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AB.••- ACT

A three dimensional hyperbolic differential equation
based on finite correlated particle velocities is derived
which is appropriate to modeling anisotropic turbulent
diffusion in the atmosphere. Cauchy initial data, the
mean wind, the Reynolds stress tensor, and a typical
frequency of pulsation are required fcr complete solution.
The outlines of plumes and puffs may be obtained with only
knowledge of the Reynolds stress tensor and mean wind
velocity. The classical parabolic diffusion equations are
a limiting rorm of this hyperbolic model.
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FOREWORD

This report is intended as a suzmry or preliminary
efforts to derive a general diffusion equation more
appropriate to atmospheric diffusion modeling than exist-
ing models.
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I. INTRODUCTION ?O ATMOSPHERIC TURBUILENT DIPFUSION

This phase upace derivation of a hyperbolic turbulent
diffusion equation is motivated by several less Seneral
random walk and hyperbolic diffusion models [6, 8, 13,
15t 16, 18, 19, 26] which appear to more reasonably re-
present the physical processes involved in atmosphericdiffusion than any of the classical models. The basis

for the classical models of turbulent diffusion almost
without exception, is one form or another of the parabolli
diffusion equation. Even the semi-empirical auwqsian
plupe equation, the foundation for much recent diffusion
studies, may be derived from a parabolic diffusion
equation [3]. Recent reviews of the state of diffusion
modeling in the lower atmosphere express a dissatis-
faction with the degree of generality to which existing
models may be extended. and agree that no comprehensive
mechanism of turbulent diffusion has been modeled (3, 4,
5, 14). It is significant that most recent reviews
concerned with diffusion application omit serious
consideration of hyperbolic systems such as those of
Monin [19] and Goldstein [13) which are expressions of
particle motions correlated as in .the case of atmospheric
turbulence. While these first efforts are not very
general, they do provide certain features which allow a
more realistic modeling compatible with practical
applications. In the present hyperbolic model, the
primary assumption, that diffusion can be represented by
a Markov process in phase space, is suggested as being
a less restrictive assumption than the correspondingL• assumption used in the derivation of the classical para-.
bolic diffusion equation. The classical parabolic
diffusion equation can be derived by assuming a Markov
process in configuration space [1, 8, 10, 17]. Further-
more the classical assumption that the velocity necessary --
for the formulation of a continuity equation can be
derived from the particle density gradient presents the
paradoxical result that densities exist everywhere even
a short time after a release. Thus particle paths exist
"for which there are no corresponding velocities. In the
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phase space model the particles have velocities - finite
velocities, The possibility exists then to relate the
velocities of the diffusing particles to the velocities
of the turbulent atmospheric fluid.
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Il. THEORETICAL DERIVATION OP TURBULENT DIFFUSION EQUATION

The derivation Is based on two premises. The first
is that turbulent diffusion can be described by

-statistical methods relating particle statistics to the
statistics of the atmospheric turbulence field. The
second is that the mean wind profile can be introduced
into the turbulence field.

The turbulence field representation will be based
on the "phase space" description of the probability
density for a particle. We assume that tho diffusion
can be represented by a Markov process In phase space.
The phase space representation of a particle .bas been
investigated by Chandrasekhar [1], Kramers [17), Obukhov
[22],Tchen [29], and Davies [8]. We shall start similarly
to Chandrasekhar. In the Markov process in phase space,
the probability density at t+At, W(t+At), is derived
from the probability density at t, W(t).

W(rou;t+at) - IIW(r-aru-au,t)#(r-aru-AuArAu)d(Au)d(Ar)

# is the transition probability density in phase space, r
Is t~e vector representation of the configuration space,
and u is the vector representation of the velocity space.

We now relate the Increments of time and configuration K-
space by

Ar - UAt. (2)

The transition probability density in phase space can now
be represented by the transition probability density In
velocity space and the Dirac delta function.

4* 4- 46 40 4 44

# M #(r-Ar. u-auau)S(ar-uat) (3)
The Integration over the configuration space Increment is
now easily performed.

W(riuatupt+At) -JV(ru-Auvt) *(ru-Au,au)d(Au) (4)

, 7
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Both sides are expanded in a Taylor series about the point

(r. u, t).

W + W At + (u'#IW)At + 0(At 2 ) -t

f WAu Au + ,..

$(W-1--AuI+ 2.r-,(Au, )2+ Z A U

I. £ 4j (5)

E4- Au +.+ (&U )2 -+ I jU A)Uj AU1  + ... )d(Au)
2 U , 2 1  iJ I

For the moments of the velocity increments we write:

<Au1 - $ auied(au) ; <Autau 3 ; - fJtiAu.#d(aU)

(6)

The expansion can then be rewritten:

-*4• 3W 1 3-2W
W at + u.vwAt -"_r•r <• -zAU 2 wA-"_

1  a i I>+- 2 1.' W aui

+ EaAU 2  ý + z - i-~L~. i 2 ~AU 7+ UIL *u1  ij ui au 2 (

+ 0( 'au 1 ujauk.)

Keeping terms to first order in At, dividing by at, and
going to the limit of At 40 yields

wt+•.I+V-(tW) + i 0 ( it1 )+ .. 0 (8)
At.o

where
limr 4A;41

a A -t z • (9)



Here we consider a as a mean acceleration with position

r. and velocity i. Thus the equation of continuity In
phase space is

Wt;+U"- W+fo (C) - 0 (10)

To obtain the continuity equation in configuration space
we integrate over velocity space,

"t + V'(O) 0 0 , (11)

where
P - IWdu

and -I t-Wd
O•U " P

To obtain a momentum equation we multiply the continuity
equation In phase space by j and integrate over velocity
space.

(pu) + s(,0I•) - , (12)
*.-

where - fiX.1Wdl ,

and

p* - 4Wdia

were s the mean exterior force per unit P at r ',, and
U and Ut are the first and secondvelocity moments
respectively of the particles at r, t. The continuity
equation and the momentum equation now form a hyperbolic
system of first order partical differential equations with
the dependent variable being the particle density in
configuration space. This system of partial differential
equations is the diffusion equation in configuration space.

5.



III. INTRODUCTION OF MEAN WIND PROFILE INTO TURBULENCE
FIELD

To introduce the mean wind profile into the turbulence
field we represent the mean velocity or the diffusing
particles as the sum of the mean wind and a macroscopic i
velocity representative of the turbulent flux with reject
to the mean wind field.

=(x, y, z) + V(x y, z, t) (13)

Furthermore we assume that the velocity in addition
possesses a stochastic term which may be represented bX
a trivariate normal distribution in the components of u.
This distribution is constructed such as to require that
the mean outline of the diffusing particles propagate
withn a velocity dependent on the stationary wind field
Independently of time. A distribution satisfying this
requirement is -l

W -((2w ) 1M1 exp[-l/2X'M X]}1'(x,y,z,t), (14)

U111 U12 U13- -

where M - I21 I22 M23 " 5 1,2-x x , etc.
U31 I13 2 II 1 2

IMI is the determinant of M and X' is the row matrix,
V'- =XI, x2 , X3].* X is the column matrix obtained by
transposing X'. We have X1- ul- V1- V11 x2 - U2 - V2 - v2 2
x 3 a U3- V3- v3, where the subscripts 1, 2, 3, indicate
the components in the i, J, k, directions respectively
of u, V. v. It is clear that the expected value i is

o V1114 iU21t 0311 - VV + VV. vV + vv + oa
V21 J2 0 122~1 U23~
"pal " 3 2 " t

We have defined la as the tensor of variances~and co-
variances of velocities relative to 'the mean V + v.

6
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In this caoe an assumption that (•v +cc icv"V is in-
dependent of time gives us the reqjired properties of
boundary propagation. We define pv as the turbulent
flux, E, and *,• as the turbulent energy tensor. The
substitution of the expressions from equations (13) and
(15) into equations (11) and 0.2) yields

Ot + I.OWS) - 0 (16)

and

(014) +'. r+' 3 +P J -01 - 0. (17)

The above equations constitute a hyperbolic system
of first order partial differential equations. These
equations describe the transfer of a scalar quantity,
through a turbulent fluid. Particulate diffusion and
heat transfer are processes for which the equations should
hold.

We now seek to relate.1 and c'vv to measurable
quantities. Once I and wvv: are given, It is clear that
with the four equations (one from the continuity equation)
(16), and the three from the vector momentum equation (17),
and the four unknowns (p and the three components of S),
Cauchy initial data is sufficient to determine the hyper-
bolic system of equations (16) and (17) [2].

For i we choose an acceleration caused by a resistive
force which is proportional to the turbulent flux in each
direction and an external force term which reflects the
contribution of gravity-btiyancy effects in the case of
heavy particles.

Ap i( j *3) + 36(3.3) + ky(k*3) J+ to (18)

The resistive force coefficient is interpreted as the
probability per unit time of reversal of the diffusing
particle. Monin (18), Davies [8]. and Goldstein C13)
independently derive similar expressions. We are •ssum-
Ing that there is no resistance to the mean flow, V.

"7r"
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Ka" tX1ind Mo* ri report"a~tsfactodr experimental
verItIC4cZOo o: a s1,ki arly theoty application using
thie same rq•istance teric jIJ] (21]. Moanin Interprets
the resistSn. Vqg termý as.be.nt;ejuivaent to -t~ypical
frequency of pulsation ogttpe tuprolence, Nbfnis...
approach seems consistent-irdth the present develbpment.
The values of this term mpy bV.deduced experimentally
from steady state evaluatlons-ol' bhei congentrations.

For the turbulent energy tensor, <0, we propose
that the Reynolds stress tens~o..b• LW4d, -We propose
that the second velocity moment of'the diffusing particles3
with respect to the mean wind field, is locally pro-
portional to that of the turbglent fluid, At present,
for simplicityv and heuristlo purposes, the proportionality
constant will bc assumed as unIty, Experiments such as
smoke puff apd plume outline photography may determine
more appropriate proportlonality coerficientso It must
be kept in mind that careful considftation of the type
of averaging used in repesenting cvv> is germane to
any appltcation. The <vv; avqragln.1zmust Ye con•atible
%tth t.e averaging use4 to fetrermje V.

Equatiom (17) tWn, bqcows

t
(19)

+ j(j) + ; 4 Q. -.

Formally to obtain X we c.ould have stab4 aImilarly
to tUe Kramers - Chandrasekhar approach to romwian
motion in a fleld Qf force [.1]. The increment of velocity,
Aas, which hq pert4.cje qxpqrencQs in 4he time at is S
expressed gs the swu of a term due to the external field
of forQe, J4&t,, ana 4lugttC4 quantIty vith a given-
les (c4 ist•4but~tica •(40),

?A U 0(4t.) .8Q
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The classical distribution of B(At) is given by

(-I(AtJ) -)___/_____) I

(4wqat) 3/2  (21)

where
q a OKT/m.

Physically, 1(at) represents the net acceleration
which a particl* experiences in time At under the In-
fluence of molecular scale fluctuations. We shall
neglect It compared to the much larger scale of tur-
bulence fluctuation§. Thus * also reduceg to the Dirac
delta function, 6(Au-iAt). For the term K we propose a
frictional force acting on the diffusing particle pro-
portional to the turbulent flux velocity and external
force per unit a due to buoyancy-gravity effects.

- - -'v) + (v) + ky(k v)] +
(22)

Substituting these values into equation (4) we may
formally obtain equations (16) and (19).

S. ... . .• - . . . .. . • ~ ...... .... • - : - • • . . . • • , • -. •
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IV. NORMALIZATION

In any application of the hyperbolic diffusion
equation it must be remembered that p Is a probability
density. Hence the concentration must be normalized.
If the equation were parabolic, a single term would be
sufficient to normalize the concentration. However,
for the hyperbolic equation it is necessary to perform
two Integrations to normalize, one over the characteristic
surfaces* and one over the volume contained therein. Y

Davies discusses this procedure £8].

r
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V. THE CHARACTERISTIC SURFACES r
The characteristic surfaces of the hyperbolic diffusion _. 7

equation provide a useful parameter of the effectiveness
of diffusion. The characteristics of the hyperbolic
diffusion equation are the loci of points of discontinuity
of the atmospheric contaminant. All solutions exist
within the characteribtics; there is no concentration out-
side of the characteristics. The characteristics in
effect represent wave fronts of the diffusing particles.

Pasquill [25] finds that the vertical spread of diffus-
Ing particles In a parabolic Lagrangian similarity treatment
is best represented by an extreme height encompassing most
of the particles, essentially as in the hyperbolic treat-
ment of Monin. In the present hyperbolic model this
concept is intrinsic rather than arbitrary as In the
parabolic equation application. The extremum corresponds
to the characteristics of the hyperbolic equation.

Ok

11 '

-- &'l•. -. .•..• .2 , --.



VI. THE PARABOLIC DIFFUSION EQUATION AS A LIMITING FORM
OF THE HYPERBCLIC EQUATION

Using a method similar to Davies [81 E91, and Monln
[181, the parabolic diffusion equation will be derived
from the hyperbolio diffusion equation. The momentum
equation may be written

((PV+S)t+ f" [o+SV+VS+P.vv) ]+Ia(I'31+36 (jS)+iy(k'S)-co)*

o 3j o -o (23)

If 1/al 1/Sp 1/y, are considered as parameters, and the
following limits are said to exist,

AA.

0 Ili 0 0

Is o .z[o•;.l • + 11(,2 +, CK (246)'%to'402). 0 133 0 'V + V j+ V (25)

0o 0 kk

0 0

t. 0 j 0 ;Uj + V 92 + Vei (26)

limits: l1m -2",
lim 6"<•''

SV. .4.-. .. . , ..
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then$ taking the limits and substituting the momentumequation Into the continuity equation, a parabolic

diffusion equation is round.
3 ÷3

_Z [V_ (r)PJ+ I r (27)
t!.la1D kpla"rrkl*a • 1 -

where VDU - Vt + Vc tI

Essentially we have the hyperbolic equation going to tpe
arabolic equation after times very large compared to-.
1U L. The parabolic diffusion equation found above is*

'hhe T~three dimensional Fokker-Planok equation [291 [30).
If V - V(z)i and 4M, has no djaggna. terms, equivalent
to partition of energy in the 19 Js k, directions, then
we have the semi-emperical parabolic diffusion equation
for the lower atmosphere [20] [24]. If in addition lD m 0,
the Smoluchowski equation is obtained [1].

13
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VII. FUTURE DEVEMOPMENT A

In the case of constant mean velocity, and isotropic
qVv., the present model reduces to those of Davies [8], 4

Goldstein [13], and Monin [18] in the appropriate number
of spatial dimensions. It is not fully clear under what
conditions the models are consistent with the various
spectra. In addition the effects of meandering have not
been included. Further refinement and development of the
present model, especially with respect to spectra and
pair particle density consideration, may be fruitful along
the phase space approach of Tchen [29] and the statistical
representation of meandering by Gifford [11] [12]. These
approaches are consistent with the development of the
present model. The role of large and small eddy scales
may then be explicitly included.

" iI
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