTIONS

Basic Ray-Tracing Equations

Let the laser rod of index n. be immersed in a medium
of index n,. Let the infinitely long rod be 7 cylinder of radius
R, . Let the flashtube be approximated by a uniformly radiant gas
volume separated from the laser rod cladding by a transparent
envelope forming an infinitely long cylindrical cavity concentric
with the laser rod. The cavity has radius R, and index n,. This
geometry is illustrated in Fig. 3, which includes a rectangular
coordinate system with z-axis coincident with the axis of the
laser rod. We wish to consider a typical point P in the laser
rod and trace ravs from it to the surface of the surrounding
gas volume.

Gas Volume

Transparent

Envelope 221//

Figure 3. Geomatry of the laser rod, cladding layers and source.

The point P of observation can be taken on the positive
x-axis without loss of generality; P = P(x,0,0). The xz-plane and
the xy-plane ars planes of symmetry. The total radiation arriving
at P can be obtained by ray tracing in the sector y < 0, z > O only,
as long as we neglect reflected rays. An arbitrary point on the
surface of the laser rod, in this sector, will be called
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P,(x,, v,, 2,), where the equation of the surface of thL: rod is
Fo (%, v, 2,) =0=2x7+y? -R?. (40)
The geometrical distance from P, to P is
d, = [(x-xl)"‘ +y,% + zla]% (4%1)

The optical direction cosines of the ray proceeding from
P, to P are

P, =1y p @y = by T = m = (¥2)
4, a, 4,

The ray which is bent alcng this direction by refrantion at the
surface has optical directicn cosines (pz, qa,ra) related to
(p, ,q,,r,) by Snell's law:

oF, oF, oF,
P, =P, = E;qg-q1=c-a-§;ra-r1=cazl: (43)

where £ is an (as yet) undetermired multiplier. Such a ray
proceeds from the source point Pg(xa, Yo za) with

X -~ X Yn - Y2 z, - 2,
Po =M~ %M g Tt T g (44)
where
& = [ - )+ - )+ (s - 207 | b (45)

Finally, we add the conditions thut

(46)

P.® + q® + 1r,® =n,?

in order to complete the system of equations. We will solve the

system in the sense that -- given the par-.seters x, n,, n,, R,, R;,

find p,, 9;, ¥,, 4, and d; as functions of p,, q,, r, .

We find X,, y,, 2, by solving Eqs. (40) and (42)
simultaneously. Thus,

X, =X +¥P/q (47)
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so that
R,> =% +y,2{p, /q,)2 + 2 xy, (P, /qy) + v,° (48)
v,?2 [1 +(p,/9,)%)] +2xp, /9, v, +% =R? =0 (49)

P, /9, P, /9, 2 R,? - x? ]%
== — X = X + 0
" 1+ (p/a,)° [{1 + (py/9,)? } 1+ (p,/q,)? (50)

The negative root is chosen in order to work only with
the radiation coming toward p from the negative half space y < O.
It is desirable to use Eq. (50) whenever |p,| < |g;,|, obtaining
x, from the relation

X =X - (y = Y]_) p]_/q'_ (51)
and obtaining z, from the relation
2z, =+yr/q9. (52)

when |p,| > |q,], Egs. (%#0) and (42) may be solved to
yield

v = (@ /0 )" x4 [{ (q, /P, )2x }a Nl G }3]5(53)
1+ (q,/p,)? 1+ (q,/p,)2 1+ (a,/p, i

if sgn(pn) = sgn(x - x,)

-

2 2 & 3 - o. )2 1%
. . (a,/p,) . - [{ (q,/p,)%% } B **(q, /p,) ] (54)
1 + (qy/p, )2 1+ (q,/p, )2 1 + (q,/p )?

if the sign condition is not met by Eq. (53).

In both of these cases one obtains y, and z, from the equations
v =y - (x-x)aq/p (55a)
s, = (x, - x) r,/p, (55b)

Next we find { in terms of x,, v,, 2,,

9F, aF

——=2x-——.1=2 s — =0 56
oy 1 oy Vi g (56)
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P, =20x;, +p,; q, =28y, + q;; r, =1, (57)

By squaring each of the relations in Eg. {57) and adding, we
obtain by Eq. (46),

n,2 =n? + 43 (x,2 + y,2) + 4{p,*, + q,v.) (58)

or,

PiX, +&,¥, [ Py + @y |® 2 - n,? |k
Rp BRI OH : R Y
2R, ? L 2R, 2 4R, 2

In Eq. (59), that root must be chosen which makes { approach the
physically correct limit { -~ C as n, -~ n,: i.2s,, plus if
(p,*, + q,¥,) > O and negative otherwise.

Equations (41), (48), (57) and (59) allow us to calcu-
late p,, 9,, r,, 4, and 4, as functions of p,, q,, r,, vhich is
the solution we sought.

Forbidden Rays

Equations (50), (53), (5%) and (59) all contain radicals
which must be real for a physically acceptable solution to the ray-
tracing. The radicals of Eqs. (50), (53) and (5%) become imaginary
only if x exceeds R,, a condition which will not occur. On the
other hand, the limitation that the radical in Eq. (59) be real
delineates the an~lar region in which the rays must lie in crder
to be refracted into the laser rod toward P rather than be totally
reflected by the interface. The condition is that

(p1x1 + q, Y, )2 2 R1a(n12 = nga)' (60)

An instructive example is the case already investigated
by W. R. Sooy and M. L. Stitch, wherein n, = 1. L "Energy Density
Distribution in a Polished Cylinder of Laser Material," J. Appl.
Phys. 34, 1719 (1963).] 1In particular, for rays in the xy-plane,
we may construct the typical ray diagram of Fig. 4. By the law
of sines,

sina, = El—;izg s (61)

or,
P, = n,cosaq,

P, =& n, [1 -

(62)

x3

R, ? sinze] %
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Figure b. Typical ray diagram for rays in the xy-plane of a
polished cylindex of laser material..

A ray in the xy-plane will be "forbidden" if [ (r,/x)sin® ]2 > 1.
For small values of x the inequality always can be satisfied by an
appropriate value of 6. However, the maximum value for sin® it
1/n, (critical refraction) so that the largest value x can have
and still allow the relation to * satisfied for all p, is

x = R, /n,. When x is larger thau R, /n, the region for which

R, 2]%
lpy| <, |1~ (“"“) J (63)

is a region which contains no rays headed towards the point
P(x,0,0). Relation (6{) is a more general form of relation (63)
since it applies to the three-dimensional case with arbitrary

na<n10
Figure 5 attempts to display typical surface areas of

the rod which can irradiate the point P. Figure 5a is sketched
for x < Ryn,/n,, while Fig. 5b is sketched for x > Ryn,/n, .




x (a)

Figure 5. Typical surface areas of a rod which -an irradiate
point P.

Transmission Coefficients

We follow the notation of Born and Wolf, "Principles
of Optics," and use the average coeffgcients for unpolarized
radiation. Thus, from Born and Wolf, 3 1.5.3, Egs. (61), (60)
and (51) in that order,

T =1-R; R~ 1/2 (Ry + R,) (6%)

_ tan?(9;- 6¢) | 2 sin3(0;~ 6,)
= o s 1 =
tan? (91+ Bt) sin°(95_+ Gt)

0 (65)
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8o,

R} [cos“(9£+ 6¢) . 1] {8_1'11(91‘ et)}a

coa® (65~ 6¢) sin(0i+ ©¢)

(6€)

-} {cosBjcosOt- 8inBisinOt}?+ {cosOjcosOt+ sinbjsin6¢}?
{cos63cos6 + sin®;sinb, }?

- ! ?
. [sinej_coset coseisinet] (67)

8in6;cosO,+ cosO;8ind,
But by Snell's law, nisin6; = n,sin6;, so

— Y [1-(ne/n;)®sin?6,] + sin?@, - (ne/ny)?sin?6;

{cos6 V1- (ng/ng)?sin?0; + sind; - (n¢/n;)sind.}?

. | 088y - (ng/n;)sin6. - 8inB /1~ (n./n;)?sin36,

cosbt « (nt/ni)sin6¢ + sind¢V 1- (nt/nj)?sin36 (68)
Therefore,
- _{ cos?6y [1- (n¢/n;)?sin®6,] + (ny/ng)?sint6,
[coaet\ﬁ- (ng/n;)?sin?6,  + (nt/ni)sinaet]z
1= (ng/a1)%8in™0; - (ng/nj)cos8y] (69)
Vi- (ny/n;)sin?6, + (nt;:)coset_ } '

The angle Ot in Eq. (69) is the argle between the
normal N to the {cylindrical) surface Letween medium nj and

medium nt and the vector $, al.ng the ray with direction cosines
(pt/nt; qt/nt; r‘t/“‘t) That is,

"

N-pt

cosdt = cos(N, pt) = —— . (70)
IN||pe!
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For example. by Eq. (40) for the surface of the laser rod, the
angle o€ refraction for the ray paesing from (x,, y,, 2,) to
P(x,0,0) is such that

p, oF 4q, oF rx, OF

n, 9%, T n, dy, ' n, 9z,

cosp, = cosb¢, = : (71)
oFY* , (2EY (.3.?. .
0%, Y, 02z,
_24upy /iyt 2G| xRyt VG (72)

2Vx,%+y,? R,n,
The angle ¢, must lie in the range O < ¢, < /2, s» we may take
¢, = arccos {](xzp1 + qux)/(n1nx)|} (73)

withovt ambiguity due to positive or negative argumerts.

Similarly, the angle of refraction ¢, into the uedium ng
from a surrounding medium must be

¢, = arccos {](x,pa + y,q,)/(n,R,)|} , (74)

#here X,, Yo, P, and q; are determined by the equations in
section 4.2, Basic Ray-Tracing Equuations.
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Flow Diagram of the Co. >uter Program (polished rod)

Lfnitialization and inpuEJ

yes

100}

set y = 90° - 1/24y°

Compute: vy_ = arctan [(n,/m,)? - 1]é

¢ = 1/260°

Compute:

i\ P, = n,cosasiny

r, = -n,cosY

PS = n,®siny

q, = [n?® -p?® - rlzlé

510

Test v < Yc

l

1000

30
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Y o= y=by _________45:)..

a == a+Aa
Test a > 180° -1/2Aa°
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1000| Test (|qn/pn| - 1) 1100

Compute: |
X = 4+ ,[qn/pn J[(qn/’;on) *n-1 ~ yn-]
" 1+ (q.n_/pn)3
, (a,/p,) [(qn,/pn) X 4 - yni;_ "
i+ (q_n/pn)3
. RZ - (yn-l - % a_/p )? 3
1+ (qn/pn)a

Choose the + sign if sgn(pn) = sgn(xn-i - xn)
Choose the - sign if sgn(pn) ¥ sgn(xn_1 - xn)

- (x

Yo = Ypa n-

- —

1100| Compute:

- [p“/q"][(pn/qn) Yn-1 ~ xn-d

54
a 2
1+ (p /)

3

(pn/qn)[(pn/qn) Y1 xn_l]
* 1+ (p/3))°

3

+ Rn2 - (xn-l " yn-jl I:n/qn)2
1+ (p/q)*

Choose the + sign if sgn{q ) = sgn(yn_l -y,)
Choose the - sign if sgn(qn) ¥ sgn(yr 4 - yn)

*n ~ xn-J - (Yn-l - yn) pn/qn; Zn " Zn-1 T (yn-l - yn) rn/qn
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(px, +qy)|® |n - n2
1103 | Test nn >| -A—ntl
2R 2 4r = i
n n I
(yes’ ———- 510
Compute:
3 2 _ pn2 X
L = p *n * 9Y, PpXy + 90¥y _ ™ fhet | ¢
n 2R 3 2R 3 4R 2
n n n

Choose the t sign according as (p X +qy ) i
negative.

Ppyg = P T 26 % HEB 4 =

n+l

n : qn+1 = qn + 2Cnyn

= = 2 - 23 -
dn [(xn-l xn) + (Yn-l Yn) t (zn-l &

n+l

0]

s positive or

x

!

Compute:
px + qny
n'n nl. 2 -
cos¢ n R E s*n3¢n =1 cos%n
oty [1 o] (] v,
T =
n R
cos¢n'qi (nn n+1)351n3¢n + (nn+1> sin?¢
vi- (n/n o )%sin®¢ = - (n /n ;) coss :
Vi- (nn/hn+1)3sin3¢n + (nn/hn+1) cos¢
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. = P
Compute: Psn Sn_1

.o ()\)e‘an("‘)dn

ias the ray been traced all the way back to the source?

yes

Compute: J = J+1

PS = PS + N,PS_

= 510

&

*n = *n41 Ph = Phut

Yh = Ynut I " T4

%n ™ %n#1 n * "n+t
= 1000

\n
hetfy
n
O
3
|
L]

ute: y_ = PS . a,(7) [1 = )‘/Ae] Aady

‘ n
Tesgt: A= 7\0 h‘v@-—w

Test:

-

~—Q@ 1 O~

Test: K even, where

A= xo‘+ KAM " T
0o

Wn = YO
b——3™® 100
A=2A + A)\
AN
Wo=(w _,+ ) 3 4
Write W
n
L return to
INPUT for a

new x-value
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4.4 SPECTRAL RADIANCE OF THE SOURCE

"Isotropic radiation® is realized when the spectral
radiance N, is the same for all points on the surface and for
all directions of emission from the surface of the source (gas
volume plus transparent envelope of Fig. 3). Su-h a source is
known as a Lambertian radiator because the flux emitted per unit
solid angle (radiant intensity) must be proportional to the cosine
of the angle measured from the normal to the surface in order that
ine raliance be independent of the viewing angle.

Goncz and Newell?? have made measurements on Xenon
discharge tubes using an EG4G model 585 spectroradiometer. In
particular, for an FX-47A flashtube (16.5 cm arc length, 1.3 cm
bore, 0.4 atm Xe fill pressure) they report the ratio G of the
total light energy emitted per millimicron by the lamp to the
total electrical energy supplied to the lamp per discharge. Two
different curves of spectral output are given corresponding to
two current densities (1700 and 5300 amp/cm?®) in the flashtube.

We shall assume that the radiant energy comes out uniformly over
the surface of the tube and thereby calculate values of spectral
radiant emittaace E, for the lamp. Thus, if the measured relative
energy output of the lamp is G joules per millimicron per joule
input, and the energy input is in the form of a nearly rectangular
G.75 millisecond voltage pulse containing f kilojoules, the energy
output per unit area, or spectral radiant emittance E, is

joules B x 10° joules input i
mu - joules input (16 .5)%(1.3)em? 0.75 msec

E, = G

(75)

The next step toward obtaining numerical values for the
spectral radiance N, is somewhat arbitrary; the spectral radiance
I, at the outermost surface of the cladding materials around the
laser rod is taken numerically equal to the spectral radiant
emittance E, of Eq. (75). This equality does not imply that a
flashtube with a spectral radiant emittance E, will produce, with
the help of a reflecting enclosure, such as spectral irradiance,
but only that it is possible (by employing several ilashtubes if
necessary) to produce an irradiance of the magnitude calculated
from reference (27) by using Eq. (75). Since the radiation field
is to be isotropic, *the connection between I, and N, is

I, = / N, cosbdw = N, (7) cos6dw, (76)

hemigphere
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where © is measured from the normal to the element of surface area. i
It is easy to verify that for the case of isotropic radiation,

I, = "N, . (77)

Thus, finally,

N (7)) = 3£ x 10° watts (78
° 64.35 7 mu-cm? ~steradian (78)

The curves of N,/f which, under the enumerated assumptions,
correpond to the spectral output curves for the FX-47A flashtube as
} reported by Goncz and Newell are shown in Fig. 6. Values of N, for
every 5 millimicrons from 300 to 1000 millimicrons were used in the
computer program.

4.5 REFRACTIVE INDICES AND ABSORPTIOL COEFFICIENTS

A neodymium-doped laser glass (#3835 barium crown glass)
containing 4.3 wtg of Nd3* ions made by American Optical Company)
was selected for the laser material of this study. The required
refractive index values were computed to five significant figures
from the equation

n,? =1 +1.27245 [1 - 0.01/2* ]-* - 0.0047655\* , (79)

where A is in microns. Measured values used to o**ain Eq. (T79)
were the index values 1.5259, 1.5219, 1.5198, 1.5.71, 1.5098 and
1.5093 at the wavelengths 0.486, 0.54, 0.589, 0.656, 1.014 and
1.060 microns respectively. The abso~ption coefficient a, (A),
see Fig. 7, was obtained from transmission measurements made on
plane parallel samples with a Cary Model 14 recording spectro-
photoneter. !

Tra . ‘8sion measurements were made with the same
instrument on a samarium cladding glass, EOD-830, containing
9%¢ Sm,0,. The absorption coefficient derived from the
measurements is shown in Fig. 8a.

The cordition of an exact index match between the samarium
glass used as a cladding and the neodymium glass of the rod itself
(to suppress whispering modes) was not duplicated in the computer
program because of possille program halts. Instead, the samarium
glass was given an index n;, = n, - 0.0001.
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The refractive index of the water cladding used in
another of the calculations was taken from published tables;?8:%°
the absorption coefficient, see Fig. 8b, was found from trans-
mission measurements made with a Cary Model 14 -~pectrophotometer.

Pyrex tubing was chosen as typical envelope material
for the water cladding. Refractive index values were taken from
the relation

n = 1.46815 - 0.0080515M2 + 0.0021134(A2- 0.035)-1
+ 0.000022788(»2- 0.035)-2, (80)

which was adjusted to fit measurements made on a Corning Pyrex
#7740 plate. Transmission measurements also were taken. No
significant absorption was found except near 300 millimicrons,

see Fig. 8c. Pvrex #7740 is not an optical glass and transmission
characteristics are not controlled, so Eq. (80) and the curve of
Fig. 8c must be considered only as representative.

4.6 CHECK CALCULATIONS

The first two of the program loops stated at the end of
section 4.2 give an approximation to the monochromatic energy
density at a chosen point M in the laser rod. The larger the
number of rays traced, the better is the approximation up to the
point where machine round-off errors begin to interfere. However,
the more rays the machine has to trace, the longer the computing
time. It is necessary, then, in starting the program, to estimate
the number of rays to be traced to the point M for any given
wavelength. 1Ideally, one would select values for the angular
increments Aa and Ay, compute an answer, then select smaller
values and compute again =-- continuing the process until the
answer remained constant to the necessary number of significant
figures.

An abbreviated version of this process was carried out
for the monochromatic calculations of Sooy and Stitch®° on an
unclad ruby rod. Their curves were duplicated to within + 34 by
taking Aa = Ay = 5°., An extended printout of the computation for
a point near the surface of the rod showed the "forbidden ray"
phenomenon explained in section 4.3 and sketched in Fig. 5. The
minimum number of rays traced per quadrant was 100, while 252 rays
were traced when the point M was at the center of the rod. The
greatest difference from the result of Sooy and Stitch occurred
for a,R, = 0.003, the least absorbing case, and x = O. The
calculations were repeated for that point with Aa = Ay = 2.5°,
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and Aa = 5°, Ay » 0.625° which reduced the difference to 2¢ and
0.5¢ respectively. The computing time for this case and the two
repetitions were in the ratio 1:4:8. Estimates of the overall
computing time (a minimum of 10 hours on an IBM-360-30 for ten
points within an unclad rod using Ao = Ay = 2.5° for x < 0.4R
and A& = &y = 5° for x > O.4R, with A = 0.3 (0.005) 1.0 micron)
made any further refinement of the calculation inadvisable.

It is believed that the close agreement with the results
of Sooy and Stitch verifies the computational method of the first
two loops of this program, particularly in view of the considerable
difference between this method of approximation and the method of
approximation used by Sooy and Stitch.

The third and fourth loops of the computer program were
verified step by step from arn extended printout of an actual
computation (as were the steps of the first and second loops).
The logic of the computat- 1al method was given an overall check
by computing the distribution of heat production in an unclad rod
and comparing the result to similar calculations by Borrelli and
Charters.?! They calculated energy distributions in Nd®** doped
rods of Corning 0580 laser glass using the spectrum between 0.3
and 0.9 microns obtained from an FT-524% flashtube operated at
4.4 kv from a 400 uF condenser bank. The spectrum was arbi-
trarily normalized against its peak value. Results are presented
for several values of the parareter pR, where p is the concen-
tration of doping ions in ions/cm® and R is the radius of the rod
in centimeters. The curve of fnergy which causes heating vs. the
normalized radius interval when pR = 2 x 10°° ions/cm® has been
replotted in Fig. 9.

The parameters of the check calculation verifying the
agreement between the method of Borrelli and Charters and the
method of this report were choscen with an eye on some of the
values used by Welling and Bickart®? in their experimental work
on laser rods. Thus, the FX-47A flashtube spectrum corresponding
to 5300 amp/cm® was chosen as more nearly equivalent to the
output obtained by Borrelli and Charters for their FT-524
flashcube. The AO 3835 laser glass has an ion concentration
of 4.7 x 10%° jons/cm® so that for a rod 0.45 cm in radius the
product pR is 2.1 x 10%° ions/cm?.

The heating energy released per unit volume in such a
rod was calculated for 11 points along the radius. For comparison,
normalization at x = O to the value reported by Borrelli and
Charters for pR = 2 x 102° jons/cm® was carried out. The agreement
seen in Fig. 9 is considered good evidence that the methods of calcu-
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lation agree hecause the physical properties of the mrterials
described in each case ac= quite similar. The slightly higher
production of heat energy in the outer layers of the rod relative
to that in the central region as pP is increased is predicted by
Borrelli and Chavters.

4.7 RESULTS - Profiles of Hazat Production and of Temperature

The spectral irradiance at the outer surface of the
laser rod and cladding assembly, ~s explained in section 4.4, has
been taken equal to the spectral i1adiant emittance of the FX-4TA
flashtube as :cmputed from data reported by Goncz and Newell.
These authors also calculated the spectral efficiency of the
lamp for the two current densities, 1700 amp/cm® and 5300 amp/cm?®,
and the ectral range, C.35 to 1.1 microns, investigated. By
taking the spectral efficiency to be the same for the range 0.3
to 1.0 microns, it is possible to assiyn specific values not only
for the spectral irradiance, but also fo: the irradiance itself.
A current density of 1700 amp/cm® is proauced by a square-wave,
3/4 millisecond electrical pulse of 1 kilojoule. Assuming that
ihe flashtube is 64.64 efficient, 646 joules of radiant energy
anpear in the light pulse. This is 2mitted uniformiy (vy
assumption) through a surface area of w(1.3)(16.5) = 21.45 7 con®,
so the radiant emittance and hence th.: irradiance corresponding
to the 1700 amp,/cm® discharge is about 12.8 kilowatts/cm® over
the waveiength ranse 0.3 to 1.0 microns. The .irradiance
correspending to %30C amp/cm® current density is about 64.1

kilowatts/cm® = (5)(648)/(21.45 7)(0.75).

Four profiles were computed, all for a pR value of
2.1 x 1¢* ijons/cm®, or if ore prefers, RF = 1.9, where p is
the concentration of doging ions in ions/cm®, F is the ion
concentration in weight percent, and R is thc radius of the
laser rod in a:. The profiles of Fig. 10 shows the distribution
of heat produc%ion in i Nd®* doped, polished, lasur rod with
optical pumping through the side, (1), (2) without cladding,
{3) with water cladding and (%) with samarium glass cladding.
The curves have been normalized against the irradiance occurring
at the outer surface of the laser rod and cladding assembly.
curves (1), (3) and (4) were computed for the spectrum produced
when the current density in che flashtube is 1700 amp/cm?®, while
curve (2) was computed f5r a current density of 5300 amp/~m?.

Figure 10 has the immediate experimental interpretation
that if one were to set up a punping enclosure which coull fill a

volume of space with an isotiopic energy densicy of light flux
having the pectral distriuution of the FX-4TA flashtube or its
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Figure 10. The cCistribution of heat production I' vs the normalized
radius in rods of AO 3835 laser glass with RF = 1.9. The ordinate T
is measured in watts/cm® per watts/cm® irradiance at the surface of
the laser rod and cladding assembly: (1) unclad rod, 1700 amp/cm?
iamp spectrum; (2) unclad rod, 5300 amp/cm® lamp spectrum; (3) rod
clad with water 4.17R thick (held in place by an outer shell of
Pyrex tubing 0.39R thick). 1700 amp/cm? lamp spectrum; (4) rod

clad with sam~nriurm glass 0.5R thick, 1700 amp/cm® lamp spectrum
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equivalent, then tne relative power diesipation as heat in a

laser rod with 2F = 1.9, (a) unclad, (b) clad with water of
thickness %.17 R, and (c) clad with samarium glass of thickness
0.5 R would follow the curves (1) or (2), (2) and (%) respectively.

The normalization for the distribution of heat pro-
duction was adcpted because it leads qui. .y to numbers of direct
use in laser pumping. For example, if the surface of an unclad
rod of AO 3835 laser glass with RF = 1.9 is irradiated by
1 kilowatt/cm®* o. light power distributed in the spectral range
0.3 to 1.0 microns according to the spectrum of the FX-47A flash-
tube operated at 1700 amp/cm? current density, then the rate of
release of heat energy at the center of the rod will be,
according to curve (1) of Fig. 10, 92C watts/cm®. By the same
arithmetic, if the light pulse from the lamp contained 1 kilo-
joule/cm®, 920 joules/cm® cf heat energy would be released.

It can be inferred from curves (1) and (2) that the
change in lamp spectrum produces very little change in the shape
of the curve, a result which is expected since the changes in the
lamp spectrum do not coincide with the ma jor absorptiorn regions
of the laser glass. (Compare Figs. 3 and 7). The higher concen-
tration of heat enargy in *he central region of the unclad rod,
due to the focusing effect, is the predominant feature of
curves (1) and (Z). When the rod is clad with a material of
index between that »f air and that of the rod, the focusing
effect is altered significantly, curve (3), so that an annular
region in the rod becomes the site of the maximum heat production
per unit volume. Such a ring structure can occur in an unclad
rod for higher concentrations of doping ion as shown by Borrelli
and Charters and suggested by the calculations of Cooke, McKenna
and Skinner.2® A hint that the ring structure might ornicur in the
clad rod for a lower concentration of doping ions can be gleaned
from the paper by Borrelli and Charters, the one by Cooke et al,
and one by McKenna.®* The reasoning, which is admittedly somewhat
nugatory. is as follows: Curves by Borrelli and Charters indicate
that the distribution of heat production is closely tied to the
distribution of absorbed energy. Curves by Cooke et al indicate
that the distributions of absorbed energy for "two- and three-
dimensional"” pumping are quite similar. Curves by McKenna for
two-dimensional purping show that the ring structure can be made
to appear in a clad rod for a much smaller concentration of
doping ion than is required in the unclad rod. Be that as it
may, the rhencmenon is undesirable when ore is trying to produce
a uniform distribution. McKenna does find, however, that the
thickness of the cladding affects the size and shape of “the
annular region, a fact which sugg:sts that the thickness of
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the cladding should be chosen as a function of the doping ion
concentration or, more likely, the product pR in order to produce
the most nearly uniform distribution.

Specifically, in Fig. 10, let us compare curve (1) for
a polished unclad rod to curve (#) for a rod with cladding
thickness 0.5 R. If we nov imagine the clcdding thickness re-
duced toward zero, we expecc the curve representing temperature
distribution to deform smoothly from the shape ¢f curve (%) into
that of curve (1). At some cladding thickness the curve will
show a minimum temperature excursion, i.e., there should be a
cladding thickness which is optimum for producing a uniform
temperature distribution.

The temperature rise in the laser rod is nearly pro-
portional to the heat production per unit volume. The constant
of proportionality for A0 3835 laser glass, with a dersity of
2.63 gm/cm® and a specific heat capacity Cp = 0.14% gm-cal/gm-C°®,
is

AT(c®) = 0.65 E, (joules/cm?). (81)

We turn again to the FX-47A flashtube and a rod of
AO 3835 laser glass such that RF = 1.9 for a >ncrete example
of the temperature rise which can occur in a laser rod. Suppose
an assembly of such tubes operating at a current density of 1700
amp/cm?® produces 12.8 kilowatts/cm® irradiance at the surface of
the laser rod and cladding assembly. Let the duration of the
flash be 3/4 ms. Then 9.6 joules/cm® are incident on the laser
rod and cladding assembly per flash. According to curve (1) of
Fig. 10, (9.6)(0.92) = 8.8 joules/cm® of heat will be generated
at the center of the unclad rod with corresponding values outward
to the edge. Curve (1) of Fig. 11 shows the magnitude and the
distribution of temperature rise one flash of the pump as3embly
will produce. Curves (3) and (4) show the temperature rise for
the same pumping when the rod is clad with water 4.17R thick and
samarium glass 0.5R thick respectively. Curve (2) was computed
Zor the unclad rod irradiated by a flashlamp assembly working at
5300 amp/cm® current density and producing 48.1 joules/cm® per
flash at the surface of the laser rod.

Experiments carried out by Welling and Bickart on rods
of AO 3835 laser glass provide a comparison between the experi-
mentally observed distribution of temperature :ise caused by
pumping and that predicted by the theory presented in this report.
For RF = 1.9, R = 0.45 cm, they report a temyerature rise of about
7°C at the center of an unclad rod after one flash, wherein the
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incident energy.




FE

flashlamp input energy to laser rod cross section ratio is

1000 j/cm?® ., Since the 7.5 cm long rod had a cross section of
0.636 cm?, the flashlamp, probably of about 65¢ efficiency, was
supplied with 636 joules, and radiated 413 joules per flash, If
the coupling between lamp and rod were 734 efficient, 301 joules
reached the rod, or the surface density of energy was 301/(x)(0.9)
(7.5)= 14.2 j/em®. By curve (1) of Fig. 10 and Eq. (81), the
predicted temperature rise at the center of the rod is (14.2)
(0.92)(0.65) = 8.5°C.

A comparison between the experimental and the calculated
distributions is shown in Fig. 12, The value of 734 chosen for
the coupling efficiency in the preceding paragraph was used to
obtain the broken curve of Fig. 12 and represents a normalizatior
of the curve such that the total erergy released as heat is the
same for the theoretical distribution as it was for the experi-
mental one.

Figure 12 shows a noticeable difference between the
experimental and theoretical distributions of temperature near
the surface of the rod. This same phenomenon has been observed
and discussed by Welling and Bickart for unclad ruby rods. No
satisfactory explanation of the phenomenon is known.
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5. EFFECTS OF THE LASER FIELD ON THE INDEX OF REFRACTION
OF THE LASER ROD

5.1 INTRODUCTION

In the following we shall consider the effect of the
laser field on the distribution across the laser rod of changes
in index of refraction caused by the field itself. 1In section 5.2
we shall treat the Maxwell stress in the rod and at the boundary,
the Kerr effect, and the electrostrictive effect. In section 5.3
we shall discuss the photoelastic effect and take as the applied
mechanical pressure the Maxwell stress computed in section 5.2.
In section 5.4 we shall attempt to justify the assumptions made
in the analysis and suggest a method (valid in principle) of
achieving greater laser beam uniformity.

5.2 MAXWELL STRESS, KERR EFFECT AND ELECTROSTRICTIVE EFFECT

A. Mechanical Force

The mechanical force f per unit volume due to the
presence of an electric field in a material of dielectric
constant £ and density p is given by3®

1 - 1 de
= o e 2 == d Ea o 82
£ B E® grad €+ g 9t2 ( p dp) (82)

It will be our tack to find explicit expressions for €
and p %5 in the presence of electrostriction and any quadratic

P
effect in the field.

B. Electrostriction

We wish to calculate the change in density Ap owing to
the presence of an electrostrictive force. Fraom the Helmholtz-
Lippman law®® the change of volume 6v for an initi:zl volume v, is
given b -

_ (2w YoE? 3e _ _ VoE® 3e  _ VoE? (3¢
o = (ap) tr av- " er v e N\l O
T = Const.
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where p is the pressure
E the electric field strength
€ the dielectric constant of the material
Kk the compressibility.

The change in density Ap and the density p lead, using
Eq. (83), to the relation

v dp B2 (2e
.t g (ap)ho (84)

T = Const.,

So that we have

E? E2
Ap-pé;(%)g.o =P g 2 (85)

T = Const.

Equation (85) expresses the electrostrictive effect due
to the presence of the field E.

C. Optical Kerr Effect

Oowing to the presence of the electric field E the
medium hecomes birefringent. The respective dielectric constants
become??

€, = € + E2N (a - b)a (86)

€, = € + E2N (a + 2b)a (87)

(6]

where ee is the dielectric constant 1 to E

€. is the dielectric constant ! to E

(6]

and N, a, b, a are constants of the medium.

The corresponding indices of refraction are

n, = ﬁ- \I? [1+E3N (a-b)-;—e]s n, (88)
no = B0 = yT [ 1 + BN (as20) L] n, (89)
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In the Kerr effect measurements, both DC and optical,
one measures the quantity
\ iy &
n, - n, = 3h E*N o = B, AE3 (90)
where B, is the Kerr constant.

In our case and for our purpose we are interested in
the absolirte change of index

n, - n = nE®N (a + 2b) g% (91)

It will be noticed that in the measurement of B, only
the coefficient b in Eq. (90) is determined.

In the case of
Eq. (91) the coefficient a has to be determined independently.
Using Eq. (87) we can write
. - € = E2N (a + 2b)a = B EZ 2

where we have defined another constant B which we shall subse-
quently use.

D. Conditions at the Boundary

(1) sSurface Force per Unit Area

In this section we wish to calculate the Maxwell
stresses at the boundary of the laser rod.

We shall have to
transform the force per unit volume of Eq. (82) into a force
per unit area.

The first texrm in Eq. (82) becomes (omitting the
cumbersome factor of 1/8r for the moment)

- E® grad € = grad (- € E®) - € grad (- E?)

(93)
The second term on the right-hand side will mostly

concern us since it is not readily amenable to the desired trans-
formation. rrom vector analysis®5 we have

grad (A*B) = (A*y) B+ (B'v) A +A X (v XxB) +BX (v xa) (94)

We shall henceforth only handle the electrostatic case
(see justification in section 5.4), hence
vy XE =0,

Then we have,

€ grad E2 = 2¢ (E'v) E = 2(D'v) E (95)
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where D = €¢E is the electric displacement vector. In order to

make headway with iiie term D'V in gerneral (as opposed to cartesian
coordinates) we shall have to draw more heavily on vector analysis.
We define the indefinite or dy~dic product of two vectors A and B

as A;B. Taking a third vector C we define the scalar product of
the dyad A;B by

(a;B) - ¢ = a(B-C) (96)
and

c * (A;B) = B(C'A) (97)
Thus the product i° a1 vector, and is different depending on
whether C follows recedes the dyad. For the operator nabla v
we define for a gi: ‘ector F

v;F = 1im%,-f n;F ds 198)

V-0 7 (s) |

where n is the normal vector to a closed surface S enclosing a
volume V. This definition is analogous to the definition c¢f the
gradient of a function ¢, which looks as follows

9¢ = lim 1 n ¢ ds = grad ¢ (99)

v-0 ¥V (s)

Similarly for the divergence of an operator we have the
definition

g+ F=lim & n-+ Fds =div F , (100)
We can now find a clearer meaning to the operator A ° v
as given in Eq. (94).

ILet A be a vector which is not to be varied in the
limiting process given by Eq. (98), then

im 1 © n =2 - |l1im L n: = 2 (9.
\17.1.13'\7 - (a ) Fds = A [‘1,_1.0V (s)( ,F)ds] A (v;F) (101)

and from Eq. (S7) we get for the last term in Eq. (101)

A (v;F) = (av) F (102)
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Given two vectors a and b we wish to calculate the
divergence of the dyad a;b. We have

v+ (a;b) = v+ (a;b,) + V- (a5;b) (103)

where the suffix zero indicates that the corresponding quantity
is not to be varied when applying the operator v.

Applying Eq. (100) to the first term on the right of
g. (103) yields

v- (a;b,) = 1 n* (a;b,) ds (104)
V"O (S)
Using Eq. (97) this is equal to
.]; n* = i .1_ n-a - ‘a
Lin 2 ) (n-a)b, ds [11m vJ ) (n-a) ds] b, = (va)b (105)

This follows from Eq. (100) and we have dropped the suffix zero
on the extreme right hand side.

So that we have
v:(a;b,) = (v-a)b (106)

Let us do the same thing for the second term on the
right of Eq. (103). Using Eq. (100) and Eq. (97) we have

(a = 1 n-(a,: im 1 .
v* (a,;Db) %:g ./15) (a,;b) = 1 m -Ils n* (a,)b as  (107)

This last expression on the right leads by Eq. (101)
and Eq. (102) to

im 1 1 = (a
%ig 3 () (n-a,)b a@s = (a'v)b (108)

So that we have

v (a,;b) = (a-v)b (109)

assembling Eqs. (109) and (106) we get the final result
for Eq. (103)

v.(a;b) = (vea)b + (a*v)b (110)
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Wle now derive what may be callad the tensor form of
Gauss' Theorem.

.};v) v.{a:b) dr = JQs) n.{a;b) as (111)

Using Eq. (110) the left hand side of Eq. (111) can be
written

jf v (a;b) dr = J/' (v-a)b dt + (a-v)b 4t (112)
(v) {v) (v)

Using Eq. (97) the right hand zide of Eq. (111) can be
written

r

-j(s) n.(a;b) ds = ./r(n-a)b ds (113)

So that the tensor form of Gauss' Theorem becomes, using
Egqs. (112) and (113)

-/-(V) (vea)b dt + f (a:v)b dt = ./(‘;) (n.a)b as (11%)

(V)

By invoking Eq. (114) we can now write

va) [E(V.D) + (D'V)E] At = ./ZS)E(n'D)dS (115)

In our case, since we do not have any free charges in
the laser rod we have v:D = O, hence Eq. (115) becomes,

(D°V)E A7 = E(n*D) ds (116)
-/;V) f(S)

Eqaiation (116) provides us with the sought for relation enabling

us to pass from a volume integral of Eq. (95) to a surface integral.

Integrating Eq. (99) over a volume V we have

vodr = grad ¢ dt = n¢ ds (117)
f(v) f(V) f(s)

We are now in a position to transform the volume integral
f.(v)f dr of Eq. (82) into a surface integral. Using Eq. (117),
the volume integral of the second term of Eq. (82) becomes

1 de 1 de .
Br _/;V)grad(Eap dp)dr ol (s)nEap ap ds (128)
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Similarly, the volume integral of the first term on the
right hand side of Eq. (93) becomes

i i
- a 2 dt = = == 2 a
Br (V)gr d (eE?) B -/Qs)n €E® ds (119)

The volume integral of E4. (95) bocomes

:‘3;; '/;v) € grad E® dt = 1}171: '48) E(n-D) ds (120)

where use has been made of Eq. (116).

Assembling Rgs. (118), (119) and (120), the volume
integral of Eq. (82) becomes

=_1_ ne - 2 - !
W T Sty Jooy™ (" "gi)“ (121)

So that we have a surface force t

t = -I#D(E-n) - -é“;E8 (s -p g—:) (122)

This is the Maxwell stress.
(2) Maxwell Stress at the Eoundary

. Since we wish to calculate the Marwell stress at the
boundary, we shall use Eq. (121) and integrate over a surface
given by Fig. 13. The boundary separating medium 1 and 2 is
given by BB'. We assume an area dS perpendicular to the plane
of the figure and indicated by a’B’ for mecium 2 and our area &S
indicated by aB for medium 1. The area which shows in the plane
of the figure as ¢‘a and B‘B will be chosen so small that its
contribution to the surface integral will be neglected.

Hence, we have '

f dt = ds {-23;- [E,E,(E,-n) - §,F, (El-n)]

-'Bn?[Eaz (e‘%';:P) -Ela (E'%P)]} (123)
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Maxwell stress boundary nomenclature.
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We shall assume that medium 2 is the vacuum. Hence, the pressure
p at the boundary is given by

p = ﬁ%-[ga (E, * n) - &,E, (E, °* n)] - é# {E,a-El2 a] (124}
where we have put (e - -g—s- p) a. (125)
P

Let us set up a coordinate systen where the field E is
decomposed into two components: Ep parallel to the vector n, and
Ep parallel to t'. boundary. Then ‘ve have

E, *n=E;,, ; E * n=E, (126a)

E,? = E3, +E3p ; E,® = B3, + B3, (126b)

=1E + 1E (126¢)
nn PP

where 1, and 1, are unit vectors respectively parallel and perpen-
dicular to the vector normal n. Inserting Eqs. (126a), (126b) and
(126c) into Eq. (125) yields,

1
p=ii [(1 Ean + 1) E, p) E, - o .(1n Byp *+ 1 E,p) ‘Eln]

0 .

- §'-,,7 (Egn + Egp) * g ? (E?n + Eap) (127)
The boundary values of the field are

(128a)

€ Eipn = Egp

&

Eap = Elp (128b)

Inserting Eqs. (128a) and (128b) into Eq. (127) yields,
1 -
= H[(ln €, € + 1pE1p) €, Bjn - € (ln E;p + lp nlp) Em]
-0 2 g5 +E2 )+ Do (%2 +E2
Br \&1~ Fin T Bip T 3gr @ {"in * Bip (129)
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We note that the terms

1p [e1 Eypfin ~ & ElpEln:] in Eq. (129) cancel.

We are thus left with normal stresses only. Rewriting Eq. {129)
yields

-1 -
p W[% €% Ef, - € 1 Eqn]
n .
- 5 (5;13 B2 + E"{p) + g o (Egn + E‘;’p)
or finally
p= %;-n [E?n (e, - 2¢, +a) + Efp (a0 - 1)] {130)

Deperding on the sign of p, we shall have a surface
pressure or tension at the boundary.

E. Calculation of f

We shall derive an expression for f as given by Eq. (82)
taking electrostriction and Kerr effect into account. Using
Eq. (85) which yields the expression for the change in density
dve to electrostriction, the total density p is given by

B2 E=2
P'Po"'AP'F’o"'Poga"Po 1+§a (131)

Using Eqs. (92) and (85), the total dielectric constant resulting
from electrostriction and Kerr effect becomes,

2
e-eo+Ae-eo+(g—:) Ap+B% (132)

It should be noted that B in Eq. (132) can also be made
to include any quadratic contribution to the dielectric constant
other than the Kerr effect.

It will be our task now to use Egs. (131) and (132) to

find a more explicit form for Eq. (82). We start with the second
term on the right hand side of Eq. (82) first.
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Putting

X = pPo (1333)

y=Ea (133b)

8»

usps=z=XxX+xy (133C)
We have

Je o€ ou d€

ax "5u - au 1t (134)
Hence

e = 1 | 3¢ ’

ou 1 +y ox (135)
Thus

de ___u e _ [x+xy)de 03¢ 1
YT+ y 9x (1 +y ) = - ax (136)

Reverting back to the physical values as given by
Egs. (1333): (133}3): (1333)’ Eq. (136) becomes,

o€ _ g€ 1
p % Po 20 (137)
Now
de  _

is a quantity which can be determined from photoelastic measurements

as will be seen below. 1In our case Y is the value of p de Dbefore
ap

the application of the electric field. In this work we shall

henceforth assume that y is constant in the laser material and

does not vary with position in the medium.

Before turning to the first term on the right hand side
of Eq. (82), we wish to rewrite Eq. (132) after substituting
Eq. (131) for Ap. Then Eq. (132) becomes,

de B2 E? E2 E?
e =6, +9& o E a4BE -~ 4y 2—a+B
° T ap, P Br TtV B Ter 270 By
= 2 + &= (ya + B) (139)
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And after putting

L=y a+B (140)
Eq. (139) can be written as

E=€, +b %%- (141)

Then the first term on the right hand side of Eq. (82)
becomes, assuming e, uvaiform throughout the laser rod, and using
Eq. (143)

2
__L 2 =_-l_ 2 gz_ _-.1-.'1:. gz—
= E® grad e B E grad[Bv (vya + B)] = b grad(sv) (142)

The second term or the right hand side of Eq. (82)
becones, using Eq. (137)

E?2 .
—g; grad (Ezp%%) = orad ('v 87) (1427

Now, since we have assumed Y uniform throughout the
laser rod we can itake out y from under the grad nperation on tre
right hand side. Hence, Eg. (i4?) yields

k 2
é%'grad (Ezp g%) = v grad %;- (14%)

Assembling Eqs. (142) and (144), we get the final form
for Eq. (82), namely

fum-lpgraa (E 1 + v grad E> (145)
2 8r 8

F. Calculation of vy in the Clausius-Mossotti Case

Since for a large class of glasses it is reasonable to
assume that the Clausius-Mossotti relation applies, it will prove

useful to calculate y = p € for this case. The Clausius-
Mossotti relaticn* dp

*See, for example, M. Born, Optik (Springer, Berlin, 1933) p. 339
or Born and Wolf, Principles of Optics (Pergamon Press, 1089) p.
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can be written for our purposes as

e-l_¢cyp (146)

where C is a constant and p is the density.

By ordinary differentiation

é£=31; [e - 1][c + 2] (147)

Hence, we get the desired relation

de 1
P=="-Je-1][e + 21 = 148
The change Ae in € due to electrostriction or changes
in density Ap becomes

(Ae)p dpAp 3[5 1] [e + 2] > (149)

The change Ae in € due to the Kerr effect or any other
~hange in polarizability Ao becomes

g Aa
(.s)a=g—aM=%[e-1][s+2]? (150)

When the Clausius-Mossotti law applies, we get the
interestin~ relation

=a de
da

% [e - 1] [e + 2] (151)

©
Qaloa
© [m

Here a is buried in the constant C which itself becomes a variable.
The constant C is proportional to the polarizability a.

Since the index of refraction n is related to the
dielectric constant &€ by the relation € = n?® we can also
express Y in terms of n as

= p %€ = dn 2
TP =P g (152)
dn
or p@t-L (153)
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G. Maxwell Stress at the Boundary

l«) In the case for which the Clausius-Mossotti
relation holds.

We shal). evaluate the coefiicients Ef  and Efp
in BEq. (130). Using Eq. (151) we have

€2 -2, +a=¢,2 -2 +€, =1 (26,2 +2¢, - %)

6

[

né-[ll-sla - 851 + u] =£{512 - 2¢, +1]=§[51 - ]2 (154)

6

Similarly for the coefficient of Efp we have

¢ -1=¢, - é.[aela + 2, - 4 ] -1 = [-2:-:1a + be, - 2:] é
= - §'[512 - 2¢, + 1] = - g- (e, - 1)2 (155)
Assembling both terms Eq. (130) becomes
1 1 .
p.=EF(z-:1 -1)3.3_[2 Efn-Elp]. (156)

We notice that the first term is a tension force and
the s2cond term a pressure force.

As an illustration, we shall calculate the pressure at
the edge of the cylinder in the case of a normal component E,,
only being present. From Eq. (156) we then have

p = % [n® - 1]981_7 E2 (157)

which is a tension.

For 1 Mw per cm® power we have

2
0 ='3‘(1.52 - 132 « 10% - 107
3 . 1010

= 350 dyn/em?® = 0.36 gm/cm® (157a)
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since = = -
8r ¢
where W= power/cmz

c = velocity of light.

For 200 Mw/cm® power we have

p=T"* 10 dyn/cm? (157p)
This indicates that there is a mechanical force being applied on
the cylinder as & result of the presence of the E field. This

force will contribute to a change in index due to the photoelastic
effect as we shall see in section 5.3.

(b) In the general case.

We look first at the coefficients ©§ = -2, +Q
and @ - 1 of Eq. (130). Using Egs. (139) and (140} we have for €,

g, = £ = &g, + %;-b (158)
and a =, -y+-‘8-’.1r2-b (159}

For ease of notation let us put

Ez .
&b = e (i60)
Then we shall lead up to the evaluation of b

£,2 = (g, + Be)? = g, + 28e g, (161)

where we have neglected the term (Ae)?.
We now have for b
£,2 - 2, +a =¢° - ¢ +ac (2¢, - 1) =y (162)
If we assume the largest value for vy to be 3.40 as
computed in Table II for the Pockels'glasses and putting n = 1.5,
we get for Eq. (162)

a=-o.60+3.5§%b. (163)
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Values of v for Various Glasses

§205 0428 0658 02154 01571 0500 857

observed p OB 0.358 (0.106) 0.392 0.385 0.512 0.600 0.865

ap
n 1.508 1.51c 1.545 1.570 1.644 1.751 1.96
2n 3.016 3.02% 3.090 3.14 3.288 3.502 3.92
Y =g %% © 1,08 1.20 1,55 1.62 2.1 3.4

TABLE 11 -

Before proceeding in the evaluation of a -~ 1 we wish
to get an idea of the magnitude of b. From Eq. (140) we know
that b = v a + B. let us start with the evaluation of a. We
have

amyK {104)
where
1 22 1 ,
K= p dp = B (165)

-8 the compressi»ility and B the bulk modulus.

Now since
™ gé \
Y =p ap (166)
a=ve=gE (167)

From More: ,*® the bulk modulus is 370 kilobars
= 3.7 x 10'? dynes/cm®. We ghall taks v = 1. Hence

-1 T 2.7. 1012 168
N TS S (168)

For a laser power of 200 Mw/cm® we have a change of
dielectric constant Ae

E2 - 200 b 108 - 107 . . _ .
fe =7 a 8r 3 + 10'° x 370 + 10° 1.8 - 10-¢ 7169)
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™ is corresponds to a change in index of refraction

An = 8 | 5o that An due to v a E= is, (n = 1.5)
2n 8w
An = Qe 1.8 107 _ 6. jo-7 (170)

2n 3.0

For the constant B in Eq. (140), we shail assume that
it is of the same order of magnitude as the Kerr constant. 1In
Tauern3?® we find for the absolute Kerr constant in glass, the

values

1.7 - 10713
3.9 - 1013
5.8 «+ 1023
8.1« 10712

The coefficient a - 1, becomes

a--1=s°-'v-1+%2;b (171)

Using v = 1.21 as given in Table II

o -1=0.04+ g;_-b (172)

We therefore note that only if

2 .
€ Ec, + Y .
is close *o0 zero

€, =Y =1

the term -ga;b can be important.

However, let us assume § = 0(1), and a laser power of
200 Mw/cm®. Then

E2 . .
p=nb 8;,“ = 2003 .1;)8010 107 _6.6 - 100 dynes /cm? (173)

This pressure at the boundary will produce later a change in index
due to the photoelastic effect.
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The value of Eq. (173) should be compared to that of
Eq. (157b). It is of the same order of magnitude. i

We terminate this section witk Table II where we have
calculated the values o< v for several glasses as given by Pockels*®
| from his observed values of on
! p £,
ap
We have simply used Eq. (153) and from some inferences in the 3
text, we have found the corresponding indizes of refraction which
ve are taking as given by Pockels.

5.3 | PHOTOELASTIC EFFECT

In this section, we wish to apply the results of our
previous work. From the Maxwell stresses calculated in the
previous sections it is now possible to evaluate their effect on
the index of refraction. We shall not redo here the thecry of the
photoelastic effect. Instead we shall refer the reader to Adams
and Williamsons! (A & W). We shall use their notation. Ve use
A & Ws Fig. 3, which becomes cur Fig. 1%. The mechanical stress
is applied along OY. We are intsrested in the absolute changes
of index ny, - n for light polarized ‘n the y direction, and in
n, - n for light polarized in the z d.rection. We reproduce in
Table III, A & W's Tab.e 3. We reproduce here the formulas of
interest for this section. They are

ny-nz P (q P

""" p q.p

—=— =z (-20;-!-;;) (A & W Eq. 3B)
which we approximate to

n, -n=E (2ov+v) (175)
and finally

n -n

=z ____PE - P_s94

~ -z [(1 o) T ov] (A & W Eq. 3C)
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i Ray of

; /lL«_Light
OL -— s e

Figure 14. Motation used by Adams and Williamson — drawing to
accompany elementary discussion of optical effects of stress.

The thrust P is applied in the direction OY. The ray of light
enters the cube of glass in the direction O0X, becomes elliptically
polarized and is treated as two rays vibrating, respectively, in
the directions OY and 0Z. Ordinarily the ray vibrating along OY
travels with the higher velocity, that is, ordinary glass under

unidirectional compression behaves like an optically negative
uniaxial crystal.

67

EHRIMTEI IO AN M I b 1

i L

Lttt




Bt 13 I proesapTt I ORI IR IV ST T e P T I R TIOETTIT IR Y b tad e IR ebers

J Ll I3 - 4 & » I3 . . ]
a w ¢ o [ ™ + _c @f.{iw ] » v e " . W »

*(616T) 609 ‘6 °TOS °ped¥ °"yseMm "L ‘uOSWRTTTIM °d *d PuR SWepPY ‘Y T WOXF

LS e6°T 991" 0 leq' o *08 €06° 1 1920 €05°0 O2 JUTTd }ISOTARSH
005 ge I~ 61£°0 $#6€° 0 G l9g 16L°1 6€2°0 0660 €€ JUTTd AAesH ex3xd
T.ST 19°2~ 492°0 cee' o L' 18 749 T f22°0 S0 92 JutrTd Aaesy
1512 €62~ €12°0 90¢° 0 “e¢ 0.G° T 2ce’ 0 019°0 Lt Jurtd 3ybr1
899 gL ¢~ 281°0 6g2° 0 *G2 CHG' T 0%2° 0 G0 12 s3exoq

~outTunTyY peI]
gch 9lL° 2~ 8220°0 g060°0 41 I LR § 892°0 Sly°0 i azexoq

~ouTuUMTY pess

G022 .-0T-3C 4~ 991°0 #l2°0 - Q056" 1T #12°0 HT-081°0 2 a3exoq
~OuTUMIY UMIpPos

g r g g se
S mdab a A T S S z sse1s yo pury
5 FRgE 3 i Zap @ 9 Fg &
) 8a°R « "0 v w Q z O
2 Q + K g3 0 o B - o
O o o) O - W m-.o. . 3 =] H [ ] 3
. Q 3 ‘b w O - Qq w
@ - 8 2a (t) ba @ "~ Q b w w B 3
§ Fod 35 3o sjusTOTFFEOD 2 = a 9, 2
o) ~ 0 o o = ®
= = 0 L 34 m g
o n ("R o
. o w

#880138 JO 530933 TedT3d0 UO FIusWAINSEIW ,STOYO0J FO SITNSNY
I1I JTIavL

SRTUPR——— reesemvere b one st s st e rnarema et

68




which we approximate to
-n=nktk 1 - P _ 9
n n=n2 [( a) L-0 3 (176)

The birefringence quoted .. Table III corresponrds to
Eq. (174). We have computed “or the same glas‘ies (identified by
their Pockels number) the values as given by Egs. (175) and (176)
respectively, for P = 1 kg/cm®. This is indicated in Table IV.

TABLE IV

Index Changes for 1 kg/cm?® Pressure

Pockels

Sample No. nym -n n,-n
205 5.06 « 10-® 48 .30 - 108
428 -8.38 - 108" 19.30 - 10°®
658 1.06 «+ 1077 4.83 - 1077

2154 1.99 «+ 1077 4.89 -« 1077
1571 3.44 - 107 6.08 - 1077
500 4,76 - 1077 6.13 + 1077

57 9.45 « 107 7.52 « 10°7

It is interesting to note that although the composition of all
glasses listed (except sample 57 which is positively birefringent)
are negatively birefringent, glass sample 428 exhibits a negative
value for ny - n. For boundary pressures of 6.6 + 10* dyres/cn?®
as given by Eq. (173) the change in index An will be

n(O) -n
6.6 - 10¢

(1 kg weight = 9.80 ¢ 105 dymes)

which would correspond for glass sample 57 and ny -n=9.45 - 107
to :
6.6 - 10* *« 9.45 - 107

- =6.38 - ] )
An 580~ 10° 6.38 - 10- (178)
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which is small. Thte question of the variation of An across the
laser rod can ke dealt with adequately from the foregoing work,
once the field distribution across the rod is given.

We wish tu terminate this section by pointing out that
it is possible to express 5 9n  (and thus v) in terms of the

ap
photoelastic constants p and q, as follows,

én _n (34 P
pap 3 (v +2v) (179)

This was first derived by Pockels.4°

5.4 DISCUSSION

In all the foregoing we have treated the electrostatic
case only. The physical justification resides in the fact that p
cannot follow the field at optical frequencies. The DC component,
however, will be present and exercise the influence we have
described. If the description is adequate it would follow that
it ought to be possible in principle to compensate index changes
across the laser rod {leading either to convergent or divergent
beams) by applying an electrostatic field with the proper field
distribution (which can also be made to vary in time). We have
also assumed equivalence between optical and DC Kerr effect,
which is reasonable for gless.

5.5 SUMMARY

In sections 5.2 to 5.5 we have treated the problem of
the influence of the laser field itself on the index of refraction
of the laser rod (with special interest in a glass rod). We have
developed the inter-relationship between Maxwell stresses (both in
the bulk material and at the boundary), electrostriction, photo-
elastic effect and Kerr effect (both optical and DC in the case
of glass). We have developed the forinalism to a point where the

distribution across the laser rod of changes in index of refraction

can be readily computed provided one is given the distribution of
the laser field in the rod.
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6. END REGION STRESS ANALYSIS

The presence of a non~uniform temperature distributior
in a circular laser cavity gives rise to two significant effects
which will modify the optical path of light passing through.
First, the strain patterns which accompany a temperature gradient
serve to alter the optical pathlength for different radial positions
within the rod. Where the material shows a stress-optic behavior,
the index for the two polarizations of light will also be different.

el il

Second, as there is also a finite curvature of the end surface
which accompanies a non-un® form distribution, there will be a
discrete bending or refraction of the ray as it passes through
the surface.

In the present effort, a program was initiated to

evaluate the stresses and the optical distortion they produce
in a finite length cavity under axially symmetrical temperature
distribution. Both temperature and stress fields thus are
assumed to exhibit no dependence on the azimuthal coordinate, ©.
In practice, these conditions can be closely approximated with
isotropic pumping. For a laser rod, then, in which pumping
intensity is uniform along its length, and temperature variation
within the rod is an arbitrary function of radius, the stress
field may be recolved exactly over the major portion using plar.a
strain theory. The region in which the plane strain formulation
will not be valid is at the extreme ends,; where according to
St. Venant's principle, self-equilibrating mechanisms will be
set up in order that specific boundary requirements are met.
Since measurable changes occur in the stress field within one

two diameters of the rod end, giving rise as well to surface

‘mation, cne would expect related changes in optical path

..ffering from a plane strain analysis based on total length.
A detailed study of the end region stress field, therefcre, was
undertaken.

Treatitents of the end problem in cylinders raported in
the literature are meager because the solution long withstood
attempts even for an approximate development. In principle,
however, a solution can be formulated exactly by relating
stresses and displacements to the Love displacement function,
L(r,z) as described in Ref. ¥2. Now, if one sets the condition
that L(r,z) be biharmonic, i.e., satisfies the equation

v4 (L) = ¢v2v2(L) = O (180)
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where 92 = a2 o 1 9 + 22
or? r or 322

r and z being cylindrical coordinates, the equations of
equilibrium and compatibility for axially symmetric systems will
then be satisfied. Further, if the bound.ry conditions to be
satisfied are no forces exerted on the curved surface, and seli-
equilibrating symmetric normal and shear tracticns on the end
corresponding to

ar-O,'r-O at r = a

a
f o (r)rar = 0 at z = 0
5 z

the (L) function will take the form

oy A 1 edyz 1
L{r,z) = e '"J,(yr) + ENRXTACAC) yrJ, (yr) (181)

where here Y becomes a solution to the eigenvalue equation

R, 204 (182)
33 {y) ¥?

In the absence 5f external forces but where loading is caused by

thermal expansions, the derivations hold if the temperature function

can be raduced to a symmetrical system of forces distributed at
the end.

While the above equations do constitute a system of
functions for the exact solution of the problem, a difficulty
in use arises from the fact that the roots of Eq. (182) consist
of real and imaginary parts. Tha task of calculating these
complex roots hLas been found to be exceedingly great, and the
real and imaginary parts of Eg. {(181) give rise to increased
mathematical difficulty at the boundary. Therefore, the
expressions described do not provide practical workable
solutions.

In an attempt to circumvent some of these difficulties,
Horvay*3® has introduced an approximate variational method of
solution in which two Sadowsky-Sternberg*4 stress functions,
given a product representation, ¢(r,z) = £(r)g(z), and
¢(r,z) = F(r)c(z), are utilized to determine the stress
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distribution. Briefly, by introducing the stress functions in
terms of stresses into the expression for complementary strain
enercy and taking the variation, 5U, equal to zero there will
result Euler equations with constant coefficients from which the
axizl functions g(z) and G(z) can be determined. g(z) and G(z)
will be established as exponentially decaying sinusoidal functions
of th. form,

e “%{cospz + % ginfz) .

The a's and PB's are real and imaginary components to the compiex
root v = a + if of the eigenvalue equation

Ay* - By? +C =0

where A, B, and C are constants taken from the Euler equations
resulting above.

The functiona f(r) ana F(r) are radial polynomials
which must satisfy certain boundary conditions and rule of
orthogonalization. They must be selected so that with their
appropriate derivatives, they will constitute a system of
boundary tractions, o, 0g, 0, and T, at z = 0, which will
closely approximate the set of end tractions imposed by the
problem. The variational method permits the end tractions to
be expanded employing conventional Fourier expansion techniques
which alleviates much of the mathematical difficuvlty incurred
at the boundary with tle exact method. Once successful in
determining matching polynonials and their derivatives, one
may evaluate the Euler constants A, B, and C from which axial
functions g(z) and G(z) will follew. To calculate the product
stress functions and resultant principal stresses which they
represent then becomes straightforward using available Sadowsky-~-
Sternberg relsztionships. While primary obstacles inherent with
an exact formulxztion can be removed by this approach, it does
remain that considerable mathematical involvement and judgment
is still required for execution of the method.

Additional papers (though more distantly related to
the present problem) dealing with analytical solutions to the
axial symmetrical loading of the cylinders of finite length have
appeared. In Refs. 45 and 46, stress analyses have been con-
ducted on the isothermal cylinder where prescribed tractions and
displacements on the lateral surface together with the ends was
investigated. The problem of thermal stresses in holl.w cylinders
with fairly small length to radius ratios is taken up by Bellamy.*”
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The method of analysis here is based on a complementary s:raia
energy theorem for thermoelasticity and approximate solutions for
a cylinder of particular proportions have been worked out.

In our present work, we have undertaken to handle the
thermal stress problem, initially at least, by way of a numerical
method of solution. There appeared to be these special advantages
in this approach over the analytical method outlined above:

(1) The governing equations for a numerical relaxation
stress analysis could be developed with minimum difficulty and
application to the end recion of a cylinder seemed straightforward.

(2) The equat’'ons could be programmed for sclution on i
a high speed computer allowing investigation of many different
temperature distributions, including axial teinperature variation,
without constituting a new boundary value problem.

For such axially symmetrical systems, we have equations
by Hoyle*®

I2x = 0
9°x Ea aT
0z2 v l-v or ( )

which have been found suited to relax-tion solutions. The stress
variables ¥(r,z) and x(r,z) take the form

a9

oY -

¥ or
X = =X €0
1-v or

where ¢ and ) are arbitrary functions of che coordinates, r and

z. E, a, v and T(r,z) above are Young's modulus, thermal expansion
coefficients, Poisson's ratio and temperature at a specific co-
ordinate location, respectively. 1I2 is the differ:ntial operator:

e__1 3 @

or? r or 2022
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The principal stresses, 0., Og, etc. can be expressed in terms
of the functions ¥ and x as

¥+ (1-v)x

i
O'r e ; Py (ﬂl + X) - m (18“3)
= l _ai . T e 1 a,’, ’
O 2 "rar’ Trz " "¢ 3¢ \184b,¢c)
g =-3¥+(-v)x v dx EaT (1844)
e r? r 9r 1-v

where it may be verified by substitution that the equilibrium
equations given by

ESE . arrz . ar - °e “o
or 0z Y
(185)
J0 ot T
.._.Z_+._r£+.£=o
02z or Y

are identically satisfied.

The bounds of the syvstem impose certain other requirements
on the equations as well. Since the surfaces of a laser rod will

remain essentially free of external force, the boundary conditions
to be applied take the form

arl + vrzm =0

(186)

om+ 7T 1=0
4 Xz

wihere here '1' and 'm' are direction cosines of the normal, N, at
boundary points under examination. It may be observed that on the
horizontal surface, these expressions reduce to

o, =90, 7., = 0 :

where 1 = cos(Nr) = 1

m = cos(Nz) = 0
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And on the vertical surface

g =0, 1 =0
z rz

where 1 =20

ma= 1

Fictitious
r Points
+ + + + +‘“/\

+

31 Cylinder
' Axis

Figure 15. Point designations for relaxation grid.

Figure 15 represents a schematic representation of the
axial cross-sectional portion of a laser rod used for anciysis.,
The cylinder axis becomes a “ound of symmetry; also, at the left,
about 1.5 diameters from the end, anothe- arbitrary bound of
symmetry is established along a section where stress patterns
no loager exhibit dependence on the axial coordinate, z. The
end region so defined between these bounds and the free surfaces
is then ubdivided into a convenient numker of zones or points to
form the relaxation grid. A general point in this array is
assigned the designation ij, referring to the row and column
number. In conveiitional notation, a neighbor to the left
becomes: i, j-1; one to the right: i, j+1; and so on.

Appropri .te dependence between points in the chosen

array is established by expressing the governing expressions in
finite ¢ifference form. Using the calculus .. finite differences,
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first and secoad order differentials may be expanded by the
following good approximations

oy -1
(E)lj - -2-3- (wl +1,3 wi'lsj)
(187)
cyy L -
(a—r;) . B a® (wi"'l:j * wi-lxj 2wi,j)

1]

where a is the grid spacing.

Working equations can now be set up embodying the stress
functions, ¥ and x, which will be representative of each category
of points in the system. Since we are dGealing with two functions,
we have in genercl two equations to be scived simultaneously at
array points. By introducing Eqs. (187) into Egs. (183) ¢ verning
the interior region there results the following two expres:ions
which are suitable for numerical analysis

_ 2i-3
Qi3 = *,5m ¥ (21-2 *i+1,5 " *i,3-1

2i-1 - =
+(’2T-Z) %ie1,5 T 5,57 0 e
R - 21-2
ij wi,j+1 + (21-2) ¢i+1,j + vi,j-l

2i-1
+ | &5== , .-y, . - cia =X, Lo, = 2%, .
(21-2) w1-1,3 wl,J 1,341 T Fi,501 2x1,3

Eaa2 P
+ 201~y ) (4= 1)(T:H-l i 1-1,3) > @ (189)

Points which are located along the horizontal curved boundary
must obey formulas (188) and (189) and satisfy boundary conditions
(186) as well. Also, tle fact that positions i+l,j lying above
the boundary plane are fictitious requlres suitable substitution
for the variables at these 901nts By solving Eq. (188) for

xi4+1,4 and (189) for ¥ i41,§ and writing a third equation from
(184a) at the cylindrical surfane, Ps

it
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as
wij + (1-v) xij
g =
r Pa
=l - - _ Ear _
2ap V141,35 * Riat,5 " Vet T %iet,y) " Top =0 (190)

we may combine Eqs. (188), (189) and (190) to eliminate Xi41, 5

and ¥i+1,5 from the boundary equation.
Ti+1,5 is also a fictitious temperature,

Tn addition, since
the temperature

difference (Ti+1,3- Ti-1,j) appearing in Eq. (190) must be

expressed in terms of real temperatures.

For this purpose, a

MacLaurin series expansion is used to expand the temperature
differential about surface point, ij, in the following manner

ar) (aT) (aam)
== = - +a +.-...
(ar 1 or /. ) or? -

If we pow express these terms as finite
abuve reduces to

4Ty _ 1 -
(ar o BTyt T - by

which is equivalent to

1 (T

., = T .
22 (Tis1,5 " Tie1,j)

By making this substitucion and performi

i-1,7

differences, we find the

)

-1:j

ng the indicated algebra,

the boundary equation becomes ir final form

2 (1-v)
Qij - 2 [(i-l) (1-v) - W - 2] xij

+ 4xi_1’3 + 4y + 2y

i-1,3 * i 50 * gy

+2 Eca

\
(=] {(‘ " %} UTRS AP
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For points along the vertical boundary we find from con-
dition (186) that the axial stress goes to zero and may therefore
write from (184b)

= 1 _ _
02 = E; (wi_‘_l,j wi_l,J) 0 (192)

This requires that ¥:41,j equal ¥j-1,4 and implies that yjj be a
constant on the boundary. Hence, by combining Egqs. (188), (189)
and (192) to eliminate xj j41 and Yj-j41, the final version of
the boundary equation appears as

- - 2i-3
935 =2 [2”'1,:'-1 Wi ¥ (21-—2) (34,5 + %i41, 5"

2i-1 -
* (21-2) (V1,5 * %i1,3) — 245

arba _ —-
* 31y (i, Ti-i,j)] 0 (193)
R =0

ij

For points lying on an interior bound of symmetry,
additional conditions will hold and the applicable equations
above would be modified where vpossible. Thereby, at the left
radial bound,

Xi,9-1 = *i,5405 Y131 = ¥i,50

For the cylinder axis, where i = 1, it results that equations

(188) and (189) become indeterminate because of a division by

zero in the second and fourth terms. Therefore, at axial

boundary positions a somewhat specialized mathematical formulation
is required. Beginning with the first of the equilibrium Eqs.(185),
we find for r = O this reduces to

observing that

—X _o. =
P 0 Trz 0

on the axis.
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By combining with Eqs. (184a,d) and performing the necessary
algebra, the above expression becomes

2 1 8
(;; - ;a—r) [v + (1-v)x] =0
where, for the egquation to be satisfied when r = O,
[wl,j + (1-v) xl,j] = 0.

From the system of interdependent equations now defined,
the values of xj4 and ¥;4 for each point is, in principle, determined
knowing specifically only the temperature distribution imposed on
the network. The solution, however, demands that the equations
become simultaneously satisfied which, in effect, requires that
residual quantities Qij and Rij be reduced to identically zero in
all equations.

Solving this problem by hand relaxation methods would
be prohibitive, even for a small array, because of the tedious and
lengthy computation involved. Therefore, a considerable portion
of the task was devoted to preparing a computer program which
would perform the relaxation operation automatically.

A brief description of the reduction technique developed
follows. Handling up to a 300 point array, tae program computes
and stores the magnitude of the residual quantities, Qjy, and Rjj,
for all points based on selected values of xj4 and Wij which are
initially guessed. The relaxation procedure involves scanning the
stored arrays for the higuest value (positive or negative) of Q
or R which existe and modifying the x and ¥ values for the
corresponding point by a computed increment according to

Q..
: N ]
xij = xij + 4
(194%)
Y. + 1]
*'j ¢

v s =

1] i 4
where x{4 and y{j become new values “>r the stress function
associated with the point, ij. The relaxation control variables,
» and ¢, may take on values between O and 2 as prescribed by the
degree of under-relaxation or over-relaxation required. Upon

alteriny values of xj4 and ¥ij » it obvicusly necessitates re-
computing the magnitude of residuals at neighboring points which
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are affected. By this process of selection and correction,

the

jterative procedure is continued until all residuals are diminished

to within a specified range from zero.

Using then the stress function values which have been
found, the principal stresses are computed employing formulas (184).
The corresponding thermally induced axial strain field is obtained

using a three-dimensional stress strain relationship of the
e =L ig - vo +o)] + aT
z E z r ©

And the axial displacement of the end face due to variation
strain field over the end region is given by

W(x) = [ % ¢ (x)az

where the integration is performed over 1.5 diameters.

form

(195)

of the

The change in optical pathlength for a ray of laser

light traversing the cavity end region may now be calculated
using the pertinent expressions developed by Quelle,*® and
modifying them slightly so as to include the axial variation
of strain. The resulting expressions become for a ray polar
radially

APr(r) = (n-l)_/;Bp ez(r)dz

-./;39 [Gr(r)B“ + Uz(r)B; + Ge(r)Bl] dz

I /

an 2p , g
T = - — 4 ==
eoeor |(28) - mee (G vo)]

and for one polarized tangentially

APe(r) = (n—l)pr ez(r)c"z

- f >p [Gr(r)B.L + crz(:c)Bl + oe(r)B“] az

(o]

2p q
+ 3paT | (2R -na (£ 4 2
% [(aT)s=0 ° ("o "o)]
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where n is th: optical index of the glass; p and q, optical
constants to be determined experimentally; V,, the velocity of

light in the unstressed medium; and B, and B;, the characteristic
stress optic coefficients. To obtain the total change in pathlength
for the optical cavity, requires that the above results be combined
with additional results for the portion of the rod in which plane
strain applies.

The computer provides the principal stresses and strains
for each position in the relaxacion array as superposed on the end 3
portion of the red. To determine the ax.ial optical path change,
then, through this region requires that a numerical point-by-point
integration be made of the separate quantities defined in Egs. (196) :
and (197). It was found expedient to verform this integration by
hand using a desk calculator.

Abian

In the initial testing of the computer program, con-
siderable difficulty was encountered in getting selected problems
to converge. The principal source of difficulty was subsequently
determined to be the result of choosing too few radial subdivisions il
in the array in an attempt to minimize computer operating time 3
during the evaluation runs. When at least eight radial divisions
were designated for an arbitrarily selected 2.5% cm diameter rod,
the residual quantities, Qi4 and Rj, would tend to zero and the
problem converged properly. It occurred, similarly, that a
higher limit also existed for the number of radial points chosen
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