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NONTECHNICAL SUMMARY 

A Markovian Decision Process Is a process which Is observed at distinct 

time points to be In sane state.  After observing the state of the system 

an action Is chosen - corresponding to the action (and the present state) 

a cost Is Incurred and the transition probabilities for the next state are 

determined. A policy is any rule for choosing actions. Corresponding 

to each policy there Is an expected long run average cost per unit time. 

This paper is concerned with finding an optimal policy -i.e. one whose 

associated average cost is as small as possible. 

For example we might have a machine which deteriorates with time. 

The state of the system could be the condition of the machine, and the 

possible actions could be either to replace the machine or not. 

Associated with each state there would be em operating cost. Thus a 

policy is a rule for determining when to replace the machine and an optimal 

one is one which minimizes the long run average cost. 

In this paper we let the state space be countable and present 

sufficient conditions for the existence of an optimal policy and for it to 

be of simple form. Tille  form - called stationary deterministic - is of the 

form of a function fron the state space to the action space. For example 

in the machine problem a stationary deterministic policy would replace 

whenever the machine is in a certain specified class of states. 

In a special case the average cost criterion is shown to be 

equivalent to the discounted cost criterion.  This latter criterion 

has been extensively studied. Under certain conditions the optimal 

discounted cost policies are shown to be almost optimal for the average 

cost criterion. 
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It is also shown that when a replacement action exists (as In 

the machine problem) then there always exists an optimal policy and the 

form of this policy Is given, nie final section gives a counterexample 

which shows that the optimal rule cannot always be taken to be of the 

stationary form where a stationary policy Is one which at each state 

the action may be chosen according to seme fixed randomization scheme. 

For Instance in the machine problem a stationary policy is one which for I 

each state gives a probability for replacing the machine. 
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NON-DISCOUNTED DENUMERABLE MARKOVIAN DECISION MODELS 

Sheldon M. Ross 

Introduction 

We are concerned with a process which Is observed at times 

t ■ 0,1,2,... to be In one of a possible number of states. We let I 

(assumed denumerable) denote the number of possible states. If at time 

t the system Is observed in state 1 then one of K. possible actions must 

be taken. Unless otherwise noted we shall assume throughout that K. < « 

for all 1. 

If the system Is In state i at time t and action K Is chosen then 

two things occur. 

(l) We Incur an expected cost C(l,K) and 

(11)  P{Xt+1 = J 1 XQ^AQ,... Xt - i^ - K) - P(1,J:K) 

where (X } 0 denotes the sequence of states and 

{A ) - tht sequence of decisions up to time t + 1. 

Thus both the costs and the transition probabilities are functions 

only of the last state and the subsequently made decision. It Is assumed 

that both the expected costs C(i,K) and the transition probabilities 

P(l,J:K) are known. Furthermore it Is assumed that the expected costs 

are bounded and we let M be such that |c(l,K)| < M for all 1,K. 

A rule or policy R for controlling the system is a set of functions 

(D^XQ^Q, ... Xt)) 
At satisfying 0 < D^XQ^Q, ... X^ < 1 K - 0,1 ... KL. 
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9(1,P.) » 11m sup EL L 
n -♦»    taO   n + 1 

Since costs are bounded and adding a constant to all the costs C(l,K) 

will affect all rule identically in both criteria we may without loss of 

■ 'A' 
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\ 
and  S   D (XQAJ,...^) - 1 

for every history X0,A0,...X.    t ■ 0,1,... y 

Hie interpretation being:    If at tine t we have observed the history 

X0,A0, ...X.  then action K is chosen with probability D^XQ, .. .X.). 

We say that a rule R is stationary if DK(X0,AQ,. . .X.   = i) = D. 

independent of XQJAQ, .. »Ati and *•    We say that a rule R is stationary 

deterministic if it is stationary and also D. „ = 0, or 1.    Ihus the • 

stationary deterministic rules are those non-randomized rules whose actions 

at t Just depend on the state at time t.     We denote by C" the class of | 

stationary deterministic rules. 

Following Derman [2] the process ((X.,/0 t - 0,1,2,...} will be 

called a Markovlan Decision Rrocess. 

Two possible measures of effectiveness of a rule governing a 

Markovlan Decision Process are the expected total discounted cost and 

secondly the expected average cost per unit time.    The first assumes a 

discount factor ß€(0,l) and for a starting state  X^    » i the objective is 

to minimize 
00 

♦ (i,ß,R)    -    Ep      Z     C(Xt,At)ßt 

The second criteria tries to minimize for a given X0 = i 

n «W 
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generality assume that costs are non-negative. 

Blackwell In [1] has shown for the discounted case that If K. < « 

and {C(l,K)) bounded then there exists a stationary deterministic optimal 

rule. We shall be mainly concerned In this paper with the average cost 

criterion. The first results for the average cost criteria which did not 

assume a finite state space were given by Taylor [9j who worked with a 

replacement model. A replacement model Is one In which there Is a distinguished 

state 0 and action a0 such that X0 ■ 0 and P(l,J:a0) ■ L jLT.- , 

Taylor showed that In the finite action replacement model If one can 

restrict attention to those rules whose expected time between replacements 

Is uniformly bounded then there exists a stationary deterministic optimal 

rule and It Is determined fron a functional equation. Taylor's method was 

to treat the average cost problem via the known results of the discounted 

cost problem. 

Derman [k] has recently dealt with the countable state, finite (for 

each state) action general Markovlan model. He treats the problem without 

u.sing the results for the discounted problem and gives sufficient conditions 

for the existence of a stationary deterministic optimal rule.  Unfortunately 

this condition - the existence of a bounded solution of the functional 

equation g + f(l) = mln {C(l,K) + L P(l,J:K) f(j)) - cannot be checked 
K J 

directly. Derman's paper [k] however, In conjunction with a later Joint 

paper [5] of Derman and Velnott show that a sufficient condition for the 

above Is that 

(I) for each rule ReC" the resulting Markov chain Is positive recurrent, and 

(II) there exists some state (say 0) and a constant T < » such that 
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Mi0(R) < T for all 1, and all RcC" where M.0(R) denotes the mean 

recurrence time fVoro state i to state 0 when using rule R. [Note that 

for any rule ReC" the resulting sequence of states forms a Markov chain]. 

In the first section of this paper, by following the approach of Taylor, 

we give a somewhat simpler proof of Derman's results. Also our sufficient 

conditions will be somewhat weaker: we won't require condition (i) and 

won't require that Mi0(R) < T for all rules R. We also show the 

connection between the average cost optimal rule and the optimal discounted 

cost rules, - speaking loosely the former is a limit point of the latter rules.     I 

Die second section shows how, in a special case, the average cost case 

can be recuced to the discounted cost case. 

Hie third section deals with e-optimal rules and a sufficient conditions 

is given for the opitmal discounted rules to te e-optimal. 

ühe fourth section deals with the Replacement Problem and it is shown 

that an optimal rule always exists but it may not be of the stationary 

deterministic type. 

Bie fifth section given an example of an optimal nonstationcry rule 

which is better than any stationary rule. 

1.  On the existence of a stationary deterministic optimal rule 

We shall need the following result given by Blackwell [1]: 

If iq < * and C(i,K) < M for all i,K then under the ß-discounted criteria 

with 0 < ß < 1, there exists a stationary deterministic rule Rg such that 

♦ (i,ß,Rß) -min *(i,ß,R) for all iel. Furthermore (♦(i,ß,Ro), i€l) is 

the unique solution to (l) *(i,ß,Rp) = min {C(i,K) + ß 2 P(i,J:K) i|»(j,ß,Rp)) i€l 
K J 
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and any stationary deterministic rule which when In state 1 selects an 

action which minimizes the right side of (l) is optimal. 

Following llaylor, for any ß€(0;l) i,j€l 

(2) Let fß(i,j) - ♦(i,ß,Rß) -♦(j,P,Rß) 

One has by simple manipulations that 

(3) gß(j) + fß(i,J) = min (C(i,K) +ßl P(i;8:K) fß(s;j)) 
K S 

where gp(j) - (l - ß)  t(j,ß,Rß) 

Note that    |gß(j)|      <M   for all ßj 

We need the following Assumption 

♦Assumption:    For some sequence ß -♦ l' there exists a 

constant N < «>     such that 

|fß (i;J)l    <N   for all r - 1,2,... all i,jcl. 
r 

Theorem 1.1:      If As sumption^) holds then there exists a bounded solution 

to the functional equation 

(It)    g + f(i)   =   min (C(i,K) +   I   P(i,J:K) f(j))    ie I 
K J 

Proof:    Fix some state s.    By Assumption (*) fa (i,s) is uniformly bounded 
r 

for r = 1,2,..., and all lei.    Since I is denumerable we can get a 
M 

subsequence {ß ,)    such that fß  (i^s) -*f(i)  for all i. 
r r1- 1 pr, 

Since gß(s) is bounded for all ß, we can also require that 

go (s) -»g asß , -»1. 

• '• by (3) and the bounded convergence theorem we have that 

g + f(i) - min {C(i,K) + E P(i,J:K) f(j))      QED 
K J 



Remark:  If t(l;ß>Ra) Is an increasing function of i for each ß, 

then f(i) is an increasing function if i. 

A special version of the next theorem was originally proven by 

Taylor [9]> Derman [k] proved it under the assumption that K, < » 

for all 1; later in a Joint paper with Lieberman [3] a proof not 

assuming this was given. 

We shall give here a simple proof which follows a technique used 

in [91. 

Theorem 1.2:  If there exists a bounded solution to the functional 

equation 

(5)  g + f(i) - min {C(i,K) + L   P(i,J:K) f(j)}  i€l 
K J 

then there exists a stationary deterministic rule R* such that 

g =  9(1^*) ■ min 9(1,R) for all 1 
R 

and R* is the rule which, for each 1, prescribes an action which 

minimizes the right side of (3). 

Frootx       for any rule R 

h{\ [f(xt) ■ Vf(xt) I st.i)j) -0 

where X. = state at time t, and 

S., = (XQ^AQ,... ^t-l'^t-l^ = his'tory UP *0 time  *• 

^ 

I 

• 
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now ER[f(Xt)  I   St._1] -    2 PCXt.^JtA^) f(j) 
J 

-    CCX^pA^) +   2P(Xt.1;J:Ät.1)f(j)  - CCX^,^^) 
J 

> min (C(Xt-1,K) + £ P(Xt_1,J:K)f(j))  - C(Xt.llAt-1) 
K J 

> 6    +    f(Xt-l)  " C^t.l^t.^ 

with equality for R* since R* is defined to take the minimizing action 

n 
.-.    0 < EpCE f(Xt) - g - f(Xt_1) + C(Xt_1,At_1)) 

with equality for R*. 

n 

. •. g < -£—£_ . 3 2_ + 3L2—^~:L ^'•L
   with = for R* 6 -   n n n 

letting n -♦ « and using fact that f (X ) is bounded, we have g < q)(R,X0) 

with equality for R* and for all possible values of XQ.    QED. 

Note: the above proof doesn' t make use of the fact that ^ < « or that 
n C(XtA.) 

C(l.K) is bounded.    Also it shows that lim EL,.    L r-*r-   exists and 
n   ^*   0     n + 1 

equals g, and that 
n C(X ,A ) 

g < lim inf EL L  —-*—  for every rule R. 
" n      ^ 0  n + 1 

Uius, in this case, the fact that the average cost was defined by 

the lim sup as opposed to the lim inf is Irrelevant. 

For any rule ReC" 

Let i(R) = action R chooses when in state 1 - I.e. D. ./_* = 1 



Def:    For rules R.R€C" we say that R converges to R(lL-> R, or 

llm R ■ R) if for each 1, there exists N. such that i(Rn) ■ l(R) for 

all n > Nj. 

Note that any countable sequence of rules Rn6C" has a convergent 

subsequence. 

Hie following theorem shows the relationship between R* and the 

ß-discount optimal rules R». 1 

Theorem 1.3;      If Assumption (*) holds then 

(1)      for some subsequence  (ß  ,} of (ß  } I 
r r^l    r r=l * 

R* - lim Rß . "I 

(11)  if R ■ llm Ro  where (ß ,) is a subsequence of (ß } 
r' Pr,      r r r-1 

then R is optimal i.e. (p(i,R) = g for all id 

00 

Proof:  (1)  Let {ß ,)   be the subsequence for which 
r r'-l 

fa (i,s) -»f(l)  and gfl (s) -»g as ß .-♦I 
Pr. Pri        r 

it is easily seen from the definition of fa(j) that RQ  takes the 
P       Pri 

actions which minimize C(i,K) + ß , Z P(i,J:K) fg (j) but R* takes 

the actions which minimize C(1,K) + L P(i,J:K) f(j). The result 
J 

follows since K. < ». 

eo 

(11) For any sequence {ß ,) ,=1 we can get a subsequence {ß n)COti_-| 

for which llm fft (l,s) and lim gR     exist. Denoting the limit by f(i) 
r r 

it follows from theorem 2 that any rule which minimizes 

C(1,K) + £ P(1,J:K) f(j) is optimal. But Ro  minimizes 
J Pr" 

8 
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C(i,K) + ß,, I P(i,J:K) fß (j) and Rg  -»R 
r j        Pr..      PrM 

.'. R is optimal.   QED 

Ihus we see if K. < « for all id, and Assumption (*) holds then 

there exists an optimal stationary deterministic rule which is a limit 

point of (Rg.'O < ß < 1) and any rule which is a limit point of (Ro ) 
r 

is optimal« 

Ihe following theorem gives a sufficient condition for Assumption (*) 

to hold. 

Theorem l.h:      If for some state J, and sequence ß   -»1 there is a 

constant N < »o   such that Mj, (Ro) < N for all ici, r - 1,2,... 
r 

then Assumption (*) holds; 

where II   (Rg ) is the mean recurrence time to go from state i to state J 

when using the ß -optimal discount rule R    . 

Proof:        Consider the fixed rule Rg .        Suppose the process starts 
* r 

at state i. Let t = time it takes to first get to state J. 

now  t(i,ßr;Rp ) - EL (Cj  + E^    (Cg) 

r       r 
where C. > discounted costs incurred before one gets to 

t-1 
state J = Z C(XnAjPn 

n=0 

C2 = discounted costs incurred after one gets to 

00 

state J = Z C(X ,A )ßn 
n' n 

n=t 

•*•  *(i^r.Rß ) < M Et +*(j,ßr,Rß ) EL (ß^) 

< MN + *(j,ßr,Rß ) 
r 

9 



(recall that all costs are positive and bounded by M) 

.'•    fU^Rp ) - K-hß^Rß  ) <   MN    for all i, r = 1,2,... 

again ^       lr(i,ß  .Rfi  )    =   E,     (Cj)    +    ER    (Cp) T>"ß 
r r 

>   ER    (C2)    =    B^    (ßr
t)'|r(j,ßr,Rß   ) 

'.   *CJ,ßr,Rß )   <   *(i,ßr,Rß  ) + [1 - E     (ßr )]*(j,ßr,Rg  ) 
r Hr ßr r 

now KJ^^Rß )   < M 

1  - ß 

! 

1 
t Vt N 

and E(ß  ) > ß       >   ß   by Jensen's Inequality. 

1 - ß. 
'.     [1 - E      (ßr

t)]*(j,ßr,Rß  ) <    M    <   NM 
«ß r 1  - ß 

Hö,Pr>*ß ) -'Kijßj.^Rß  )l     <MN    for all r = 1,2,...   iel 

*•     l'Ks^Rß  ) - HM^Rß  )l     < 2MN for all r = 1,2,...   i,sel 

'.    AßGumption {*) holds.        QED 

If for some dt > 0 and some state j 

P(i,J:K) >a    for all iel,   Ke^ 

then Assumption  (*) holds and there exists a 

stationary deterministic optimal rule which is 

.10 
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determined by the functional equation  (5)- 

Proof:        For any  rule R, M. ,(P.) <  l/cu and  so theorem k applies.      QED 

2.      Determinatior of Optimal Policy by Peductlon of "Average Cost" 

Case to Discounted  Cost Case. 

We shall need the following assumptior . 

Assumption: sup      inf      P(i,J.K)    >    0 
jel       K:^ 

iel 

Note this is so if and  only if there  is a state j and a > 0 such that 

P(i,j;K) >a for all  iel,   FfeK. ,      For the  sakp  of definiteness denote  the 

state j for which the above holds by  state 0.     By  Lemm't 5 there exists a 

stationary deterministic  optimal rule for this process. 

Consider now a new process  (the prime process) with identical  state 

and action spaces but with transition probabilities now given by 

P'^.j.-K)    -        -j 

l - a J - ^ 

Denote by <lf'(i,ß.R) the total expected ß-discounted costs when using 

rule R with respect to the new (prime) process. 

Note that any rule for the prime proce^,. uan also be considered as a rule 

for the original process and vice versa. 

The fundamental theorem in the reduction is the following: 

11 
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Theorem 2.1;  For any stationary rule R 

(p(0,R) - or(0,l -a, R) 

Rroof: In the original problem we shall think of the transitions as 

taking place in 2 stages. During stage 1 a coin with probability a of 

coning up heads is flipped. If heads comes up then the process goes to 

state 0; if not then the process moves to the next state according to 

the second stage transition probabilities which are the transition 

probabilities which are necessary in order to make the total transition 

probability what it should be - i.e. if action K is chosen then the total 

probabilities must be P(i,J:K). Note that the above is legitimate since 

P(1,0:K) > a for all 1,K. Note also that the desired second-stage 

transition probabilities are exactly the transition probabilities of the 

prime problem. 

Define a cycle as the time between successive occurrences of heads. 

Let T ■ time of cycle. 

Then  1L la well known (follows fron the Strong Law of Large Numbers and 

the Bounded Convergence Theorem) that for any stationary R 

I 
I 
1 
! 

T-l 
(p(0,R)    -    Ep    L   C(Xt,At)/ EpT 

.1-1 
1-1 

=     Z   a(i - a)1"-1   z   IUC(X. ,At)l  T = 1] / 1/a 
1=1 t=0 ^      *   t 

now conditioning on T = 1 means that the transition probabilities used 

during times 0,1,...  i - 2 were the 2nd stage transition probabilities, 

12 
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i.e.  the transition probabilities of the prime problem. 

.*.       for t < 1 - 1, EptCCX^)   I   T = 1]    =    E^C(Xt,At) 

where E_ denotes the expected cost with respect to the prime problem. 

oo i-i 
.'. q)(0,R) =<* z^i-a)1"1 z   EL C(XtA) 

1=1      t=o ^  t t 

00 '       00    1-1 
= a Z EL C(X A ) L   a(i-a)   since everything is 

t=0 l=t+l       non-negative 

= a Z ER C(X, A) (I-«) 
t=o R  t t 

= a' (o,i-a,R) 

QED 

Note that since P(1,0:K) >a for all i,K It follows that lor any 

stationary rule R 

(p(l,R)    =    q)(0,R) 

and since a stationary deterministic: optimal rule does exist it follows 

from the above theorem that this rule is precisely the optimal l-o, 

discount rule with respect to the prime problem. 

Letting V(i) = min v ' (i,l-a,R) 
R 

we have that 

or 

V(i) = min {C(i,K) + (1-a) Z  P (i,j:K) V(j))  lei 
K J 

V(i) = min {C(i,K) + E P(i,j:K) V(j) - av(0))  lei 
K J 

13 
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and the optimal policy Is the one which chooses the minimizing actions. 

Let B(l) » Space of all bounded functions on I then defining the 

operator T:B(l) -»B(l) by 

(TU).    -   min (C(1,K)    +     E P(l,J :K) U(j)  -   au(0))    lei 
K J 

Then under the supremum norm      ||u||    =    sup  |  U(l)  1 
l£l 

We have that T is a contraction mapping with unique fixed point V, and 

V can be found by the simple to apply method of successive approximations 

I.e. for any Uc B(l), 11m T11 U = V. 
n 

Thus if our assumption holds then we have reduced the average-cost 

problem to a discounted-cost problem and any of the well-known methods 

of successive approximations or policy improvements - see [1] for details 

can be applied. 

Note that policy Improvements for this 1-Ot discount problem are by 

virtue of theorem 2.1 also policy Improvements for the original average- 

cost problem. 

3.  On €-optlmal Rules 

It is known (see [k])  that even under the conditions that K. < » 

for all i, and C(i,K) uniformly bounded that there need not exist an 

optimal rule in the "averaße cost" sense; Also there may exist an 

optimal rule but there may be no stationary deterministic rule which 

iz  optimal. 

Tl.is brings up the question whether there always exist e-optimal 

stationary deterministic rules. We say that RcC" is c-optimal for 

state i if 

11+ 



  

<P(M) < g(i) + € 

where   g(i)   - inf cp(i,R) 
R 

We say that ReC" is €-optimal if it is e-optimal for every state i. 

One possible source of €-optimal stationary deterministic rules are the 

optimal ß-discount rules {RQ:0 < ß < 1).  one might conjecture, that 

for any state i, that these rules are  €-optimal for state i in the 

sense that 

lira inf  co(i,Rg) = g(i) 
ß -»!'      P 

The following counter-example shows that this need not be the case. 

f (i,j)   J = 0,1,...i, i = 1,2,... 
Let I  «  i 

.2       j=0    *„    = l 

K(i,j) - i,      j^o 

The costs depend only on the state 

,1      j = 0 

c((i,j),-)=    ] 
1 0 J  ^ 0 

C(oo,.)= 2 

the transition probabilities are as follows 

P((i,0),(i + 1,0):1)    =    1 

P((i,0),(i,l):2) =    1 

P((1,J),(1,J + 1):1)    =    1      for 0<J<i 

P((i,i),«.:i) «    1 

P(oo,cx):i) =    i 

15 



In words, when In state (1,0) we can choose to go to state (i + 1,0) 

at the cost of 1 unit for the next stage or we can elect to pay 

0 dollars for the next i stages and 2 units for every stage after that. 

Let X0 - (1,0) 

Let R~ ■ rule which takes action 1 at all states, then it is easy 

to see that 

<p((l,0),R0) = 1 

R stationary deterministic, R ^ R- => cp((l,0),R) = 2 

We now show that R0 is not a ß-optimal rule for any   P(0 < ß < l) 

and thus (p((l,0),Rp) = 2   for all ße(0,l) 

while    inf cp ((1,0),R)    =    1 
R 

now   ♦((l,0),ß,Ro)    =    T-H-   since the cost at each stage is 1. 

Let R   = rule which takes action 2 at state (n,0) and action 1 elsewhere, 

n-1 2n-l        . * 
if((l,0),ß,R  )    =    L     l.ß1    +      L    O.ß1    +     r   2.ß1 

1=0 1-n l-2n 

1 - ßn + 2ß2n 

1 - ß 

now for n large 2ß  - ßn < 0 

.*. for n large t ((l,0),ß,Rn) < j-Lp- 

. *. for each ß, % / RQ 

.'.  (p((l,0), Ro)   =2  for all ß 

and inf cp((l,0),R)   = 1  QED 
R 

16 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
\ 

I 
I 
I 
I 
I 

"•/"*' 

-M 

.? 



Thus It Is not necessarily true that the ß-optlmal discount rules are 

€-optimal, or even €-optical for a specific state. We shall now give 

sufficient conditions for Fo to be 

(1)  e-optimal for a particular state (for ß near l) 

(11)  e-optimal for all ß near 1 

Theorem j.l; If for some sequence ß -♦ 1*, there exists an N < <», such that 

*(J,ßr,Rß ) - <Ki,ßr,Rp ) <N   for all Jcl, r = 1,2, 
r r 

then    lim   cp(i,Rß ) = g(l) = inf q)(l,R) 
ßr-» 1      

Pr R 

and so, for ß large, Rg is c-optimal for state 1. 
r 

Proof: (i)  Let Vß(j) =  ♦(J,ß,Rß) 

then Vß(j) =  min {C(J,K) + ßL  P(j,l:K) Vß(l)) 
K 1        P 

and Rg takes the minimizing actions 

now % J/VV -\tVxt)lst-i^ = 0 

and E^ [Vß(Xt) | 8^] =   2 H^.t*^) Vß(j) 
J 

= ßz H*tml,yAtml) vß(j) + c(xulAtml) 
J 

■^t-lA-^ + (1"ß) L p(xt.l>J:At-l)vß(J) 

J 

= Vß(Xt.1)  - C(Xt.1,At_1) 

+ (I-ß) L P(Xt-1,J:At-1) Vß(j) 
J 

0 = \tW   -  VßW0)J  + ERß I C(Xt.l'At-l)   "   ^-P)  ERß l 
Vß(Xt) 
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now using our condition we have that Va (Xt) < VQ (i) + N for all t 
r       r 

•"• k\    ? ^t-l'Vl) ^ (l-ßr)Vß (1) + (l-ßr)N " k \  [Vß ^ " Vß ^O^^ 
r 1 r 

Letting n -» * we have since | Vo (X ) - V« (XQ) | < , _ a— 
r      r ' r 

that q)(X0,Rß )    - ßr) Vß (i) + (1 - ßr)N for any XQ. 
r r 

now for any rule R 

(1 - ß) Vß(i) < (1 - ß) *(i,ß,R) 

.*. lira (1 - ßr) Vo (i) < lim (l - ßr) *(l,ßr,R) < cp(i,R) 
r-» ^        r     r-*00 

where the second inequality follows from the Tauberian result that 

lira      (1 - X)    Z     a    X11 <    lira -   E   a.   [see Titchmarsh - p. 22?] 
X-» l" n=0      "        "     n    n    1 

.*.    lim    <p(X0,Rß  )    <     <p(i,R)      for any R, any X0 
r-» oo pr 

/.     lira   9(X0,Rß  )    <     g(i) for any X0 
r-» oo r 

.'.    lira   <p(i,Rp  )      -      6(1) QED 
r-» oo 

Corollary 3»2; If for seme sequence ß -»l", there exists N. < »o 

for each l€l such that i|»(j>ßr,Rß ) - i)/(i,ßr,Ro ) < N. for all r,J. 
r pr 

then (1)  lira (p(i,Ro ) = g(l) for all 1, and the convergence 
r-» oo     r 

is uniform in i - and thus Ro is e-optimal for r large 
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(11)  g(l) = g(j) = g for all 1,J 

Proof:  We first prove (11) 

From the proof of the previous theorem we have that 

lim cp(X0,Ro ) < g(i) for any X0, any i,  and also 
r 00 

that    g(X0) = lim (p(X0,Rp ) for any X0 
r-» oo 

.'. g(X0) < g(i)        for any i,X0 

•'. g(i)  = g(J) = g    for all 1,J 

(ll) The convergence is an immediate result of theorem 5.1. 

To show uniformity - fix some state 1-, 

The previous theorem yields that 

lim (1 - ßr) Vß (i0) < g(i0) 
r -♦ oo        r 

and     (p(j,Rß ) < (1 - ß ) Vß (i0) + N (l - ßr) for any state J 
r r       0 

for      £ > 0, let r be such that r > r Implies 

(i) (1 " ßr) V (i0) < g(i0) + ^2   and also 
pr 

(ii) (1 - ß )N   <  6/2 
0 

.'. r > r => q)(j,RQ ) < g(i0) + e/2 +    e/2 =  g(l0) +e   for any J 
r 

but g(i0) = g and so convergence is uniform.    QED 

Note that the condition in the above corollary is weaker than the 

condition that ■] N < oo such that | t(j,ßr>Rß ) -y(i,ßr,Rß ) I < N 
r r 

for a.ll r,i,j.  This latter condition is Assumption (*). 
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Prom Iheorem l.U we thus have 

Theorem 3.3:  If for some state j, there is N < » 

such that M (Rp ) < N for all r = 1,2,... all i 

then the condition for corollary 3.2 is satisfied and 

thus g = lim 9(1,% ) uniformly in i. 
r-» «>     r 

Proof: see proof of Theorem 1.^. 

Putting corollary 3.2 together with Theorems 1.1, 1.2 and 1.3 

we have 

Theorem 3.2;  If Assumption (*) holds then there exists a stationary 

deterministic optimal rule which is a limit point of 

the optimal ß -discount rules, and for any € the 

ß -discount rules are e-optimal for r large. 

h.      Replacement Process 

Definition: A Markovian Replacement Process is a Markovian Decision 

Process with a distinguished state - call it state 0 - and a 

distinguished action - call it a0 - such that 

(i)   i        =0 

(ii)  P(i,J:a0) = j 
0        '1   J = 0 

0   otherwise 

Let g = inf cp(0,R) since >., = 0 we shall write cp(H) for 9(0,R) 
R J 

Let Rg be the ß-optimal discount rule. 

As an immediate consequence of theorem 3-1 we have 
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Theuretii 4.1:      In the replacement process 

Proof;        <|r(i,P,Rß) =    min   [c(i,K) +   p>   P(i,.j:K) ']r(j,P,K,)} 
K J 

<    C(l,aJ  + ^(0,ß,,H,,) 

<   M    +      *(ü;(^H.)    for ail i,  alJ   T 

ami BO the result lollowc  fi'om  thcorom j$.i. QED 

[Recall that sinuo C(i,K)  is asauriicd ^c-uuäoa  wo  can  thus alsc; USüUII.O 

without less of generality that cunts are nun-negative and av 

t(0,P,Rß) > 0] 

The following corollary is  immediate 

Corollary h.2:     (l)    There exist    e-cptimal stationary tleteminiatlc 

rules  lor tlie replacement problem. 

(ii)    If R    is optimal, among the stationary detcn..inistic 

rules   then R is optimal  (for the  replacement problem), 

Def; We say that rule R is a Markov rule 11   the action it chooses at 

time t only depends on the past history thru  the state at time t,  and  t. 

i.e.    DK(X0„.V...  Xt = i)    =    DijK(t) 

We say that R Is non-random Markov if it is Markov tmi IU j.-randc'.T , 

ITieorem 4.3:      For   the replacement model there exists a m.a-randon. 

Markov ruxe which is optimal. 

Proof: For each n,   let R    be a stationary detcniiinitjti«.:  rule 

21 

.. 



such that  9(Rj < g + l/2n. n' 

for each n, ^ N such that EL   < q)(Rn) + ^ for all i > N 

h-1 

Ep  Z C(Xt,At) + (N2 + 1)M 

Let N,, be such that  z < m(R v  , 
1 ^ + (N2 + 1) -^ ^ + 1 

where M is such that C(i,K) < M for all i,K 

Define N. i = 2,5,...  recursively by letting N. be such that 

V1 i.i 
\ gc(VAt)+M^/j+1+Ni+i) 

^   +  ( rs    +  i  +  N..J 
j-1 J 

Let R ■ non-random Markov be as follows 

use R, for t = 1, ... N^ then take action an 

use Rp for the next N stages then take a. 

use R. for the next N. stages then take a- 

etc. 

Claim:   (p(R) = g 

for any € > 0, let j be such that l/j < e 

h  f (Xt-rAt.l) 
We shall show that n > N. + ... N. + J =>  = < g + e 

1      J n        0 
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now If n > N,  + ...  + N. + J then for some k > J 

f^ + ... + N.   + k 'N1 + ... + Nk + Ük+1 + k + 1 

now 
n 

N, 
n-ZN,-k 

1 
(N i + ••• + Nk.i+ ^ + \l c(xt.A-i) + \+1  I 

c(xt.rAt.i) 

there are 2 cases 

Case (i):      n - £ ^ - k < Nk+1 

Case (li):    n - 2 IT   - k > Nk+1 

n 

If (i) then 
n 

fl 

(N1+  ...  + Nk_1+ k)M + E^    Z CiXt^Atml) + Nk+1 M 

N1+...   +Nk_1+k+Nk+1+Nk 

< cp(\) +k<e + k + h =  ß + iA<g+l 

23 



h * c(xt-lA.l) 
If (li) then  =  

k-1 

n 

( L Ni+ k)M + E^CiX^A^)  + (n - I V k )(^+1)  + ^j) 

k-1 

<   g + ^ 

<   6 + e 

.'. (p(R) =  g QED 

Thus in the replacement problem there always exists an optimal 

non-randomized rule. That this rule cannot always be taken to be 

stationary is shown by the following example. 

Example k.k:      Let I =  {0,1,2,...) 

^ « 3 i = 0,1,... 

The costs are as follows: 

C(i,0) » 1 for all i 

C(i,l) = 1 for all i 

C(i,2) = 1/i+l for all i 

24 
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transition probabilities are as follows 

p(i,0:0)  =  1 

P(i,i+l:l) =  1 

P(i,i:2)  =  1 

In words when in state i we can choose to (l) remain in state i at 

the cost of l/i+1 units, or (2) go to state i+l at the cost of I unit, 

or (3) return to state 0 at the cost of 1 unit. 

[Actually the replacement action is superfluous in the sense that 

action 1 is always a better action). 

Let R be any stationary deterministic rule 

Let i(R) be the action R chooses when in state i 

Let R1 = min (i:i(R) ^ 1} 

Then it is easy to see that 

R  < oo => cp(R) > jL > o 
1 - R1 

R1  = oo => cp(P.)  =  1  >  0 

.'. R stationary deterministic => cp(R) > 0 

Let the non-random Markov rule R* be as follows: 

When it first enters state i, i w 0,1,... R* chooses action 2 

i times and then it chooses action 1 

It is easy to see that cp(R*) = 0. 

It is also interesting to note that the stationary (but non- 

deterministic) rule R**- is also optimal,  i.e. ^(R**-) = 0 
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where R** is the rule which when in state i selects action 2 with 

probability i/i+1 and action 1 with probability 1/i+l. QED 

We defined, for the replacement problem, the average cost in terms 

of the lim sup as opposed to the lim inf. The question arises whether 

or not this is a meaningful difference. We show that it is not and 

both criteria are in a sense alike. 

LF.t g = inf g)(R) and g = inf (p(R) 
R R 

where ^(R) = lim inf   
n        n 

E/Z C(Xt,At) 

9(R) ■ lim sup   

Theorem k.h:    For the replacement problem 

6 = 6 = g 

Proof:   Choose c > 0 

Let R be such that g)(R) < g + e/2 

N-l 
ER £ C(Xt,At) + M 

Choose N such that     < c^(R) + 6/2 
N + 1 

i 

Define R as follows 

R  follows (takes the same actions as) R at times 0,... N-l 

R  takes action an at time N 
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Thus the process is now in state 0 and we consider it as starting all 

over again - i.e. we forget that the history up to this time has ever 

taken place.   R now follows R for the next N stages, then takes 

an then follows R (pretending the previous history never took place) 

for the next N stages, then takes a», etc. 

Then it is easy to see that 

9(R ) = £(R ) =   
N + 1 

cp(R )  < cj)(R) + €/2 < g + £ 

g  <  g 

.'.     g  =  g since by definition g > g    QED 

Corollary k.5:  (i) There exist e-optimal stationary deterministic 

rules with respect to the lim inf criteria, 

(ii) The lim sup optimal non-randomized Markov rule R 

of Theorem k.}  has g)(R) = g. 

Proof:  (i) C[)(R) < (p(R) and so result follows from Corollary k.2  and 

the above theorem, 

(ii)    g < c[)(R) < 9(R) = g QEu 
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5«  Counterexample 

In k.k  an example is given of a process for which there is an optimal 

stationary rule but not an optimal stationary deterministic rule. This 

brings up the question first raised by Derman [k ]  of whether one need ever 

go outside the class of stationary rules. The following is an example for 

which there is an optimal nonstationary rule which is better than every 

stationary rule. The  optimal rule may be taken to be a non-random Markov 

rule. 

Example 5-1:  Let I = {0,1,1',2,2',5,3',.••) | 

K0 =  1, K. = 2 i = 1,2,..., K., = 1 i' = l',2' ... 

The cost depends only on the state and is zero except at 

state 0. 

C(0,-) = 1 

C(i,- ) = 0  i = 1,2,... 

C(i V ) » 0  i' = l'^',... 

The transition probabilities are as follows: 

P(i,i+l:l)    =1/2       i = 0,1,... 

P(i,0:l)        =1/2        i = 0,1,... 

P(i,l':2)     =    1 - (1/2)1    i = 1,2,... 

P(i,0:2)        =    (l^)1 i =  1,2,... 

PCi'^M)    =    1 -  {l/2)i    i'   =  l'^',... 

P(i',0:l)      =    (1/2)1 i'  = l',2',... 

Suppose that X0 = 0 

Let R.  be the stationary deterministic rule which takes action 2 when 

in state i and action 1 in all other states. 

28 
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Define a cycle T as the time it takes to return to state 0. 

Then it is well known that 

9(0,1^)    =    1/ER (T) 

1 1 i i 
now ER (T)      =    E    J(1/2)J + (1/2)1  (i + 2   ) 

Ri J=l 

(p(0,R )      =  i-i    >    7 i  =   1,2,... 
3   -  (1/2) 3 

now  let R be any stationary  rule.     Let P.  be the probability that R 

chooses action 2 when in state i, 

now 9(0,R)      =    l/Ep^) 

oo i-l oc 

E_(T)        =      £    (  n   (1 - P.)) P.   E    (T) + 2 n  (1   - P1) 
R i=l    J=l J        1    Ri i=l 1 

and 

oo i - L oc, 

<    3[  £    P      n    (1 - P.)+    n   (1  -  P. )]    =    3 
i=l        J=l ,J      i=l 

9(0,R)     >    =■    for any stationary rule R. 

But  if we define N.  i = 1,2,... as in theorem 4.5    we can let R* be 

the  nonrandom Markov rule which uses R,    for t = 1,   ... N1 

R2    for t = N1+ 1,   ...  ^ + N 

: i-l_ i . 
R,     for t = £ N,+ 1,   ...  Z N, 
• i 1    J 1    ^ 

etc. 
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Then we can show as before that 

(p(0,R*) = lim 9(0,^) = 1/3 
1 

cp(0,R*)    <    9(0,R)    for all stationary R. 

It also follows by Theorem 3.1 that R* is optimal. QED. 
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