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ABSTRACT

Empirical kinetic parameters for phenol-formaldehyde polycondensate materials were
surveyed for general application to Air Force interests. The ranges of n, A, E for the empirical
kinetic ".codel

~(dw/dt) = w" A exp (-E/RT)

where n= 0-5, A = 2.0:(10"1 to 1.7x1016 1/min, E = 3.7-72kcal/mole, where w = normalized
weight, t = time, R = gas constant, T = temperatu.e. The mass spectrometry and thermo-
gravimetry thermal analysis methods used both constant heating rate and isothermal
approaches,

Reexamination of data with anew computer program gave reduced variations:
n = 1,56x0,07, A = 60.5:41.4, E = 10,38£1.20, The scopes of the comprehensive survey and
descriptive thermogravimetry computer analysis were: (22 constantrate + 3 isothermal) vs 6
constant rate experiments by 8 vs 3 investigatorsusing (5 cured + 7 vitreous fiber reinforced)
.vs 4 cured polycondensates.

Parameter inconsistencies for the survey were partially associated with an atypical
polycondensate, laminate and polycondensate particle or laminate powder samples, or a reduced

pressure atmosphere, Calculated parameters apparently dependent upon the two latter aspects.

were hot averaged with other values, Smalil curve-fitting and other errors potentially enhance
further disagreement as they often gave large parameter variations.
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FOREWORD

This report was prepared by the Thermally Protective Plastics and Composites Section,
Plastics and Composites Branch and initiated under Project No. 7340, “Nonmetallic Com-
posites and Materials,”” Task No, 734001, “Thermally Protective Plastics and Composites."’
This report was administered under the direction of the Nonmetallic Materials Division, Air
Force Materials Laboratory, with Mr. R. FFarmer acting as project engineer,

The contributions of Mr. G. L. Denman in supplying samples, Mr. W, E. Huebner in assisting
with computer programs, Mr. A, Oliver for computer programming, and Mr. N, J, Olson for
many candid technical criticisms are acknowledged with appreciatica.

The materials described herein were not formulated for the thermal {reatments reported.
Results and conclusions should not be misconstrued as reflecting on the characteristics of
these materials in different form or under other environmental conditions.

This report covers work conducted from May 1965 to Septcmber 1966, Manuscript released
by the author September 1966 for publication as an RTD Technical Report.

This technical report has been reviewed and is approved.

W/Y./J}w

R. G. Spain, Acting Chief
Plastics & Composites Branch
Nonmetallic Materials Division
Air Force Materials Laboratory
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SYMBOL
A

c

exp

AH

In ()

n

0)
()

b= RO

T
TS(45°)

W

SYMBOLS

DEFINITION

empirical kinetic parameter*
system concentration.

solid specific heat at constant pressure
base of ratural logarithms
empirical kinetic parameter
exponential function to the base e
function

normalized heat of reaction
empirical kinetic parameter*
integral parameter

thickness

logarithm to the base e

logarithm to the base 10

series term

empirical kinetic parameter
pressure

gas constant

surface area

error variance of estimate
population error variance estimate
temperature, degrees absolute*
tensile strength, 45° to fabric warp
reactant (residue-free) weight fraction
aggregate sample weight fraction

reactant (residue-free) weight

viii

SYMBOL
UNITS

1/min

keal/gm/°K
dimensionless

kcal/gm-mole

dimensionless

kecal/gm
1/min
dimensionless

cm

dimensionless
dimensionless

afm

kecal/gm-mole/°K

2
cm

°K
percent
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gm
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SYMBOL

z

a

3, €

8
SUBSCRIPTS
SYMBOL

c

i

i,j,k

m

p,q

r,s

r

1,2
SUPERSCRIPTS

SYMBOL

1

()
(e

SYMBOLS (CONT’D)

DEFINITION

oxygen mole fraction
thermal diffusivity
increment

temperature

DEFINITION

calculated

initial

iteration value

isothermal

maximum rate, maximum value
limiting value (q sSpan)

limiting value (s span)

residue

singular value

DEFINITION
minimum n error
mean

d( )/dt

d( )/dT

.

SYMBOL
UNITS

dimensionless
cm2/ min
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°C
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LU
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SYMBOL

a,b,c

FUNCTIONAL SYMBOLS

DEFINING EQUATION
loglor(AR/E’i‘)

. -1}
“WemW T exp (Xm)

-w = kw" exp [-(al - a2/L)]

-w = k exp [-a3(1 - w)]
-E/(R 1a 10)

TS(45°) = c1 exp (czw)
=a n2 +bn+c
g=13, o T %

S20 /520 )
L(aCE/AHRL)™?

T w - W)

ep*-l B ap

eq+1 B gq
[00)

x 1% . f 1o ¥ax
X

(9p - 9q)/] +1

x2eX p(x)

6, -6)/k+1
sg(wo)/q

s2w )/ 5 (/T - T7T)
g' /(g2

[T, - 79" ] -1

SYMBOL
UNITS

dimensionless

1/min

dimensionless

cm

dimensionless
°K

dimensionless

dimensionless

n+2, . n+l
cm  /min
dimensionless
°C
°C
dimensionless
°C
dimensionless
°C
dimensionless
K

dimensionless

dimensionless
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SYMBOL

N

T > » R

FUNCTIONAL SYMBOLS (CONT’D)

DEFINING EQUATION

X/%; = (W = W)/ (W, = W)

E/RT
log, o (K/T%)
1/T

B

A= aT

E=X+ uT

xi

SYMBOL
UNITS

dimensionless

-dimensionless

1/K
1/ (min-(°K)B )
dimensionless

kcal/ gm-mole

kcal/gm-mole/°K
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COMPUTER PROGRAM DIAGRAMS

CALCULATE,
SUBSTITUTE

READ,
WRITE

SUBROUTINE

TITLE

JOEHO

*Different units for a symbol are noted with that symbol.
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SECTION I
INTRODUCTION

Part I of this report considered procedural variables in the constant heating rate thermo-
gravimetry of phenol-formaldehyde pclycondensates (Refersnce 17). The best sample was
an adequately cured and dried molding powder free of any postcure surface product Powder
sieve distribution, pressure or weight effects were small to 500°or 600°C for runs in helium
purging ﬂow ProcedLral interference increased thereafter to about 4 percent residual weight
and 250° near 950°. Fortunately, a change in a procedural variable magnitude gave nearly
parallel thermograms Therefore, the residue-free thermograms were relatively free of
procedural biasing, With this result a kinetic model based on a residue-free normalized
weight was adopted, Empirical kinetic parameters were calculated for several materials
using two new and complimentary curve-fitting methods,

The residue-free thermograms and elemental compos1t1on9 of five postcured polycondensate
powders were nearly identical from 300 to 810° (Reference 37). The empirical kinetic model
proved representative for these experiments. Therefore it seemed reasonable that similar
empirical kinetic parameters would be found for other polycondensates and fiber reinforced
poiycondensates. On this basis, a survey was made of previous constant heating rate and
isothermal mass spectrometric and thermogravimetric thermal analysis studies,

The phenol-formaldehyde materials survey was disappointing in that the empirical kinetic
parameters were inconsistent (Table I), A systematic attempt was made to explain the large
differences. First a survey was made ofavailable curve-fitting methods for possible computer
program use, Although no entirely satisfactory technique was found, a program was evolved
for easy and precise curve-fitting using a dvual method approach developed in Part I of this
report,

General inspection of computer program or manual calculations for selected experiments
revealed significant differences exceeding the normalizing ability of a residue-free basis,
Troublesome aspects were reinforced laminate and polycondensate particle or laminate
powder samples, an oxidative atmosphere, reduced pressure, and unusual behavior of the
sample. The data for some isothermal thermogravimetric and mass spectrometric studies
were unsatisfactory for manual calculations and were not amendable to the computer program,

Data clearly disagreeing with likely empirical kinetic parameters for a cured polyconden-
sate powder or unmanageable data was rejected for this study. A computer program analysis
was then conducted for the remaining cases, This analysis involved six constant rate runs by
three investigators using four materials (Table IX). A markedly reduced spread in the
empirical kinetic parameters was encouraging evidence that the simple kinetic model was
probably valid for most cured polycondensate powders and reasonable experimental proce~
dures, Several cases of model inconsistency or significant procedural aberrations were also
delineated as to probable causes.

Computer parameters were also found representative for seven other materials either by
further calculations or residue-free thermogram analogy (References 4 and 37), Further
accepting these experiments, the survey and computer study scopes were then respectively
(22 constant rate + 3 isothermal) vs 13 constant rate experiments by 8 vs 4 investigators on
(5 cured + 7 reinforced) vs 11 cuved polycondensate powders,

*All temperatures in °C unless noted as being °F, °K, or °R.
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SECTION 11
EMPIRICAL KINETIC PARAMETERS
A. EMPIRICAL MODEL,

Isothermal kinetic relations which empirically represent many physicochemical processes
were

n

-w = kw (1)
k = Aexp (-X) (2)

For a constant rate of heating T
- = (Aw"/T) exp(-X) (3)

B. EVALUATION METHODS SURVEY.

Numerous methods were available for extracting empirical kinetic parameters from experi-
mental thermograms. Table III summarized a few examples for constant heating rate thermo-
gravimetry with emphasis on thermosetting polymer studies, The approaches were categorized
into first, one or more necessary heating rates and then residual weight, weight loss rate, or a
combination ofrate and weight as the major temperature (or time) dependent variable. For
example, a rearrangement of Equations 1 and 2 gave a method using rate, weight, aud an
implicit value of n

~E

R tn 10 H’] + log A (4)

log, (- ww ) =

where E, A were respectively evaluated from the slope and intercept of a parametric plot of
loglo(-‘irw“n) versus 1/T, Other popular methods used a difference or raiio form of the above

equation, an integrated version of Equation 3 for a 1/T parametric plot, a maximum rate
of weight loss theory. Frequently n could not be evaluated directly thereby requiring special
consideration,

The precision and usage of the different methods varied considerably. Critical agpects have
been described previously by other authors but will be briefly reviewed here, Multiple tem-
perature point calculation methods had the advantage of being self-checking through visual
inspection of a straight-line parametric plot, Unfortunately, such plots were often sensitive to
small errors and thereby biased linearity judgment. This difficuity prevailed near the beginning
and end of the thermogram, Measuring weight loss rate directly from the thermogram was
imprecise and tedious for rapid or slow rates, Aids as computer curve-fitting, electronic
differentiation apparatus, optical devices, large and accurate records served to reduce error
and time. Integral weight methods, not requiring a rate input, had an advantage although it
was usually necessary to determine n by separate means,

Multiple heating rate methods examined kinetics over a wide temperature and time spectrum.,
On the other hand, they required runs atdifferent rates of heating, In addition, the calculations
proved time consuming,

The survey of analysis methods gave nine references for coherent evaluation of the three
rate parameters n, A, E, One method required both rate and weight (References 22, 29 and 53).

o
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In addition, the parametric plots were often difficult to interpret. Three other methods used
either a computer program or complex manual calculations not otherwise available (References
21, 36 and 44), The two remaining methods specified several rates of heating with a computer
program being either necessary or desirable (References 2, 23 and 24).

For our work, no single method was entirely satisfactory for easy and precise curve-fitting,
Therefore, three complimentary computer programs based onthe Part I theory were developed
for this purpose. A maximum rate experimental method (MAXRAX) used data at the point of
maximum rate of weight change. This program yielded n and a first estimate for A, E. An
integral method program (TRIM) used corresponding values of weight and temperature from
the thermogram. A n value was transferred from MAXRAX, This requirement was avoided
for the third program (PRIM) where a best apparent value of n was calculated to correspond
to the minimum of an overall error term parabolic fit as a furction of n (Reference 36). Tv:o
additional PRIM features were a comparative pseudo-variance analysis and two temperature
spans for A, E evaluation,

C. PHENOL-FORMALDEHYDE MATERIALS SURVEY.

Approximate ranges of experimental conditions and empirical kinetic parameters for the
siarvey were summarized in Table I with detailed results in Table II, In most constant rate
work, 5-400 mgm of a fine powder sample was run in a porcelain crucible to about 950° at
3°-10°/min, Bulk material was frequently pulverized under liquid nitrogen to reduce friction
heating, A purging flow of inert gas was generally use ' with a few moderate and high vacuum
experiments being reported. Available thermograms and commercial processing suggested
a desirable minimum cure or postcure temperature of about 125° with temperature being more
important than time for thermogravimetry.* Therefore, the maximum processing temperature
was indicated as a crude thermal history index,

The empirical kinetic parameters for constant heating rate thermogravimeiry of cured and
vitreous fiber reinforced materials overlapped. The higher n, A, E parameters were for
reinforced samples. The largest set of values were designated temperature-dependent and
varied with each of three curve-fitting methods.

The parameter E for the single isothermal thermogravimetry source for a cured poly-
condensate was comparable to an isothermal mass spectrometric analysis result, withn=0
in both cases, Constant rate mass spectrometric thermal analysis E values were temperature-
dependent, ranging from 16 up to 48 kcal/mole, the highest reported for a cured polycondensate.
The parameter n was zero; unfortunately, A results were not given for this study.

The empirical kinetic parameters for the survey were somewhat mutually compensating for
different experiments, For a given n, an increasein A gave an increase in E for ea .. investi-
gator with only four close exceptions. For a given n and experimental set, an increase in T
was consistent with an increase in koth A, E with only one minor exception,

TFor two sets of A, E and with constant n, T identical values of w would correspond to
(RAENGAE) = (T,/T,) exp [ (€, -€,)RT] (5)

For 'i‘] = ’i‘z , there was a single intersection of th» two thermograms and large differences

were suggested elsewhere, The low precision at hand, however, let sets of A, E and

*Unpublished work by the author,
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especially n, A, E approximate the same thermogram. Thus various parameter sets were
dependent upon curve-fitting sensitivity, The same effect clearly existed for different heating
rates, This mutual compensation tendency dictateda newand precise curve-fitting technique for
the reanalysis of previous data,

A factual heating rate or temperature dependence of A, E was reported by a number of
investigators, This was believed to be due in part to mutual compensation from inaccurate
curve-fitting as further illustrated in a subsequent section of this report. In a formal sense
Equation 3 was invalid for temperature dependent empirical kinetic parameters, The use of
this relation and associate curve-fitting techniques gave pseudo-values although the errors
involved were probably small, Although atleastonepartial solution for temperature dependent
values of A, E has been obtained, no suitable evaluation method could be derived in detail
(Reference 20), r'urther factualdependence cithe empiricalkinetic parameters of the invariant
model on such procedural aspects as ambient pressure, sample form and weight, and so forth

was a major consideration in the reexamination ofthermograms using a new computer program,
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SECTION II

EXPERIMENTAL MATERIALS AND METHODS

Table IV summarized the major materials for this report, Molding and other samples of
Monsanto RI4009 commercial phenol-formaldehyde polycondensate were previously examined
(Reference 17). The remaining materials were identical to those of either isothermal thermo-
gravimetry or thermal expansion study (References 12 and 17),

A polycondensate casting and molding were pulverized under liquid nitrogen with a jewelers’
cutter (moly-steel 10,000 rpm) and sieved to a standard particle distribution. A reinforced
laminate powder was prepared in a-similar ranner but using a hole saw (moly-steel, 3/4 inch
diameter, 780 rpm). Integral glass fubric reinforced samples about cne inch square by
1/8 inch thick were used for isothermal air aging.

The modified Aminco Thermo-Grav recording thermobalance and experimental methods for
constant heating rate thermogravimetry were described in Part I. Laminate plate aging
experiments were conducted in a forced-air convection oven from 300°-800°F (about 150° -
430°C) to 1000 hours. The procedures and mechanical property evaluations have been further
detailed or referenced elsewhere (Reference 19),

- e o — e . [
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usually agreed with the ‘‘best’’ n value, Small analytical and perhaps experimental errors at
the e.nc_is of the thermogram severely affected A, E results as the w, K values were especially
sensitive here. This was further illustrated by Figures 8 and 9,

The parametric study further suggested that visual inspection of data point deviations from
a2 mean line for a parametric plot was not reliable for the precise evaluation of empirical
kinetic parameters. The third computer program PRIM was designed to provide other means
for proving reliability. . ’

- For PRIM, six incremental values of n were chosen around the MAXRAX n result, Essential-
ly, TRIM was then repeated for these six values. An overall error term g was calculated for
each case

g = Tlw-w)? (12)

A best value n' was then computed as a minimum for an approximation to g dependence upon
n using a parabolic method of least squares

- 2
g = oon--& bon + o (13)

Then the result n' was used for calculating corresponding values of A, E using TRIM.

PRIM used two temperature spans. The first or q span was primarily for securing the
best value of n. The second or s span was used for calculation of A, E for the entire thermo-
gram. The s range was a- compromise between available data and likely pyrolysis, 14(° -
1010° in 30" increments. The q span, whichalso used 30° increments, was roughly chosen for
each case using results from an initial parametric study *

(Wopr Woq) = (0.98,0.52) | (14)
A - (wp,wg) = (0.85,0.05) (15)
(e'p,eq) = (320°880°) - (16)

A feature of PRIM was evaluétion of four indices of conformance for the calculated and
experimental thermograms. One was g' and a second was *(woc - wo)m' this value times

.106 giving the maximum sample weight percent error for the s temperature span, Comparative
pseudo-variances. sz(a), vsz(b) were calculated assuming that Equation 11 was valid for a

least mean squares analysis (Reference 42). These parameters were respeciively indicative
of the deviations of A, E and E from a mean (Appendix I).

Absolute methods were not available for either the linear or parabolic approximating least
‘mean squares cases. As the pseudo-methods could fail, several checks were made. A
coefficient A’ was calculated by anindependent relationto confirm the value of A from Equation
10. Several conformance indices were also calculated for the parabolic pseudo-method as
further discussed in Appendix II. '

The programs were written in Fortran IV for an IBM 7044/7094 system. Depending upon
the program, from 2-10 punched input cards were necessary. Only descriptive outlines were
given herein as several sets of symbols were used and the programs were not optimized for
minimum running time,
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SECTION IV
EMPIRICAL KINETICS COMPUTER PROGRAMS
A, THEORY.
The general theory for the computer programs, developed in Part I, was also reviewed
herein as Appendix I for reference convenience. Sequential steps for the three programs and
a thermogram construction subroutine were summarized using flow sheets {Figures 1-4)

and outlines (Appendix II).

The maximum rate experimental program MAXRAX essentially solved four equations
using an iterative procedure and two tables -

[ln rin -+ |] .

1 (6)

In wy,
i-n .
A = wy (TX/nT)pexp (Xp) (7)
. 2
E = —uTmR(nT /)y (8)
X
vz Xie Mplx) (9)

The necessary input data were evaluated at the thermogram maximum rate of weight loss.
This point and the associate heating and weight loss rates were visually estimated using a
straight edge and an optical device based on the alignment of two partially reflected images
of the curve,

The second computer program TRIM solved

2, _ -E A1
log,g (K/T?) = —TE[£] + 109, r (AR/ET) (1)

which was derived from the integrated solution of the constant rate kinetic equation, Other
than experimental data, the inputs n, r were from MAXRAX and the approximation T = T m
was made,

For TRIM, the parameters A, E were calcuilated for an ideal equation

y = bz + a (1

by the standard linear method of least squares, This was an approximating pseudo-method
as all terms were interdependent, experimental precision was variable and the term r slowly
decreased with increasing temperature (about +2 percent maximum),

Thermograms for -325 sieve molding powder at three heating rates were fairly smooth and
consistent excluding the final three percent of weight loss above 700° (Figure 5). A slight
discontinuity near400° for the ¥ /min runwasalso ignored, Using TRIM, systematic variations
of n, A, E and the temperature span were used to study these thermograms. The ‘‘best’’
values of A, E for minimum error between calculated and experimental thermograms
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separation by a constant sample weight difference with a small error occurring at intersections,

Thus, inspection of Figure 7 revealedaresidue-free resemblance to about 500° with similarity
for powder samples to 900°, A particle was an unsatlsfactory geometry in agreement with
other results (Reference 18), Reference 10 further no’es that complete drying would probably
have given better agreement to 500°; smaller errors to 900° would also result. The low
temperature weight losses also suggested too low aprcecessing temperature with some solvent
retention, The small thermogram fluctuations were abnormal and could have been due to an
instrument artifact, replotting, or other unknown factors,

PRIM empirical kinetic parameters for polycondencate casting and glass fabric reinforced
laminate powders were not the same (Table VII), The laminate powder sample was more stable
for a residue-free basis, This apparent stability was believed primarily due to glass particle
sintering at the higher temperatures with encapsulation of otherwise decomposable material,
For example, a glassy residue with brownish inclusions was found when the laminaie powder
helium residue was rerun in air, Differences in resin contents calculated for the casting and
laminate powders in helium (19.4%), laminate powder in air (24.3%), and a laminate plate
(27.0%) were not unreasonable in that any encapsulated material would be ultimately weighed
as ‘‘glass’’ and encapsuiation would p:obably be least effective in air, A plate resin content
of 27.0 percent was a moisture-free normalized value for long time burnout in air at 540°
(Reference 6). Previous results with an uncured resinand heat cleaned 18i-“E” glass powder
(50/50 mixture, -400 sieve) also suggested encapsulation at temperature above about 500°
(Reference 18), The helium residues near 950° were 59.5 percent for the mixture versus 56
percent for the polymer alone,

It proved necessary to ‘‘dry’’ the castmg and laminate powders prior to thermogravimetry
(Table VII), The conditions were 120° for 25 minutes, which gave an | average stabilized weight
loss of 1.45 percent. About 25 minutes were used for heating to 120°.

Empirical kinetic parameters were calculated for phencl-formaldehyde polycondensate
powder and sized glass fabric reinforced laminate samples (Tabie VIII), The powder sample
was more stable than the plate for both helium purging flow and a moderate vacuum, The spread
in A, E was fairly smallforall four experiments with n values being similar for plate samples
but depending upon environment for powders, Enhanced stability was found under vacuum for
both materials. This has beenattributed to anincrease ir pyrolysis product fragmentation with
increasing pressure and may be associated with inefficient removal of pyrolysis gases by a
purging flow (Reference 18),

PRIM and Reference 53 parameters were not the same for a powder and plate under vacuum
(Table VIII), The thermogram error index i(wo o~V o) m suggested that PRIM was more repre-

sentative for the powder with PRIM superiority being conclusive for the plate. There were
consistent parameter variations for a polycondensate powder versus a plate geometry as
compared to a powder versus a laminate powder (Tables VII ard VIiilI), Plate pyrolysis has
been suggested to be influenced by catalysis, geometry, glass fabric /inish, or possibly other
effects (Reference 53), Polycondensate and laminate powder differences were believed primaz-
ily due to particulate glass sintering,

Five alkaline catalyzed polycondensate powders have undergone similar gravimetric
pyrolysis once curing was complete (Reference 37), PRIM parameters for a sample coded
B-C were comparable with other results (Table IX), The necessary thermogram was con-
structed from tabulated § - LA values and extrapolated to 950° (Reference 37). As nearly

identical residue-free thermograms were rcported for these materials, the sample B-C
parameters were also representative for all five, They included three catalyzed by Ca{OH) 9

(P/TF ratios of 0,36, 0.42, 0.50) and the commercial products CTL-91LD and SC1008,
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PRIM curve-fitting indices and empirical kinetic p: rameters were averaged for six
experiments using an inert gas purge (Table IX:, A defi.itive pseudo-variance analysis was
intended to aid the selection of experiments Lut could not be completed for this report.
Qualitative results follow:

(a) Molding powder (Tables V and VI), The spread in MAXRAX and TRIM n, A, E values
for three heating rates exceeded the spread of the reference set. For PRIM, the 3° /min
parameters were adjudged the best of the reference set. The 9°/min results gave upper A, E
limits for the reference group although also giving a good calculated-experimental thermogram
fit,

(b) Pure polycondensate and glass fabric reinforced powder samples (Table VII), The
polycondensate values were used for the reference group subject to being the lowest E case,
The high n, A, E laminate powder results were questionable even in view of an excellent
overall fit resulting in the lowest conformance indices of any run,

(¢} Pure polycondensate powder and glass fabric reinforced plate samples (Table VIII),
The helium purge powder parameters were adjudged satisfactory for the reference set. The
vacuum results were marginally withheld due tohighn, low A vaiues as well as a poor overall
fit. Although similar, the plate sample values forboth helium and vacuum were not acceptable
because of a low n and poor fit.

(d) Polycondensate powder (TableIX). The parameters for the only laboratory synthesized
matierial were used in the reference set subject {o being the maximum overall fit errer case,

(e) Reference se! materials (Table IX). There was still a tendency for mutual compen-
sation of the parameters, especially for A, E between experiments, There were no consistent
trends for n, A, E with a change in T. There was a tendency toward higher values of g*,

sZ(a) . si(b)(or average error) but noti(woc - wo)m (or maximum error) at the higher values of T,

Within the limited spectrum of experimental conditions, no consistent depcundence of the con-
formance indices or parameiers upon other variables as grinding method, sample weight, and
so forth was evident, Although the spread in the parameters was low, especially when compared
to the initial materials survey, fair errors resulted if one thermogram was predicted using
either the reference set parameters or results for another experiment. Rough estimaies
implied i(woc - wo)m of about 0.03-0.06 over a narrow temperature range with up to 0.03

average error, The gualitative selection of experiments for averaging and the averaged set
was biased by both low overall accuracy and PRIM limitations to the degree that all observa-
tions in the above paragraphs were tentative and subject fo future revision,

The residue-free weight w for the empirical kinetic model
w = (v:o - wr)/(woi-wr) {17)

was for a continuous thermogram, The rate -v’voT could approximate either zero at two points

or one maximum, but could not be a minimum, These rules permitted quick rejection of
noncomforming thermograms, For multi-step thermograms (with -v‘voT approaching zero at

more than two points) the initial unity value of woi would have become v, for each successive

step. Equation 17 in a different form permitted easily constructed conversion diagrams for
graphical calculations or rapid estimates (Figure 8). General effects of n, w upon K were
often pronounced (Figure 9). K values were insensitive to n but strongly dependent upon w for
w30.8. This portion of the thermogram was limited for n, A, E evaluation and was unfairly
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biased by small errors. For a w of less than about 0.2, K was strongly dependent upon both
n, w. Althorgh perhaps attractive for nevaluation, small errors also exerted an unfair weight-
ing here,

Accuracy and precision levels for constant heating rate thermogravimetry were reevaluated
and the new results summarized as Table X (Reference 17). In addition, slightly revised W
data were used for some PRIM calculations (Table V),

MAXRAX reflected both experimental and model fitting errors as primarily compared to
an overall model error for PRIM, A :!:(Wo e wo)m difference between the two was therefore

roughly the experimental weight error at the point of maximum rate, Calculated values were
reasonable and varied up to twice the estimated experimental precision (Table X). An
argument similar to the one above was possible to show that the difference between A, A'
approached the error in A associated with the experimental error at the point of maximum
rate, In most cases, this difference was encouragingly small (for example, see Table VI),

The program and past studies revealed a variety of troublesome aspects in the evaluation of
consistent empirical kinetic parameters for phenol-formaldehyde polycondensate materials
(References 17, 18 and 20). Specific examples exceeding the normalizing ability of residue-free
empirical kinetics were: )

(a) Critical curve-fitting aspects for a single thermogram or similar set including -

1. Data point spacing, reaction rate, or temperature range incorporation and possible
magnification of errors (especially near thermogram ends).

2. Improper use of the invariant modelin evaluating temperature dependent parameters
or thermograms with more than one maximum rate of weight loss, and so forth,

3. Mutual compensation of different sets of parameters permitting approximate
representation of a single thermogram,

4, The very flexible nature of the kinetic model for approximate representation of
different thermograms,

(b) An oxidative or reduced pressure atmosphere,

(¢) Reinforced laminate or polycondensate particle, laminate powder, or polycondensate
film samples,

(d) Samples contaminated with postcure surface product or solvent, inadequately
cured or dried, or too large.

(¢) Two, three, or occasionally many stepped thermograrus. This atypical behavior
appeared pronounced for large sample particles ard perhaps minute thermobalance oxygen
contamination; low inert gas flow rates could have resulted in either contamination or ineffi-
cient pyrolytic gas removal. Stepping was perhaps accentuated to varying degrees by (b)-(d)
items as well as the lack of pressure during sample polymerization,

11
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SECTION V

TYPICAL APPLICATIONS CF EMPIRICAL KINETIC PARAMETERS
A, EMPIRICISM O¥ n, A, E

The kinetic parameters were strictly empirical., There was no factual significance in
terms of classical physicochemical mechanisms (Table XI). Attempts to assign primary
governing mechanisms could not resolve complex intra-relations between the sample,
experimental method, and possible large numbers of chemical reactions and physical processes
during pyrolysis. The kinetic model undoubtably grossly represented a variety of complex
mechanisms,

B. RELATIVE THERMAL STABILITY

The empirical kinetic parameter E has often been used as an index of relative thermal
stability, For example, this parameter was good for many thermoplastics with a n of a near
integer and similar large A values, For thermosets with small values of A, E and high per-
centage of final residue, the three parameters n, A, E proved closely interrelated. More
suitable indices were the maximum rate loss rate and corresponding temperature, The
normalized weight at this point proved largely controlled by n, r at about 0.5, For a known
n, A, E, T, the maximum rate indices were only available by interpolation or trial and error
calculation

-2 n-1 .

Tn = 0w, (AR/ET) exp(-X_) (18)
Ky = (AE/RT)p(X) (19)
-V}Tm: wo(X/nT) (20)

C. HYPERTHERMAL ABLATION

Kinetic models similar to the current one have been used extensively for hyperthermal
ablation calculations and computer programs, Three regions were used in one descriptive
char-formation ablation analysis (Reference 49), These regions were a carbonaceous char
layer, a reaction zone, and the virgin material, A char-reaction zone interface recession rate
for the interface temperature was*

. N+2 2n+| =-2(n+1) =X
(LY = AGn!(i~-w,) X e (21

nti
G = L(aCE/AHRL) (22)

For a given G, the lowest recession rate would result for a large E, wr and a small A, T.

Clearly, small uncertainties in the parameters couldgive a large L error, Some typical para-
meter values and results from another computer study were summarized by Table XII and
Figure 11.

*This derived form uses the reasonable approximations: 1<<AHRX; T—0 as
L~ ; (wall/pyrolysis) mass flux ®(1 - w P Typically, £ <<1,
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This application of empirical kinetic parameters to a complex environment appeared
primarily because of inadequate experimental methods., The simple thermogravimetry ex-
periment for an isolated, nearly isothermal sample was extrapolated to an internal pyrolysis
zone subject to intense and rapidly changing catalytic, compositional, pressure, stress,
thermal, volumetric and other gradients, For example, the time for the receding steady tem-
perature distribution of Figure 11 to traverse a pyrolysis zone thickness of about 0.35 mm
would be 1.4 second, corresponding to an ‘‘average’’ heating rate of 18,500°/min. In other cases,
especially at low heat flux, the heating and recession rate, and temperature distribution was
less abrupt with a resultant thick pyrolysis zone, Excluding Jimited high heating rate and high
temperature work, no definitive empirical kinetic model or parameters could be found for this
complex environment or a fair experimental simulation,

D. MECHANICAL PROPERTIES,

The use of empirical kinetic models and parameters for the analysis and correlation of
mechanical properties has been limited (Reference 16). In one study with this intended goal
the present model failed to represent the aii aging weight changes of CTL-91LD/Glass Fabric
(Figure 12, Reference 19). The isothermal thermograms for this and similar materials
suggested two gross controlling mechanisms, There has been evidence for the predominance
of diffusive effects at the shorter times and oxidation for longer aging periods with complete
oxidative control at the higher temperatures (References 15 and 18),

An encouraging correlation was found for the tensile strength at 45° to the fabric warp for
CTIL-91LD/Glass Fabric (Figure 13), The empirical result was

TS(45%) = ¢, exp (c,w) (23)

A strength retention of only about 10 percent of the average room temperature control
(25,260 psi) existed for w = 0.8, The empirical coefficients and other results have been
summarized elsewhere for CTL~91LD/Glass Fabric and a second material (Reference 19).
Other attempts at mechanical property correlations were not satisfactory if the strength
increased with an increase ineither temperature oftime, Correlations may have been possible
over restricted temperature or time regions as suggested by the similarity of the plots of
Figure 14,

Other isothermal air aging kinetic experiments for a CTL-91LD polycondensate powder and
CTL-91LD/Glass Fabric were informative. A -325 sieve, 100 mgm powder sample had a
life-time of two hours at 600°F, The life-time for a -325 sieve 100 mgm laminate powder
sample was 48 hours, implying a glass shielding effect, A 100 hour life~time of a 1/8 inch
thick laminate plate was undoubtably associated with surface area and/or volume influences,
These results suggested a need for a flexible empirical kinetic model properly accounting
for surface area, thickness, two controlling mechanisms with a transition region, and probably
catalysis, oxygen concentration, and weight, An established model would be necessary prior
to any serious attempt to usethisapproach for the analysis and correlation of the mechanical
properties of reinforced laminate plates during long-term air aging.

13
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SECTION VI
SUGGESTIONS FOR FURTHER WORK

Additional work seems necessary to establish ranges of environmental validity for the
empirical kinetic model, Particularly questionable aspects include heating rate extremes,
isothermal thermogravimetry, micro size powder and large laminate plate samples, purging
flow through a powder sample, and reduced and high pressure (Reference 27), Current
applicaticns for hyperthermal ablation computer programs, mechanical property correlations,
vacuum life-time predictions make realistic environmental simulation an essential need, Table
XIII summarized some conditions pertinent to the two above requirements yet within practical
experimental capabilities in the near future. Improvements in experimental accuracy of up
to an order of magnitude better than for the accuracy values of Table X were desirable
although by and large beyond the immediate state of the art of thermogravimetry.

Improved computer programs appeared desirable prior to further study. One ouistanding
approach gave bestempiricalkinetic parameters ina least mean squares sense (Reference 43).
Additional empirical kinetic models appeared necessary for some critical cases as an oxidative
environment or sample other than a fine polymer powder (Table XIV), Particularly dzsirable
features for future computer programs included: (a) constant heating rate and isothermal
versions, (b) evaluation of n, A, E in a least mean squares sense, (c) evaluation of confidence
limits, variances, and significant digits, (d) experimental corrections, (e) statistical data point
weighting for the entire thermogram, and (f) temperature variance options for n, A, E, either
singularly or in any combination,

There were a variety of polymers for which definitive kinetic data could prove helpful in
ablative, coating, structural, and other aerospace uses. Polymer classes of special interest
were summarized by Figure 15, A future goalwas kinetic information on the base polymers as
well as materials using such reinforcing agents as fibrous carbon, glass, graphite, and silica,

14

Cwma o o

A -

.
FP e SNP




ATFML-TR-65-246
Part 11

APPENDIX I
GENERAL THEORY

The constant heating rate kinetic relation

-v'v_r = (wnA/'I.')exp(—X) (I-1
was rearranged as
W _p . T -x !
K = = ["wfaw = (asf) [ Xar (1-2)
1 (0]

for the assumption of a zero rate at zero degrees. K, a convenient index, became

K = (1 -w) forn = 0, (1-3)
= ~lnw = 1, (1-4)
= (W) /(n-1) # 0,1 (1-5)

Integration of the other side of Equation I~2 by parts in two different ways gave

K = (AE/RT)p(X) (1-6)
{os]
p(X) = x"ex-f x L™ Xax (1-7)
X
. ) 4+ -m -2 =X
K = (AE/RP1=-F D" X tm+ 01 X e (1-8)
m
For m = o, a relative error r was defined as
ro= x2e¥ p(X) (I-9)
Therefore
K = .l AE/Rf)x—ze—x (I-10)
Figure 9 presented K = f(n, w). Figure 10 depicted p(X), r = {(X).
The maximum rate occurred when
d(-w)/dt = d(-w)/dT = d(-w)/dw = O (I-n)
Differentiation of Equation I-1 with respect to time gave
. n-| . n
[nww +(T/T)w X] =0 (1-12)
m
The maximum rate followed as
—me = wm( )(/nT)m {I-13)
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Also
l-n

km ° ¥nm

(X/aT) T = Ae 'm (1-14)
where n cannot be zero,

The two principal relations for the maximum rate method came from rearrangements of
Equations I-13 and I-14

m
"

. 2
- Wy nR(T /w)m (1-15)

-'n 0
W (T)(/nT)rn e

Xm

A (I-16)

The third necessary relationship for n resulted from a comparison of Equations I-10 and 1-14

- 1-n _
K_ = W /n (1-17)

Forn=1

w_ = e ¥ {I-18)

and forn#0, 1

]I/( n-1)

W= [r(n"-l)ﬂ) 1-19)

m

It should be noted that Equation 39 of Reference 17 is in errqQr and should be identical to
Equation I-19 above,
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APPENDIX I
COMPUTER PROGRAMS OUTLINES

I. Maximum Rate Experimental Method (MAXRAX), See Figure 1.

A,

B,

P

.

Jd,

IL

i t: ’ ’ ’i" I » ’ y = A » W
Read input: R Tm Tm wm woi me r

Read tables:
fl (Xm)

Tk

2. LI

fa("i"i)

Read integral values of n, Ty for W from table,

Calculate nj
-
'n['i,j(ni,j —-1) + | ]
n. = + |
i,k in wy,
(ni,j,k:m")
Calculate E, X
m
_ . 2
E = —menj,kR(T /w)m
Xm = E/RTm

Read rj from table,
Calculate n, from Equation II-3,

Calculate E from Equation II-5, Calculate A

t-n .
- 3
A= oW (TX/n, T, exp (X )
Write output:
1. Run identification,
2. n,AEr,X ,T
X 7 m' "m

Constructicn subroutine

Transfer Resolution integral Method (TRIM), See Figure 2,

A, Read input:

Ny R T To Ty o Wi Woi0 ~Yyme ¥y

Y

A e

(Z-1)

(I-2)

(IX-3)

(II-4)

(1I-5)
(I-6)

(I-7)

S

T
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B. Read table:
w, = f|(9) with Bpﬁ 8 < Bq.

C. Calculate T

T = 8 + 273.18
D, Calculate w
w oz (wog-w )/ wy; —w,)
E. Calculate K
. K = (I - w) for n
= —in w
= (w " o/ -1)
F. Calculatey, z
y = log,q (K/T?)
z = /T

G. Calculate A, E by linear pseudo-method of least squares

y = bz +a
H. Calculate A'
A = —éme_n‘i'm exp (X )
I.  Write output:
1. Run Identification,
2. m, AE~T,A
J. Construction subroutine.
I, Parabola Resolution Integral Method (PRIM), See Figure 3.

A, Read input: n, r, R, Tm, T, Tm w

w . =W, w
*m® "oi' "Tm’ "r

B. Read tables:
L ow = fl(e) witheps 6 < eq.

2. n,n . ni. with i = 6 maximum,

1’ 20.

C. TRIM subroutine.

18

(I-8)

(m-9)

(IT~10)

(m-m

{I-12)

(I-13)

(;L-14)

(T -15)

(II-16)

(Z-17)

(1-18)

(I-19)
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D. Calculate g

2
g= Z(Woc Wy

E. Ifg=0,n=r". Proceed to item (J).

F. Calculate a, bo. c, by parabolic pseudo-method of least squares

g

%

G. Ifa < 0, designate. Proceed to item ).

Calculate n'

I. TRIM subroutine.

J. Calculate g'

K. Calculate '\'il:

- 2
L. Calculate s e (wo)

2
M. Calculate sp(wo)
N, Calculate F(wo)

O. Caiculate a, b

P. Calculate 1/T

Q. Calculate sg(a)

l

s:(wo)

2
5p (wo)

F(wo)

|

sala) =

i

-bo/acn0

2
Z(“'oc - W)

[Zwo]/a

g/(q-2)

(2w, -w1%]7a-0)

2 2
Sp (WQ)/se {wy)

log,, r (AR/ET)

~E/Z(RIn10)
[Eu/T] /q

sea(wo)/q

19

2
+
n bon + Co

(Ir-20)
(I-21)

(I-22)
n-23)

(Ir-24)

(1I-25)

(IL-26)
(II-27)
(IX-28)

(IL~29)

(I-30)
(IL-31)

(Ir-32)

(I-33)
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Rc

S.

T,

v,
A,

B'

=

Calculate si ®)

Construction subroutine.

ar——

2 . .2 _
se(b) = s, (wo)/):(l!T 7T)

Substitute s temperature span for q temperature span with

6, <8 <8,

Repeat items @) through (5) for s temperature span,

Write output:

1, Run identification,

9. For the q temperature span: n', A, E, R, T, A', g', Wy
2 2 2 2
se(wo). sp(wo). F(Wo)» a, b, I/T’ 1; I» Se(a)v se(b)'

W= fz(G)

ocC

3. Item (V.2) for the s temperature span.

Construction Subroutine, See Figure 4.

Read input: n, A, E, o, R, T, ’lm, Woi? W

Read table: p(X) = fl(X)

Calculate K
K = (AE/RT)p(X)
Calculate w
w = | ~-K
= expl(-K)
17{1=n)
= [K(n—l) + i]
Calculate Woe

Woe= Wlwgi —wy) + w,

Calculate 8
= T - 273.16

Write output: w,, = f2(9) with Grs 8 <8,

o

20

for n

[ 1]

(I -34)

(L-3%)

(IX~36)

(X -37)

(1I-38)

(1L-39)

{ T -40)

(I -4)

{ X-42)

(I;-43)
(IL-44)

vl ¢

s ——— .
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V. General Notes,

A. Numerical values for this report were:

1,
2,
3.
4,

5.

j=k=30°
€ =& =0,001,
woi=1'

9p, Bq were for the j increment nearest to w ~ 0,95, W, 0.05,

respectively. See Equations 14-16,

Br = 140°, 93 = 1010°,

B. The following was omitted for brevity:

1. Standard tests for avoiding 1n 0, In (~-number), ete.
2, For MAXRAX,
a, Subscript m omitted for n,
b, Subscripts m, i, j, k, omitted for A, E, Xm.
¢. A manual test assuming n = 1 if ny g < 0.
d. A test to insure that
« L -
[miy g - D+1] #0
was positive,
e. Rules for choosing +€ or ~ €,
f, “Werm’ Ym calculated manually,
3. Linear least mean squares pseudo-method subroutine for
TRIM with output A, E.
4, For PRIM,
a, Parabolic least mean squares pseudo-method subroutine w1th
2 2
output n, g, gc’ ao' bo' co' '!‘(gc = g)m.- se(g)v Sp(g)~
b. Output: u, A,Eandw_= £(8) as an option for each n value.
c. Equations 11-26 through II-2y for the flow diagram.,
C. For TRIM:
1. n= nm(MAXRAX), n=n, (PRIM), or n=n' (PRIM).
2, r=r_ (MAXRAX), and T= 'i"m unless noted.

21
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D. For Construction Subroutine:

1. Run identification and n, A, E, r, Xm’ T included in output
when run separately,

2. s temperature span except as a special case for PRIM.,

E. Symbols fm and symbols using subseripts i, j, k usually unique

for each program outline,

22
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A. Sample and Method

Atmosphere
Code
Crucible

Fabric Reinforcement
Grinding Method

Particle Size

Postcure Temperature, P°C
Resin Content, %

Trade Name
Weight, mgm

B. Empirical Kinetic Parameters

n
A, min -}

E, kcal/mole

q span, °C
Im

T, °C/min
Tr, °C

Vr

C. Conformance Indices

g' x 103
si(a) x 103
sg(b) %102

t(w
( oc

- W
o)m

TABLE VII

PRIM EMPIRICAL KINETIC PARAMETERS
FCR PURE AND GLASS FABRIC REINFORCED
PHENOL-FORMALDEHYDE POLYCCONDENSATE POWDERS

He purge
A-4 Casting
Coors 230 3/0
none
cutter; liquid Np
-325 sieve
178
100
CTL-91LD
20

.1.62580
24,234
9.18206
350-770
0.787766
7.7
950
0.552

0.,5973

0.2667
-0,2347

0,009806(620°)

8112-"p" glass fabric with A1100 finish,

b
Maximum postcure temperature,

36

He purge
A-2 Laminate
Cooxrs 230 3/0
yesd
hole saw; liquid
-325 sieve

178

27.0

CTL-91LD

100

1.73258
201,572
12,9362
350-770
0.845028
7.7
950
0.8888

0.05057

0.02258
-0,01987

0.003142(620°)

S v o
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D.

MISCZLLANEOUS PRIM RESIULTS FOR

TABLE IX

PHENOL-FORMALDEHYDE POLYCONDENSATE POWDERS

Sampie and Method

Atmosphere
Code
Crucible
Grinding Method

Liquid Nitrogen

Room Temperature
Particle Size
Postcure Temperatured, °C
Trade Name (Or Code)
Weight, mgm

Empirical Kinetic Parameters

n
A, min -1

E, kcal/mole
q span, °C
'm

T, °C/min
Ty, °C

Yy

Conformance Indices
g' x 103

sg(a) x 103

sz(b) x 102

*(w -
( oc wo)m

Reference

“Maximum processing temperature,

bApproximate estimates for q span, ry, Wr.
data extrzpolated graphically to 950°,

“Averages from Tables VI (3°, 6°, 9°/min), VII, VIII and IX.

Ar purge
B-C
porcelain

filing
fine
230
B-C
200

1.61375P
51,5221
11.4162
350-830
0.780755
3.3
815
0.555

0.6770

0.2351
-0.2115

0.01694(440°)

Lochte, et al (37)

Ax, He purge
See Trade Names
Coors 230 3/0

cutter, drill

compaction, filing

fine, -325 sieve

178,204,230

B-C, CTL-91LD, RI4009, SC1008
20, 100, 200

1,55578+0,07002
60,9338241,3902
10,38033+1.19827

560 * 300
0.7924905%0.0117355
5.125%2.575

882168

0.5770.025

0.3746220,30238
0.1458920.12081

~(0.1286350,106065)

0.011148£0.005792

This Report¢

W, values from a smooth curve from tabulated

A' was not calculated accurately.
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READ INPUT,
TABLES

YES

E.Xm
"
-
n
- K
“k+f'"k
ri= 'l
I YES (n-nY2%8
K n, + € = n;
§ j
[P ¢

YES

(nk—ni)zts

A,E

|

WRITE
ouUTPUT

CONSTRUCTIGN
SUBROUTINE

Figure 1. Flow Diagram for the Maximum Rate Experimental Method
{MAXRAX) Computer Program
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Figure 2.

TRIM

R

WRITE
OUTPUT

'CONSTRUCTION
SUBROUTINE

Flow Diagram for the Transfer Resolution Integral Metbod {TRIM)
Computer Program
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SUBROUTINE

WRITE n
OUTPUT

200" bz
sela), sg(b)

CONSTRUCTION
SUBROUTINE

WRITE
QUTPUY
(q SPAN)

s SPAN

L

Figure 3. Flow Diagram for the Parabola Resolution Integral Method

{PRIM) Computer Program
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; CON-5UB ;

N\, /
\./
!
READ INPUT, /

TABLE

w8
»

YES
52

"N IA

NO

p{X) EQUATION
p(x)

WRITE
OUTPUT

Figure 4, Flow Diagram for the Thermogram Construction Subreutine
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o 4 \\\A //
\ 9°C/min /
3 N 7 A
\ &~
2
(0] 2°
-4
IO9 —;
8 AN
7 \Y4
6 HELIUM PURGING FLOW
s -325 SIEVE POWDER
100 Mgm SAMPLES
4 EXPERIMENTAL:
3 O 3°C/min
& 6°C/min
A 9°Cc/min
2 2
9 = ayn +b°n+co
-8
10
LI 1.2 1.3 1.4 1.5 1.6 W7

PRIM Parabolic Error Plots for Phenol-Formaldehyde
Molding Powder

Figure 6.
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10 Nitrogen Purging Flow
0
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FURMACE TEMPERATURE, °C
Figure 7. Thermograms for Phenol-Formaldehyde Polycondensate Samples
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