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FOREWORD 

TSiis report was prepared by the Research Division of 
American Optical Company,  Southbridge, Massachusetts, under 
contract Nonr ^875(00), Optical Inhomogeneities in Pumped Lasers, 
for the Office of Naval Research, Washington, D. C, as nart of 
Project Defender. 

Principal contributors to this report were C. J. Koester, 
Introduction, Review of Previous Work and overall compilation of 
roaterialj E. Snitzer, Thermally Stable Cavities; L. W. Smith, 
Calculation of Itenqperature Profile; S. M. Bergmann, Effect of the 
Laser Field on the Index of Refraction of the Laser Rod; and 
D.W. Cuff, End Region Stress Analysis. 

The report is published in two volumes, the first 
unclasbified and the necond, a classified supplement entitled 
Optical Inhomoganeities in Pumped Lasers(u), Volume II. 
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ABSTRACT 

This report delineates efforts expended during the one 
year period of contract Nonr 4875(00), entitled Optical Inhomo- 
geneiti^s in Pumped Lasers, which required an analysis in depth 
of the .;al distortion of wavefronts in large laser reds and discs. 
TWo approaches for elimination of this distortion were considered: 
(1) Establishment of a uniform temperature throughout the laser 
during pumping and (2) Development of athermal glass parameters. 
Elements of both approaches were found necessary to solve the 
problem.  In separate sections of the report detailed treatments 
are given to Thermally Stable Cavities, Temperature Profile 
Calculations, the Effect of the Laser Field on Index of 
Refraction of the Laser Rod, and finally an Analysis of End 
Region Stress. 

A classified supplement published separately as Volume II 
of this report completes the research findings under this project. 
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1 . INTRODUCTION and SUMMARY 

The «ffort in this program has been a theoretical 
analysis of the thernal distortion problem in glass laser rods 
and discs. The goal has been not merely analysis, however, hut 
rather a more thorough understanding of the causes of wavefront 
distortion, leading tr more effective athermalization. 

There are two basic approaches to eliminating wavefront 
distortion due to thermal effects*  (1) Attempt to establish a 
uniform temperature throughout the laser during pumping. 
(2) Develop a glass in which the change in length due to 
thermal expansion is balanced by the (negative) change in index 
with temperature. the  nature of the cavity must be considered in 
arriving at the glass specifications. Also the effects of stress- 
birefringence must be removed or reduced to an acceptable level. 

For a numbar of reasons it is desirable to use both 
approaches.  The first method by itself will probably not be 
sufficient since it does not appear likely that a perfectly 
uniform temperature distribution can be achieved. The second 
approach is capable in principle of athermalizing an infinitely 
long rod or a thin disc.  But in any rod of finite length there 
will be end effects which depend on the magnitude of the thermal 
gradient. A method for calculating these end effects is developed 
in Section 6. 

Relatively uniform temperature distribution is desirable 
for another reason. Both temperature distribution and distribution 
of inversion are governed by the distribution of absorbed pumping 
energy. If the latter is uniform, both of the former will be 
uniform or very nearly so. And uniformity of inversion is 
important to give a laser emission wavefront which is uniform 
in intensity as well as in phase, uniformity in intensity is 
desirable to give the best possible far-field pattern, and to 
reduce non-linear effects in the laser material which in turn 
will cause phase distortion o.? the wavefront. The  import of 
non-linear effects is discussed in Section 5* 

The calculation of temperature profiles in Section 4 
was originally intended to (a) develop the method of calculation, 
(b) show the magnitude of the temperature gradient problem, and 
(c) provide input data for the end effect calculations. The 
calculations showed that an  unclad rod of radius R has a minimum 
temperature at or near the surface, with a substantial gradient 
in the vicinity of R/n, where n is the index of refraction 
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Water or glass clad rods have a maximum tenipe. ature juat inside 
the surface (at 0.8 R and 0.9 R respectively).  The most uniform 
temperature distribution is for the glass clad rod. An uroxpected 
result of this WOXK was that it pointed out a potential method of 
improving s"b8tantially the pumping uniformity.  That method is 
to use a cladding of about the same index as that of the laser 
core glass bot of a thickness somewhat less than that chosen for 
the example (0.5 R). Additional calculations would be necessary 
to  establish the optimum cladding thickness and index. 

In Section 5 the formalism is developed to allow calcu- 
lation of index of refraction changes due to electrostriction, 
photoelastic effect, and Kerr effect wh^n the laser field 
distribution in the rod is given. 

End-effecc studies were undertaken to establish under 
what conditions they are negligible, and what form they take when 
they are non-negligible. In a typical rod configuration, the end 
effects become important only when the glass has been athermalized. 
However, in this important case the end effects can result in 
several wavelengths distortion of the laser wavefront. For the 
unclad rod, the steep temperature gradient gives ripe to an optical 
path distortion which is not proportional to the temperature distri- 
bution.  Therefore, it does not lend itself to correction by 
adjusting the glass parameters. However, in cases where the 
temperature gradient is less severe, the calculations indicate 
that it would be possible to compensate for the end effects 
almost completely by proper choice of glass parameters. 
Specifically, a value of o^ is chosen which is slightly less 
negative than the value o^ which is optimum for an infinitely 
long rod. "nie difference, C'n-0'!! >  depends, of course, on the 
length of the rod. 

Analysis of the limiting cases of infinitely long rods 
(plane strrin) and thin discs (plane stress) provides Insight into 
the athermalization problem.  The analyses of Quelle1 and of 
Snitzer2 have been utilized to compute the thermal coefficient 
of optical path for several laser glasses in rod and immersed 
disc cavities.  Ulis work confirms that athermalization is 
possible for a long rod, but that it is substantially easier 
to accomplish for an Immersed disc. The required indices for 
the immersion fluid are close to that of water. Methods for 
removing the stress-birefringence effect are given. 

In all phases of the work it was assumed that essentially 
a single pumping pulse is to be used.  That is, no considerations 
of cooling time, or steady state temperature distribution were 
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entertained.  The analyses would therefore apply to cases in which 
the temperature of th» rod returns to ambient before the next shot 
and in which the absorption of pumping light provides the only 
heating effect during the time period of interest, namely the 
period of lasing. 

J__U^J. 



2. REVIEW OF PREVIOUS WORK 

The problem of calculating optical path differences 
induced by temperature gradients in pumped laser rods has been 
formulated by Snitzer.3  The analysis indicated that there exist 
relations between the thermal expansion coefficient a, the index 
coefficient o^,, ar.d other glars constants which will yield an 
athermalized condition.  In the writing of a proposal4 for the 
present contract this formulation was improveo and extended to 
include both radial and tangential polarization. 

Walsh6 has studied the photoelastic effects in a long 
laser rod under the conditions of constant heat production and 
surface cooling. E^ has also estimated the distortion of the 
end face under these conditions. Quelle6 has formulated the 
calculation of optical path differences and has shown mathe- 
matically that the athennalization condition can be independent 
of the temperature distribution if a Pockels type glass is 
assumed. This glass has a zero value of the stress-optical 
coefficient. 

i. i 
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The distribution of pumping energy in a laser xo*\  has 
been considered by several authors. McKenna7 treated the case 
of an absorbing rod with a transparent sheath, the absorption 
coefficient having a given value for all pumping wavelengths. 
Sooy and Stitch8 also tormulated the calculation of the pumping 
energy distribution ir a laser - d with three-dimensional pumping. 
Skinner9 studied experimentally the distribution of pumping 
«nergy in a ruby rod using two-dinensional pumping.  Borrelli 
and Charters10 calculated pumping energy distribution in unclad 
glass laser rods. 
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Experimental determination ot  thermal distortion of 
wavefronts has been accomplished by Welling, Bick rt,and Andresen.11 

They have shown that single flashlamp pumping produces large 
asymmetries in the optical path, but that four flashlamp pumping 
produces a nearly circular symmetric pattern.  They have shown 
experimentally the development of the path differences during 
the pumprtg pulse, and their dependence on diameter, doping 
concentration, and surface finish for ruby and neodymium glass. 
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Work at American Optical Company under contract 
Nonr 3853{00) has been directed in part toward the attainment of 
a high c^ tical quality glaf - which will also have a low thermal 
distortion coefficient.  Data for a few of the glasse" studied 
under this contract are included in Section 3. 



5. THERMALLY STABLE CAVITIES 

A serious problem in large lasers is the thermal 
distortion of the cavity due to non-uniform pumping. Glasses 
can be made with an index of refraction variation of no greater 
than ± 0.8 x 10"6 across a 25 mm section, which corresponds to 
2.5 fringes ^.n a one meter length rod. However, when the glass 
is pumped, substantial changes in index of refraction occur.11 

The result is the frequently encountered frustration in attempting 
to produce a high intensity, diffraction limited beam. JUst above 
threrhold narrow beams are possible, but for increased pumping 
the thermal distortions increase. More energy is produced but 
xn a wider beam.  If a strong mode selection scheme13 is used 
the output rapidly levels off with increased pumping. 

In order t^ obtain diffraction limited beams from the 
end of laser devices the cavity should not distort while pura;\ng. 
If the temperature of the laser rod changes uniformly during 
pumping there will not be any distortion of the wavefront within 
the rod. By placing flashtubes syimretrically about the red a non- 
uniform azimuthal heating can be avoided. A non-uniform radial 
heating of the rod is almost inevitable if reasonable rod sizes 
and neodymium concentrations are used. However, by the proper 
design of the total resonant cavity and with properly chosen 
glass compositions one can minimize the effect of non-uniform 
heating. 

Due to pumping of the laser a temperature gradient is 
produced from the center to the edge. The distortion of the cavity 
arises because of three factors. The change in tei;perature leads 
to an elongation because of the finite coefficient of expansion of 
the glass. With a change in temperature the index of refraction 
in general also changes. Finally, thermal gradients wicnin the 
glass produce stresses which result in both a change in  index of 
refraction and birefringence. The expansion coefficient a and 
he thermal coefficient of index c^ are functions only of t'-a 
amperature of the point under consideration, but the indices of 

refraction produced by the strains are dependent on the shape of 
the rod and the details of the temperature distribution. 

For glasses, the index of refraction always increases 
in compression, but an can be positive or negative. The effects 
producing the index change can be made to cancel Aach other by 
an appropriate glass composition with the correct negative value 
of o^. 



l^ere are two geometries with cylindrical symmetry 
that are of interest for which approximate solutions can readily 
he calculated.  One is the long rod in which the length L is much 
larger than the radius a.  The other is the disc configuration 
with L « a.  The description is similar to that gwen by 
F. W. Quelle.1 

For the solid rod, the total optical pathlength Pr(r) 
for a typical ray parallel to the axis and displaced a distance r 
from the center and with its plane of polarization in the radial 
direction is given by 

Pr(r) nL {^[v-(f (e + ee) + IK)]). (1) 

whera T is ehe difference in temperature between the center and a 
point at a distance r from the center. A cylindrical coordinate 
system is used with the z direction along the rod axis.  The e1 s 
are the strains, the  quantities q/v and  p/v are the strain-optic 
coefficients which relate the change in index of refraction to the 
strains in the directions parallel and perpendicular, respectively 
to the plane of polarization of the light. The  notation is the 
saune as used by Morey.13  The corresponding expression for 
tangential polarization is 

fe(r) nL I1 [v - (I u. W N]) (2) 

For an Isotropie medium the principal strains are 
related to the stresses a by14 

ae + az)] 
(5) 

er = S-
1  [ffr - s(( 

e0-E"1 [0e - s(ar + az)] 
ez-irl      [az-8^r + ae)] 

where E is Young's modulus and s Poisson*s ratio. 

For a long rod with the end effects neglected,  the 
problem is one of plane  strain.    If the ends are  free of traction 
so that they can move in response to the heating,  thvi condition 
that applies is1 8 

a. + ae. CO 

m~ ± 



I 
I 

In arriving at Eqs. (7) - (9) for the long rod end 
effects were neglected. If the rod is very long the end effects 
are small and the problem reasonably approximates that of plane 
strain. On the other hand, if the length is much shorter than 
the diameter the "end effects'* predominate and the constraints 
correspond fairly closely to plane stress. 

Analysis of these equations shows that there are three 
ways to achieve simultaneously athermalization and freedom from 
stress-birefringence. They are: 

(1) Athermalize for either the radial or tangential 
polarization. This would also require mode selection so that 
only one polarization is able to oscillate. 

Conditions      Long Rod O4.sc 

Radial APr(r) »0 (Eq. 7)  AP^r) • 0 (Eq. 12) 
Polarization /,_* 

Tangential     APe(r) " 0 (E<3- 8)  ^'(O - 0 (E<I' 13) 
Polarization 

(2) Obtain a Pockels glass, i.e., a glass for which 
P = q. Quelle1 has shown that the condition for athermalization 
for a long rod is then 

"K + f?^1-28) v}-0   (rod) <16) 
This expression is obtained from Quelle' s equation by noting that 

Bx - I fd-s) ^ - s |1 - I (1-2S) I-   for a Pockels glass. 

Equation (16) can also be derived from Eq. (9) by letting p - q. 

For the stacked disc case, athermalization of a Pockels 
glass dictates the following relation 

an + a I2?1 (1+s) + 7 U-28) } - 0   (disc)    tt7) 

(3) Rectify the stress-birefringence effect. 
On passing once through a rod with a radial temperature 

distribution a phase difference [APr(r) - APgCr)] is introduced 
between the radially polarized ray and the tangentinlly polarized 
ray at the same ra' .us r. Now if the two rays pass through a 90° 



polarisation rotator, the radially polarized ray will bo converted 
to tangential polarization, and vice-versa.  If the two rays are 
passed again through the same rod, or through an identical rod, the 
phase difference between the two rays will be removed. 

For a single rod the cavity is shown in Fig. 1. On each 
round trip, the light parses through the 43° Faraday rotator, 
thereby undergoing a 90° rotation of the plane of polarization. 

End Reflöctors 

■ K • 

I 
i 

? - i 

1 

45° Faraday 
Rotator 

Figure 1. Schematic of a laser with a rectifying Faraday rotator. 

Another method can be used when there are two identical 
laser rods in either an oscillator or an amplifier. It employs a 
90° optical rotator between the two laser rods, as shown in Fig. 2, 

I D 
Mirror 90° 

Rotator 
Mirror 

Figure 2. Use of a 90° optically-active rotator to rectify 
stress-birefringence in a laser system. 

this  rotator can be of crystalline quartz, for example, cut 
perpendicular to the optic axis. Other optically active 
materials can be used. 
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In these cases, the birefringence is automatically 
cancelled, and the athermalizatlon conditions are found from 
Eqs. (9) and (14) •. 

rod       a    +JL.r2r5sE     i^il.O (18) n      1-s L  2      v        2      v J x     ' 

disc   a + a [nzlll (l+s) + iz28 £-fi5S.al- o n    [ n  x  '    2  v   2 vj (19) 

The possibilities of achieving athermalizatlon by these 
approaches are explored more fully below. At this point some 
general comments are in order. 

The conditions for athermalizatlon; Eqs. (15) - (19), 
can be regarded as requirements on the ratio o^/a. This is 
because s, p/v, and q/v do not depend strongly on the glass 
composition. Bridgman18 measured several glasses, including 
lead silicates, borosilicates, and alkali earth silicates and 
found that Poisson»s ratios, varies from 0.19 to 0.26. Furthermore, 
the quantities in braces in Eqs. (7) - (9), (12) - (14) are not 
sensitively dependent on s. A number of references on the strain- 
optic coefficients are given in Morey.14  Pockel's measurements 
indicate p/v - q/v = 0.42 for a silicate glass containing 
approximately 75^ by weight of PbO.17  For the more common 
glasses the strain-optic coefficients are smaller- q/v decreases 
more rapidly than p/v. A light flint silicate (54.3 wt $  Si08, 
33 PbO, 1.5 B803, 3 Na80, 8 KgO) has the values p/v . C.306 
and q/v = 0.213, and for a borosilicate crown (68.2 wt $  SiOa, 
10 B303, 10 NaaO, 9.5 KaO, 2 Al^a) p/v - 0.269 and q/v - 0.147.19 

To obtain an estimate of the requirod On to reduce the 
various AP's to zero, typical values for the parameters are assumed. 
The strain-optic parameters are taken as p/v =0.3 and q/v - 0.21 
and Poisson's ratio as s = 0.25. A linear expansion coefficient 
of a = 10"e/oC is assumed. If the temperature T varies as rp, 
then R/T = l/(p + 2); for a quadratic dependence of T on the radius, 
p = 2 and R/T = 1/4. With these values for the parameters the 
braces in Eqs. (7) - (9) are equal to zero for 0^ - -42 x lO-'/'C, 
-34 x 1C"7/0C, -38 x l(r7/0C, respectively. For the stacked discs 
in air, the braces in Eqs. (12) « (14) are equal to zero for 
an = -56 x 10-

7/oC, -50 x 10-7/0C, -53 x 10-7/0C, respectively. 
Note that the required values of c^ are all negative.  In most 
silxcate glasses 0^ is not sufficiently negative to satisfy any 
of the conditions for zero pathlength difference between rays at 
the center and at the edge of the rod. If the temperature is 
higher at the edge than at the center the pathlength is greater 
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at the edge and furthermore, radially polarized light propagates 
more slowly than light with tangential polarization.  If the 
quantity in the braces is not zero but is reduced to 10~7/oC, 
three fringes at 1.06 |x would appear between center and edge if 
T ■ 10°C for a meter length rod made from a material of index 
n - 1.5. 

At low temperature On is negative because expansion of 
the glass reduces the amount of polarizable material per unit volume; 
at high temperatures, this is more than offset by the increased 
thermal population of higher vibration states of the ground 
electronic state, which appears to shift the fundamental ab- 
sorption band of the material to longer wavelengths and thereby 
increases t^ index of refraction.  The temperature T0 at which 
On = 0 is a function of the glass composition and wavelength. 
It increases with increasing X through the visible and near 
infrared. For most glasses T0 is less than room temperature 
at 1 \i,  but it is above 500°K for a few, such as the silicates 
with high barium content. 

Molby20 and  Prod^omme31 give values of On in the visible 
region of the spectrum for various glasses. Measurements were made 
in this laboratory at 1.06 \i  by using a thin plate of the glass to 
be measured as the end reflector of the laser cavity.22  Laser 
emission occurs at those wavelengths at which the plate thickness 
and index give an odd number of >/4.  From the shift in wavelength 
of the laser lines as a function of temperature of the plate and 
by independent measurements of the expansion coefficient of the 
glass, C'n was determined. Room temperature values for various 
glasses were between 29 r  10"7/0C and -41 x 10~7/oC.  The positive 
values were for dense lead silicates.  High barium content silicates 
gave the large negative values. 

DISCUSSION 

(l) Athermalization for radial or tangential polari- 
zation.  It is necessary to mode-select a field distribution with 
axially symmetric polarization, such as the TE0l or TM0l modes. 
For example,' the TM01 mode is radially polarized in the electric 
vector. 

Its intensity distribution is [^(ujr/a)]2, where Uj is 
the first zero at 3.832 of the first order Bessel function Jj.  If 
one end of the glass rod is cut in the form of a Brewster angle 
cone and a plane mirror placed at the proper distance, all the 
modes except the family TMom(m :> 1) are discriminated against. 
The lowest order member of this family could then be selected 
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by other means, such as a limited aperture at the other reflector. 
This approach has several disadvantages.  First, it is difficult 
to make cones with good optical quality. Second, the beam is a 
hollow cone, which is not as desirable as the lowest order imll 
mode. Uiird, the requirements on On depend on R and hence on the 
details of the temperature distribution. 

(2) For a Pockels gl&ss, the required values of on are 
calculated as follows.  In Eqs. (16) and (17) substitute the 
typical values p/v = 0.45 and s « .25, n ■ 1.5, n' - 1.33. 

From Eq. (16): a - -0.6 a n 
(rod) 

From Eq. (17): \  - --^T a  (disc) 

The original Pockels glass has a positive value of on. Efforts 
to obtain a negative value for an in a Pockels glass will be 
reported under contract Nonr 5855(00). 

(5) Rectification of the stress-birefringence effect 
appears at present to be the most promising approach. In order to 
compare the various possible configurations and available glasses, 
the thermal coefficient of optical pathlength, _1_ dP , is 

nL dT 
tabulated below. The expressions are obtained from Eqs. (9) and 
(14) for the average optical path P, for the rod and immersed disc 
cases respectively. 

(rod) XäE-a +  a_ [(5-58) ^ + (1-58) i] 
^r0<:U nL dT   "   2(l-s) L      v VJ 

« a + .585 a n 

r-^id-s) +^£ + k«il 
L n  V   '   2  v   2 vJ 

Fszal A25 + .1162 

/ . ^ 1 dP « . « (disc) -r TT " <* + 0 x '    nL dT        n 

«a    + a n ] 

1 
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TABLE I 

Thermal Coefficient of Optical Path for a Long Rod, a Disc in Air 
(n' m  1.0), and a Di^c Immersed in Water (n' * 1.35) 

(Rod)        (Disc) 

Glass n a an nL dT nL 

n'-l.O 

dP' 
dT 

3835* 1.51 105» lo-7 ~22'10r-' 11.8'10-' f      14-10-7 -5.1-10-7 

1203 1.52 122 -28 18.8 38.2 5.3 

1204 1.57 119 -41 4.6 26.8 -4.4 

1263 1.52 112 -52 11 28.8 -1.5 

1270 1.55 114 -36 7.7 26.3 -J1.2 

1276 1.62 111 -28 14.6 58 9.9 

Constants used: E _ ■» 
v   ' •0, i- .21, 

- .15, s = 

s = .25, 

.225. 

except 5835 * 

*For 3855 P 
V - &> I 
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Several conclusions are apparent from this table. For 
the rod case a number of experimental glasses have a lower thermal     ** | 
coefficient than the standard 5855 glass, number 1204 being a 
factor of three lower.  The disc in air is considerably poorer 
than the long rod. But the disc immersed in water (n' * 1.55) 1 
appears very attractive. The value -1.5 * 10~7 for glass _ | 
number I265 means that for aim length of glass, nL ■ 1.52 m, 
a 20°C temperature differential between center and edge of the " i 
discs would produce an optical path difference of I 

— 1=1 
AP' - nL äP'AT - 1.52 • lO3 (-1.5 ' lO-7) l- I 

dT 
• "0 . 4.56 • 10"* cm m  4.56 nm 

Furthermore, the numbers in the last column of the table 
suggest that it may be possible to find either (a) a glass compo- 
sition which is precisely athermalized / .  ~,   \ 

\nL dT =  / 
for the water ismersed disc, or (b) an immersion liquid with 
index n' which will exactly athermalize an existing glass. 

j,- 



For the constants p/v, q/v, and s assumed above, the 
required index nL for the immersion liquid is given by 

n 
[a + .116 a "1 

The required Indices for a few glasses are listed below 

Glass     Required n' 

5835      1.36 
1203 
1263 

1.38 
1.34 

The required indices are all within the range attainable 
with water solutions of inorganic materials. 

The general expression of the required index, n', is 
obtained from Sq. (19) 

(Disc) n JL-IJI 
1+s [a 

+ 1+8 + 
1-38 P + 1-8 ql 

v   2 vj (20) 

The assumption has been made that the index of the 
liquid does not change during the pumping cycle. Since there 
can be very little heat transfer to the liquid from the laser 
glass during the pumping period, the assumption implies that the 
liquid is non-absorbing to the pumping radiation. 

I 
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4.  CALCULATION OF TEMPERATURE PROFILE 

4.1       ASSUMPTIONS AND DEFINITIONS 

If we may assume that the temperature change in a laser 
rod is proportional to the radiation-heating effect due to ab- 
sorption of radiation fron an adjacent flashtube, then the 
calculation of the temperature profile reduces to a calculation 
of the distribution of heat production in the laser rod. 
Measurements on a large variety of glasses33'34 show that the 
specific heat capacity is sufficiently constaat over the tempera- 
ture range expected in the laser rod so that the proportionality        .. 
may be assumed. 

i 

i 

J 
A computer program has been written by which to calculate 

the distribution of heat production. The piogram, written in the 
FORTRAN language for an IBM-^öO-JO computer, allows for three 
different homogeneous media to be placed between the flashtube 
and the laser rod. Cylindrical geometry and polished refracting 
surfaces a"e assumed so that all boundaries between media form 
infinitely ""ong, cylindrical surfaces concentric with an 
infinitely long, cylindrical laser rod. 

It is assumed that the flashtube and reflector produce 
a volume of Isotropie radiation (called the source hereafter) in 
which the rod and its cladding media are immersed (no variation 
with azimuth about the axis of the laser rod). 

It is assumed that the radiant flux absorbed by the 
laser material goes entirely into exciting the doping ions to 
higher energy levels plus a radiative decay that produces the 
laser radiation. 

It is assumed that each photon absorbed results in a 
photon of laser radiation while the rest of the energy is converted 
to heat. 

It is assumed that the transmissivity of the laser 
material does nor change significantly with change in population 
density of excited states of any of the ions. 

The effect of multiple passes of the radiation through 
the rod are not taken into account by the program.  This effect 
will be most noticeable for weahly absorbing and/or small diameter 
rods.  Partial compensation for this omis&ion can be carried out 
by (1) increasing the overall energy content of the flashtube 
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spectrum and (2) adjusting the spectrum to favor the weakly 
absorbed wavelengths. 

Pararoeterr, which affect the distribution of heat 
production, and which must be specified at the tüne the program 
is run, are:  (1) the product of the radius tiroes the absorption 
coefficient for the laser rod and each layer of its cladding, 
(2) the refractive indices of the media, and (5) the spectral 
radiance of the source. 

Ifce following definitions have been adapted from 
references (25, 26): 

radiant flux - rate of transfer of radiant enerr-v, specified in 
watts 

radiant transmittance - or simply transmittance, is the  ratio Wt/Wi 
of the transmitted flux tc the incident radiant flux. 

spectral transmittance - the radiant transmittance evaluated for 
a particular wavelength of the incident energy. 

transmissivity - the value of the internal transmittance for a 
unit thickness of a non-diffusing substance. 

absorption coefficient - Bouger' s law states that equal layers of 
an imperfectly transparent material will absorb equal fractions 
of the radiant energy entering them.  If this law is applied 
to infinitesimal layers and if the losses are integrated, the 
radiant flux at a distance x within the medium, for the 
wavelength >, is found to be P = P0 exp(-a(X)x), where P0 
is the flux of wavelength >v entering the first layer and 
a(>) is the absorption coefficient. 

I 

Uance - the radiant flux or power per unit solid-angle-in-the- 
d ire ct ion-of-a-ray per unit projected-area-perpentlicular-to- 
the-ray.  It has the same value at any point elong tha ray 
within an Isotropie medium in the absence cf losses by 
absorption, scattering, or reflection,  (it may be helpful 
to note that radiance is analogous to the photometric 
quantity luminance or photometric brightness). 

spectral radiance - the radiance at any specific wavelength. 
Typical units are watts/cm3-steradian per millimicron. 

spectral irradiance - radiant flux incident per unit area of a 
surface at any specific wavelength. Typical  units are 
watts/cm3 per millimicron. 

17 
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4.2 DERIVATION OF  THE   BASIC  EQUATION 

tical pumping of laser rods  subjects the  laser material 
to a disti*_ution of energy density;  power is extracted fro-n the 
radiation  field in the  form of heat and laser radiation.    Consider, 
then,  the  simple one-dimensional case of an elemental volume of 
cross section dA and length di.    Let the energy density due to 
radiation in the wavelength interval d'S centered on the wavelength 
>. be uniform and of strength dE in the volume dA •   di.    Let it 
arxse  from collimated radiation propagating along the direction 
di.    Then the radiation in the volume dA •   di will move a 
distance At •   c/n1   in time At, where n^   is the  refractive  index 
of the medium aid c is the velocity of light in vacuum.     If the 
medium is absorbing with a linear absorp^. ::; coefficient a1(7v), 
the energv W ■ dE  •   dA *   di will be diminished to 

W  .W.5-^
cAt/ni (21) 

in its passage through the medium.    The energy absorbed will be 

(22) 

or,   for a short time  intervc . 

w^W-W =w(l-e-aicAt/ni) , 

w » WC, — At. 
n. 

That is, the energy absorbed per unit of time, or the 
will be 

w/At m Vtajc/nj . 

(23) 

sr loss 

(24) 

This power loss occurs in the volume dA *   di,  so the power loss 
per unit volume  is 

dp' - w/At/(dA •   di)  « ajCdE/aj . (25) 

Of chis loss, only the fraction (1-^/7^) goes into thermal 
agitation of the medium, where ^e is the wavelength of the laser 
radiation. The heat production per unit volume due to the radi- 
ation in the wavelength interval dX is 

dp a 1 n. 
dE(l-X/X )    watts/cm3 (26) 

where dE is termed the spectral energy density. 
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The spectral energy density at a point M can be found 
as follows; Let the point be contained in a surface element dA 
through whicli the spectral irradiance is %(^) •  The partial 
energy density due to that, radiation is 

dEOO  = lyM n^Xj/c (27) 

The total spectral energy density for incoherent radiation would 
be found by adding up all such contributions at the point M. 
Suppose, however, that the spectral irradiance I%i(X) is due to 
radiation contained in a solid angle du) centered around the normal 
a to the surface element dA. Then the spectral irradiance H^X) 
at M, being the flux dF passing through dA could be expressed as 

H^X) = dF/dA = NM(>.,a) do, (28) 

where NM(>,a) is the spectral irradiance at  M due to radiation in 
the wavelength interval dX. That is, NM(>>,a) is the radiant flux 
per unit solid angle in the direction of the normal per unit 
projected area perpendicular to the normal. The summation of 
all such contributions at the wavelength X becomes 

dEM(>) = IT / NM(^0) &>>• (29) 

Now, NM(>v,rT) is the spectral radiance at the point M 
withir the laser rod and is rot known directly. But, in the 
homogeneous medium of the rod with index n^X) and absorption 
coefficient o^ (X) the spectral radiance along a given ray 
diminishes according to the exponential decay law exp(-a1i). 
Thus, the spectral radiance NM in a given direction at M must 
be a diminution of the spectral radiance Nj in the same direction 
just inside the surface of the laser rod; 

NM(X,a) = MTsa) exp [-a! (X)d1 (a)] , (50) 

where d1(a) is the pathlength of the ray from the surface to the 
point M. 

In the absence of reflection los, -s, the spectral radiance 
1*! would be23 

Nj = N^K/n,)3, (31) 

where N3   is the spectral radians  in the direction specified by 
a and Snell' s  law,  and n,   is the refractive  index of the material 
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surrounding the laser rod. Nj is dininished from this value by 
the Fresnel coefficient of transmission T(a). 

NM(^a) - T(a) Na(>,a)2ile^
(^^(^ (52) 

The ray may be traced bac.» through the various cladding media,  in 
this way,  to the  Isotropie source volume.    Such a source, by 
definition, has a spectral radiance No(>0 which is independent 
of the angle of exit  from the source. 

For a general  jth ray, 

NM(X,r   ) « T.WN,^) n^  exp  f-   £ am(7v)d(m,j)"j , (55) 

where Tj(^)  is the product of the transmission coefficients  at 
the interfaces encountered by the  jth ray, <%{>)  is the  absorption 
coefficient of the m h medium along the ray,  and d(m,j)   is the 
pathlength in that medium for that ray. 

Equations  (29)  and (55) yield 

ni3    /* r 1 
ÖEj-K) =— /T,(>0 NO(>0 exp |-2X(>0d(m,j)    dco. W) 

—    *       j L     ai     — J 

The integration indicated in Eq. (54) was done numeri- 
cally by dividing the angular space about M into anuulai. intervals 
and summing the contributions from all the intervals . Because of 
symmetry we need integrate over only one quarter of x-he space so 
it becomes convenient to express dou in terms of the polar angles y 
and a, where y  is measured from the axis of the laser rod and a is 
measured in a plane normal to the axis. Thus, 

do) = sinydctdY. 

Let a ?-«  incremented in the  fashion 

1/2 da (Aa)  l80o-l/2 Aa, 

and let Y be decremented in the  fashion 

90°-4/2^ ^Y) V2 ^• 

(35) 

(56) 

(57) 

Then no ray with polar angles (a,Y) lies in any of the planes xy, 
yz or xz, (a measured from the x-axis, Y measured from the z-axis). 
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yet the  intervals are regularly spaced about M.    Equation  (34) 
becomes 

dE    . fliH-L    ^ T.{>)N0(X)sinY AaAy 
W c ^      J J 

•   exp  r-EaM(^)<i(Tn,j) 1 (38) 
m 

I 

The  total boat production per unit volume  in the laser 
rod can be  found by substituting Eq.   (38)   into Eq.   (26)  and inte- 
grating over the wavelength range of the radiation from the source 
contributing to the energy density E„. 

EM " /ai^)(l-V*e)  VW  ^AY 

•   J T (^)N0(^) exp f- Ea  (A)d(m,p)l siny-d^. (39) 
3      J L    m J J 

Equation (39) is the basic equation for the computation 
of the distribution of heat production in the laser rod. The 
integration over wavelength was done numerically using Simpson* s 
rule. The operations required to apply the equation form a four- 
fold nest of loops; 

1. Trace the selected ray from the point M(X,0,0) 
in the laser rod back to the source for a chosen 
wavelength. Compute the transmission coefficients 
at each of the interfaces, and evaluate the contri- 
bution of the flux arriving at P from the selected 
direction (innermost loop). 

2. Change the angles specifying the ray and. do 
(1) again. Keep repeating these operations until 
all the flux in the interval d> arriving at M has 
been accounted for. 

3. Add the energy from this wavelength interval 
to the energy contributed by other intervals 
according to Simpson* s rule for numerical inte- 
gration. Repeat the entire loop for each of the 
wavelength intervals required to cover the 
operative spectrum of the source. 

4. Repeat the entire calculation for various 
points M(x>0,0) along the radius of the laser 
rod selected to best show the distrifcvition of 
heat production. 

21 

i 

~t 



4.3       POLISHED IvASER ROD WITH CLADDING AND ISOTROPIC RADIATION 
WITHOUT MULTIPLE REFLECTIONS 

Basic Ray-Tracing Equations 

Let the laser rod of index a be immersed ^n a medium 
of index nz .    Let the infinitely long rod be ? cylinder of radius 
Rj. Let the flashtube be approximated by a uniformly radiant gas 
volume separated from the laser rod cladding by a transparent 
envelope forming an  infinitely long cylindrical cavity concentric 
with the laser rod. The cavity has radius Ra and index n8. This 
geometry is illustrated in Fig. 3, which includes a rectangular 
coordinate system with z-axis coincident with the axis of the 
laser rod. We wish to consider a typical point P in the laser 
rod and trace rays from it to the surface of the surrounding 
gas volume. 

Gas Volume 

Transparent 
Envelope '- I 

Figure 3» Geometry of the laser rod, cladding layers and source. 

The point P of observation can be taken on the positive 
x-axis without loss of generality; P ■ p(x,0,0). The xz-plane and 
the xy-plane are planes of symmetry. The total radiation arriving 
at P can be obtained by ray tracing in the sector y <: 0, z ;> 0 only, 
as long as we neglect reflected rays. An arbitrary point on the 
surface of the laser rod, in this sector, will be called 
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Pj (x1 ,  y1 ,   £1), where  the equation of the  surface of tt.o rod is 

F, (x, ,   y, ,   z1 )  = 0 = x,2   + y. a   - R,3 . 

The geometrical distance  from P1   to P is 

d,   - Rx-xJ2   + y,2   + z,3 j* 

•The optical direction cosines of the ray proceeding  from 
P, to P are 

Pi - ni 

x-Xi       yj 
r, = -n. 

(^0) 

(41) 

(^2) 

The ray which is bent along this direction by refraction at the 
surface has optical direction cosines (p2, qa^g) related to 
(Pw<3wri) by Snell's law; 

(43) 
dF1 3F1 

where ^ is an (as yet) undetermined multiplier. Such a ray 
proceeds from the source point P2(x2, y2, z2) with 

P2 = 
n3 

where 

Xl " X2 
•; ^2=^ 

yi ^ ys 

d3 

z1 - z2 
"j ra " na   d. 

d2 = [(x, - x2p + (y, - y^ + (z, - z2)^ * 

Finally, we add the conditions that 

(44) 

(45) 

Pi8 + qx2 + r 2   = n,2 

p 2   + q.2  + rs n„ 

(46) 

in order to complete the system of equations.    We will solve the 
system in the sense that — given the par-^neters x, ^ , n8 , Rj ,  R3, 
find pa, qa,  r2, ^  and dg   as functions of Pj,  q1,  rx . 

We  find x1,  y^^,  z1  by solving Eqs.   (40)  and  (42) 
simultaneously.    Thus, 

Xi   = x + Y1P1/q1 (47) 

I 
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so that 

V x2   + y^Pi/qJ2   + 2 xy^p./qj  + y^ (48) 

yxS   [1  +  (PiAtx)2]    + 2 x p^q,   Y!   + x«   - R!2   - 0 (^9) 

yi 

The negative root is chosen in order to work only with 
the radiation coming toward p from the negative half space y <: 0. 
It is desirable to use Eq.   (50) whenever   jp1|  <   jqx |,  obtaining 
x1   from the relation 

x,   » x - (y - yj Pj/q, (51) 

and obtaining z1   from the relation 

21= + y^i/qi • (52^ 

When |Pi| > jqil, Eqs. (kO)  and (42) may be solved to 
yield 

x      (q,/P,)2   x+ [} i^hTi \\hl^3x&JL\hm 
1     i + (q./pj»        Lu + (q1/p1)

3)       i + (q1/p1/      J 

if sgn(pn)  ■ sgn(x - x1) 

(qx/Px)8    x _ n   (qx/Px)a^ )a + V -^(qi/Px)2] \5k) 
Xl = 1 + (qx/Px)2 Lh + (qx/Px)3)      i + (qx/Px)2       J 

if the  sign condition is not met by Eq.   (55)- 

In both of these  cases one obtains y^^   and z1   from the equations 

yx   » y -  (x - xj qJPi (55a) 

s1  - (Xi   - x) r1/p1 (55b) 

Next we  find C in terms of x1,  y1,  zx , 

0 
dz1 
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—L - 2X, •   —±- - 2y1;     —^ 
8X, ^     öyx 3zx 

(56) 
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p2   = 2Cx1    f p, ;   q8   = 2t,Yx   + q1 ES r. (57) 

By squaring each of the  relations  in Eq.   (57)  and adding,  we 
obtain by Eq.   (46), 

ns3  = n^  + HMxi2  + y^)  + HiP^i  + q1Y1) (58) 

I 1 
i   t 
f '' 

or. 

1 

„    p1x1 + q.y, 
Q '  ± 

2R,2 
ft. 2  _ ru 

4R1
; 

I 
(59) 

In Eq. (59)» that root must be chosen which raalcfcs ^ approach the 
physically correct limit £ - 0 as ^ - n2; i.a,» plus if 
(PjXj + q^j) > 0 and negative otherwise. 

Equations (41), (45), (57) and (59) allow us to calcu- 
late p3, q2,  r2, d^  and dg as functions of pl, q^ ,  rl, which is 
the solution we sought. 

Forbidden Rays 

Equations (50), (55), (54) and (59) all contain radicals 
which must be real for a physically acceptable solution to the ray- 
tracing. TTie radicals of Eqs. (50), (55) and (54) become imaginary 
only if x exceeds Rj, a condition which will not occur. On the 
other hand, the limitation that the radical in Eq. (59) be real 
delineates the an^^lar region in which the rays must lie in crder 
to be refracted into the laser rod toward P rather than be totally 
reflected by the interface.  The condition is that 

(Pa*! + qxYa)2 2 R1
3(n1

2 - n3
2). (60) 

An instructive example is the case already investigated 
by W. R. Sooy and M. L, Stitch, wherein na « 1. [ "Energy Density 
Distribution in a Polished Cylinder of Laser Material,w J. Appl. 
Phys. 24, 1719 (1965).] In particular, for rays in the xy-plane, 
we may construct the typical ray diagram of Fig. 4. By the law 
of sines. 

or. 

sinctj = -.h. sinG 
X 

Pi = ni cosa1 

Pi = ± ni 

r     R 2 
1     -       ! 

sin2 e 
„3 

(61) 

] (62) 
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Figure 4.    Typical ray diagram for rayjs in the xy-plane of a 
polished cylinder of laser wateria?. . 

A ray in the xy-plane will be ttforbidden"  if   [(R1/x)sine ]8  > 1. 
For small values of x the insquality always can be satisfied by an 
appropriate value of 8.    However, the maximum value  for sine it 
i/nx   (critical refraction) so that the largest value x can have 
and still allow the relation to *     satisfied for all P!   is 
x » Rj/nj.    When x is larger thau Al/nl   the region for which 

|Pi 1  < ni -£)•]' (63) 

is a region vAjich contains no rays headed towards the point 
P(x,0,0).    Relation (60)  is a more general form of relation (63) 
since it applies to the three-dimensional case with arbitrary 
n, < ni . 

Figure 5 attempts to display typical surface areas of 
the rod which can irradiate the point P, Figure 5a is sketched 
for x < R1na/n1 , while Fig. 5b is sketched for x > R1na/n1 . 
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Figure 5* Typical surface areas of a rod which ^an irradiate 
point P. 

Tramsmission Coefficients 

We follow the notation of Born and Wolf, "Principles 
of Optics,"  "^nd use the average coefficients for unpolarized 
radiation. Thus,  from Bom and Wolf, S I.5.5, Eqs. (61), (60) 
and (51) in that order. 

T - 1-R; R « 1/2 (R„ + Rj 

R 
tana(9i- et) 

tan8(Gi+ et) 
i  Rx 

BinHQi-  et) 

sin3(91+ et) 

(64) 

(65) 

1 
4 
a 
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So. 

a - * 
co«a(ei^ et) 

coaa(Gi- St) 
+ 1l [^(VM? 

J [8i«(ei+ et)J 
(66) 

k 
[{cosöi 

— 

cosGt- 8inei8in6t)a+ {co8eico89t+ 8in9i 

{co8eico8et+ ainGiainet}
3 

sinet}«] 

inQicosÖt- co86i8in0t sinGtT 

8inetJ 
(67^ 

But by Smell's law, n^sinQ^ - ntsin0t, so 

R m 
co8aet [l-(nt/ii)

a6inaet] + 8ina9t .   (nt/ni)
a8lnaet 

{cosetVl- (nt/ni)
a8inaet + 8inet •   (nt/ni)8inet}a 

eo80t  •   (nt/hi)8inet - 8inötyi- {nt;/ni)
s8ina9t 

cosGt  •   (nt/fei)8in9t + 8in9tV1- (nt/hi)a8ina9t 

Iharefore, 

(68) 

m i   co8a9t [1- (nt/ni)a3ina9t] + (nt/ni)
a8in49t 

'    [co88tVl- (nt/hi)
a8ina9t   + (nt/hi)8ina9t]' 

yi- (nt/^jJ
a8ina9t    - (nt^i)co89t      ) 

Vl- (nt/ii)
a8ina9t    + (nt/hiJcosGt      ) 

(69! 

A The angle 9t in Eq. (69) is the angle between the 
normal N to the (cylindrical) surface between medium ni and 
medium nt and the vector $t al^ng the ray with direction cosines 
(PtAt* «ItAt* rtAt)' «»at is. 

i*    ^        N * pt co89t ■ cos(N, pt) « —r 
|N||Pt| 

(70) 

28 

+- 



For example., by Eq. (^0) for the surface of the laser rod, the 
angle o* refraction for the ray paesing from {xl, y^,  Zj) to 
P(x,0,0) is such that 

cos^1 - cosG^i ■ 

Pl —     3l —     li- — 
n7 8x1 "*" n1 9y1 "^ n1 3z1 (71) 

2x1p1/n1  + 2Yz_ql/n1      x1p1  + yxq1 (72) 

sV^ ̂y,3 R
ini 

The angle 0! must lie in the range 0 s 0X s T/2, at we may take 

*1 - arccos / ((x^ + Y^xVCniRi) |} (73) 

without ambiguity due to positive or negativ« arguments. 

Similarly, the angle of refraction 08 into the wadium n3 
from a surrounding medium must be 

0a « arccos ||(xapa + yaqa)/(
n8Ra)I } * 

dhere xa, ya, pa and qa are determined by the equations in 
section 4.2, Basic Ray-Tracing Equations. 

(74) 
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Flow Diagram of the Co. Juter Program (polished rod) 

I Initialization and input [ 

Test x < Rj 

ipoj 
Compute:    y    » arctan  [{n^/n^)2   - t]* 

Set   Y - 90°   - 1/2AY0 

a .« l/2Aa0 

EE 
1 Compute: 

i     Pj  « nlcosasinY 

rj  ■ -njcosy 

^ - K8 - Pi8 - VlH 
PS - n^sin-y 

1 
1000 

510 
Y « Y~^Y 

Test Y < 7 

a » a+Aa 

-©-* 

Test a > i80o-l/2Aae -0J 

^es\—*. 512 

I 3 
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1000 Te 3t dypni -i) M> 0)—^1100 

Corapute: 

,   K/Pnlf'V'^n' Vl -yn-l] 

(q_/p ) Rq^/p ) x   < - y   A I 
1 + «VPn'2 

V  ' (yn-l  - Vl    VV8 

1 + {^/Pj- 

Choose the + sign if sgn(p ) ■ sgn(x « - x ) 

Choose the - sign if sgn(p ) jt  sgn(x . - x ) 

•'n  ■'n-l  x n-1   n' Ty'V n   n-1  x n-1 
x ) r /p 
n7 n'^n 1103 

1100 Compute: 

_[Vqn][(pn/qn^ yn-l ~ Xn-l] 
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kA SPECTRAL RADIANCE OP THE SOURCE 

"Isotropie radiation' is realized when the spectral 
radiance N0 is the same for all points on the surface and for 
all directions of emission from the surface of the source (gas 
volume plus transparent envelope of Fig. 3). Su-;h a source is 
known as a Lamberkian radiator because the flux emitted per unit 
solid angle (radiant intensity) must be proportional to the cosine 
of the angle measured from the normal to the surface in order that 
the raiiance be independent of the viewing angle. 

Goncz and Newell37 have made measurements on xenon 
discharge tubes using em EGftG model 585 spectroradiometer.  In 
particular, for an FX-47A flashtube (16.5 cm arc length, 1.3 cm 
bore, 0.4 atm Xe fill pressure) they report the ratio G of the 
total light energy emitted per millimicron by the lamp to the 
total electrical energy supplied to the lamp per discharge. Two 
different curves of spectral output are given corresponding to 
two current densities (1700 and 5300 amp/cm2) in the flashtube. 
We shall assume that the radiant energy comes out uniformly over 
the surface of the tube and thereby calculate values of spectral 
radiant emitta.ice E0 for the lamp. Thus, if the measured relativ*» 
energy output of the lamp is G joules per millimicron per joule 
input, and the energy input is in the form of a nearly rectangular 
0.75 millisecond voltage pulse containing f kilojoules, the energy 
output per unit area, or spectral radiant emittance E0 is 

joules 

mp, *   joules input 
f x  10a   joules input ^ 1 

(l6.5)T(1.3)cm2 0.75msec 
(75) 

The next step toward obtaining numerical values for the 
spectral radiance N0 is somewhat arbitrary; the spectral radiance 
I at the outermost surface of the cladding materials around the 
laser rod is taken numerically equal to the spectral radiant 
emittance E0 of Eq. (75). This equality does not imply that a 
flashtube with a spectral radiant emittance E0 will produce, with 
the help of a reflecting enclosure, such as spectral irradiance, 
but only that it is possible (by employing several ^lashtubes if 
necessary) to produce an irradiance of the magnitude calculated 
from reference (27) by using Eq. (75). Since the radiation field 
is to be Isotropie, the connection between I0 and N0 is 

/"; 

cosOdo) = No(>0 

hemisphere / 

cosOdo), (76) 
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where 6 is measured  from the normal to the element of surface area. 
It is easy to verify that  for the  case  of Isotropie radiation, 

lo - ^o • (77) 

Thus,   finally, 

No00  , ^ x  106   G     _watts  (78) 

64.55 if* inM,"cm2~steradian 

The curves of N0/f which,  under the enumerated assumptions, 
correpond to the spectral output curves  for the  FX-kjA flashtubs as 
reported by Goncz and Newell are  shown in Fig. 6.    Values of N0   for 
every 5 millimicrons from 300 to 1000 millimicrons were used in the 
computer program. 

k.5 REFRACTIVE   INDICES AND ABSORPTION COEFFICIENTS 

A neodymium-doped laser glass  (#5835 barium crown glass) 
containing 4.3 wt^ of Nd3+   ions made by American Optical Company) 
was selected for the laser material of this study,    the required 
refractive  index values were computed to five significant figures 
from the equation 

n^  = 1 + 1.27245 [1  - O.Ol/X2 l'1   - 0.0047655^, (79) 

where ^  is  in microns.    Measured values used to ov*:ain Eq.   (79) 
were  the index values 1.5259,  1.5219,  1.5198,  1.5^.^1,  1.5098 and 
1.5093 at the wavelengths 0.486, 0.546, O.589, O.656,  1.014 and 
1.060 microns respectively.    The abso~ption coefficient a1(^), 
see Fig. 7» was obtained from transmission measurements made on 
plane parallel samples with a Cary Model 14 recording spectro- 
photoaeter. 

Tra    .. !.ssion measurements were made with the same 
instrument on a samarium cladding glass, EOD-83O,  containing 
9|^ Sn^Og.    The absorption coefficient derived frcm the 
measurements is shown in Fig. 8a. 

The condition of an exact index match between the samarium 
glass used as a cladding and the neodymium glass of the rod itself 
(to suppress whispering modes) was not duplicated in the computer 
program because of possille program halts.     Instead,  the samarium 
glass was given an index na  <■ n1   - 0.0001. 
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Figure 6.    Spectral radiance N0   from the  FX-kjh flashtube  in watts 
per raillimicron-cm2-steradian divided by the number f of kilojoules 
of energy in an 0.75 millisecond rectangular  input voltage pulse 
to the   flashtube.     (After Goncz and Newell) 
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The refractive index of the water cladding used in 
another of the calculations was taken  from published tables;28'S9 

the absorption coefficient,   see  Fig.  8b, was  found fron trans- 
mission measurements made with a Gary Model 14 "pectrophotometer. 

Pyrex tubing was chosen as typical envelope material 
for the water cladding.    Refractive  index values were taken from 
the relation 

n - 1.46815 - 0.00805l5^a + 0.0021l34(Xa- 0.055)-1 

+ 0.000022788(>3- 0.055)-a, (80) 

which was adjusted to fit measurements made on a Corning Pyrex 
#77^0 plate.    Transmission measurements also were taken.    No 
significant absorption was  found except near 300 millimicrons, 
see Pig. 8c.    Pyrex #77^0 is not an optical glass and transmission 
characteristics are not controlled,  so Eq.   (80)  and the curve of 
Fig. 8c must be considered only as representative. 

4.6 CHECK CALCULATIONS 

The first two of the program loops stated at the end of 
section 4.2 give an approximation to the monochromatic energy 
density at a chosen point M in the laser rod.  The larger the 
number of rays traced, the better is the approximation up to the 
point where machine round-off errors begin to interfere. However, 
the more rays the machine has to trace, the longer the computing 
time.  It is necessary, then, in starting the program, to estimate 
the number of rays to be traced to the point M for any given 
wavelength.  Ideally, one would select values for the angular 
increments Act and toy,  compute an answer, then select smaller 
values and compute again — continuing the process until the 
answer remained constant to the necessary number of significant 
figures. 

An abbreviated version of this process was carried out 
for the monochromatic calculations of Sooy and Stitch30 on an 
unclad ruby rod.  Their curves were duplicated to within ± 3^ by 
taking Aa = Ay ■ 5°. An extended printout of the computation for 
a point near the surface of the rod showed the H forbidden ray'" 
phenomenon explained in section 4.3 and sketched in Fig. 5«  The 
minimum number of rays traced per quadrant was 100, while 252 rays 
were traced when the point M was at the center of the rod.  The 
greatest difference from the result of Sooy and Stitch occurred 
for a^ ■ 0.003, the least absorbing case, and x « 0. The 
calculations were repeated for that point with Aa = Ay ■ 2.5°, 

38 



A .5 .6 .7 .8 
WAVELENGTH  (Microns) 

1.0 

Fiqure 8.    The absorption coefficient a in «or»   of (a) AO type 
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and Act ■ 5° , Ay »^ 0.625° which reduced the difference to 2^ and 
0.5^ respectively. The computing time for this case and the two 
repetitions were in the ratio 1:4:8. Estimates of the overall 
computing time (a minimum of 10 hours on an IBM~360-?0 for ten 
points within an unclad rod using Ao " Ay - 2.5° for x < 0.4R 
and Aa » Ay - 5° for x ^ 0.4R, with X « 0.3 (0.005) 1.0 micron) 
made any further refinement of the calculation inadvisable. 

It is believed that the close agreement with the results 
of Sooy and Stitch verifies the computational method of the first 
two loops of this program, particularly in view of the considerable 
difference between this method of approximation and the method of 
approximation used by Sooy and Stitch. 

The third and fourth loops of the computer program were 
verified step by step from an extended printout of an actual 
computation (as were the steps of the first and second loops). 
The logic of the computat_ ial method was given an overall check 
by computing the distribution of heat production in an unclad rod 
and comparing the result to similar calculations by Borrelli and 
Charters.31  They calculated energy distributions in Nda+ doped 
rods of Corning 0580 laser glass using the spectrum between 0.5 
and 0.9 microns obtained from an FT-52*t flashtube operated at 
4.4 kv from a 400 \i.F  condenser bank. The spectrum was arbi- 
trarily normalized against its peak value. Results are presented 
for several values of the parameter pR, where p is the concen- 
tration of doping ions in ions/cm3 and R is the radius of the rod 
in centimeters. The curve of energy which causes heating vs. the 
normalized radius interval when pR = 2 x 10ao ions/cm2 has been 
replotted in Fig. 9. 

The parameters of the check calculation verifying the 
agreement between the method of Borrelli and Charters and the 
method of this report were choscm with an eye on some of the 
values used by Welling and Bickart33 in their experimental work 
on laser rods. Thus, the FX-47A flashtube spectrum corresponding 
to 5300 amp/cm2 was chosen as more nearly equivalent to the 
output obtained by Borrelli and Charters for their FT-524 
flashcube. The AO 3035 laser glass has an ion concentration 
of 4.7 x lO80 ions/cm3 so that for a rod 0.45 cm in radius the 
product pR is 2.1 x 1020 ions/cms. 

The heating energy released per unit volume in such a 
rod was calculated for 11 points along the radius. For comparison, 
normalization at x ■ 0 to the value reported by Borrelli and 
Charters for pR » 2 x 1020 ions/cmg was carried out. The agreement 
seen in Fig. 9 is considered good evidence that the methods of calcu- 
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lation agree because the physical properties of the materials 
described in each case ar^ quite similar.  The slightly higher 
production of heat energy in the outer lasers of the rod relative 
to that in the central region as pP is increased is predicted by 
Borrelli and Chapters. 

4.7 RESULTS - Profiles of Haat P3roduction and of Temperature 

The spectral irradiance at the outer surface of the 
laser rod and cladding assembly, ris explained in section 4.4, has 
been taken equal to the spectral radiant emittance of the FX.-kfh 
flashtube as computed from data reported by Goncz and Newell. 
These authors also calculated the spectral efficiency of the 
lamp for the two current densities, 1700 amp/cma and 5500 amp/cm2, 
and the  ectral range, 0.35 to 1.1 microns, investigated. By 
taking the spectral efficiency to be the same for the range 0.3 
to 1.0 microns, it is possible to assign specific values not only 
for the spectral irradiance, but also for the irradiance itself. 
A current density of 1700 amp/cm2 is produced by a square-wave, 
3/4 millisecond electrical pulse of 1 kilojoule. Assuming that 
Lhe fJashtube is 64.6^ efficient, 646 joules of radiant energy 
appear in the light pulse. Thir is amitted uniformly (by 
assumption) through a surface area of T(1.3)(l6.5) = 21.45 T cnf , 
so the radiant emittance and hence tho irradiance corresponding 
to  the 1700 amp/cm2 discharge is about 12.8 kilowatts/cm2 over 
the wavelength ran^.2 0.3 to 1.0 microns. The Irradiance 
corresponding to 5300 amp/cm2 current density is about 64.1 
kil(**atts/cm2 = (5)(648)/(21.45 ir)(0.75). 

Four profiles were computed, all for a pR value of 
2.1 x lCSo ions/cm2, or if one prefers, RP » 1.9, where p is 
the concentration of doping ions in ions/cm3, P is the ion 
concentration in weight percent, and R is the radius of the 
laser rod in car..  The profiles of Fig. 10 shows the  distribution 
of heat production in 1  Nd3+ doped, polished, lap-jr rod with 
optical pumping through the side, (1), (2) without cladding, 
(3) with water cladding and (4) with samarium glass cladding. 
The curves have been normalized against the irradiance occurring 
at the outer surface of the l=\ser rod and cladding assembly. 
Curves (1), (3) and (4) were computed for the spectrum produced 
when the current density in ehe flashtube is 1700 amp/cm2, wlr.le 
curve (2) was computed for a currant density of 5300 amp/rm2 . 

Figure 10 has the immediate experimental interpretation 
theit if one were to set up a pumping enclosure which coul<l fill a 
volume of space with an isotiopic energy densicy of light flux 
having the spectral distribution of the FX-47A flashtube or its 
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Figure 10.  The distribution of heat production T vs the normalized 
radius in rods of AC 5035 laser glass with RF « 1.9. The Ordinate T 
is measured in watts/cm3 per watts/cm2 irradiance at the surface of 
the laser rod and cladding assembly;  (l) unclad rod, 1700 amp/cm2 

lamp spectrum; (2) unclad rod, 5300 amp/cm3 lamp spectrum; (j) rod 
clad with wr.ter 4.17R thick (held in place by an outer shell of 
Pyrex tubing 0.39R thick), 1700 amp/cm2 lamp spectrum; (4) rod 
clad with samr.riun' glass 0.5R thick, 1700 amp/cm2 lamp spectrum 
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equivalent, then the relative power dissipation as heat in a 
laser rod with RF ■ 1.9, (a) unclad, (b) clad with water of 
thickness 4.17 R, and (c) clad with samarium glass of thickness 
0.5 R would follow the curves (1) or (2), (3) and (4) respectively. 

The normalization for the distribution of heat pro- 
duction was adopted because it leads quiv y to numbers of direct 
use in laser pumping. For example, if the surface of an unclad 
rod of AO 3855 Isser glass with RF = 1.9 is irradiated by 
1 kilowatt/cm3 o* light power distributed in the spectral range 
0.3 to 1.0 microns according to the spectrum of the FX-47A flash- 
tube operated at 1700 amp/cms current density, then the rate of 
release of heat energy at the center of the rod will be, 
according to curve (1) of Fig. 10, 920 watts/cm3. By the same 
arithmetic, if the light pulse from the lamp contained 1 kilo- 
joule/cm8, 920 joules/cm3 of heat energy would be released. 

It can be inferred from curves (1) and (2) that the 
change in lamp spectrum produces very little change in the shape 
of the curve, a result which is expected since the changes in the 
lamp spectrum do not coincide with the major absorption regions 
of the laser glass.  (Compare Figs, o and 7)- The higher concen- 
tration of heat energy in tht central region of the unclad rod, 
due to the focusing effect, is the predominant feature of 
curves (1) and (2). When the rod is clad with a material of 
index between that of air and  that of the rod, the focusing 
effect is altered significantly, curve (3), so that an annular 
region in the rod becomes the site of the maximum heat production 
per unit volume. Such a ring structure can occur in an unclad 
rod for higher concentrations of doping ion as shown by Borrelli 
and Charters and suggested by the calculations of Cooke, McKenna 
and Skinner,33 A hint that the rinq structure might o^cur in the 
clad rod for a lower concentration of dopinq ions can be gleaned 
from the paper by Borrelli and Charters, the one by Cooke et al, 
and one hy McKenna.3*  The reasoning, which is admittedly somewhat 
nugatory, is as follows: Curves by Borrelli and Charters indicate 
that the distribution of heat production is closely tied to the 
distribution of absorbed energy. Curves by Cooke et al indicate 
that the distributions of absorbed energy for "two- and three- 
dimensional" pumping are quite similar. Curves by McKenna for 
two-dimensional pumping show that the ring structure can be made 
to appear in a clad rod for a much smaller concentration of 
doping ion than is required in the unclad rod. Be that as it 
may, the phenomenon is undesirable when ore is trying to produce 
a uniform distribution. McKenna docs find, however, that the 
thickness of the cladding affects the size and shape of"the 
annular region, a fact which suggests that the thickness of 
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the cladding should be chosen as a function of the doping ion 
concentration or, more likely, th« product pR in order to produce 
the most nearly uniform distribution. 

Specifically, in Fig. 10, let us compare curve (1) for 
a polished unclad rod to curve (4) for a rod with cladding 
thickness 0.5 R^  If we nov imagine the clr.dding thickness re- 
duced toward zero, we expecc the curve representing temperature 
distribution to deform smoothly from the shape of curve (4) into 
that of curve (1). At some cladding thickness the curve will 
show a minimum temperature excursion, i.e., there should be a 
cladding thickness which is optimum for producing a uniform 
temperature distribution. 

The temperature rise in the laser rod is nearly pro- 
portional to the heat production per unit volume.  The constant 
of proportionality for AC 5035 laser glass, with a dersity of 
2.65 gm/cm3 and a specific heat capacity Cp = 0.14 gm-cal/gm-C0, 
is 

AT(C0) m  0.65 Eu (joules/cm
3). (81) 

We turn again to the FX-47A flashtube and a rod of 
AC 3833 laser glass such that RF = 1.9 for a  ncrete example 
of the temperature rise which can occur in a laser rod. Suppose 
an assembly of such tubes operating at a current density of 1700 
amp/cm3 produces 12.8 kilowatts/cma irradiance at the surface of 
the laser rod and cladding assembly.  Let the duration of the 
flash be 5/4 n»s. Then 9.6 joules/cma are incident on the laser 
rod and cladding assembly per flash. According to curve (1) of 
Fig. 10, (9-6)(0.92) «8.8 joules/cm3 of heat will be generated 
at the center of the unclad rod with corresponding values outward 
to the edge. Curve (1) of Fig. 11 shows the magnitude and the 
distribution of temperature rise one flash of the pump assembly 
will produce. Curves (3) and (4) show the  temperature rise for 
the same pumping when the rod. is clad with water 4.17R thick and 
samarium glass 0.5R thick respectively. Curve (2) was computed 
for the unclad rod irradiated by a flashlamp assembly working at 
5300 amp/cm2 current density and producing 48.1 joules/cm3 per 
flash at the surface of the laser rod. 

Experiments carried out by Welling and Bickart on rods 
of AO 3835 laser glass provide a comparison between the experi- 
mentally observed distribution of temperature lise caused by 
pumping and that predicted by the theory presented in this report. 
For RF = 1.9, R «= 0.45 cm, they report a temperature rise of about 
70C at the center of an  unclad rod after one flash, wherein the 
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Figure 11.  Temperature rise in a laser rod of neodymium glass 
with RF = 1.9 when pumped by a xenon flashtube: (1) unclad rod, 
9.6 j/cm2 incident energy, (2) unclad rod, 48.1 j/cm2 incident 
energy, (5) rod clad with water 4.17R thick, 9.6 j/cm2 incident 
energy, (4) rod clad with samarium glass 0.5R thick, 9.6 j/cm3 

incident energy. 
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flashlamp input energy to laser rod cross section ratio is 
1000 j/cm3. Since the 7.5 cm long rod had a cross section of 
O.636 cm3, the flashlamp, probably of about 65^ efficiency, was 
supplied with 656 joules, and radiated 415 joules per flash.  If 
the coupling between lamp and rod were 73^ efficient, 301 joules 
reached the rod, or the surface density of energy was 301/(T)(0.9) 
(7.5)" 14.2 j/cm2. By curve (1) of Fig. 10 and Eq. (81), the 
predicted temperature rise at the center of the rod is (14.2) 
(0.92)(0.65) - 8.5CC. 

A comparison between the experimental and the calculated 
distributions is shown in Fig. 12.  The value of 73^6 chosen for 
the coupling efficiency in the preceding paragraph was used to 
obtain the broken curve of Fig. 12 and represents a normalizatior 
of the curve such that the total energy released as heat is the 
same for the theoretical distribution as it was for the experi- 
mental one. 

Figure 12 shows a noticeable difference between the 
experimental and theoretical distributions of temperature near 
the surface of the rod.  'Biis same phenomenon has been observed 
and discussed by Welling and Bickart for unclad ruby rods. No 
satisfactory explanation of the phenomenon is known. 
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Figure 12. Comparison between the temperature distribution found 
experimentally by Welling and Bickart (solid curve) and the distri- 
bution calculated from the same rod with similar pumping but 
neglecting internal reflections (broken curve). 
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5.     EFFECTS  OF  THE   LASER  FIELD  ON  THE   INDEX  OF REFRACTION 
OF THE   LASER ROD 

5.1 INTRODUCTION 

In the following we shall consider the effect of the 
laser field on the distribution across the laser rod of changes 
in index of refraction caused by the field itself. In section 5*2 
we shall treat the Maxwell stress in the rod and at the boundary, 
the Kerr effect, and the electrostrictive effect. In section 5*5 
we shall discuss the photoelastic effect and take as the applied 
mechanical pressure the Maxwell stress computed in section 5.2. 
In section 5.^ ve shall attempt to justify the assumptions made 
in the analysis and suggest a method (valid in principle) of 
achieving greater laser beam uniformity. 

5.2 MAXWELL STRESS, KERR EFFECT AND ELECTROSTRICTIVE EFFECT 

A. Mechanical Force 

The mechanical force f per unit volume due to the 
presence of an electric field in a material of dielectric 
constant e and density p is given by35 

f = - — E1 
*    8ir grad e+ X grad (*

3P f^) (82) 

de 
It will be our task to find explicit expressions for e 

and p 3§. in the presence of electrostriction and any quadratic 
dp 

effect in the field. 

B. Electrostriction 

We wish to calculate the change in density Ap owing to 
the presence of an electrostrictive force. From the Helmholtz- 
Lippman law36 the change of volume 6v for an initir.1 volume vc 

given b ■ 
is 

5v ■-© 
v0E

3 ae 
Sir av 

s   -   KV 

V
0E

2 ae 
Sir av 

VQE
2
 /ae\ 

8T VapyE . 0 
(85) 

Const. 

■ 

J 

I 
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where p is the pressure 

E the electric field strength 

e  the dielectric constant of the material 

K the compressibility. 

"ttie  change  in density Ap and the density p lead,  using 
Eq.  (83),  to the relation 

.2l.^.|i    (|l) (84) 

T ■ Const, 

So that we have 

ap"pM^l.o    5p&a- (85) 
T a Const. 

Equation  (83) expresses the electrostrictive effect due 
to the presence of the  field E. 

C.    Optical Kerr Effect 

Owing to the presence of the electric field E the 
medium becomes birefringent.    The respective dielectric constants 
become37 

e    - e + EaN (a - b)a (86) 

e0  - e + E3N (a + 2b)a (87) 

where e is the dielectric constant x to E 
e 

e0 is the dielectric constant I' to E 

and N, a, b, a are constants of the medium. 

The corresponding indices of refraction are 

ne "  V^T"  >P"  [1 + EaN (a"b) 2i"]S ^ (88) 

"o - v^" - v^" t1 + E2N (a+2b) ii\*n* <89) 
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In the Kerr effect measurements, both DC and optical, 
one measures the quantity 

1 

I 

where B^   is the Kerr constant. 

(90) 

In our case and for our purpose we are interested in 
the absolute change of index 

n0 - n = nE2N (a + 2b) 
2e (91) 

It will be noticed that in the measurement of B1   only 
the  coefficient b in Eq.   (90)  is determined.     In the case  of 
E<3'   (91)  the  coefficient a has to be determined independently. 
Using Eq.   (8?) we can write 

e0  - e = EaN (a + 2b)a s B El 
Sir 

(92) 

where we have defined another constant B which we shall subse- 
quently use. 

D. Conditions at the Boundary 

(1) Surface Force per Unit Area 

In this section we wish to calculate the Maxwell 
stresses at the boundary of the laser rod. We shall have to 
transform the force per unit volume of Eq. (82) into a force 
per unit area. The first term in Eq. (82) becomes (omitting the 
cumbersome factor of I/STT for the moment) 

~ E2 grad e = grad (- e E2) - e grad (- Ea) (93) 

The second term on the right-hand side will mostly 
concern us since  it is not readily amenable  to the desired trans- 
formation.     From vector analysis35 we have 

grad  (A-B)  - (A*v)  B + (B-V)  A + A X (y  X B)  + B X (V X A)     (9^) 

We  shall henceforth only handle the electrostatic case 
(see  justification  in section 5.4)> hen^e 

v  x E = 0. 

Then we have, 

e grad E2  = 2e (E-v) E = 2(D-V) E (95) 
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where D ■ eB is the electric displacement vector.  In order to 
make headway with the term D*y in general (as opposed to cartesian 
coordinates) we shall have to draw more heavily on vector analysis 
We define the indefinite or dyadic product of two vectors A and B 
as A;B. Taking a third vector C we define the scalar product of 
the dyad A;B by 

and 

(A;B) • C - A(B-C) 

C • (A;B) = B(C-A) 

(96) 

(97) 

Thus the product i  -^ vector, and is different depending on 
whether C follows >   recedes the dyad. For the operator nabla v 
we define for a gi    ector F 

;F . lim - /   n-.F dS 
V-0 v -'(s) 

(98) 

where n is the normal vector to a closed surface S enclosing a 
volume V. This definition is analogous to the definition cf the 
gradient of a function 0, which looks as follows 

<f> m  lim i /   n 0 dS = grad 0 
V-0 V.//Qx 

(99) 
(S) 

Similarly for the divergence of an operator we have the 
definition 

• F - lim i /   n • F dS = div F 
is) 

(100) 

We can now find a clearer meaning to the operator A • v 
as given in Eq. (9^). 

Let A be a vector which is not to be varied in the 
limiting process given by Eq. (98), then 

lim L f       (A • n) FdS - A *  lim ^ f     (n;F)dS m  A'(v;F) (101) 
v-ov./(s) Lv-0V,/(s)    J 

and from Eq. (97) we get for the last term in Eq. (101) 

A-ivj)  = (A-v) F (102) 
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Given two vectors a and b we wish to calculate the 
divergence of the dyad a;b. We have 

v(a;b) = ^(a;b0) + V-(a0;b) (103) 

where the suffix zero indicates that the corresponding quantity 
is not to be varied when applying the operator v. 

Applying Eq. (100) to the first term on the right of 
Eq. (103) yields 

'•(a;b0) - liml /"  rr(a;b0) dS (104) 

Using Eq. (97) this is equal to 

lim iy*   (n-a)b0 dS = lim ^f       (n-a) dS b0 » (va)b  (^5) 

This follows from Eq. (IOO) and we have dropped the suffix zero 
on the extreme right hand side. 

So that we have 

v(a;b0) = (va)b (106) 

Let us do the same thing for the second term on the 
right of Eq. (105). Using Eq. (IOO) and Eq. (97) we have 

v.(an-b) = lim 1 /*  n-(a0;b) = lim i/*   n-(a0)bdS  (107) 

This last expression on the right leads by Eq. (101) 
and Eq. (102) to 

lim i f  (n-ajb dS « (a-v)b 
v-o vJ(s) 

(108) 

So that we have 

v (a0;b) - (a.v)b (109) 

Assembling Eqs. (109) and (106) we get the final result 

for Eq. (103) 

S7.(a;b) - (v.a)b + (a-v)b (110) 
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We now derive what may be called the tensor form of 
Gauss* Theorem. 

/   v.(a;b) dr -  /   n.(a;b) 
^(v) As) 

dS (111) 

written 

(v) •'(s) 

Using Eq. (110) the left hand side of Eq. (Ill) can be 

f      v(a;b)dT- f      (va)b dr + f      (a.v)b dx    (112) 
^(v) ^(v) ^(v) 

written 
Using Eq. (97) the right hand side of Eq. (Ill) can be 

.   n^(a;b) dS =  / (n*a)b dS (115) 

So that the tensor form of Gauss* Theorem becomes, using 
Eqs. (112) and (113) 

y(7.a)b dx +  /   (a.v)b dx = f      (n.a)b 
(V) Av) J{3) 

By invoking Eq. (114) we can now write 

f      rE(v.D) + (D'7)E| dx -  /* E(n-D)d£ 
J{V) L J As) 

dS (114) 

(115) 

In our case, since we do not have any free charges in 
the laser rod we have v>D ■ 0, hence Eq. (115) becomes. 

f       (D«v)E dx =   f      E(n*D) 
JiM\ Jtn\ 

dS 
(V) (S) 

(li6) 

■   \ 

'■ | 

:- 

Equation (116) provides us with the sought for relation enabling 
us to pass from a volume integral of Eq. (95) to a surface integral, 
Integrating Eq. (99) over a volume V we have 

/* v * dx -   f     grad ^ dx »  /" n 0 dS   (117) 
r(v) f(v) (S) 

f We are now in a position to transform the volume integral 
/ iy\f dx of Eq. (82) into a surface integral. Using Eq. (117)* 

the volume integral of the second term of Eq. (82) becomes 

* LM**f^-k Lr* %**     (118) 
(v)  V (s) 
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Siiuilarly,  the volume  integral of the  first term on the 
right hand side of Eq.   (93)  becomes 

- ^r / grad ^E2) df = " 5F / n eE3 ds  (i19) 

The volume integral of Eq. (95) boconaes 

^  ^v) 
e grad ^ dT ' W  /. E(n-D) ^    (120) 

where use has been made of Eq. (116). 

Assembling Kqs. (118), (119) and (120), the volume 
integral of Eg. (82) becomes 

/  f dx = J_ /  E(n»D) dS -A_ f    nE2 fe - o dtAc»^ t\2\\ J{v) % -^(s) v      8F ^(s)   [      P dp)        [121) 

So that we have a surface force t 

t-X^E^.^E. ^-Pf|) (122) 

This is the Maxwell stress. 

(2)  Maxwell Stress at the Boundary 

Since we wish to calculate the Maxwell stress at the 
boundary, we shall use Eq. (121) and integrate over a surface 
given by Fig. l^.  The boundary separating medium 1. and 2  is 
given by BB'. We assume an area dS perpendicular to the plane 
of the figure and indicated by a'ß' for meclium 2 and our area dS 
indicated by aß for medium 1..  The area which shows in the plane 
of the figure as a'a and ß'ß will be chosen so small that its 
contribution to the surface integral will be neglected. 
Hence, we have 

y* f dr - dsj^ [esE8(E8.n) - e^Ej.n)] 

-^[E
3
2(e-itp)a-

Ei2(e"tp)]) (125) 
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Figure IJ. Maxwell stress boundary nomenclature 
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We shall assume that medivcn 2 is the vacuum.    Hence,  the pressure 
p at the boundary is given by 

P = % [Ea   (E»   *   n)  " eiEl   (El   '   n)]   " ^ [E
a
8-Ei2  a] (124) 

where we have put  /e- — plaa. (125) 
\    dp A 

Let us set up a coordinate system where  the  fielü E is 
decomposed into  cwo components:     En parallel to the vector n,  and 
Ep parallel to tv..,   boundary.    Then ve have 

E3   *   n = E
an  ;  Ei   *   n " Exn (126a) 

E8
S   = E|n  + E|p   ;   E!3   = Efn + Efp (126b) 

E  =  1  E     +  1  E (126c) n n        p p x ' 

where ln and !„ are unit vectors respectively parallel and perpen- 
dicular to the vector normal n. Inserting Eqs. (126a), (126b) and 
(126c)  into Eq.   (125) yields. 

[(ln B.n + lp E3p J   £,„  -  ...   (ln Eln  +  lp E,^ ElnJ 

-SF(Ein+Eip)+^a(E!"    +E?P) (la7) 

The boundary values of the field are 

ei  Bin = E
8n (128a) 

E3p - Elp (128b) 

Inserting Eqs.  (128a) and (128b)  into Eq.   (12?) yields, 

= 4 [On e*   e^ + Vip) ^  Em " ex ( ^ E^ + ^ EiP) Einj 

" ^ (^x3 E!„ + E!p) + & « ^fn + E!p) (129) 
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We note that the terms 

1
p [ei  EipEin " ei  EipEin]   in E<3-   (129)  cancel. 

We are thus  left vith normal stresses only.    Rewriting Eq.   (129) 
yields 

" fe ('S =!„ + Hfp) + f; « (=!„ + =?p) 

or finally 

p " aFn [E?n (eia " 2ei + a) + E?P (a " ^l (130) 

Depeiding on the sign of p, we shall have a surface 
pressure or tension at the boundary. 

E. Calculation of f 

We shall derive ein expression for f as given by Eg. (82) 
taxing electrostriction and Kerr effect into account. Using 
Eq. (83j which yields the expression for the change in density 
due to electrostriction, the total density p is given by 

p - p0 + Ap - p0 + p0 1^ a = p0 ^1 + |i aj (151) 

Using Eqs. (92) and (85)4 the total dielectric constant resulting 
from electrostriction and Kerr effect becomes. 

e - e0 + Ae « e0 + 
(|)^B& 

(132) 

It should be noted that B in Eq. (132) can also be made 
to include any quadratic contribution to the dielectric constant 
other than the Kerr effect. 

It will be our task now to use Eqs. (131) and (132) to 
find a more explicit form for Eq. (82). We start with the second 
term on the right hand side of Eq. (82) first. 

I 
I 

Li 
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Putting 

u2 

x = p0 (133a) 

(133b) 

u = p = x + xy (133c) 

T- - — • 1 + y (134) 

We have 

ae ae au ae 
ax au ax au 

Hence 

ae _  1  . ae 
au i + y ax 

Thus 

u 9*    u  9e = /x + xy\ H _ x 
^i + y y ax "" 

a£ 
au _ i + y ax     yi + y / ax       ax 

Reverting back to the physical values as given by 
Eqs. (133a), (133b), (133c), Eq. (136) becomes. 

(135) 

(136) 

P ^ = Po f^ (W) 
9p    9Po 

Now 

0 li Po T, ^- H y (138) 

is a quantity which can be determined frcm photoelastic measurements 
as will be seen below. In our case y  is the value of p J^e.  before 

ap 
the application of the electric field. In this work we shall 
henceforth assume that y  is constant in the laser material and 
does not vary with position in the medium. 

Before turning to the first term on the right hand side 
of Eq. (82), we wish to rewrite Eq. (132) after substituting 
Eq. (131) for Ap. Then Eq. (132) becomes, 

8       eo  +i^Po  %a+B8;   ' +YbTa+B8F 

= £0  + |i (ya + B) (139) 
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And aftar putting 

b a Y a + B (140) 

E<I. (159) can be written as 

e - e0 + b g (141) 

Then the first term on the right hand side of Eq. (82) 
becomes, assuming e0 uniform throughout the laser rod, and using 
Eq. (141) 

- Jj- E3 grad e --gL Ea gr?id||i (ya + B) 
.3 

2 (^y .--bgradg-   (^2) 

The second term on the right hand side of Eq. (82) 
becomes, using Eq. (157) 

Now, since we have assumed y  uniform throughout the 
laser rod we can take out y  front under the grad operation on the 
right hand side. Hence, Eq. (145) yields 

Assembling Eqs. (142) and (144), we get the final form 
for Eq. (82), namely 

(£)" f-lb grad (g-Y + T grad g- (145) 

P. Calculation of y  in the Clausius-Mossotti Case 

Since for a large class of glasses it is reasonable to 
assume that the Clausius-Mossotti relation applies, it will prove 
useful to calculate      rip  for this case. The Clausius- 

•Y = p as. 
Mossotti relation*       aP 

i I 

j i 

0 

*See, for example, M. Born, Optik (Springer, Berlin, 1935) ?• 539 
or Bom and Wolf, Principles of Optics (Pergamon Press, 1959) p. 86 

60 

L 



can be written for our purposes as 

e - 1 _ r rt 

whore C is a constant and p is the density. 

By ordinary differentiation 

%-TP  t'-mt + V 

(146) 

(147) 

Hence, we get the desired relation 

pf7-f l> -110+21    .y dp (148) 

The change Ae in e due to electrostriction or changes 
in density Ap becomes 

(Ae) -§£Ap-l[e -1] [e +2] ^ 
dp (149) 

The change Ae in e due to the Kerr effect or any other 
change  in polarizability Aa becomes 

I Aa (   s)        as Aa =i [e - 1] [e + 2]   M 
'a     da ^ ^ J L Ja da 

When the Clausius-Mossotti law applies, wc get the 
interesting relation 

(150) 

P^=0^-J  ^-^C^s] (151) 

i 
Here a is buried in the constant C which itself becomes a variable 
The constant C is proportional to the polarizability a. 

Since the index of refraction n is related to the 
dielectric constant e by the relation e = n8 we can also 
express Y in terms of n as 

or 

7 = pdeas2np    a" r       H dp ^    dp 

dn 
H dp      2n 

(152) 

(155) 

1 
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G.    Maxwell Stress at the  Boundary 

{^)  In the  case  for which the Clausius-Mossotti 
relation holds. 

We shall evaluate the coefiicients Efn and E|p 

in Bq.   (130).    Using Eq.   (151) ve have 

Ei8  - 26!  + a = B^  - 26!  + e^  - 1    (2e1
3  + 2e1   - '4) 

6 

= |[i|ei
8  - Se,  +4]   «^[e,3  - 26,  +l]-| [^   - l]'     {154) 

Similarly for the coefficient of Efp we have 

a - 1 « e1   - i r261
3  +26!   - 4 1   -1 -    f^e!3  + ^   - 2]   i 

= - I [ei3  - Se,  + 11   - - I   (6,   - I)3 (155) 

Assembling both terms Eq.   (130) becomes 

P"SF(ei   -1)a  3   [2E?n-^p]- (156) 

We notice that the first term is a tension force and 
the socond term a pressure force. 

As an illustration, we shall calculate the pressure at 
the edge of the cylinder in the case of a normal component Ein 

only being present.  From Eq. (156) we then have 

*. 1 

which is a tension. 

For 1 Mw per cm2 power we have 

(157) 

"? fl ^  - l^3  •  106  •  107 

p - * K ^ /^0 350 dim/cm3  - O.36 gm/cm3     (157a) •*    .     IQIO 
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since 
El ^ W 
8ir      c 

where W = power/cms 

c = velocity of light. 

For 200 Mw/cm3 pov.'er we have 

p - 7 • 10* dyn/cro3 (157b) 

This  indicates that thtre  is a mechanical force being applied on 
the cylinder as e, result of the presence of the E field.    Ulis 
force will contribute to a change  in index due vo the photoelastic 
effect as we  ohall see  in section 5*3• 

(b)  In the general case, 

We  look first at the coefficients    5 = e,3  - 2E1  + a 
and a - 1 of Eq.   (IJO).    Using Eqs.   (159)  and  (140) we have  for e1 

^   ^- - s0  + |i b 

and a.e0 -Y+fib 

For ease of notation let us put 

(158) 

(159 ^ 

E3 

Then we shall lead up to the evaluation of 5 

Ej3 « (e0 + Ae)
3 - e0

3 + 2Ae e0 

where we have neglected the term (Ae)3. 

We now have for 5 

e^ - 2e1  + a = ec
s - ec + Ae (2e0 - 1) -^y 

(160) 

(161) 

(162) 

If we assume the largest value for y to be jAO  as 
computed in Table II for the Pockels' glasses and putting n » i.5» 
we get for Eq. (162) 

5 « - 0.60 + 5-5 |^ b. (165) 
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Observed p ■— ¥ 3p 
n 

2n 

— —BEinm ——  
Values of Y for Various Glasses 

S205     0428 0658    0215^   01571      0500      S57 

0.358    (0.106)    0.592    O.^P,;   0.512    0.600    0.865 

1.508      1.5lt      1.5^5    1»570    1.644    1.751    1.96 

3.016     3.0J>4     J5.090   3.14     3.288   3.502   3.92 

•Y s p 
op 

1.08 1.21      1.55      1.62      2.1        3.40 

Before proceeding in the evaluation of a - 1 we wish 
to get an idea of the magnitude of b.  From Eq. (140) we know 
that b « Y a + B. Let us start with the evaluation of a. We 
havo. 

where 

Y K 

p dp " B 

(164) 

(165) 

^s the compressisility and B the bulk modulus. 

Now since 

Y - pa* 
dp 

de 
dp 

From More^,s9 the bulk modulus is 370 kilobars 
«* 3.7 x 1011 dynes/cm3. Wte shall tak«? Y ■ 1« Hence 

2.7 •   lO"13 

(166) 

(167) 

3.70 x  1011 
(168) 

For a laser power of 200 Mw/cm3 we have a change of 
dielectric constant 4e 

Ae » Y a 
E3 200 -, 106   •   107 

8ir " 3 .   lo10  x 370 •   109 - 1.8 •   10"* '169) 

1 

1   1 

- ! 

Ml 
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This corresponds to a change in index of refraction 

An o ^i- , so that An due to y a ~- is, (n « 1.5) 
2n Sir 

An = ^. - 1'Q  : 10"6 - 6 • lO-7 (170) 
2"     3.0 

For the constant B in Eq.   (1^0), ve shaxl assume that 
it is of the same order of magnitude as the Kerr constant.    In 
Tavern39 we  find for the absolute Kerr constant in glass,  the 
values 

U 1.7 •   10-13 

5.9 • icria 

5.8 •   lO"13 

8.1 •  ion3 

The coefficient a - 1, becomes 
I : 

Using Y ■ 1.21 as given in Table II 

a - 1 = 0.04 + |^b (172) 

We therefore note that only if 

eo3 - ec0 + 7 \ 
> is closr to zero 

e0 - Y - 1   J 

the term S— b can be important. 

However, let us assume 5 « 0(1), and a laser power of 
200 Mw/cma. Then 

8 J|n . goo: IO
8
 ; IO^ m 6>6. 104 dyne8/cnia        im) 

of     5 • 1010 

This pressure at the boundary will produce later a change in index 
due to the photoelastic effect. 
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The value of Eq. (175) should be compared to that of 
Eq. (157b).  It is of the same order of magnitude. 

We terminate this section with Table II where we have 
calculated the values of. y  for several glasses as given by Pockels40 

from his observed values of   9n 

We have simply used Eq. (155) and from some inferences in the 
text, we have found the corresponding indices of refraction which 
ve are talcing as given by Pockels. 

5.5 PHOTOELASTIC EFFECT 

In this section, we wish to apply the results of our 
previous work.     From the Maxwell stresses calculated in the 
previous  sections it is now possible  to evaluate their effect on 
the  index of refraction.    We shall not redo here the theory of the 
photoelastic effect.     Instead we  shall refer the reader to Adams 
and Williamson41   (A * w) •    We  shall use  their notation.    We use 
A & W's Fig. 5, which becomes our Fig.  1*4.     The mechanical stress 
is applied along OY.    We are  interested in the absolute changes 
of index    ny - n    for light polarized 4n the y direction,  and in 
n- - n    for light polarized in the  z d-Tection.    We reproduce  in 
Table  III, A & W« s Tab*© 5.    We reproduce here  the  formulas of 
interest for this section.     They are 

■v ~ n z 
n 

n 
y 

- n 

I- (l -2.\ 
2R   \ v      v / 

(A & W    Eq.   5) cm) 

JLll-l        (,2aSL + E)        (A&WEq.  5B) 

which we approximate to 

n . „ . £. f-2 a £ + i) 
y     E  \   v  v/ 

(175) 

and finally 

^V" - I [^ - a5 7 - a 7j  (A & w Eq- 5C) 
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Ray of 
j rj   Liohf: 

Figure 14. Notation used by Adams and Williamson — drawing to 
accompany elementary discussion of optical effects of stress. 
The thrust P is applied in the direction OY.  The ray of light 
enters the cube of glass in the direction OX, becomes elliptically 
polarized and is treated as two rays vibrating, respectively, in 
the directions OY and OZ. Ordinarily the ray vibrating along OY 
travels with the higher velocity, that is. ordinary glass under 
unidirectional compression behaves like an optically negative 
uniaxial crystal. 
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which wo approximate to 

n - n = n —  (1 z        E L a) E- 
v 

a" (176) 

The birefringence quoted x» Table III corresponds to 
Eq. (17^). We have computed ::or the same glasses (identified by 
their Pockels number) the values as given by Eqs. (175) and (176) 
respectively, for P = 1 kg/cm3.  This is indicated in Table IV. 

TABLE IV 

Index Changes for 1 kg/cms Pressure 

Pockels 
Sample No. 

205 

428 

658 

2154 

1571 

500 

57 

n<o) 
y 

- n 

5.06 • 10-8 

-8,38 • icre 

1.06 10-7 

1.99 ' • icr7 

3.44 • 10-7 

4.76 ■   IQr7 

9.45 - 10-7 

n    - z n 

48.30 .   10-B 

19.30 • 10-8 

4.83 • 10-7 

4.89 .   IQ"7 

6.08 •   lO-* 

6.13 •   IO-7 

7.52 •   IGT7 

It is interesting to note that although the composition of all 
glasses listed (except sample 57 which is positively birefringent) 
are negatively birefringent, glass sample 428 exhibits a negative 
value for ny - n. For boundary pressures of 6.6 • 10* dynes/cm3 

as given by Eq. (173) the change in index An will be 

An 6.6 • 10* 

9.80 • 106 

(1 kg weight - 9.80 • 10B dynes) 

n<rt - n 
y 

or 
nW - n z 

(177) 

which would correspond for glass sample 57 and **    " n 

to 

An 6.6 •  10*  •  9.45 •  10- 
9.80 •   10B 6.38 • 10- 

9.45 •   IO-7 

(178) 
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which is small. The question of the variation of An across the 
laser rod can be dealt with adequately from the foregoing work, 
once the field distribution across the rod is given. 

We wish to terminate this section by pointing out that 
it is possible to express   8n.  (and thus y)   in terms of the 

P 9p 

photoelastic constants p and q, as follows. 

p SR 
8p f^2^) 

This was first derived by Pockels.4 

(179) 

i* i 

5.4 DISCUSSION 

In all the foregoing we have treated the electrostatic 
case only. The physical justification resides in the fact that p 
cannot follow the field at optical frequencies.  The DC component, 
however, will be presenx: and exercise the influence we have 
described. If the description is adequate it would follow that 
it ought to be possible in principle to compensate index changes 
across the laser rod (leading either to convergent or divergent 
beams) by applying em electrostatic field with the proper field 
distribution (which can also be made to vary in time). We have 
also assumed equivalence between optical and DC Kerr effect, 
which is reasonable for glc-ss. 

5.5 SUMMARY 

In sections 5*2 to 5.5 we have treated the problem of 
the influence of the laser field itself on the index of refraction 
of the laser rod (with special interest in a glass rod). We have 
developed the inter-relationship between Maxwell stresses (both in 
the bulk material and at the boundary), electrostriction, photo- 
elastic effect and Kerr effect (both optical and DC in the case 
of glass). We have developed the formalism to a point where the 
distribution across the laser rod of changes in index of refraction 
can be readily computed provided one is given the distribution of 
the laser field in the rod. 
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6. END REGION STRESS ANALYSIS 

1 

r 

The presence of a non-uniform temperature distributior 
in a circular laser cavity gives rise to two significant effects 
which will modify the optical path of light passing through. 
First, the strain patterns which accompany a temperature gradient 
serve to alter the optical pathlength for different radial positions 
within the rod. Where the material shows a stress-optic behavior, 
the index for the two polarizations of light will also be different. 
Second, as there is also a finite curvature of the end surface 
which accompanies a non-un-form distribution, there will be a 
discrete bending or refraction of the ray as it passes through 
the surface. 

In the present effort, a program was initiated to 
evaluate the stresses and the optical distortion they produce 
in a finite length cavity under axially symmetrical temperature 
distribution. Both temperature and stress fields thus are 
assumed to exhibit no dependence on the azimuthal coordinate, 6. 
In practice, these conditions can be closely approximated with 
Isotropie pumping. For a laser rod, then, in which pumping 
intensity is uniform along its length, and temperature variation 
within the rod is an arbitrary function of radius, the stress 
field may be resolved exactly over the major portion using plar.j 
strain theory. The region in which the plane strain formulation 
will not be valid is at the extreme ends, where according to 
St. Venant's principle, self-equilibrating mechanisms will be 
set up in order that specific boundary requirements are met. 
Since measurable changes occur in the stress field within one 

two diameters of the rod end, giving rise as well to surface 
rmation, one would expect related changes in optical path 

offering from a plane strain analysis based on total length. 
A detailed study of the end region stress field, therefore, was 
undertaken. 

Treatments of the end problem in cylinders reported in 
the literature are meager because the solution long withstood 
attempts even for an approximate development. In principle, 
however, a solution can be formulated exactly by relating 
stresses and displacements to the Love displacement function, 
L(r,z) as described in Ref. ^2. Now, if one sets the condition 
that L(r,z) be biharmonic, i.e., satisfies the equation 

74 (L) = V3V8(L) - 0 (180) 
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where   v2=^- + i 1-+11- 
8r2  r 8r tz3 

r and z being cylindrical coordinates, the equations of 
equilibrium and compatibility for axially symmetric systems will 
then be satisfied.  Further, if the boundary conditions to be 
satisfied are no forces exerted on the curved surface, and self- 
equilibrating symmetric normal and shear tractions on the end 
corresponding to 

aT * 0, x » 0 atr = a *| 

/a  (r)rdr =0   at z « 0 
z 

the  (L)   function will take  the  form 

L(r..) - ^\M +2(l.vW*Jo(Y)/JiM^VM7r)        (181) 

where here y  becomes a solution to the eigenvalue equation 

KM _ ., +  £(1^1 (182) 

f 
i 

* 

s 

In the absence of external forces but where loading is caused by 
thermal expansions, the derivations hold if the temperature function 
can be reduced to a symmetrical system of forces distributed at 
the end. 

While the above equations do constitute a system of 
functions for the exact solution of the problem, a difficulty 
in use arises from the fact that the roots of Eq. (182) consist 
of real and imaginary parts. The task of calculating these 
complex roots has been found to be exceedingly great, and the 
real and imaginary parts of Eq. (181) give rise to increased 
mathematical difficulty at the boundary. Therefore, the 
expressions described do not provide practical workable 
solutions. 

In an attempt to circumvent some of these difficulties, 
Horvay43 has introduced an approximate variational method of 
solution in which two Sadowsky-Sternberg** stress functions, 
given a product representation, 0(r,z) ■ f(r)g(z), and 
*(r,z) = F(r)G(z), are utilized to determine the stress 
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distribution.  Briefly, by introducing the stress functions in 
terms of stresses i.ito the expression for complementary strain 
energy and taking the variation, 6U, equal to zero there will 
result Euler equations with constant coefficients from which the 
axial functions g(z) and G(Z) can be determined. g(z) and G(z) 
will be established as exponentially decaying sinusoidal functions 
of thi. form, 

e  (cosßz + SL sinßz) . 

The a» s and ß? s are real and imaginary components to the complex 
root Y = a + iß of the eigenvalue equation 

A-y4 - By3 + C = 0 

where A, B, and C are constants taken from the Euler equations 
resulting above. 

The functions f(r) ana F(r) are radial polynomials 
which must satisfy certain boundary conditions and rule of 
orthogonalization.  They must be selected so that with their 
appropriate derivatives, they will constitute a system of 
boundary tractions, ar, ae, az and Trz at z "0, which will 
closely approximate the set of end tractions imposed by the 
problem.  The variational method permits the end tractions to 
be expanded employing conventional Fourier expansion techniques 
which alleviates much of the mathematical difficulty incurred 
at the boundary with the exact method. Once successful in 
determining matching polynonials and their derivatives, one 
may evaluate the Euler constants A, B, and C from which axial 
functions g(z) and G(z) will follow. To calculate the product 
stress functions and resultant principal stresses which they 
represent then becomes straightforward using available Sadowsky- 
Sternberg relationships. While primary obsracles inherent with 
an exact formulation can be removed by this approach, it does 
remain that considerable mathematical involvement and judgment 
is still required for execution of the method. 

Additional papers (though more distantly related to 
the present problem) dealing with analytical solutions to the 
axial symmetrical loading of the cylinders of finite length have 
appeared.  In Refs. ^5 and ^S,  stress analyses have been con- 
ducted on the isothermal cylinder where prescribed tractions and 
displacements on the lateral surface together with the ends was 
investigated. The problem of thermal stresses in holl-v cylinders 
with fairly small length to radius ratios is taken up by Bellamy.47 
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The method of analysis here is based on a complenientary strain 
energy theoren» for therrooe.lasticity and approximate solutions for 
a cylinder of particular proportions have been worked out. 

In our present work, we have undertaken to handle the 
thermal stress problem, initially at least, by way of a numerical 
method of solution. There appeared to be these special advantages 
in this approach over the analytical method outlined above: 

(1) The governing equations for a numerical relaxation 
stress analysis could be developed with minimum difficulty and 
application to the end region of a cylinder seemed straightforward. 

(2) The equat'ons could be programmed for solution on 
a high speed computer allowing investigation of many different 
temperature distributions, including axial temperature variation, 
without constituting a new boundary value problem. 

t ; 

by Hoyle*8 
For  such axially symmetrical systems, we have equations 

I^x 

2!* . is* - Ea_ 
328 1-v 

3T 
8r 

(185) 

which have been found suited to relax-.tion solutions, 
variables #(r,z) and x(r,z) take the form 

The stress 

^ - r ^i 
9r 

x --£- ^ 
1-v 3r 

where $ and O are arbitrary functions of ehe coordinates, r and 
z. E, a, v and T(r,z) above axe  Young's modulus, thermal expansion 
coefficients, Poisson* s ratio and temperature at a specific co- 
ordinate location, respectively.  I2 is the differential operator: 

5!_-i 5_ ,.£_ . 
ars ar azj 
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The principal stresses, ar, ae, etc. can be expressed in terms 
of the functions i>  and x as 

y +  (l-v)x  13/.,  A  EOT 
r     r2      r 3r v       1-v 

(184a) 

0 s — 1 i* 
r 3r 

T   K 
rz 

- 1 3* 
r 3u" 

(184b,c) 

^ + (l-v)x „ v 8^ _ EOT 
3r  1-v 

(I84d) 

where it may be verified by substitution that the equilibrium 
equarions given by 

3ar 
+ 

3Trz 
3z 

+ 
ar " ae 

3r r 

3ffz 
3z 

+ 
3Trz 

3r + 
Trz 
r 

- 0 

(185) 

are identically satisfied. 

The bounds of the system impose certain other requireuients 
on the equations as well. Since the surfaces of a laser rod will 
remain essentially free of external force, the boundary conditions 
to be applied take the form 

o 1 + 'f w 
r    rz 

a m + T 1 
z    rz 

(186) 

where here '1' and Tmf are direction cosines of the normal, N, at 
boundary points under examination.  It may be observed that on the 
horizontal surface, these expressions reduce to 

ar - 0, Tr2 = 0 

where 1 = cos(Nr) - 1 

m = cos(Nz) « 0 
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And on the vertical surface 

o » 0, T 
z      rz 

where  1-0 

a ■ 1 

+  +  +  + ^ \ 

if 

Fictitious 
Points 

pmrnmnnnnuwmnmmnnkwniktimitomHiinmh 

z "I 
h*-     ~ 4p 

1 
i,j-l    Ij     i..j+l     '( F 

Ar        +       h        +,    I 

g         % i Cylinder 
-i  1 ^ "-J— aviR Axis 

Figure 15. Point designations for relaxation grid. 

Figure 15 represents a schematic representation of the 
axial cross-sectional portion of a laser rod used for andysis. 
The cylinder axis becomes a 'aound of syncnetry; also, at the left 
about 1.5 diameters from the end, auothe- arbitrary bound of 
symmetry is established along a section where stress patterns 
no lo.iger exhibit dependence on the axial coordinate, z.  The 
end region so defined between these bounds and th«! free surfaces 
is then subdivided into a convenient number of zones or points to 
form the relaxation grid. A general point in this array is 
assigned the designation ij, referring to the row and column 
number.  In conventional notation, a neighbor to the left 
becomes:  i, j-1; one to the right;  i, j+1; and so on. 

At-proprJ te dependence between points in the chosen 
array is established by expressing the governing expressions in 
finite difference form. Using the calculus ^Z  finite differences. 
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first and second order differentiels may be expanded by the 
following good approximations 

1*1)     «A    U .  -*.   1    .) 

(187) 

where a is the grid spacing. 

Working equations can now be set up embodying the stress 
functions, i>  and x, which will be representative of each category 
of points in the system. Since we are dealing with two functions, 
we have in general two equations to be solved simultaneously at 
array points. By introducing Eqs. (187) into Eqs. (I85) 1-weming 
the interior region there results the following two expressions 
which are suitable for numerical analysis 

Q. . ■ x.    ..,   + 
ij        1,3+1 \2i-2JXi+l,j   f Xi,j-1 

+ (Zi=l\x.  ,   . - 4x.   . - 0 (188) 
\2i-2/    1-1^ 1^ 

ij      Vi,j-H + Ui-2 J    Vi+l*J      yi>J-l 

+ (iiä) ^lo-^D-^^i-^M-^j 

+ Ä(i-1)(Ti+l^-Ti-l,j)-0 (189) 

Points which are located along the horizontal curved boundary 
must obey formulas (188) and (189) and satisfy boundary conditions 
(186) as well. Also, tks fact that positions i+l,j lying above 
the boundary plane are fictitious requires suitable substitution 
for the variables at these points.  By solving Eq. (188) for 
xi+l,j and (189) for ^i+l^j and writing a third equation from 
(184a) at the cylindrical surface, p. 
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as 

. ^j + ^ "jj 

■i^^i^^Vi^-^i^-Vi^^-fS-o (190) 

we may c<anbine Eqs. (188), (189) and (190) to eliminate xi+l,j 
and #1+1,j from the boundary equation.  In addition, since 
Ti+l,j is also a fictitious temperature, the temperature 
difference (Ti+^j- Ti_l,j) appearing in Eq. (190) must be 
expressed in terms of real temperatures.  For this purpose, a 
MacLaurin series expansion is used to expound the temperature 
differential about surface point, ij, in the following manner 

©„ ■ (SI.,, • ■ (&L, 
If we now express these terms as finite differences, we find the 
above reduces to 

fe)«" ir (5Tii+ Vs.j --"I-M) 

which is equivalent to 

21 (Ti+l,j " Ti-l,j) 

By making this substitution and performing the indicated algebra, 
the boundary equation becomes in final form 

Q« -2 [(irn ^ - ferk - ^N 
+ kx i-l,3 

+ "h-l.i + ^l,j+l + 2^,3.! 

_ + 2Tir5T L(
a-t)'rij+fTi-2,j-

2PT1-i,jl-
0   (»D 

ii 
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For points along the vartical boundary we find from con- 
dition (186) that the axial stress goes to zero and may therefore 
write from (184b) 

a
Z 

= ^- ^i+l ^ " *i-l i5 = 0 (192) 

This requires that Vi+l,j equal ^i-l,j and implies that ^.j be a 
constant on the boundary.    Hence, by combining Eqs.   (188),   (189) 
and  (192)  to eliminate x-^j+i  and ^i-j+l»  the  final version of 
the boundary equation appears as 

Q. . = 2    2^.    .  ,   - ^, . + /^i^2-^    (^.   ,    . + x. .,    .") 
iD [ *i,D-l iD      \2i-2/    V^   1,3 i+l,D 

+ /ii^lX ^ . + x.   .    .)  - 2x. . 
V2i-2y  V1Ki-l,D i-l,D' ID 

arEot    (T .  - T.   .   .)1=0 (195) 
2(l-v)   V  i+l,J        :L"lJ:,   J 

R. .  = 0 
13 

For points lying on an interior bound of symmetry, 
additional conditions will hold and the applicable equations 
above would be modified where possible. Thereby, at the left 
radial bound, 

xi,j-l " Xi,j+1' *i,j-l ' *i,j+l 

For the cylinder axis, vhexe  i = 1, it results that equations 
(188) and (189) become indeterminate because of a division by 
zero in the second and fourth terms. Iherefore, at axial 
boundary positions a somewhat specialized mathematical formulation 
is required. Beginning with the first of the equilibrium Eqs.(l85), 
we find for r = 0 this reduces to 

a    - aÄ = 0 r   e 

observing that 

--£- = 0- T   =0 
3r      rz 

on the axis. 
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3y combining with Eqs. (l84a,d) and performing the necessary 
algebra, the above expression becomes 

where, for the equation to be satisfied when r ■ 0, 

\,i + {1-v) xui] -0- 
I Frcan the system of interdependent equations now defined, 

the values of x^j and ^j for each point is, in principle, determined 
knowing specifically only the temperature distribution imposed on 
the network. The solution, however, demands that the equations 
become simultaneously satisfied which, in effect, requires that        r i 
residual quantities Q^j and R^j be reduced to identically zero in 
all equations.      " | 

Solving this problem by hand relaxation methods would 
be prohibitive, even for a small array, because of the tedious and 
lengthy computation involved. Therefore, a considerable portion       «, | 
of the task was devoted to preparing a computer program which 
would perform the relaxation operation automatically. 

i 

A brief description of the reduction technique developed 
follows. Handling up to a 300 point array, the program computes 
and stores the magnitude of the residual quantities, Qij, and Rij*      r I 
for all points based on selected values of x^ and Vij which are 
initially guessed. The relaxation procedure involves scanning the 
stored arrays for the highest value (positive or negative) of Q 
or R which existe and modifying the x and ^ values for the 
corresponding point by a computed increment according to 

'^ - *« + * (T) 
{194) 

where x{j and ^{j become new values '->r  the stress function 
associated with the point, ij. The relaxation control variables, 
>■■  and 0, may take on values between 0 and 2 as prescribed by the 
degree of under-relaxation or over-relaxation required. Upon 
altering values of Xij and ^ij , it obviously necessitates re- 
computing the magnitude of residuals at neighboring points which 
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are affected. By this process of selection and correction, the 
iterative procedure is continued until all residuals are diminished 
to within a specified range from zero. 

Using then the stress function values which have been 
found, the principal stresses are computed employing formulas (184). 
The corresponding thermally induced axial strain field is obtained 
using a three-dim?nsional stress strain relationship of the form 

e = 1 [a - v(a + a )      + aT 
z  E L z    r   e •J 

(195) 

And the axial displacement of the end face due to variation of the 
strain field over the end region is given by 

W(r) «y 5P ez(r)dz 

where the integration is performed over 1.5 diameters. 

The change in optical pathlength for a ray of laser 
light traversing the cavity end region may now be calculated 
using the pertinent expressions developed by Quelle,*9 and 
modifying them slightly so as to include the axial variation 
of strain. The resulting expressions become for a ray polarized 

radially 

AP (r) « (n-1) f3f> e  (r)d2 J 0        z 

or(r)Bt, + a2(r)B1 + ae(r)Bi      dz 

+ 3paT [(-L - n°0 (I+6] (196) 

and for one polarized tangentially 

APe(r) » {n-DftP e2(r)^ 

-  f        Ui*)^ + az(r)B1 + ae(r)Bn      dz 

+ 3^T teL • n°0 (^+ti] (197i 
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where n is UVJ optical index of the glass; p and q, optical 
constants to be determined experimentally; V0, the velocity of 
light in the unstressed medium; and Bx and B«, the characteristic 
stress optic coefficients. To obtain the total change in pathlength 
for the optical cavity, requires that the above results be combined 
with additional results for the portion of the rod in which plane 
strain applies. 

The computer provides the principal stresses and strains 
for each position in the relaxation array as superposed on the end 
portion of the rod.  To determine the axial optical path change, 
then, through this region requires that a numerical point-by-point 
integration be made of the separate quantities defined in Eqs. (196) 
and (197).  It was found expedient to perform this integration by 
hand using a desk calculator. 

In the initial testing of the computer program, con- 
siderable difficulty was encountered in getting selected problems 
to converge. The principal source of difficulty was subsequently 
determined to be the result of choosing too few radial subdivisions 
in the array in an attempt to minimize computer operating time 
during the evaluation runs. When at least eight radial divisions 
were designated for an arbitrarily selected 2.5^ cm diameter rod, 
the residual quantities, Qij and Rij> would tend to zero and the 
problem converged properly.  It occurred, similarly, that a 
higher limit also existed for the number of radial points chosen 
for which convergence could be assured.  For the work done the 
number, nr, of radial grid divisions fell within the limits 

n 
16 <- — < ^0 

a 

where a is the radius of the rod in inches.  For a number of cases 
vhich fell outside these limits convergence was not obtained. 

The relaxation coefficients, X and 0, were found to play 
governing roles in the speed to which relaxation could be achieved. 
Ihe most satisfactory value for both coefficients in this work 
seemed to be unity inasmuch as under-relaxation tended to make 
computing too slow, and over-relaxation caused the solution to 
diverge at certain stages due presumably to inherent limitations 
on the mathematical process. 

To verify the accuracy of the computer solutions, it was 
sufficient to show that the results obtained compared favorably 
with known solutions in two limiting cases. Specifically, for the 
long rod, we kr»'™ that the stress distribution through a cross 
section beyond  »out 1.3 diameters from the end must be given by 
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a plane strain solution.  In addition, for the infinitely thin 
element, the disc, the results obtained must agree with the plane 
stress solution which is common to all radial sections. Figures 16 
and 17 provide an illustration of how the computer results compart 
with hand-calculaced results using plane strain and plane stress 
theory in these respective configurations.  First, a 2.5^ cm 
diameter AO 3035 neodymium glass rod, was considered with a 11.10C 
linear temperature rise from center to edge.  Figure 16 plots the 
principal stresses machine computed for a cross section 1X  diameter 
from the end using a minimum network array of 9 x 27 points. 
Figure 17> similarly, plots the computed stress pattern at the 
midplane of a 2.40 cm diameter glass disc using a 21 x 3 array 
and a 2.220C linear temperature rise between center and edge. 
Diameter to thickness ratio for the disc was 10 to 1. Negligible 
change was indicated in the stress distribution across the disc 
and axial stress remained essentially zero. Treating, in addition, 
the case of a short cylinder with a diameter to length ratio of 2, 
it was found that an intermediate solution to plane strain and 
plane stress occurred at the midplane. 

Fairly good agreement, therefore, exists between the 
computed results and the exact theory for these cases. The gradual 
deviation indicated in the principal stresses with increasing 
proximity to the axis is due to small residual errors in the 
computed stress functions which magnify in turn as ra tends to 
zero in Eqs. (l84a,d). Since a finite error is introduced from 
the transition of differential Eq. (I83) to finite difference 
form, small discrepancies between results cannot be removed 
completely. Error te;nns generated in using a square mesh array 
are generally of the order of a2 where * a» is the spacing of 
the points.60 Thus, the magnitude of these terms can be reduced 
by going to more divisions and thereby decreasing the mesh size. 
The benefit of this is demonstrated in Fig. 17 where 21 radial 
points on the disc were chosen and considerably improved agreement 
was achieved near the axis. 

Stress-strain patterns in the end region which contribute 
to an axial optical path variation are of interest. Accordingly, 
the simple arbitrary case described above using a 11.10C linear 
temperature gradient in a 2.5^ cm rod is treated further. Computed 
results showing the change in principal stresses and axial strf.xn 
near the end are depicted in Figs. 18 and 19 for radial positions 
chosen at .^77 and .95^ cm, respectively, from the axis. Clearly, 
the solution agrees with the plane strain results beyond about 
1 diameter from the end but changes significantly in the end region 
as predicted. Contrary to previous reasoning, though, the stress 
distribution at the end surface of the rod does not approach the 
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rac- il id tangential results for the disc, which from theory 
would >  .pproximately ^/lj  of the plane strain results shown. 

Using computed stress and strain results, the axial 
pathlength at various radial positions was calculated using 
Simpson's rule and integrating Eq. (196) above, tor radially 
polarized light, over the end region. The equation accounts for 
three effects; namely, the stress optical change, the index change 
with temperature, and the elastic deformation or strain. The 
integrated result cf the latter component, the axial strain, gives 
the physical displacement resulting in the end surface.  Illustrating 
their relative contributions to the total path change in AO 3055 
glass, these components are plotted separately in Fig. 20 along 
with ♦•l-sir summated result. The path difference or distortion is 
expressed relative to the axial position.  It is interesting to 
note that for a linear temperature gradient, a nearly linear 
relationship is preserved in all components. This suggests the 
possibility of compensating for differential path changes at thn 
ends in such a specialized case by utilizing a glass having an 
appropriate thermal index coefficient valuo, an, for t.te rod 
length involved where fron above 

n i KfeL -•(« \ 
V„ 

For comparison, the optical path change in the end region was 
computed also for this temperature distribution usir  lane strain 
theory and the results were higher by about 7^ f-om cfte computer 
solution presented.  In a 1 meter long rod, it turns out this 
error would amount to about 1$. 

A similar optical path change can be determined for 
tangentially polarized light by evaluating the various components 
in accordance with Eq. (197) above.  For AO 5055 laser glass, the 
optical coefficients B|] and Bx, were measured to be 6.1 and 8.2 
Lrewsters, respectively. The optical path for the radial 
polarization is calculated to be about 15^ greater than that for 
the tangential polarization at the point of maximum deviation 
which occurs at the surface of the rod. Since radial and 
tangential stresses become equal at the center of the rod, it 
follows that differences here due to polarization diminish to 
.^ero. 

In this study, attempt» were made to assess end effects 
for two other radial temperature patterns which could be considered 
more typical of conditions set up during l-.^ing. The first 
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temperature curve was derived from experimental gain distribution 
measurements, obtained under another program in using a 2.54 cm 
neodymium AO 3835 roughened surface rod pumped at 23.5 ^j input. 
The profile of the second curve was established from the computer 
calculation performed on this contract for a polished 0.9 cm 
diameter rod of the same glass (Fig. 11, curve 2). Both 
temperature patterns represent significant non-linearity 
with radius. 

In generating the first curve, temperature rise was 
considfced to be proportional to the increase in gain coefficient, 
ß, across the rod. This relationship proves basically valid since 
the inversion of ions in a four level laser material ^an be shown 
to be relatively linear with the absorption of incident photons 
per volume element. The specific equations become 

ß = „ In G 

AT oc ß 

where G is the measured gain; L the length of the rod, and AT, 
the temperature rise of the corresponding position for which ß 
is calculated. The proportionality between AT and ß must be 
determined for the pumping geometry considered. 

The fraction of electrical energy absorbed in the laser 
cavity as heat was actually investigated experimentally by making 
caloriroetric measurements on 12.9 nan and 18 mm rods of AO 3835 
glass. Each rod was fired at an input level of 9500 joules usin^ 
two linear flashlamps close-coupled to the rod in a conventional 
reflector configuration without cooling. Immediately following 
the pulse, the rod was removed from the system and placed into a 
cylindrical Cewar flask where heat could be exchanged with a 
prescribed quantity of water contained within the flask. Heat 
production in the rod was then determined by making careful 
temperature measurements on the water initially and after 
equilibrium conditions were reached. A Leeds and Northrup 
precision potentiometer was employed to record temperature. 

The results are described in Fig. 21.  In one case, the 
flashlamps were jacketed with pyrex tubing which served to absorb 
selectively much of the incident UV and  IR radiation; in the other 
case the flashtubes were non-jacketed, and this accounts for the 
greater heat production. One point is included also from earlier 
work in which the heat generated in a 2.5^ cm rod was determined 
on a fully assembled system where cooling water was circulated 
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over the rod within a pyrex jacket.  In this investigation, 
differential water temperature measurements were recorded in 
time between the inlet and outlet positions to the cavity.  The 
area represented by curve, then, was numerically integrated to 
establish the heat quantity released from the rod.  Fairly good 
continuity of the data points was found.  Therefore, it could be 
estimated with some certainty that between 25 and 30$ of the 
energy appeared as heat in the 2.5^ cm water clad rod under study. 
Using the 30$ level and the gain information supplied on this rod, 
a temperature diffr  nee of about 2.80C between center and ec*ge 
is calculated. 

Computed results for the optical path variation in the 
end region and surface contour change are plotted in Fig. 22 along 
with the temperature profile derived.  The optical path, as 
illustrated, was averaged for the radial and tangential polari- 
zations for purposes of comparing this curve with the athermalized 
case where temperature effects would be compensated for by proper 
regulation of on. As suggested in section 3? to obtain 
athermalization in birefringenc glasses in a practical way, the 
light must oass first through the laser in one polarization and 
return through the other, an, then, must be averaged from the 
stress optical effects in the two orientations.  The theory 
presumes, however, that the stress distribution will be axially 
uniform between the cavity bounds.  In a rod of finite length, 
the stress distribution changes considerably from plane strain 
near the ends, which may warrant that conditions for athermalization 
be re-examined. 

Hhe  significance of the ends is apparent from Fig. 22. 
Actual path changes over this region obtained by the computer 
method is represented by curve C a:id the results from another 
calculation invoking plane strain analysis throughout is shown 
by curve O. Since the expression for curve A, is a member of 
the composite expression for both curves C and D, changes can be 
implemented in the latter curves simply through control of the 
temperature coefficient of index values, %, in A. Theie is a 
proportionality evidenced here between curves D and A and this 
makes it possible to compensate for the temperature effect com- 
pletely in a long rod by making o^ sufficiently negative as 
described earlier. Curve D would then coincide with the vertical 
axis of the graph.  The difference between curves C anc" D, however, 
would remain essentially fixed; this being the finite optical path 
distortion remaining in an Mathermal!zee"' glass rod due to the ends. 
For the present temperature distribution, the path difference 
between center end edge is about 0.3 microns (for two ends) when 
athermalized.  This results in very slight negative power for the 

92 



AT - 0C 

1.0 

m 
tn 
d) 

•-t 
C 
O 
•H 
CO 
C 

Q. 
\ 

g 
H 
EH 
H 

04 

.75 

.50 

§ .25 

0 1 

(A) Plot of 2.5 pno^AT 
(B) End surface displacement, 

W(r) 
(c) Actual path change in 

1.25 diam. (radial and 
tangential polarizations 
averaged: Eqs.(x96)(197) 
Plane strain result for 
averaged path change in 
1.25 diam. 

(D) 

.25     0    .25    .50    .75 

PATHLENGTH CHANGE, AP (Microns) 

1.0 

I 
I 

Figure 22. Relative temperature change, end face distortion, and 
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overall rod under ti se athermalized conditions.  Tlie variation in 
surtdce contour is described by curve E. 

To correct for end effects, the value of c^ should be 
chosen to be less negative, so that curve C rather than curve D 
lies along the axis.  For the length shown (i.e., 1.25 diameters) 
the corrected value a^ should have the approximate value 
o^ = .72 ciyj. Here o^ is the value which will bring curve D to 
the axis. The value of o^ is that which will bring curve C to 
the axis at rp - .75. 

However, for a longer length rod the end effect becomes 
relatively less important. At a length of 1 m, the corrected 
value a^, will be 

a' - f1-^ -J-* .72  + 50 -1.25 • 2.54 J a _ 
n 50 50        J  n       n 

A slightly more complex temperature distribution is 
treated by the second example. Figure 25 depicts the results 
of the computer solution for this case and shows s'-.^what more 
perturbation due to tlir ends. Plane strain results and. actual 
optical path change were plotted here for the average of radial 
and tangential polarizations. It may be observed that as much 
as 1-1/4 microns path difference exists between the actual and 
the plane strain curves at about 60$ of the radial distance to 
the edge. As with the previous case, this amounts to residual 
distortion that would be present having employed an athermalized 
glass. For this case, however, the end face displacement, 
represented by curve B, shows considerably greater irregularity. 

In conclusion, it was demonstrated that for laser 
glasses which arc not designed to compensate for thermal stress 
effects, the differences in optical pathlength near the ends 
could become virtually obscured when considering the cumulative 
pathlength variation generated within the long rod. The ends 
would account for a few percent change, at most, from the 
analytical result based on plane strain calculation for the 
full length. On the other hand, though, it was shown for 
athermalized glasses that end effects in the rod could be the 
principal source of distortion left. Since path changes ir the 
end region are not, in general, related directly to the temperature 
distribution, compensation for these effects would require special 
modifications beyond regulation of the glass properties alone. 
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The most suitable scheme to use would depend to scene 
degree on geometri en^   d and temperature pattern imposed. 
Theoretically, only the thin disc configuration has axially 
uniform stress. Effective athermalization of a series of these 
elements would then be acnieved by utilizing a glass with the 
appropriate an value and correcting for the axial surface 
displacement in use by immersion in a suitable index m itching 
fluid.  For the rod configuration, where a significant 
temperature structure occurs, the addition of properly designed 
correction optics to the output system may substantially reduce 
the end problem. 

i 
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