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FOREWORD

This report contains the results of efforts to understand some of
the biophysical mechanisms involved in the response of mammals to
air-blast overpressures and to impact of non-penetrating missiles
on the chest wall. One of the important aims of these studies is a
more complete understanding of the response data obtained with
mammals so that reasonable predictions can be made for the re-
sponse of man.

The empirical data and interpretative material included in this
report represent a portion of the results of an ongoing, long-term
program aimed at clarifying the biological effects of blast-induced
phenomena and assessing the consequences of exposure thereto.

This report was summarized on October 6, 1966, before a
symposium on the Biological Effects of Air Blast at the National
Academy of Sciences sponsored by the NAS-NRC Committee on
Hearing, Bioacoustics, and Biomechanics, "CHABA'". On Octo-
ber'11, 1966, that portion of the report concerned with the effects
of air-blast overpressures was presented at the New York Academy
of Sciences conference on Prevention of and Protection against
Accidental Explosion of Munitions, Fuels, and other Hazardous
Mixtures. The entire report was submitted for inclusion in the
Annals of the New York Academy of Sciences.



ABSTRACT

A mathematical model was described which was devised to study
the dynamic response of the thorax of mammals to rapid changes in
environmental pressure and to non-penetrating missiles impacting
the rib cage near the mid-lateral point of the right or left thorax.
Scaling procedures {os Siwnilar animals were described relating,
for a given degree of damage thke body mass of the animal to vari-
ous parameters describing the exposure ''dose. "

Internal pressures computed with the model for a dog exposed at
the end plate of a shock-tube were compared to those measured with
a pressure transducer inserted in the esophagus down to the levei -of
the heart.

Computed time-displacement histories of missiles following im-
pact with the right side of the thorax were compared to those obtained
experimentally by means of high-speed motion picture photography.
High internal pressures predicted with the model for non-penetrating
impact were compared to those obtained experimentally and theoreti-
cally for exposure to air blast.

Experimental data were presented arbitrarily assessing lung
damage in animals struck by non-penetrating missiles (constant im-
pact area) as a function of missile mass and impact velocity. These
data were compared for several missile mass-velocity combinations
with those computed using the mathematical model. Similarities in
the dynamic responses of the thorax to air blast and to non-penetrating
missiles were discussed.
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BIOPHYSICAL MECHANISMS AND SCALING PROCEDURES APPLICABLE
IN ASSESSING RESPONSES OF THE THORAX ENERGIZED
BY AIR-BLAST OVERPRESSURES OR BY
NON-PENETRATING MISSILES

I. G. Bowen, E. R. Fletcher, D. R. Richmond,
F. G. Hirsch and C. S. White

Introduction

During the Second World War, Schardin (1950) in Germany showed
that the mortality curves for animals exposed to air blast produced by
high explosives were similar to characteristic destruction curves for
window glass mounted in suitable frames and exposed to similar blast
waves; i.e., he demonstrated for both glass panes and for animals that
the criterion for damage due to exposure to blast waves of "short" dura-
tion is overpressure impulse, or momentum, while overpressure per
se is the determining factor if the duration of the wave is "long." The
destruction curve for window panes was not surprising since the pznes
clearly were spring-mass systems which would break at a critical de-
flection and the '"short" and "long' describing the duration of the waves
could be related to the natural period of the oscillating system. Never-
theless, Schardin was unwilling to state unequivocally that the animal
body acted as a spring-mass system when exposed to blast waves. He
did write that "very definite phenomena must be responsible for the
killing of an animal by shock wave.'" It was some time iater that
Clemedson and Jénsson {1961) and Richmond et 21. (unpublished data)*
measured intrathoracic pressures in animals subjected to air blast
and thus produced experimental evidence of an oscillating system.

The mathematical model presented herein is a revision of one pre-
viously developed to simulate the thoraco-abdominal system for studies
in blast biology (Bowen et al., 1965). The principal changes incorpo-
rated into the revised model are (1) individual consideration of the two
lungs, each possessing a chest-wall piston and separated from each
other by a piston representing the mediastinal tissue between the lungs,
(2) provision for loading not only by external pressure changes but also
by impact of a non-peretrating missile with one chest wall, (3) deletion
of a piston representing thc abdomen. The abdominal piston was omit-
ted not just for simplicity but because reported acoustic data indicates

*Data for rubbits were used in a previous report (Bowen et al.,

1965).



that the motion of the abdomen is much slower than that of the chest
wall, the resonant frequency of the abdomen being approximately 1/20
of that of the chest (von Gierke, 1964).

The model study can be divided into two distinct categories. The
first is aimed at a more complete understanding of the gross biophysical
mechanisms taking place within the thorax subjected to blast or missile-
produced trauma, this being accomplished through numerical solution of
the model for various situations. The second is application of the de-
rived scaling relations (assuming similarity of mammalian species) to
experimental data making it possible (1) to infer similarity or dissimi-
larity of various species, ard (2) to project, or scale, the experimental
results obtained with one or more species to be applicable to the human
case.

The Mathemazatical Model

The mathematical model illustrated in FIGURE 1 is a modified
spring-mass system designed to simulate the gross fluid-mechanical
responses of the thorax to rapid changes in environmental pressure or
to non-penetrating impact of a missile with the chest. Note that the
motions of the three pistons (the outside ones representing the chest
walls and the middle one the tissue between the lungs) are constrained
by springs simulating tissue elasticity and by dash pots simulating
frictional effects. The simple orifices of each of the chambers are
used to simulate the more complex airways of the mammal.

Provision was made to load each of the chest-wall pistons with
arbitrary pressure-time profiles, P) (t) and P2 (t), and the two orifices
can be loaded with a third functior, F3 (t). For non-penetrating missile
studies, one of the chest-wall pistons can be activated with the impact of
a missile with specified mass and initial velocity. The spring constant
K4 and damping factor J4 associated with missile impact are actually
parameters mostly determined by properties of the chest wall, e.g.,
area density, elasticity.

Equations describing the model were derived and programmed for
solution on a digital computer, the genera! procedures being similar to
those previously reported (Bowen et al., 1965). The new program,
however, incorporates a more accurate air flow analysis and, in general,
is more versatile. * ‘

Scaling Relations

Scaling equations appropriate to blast biology were derived using
the technique of dimensional analysis and the assumption of similarity of

*A more ¢ vlete description of model program will be given in
a subsequent i ., t.
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mammalian species; i.e., similarity of shape of the body structure and
equivalent distributions of tissue mass and elasticity (Bowen et al., 1965).
The equations are summarized below:

and

_ 2
P/P, = K, , (2)
if
¢ /2 13 -k (3)

o} 3

and
P'/P0 = K4 (4)

K's : Constants

R : Any nondimensicnal index of biclogical response, e.g.,
percent mortality or percent increase in lung mass.

P : Any characteristic pressure of the pulse occurring in
the lungs, such as peak pressure.

) 34 : Ambient pressure.
t :  Any characteristic time of blast waves of similar shape,

or of the internal pressure waves; e. g., duration of the
blast wave, time to reach maximum intrathoracic over-

pressure.
m : Body mass of similar animals.
P! : Any characteristic pressure of blast waves of similar

shape, e.g., peak pressure,

In order to derive the simplified scaling equetions listed above, it
was necessary to make.certain approximations — the most significant of
which involves the damping factor J and the ambient pressur/e Po. The
more accurate scaling requires that J be proportional to Po1 2 “Since,
in fact, J does not increase with Py, the ratio P'/Pg for a given biologi-
cal response would be expected to decrease as the ambient pressure in-
creases. This effect, although not great, has been noted experimentally
(Damon et al., 1963 and 1966a).

Since much of the experimental data in primary blast biology is ob-
taincd with high explosives, it is worthwhile to combine the biological
and weapons scaling procedures. In conventional weapons scaling,



: - 4
P/Po = K, (4)

and

1/3 1/3  _ 5
tP " /W = K, (5)
if

1/3 1/3  _
RP /W = Ky _ (6)

where W and R are weapon yield and range, or distance, from .th_e ex-
plosion, respectively, and the K's are constants. Thus, corabining

Eqgs. (3) and (5),

1/2 _ w3 3 "
WP " /m = K3 /Ky = K, (7)
and combining Eqs. (3), (5), and (6),
1/2 1/3 -
R Po / m = K3 K6 / K5 = K&‘ (8)
An extension of the analysis to include non-penetrating missiles
results in the following:"
1/2 _
v /P)" = Kq (9)
= 10
M/m Ko (10)
A/m2!3 K, (11)
v, : Impact velocity of the missile.
M : Mass of the missile.
A : Area of impact of the missile.

Measured and Computed Intrathoracic Overpressures

Parameters listed in TABLE 1 for a 10-kg dog were used in the
model to simulate an experiment in which a dog was placed at the end-
plate of a shock tube, as illustrated in FIGURE 2, and subjected to a
reflected blast wave of about 48-psi overpressure (Richmond et al.,
unpublished data). A pressure transducer was placed in the esophagus
near the bifurcation of the trachea to measure intrathoracic pressure
versus time.

Although side-on overpressure was measured near the end-plate,
it was necessary for the model study to make different estimates of the
pressure profiles loading the right and left chest walls. Criteria used
for this purpose were obtained, in part, from a model study in which
rectangular blocks were loaded with blast waves of various magnitudes
(Iwanski et al., 1957). The thorax of the dog was approximated as a

-5-



TABLE 1. NOMINAL VALUES OF MODEL PARAMETERS FOR A
%
10-KG DOG AND BODY MASS SCALING FACTORS
m: body mass, kg
10-kg Dog Scaling Factors
Blast Missile Blast Missile#*
A, cm 131 90 (m/lO)Z/3
£, em 94. 6 94. 6 (m/10)273  (m/10)%/3
A., cm 59. 1 59. 1 (m/10)273  (m/10)2/3
M,, 168 90.5 (m /10 (m/10)1/3
M,, 122 122 (m./10) (m/10)
M3, 72.4 72.4 (m/10) (m/10)
J., dyne-sec/cm 1,10 x 10> 3.09x 10%  (m/102”®  (m/10)%/3
J,, dyne-sec/cm 8.02 x 104 8.02 x 104 (m/10)2/3 (m/lO)Z/3
!
J,, dyne-sec/cm 1.56 x 104 1.56 x 10 (m/10)%/3  (m/10)%/3
K,, dyne/cm 3.00 x 10° 8.76 x 10* (m/1~0)1/3 (rn/l())}'/3
K,, dyne/cm 2.17x10° 2.17x10° (m/10)}/3  (m/10)!/3
K,, dyne/cm 1,11 x10°  1.11 x10° (m/10)1/3  (m/10)}/3
V,, cm> 150 150 (m/10) (m/10)
V,, cm’ 108 108 (m/10) (m/10)
A}, AL cm® 2.19x 1072 2.19x10"% (m/10)%/®  (m/10)%/3
T4 dyne-sec/cm 2.27 x 105 (m/10)2/3
K,, dyne/cm'®3 5.66 x 10° (m/10)!/3

*Methods used to evaluate the model parameters are described in

the Appendix.

**In the eXxperiments the impact area of the missile was not scaled with
the body mass of the dog as required by Eq. (11); thus, most of the re-
maining scaling relations for missile impact are uncertain.
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long block 7. 15 inches high and 5. 84 inches wide, perpendicular and
parallel to the direction of shock travel, respectively, with flow occur-
ring over and under the block.

Note in FIGURE 2 that the right side of the thorax is assumed to be
loaded initially with the full reflected overpressure which decays be-
cause of flow to the incident overpressure plus dynamic pressure. A
short time later the reflected blast wave arrives from the end-plate,
after which the thorzx is completely engulfed in stagnated air. The left
side of the thorax is assumed to be loaded instantaneously with the re-
flected overpressure when the incident wave reaches the end-plate.

Even though the right lung was loaded first, because of the step-
like nature of the loading function the computed peak intrathoracic
overpressure was lower, and later in occurring, in this lung than in
the ieft one. This result is in agreement with observations that simi-
larly exposed mammals received more damage in the lungs nearest the
end-plate than in the other (Richmond et al., unpublished data).

The intrathoracic overpressure measured in the esophagus peaked
at 257 psi in about the same time as that computied for the left lung.
The peak overpressure computed for the left lung was higher (298 psi)
and that for the right lung was lower (214 psi) than the measured value,
pointing to uncertainties in the interpretation of intrathoracic pressures
measured in the esophagus between the lungs.

Sensitivity of Computed Response to Model Parameters

Because of the complex nature of the interactions of various mechan-
isms invelved in the implésion process, it is very difficult to predict the
significance of various animal parameters on the response of the animal
to blast. In the study described below, peak intrathoracic overpressures
were computed for one blast situation, individually varying six sets of
model parameters. The results are compared with peak intrathoracic
overpressures computed, using nominal parameters, for several blast
waves for which animai response has been determined experimentally.

The blast situation used is the same one described in the last section
for a 10-kg dog placed at the end-plate of a shock tube. FIGURE 3 (left)
contains a plot of the average computed peak intrathoracic overpressure
as a function of the indicated parameters varying between 60 and 140 per-
cent of their nominal values listed in TABLE 1. These results can be
related to the intrathoracic overpressures shown on the right side of
FIGURE 3 computed, using nominal animal parameters, for blast waves
corresponding to various levels of 24-hr mortality (Richmond et al.,

1966a).

The computed results show that intrathoracic pressures are most
sensitive to changes in the damping factors; a 40 percent increase in the
J parameters, representing an increased frictional loss, resuits in a
decrease in predicted mortality from 50 to 22 percent. An increase in

-8-
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volume increases the distance of piston travel to achieve a given volume
change, resulting in increased frictional, or viscous, losses and reduccd
internal pressures. Conversely, an increase in piston area reduzes the
distance traveled and results in an increased internal pressure. An in-
crease in mass results in the piston attairing the same momentum at a
lower velocity. Since frictional forces are proportional to velocity, the
resulting internal pressures are higher.

It is noteworthy that the response of the model is practically un-
affected by £40 percent changes in the spring constant and orifice area
parameters. This would suggest (a) that the structural strength of the
thorax is small relative to the forces involved in blast and (b) that in-
significant amounts of air are transported to and from the lungs during
the short times involved in the blast sxperience.

Computed Response to Free-Stream Exposure

The blast situation examined in the previous sections was that of the
animal placed at the end-plate of a shock tube. Consider now the situa-
tion where the animal is in the free-stream with its right side facing the
oncorning blast wave. Theoretical studies of the free-stream situation
were made with the 10-kg dog parameters (TABLE 1) and blast waves
of ""long" and '"'short'" duration. Loading of the right and left sides of
the thorax was estimated in a2 manner similar to that previously de-
scribed for a dog at the end-plate of the shock tube using the criteria
of Iwanski et al. (1957).

Four blast waves of "long' duration {no pressure decay in the first
three msec) were used whose incident overpressure plus dynamic pres-
sure equal 47.9, 50, 52, and 54 psi (ambient pressure: 12 psi). The
loading functions estimated for the 47. 9-psi wave and the computed intra-
thoracic overpressures are plotted in FIGURE 4 (ieft). The peak lung
pressures computed for the rernaining blast waves are shown in the same
graph. Note that blast waves with incident plus dynamic pressures be-
tween 52 and 54 psi result in approximately the same average peak lung
pressures as that computed for 50 percent mortality (250 psi) shown in
FIGURE 3. Itis also noteworthy that the computed pressures for the
left lung are somewhat higher than those for the right lurg even though
the assumed blast loading for the right lung is considerably higher.

The ''short''-duration blast wave has an incident overpressure of

48 psi and duration of two msec, the shapes of the overpressure and dy-
namic pressue waves being determined from numerical studies of TNT
blast waves (Brode, 1957). In this instance, the estimated loading for
the right lung is much greater than that for the left and consequently the
right lung is subjected to higher compression. The average of the peak
overpressure computed for the right and left lung is 252 psi, approxi-
mately that shown in FIGURE 3 for 50 percent mortality.

No direct comparison can be made at the present time between the

computed results of this section and published experimental data. How-
ever, unpublished results of free-stream experiments, referred to by

-10-
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Richmond et al. (1966a), are pertinent to the problem. Guinea pigs
werc exposed broadside at the end-plate of a shock tube and in various
orientations in the free-stream, i.e., no end-plate. For broadside
prone exposures in the free-stream, it was reported that the 50 per-
cent lethal condition was aftained if the sum of the incident overpres-
sure and the dynamic pressure was approximately equal to the re-
flected overpressure killing 50 percent of the animals exposed at the
end-plate. The computed results for the '"long'-duration wave (FIG-
URE 4, left) are approximately consistent with this criteria.

Body Mass Scaling Applied to Step-Load Data

Small animals were placed in wide-mesh cages and exposed side-on
at the end-plate of a shock tube and at various distances up to 12 inches
away from it (Richmond et al., 1959). An attempt was made to produce
incident and reflected shock waves of constant magnitude by using ap-
proximately the same overpressure in the compression chamber. The
reflected overpressures measured for the entire series of shots varied
between 48 and 56 psi, the average being 52.1 psi. The corresponding
average of the incident shock overpressures was between 17 and 18 psi,
spanning the 17.2-psi shock that theoretically would produce a reflected
wave of 52.1 psi for the conditions of perfect reflection at normal in-
cidence and an ambient pressure of 12 psi.

Animal mortality was reported for the mouse, rat, guirea pig, and
rabbit as a function of distance from the end-plate. All animals placed
against the end-plate were killed but the mortality showed a decline as
the distance from the end-plate was increased — the distance necessary
to afford a given degree of protection being greater for the larger ani-
mals than that for the smaller ones.

The experimental mortality data are plotted in FIGURE 5 (left) as a
function of time between incident and reflected shocks using the center
of the animal cage as the reference point. As noted above, the magni-
tude of the pressure steps were, on the average, the same for the en-
tire series of experiments; therefore, the scaling relationship expressed
in Eq. (4) is satisfied. According to Eq. (3) the time scaling would be
accomplished if the time between the steps were proportional to the cube
root of body mass. These concepts are tested in FIGURE 5 (right) in
which mortality is plotted as a function of scaled time. Although dis-
crepancies are observed in the guinea pig response to the blast waves
with the longer times between steps, the data in general can be repre-
sented bv a single line instead of one for each species.

A significant result of the analysis described above is that it sup-
plies evidence of similarity of the four species of animals insofar as
response to blast exposure is concerned. However, no indication was
given of the biophysical mechanisms involved in the step-load experi-
ence. A previous study (Bowen ¢t al., 1965) indicated that the animal's
response to the first step effectively establishes a higher local ambient
pressure which helps to protect it from the second step. Qualitatively,
this concept is in agreement with the ambient pressure scaling relation
expressed in Eq. (4).

-12-
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Combined Biological and Explosives Scaling

The scaling relations of Eqs. (7) and (8) are graphically iilustrated
in FIGURE 6 for overhead charges and a given ambient pressure. Note
that all linear dimensions of the second and third blast situations por-
trayed are increased by factors of two and three, respectively, of the
corresponding ones in the first case. The peak reflected overpressures
experienced by each of the three animals are the same, but the dura-
tions of the blast waves are proportional to the animal body length or to
the cube root of the body mass.

To test the validity of the scaling procedures illustrated in FIG-
URE 6, high-explosive mortality data (Richmond and White, 1962, and
Richmond et al., unpublished data) were translated into heights of burst
and TNT charge weights using blast data for Pentolite (Goodman, 1960)
assuming that 1.1 lbs of TNT is equivalent to 1 1b of Pentolite. The
computed charge weights and the heights of burst were then normalized
to animal body mass and to the cube root of body mass, respectively.
The resulting data plotted in FIGURE 7 indicate that the points for the
small animals (mouse, rat, guinea pig, and rabbit) determine one line
and that those for the larger animals (monkey, dog, goat, sheep, and
swine) determine another.

Lines of constant scaled impulse and of constant maximum over-
pressure are also plotted in FIGURE 7. As noted by Schardin (1950)
for single species of mammals, each of the tolerance curves for the
grouped species approaches a constant scaled impulse for small
charges, and durations, and approaches a constant maximum cver-
pressure for larger charges.

The above indicates a degree of animal similarity within each of
two groups. Published data {Crosfill and Widdicombe, 1961) which are
plotted in FIGURE 8 present some evidence of the differences between
the two groups of species. Note that the lung volumes, normalized to
body mass, of the larger species (monkey, cat, dog, and man) are
approximately three times as large as those for the smaller species
(mouse, ra., guinea pig, znd rabbit). On the other hand, the densities
of the lungs of the larger species are only about one-half those of the
smaller.

Analysis of Pressure-Duration Data

Experimental data used in this study were obtained by exposing ex-
perimental animals near a reflecting surface to shock-tube and high-
explosive generated blast waves (Richmond and White, 1962; Richmond
et al., 1966; Damon et al., 1966b; Richmond et al., unpublished data).
The reflected overpressure and wave duration data reported are applica-
ble to 50 percent mortality in 24 hours and to an ambient pressure of
12 psi. '
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TV = Tidal volume be 1.0g/cm :
M : Mass of lungs ‘
Figure 8. Average lung volume per body mass and average lung

density as functions of body mass for 8 species of
mammals. Data from Crosfill and Widdicombe (1261).
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Equations (3) and (4) were used to scale the individual overpressure-
duration combinations obtained in the experimental studies to be applica-
ble to a 70-kg mammal and to 14. 7-psi ambient pressure. The logarithm
of maximum overpressure was then plotted as a function of reciprocal
duration of the blast wave as illustrated in FIGURE 9. The plotted datum
points tend to fall along straight lines separating the mammalian species
into two groups: (1) mouse, hamster, rat, guinea pig, and rabbit; (2) cat,
monkey, dog, goat, sheep, swine, and cattle. Although more species are
included in the present study, the group divisions are consistent with those
previously shown in FIGURE 7 for the high-explosive experiments.

Results of least-squares analysis are presented in FIGURE 9 for each
group of species. Although considerable scatter appears in the data of
both groups, the small-animals points show r.ore internal consistency
than do those for the large-animal group. The standard error of estimate
in overpressure is approximately 10. 6 percent for the small animals and
12. 4 percent for the large. Although a judgment is premature at this time,
the single monkey point suggests that primates may have higher blast tol-
erance than other Orders of Mammalia tested.

Partial Impulse Analysis

Maximum compression of the lungs typically occurs very soon after
arrival of the blast wave as illustrated in FIGURE 2 for a 10-kg dog. The
question now to be investigated is whether or not the data presented in
FIGURE 9 can be used to estimate a characteristic time, to, during which
the blast wave causes the most significant response of the thorax, maxi-
mum compression. The second and more important phase of the problem,
however, is to determine an invarient parameter, and its magnitude, with
which to describe the blast wave during time to. As mentioned in the in-
troduction (Schardin, 1950) and illustrated in FIGURE 7, the important
blast parameter for waves of '""short'" duration is impulse. Thus, a reason-
able procedure would be to relate the magnitude of this impulse to that of
the impulse occurring during time, to, for blast waves of any duration.
The latter has been called partial impulse, Ig.

The trial-and-error methods used to test the above hypothesis are
not dependent on a prior knowledge of the magnitude of the impulse ap-
plicable to ""short' -duration waves. It is necessary, however, to use
data for a wide range of durations.

The first step in the procedure was to appreximate the pressure-
time relation for all blast waves with

P:Pm(l-t/t+)exp(—nt/t+) (12)
where P is overpressure, Py maximum overpressure, t time, t+ duration

of the wave, ard n is a function of P and ambient pressure. Values of n
were determined from data for Pentolite (Goodman, 1960).

-18-
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Equation (12) was integrated to time, tg, to obtain partial impulse,
Io.

Io=P_t /n® [{exp(—nty/t)}(nt /t . +1-n)+n-1]1 (13)

o m +

The next step was trial and error in nature and consisted of using
Eq. (13) to determine maximum overpressures and durations of blast
waves having given values of tg and I to determine curves similar to
A and B in FIGURE 9. In general, the value of to determines the slope
of the curve and the value of Iy its vertical displacement. Several trials
were made until parameters were found resulting in curves A and B
(FIGURE 9) which closely approximate the regression lines for the large
and small mammals, respectively.

The characteristic time found using the large animal data is 2.1
msec applicable to the 70-kg mammal and 14. 7-psi ambient pressure
(FIGURE 9). This time scaled to a 10-kg mammal and 12-psi ambient
pressure is 1.22 msec. Referring to the intrathoracic overpressure
data plotted in FIGURE 2, the characteristic time of 1.22 msec is ap-
proximately the time between arrival of the blast wave at the end-plate
and peak intrathoracic overpressure, 1.11 msec, and also near the
time between arrival of the blast one-half animal width from the end-
plate and peak intrathoracic overpressure, 1.25 msec.

The implication of the above analysis is that the response of the
mammal is determined by the magnitude of the impulse occurring with-
in a characteristic time. It should be remembered, however, that the
experimental data were obtained with "fast'"-rising pressure pulses in
a reflecting blast situation and for 50 percent lethality. The character-
istic time and partial impulse would probably be different for other
levels of responsc and also for other blast situations, e.g., step loading
or free stream.

Estimates of Mah's Tolerance to Air Blast

The experimental data analyzed in the two previous sections and
plotted in FIGURE 9 were scaled to an ambient pressure of 14. 7 psi and
to a body mass of 70 kg — approximately that of man. A question arises
regarding the applicability of the data in estimating human tolerance to
air blast, particularly since two sets of divergent criteria were derived —
one using the small-animal, and the other the large-animal data. There
is no firm assurance than man's response to blast is similar to that of
either group; however, two types of evidence are available which indicate
that it is probably more similar to that of the la rge mammals than to that
of the small. The first is the physiological data (Crosfill and Widdicombe,
1961) plotted in FIGURE 8 and the second is an estimate of man's toler-
ance, described below, which was based on human data (Desaga, 1950).

During World War II eight individuals located in an open-topped

anti-aircraft gun emplacement were exposed to air blast following the
detonation of a 2000-1b bomb. All except one of the exposed men were
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injured, two fatally. The fatal cases were located near a corner where
pressure reflection occurred. Desaga estimated the incident overpres-
sure to be 57 psi, with reflection to a maximum of 235 psi. It is not
possible now to say how much time may have elapsed between the occur-
ence of the incident and reflected waves at the location of the fatally in-
jured men. There may well have been a delay of the order of 2 msec, a
circumstance that could have increased tolerance significantly. It was
noted that one of the fatally injured individuals also suffered a fractured
skull. Even so, the condition of the lungs described was typical of pri-
mary blast injury and no doubt contributed mostly to death which occurred
about 45 minutes after exposure in each case.

Making use of these data, Desaga (1950) estimated that the '"lethal
limit" for man was 100 psi for a charge weight of 550 kg. Data presented
elsewhere in the report were used to estimate a pulse duration of 6.6
msec. The point in FIGURE 9 representing these data falls on the toler-
ance line derived from the data for the largc mammals; however, inter-
pretation of "lethal limit'" results in 100 psi being the lowest overpres-
sure at which Desaga estimated that lethality would occur — not 50 per-
cent lethality.

It is also instructive to consider previous estimates of man's tol-
erance to blast which were based on animal data. An early estimate
(Fisher et al., 1941) was derived from data obtained with mice, guinea
pigs, rabbits, monkeys, and goats. The animals were exposed tail-on
to charges detonated at ground level. The goats were restrained with
rope netting and the other animals were exposed in wire cages. Ex-
trapolation of the experimental data to 60- and 80-kg mammals predicted
50 percent lethal overpressures of 392 and 460 psi, respectively, appli-
cable to pulse durations ranging from 1 to 3 msec. The overpressures
are plotted in the upper left corner of FIGURE 9 as dotted lines. It was
not feasible to extend the lines in the chart to the appropriate duration
limits; however, it is apparent that these estimates are in agreement
with extrapolated tolerance line derived from the large animal data.

Next to be considered are estimates based on mouse, rat, guinea
pig, rabbit, dog, and goat exposures which were similar to those of the
present study (Richmond and White, 1962; White et al., 1964; White et
al., 1965). Body mass extrapolation of these data to a 70-kg mammal
yielded the tolerance data listed in TABLE 2. Agreement between these
estimates and those of the present study is good for the "long'" -duration
waves; however, considerably higher tolerances were predicted for the
""'short''-duraticn waves.

Previous estimates of -the tolerance of a 70-kg mammal were made
by employing the same scaling techniques and the same dog and goat
data as those used in the present study (Bowen et al., 1965; White et
al., 1965). Thesec estimates, listed in TABLE 2, show reasonable
agreement with the current estimates derived from data obtained with
seven species, the greater deviations occurring for the shorter dura-
tions; e.g., 18 percentat 1.73 msec, and 10 percent at 2 msec.

-21-

CER T R A IR 0. Y e

A AR e 8 e e am

B s P ot 0 B T

i

G 1 PR



TABLE 2. A SUMMARY OF VARIOUS ESTIMATES OF
MAN'S TOLERANCE TO AIR BLAST
Tabulated overpreccurcs in psi correspond to

50 percent mortality except where noted.
Ambient pressure: 14.7 psi

Duration Present Richmond Bowen Richmond Fisher Desaga,

msec study et al., et al,, & White, et al., 1950
1966b 1965 1962 1941
1-3 416%* 340 1000 392-469%:*
321 290
184 159-220 188 528
118 120 227
6.6 100 98 168 10053k
10 84.5 79 120
20 71.5 64 87
30 67.6 62 78
60 64.0 62 71
400 61.0 58.3 62 64

*Extrapolated to 1. 73 msec.
**Lower and higher overpressures apply to 60- and 8C-kg mammals,
respectively.
*%x%x'' Lethal limit' overpressure defined as lowest overpressure at which
mortality occurs.




The other estimates to be considered were made with essentially
the same data as those used in the present study (Richmond et al.,
1966b). Using tolerance data for ninc species of mammals varying in
size from the mouse to the swine, body mass extrapolation yielded pre-
dictions of 50 percent lethal overpressures for man ranging between
130 and 180 psi for wave durations of 3 msec and an ambient pressure
of 12 psi. These overpressures scaled to 14. 7-psi arnbient pressure,
159-220 psi, bracket the estimate of the present study, 184 psi. By
similar methods, an estimate of 47. 6 psi was obtained for man exposed
to ""long''-duration waves. This overpressure scaled to 14. 7 psi ambi-
ent pressure, 58.3 psi, agrees well with the current estimate listed in
TABLE 2 for a duration of 400 msec, 61.0 psi.

Non-penetrating Missile Experiments

The experimental arrangem.ent for the non-penetrating missile
studies is illustrated in FIGURE 10. The air gun used in these experi-
ments has been described previously (Bowen et al., 1956). Note the
light beams and photocells placed one foot apart near the end of the
barrel. An electronic timer was started and stopped by the missile
interrupting the first and second light beams, respectively. The
elapsed time was used to determine the impact velocity of the missile.

A cup-shaped missile was constructed of aluminum in such a way
that its mass could be varied. Impact occurred on the flat circular
end whose diameter was 7 cm. The least massive missile used was a
cylindrical piece of balsa wood with an aluminum plate cemented to

the end impacting the dog.

A grid placed below the missile trajectory served as a background
for pictures taken by a high-speed motion picture camera (Fastex)
located about eight feet directly above the end of the barrel.

The pendulum-like mount for the dog had a radius of motion of
about 10 ft. The underside of the dog was supported by a shallow
channel about four inches wide which was contoured to fit the neck and
head. The experimental animals were anesthetized and positioned so
that impact would occur with the rib cage near the mid-lateral point of
the right side of the thorax.

Missile Time-Displacement Study

Motion picture records made in the experiments described above
were used to determine the positions of the missile on successive
frames taken at the rate of 6 - 12 per msec. Readings were made just
prior to impact to determine impact velocity and for several msec after-
wards.

Velocity and acceleration of the missile as a function of time were
determined by a moving spline method (Jordan, 1965) assuming accel-
eration to be constant over each time interval (.08 - .17 msec) and
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velocity to vary linearly with time in the same interval., A second de-
gree polynominal was fitted by least squares to the f1rst_tl'.xr.ee d1§-
placement points, forcing the curve to pass through.the initial point
with a predetermined initial slope (velocity). ‘The first and seco_nd
derivatives of the fitted polynominal were used to compute velom'ty

at the end of the first time step and the average acceleration during
the first interval. Moving forward one time interval, the procedure
was repeated making use of the previously computed displacement anc‘l
velocity to force the initial displacement and slope of the new fit. This
was continued until all the displacement data had been analyzed. This
method, while producing some smoothing of the raw data, did not ob-
scure significant features of the time-displacement curve as did other .
methods which were tried.

The plotted points in FIGURES 11 and 12 illustrate graphically the
results of two time-displacement analyses. Note in each case that the
missile velocity decreased rapidly for about 0.4 msec corresponding
to the time necessary for a section of the chest wall to attain the same
velocity as the missile. The next marked decrease in missile velocity
oczurred from about .7 to 1.2 msec, evidently corresponding to the
buildup of gaseous pressure in the right lung due to the inward motion
of a portion of the right chest wall.

The experiments described above were simulated with the model
using, except where noted, the model parameters listed in TABLE 1
scaled to the appropriate body mass. Two model solutions are shown
in FIGURE 11 for experiment M50. The first.was made with the nomi-
nal value of lung volurne for a 17.7-kg dog (457 cm3) and resulted in
appreciable deviation, after one msec, of the computed displacements
from the measured ones. The second solution was obtained with a
lung volume 75 percent of its nominal value. In this instance, the com-
puted displacement curve agrees well with the measured points. The
method used to support the anesthetized dogs illustrated in FIGURE 10
may have caused part of the abdominal contents to move into the chest
cavity, reducing the lung volume. Although information directly appli-
cable to this situation could not be obtained, Lim and Luft {1959) mea-
sured functional residual capacities of human subjects in the supine
position that were 65 - 70 percent of those measured when the subjects
were standing erect.

As menticned above, the displacements computed with a reduced
lung volume zre reasonably consistent with the measured points (FIG-
URE 11). The computed velocity and deceleration curves agree reason-
ably well at the beginning and the end of the two-msec time interval,
but deviate somewhat from the experimental points in the middle of the
interval. '

Intrathoracic overpressures computed for the same experiment
(M50} are plotted in FIGURE 13 for both values of lung volume, Since
impact occurs on the right side of the thorax, pressure builds up in
the right lung first and later is transmitted to the left lung through
motion of the tissue between the lungs, simulated in the model by the
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middle piston. Note the significant diffcrence in magnitude and time of
the peak intrathoracic overpressures depending on the lung volume ’uscd
in the model. For the right lung, the peak pressure occurs just prior
to a peak in the computed missile deceleration curve.

Similar experimental and theoretical data are plotted in FIGURE 1'2
for experiments M65 and Mé6. The displacement data for these experi-
ments were averaged since the impact velocities were the same and the
dog and missile masses were nearly the same. The lung volume used
in the model to simulate these experiments was 305 cm3, 80 pexrcent of
the nominal value, A detectable deviation of the computed displacement
curve from the experimental points occurs after 1.5 msec. The com-
puted velocity and displacement curves, however, agree reasonably
well in the salient features with the experimentally determined points.
As noted in the data shown in FIGURES 11 and 13, the second peak in
the missile deceleration curve is associated with the peak overpressure
in the right lung.

Analysis of Non-penetrating Missile Data

Results obtained in 45 non-penetrating missile experiments, pre-
viously described, are presented in TABLE 3. Among other things,
the ribs fractured in each experiment are identified by number. These
data indicate some variation in the location of the impact although the
aiming point was always the mid-lateral region of the right side of th
thorax. - ‘

The ratio of lung mass to body mass was used as an objective in-
dex of animal response. Data listed in TABLE 3 were used to plot the
percent left lung mass of body mass, LL, as a function of the corre-
sponding normalized mass of the right lung, RL, as illustrated in FIG-
URE 14. The dashed line in this figure labeled "equal fractional in-
crease in lung masses' was determined from reported relative masses
of the right and left lungs of adult dogs (Schilling, 1965). If the lungs
of the experimental animals had increased in mass in proportion to the
original masses, the experimental points would fall along this line. How-
ever, the plotted data indicate that the response of the right lungs was al-
ways greater than that of the left as could be expected since impact always
occurred on the right chest wall, The left lung response, LL, remains
small until the value of RL exceeds one percent, From this point, the
values of LL generally increase but at a slower rate than RL. Thus, the
transition point where RL & 1% indicates the beginning of significant bLi-
lateral damage. In addition to impact per se the incidence of rib fracture,
which sometimes occurred even at low response levels, probably also
served to increase the mass of the right lung relative to that of the left.

The sums of the left and right lung masses were used in making a
general analysis of the animal response data; viz., L = LL + RL = the
mass of both lungs divided by body mass and expressed as a percentage.
FIGURE 15 contains a plot of impact velocity, vg, versus missile mass
as a percent of dog mass, M, plotted on a reciprocal scale, with measured
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TABLE 3. DATA FROM NON-PENETRATING MISSILE EXPERIMENTS

Code Dog Missile Impact Mass of Mass of Ribs Time
Mass Mass Velocity Right Left Fractured to Death,
kg g em/msec. L\;an Llﬁng (rib no.) min. ¥
M27 15.6  196.3 4.74 92 52 0 s
M 28 14.5 196.3 6.07 272 106 4,7,8 1-2
M 29 20.4 196.3 5.49 289 122 7,8 s
M 30 13.6 196.3 5.67 300 107 4 15
M 31 21.5 196.3 3.90 159 75 0 s
M 32 18.8 196.3 3.05 89 53 0 5
M 33 23.1 381.0 4.48 184 81 4,5,6,7 s
M 34 20.9 381.0 4.69 307 140 4 s
M 35 12.2  381.0 4. 72 210 89 5,6 6
M 36 22.0 196.3 4.12 282 78 c 30
M 38 16.8 98.0 5.09 125 71 5 s
M 39 18.1 381.0 2.25 126 68 0 s
M 40 15.4 381.0 2.23 131 58 0 s
M 4] 18.1 381.0 1.89 120 81 T sese s
M 43 16.3 381.9 3.57 2217 98 4 s
M 44 14.7 381.0 3.81 226 8% 4 s
M 45 17.0 196.4 6.19 292 132 4,5 s
M 46 16.3 196.4 3.08 110 75 0 s
M 47 18.1 196.4 3.54 166 77 0 s
M 48 18.1 196.4 6.07 329 121 4,6 8-10
M 49 16.3 196.4 5.21 197 -62 0 15-17
M 50 17.7 196.4 5.76 352 148 5,6 s
M 51 18.8 196.4 6.31 282 106 6,7 40
M 52 16.8 196.4 6.07 169 50 7.8 35-40
M 53 17.7 196.4 6.04 251 74 5 s
M 54 18.1 196.4 5.91 347 109 4 26
M 55 17.5 196.4 3.50 125 69 0 s.
M 56 16.6 196.4 3.60 201 70 7 s
M 57 14.7 196.4 3.14 146 58 0 s
M 58 15.4 196.4 2.31 76 53 0 s
M 59 15.4 196.4 2.62 76 49 0 8
M 60 16.8 196.4 3.85 138 69 0 s
M 61 16.8 196.4 4. 69 244 68 5 s
M 62 17.7 382.8 2.65 107 59 5 8
M 63 18.6 382.8 3.17 237 97 8 s
M 64 18.1 382.8 4. 66 210 84 6,7, 8 14
M 65 15.0 85.8 7.35 168 60 0 4
M 66 14.5 85.3 7.35 195 62 0 s
M 67 18.1 63.0 7.22 115 67 0 s
M 68 14.5 63.3 9.14 168 74, 4 s
M 69 20.9 86.0 6.04 193 75 4,5 s
M 70 22.2 86.0 6.22 253 127 0 8
M 71 21.5 85.6 5.61 151 77 0 s
M 72 19.1 85.6 8.02 245 96 4 s
M 73 20.2 85.6 8. 66 254 133 9 s

* g indicates sacrifice in 30 - 40 min.
*% dislocated from vertebra
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values of L placed adjacent to each point, ¥ An equation of the following
form was found to fit the experimental points:

v L®=b+c M} (14)

where a, b, and ¢ are constants to be determined from the experimental
data. Least squares regression analyses were made to evaluate b and

c for several assumed values of a. The value of a which produced the
lowest standard error of estimate was 0.7 and the corresponding values
of b and c were 1,915 and 1,544, respectively.

Equation (14) is plotted in FIGURE 15 for five values of L spanning
the range of the experimental data. It is of interest that the impact
velocity for a given L response approaches a constant value as the mis-
sile mass approaches infinity. This, of course, could not be true if the
animals had been securely held in a fixed position,

The mathematical model was used to simulate the non-penetrating
missile experiments using as an index of animal response the average
of the maximum overpressures computed for each lung. Values of the
model parameters listed in TABLE 1 for a 10-kg dog were used in this
study with the exception of those for lung volumes which were assumed
to be 80 percent of their nominal values. (See discussion in the last
section.)

The computed iso-overpressure lines plotted in FIGURE 15 are
approximately parallel to the iso-response lines determined from the
experimental data. However, as was shown by the data plotted in
FIGURE 13, the magnitude of the computed overpressures for a given
experimental situation is dependent to a great degree upon the assumed
value of the lung volume.

While direct correspondence cannot be justified, it is of interest
to note that the 250-, 200-, and 100-psi iso-overpressure lines shown
in FIGURE 15 would be expected to produce approximately 50, 25, and
0 percent mortality, respectively, according to the data presented in
FIGURE 3 (right). It appears that the animal mortalities shown in FIG-
URE 15 are somewhat higher than the above figures although insufficient
data are available for a rigorous lethality analysis.

Summary

A mathematical model was devised to study the principal biophysical
mechanisms of the thorax subjected to air blast or to non-penetrating
missile impact with a chest wall. The salient features of the model were
described and results were presented of a dimensional analysis of the
model parameters. The dimensional analysis, based on similarity of

*Note that the scaling relationship expressed in Eq. (11) could not
be satisfied since the impact areas were the same for all the experi-
ments but the body masses were not.
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mammalian species, resulted in scaling equations relating for a given
biological response the parameters of similar blast waves (e.g., maxi-
mum overpressure and duration of the wave) to the body mass of simi-

lar mammals and to the ambient pressure. The scaling relations were
interpreted for high-explosive blast waves making use of the usual scaling
equations for explosives. Also, the analysis was extended to include non-
penetrating missile impact with the chest — relating the mass and impact
area of the missile to body mass, and the impact velocity to ambient pres-
sure.

Estimated parameters were used in the model to simulate a blast ex-
periment in which a dog was placed at the end-plate of a shock tube, Com-
puted intrathoracic overpressures showed reasonable agreement with those
measured,

A sensitivity study indicated that computed. lung pressures decrease
with increases in the magnitudes of the damping factors, lung volumes,
orifice areas, and spring constants (listed in the order of importance).
Increases in the masses and areas of the pistons representing the chest
walls, however, result in higher computed lung pressures., These re-
sults were compared to intrathoracic pressures computed for various
blast waves producing different levels of mortality.

Intrathoracic pressures were computed for dogs exposed broadside
to "long'"- and "'short'-duration blast waves, Experimental results for
guinea pigs were used to help evaluate the results obtained for the 'long"-
duration wave,

Experimental data were used to show that approximately equivalent
mortality responses were obtained for mice, rats, guinea pigs, and rab-
bits exposed to step loads of constant magnitude if the time between the
incident and reflected shocks were proportional to the cube root of body
mass,

High-explosive data were used to establish for 50 percent mortality
the relationship between (height of burst/(body mass)l})3 and (mass of
explosive charge)/(body mass). It was found that two relationships exist,
one for small animals (mice, rats, guinea pigs, and rabbits) and another
for iarger animals (monkeys, dogs, goats, sheep, and swine). Possible
differences in the two groups of species were discussed in terms of pub-
lished physiological data.

A general analysis was presented of pressure-duration data obtained
by exposing experimental animals against reflecting surfaces to blast
waves generated by high explosives and shock tubes, The analysis showed
approximately similar responses within each of two groups of species:

(1) mouse, hamster, rat, guinea pig, and rabbit; (2) cat, monkey, dog,
goat, sheep, cattle, and swine. An equation was derived for each group
giving 50 percent lethal overpressure as a function of wave duration,
ambient pressure, and body mass of the mammal,
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Further analyses showed that the blast waves producing 50 percent
mortality have two approximately invarient parameters for a given borv
mass and ambient pressure; viz., partial impulse occurring within a
characteristic time, These parameters were evaluated for each of the
groups previously mentioned and the appropriate scaling functions indi-
cated. The characteristic timne was rclated to the time during which the
most significant animal response occurs — maximum compression of the
thorax.

Using appropriate scaling procedures, the analyses mentioned above
were made applicable to 70-kg mammals and 14. 7-psi ambient pressure.
The resulting blast tolerances were compared to those previously esti-
mated for rnan.

Experiments were described in which the rib cage of dogs were
struck by non-penetrating missiles near the mid-lateral point of the
thorax. Photographic data were used to make time-displacement analy-
ses for the missile. The results were compared with those computed
with the model and various biophysical mechanisms were discussed,

Results obtained ‘rom 45 non-penetrating missile experiments were
presented in tabular form. Lung mass data were plotted to show that the
lung on the side receiving the impact showed the greatest response to the
impact but that significant bilateral response occurred for the more
damaging impacts,

A general analysis of the non-penetrating missile data resulted in
an equation describing the empirical relationship between (1) lung mass
normalized to body mass, (2) impact velocity of the missile, and (3)
missile mass normalized to body mass. It was found that peak intra-
thoracic pressures computed with the model were approximately con-
stant for the experimental conditions producing constant normalized
lung masses,
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APPENDIX

Evaluation of Model Parameters for the Dog

The average lung volume defined in FIGURE 8 was obtained 1.’rom
data reported for dogs (Crosfill and Widdicombe, 1961). Assuming
that the volume ratio of the two lungs is the same as the measured
mass ratio for dogs (Schilling, 1965), 58 percent of the total lung
volume was apportioned to the right lung and 42 percent to the left.
These and other model parameters scaled to a 10-kg dog are listed
in TABLE 1, the subscript 1 referring to the right lung and 2 to the
left. The symbols used to identify the parameters are defined in FIG-
URE 1.

Spring constants, X] and I2, and orifice areas, A] and A2, were
evaluated by methods already described (Bowen et al., 1965). The
value of the spring constant applicable to missile impact, K4, was ob-
tained by static tests in which force was measured as a function of dis-
placement of the chest of a dog, the area of contact with the chest wall
being the same as that of the missile. The effective mass, M3, of the
middle piston representing the tissue between the two lungs was assumed
to be that reported for the heart (Rashevsky, 1959).

The initial slopes of measured missile velocity curves, (dv/dt)o,
were used to estimate the value of the damping factor, J4, as follows:

Jq =—(My / vy) (dv/dt)g (Al)

where M4 is the mass of the missile and vq is impact velocity. The
value of J4 presented in TABLE 1 is the average value obtained from
several time-displacement analyses.

Although initial estimates, described below, were made of the
values of the remaining parameters (A}, A3, A3, M1, M2, J1, J2,
J3, and K3), the estimated values were subject to adjustment in order
to achieve reasonable agreement between the computed and measured
responses of the animal as illustrated in FIGURES 2, 11, and 12.

Assuming negligible air flow to and from the lungs and neglecting
the stiffness of the mechanical spring, the velocity resonant frequency
of the chest wall can be estimated (Bowen et al., 1965) by

ty =1/ @)Wy A2 P / (VM) (A2)

where fy is the velocity resonant frequency; y, the polytropic exponent
(assumerd to be 1.2); P, the average pressure in the lungs, or the local
ambient pressure about which oscillations occur:; and Vi, Aj, and M;j
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are lung volume, piston area, and piston mass, respectively, defined
in FIGURE 1. If the area density of the chest wall

Pa = Mi/Ai (A3)

is introduced in Eq. (A2), an explicit solution can be obtained for
area

A; = 47282 v 0./ (yP) (A4

Initial estimates were made for the areas and masses of the chest-
wall pistons using in Eqs. (A3) and (A4) an area density reported for
rabbits (Clemedson and Jdnsson, 1964) and a resonant frequency re-
ported for dogs (von Gierke, 1964) — both scaled to a 10-kg animal.

The effective area, A3, and spring constant, K3, of the middle
piston were chosen so that the area density and spring constant per
unit mass, respectively, would be approximately the same for this
piston as for the others.

For a given lung volume, the damping factors along with the piston
areas and masses are the most significant factors determining the re-
sponse of the model to a given blast wave or missile impact. These
parameters were adjusted until the magnitude and time of the computed
peak intrathoracic overpressures agreed reasonably well with measured
values as illustrated in FIGURE 2. The area of the right chest-wall
piston for missile impact was determined by trial and error, the value
determined being somewhat larger than the actual impact area of the
missile but smaller than the area effective in the blast situation.
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