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ABSTRACT

The equations of motion of a body under the
influence of the earth's gravity and atmospheric drag
are obtained in radar polar coordinates. The choice
of this coordinate system may have important advantages
in various tracking and filtering algcrithms. A rotating
ellipscidal earth with gravitational terms up through the
second {easily extendable) harmonic is assumed. The
effects of a non-spherical earth along with the corres-
ponding effects of the higner gravitational harmonics
can be important in the estimation of ballistic coefficients

&zt very low deceleration levels.
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G1.OSSARY

vector from earth center to target

earth radius vector to 'foot!" of radar site

vector from radar to target

radar range, elevation, and azimuth, respectively

unit orthogonal vectors in the directicns of increasing S,
¢, and a , respectively

rectangular coordinates with origin at radar and X East,
Y North, and Z vertically up

unit vectors along X, Y, Z, respectively
unit vector along earth axis £ , pointing toward North Pole
unit vector £com earth center to target

earth rotation rate

[0

earth rotation vector (&= w g)
geodetic latitude of radar
geocentric latitude of radar
geocentric iatitude of target
earth radius at latitude ¢
equatorial radius of =arth (6, 378. 160 km})

height of radar above ellipsoidal earth (i.e., above MSL)
moraent of inertia of earth about its axis £

moment of inertia of earth about an axis in equatorial plane

product of gravitational constant and earth mass
(3.986032 x 10° km3 /sec’)

gravitational acceleration vector at the ta: et position
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drag velocity vector (i.e., relative to air)
inertial acceleration vector

drag acceleration vector

height of target above ellipsoidal earth (i.e., above MSL)

atmosphkeric mass density at target position {p = p(h}) )

acceleration of gravity at target pcsition (g = ‘Kg“

mass of target

ballistic coefficient =m/CpLA {i.e., mass-to-drag ratio)

eccentricity of reference ellipsoidai earth (e?‘ = . 006694%)
3

dimensionless constant = 3 (I, - Ie)/(ZMaZ) = 1.624 x 10
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Trajectory Equations of Motion in Radar Poclar Coordinates

INTRODUCTION

Trajectory equations of motion in radar rectangular coordinates {the
X, Y, Z system below) are readily available in the literature. They are not
to the author's knowledge available in radar polar coordinates {Range S,
Elevation € , and Azimuth a }. Perhaps because of this (and possibly br-
cause of the fear that such egquations would be too complex anyway), it has
been common practice in problems of radar tracking to do the estimation and
prediction in radar rectangular coordinates even though the data are gathered
and the radar is directed in radar polar coordinates. This procedure involves
wasteful coordinate transformations in at least one direction which can be
avoided compietely if radar polar coordinates are used throughout. These
coordinate transformations are particularly complex if range rate (é) and
range acceleration (é) are used., On the other hand, the equations of motion
in radar polar coordinates, derived in this report, turn out to he only moder-
ately more complex than in radar rectangular coordinates. Quantitative com-
parison of the computational economy of using one coordinate systero or
another will depend on the detiils of the specific application. For example,
if the qaata rate is high and large step sizes can be toleratad in the integration
cf the equations of motion, it may be more econcmical to use radar polar
cuordinates throughout, while in the reverse situation, the use of radar
rectangular coordinates may be advantageous. Additionzily, the following
important advantages of radar poiar coordinates in <onrection with track
initiation in Kalrran flitering have been brought out in discussioas with

H. M. Jones and R. P. Wishner sf Lincoln Laboratory:

1. The covariance matrix of the estimation parameters in the
Kalman filter is more nearly diagonal in radar polar co-
ordinates and thereby less susreptible to the effects of ill-
conditioning with short lengths of track

2. The usual linearity s<sumptions of Kalman filters are more
nearly correct in radar polar coordinates. This can result
in better track initiation since initiai estimates can be less

accurate and still yield 2 nrsarly optimum correction with later data.
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DERIVATION
Assuming that anly gravity and drag forces act on the body of mass, m ,

we have for the equation of meotion

F =Fd+Fg
or
on = mA +mAg . (1)

The drag force is taken to be

e _ — - . mpv ——
Fd = mAd —-Z-B- A s (2)
F
where f§ = m/CDA is taken as the definition of ballistic coefficient and o
ir the atrar Y»~ric mass density at the kndy position. Using Eq. (2) in
Eq. {1) and div._ iing by m gives for the equation of moticn
N oV

Ao = .»-2-3— v TAg o (3)

—
:

————

.

*
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YV is the target velocity relative to the moving radar site {or equivalently,

relative to the surrounding air, 2ssuming the atmosphere to rotate rigidly with

the earth 2nd no local winds) and can be immediately expressed in the §, &, @

sysiem as

—

V=V_s +V€s +Vu6 . {4)
where
Vs = S‘
Vﬂ = S¢
Vv =Sacose .
a

* This definition avoids the needlesy confusion which the definition
p = mg,’CDA introduces as to whether tc evaluate g at sea level or at the

target.

AR ITIE L. MRS BTt

ot T ST YRR

e
.
LY

A,

&

P

Beew,




.;}:

?
3
31
3
- *
Ag is the gravitational acceleration vector and, following McCuskey, i
can be expressed as ;
— N A
A =grt+ ) 5
g T 8F * gk (5)
where
* GM a2 . 2
. -—r—z—[l +I{)7(1 - 5sin )]
) .. 2GM a2 . :
gg = > J (-;) sin @ . :
r
Its magnitude is given by :
£
Tl are L T2 2,2 RN 7/ :
g—[Ag' -[Ag. Ag] —[gr +gE +2gr gg sin @ ] . g
In order to express Eq, (5) in the s, 3, A system, it is necessary to express H
% and % in that system, This is outlined in the next paragraph. :
The geocentric target position vector r is given by (see Fig. 1l and
glossary) '
— - A — . - ?
r=R+Hk+S . %if-lf i
3 Since :z-%_ '
! - A A s ﬁ‘:*;f:*'ﬁ?,
S=Xi+Yj+Zk fvl o
§ and )
b4 = A 2
R=-Rsin(u-pc33+Rcos(p.-uc)k . i
we have H
- 2 2 a :
r=[X}i+[Y -RQ233+[z+RQIJk
where
: Q1=cos(u-uc)+H/R
‘ Qz =sin iy - Llc)

P,

% S, W, McCuskey, "Introduction to Celestial Mechanics," pp. 163-166 (1962).
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M = tzm"l ot - ez) tan u3 .

Using the transformation (12), we obtain T inthe §, %, a system as

;:r'§+re+r3 (6)
8 € a
where
T, =8 +Q1R gin € -QZR cos € cosS @
T, =Q1R cos € +QZR sin € cos a
£y = QZR sina .
Its magnitude is given by
1

r= l?l = R{(S/R)2 +2(S/R)(Q1 sine -Q,cos ecos a) +QlZ +Q22} . AN

A
The unit earth rotation vector € can be expressed as
A A . A
E =cos uj +sinpk .
A

Again, utilizing the transformation (12), this can be expressed in the s, &, a

system as

und>
]
um

A A A
s + gee +gad {8)
where

cosucosecosu+s‘musine

[Ya)
1

]

- cos . sin € cos a + sin L cos €

[Ta)
™
"

U
1]

-~cosusina .
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%{Scosecos acosu+(I{+Ssine)sinu+Rsinuc} . (9)

Using Eqs. (6) and (8) in (5) yields A_ inthe §, & & system as

g.r
- +g§§€)€+(—§—g+g§5§u\6 . (10)

Equations (7) and (9) are used to evaluate and . All that remains is to
: 8, gg

—

A A .
express Ao in the Q, €, a system which follows,

—

AO , the earth-centered inertial acceleration of an object observed from
*
a site on a uniformly rotating earth, can be expresscd as

A =(VA+V &4V 8+v 2 4v 24V )e 20k V + 0% (0% T) (11)
(o] <3 € a S £ Q

-
—

where the term in parentheses (V) is the apparent (i,e., relative to the

moving radar site) acceleration of the body.

The cartesian and polar unit vectors are related according to the

transformation
2 4 i 3
=M 5] or [5]=Mmt ]2 (12)
a k k &

where
cos € sina COS € cos a sin €

M = |- sin € sin a -sinecosa cos € {13)

cos a - sin a 0

and M.l = MT (i.e., transpose of M) . The unit vectors Q, -:A, a are re-

lated to their time rates as

* L. Page, "Introduction to Theoretical Physics," 3.a Ed., 4th Printing,
p. 121 (1959).
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2 0 € +acos € 8§
. . - A
2 = - 0 - a sin € £
. . ] R
ol - QACOoS€ CSsineE 0 a

The relation (14) is easily ver1£1ed by differentiating Eq. (12} with

A -_) = ﬁ 0 and solving for § , <-: a . It can also be verified directly by re-

ferring to Fig. 1 and using relations of the type

:\_El_é_a_sfae_*_asaa 33_/\ d§§_ P
s_dt-aeax Sa ot ,EE-E , an Sa cos € .

Forming the dot product of Eq. {11} with s, & 3 successively, yields

A 8=[V, +(veé +V _8)- 81+2(wxV)- &+ [wx(uwxr) - 8
A B=[V, +(V 24V 8). 8 J+2(0x V)" S+ {ox(uxr) )- £ S
A -B=[V_+(V E+V e) dJ+2(wxV)- & +[wx(ux )] & . (15)

Using ©= wé and Eqs. (4), (6), (8), (9), and (14)in (15), and reducing to

o
o
1

scalars yields s_:-_,
R 2,2 2 e . ;i”%
A s={S-5(t°+a"cos e)]+2w[.§eva §QV€]1iuf‘[§srsmq) rs] _ff‘
— A _ oo LS 02 . ) 2 . :’:;:&;: L
Ao- € = [Se +2S€ +Sa”sin e cos ej+2w[guvs-§qu]+w [Eel‘smﬁl’ 1'€] - “fé’f
- A *e * . . w . Z . —:5‘-:4 ;
A_-d=[Sacose+2(Sacos € - Sae sine) J+ 20lg V- gV 1+u g rsing - r, ] ;

T
7N iy
L1

Noting that i (16)

o, AN "‘.AA"’.A.\ )
A =(A " sS)S+(A -E)e+(A -a)a , (17)

we finally have Eq. (3) expressed completely in the 5, ¢ ¢ system by using
Eqgs. (4), (10), and (17). Expressing Eq. (3) in scalar form, we obtain the set
of three differential equations of motion in radar polar coordinates. - The

result is

"
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1
—S— {ZSC

Scose

where

e e L AL, L R
Al

Peomtns T A T 17 v,

i)
(VA1)

U

§ =5(& +a’cos’e) - 20(8_V

-EV )- w(g r sing

a *“a €

-x) - zp)v +8:7s +845,
T
+Sazsmecos€+2w(§ V - V )+w (q rsm(p r )+( i_,’)V

g.T

r €

T Tr ‘gﬁge}

{Z(Sacosw-So.e sine)+2w(EV_-£ V )+w (g rsing -r )+(Z‘5)V

grr
r 2y 5(1} ’

(18)

= cos pcos ecosa+sinysin €

= - cos Y 8in ¢ cos a + sin Y cos €
= - cos usina

= Sa cos ¢

2 4 sz}l/Z

=S+Qleine -QZRcosecosu

=S, V_ =S¢, V
€ a

={VZ+V
8 €

=QIR cos € +Q2R sin € cos a

=QzR sin a

cos (4 - pc) + H/R

sin (i - 1)

H

R {(S/R)%+2(S/R)(Q,sir € -Q,cos € cos a) + le +Q22}1/Z

M 1+5@%0 - 5sg))

r

.-—Z——ZGM J (%)Zsingo
T

1]

n

-11; {Scos ecosacospu+(H+5sin¢€) sinu+Rsinpc}
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The height h required in p = p(h) is obtained as the distance between the
target and the point of intersection of the reference ellipsoid and the line
passing through the target and normal to the reference ellipsoid. An ex-
cellent approximation to this is
ST
h~r-R =r - .
¢ 1 - ezcos @
This i~ the distance between the target and the intersection of T with the
reference ellipsoid.

These equations are only moderately more complex than the equations
of motion in radar rectangular coordinates. Only the first two terms in
each equation are unique to the polar coordinate system. Coriolis accelera-
tion terms (containing &), centrifugal acceleration terms {containing u:Z ).
drag terms (containing ©/28 ) and gravitational terms (containing g, and
g- ) appear in both sets of equaticns.

’ The relation (3), or equivalently the relations (18), can be used to ob-
tain various expressions which yield estimates of B from radar data. Also,
it is easy to specialize to the case of a spherical earth with l/r2 gravity by
simply setting J =e =0 and y = Mo - It is then useful to observe what kind
of errors can result in f due to earth model choice. Computer runs based
on actual radar data have indicated the following. The ballistic coefficient ,
£ , estimated by using the simple model (J = e = 0), can differ from that
estimated by using the more accurate model (J, e as reported here) by more
than a factor of two when the drag acceleration Ad is g x 10-3 . The radarx
data used were at the mid-latitudes where these differences are probably
greatest., A good conservative rule would be to require use of an "improved''
model when attempting to estimate ballistic coefficients at drag levels in the
vicinity of one-thousandth of a g or less. An "improved' model means one
at least as good as that reported here (i.e., ellipsoidal shape with gravitationail

terms through the second harmonics).
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