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ABSTRACT 

A theorem is proved to the effect that a wave function for 

a set of N spins,, which is a product of single-spin wave 

functions and which is an eigenstate of the square of the total 

spin S*, must be a state with the maximum possible value of S* 

and of S 3   z being an arbitrary direction.  This theorem has z 

been applied in a separate work by the authors to show strik- 

ingly that the imposition of symmetry restrictions of a common 

type on an approximate wave function can lead to a very poor 

physical description. 
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A THEOREM ON SPIN-EIGENFUNCTIONS 

I    INTRODUCTION 

In a paper by the authors on Hartree-Fock (HF) theory, 

[Phys. Rev. 156, 1 (1967)], an analogy is drawn between the HF 

approximation to a ground eigenfunction of a Hamiltonian H 

representing a system of electrons, and the Hartree approximation 

to the ground eigenstate of a Hamiltonian H representing a s 

system of spins.  An example is then presented which shows strik- 

ingly that making symmetry-restrictions on one's already other- 

wise restricted wave function (a rather common procedure) can 

lead to an extremely poor description. 

Namely, let H be an isotropic Heisenberg Hamiltonian s 

-Z J. • S. -S*. with exchange parameters J. . chosen in such a way 

that the Hamiltonian represents an antiferromagnet.  The S^ are 

the individual spin operators satisfying by definition 

—► 2 
S.  = S(S+1), independent of i.  The Hamiltonian commutes with 

—►2        —►       N —► S , where S = Z •_-,  s. .  The exact energy eigenstates can, there- x— x   1 
-►2 

fore, be chosen to be eigenstates of S   also, and it is often 

helpful in practice to require this when dealing with exact 



eigenstates. This suggests (following others) that we impose 

the same requirement on the Hartree approximation to the wave 

function.  The latter, by definition, is of product form 

¥ = II .0 . ,   where 0 . is a single-spin state.  Let us therefore 

—►2 require that Y be an eigenstäte of S  .  The problem then, in 

this restricted Hartree theory, is to determine a lowest energy 

—►2 product wave function ¥ that is an eigenstate of S .  (This is 

completely analogous to a type of restriction conventionally 

used in symmetry-restricted HF theory). 

We then make use of a theorem:  a product ¥ of spin-s spin 

—►2 
functions which is an eigenfunction of S has maximum multi- 

plicity and the component of S in some direction has the maximum 

possible value.  According to this theorem, the only !'s of 

-*-2 
product form which are eigenstates of S  are ferromagnetic 

-♦2 
(with maximum value of S ). Thus, the symmetry-restricted 

Hartree approximation is the worst possible approximation in the 

present example of a Heisenberg antiferromagnet. 

In the paper on Hartree-Fock theory mentioned earlier, the 

above theorem was stated without proof; the purpose of the 

present note is to supply the required proof, which is given in 

the next section. 

It may be of interest to the reader that the theorem seemed 

to us to be very probably true, and we expected to find a very 



simple proof without difficulty.  Unfortunately, we have had to 

be satisfied with the following lengthy proof. 

II.  STATEMENT AND PROOF OF THEOREM 

We first state the theorem more precisely and then give the 

proof. 

Theorem.  Let Y = 01 (1)02(2) . . . .0 (N) be a product of spin 

functions 0. such that T.   0- (U = s(s+l)0. (1) and <0.|0.> = 1 

for i = 1,2, . . .,N.  If 

S*Z Y = G(G+1)Y 

N 

(1) 

where ?=  2  s., then s.. -z 0 . (1) = s0. (1), i = 1,2, . . .,N for 
i=1   * 

some unit vector z, and hence a = Ns. 

Proof.  Before giving the proof in detail we sketch an out- 

line of it.  We first prove the theorem for N = 2, since the 

proof for general N is relatively short and simple when based on 

the result for N = 2.  The proof for N = 2 involves two parts 

depending on whether or not <0p|"s]02> = 0.  The most lengthy 

argument by far concerns the <0 21 "s^ 0 2> = 0 case. 

It is convenient to define 

Q = 2 s . -s . 
i 3 

1 
2 r

2 - Z 
i=l 

s . 
l 

1 
2 3*2 - Ns(s+1) 



and the eigenstäte problem 

Q¥ = X¥ (2) 

equivalent to (1), where X  = -j [O(G+1) - Ns(s+1)]. 

Consider (2) first for N = 2. 

"s^-^2 01(1)02(2) = X 01(1)02(2) (3) 

Take the scalar product with 02(2) to obtain 

s^-a^ 01(1) = X 01(1) (4) 

where 

*± = <0il"?l0i> (5) 

There  are  two  cases  to  consider:      (a)  "?   ^  0   and   (b)  "5*2=0. 

(a)  72 ±  0 

From   (4),   0-, (1)   is  an  eigenfunction X   (1)   of "si -c2 

t±-a2 Xm(l)  =  mXm(l) (6) 

Expand 09(2) in terms of the X 

m' 

and substitute into (3) using 



*l'*2 = slzS2z + 1  sl+ s2- + \  Sl- s2+ <8) 

where s+ = s + is .  Obtain, using 

s± Xm - *±m  Xm±1 (9) 

1/2 where gm = [ (s-m) (s+m+1)] '     = g_m-1 

m 2, m' bm' Xm<1)Xm' (2) + k X^d) Z  g.m, bm, Xm,.1(2) mf m' 

+ "5 9-m *m-l(1) 2, V V Xm' + 1<2) = * *m(1) S,bm' Xm, (2) m' m' 

(10) 

Take the scalar product with X (1) X , (2), obtaining thereby 

(mm'-\)bm, = 0 (11) 

This implies b , = b   ,— for some m, -s < m < s, and consequently 

X = mm.  Substituting into (10) then yields 

™  Xm(1) X!<2) +I\ 9-5 Vl(1) Xi-1(2) 

+ I 9.m gH Vid) X5fl(2) = mm Xm(l) X-(2) (12) 



from which we conclude that 

gm g_- = o (i3a) 

9-m *5 = 0 (13b) 

Equations (13) require either g = g_ = 0 and hence m = m = s. m   m 
or g — = g  = 0 and hence m = m = - s .  Thus,, we conclude that 

when o0 ^ 0, (3) has only solutions of the type 

«± = Xs       i = 1,2 (14) 

where s, -z X_(l) = s Xe(l) with z some unit vector. J.    s s 

For an alternate proof we note:  once we know 0.. = X ,   then 

we know immediately that the only possible product eigenfunctions 

of "sT2of the form Xm(l)09(2) are just Xea(l)Xes(2) and m 

X.s(DX_s(2). 

(b) a2 = 0 

In this case X = 0 (excluding the physically uninteresting 

¥ = 0 case) and (3) reduces to 

^1*^2 0i(D02
(2) = ° (15) 

Choosing an arbitrary z-axis we expand 0, and 02 



^1     =    2     an,    Xm (16a) lmm m 

02 =  S     bm,   Xm, (16b) 
m' 

where 

s-z Xm =   m Xm -s <  m <   s (17) 

Then,    (15)   becomes,   on using   (8)   and   (16), 

Z      {mm'   am b  ,   Xm(l)XTn, (2)  + ^ gm  g     .   a    b  ,   X^n (l)Xm,   , (2) , m    itr      m m' z    m     -mf     m    m'     m+1 m' -1 
mm'      ^ mm 

+ :^V a»V xm-i(1)W(2) 

Taking the scalar product with X (1)X , (2) then gives 

mm' am V + \  gm-l V Vl bm' + l + \  gm V -1 am+l V -1 = ° 

(19) 

Because (15) is symmetric with respect to interchange of 1 and 

2,   all consequences of (19) hold as well when a and b are inter- 

changed . 
2 

Consider possible solutions of the set of (2s+l)  equations 

(19) . 



m = m' = s (^0) ^ a b = 0 
s s 

CASE 1     b ^ 0 ==> a = 0 ——————      s        s 

With m' = s, (19) reduces to 

msa b 4-o-g g  .. a  , b  , = 0 (20) m  s   2 ^m ^s-1 m+l  s-1 v  ' 

This implies a = 0, m = s - 1, s - 2,    . . ., 1 whether or not 

b  , = 0.  With m = 1, (19) then becomes 
S "" -L 

\ %  V ao bm' + l = ° <21> 

and with m' = s - 1 this becomes g g  , a b = 0 which implies 3o s-1 os c 

a =0.  Further use of (20) then implies a = 0. m= -1.-2. .... 

-s.  We therefore conclude for CASE 1 that there is no solution 

with b 4  0,   a = 0.  Naturally, we next ask if, with a =0, s       s s 

there is a solution of (19) with b = 0 and b  n ^ 0.  If not, S S  -L 

we then ask if there is a solution with b =b  n = 0, b  ~ ^ 0. s    s-1    *  s-2. ' 

And so on. 

CASE 2 

We shall proceed by treating the general case:  we show 

that there is no solution of (19) with b = b  , = ... = -^— —^—^—-^-^——^^— s    s - J. 

b ., , = 0 and b v ^ 0, k = 1,2, . . .,2s .  To prove this we 
S — JC""r -L S — K. 

8 



suppose the contrary to be true.  With m' = s-k, (19) becomes 

m(s-k)ambs_k + \ gm.1gs_kam_1bB_k+1 + \ g^.^b^^ = o 

(22) 

where  now b    ,,,  =  0. S-K+l 

CASE 2 .1  k ■£   s, k ^ 2s.  The argument is similar to that of 

CASE 1.  Now (22) with m = s =>    a = 0, then s 

m=s-l=^a1 = 0, then 
s — J. 

m = 1 =>    a;L = 0 . 

Thus, (22) implies a = 0, m = s, s - 1, . .., 1.  With m' = 1 

in (19) we again obtain (20) which, with m' + 1 = s - k, reduces 

Vs-k-laobS-k = ° 
(23) 

which implies 

a = 0 o 

Then, (22) with m = -1,-2, . . .,-s ^ a s 0, m= -1,-2, ...,-s. 

Thus, all the a = 0 and NO SOLUTION is possible in case 2.1. 3 m 

CASE 2 .2  k = s 

(19) with m' = 1 becomes in this case 

igg  a^, b = 0 (24) 2 ^rn^o m+1 o 



which ^>    a    =   0,   m =   s,   s  -   1,    . ..,   -s +   1.     Then   (19)   with 

m =   -s +   1 ^    ... 

h g-sV a-s V+i = ° <25> 

With m' = -1 this gives g  g na b =0 which =^ a  =0.  Thus, J -s -1 -so '      -s ' 

all a = 0 in case 2.2 and there is no solution, m 

CASE 2.3  k = 2s 

(19)   with m'   =   -s +   1   in this  case ^ 

g  g       a   , _b       =0 (26) ^m -s     itH-1  -s v     ' 

With m= s - 1,, s - 2, . . ., -s, this ^    a = 0, i = s, 8-1, 

. . ., -s + 1. 

(19) with m' = -s then gives 

- ms amb_s = 0 (27) 

with m = -s this ^ a  =0. r       -s 

Thus, all a = 0 in case 2.3, and there is no solution.  This m 

exhausts all possibilities.  Thus, we conclude, there is no non- 

zero solution of (19).  In other words, the only solution of 

(15) is 0-102 = °' which is of no physical interest. 

To summarize the results proved so far, which are all for 

N = 2: We have proved that Eq. (3) has no solution with ¥ ^ 0 

when X  = 0.  Since from Eq. (4) we have that ~o'   =   0 implies 

10 



X = 0 if Y ^  0,   the only solutions with Y ^ 0 occur for "a- ^ 0 . 

These are given by (14). 

For General N: 

Take the scalar product of (2) with 03 (3)04 (4) . . .0 (N) and 

obtain 

s*. •"? + 2  a. • (s.+"s9) +  2   a*, -at 1      Z k>2  K   1  ^     k>j>2  3  Kj 01(1)02(2) = X 01(1)02(2) 

(28) 

where again a* = <0 . I "si 0 .> . 
D    3    J 

As for N = 2,   we consider two cases:  (a)  2  av /  0 and (b) 

2  a. = 0.  Let 2, ~ = 2  a. - 
k>2  K "  k>2  K 

(28) is well known to be X (1)X (2) the quantization axis being s    s 

If 212 = 0,   the eigenfunction in 

parallel or antiparallel to 212-  If 2,2 = 0, (28) reduces to 

(3), in which X is replaced by X -  2  "a", -at ,   so that again the 
k>j>2 J     * 

eigenfunction of (28) is X (1)X (2) but with quantization axis s    s 

undetermined. 

If next we repeat this development with 1 and 2 replaced by 

i and j we obtain instead of (28) 

s. -s . + 2. . . (T.+T:) + 2  Ok.'?, 0,(i)0,(j) = X 0.(i)0.(j) 

(29) 

11 



_^ N 

2>4A = =    2      at 
ID tei  k 

with 

(30) 

This, of course, reduces to (28) when i = 1 and j = 2.  The 

eigenfunctions, determined as for (28), are X (i)X (j) where the s    s 

quantization axis of X  is arbitrary if 2•• = 0 and along the 

axis of 2.. if 2.• ^ 0.  Now let i = 1, and let j run from 2 to 

N.  Then, we see that we must have 0. = xe for all j, with a 
3 s 

single quantization axis, which is not specified.  This is a 

consistent solution, since 2-. = 2 = (N-2)sz for all pairs i,j 

with z the quantization axis, a consequence of 

—►    —►        i—h * a. = o = <X |s|X > = sz, independent of i.  Finally, we have l        s    s 

and hence from (2), a = Ns. 

12 
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