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NONTECHNICAL SUMMARY

A Markovian Decision Process is a process which is observed at distinct
time points to be in some state. After observing the state of the system
an action is chosen - corresponding to the action (and the present state)
a cost is incurred and the transition probabilities for the next state are
determined. A policy is any rule for choosing actions. Corresponding
to each policy there 1is an expected long run average cost per unit time.
This paper is concerned with finding an optimal policy - i.e. one whose
associated average cost is as small as possible.

For example we mighi have a machine which deteriorates with time.

The state of the system could be the condition of the machine, and the
possible actions could be either to replace the machine or not.

Associated with each state there would be an operating cost. Thus a

policy is a rule for determining when to replace the machine and an optimal
one 1is one which minimizes the long run average cost.

In this paper we let the state space be countable and present
sufficient conditions for the existence of an optimal policy and for it to
be of simple form. This form - called stationary deterministic = is of the
form of a function from the state space to the action space. For example
in the machine problem a stationary deterministic policy would replace
whenever the machine is in a certain apecified\class of states.

In a speclal case the average cost criterion is shown to be
equivalent to the discounted cost criterion. This latter criterion
has been extensively studied. Under certain conditions the optimal
discounted cost policiles are shown to be almost optimal for the average

cost criterion.
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It is also shown that when a replacement action exists (as in
the machine problem) then there always exists an optimal policy and the
form of this policy is given. The final section gives a counterexample
vhich shows that the optimal rule cannot always be taken to be of the
stationary form vwhere a stationary policy is one which at each state

the action may be chosen according to some fixed randomization scheme.

For instance in the machine problem a stationary policy is one which for

each state gives a »robability for replacing the machine,
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NON-DISCOUNTED DENUMERABLE MARKOVIAN DECISION MODELS

Sheldon M. Ross

Introduction

We are concerned with a process which is observed at times
t=0,1,2,.,.. to be in one of a possible number of states. We let I
(assumed denumerable) denote the number of possible states. If at time
t the system is observed in state i1 then one of K& possible actions must
be taken. Unless otherwise noted we shall assume throughout that ﬁ; < o
for all 1. '

If the system 1s in state 1 at time t and action K 1s chosen then
two things occur. o N

(1) We incur an expected cost C(i,K) and

(11) P(X,,, = 31 Xogibigs+++ X, = 1,8, = K} = P(1,):K)

where (X ]t+l

) r=0 denotes the sequence of states and

Lﬁr]::é the sequence of decisions up to time t + 1.

Thus both the costs and the transition probabilities are funcéione
only of the last state and the subsequently made decision. It is assumed
that both the expected costs C(i,K) and the transition probabilities
P(1,J:K) are known. Furthermore it is assumed that the expected costs
are bounded and we let M be such that |C(1,K)| <M for all i,K.

A rule or policy R for controlling the system is a set of functions

(D (Xpsigs -+ x“”:; satistying O < Dp(X,,85, +-+ %) <1 K= 0,1 ... th
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and Kfl DK(XO,AO,...xt) . 1

for every history xo,Ao,...xt t=0,1,...

The interpretation being: 1if at time t we have observed the history
Xgi8gs « « - X, then action K is chosen with probability DK(xO" . .xt).‘

We say that a rule R is stationary if D(X),Aq,...X, = 1) = D, ¢
independent of XO,AO,.. 'At-l and t. We say that a rule R is stationary
deterministic if it is stationary and also Di,K = 0, or 1. Thus the
stationary deterministic rules are those non-randomized rules whose actions
at t Just depend on the state at time t. We denote by C" the class of
stationary deterministic rules.

Following Derman [2] the process {(xt,At) t = 0,1,2,...}) will be

called a Markovian Decision Process.

Two possible measures of effectiveness of a rule governing a
Markovian Decision Process are the expected total discounted cost and
secondly the expected average cost per unit time. The first assumes a
discount factor Be(0,1) and for a starting state X, =1 the objective is
to minimize

0
Y(1,B,R) = Ep tfo C(Xt,At)Bt

The second criteria tries to minimize for a given xo =1

n c(xt’At)
®(1,R) = 1im sup E, I
n - t=0 n+1l

Since costs are bounded and adding a constant to all the costs C(1,K)

will affect all rule identically in both criteria we may without loss of
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generality assume that costs are non-negative.

Blackwell in [1] has shown for the discounted case that if Ki < ®»
and (C(1,K)} bounded then there exists a stationary deterministic optimal
rule. We shall be mainly concerned in this paper with the average cost
criterion. The first results for the average cost criteria which did not
assume a finite state space were given by Taylor [9] who worked with a

replacement model. A replacement model is one in which there is a distinguished

1 J=0

state O and action a, such that Xo = 0 and P(i,J:ao) - (O othervice’

Taylor showed that in the finite action replacement model if one can
restrict attention to those rules whose expected time between replacements
is uniformly bounded then there exists a stationary deterministic optimal
rule and it is determined fram a functional equation. Taylor's method was
to treat the average cost problem via the known results of the discounted
cost problem.

Derman [U4] has recently dealt with the countable state, finite (for
each state) action general Markovian model. He treats the problem without
uiing the results for the discounted problem and gives sufficient conditions
for the existence of a stat.onary deterministic optimal rule. Unfortunately
this condition - the existence of a bounded solution of the functional
equation g + f(1) = m;n {(c(1,K) + £ P(1,J:K) £(3)) - cannot be checked
directly. Derman's paper (4] however, in conjunction with a later Joint
paper [5] of Derman and Veinott show that a sufficient condition for the
above is that

(1) for each rule ReC" the resulting Markov chain is positive recurrent, and

(11) there exists some state (say O) and a constant T < « such that
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Mio(a) < T for all i, and all ReC" where MiO(R) denotes the mean
recurrence time f.om state i to state O when using .rule R. [Note that
for any rule ReC" the resulting sequence of states forms a Markov chain].

In the first section of this paper, by following the approach of Taylor,
we give a somewhat simpler proof of Derman's results. Also our sufficient
conditions will be somewhat weaker: we won't require condition (i) and
won't require that MiO(R) < T for all rules R. We also show the
connection between the average cost optimal rule and the optimal discounted
cost rules, - speaking locsely the former is a limit point of the latter rules.

The second section shows how, in a special case, the average cost case
can be recuced to the discounted cost case.

The third section deals with €-optimal rules and a sufficient conditions
is given for the opitmal discounted rules to te e-optimal.

The fourth section deals with the Replacement Problem and it is shown
that an optimal rule always exists but it may not be of the stationary
deterministic type.

The fifth section given an example of an optimal nonstationary rule

wvhich is better than any stationary rule.

. 1. On the existence of a stationary deterministic optimal rule

We shall need the following result given by Blackwell [i]:
If K, <~ and C(1,K) <M for all i,K then under the B-discounted criteria
with 0 <P <1, there exists a stationary deterministic rule RB such that
W(i,B,RB) = m;n v(i,B,R) for all ieI. Furthermore {W(i,B,RB), iel} is

the unique solution to (1) W(i,B,RB) =min (C(1i,K) + B Z P(1,J:K) w(J,B,Rﬁ)] iel
K J
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and any stationary deterministic rule which when in state i selects an
action which minimizes the right side of (1) is optimal.

Following Taylor, for any Be(b,l) i,Jel

(2) Let fB(i:J) = *(i’B:Ra) - V(JJB;RB)
One has by simple manipulations that

() 853 + fp(t,3) = min (C(1,K) + B T P(1,8:K) £5(s,0))

where ga(.j) = (1-8) V(J:B:Rg)

Note that IgB(J)I <M for all B,J
We need the following Assumption
*Assumption: For some sequence Sr-» 17 there exists a

constant N <« such that
lfﬁ (1,J)] <N for all r = 1,2,... all 1,Jel.
r

Theorem 1.1: It Assumption(*)holds then there exists a bounded solution

to the functional equation

(4) g+ £(1) = min (C(1,K) + Z P(1,J:K) £(J)} 1eI
K J

Proof: Fix some state s. By Assumption (¥) fg (1,8) 1is uniformly bounded
for r = 1,2,..., and all ie I. Since I is de:umerable we can get a
subsequence [Br,] T such that fg (1,8) »£(1) for all i.

r's 1 o
Since ga(s) is bounded for all B, we can also require that
gsr'(s) g asﬁr, -1.

.'. by (3) and the bounded convergence theorem we have that

g + £(1) = min (C(1,K) + = P(4,3:K) £(J)) QED
K J
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Remark: 1If v(i,ﬁ,RB) is an increasing function of i for each B,
then £(1) is an increasing function if 1.
A special version of the next theorem was originally proven by
Taylor [9]. Derman [4] proved it under the assumption that K, <w
for all i; later in a joint paper with Lieberman (3] a proof not

assuming this was given.

We shall give here a simple proof which follows a technique used

in [9].
Theorem 1.2: If there exists a bounded solution to the functional

equation

(5) g+ f£(1) = min (C(i,k) + = P(1,3:K) £(4)} ieI
K J
then there exists a stationary deterministic rule R* such that
g€ = @(i,R*) = min @(i,R) for all i
R

and R* is the rule which, for each i, prescribes an action which
minimizes the right side of (5).

Proof': for any rule R
n
By (2 [£(X,) - Ep(e(X,) | 8,01} = 0

where xt = state at time t, and

S¢.p = (Xb,Ao,... xt-l’At-l) = history up to time t.
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now ER[f(Xt) | st-l] = fp(xt-l’J’At-l) £(J)

c(xt-l’At-l) + j:P(xt-l’J:At-l)f(J) - C(xt-l’At-l)

> min [C(xt-l’x) + ? P(xt_l)J3K)f(J)] - c(xt-l'At-l)
K

v

g + (X)) - ClXy 1)

with equality for R* since R* is defined to take the minimizing action
n

e 0% ER[il f(xt) -g - r(xt_l) + c(xt_l,At_l)}

with equality for R¥.

with = for R*

Lo R RER) RE c(x;,l,At_l)

letting n —»  and using fact that f(xn) 1s bounded, we have g < lp(R,xo)

with equality for R* and for all possible values of xo. QED.

Note: the above proof doesn't make use of the fact that 1){1 < w or that

n C(xt,At

_1'1_70-_1' exists and

C(1,K) is bounded. Also it shows that lim By I
n 0
equals g, and that '

n C(Xt,At)

! e — el L]
gSlrj;m inf ERg ST for every rule R

Thus, in this case, the fact that the average cost was defined by
the 1im sup as opposed to the lim inf is irrelevant.
For any rule ReC"

Let 1(R) = action R chooses when in state 1 - i.e. D =1
1,i(R)
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Def: For rules % ,ReC" we say that Rn converges to R(Rn—»’ R, or
lin R = R) 1f for each i, there exists N, such that i(Rn) = i(R) for
agl n> Ni'
Note that any countable sequence of rules RneC" has a convergent
subsequence.

The following theorem shows the relationship between R* and the
B-discount optimal rules Ry
Theorem 1.3: If Assumption(* holds then

(1) for some subsequence [ﬁr.]w of [ﬁr]w
r'=1 r=1

R""-l:i.mRB .
rl

(11) 41f R = lim Rﬁ vhere (B_,) 1s a subsequence of (B =
r' r' b ¥ r=1

then R is optimal i.e. @(i,R) = g for all icl

Proof: (i) Let [Br,) be the subsequence for which

fﬁr'(i,s) - £(4) and gar'(s) »gasf -1

it is easily seen from the definition of fB(J) that R takes the

B

r
actions which minimize C(1,K) + Br' Z P(1,J:K) fB (J) but R* takes
J r'

the actions which minimize C(1,K) + £ P(4,J:K) £(J). The result
J

follows since K1 < m,

(]
(i1) For any sequence [Br']r'=l we can get a subsequence [Br")e::"=l

for which lim fg (1,8) and lim 8s exist. Denoting the limit by (1)
r" r"

it follows from theorem 2 that any rule which minimizes

c(1,k) + £ P(1,J:K) £(J) is optimal. But Rg minimizes
rll

8
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c(1i.K) + Br.. § P(1,4:K) fa "(J) and Ry . -R
r r

.'. R is optimal. QED

Thus we see if K, <= for all icI, and Assumption (*) holds then
there exists an optimal stationary deterministic rule which is a limit
point of (RB:O < B <1} and any rule which is a limit point of (Rar]

is optimal.

The following theorem gives a sufficient condition for Assumption (*)

poreery

to hold.

Theorem l.4: If for some state J, and sequence Br — 1 there is5s a
constant N < ® such that My (RB) <N for all i€I, r = 1,2,...
r

then Assumption (*) holds;

S s g

where N& 3 <Rﬁ ) is the mean recurrence time to go from state i to state J
r

vhen using the Br-optimal discount rule RB :
r

Proof': Consider the fixed rule Rﬁ . Suppose the process starts

Y r
at state 1. let t = time it takes to first get to state J.

now ‘V(i,Br,Rar) - ERa (Cl) + ERB (Ca)
o T
where C, = discounted costs incurred before one gets to

1
t-1 "
state J = I C(xn,An)ﬂ
n=0

C, = discounted costs incurred after one gets to

00
state J = =& C(){n,An)ﬂn
n=t

e VPR ) S MEC V(L8R ) By (8.")
r r
r

< MN + "(J}BIJRS)
B

9




(recall that all costs are positive and bounded by M)

c.l V(i,Br,Rﬁr) - ‘V(J,Br)Rﬁr) S MN for all i, r o= J.,;.),--.

again  ¥(1,B ,Ry ) Eﬁﬁ (c;) + Ep (Cp) !
r

B
r r )
2 B () - B (8.°) ¥(4,B,.Rg )
s -~
r r '
. t |
e W(3,BLRg ) < W(1,B LRy ) + (1 - Ep (B )]¥(J,BLERs ) 3
)0 r B r l
r «
M
now ¥(j,B_,Ry ) <
£ ﬁr ok -Br 1
and E(Bt) > pEt > gV by Jensen's Inequality. )
(8.5 ¥ ) oy
o [ -E, (P v(J,B ,R < M < MM
Rﬁr r i Br ! -ﬁr

o IW(3,BRg ) - ¥(1,B,Rg )| SMN for all r = 1,2,... eI
r r

o |v(s,BLRg ) - ¥(1,B Ry )| < 2MN for all r = 1,2,... i,sel
r r

.". Assumption (*) holds. QED

Lemma 1.5: If for some @ > O and some state Jj
P(i,J:K) >a for all ieI, KeK,
then Assumption (%) holds and there exists a

stationary deterministic optimal rule which is

10



determined by the functionai equation (5).

Proof For any rule R, MiJ(R) < 1/a and so theorem 4 applies. QED

2. TDeterminatior of Optimal Policy by Reduction of "Average Cost"

Case to Discounted Cost (Case.

We shall need the following assumptior .

Assumption: sup inf P(i,j:K) > O
,jGI K:Ki
ilel

Note this is so if and only if there is a state J and @ > 0 such that
P(1,J:K) > 2 for all iel, E@Ki. For the sake of definiteness denote the
state J for which the above holds by state 0. By Lemmn 5 there exists a
stationary deterministic optimal rule for this process.

Consider now a new process (the prime process) with identical state

and action spaces but with transition probebilities now given by

Jl Pgiyo:KZ - Q o
1 -Q J =

P'(1,J:K) =

Denote by Vv '(i,B,R) the total expected B-discounted costs when using
rule R with respect to the new (prime) process.

Note that any rule for the prime proce.. can also be considered as a rule
for the original process and vice verssa.

The fundamental theorem in the reduction is the following:

11
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Theorem 2.1: For any stationary rule R
CP(O,R) = a*'(O,l - Q, R)

Proof: In the original problem we shall think of the transitions as
taking place in 2 stages. During stage 1 a coin with probability a of
coming up heads is flipped. If heads comes up then the process goes to
state 0; 1if not then the process moves to the next state according to
the second stage transition probabilities which are the transition
probabilities which are necessary in order to make the total transition
probability what it should be - i.e. if action K is chosen then the total
probabilities must be P(i,J:K). Note that the above is legitimate since
P(1,0:K) > @ for all i,K. Note also that the desired second-stage
transition probabilities are exactly the transition probabilities of the
prime problem.

Define a cycle as the time between successive occurrences of heads.

Let T = time of cycle.

Then il is well known (follows from the Strong Law of Large Numbers and

the Bounded Convergence Theorem) that for any stationary R

®(0,R) = E E: C(X, .0, )/ BT
T-1
= E (E th C(X,,n,) |T) /ERT
® ey 2=l
R ] Eglc(X,,a)l T=1]/ 1/a

now conditioning on T = 1 means that the transition probabilities used

during times O,1,... 1 - 2 were the 2nd stage transition probabilities,

12
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i.e. the transition probabilities of the prime problem.

. for t <11, Blo(xA) | T=1] = EéC(Xt,A%)

'
where ER denotes the expected cost with respect to the prime problem.

". ¢(O,R)

0 1-1 i-1
a £a(l-a) L By C(X,8,)
i=1 t=0
o ' [+ o} i-l
z Ep C(X I o(1-a) since everything is
t=0 . i=t+l non-negative
o ' t
@ L E C(xt’At) (1)
t=0
@ (0,1-Q,R)
QED

Note that since P(1,0:K) > Q for all i,K it follows that tor any

stationary rule R

¢(11R) = CP(O)R)

and since a stationary deterministic optimal rule does exist it follows

from the above theorem that this rule is precisely the optimal 1-&

discount rule with
Letting V(1)

we have that
V(i)
or

V(1)

respect to the prime problem.

t
min { (1,1-,R)
R

min (C(1,K) + (1-@) £ P (1,4:K) v(J))
K 3

min {C(1,K) + £ P(1,3:K) V(J) - av(0)}
K J

15
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and the optimal policy is the one which chooses the minimizing actions.
Let B(I) = Space of all bounded functions on I then defining the

operator T:B(I) - B(I) by

('I'U)i = min {C(i,K) + I P(4,J:K) U(J) - aU(0)) eI
K )

Then under the supremum norm Ul = sup | U(1) |
iel

We have that T is a contraction mapping with unique fixed point V, and
V can be found by the simple to apply method of successive approximations
1.e. for any Ue B(I), lim T U = V.

n

Thus if our assumption holds then we have reduced the average-cost

problem to a discounted-cost problem and any of the well-known methods

of successive approximations or policy improvements - see [1] for details -

can be applied.
Note that policy improvements for this 1-& discount problem are by
virtue of theorem 2.1 also policy improvements for the original average-

cost problem.

3. On €-optimal Rules

It is known (see [4]) that even under the conditions that K, <w
for all i, and C(1i,K) uniformly bounded that there need not exist an
optimal rule in the "average cost" sense; Also there may exist an
optimal rule but there may be no stationary deterministic rule which
iz optimal.

Tt.is brings up the questicn whether there always exist e€-optimal

stationary deterministic rules. We say that ReC" is €-optimal for

state i if
14
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o(1,R) < g(1) + e

where g(i) = inf ¢(i,R)
R

We say that ReC" is e-optimal if it is e-optimal for every state 1.
One possible source of e-optimal stationary deterministic rules are the
optimal B-discount rules [Ra:o <P <1}. One might conjecture, that
for any state i, that these rules are €-optimal for state 1 in the

sense that

lim inf i, = g1
Bm_’g_ o(1,Rg) g(1)

The following counter-example shows that this need not be the case.

2 ) JURS @1 aedhy = 102 s
et I = 4
2 J=0 K =1
K = ®
(i)J) { 1 J #0

The costs depend only on the state

1 jJ=20
6((2,3),7) = 1
0 J40
C(m,-) = 2

the transition probabilities are as follows

P((1,0),(1 +1,0):1) = 1
P((1,0),(1,1):2) = 1
P((1,3),(1,J + 1):1) = 1 for O<y<i
P((i,1),w:1) Sl
P(w,:1) = 1

15




In words, when in state (1,0) we can choose to go to state (1 + 1,0)

at the cost of 1 unit for the next stage or we can elect to pay

0 dollars for the next 1 stages and 2 units for every stage after that.

Let X, = (1,0)

Let Ro = rule which takes action 1 at all states, then it is easy

to see that
¢((1,0),R0) = 1
R stationary deterministic, R # R, => o((1,0),R) = 2

We now show that R, is not a PB-optimal rule for any P(0 <P < 1)

0
and thus ¢((1,O),RB) = 2 for all Be(0,1)

while inf ¢ ({(1,0),R) = 1
R

1
now V((l,O),B,Ro) = 175 since the cost at each stage is 1.

Let Rn = rule which takes action 2 at state (n,0) and action 1 elsewhere.

n-1 2n-1 0
s 1.8t + £ ool &+ 5 2pl

¥((1,0),8,R_)
1=0 i=n 1=2n

1 - BR 4+ 2p°n

1-8

now for n large 232n -g" <o

.". for n large V¥((1,0),8,R ) < -—4L7§
)))n l_

.'. for each B, Rg £ Ry

. 9((1,0), Ry)

2 for all B

and inf ¢((1,0),R) = 1 QED
R
16
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Thus it is not necessarily true that the P-optimal discount rules are
€-optimal, or even ¢-optinal for a specific state. We shall now give
sufficient conditions for RB to be

(1) e-optimal for a particular state (for P near 1)

(11) e-optimal for all B near 1

»

Theorem 3.1: If for some sequence Br - 17, there exists an N < », such that

W(J:ax.ynar) - W(i’ar’Rﬁr) <N for all JeI, r = 1,2,...

then lim cp(i,RB ) = g(i) = 1inf ¢(1i,R)
r

r—)l R

and so, for Br large, RB is e€-optimal for state 1.
x
Proof: (1) Let VB(J) = "'(J;B:Rﬁ)

then VB(J) = min (C(J,K) + BZ P(J,1:K) VB(l)}
K 1

and RB takes the minimizing actions

n
now Ep t>=:l[v,3(xt) - ERB[VB(Xt)ISt-ln = 0

B

end B [Vg(X,) |8y 1] = £ R(X,_;,3:8, ;) Va(d)

Rs J

-C(xt-l’At-l) L (l-ﬁ) ? P(xt-l.nj :At-l)vﬁ('j)

Va(Xe.q) - C(Xy 108, 1)

+ (1-B) 3‘ P(X, _1rdib 1) Vp(J)

n n
0= ERB[VB(xn) - Vg(X(0)] + ERB f C(X 18, 1) - (1-B) Js:R‘3 }1: Va(Xy)

17
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now using our condition we have that Vg (Xt) < Vg (1) + N for all t
r r

n

a 1
»o 7B }fc(xt-l’At-l) S (l'ar)vﬁr(i) ' (l'ﬁr)N “n Eﬁg [vﬁr(xn) B vﬁr(xo)]
r r

M
Letting n — = we have since [ Vg (X ) - Vg (X;)| < -
| B, 'n B. 0 1 Er

that ¢(XO,RBr) - 5r) Ver(i) + (1 - Br)N for any X,.

now for any rule R
(l = B) VB(i) S (l = B) W(inJR)

“.o1dm (1 - B.) Vg (1) < m (1 -B8.) w(1,B,R) < 9(1,R)

- ® r r— ®

where the second inequality follows from the Tauberian result that

o0 n
1Im (1-X) £ a X' < 1Im 1 5 a, [see Titchmarsh - p. 227]
- n - n i
X-1 n=0 n 1

. lm CP(XO,Ra) < ©@(i,R) for any R, any X,
r'— r

. lm Q(XO,RB) < g(1) for any Xs

Y=b 00 r
o lm 9(4,Ry ) = g(1) QED
r— o r

Corollary 3.2: If for scme sequence ﬁr =1, there exists Ni < w

for each iel such that W(J’ar’ﬂﬁr) - “‘“’Br’RBr) < N, for all r,J,

then (1) 1lim cp(:l,RB ) = g(i) for all 1, and the convergence
r— r
is uniform in i - and thus RB is e-optimal for r large

r
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(11) g(1) = g(J) = g for all i,y
Proof: We first prove (ii)
From the proof of the previous theorem we have that

iim cp(Xo,Rﬁ ) < g(i) for any X, any i, and also
r

r -
that g(XO) = lim ‘p(xo’Rﬁr) for any X,
r'— oo
" g(xo) < g(i) for any 1,X,
.oeg(l) = e@d) = &g for all 1,

(11) The convergence is an immediate result of thecrem 3.1.
To show uniformity - fix some state io
The previous theorem yields that

Hm (1-8) Vg (1) < &(1)
r

r — o
and (p(J,Rﬁr) <(1- Br) VBr(io) + Nio(l - Br) for any state J
for € >0, let r be such that r > r implies

(1) (1 - Br) Vﬁr(io) < g(io) + €2 and also

(i1) (l-Br)Ni < €/2
0

PR r => cp(J,RBr) < g(io) +¢f2 + ¢f2= g(io) +¢ for any J

but g(io) = g and so convergencec is uniform. QED
Note that the condition in the above corollary 1s weaker than the
condition that J N < » such that | wy(j,ﬁr,Rﬁ ) -\y(i,ﬁr,RB )] <N
r r

for all r,i,j. This latter condition is Assumption (*).

19



From Theorem 1.4 we thus have

Theorem 3.3: If for some state j, there is N < =

¥ such that MiJ(Rar) <N forallr=1,2,...alli

then the condition for corollary 3.2 is satisfied and

thus g = 1lim ¢(1,RB ) uniformly in i.
r

res

Proof: see proof of Theorem 1l.l4.

Putting corollary 3.2 together with Theorems 1.1, 1.2 and 1.3
we have
| Theorem 3.2: If Assumption (*) holds then there exists a stationary
' deterministic optimal rule which is a limit point of
| the optimal Br-discount rules, and for any € the

Br-discount rules are e-optimal for r large.

. 4. Replacement Process

Definition: A Markovian Replacement Process i1s a Markovian Decision

Process with a distinguished state - call it state O - and a

? distinguished action - call it a, - such that
(1) x, =0
0 1 4=0
(11) P(i,9:ay) = {
0 otherwise
let g = inf ¢(0,R) since Y, =0 we shall write @(R) for ¢(O,R)

R
let RB be the B-optimal discount rule.

As an immediate consequence of theorem 3.1 we have

20



Theorem 4.1: In the replacement process

L e ( Ry, Ja = N I

BLyiis
Broofs = W{150,8s )= ni (e(i,K) + & P(1,J:K) ¥(J,0R.))
< C(i,a,) + PH(0,0,1))
< M o+ ¥(0,f,R) forall i, all f
and so the result tollows from thceorem 5.1, QED

[Recall that since C(i,K) is assumcd owunded we can thus also assume
without lcss of generalitly that cocts are non-negative and sc
¥(0,P,R,) > 0]

/2
The following corollary is immediate

Corollary 4.2: (1) There exist e€-cptimal statlonary deterministic

rules ftor the replacement problem.
(11) It R is optimal ameng the stationary detem.inistic

ruies then R is optimal (for the replacement problem).
Det': We say that rule R is a Murkov rule 1t the actlon it chooses at
time t only depends oi. the past history thru the state at time t, and t.
148, DK(AO,AO,... X, = i) = Di’K(t)

We say that R is non-randem Murkcv if it 1s Markov and nos-runder

Theorem 4.3: For the replacement mudtel there cxists a nou=candon
Markov ru.e which is optimal.

Proot': Yor cach n, let Rn be o staticnary Jdeterminictlic rule
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such that ¢(Rn) <g+ 1/2n.

1-1
Z c(xX,,a,) .
for each n, 4§ N, such that ERn ; < ¢(Rn) * 5 for all 1 > N
Nl-l
Ep I C(X.,8.) + (N, + )M
- 1 O
let N,, be such that - < o(R
i o+ (N, +1) SRR

vhere M is such that C(i,K) <M for all i,K

Define N, 1 = 2,3,... recursively by letting N, be such that

i i
Hg=1 1-1 _
ER z c(xt,At) + M(’z 1\:J +1 + N1+1)
i 0 J=1 1
i 1-1 <@ (Ry) + 57
N, o+ ():NJ + 1 + Ni+l)

3=l

Let R = non-random Markov be as follows

then take action a

use Rl fort =1, ... Nl 0

use R, for the next ﬁ2 stages then take a

0

use R, for the next ﬁi stages then take a/

etc.

Claim: o(R) = g

for any € > 0, let J be such that 1/j < ¢

n

Ep fc(xt-l’At-l)
3 + J = = <g+e

We shall show that n > ﬁl + ... N

22
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now if n >N, + ... + N, + J then for some k >

1 J
Nl+...+Nk+k ‘Nl+...+Nk+Nk+l+k+l
n
Enfc(xt-l' =17
now
n k-
- n-IN, -k
Nk 1 i
(R, + ... +§_ + k)M + £ C(X, .o, )+ £ C(X, 1,8, )
) 1 k-1 ERkl t-18¢-1 ERk+l BN aEe ]
= n
there are 2 cases
k
Case (i): n-iZNi -k<Nk+l
k -
Case (1i): n - ? N, k>N o
n
Bp I C(Xy108¢.)
If (i) then
n ;
H
- - Nk \
R+ ..o + W+ kM + ERk >l:c(xt_l,At_l) N, M
<
Nyt Ny PR Ny + Ny
1 1 1
| = — = t
<¢(Rk)+2k<g+2k+2 g +1/k<g +e
t
23



n
By £ 0(% 18

If (11) then

n
k-1 Ny Kk .
( f Ny+ k)M + E Zic(xt-l’at-l) +(n- f Ny- k N®(Re,)) + srery)

=
n

) (o(R,) + ;-ki‘i:l R, + k) + (n - 1% By - K)@(Re,y) + 57y )
= n
< e+ g
< g + €
o o(R) = g QED

Thus in the replacement problem there always exists an optimal
non-randomized rule. That this rule cannot always be taken to be
stationary is shown by the following example.

Example 4.4: ILet 1I (052, 5o }

%

3 1=0,1,...

The costs are as follows:

c(1,0) = 1 for all i
c(i,1) = 1 for all i
C(i,2) = 1/i+l for all i

24




transition probabilities are as follows

P(1,0:0) = 1
P(1,i+1:1) = 1
P(1,i:2) = 1

In words when in state i we can choose to (1) reméin in state i at
the cost of 1/1i+1 units, or {(2) go to state i+l at the cost of 1 unit,
or (3) return to state O at the cost of 1 unit.
[Actually the replacement action is superfluous in the sense that
action 1 is always a better action].

let R be any stationary deterministic rule

Let i(R) be the action R chooses when in state i

Let R, = min (i:1(R) £ 1}

Then it is easy to see that

vV
wlr—‘
Vv
o

R, < » => o(R)

{{]

=
\"
(@]

R, = = => o(R)
R stationary deterministic => @(R) > O

let the non-random Markov rule R* be as follows:

When it first enters state i, 1 = 0,1,... R* chooses action 2
i times and then it chooses action 1

It is easy to see that @(R*) = O.

It is also interesting to note that the stationary (but non-

deterministic) rule R*¥* is also optimal. i1.e. o(R**) = O

25
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where R** is the rule which when in state i selects action 2 with
probability i/i+l and action 1 with probability 1/i+1. QED

We defined, for the replacement problem, the average cost in terms
of the lim sup as opposed to the 1lim inf. The question arises whether
or not this is a meaningful difference. We show that 1t is not and

both criteria are in a sense alike.

let g = inf (R) and g = inf Q(R)
R

R
n-1
By I O(K,8,)
where @(R) = lim inf
n n
n-1
) ER g C(Xt,At)
@(R) = 1lim sup
n n

Theorem 4.4: For the replacement problem
E. = é = S
Proof': Choosee > O

Let R be such that @(R) < g+ ¢/2

N-1
ER g C(xt’At) + M
Choose N such that < @(R) + ¢/2
N+1

]
Define R as follows

R follows (takes the same actions as) R at times O,... N-1

'

R takes action ao at time N

26



Thus the process is now in state O and we consider it as starting all
over agaln - i.e. we forget that the history up to this time has ever
taken place. R' now follows R for the next N stages, then takes

ay then follows R (pretending the previous history never took place)

for the next N stages, then takes ay; etc.

Then it is easy to see that
N-1
Eg g C(X,.0.) + By C(Xy,a)

N + 1

R ) = oR)

®R) < @(R) + €/2 < g +¢

=
IN
IR

g = g since by definition g> g QED

Corollary 4.5: (1) There exist e-optimal stationary deterministic

rules with respect to the 1lim inf criteria.
(i1) The 1lim sup optimal non-randomized Markov rule R

of Theorem 4.3 has (k) = g.

Proof: (1) @(R) < ®(R) and so result follows from Corollary 4.2 and

the above theorem.

(i1) g < @R) < o(R) = g QED
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S. Counterexample

In 4.4 an example is given of a process for which there is an optimal
stationary rule but not an optimal stationary deterministic rule. This
brings up the question first raised by Derman [4] of whether one need ever
go outside the class of stationary rules. The following is an example for
which there is sn optimal nonstationary rule which is better than every
stationary rule. The optimal rule may be taken to be a non-random Markov
rule.

Example 5.1: let I = {(0,1,1',2,2',3,3",...)

K = 1 3 =

0

1, K =2 1=1,2,..., K,

The cost depends only on the state and is zero except at
state O,

c(o,') =1

c(i,’) = 0 1i=1,2,...

c(i',:) = 0 i'=1",2",...

The transition probabilities are as follows:

P(1,i+1:1) = 1/2 4 SN0 150 b
P(1,0:1) = 1/2 i=0,1,...
P(L,i':2) = 1-(1/2)} 1=1,2,...
p(1,0:2) = (1/2)} i= 1,2,‘...
P(1',1':1) = 1 - (12)F 1" =1',2",...
P(1',0:1) = (1/2) 1= 1,2',...

Suppose that XO =0
let Ri be the stationary deterministic rule which takes action 2 when

in state 1 and action 1 in all other states.

28
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Define a cycle T as the time it takes to return to state O.

Then it is well known that

®(0,R;) = 1/E (T)

i
i
now ER (?) = £ ,3(1/2)'3 + (1/2)i (1 + 21)
1 J=1 1
- 3 -/t <3 4
O,R,) = S T L i= 1,2,
A U

now let R be any stationary rule. Let Pi be the probability that R

chooses action 2 when in state i,

now o(O,R) = l/ER(t)
o j-1 o
and E_(T) = Z (n(1-P))P, E (T)+2x (1 -P,)
R 1=1 =1 701 Ry i=1 d |
o0 i =1 o
<3P x (1-PM x(1-P)) =3
= =i L P}
1 x
®(0,R) > 5 for any stationary rule R. |
But if we define ﬁi i=1,2,... as 1in theorem 4.3 we can let R¥ be

the nonrandom Markov rule which uses R, for t =1, ... N ]

1 1

1.?2 for t = Nl+ 9T = Nl+ N2 i
; 1-1_ i_

R for t = Z N,+1 . &N

A ol 779

ete.
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Then we can show as before that

QD(O,R*) = lim CP(O’Ri) = 1/5
i

o F ®(0,R*) < ¢(O,R) for all staticnary R.

It also follows by Theorem 3.1 that R* is optimal. QED.
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