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ABSTRACT 

The mechanical properties of single crystal and polycrystalline 

metals are determined largely by imperfection motions. Internal fric¬ 

tion measurements are very sensitive methods for studying these motions. 

Low amplitude and high frequency measurements are conventional. A new 

high amplitude system capable of measuring internal friction and modu¬ 

lus defects is described. This can make measurements of internal fríe- 

mmÆ O 

tion from 10 to 0.2 with strain amplitudes up to 10 . 

Typical data are shown for low amplitudej high frequency and high 

amplitude data. These are interpreted in terms of a modified Granato 

Lucke model. In the linear range dislocation drag coefficients are 

shown to be determined by the damping of phonons and electrons. The 

first non-linear range is associated with the breakaway of disloca¬ 

tions from pinning points. The final range involves the generation 

of new dislocations and is associated with instabilities and fatigue 

in the metal. 



Publications of the Institute for the Study of Fatigue and Reliability 

No. 

1) ShinozuKa, M. On Ur and Lower 

Bounds of the Probability of Failure 
of Simple Structures under Random Ex¬ 
citation. December 1963. 

2) Freudenthal, A.M., Weibull, w. and 
Payne, A.u. "-r >. Seminar on Fatigue 
and Fatijar Design. December 1963. 

3) Wood, W.A., Reimann, W.H. and Sargant, 
K.R. Comparison Of Fatigue Mechanians 
ÍD Bcc iron and Fee Metals. April 196<]. 

4) Heller, R.A. and Shinozuka, M. Devel¬ 
opment of Randomized Load Sequences 
with Transition Probabilities Based 
on a Markov Process. Jure 1964. 

5) Branger, J. Second Seminar on Fatigue 
and Fat., iue Design. June 1964 . 

6) Wood, W.A. and Reimann, W.H. Room 

Tcmperature_Creep jn_Jron under Ten¬ 
sile Stress and a Superposed Alter¬ 
nating Torsion. June 1964. 

7) Ronay, M.. Reimann, W.H. and Wood, W. 

A- Mechanism of Fatigue Deformation 
Elevated Temperature. June 1964. 

8) Freudenthal, A.M. and Shinozuka, M. 
ÜP£cr and Lower Bounds of Probability 
Pi Structural Failure under Earthquake 
Acceleratlon ■ June 1964. 

9) Ronay, M. Qp. Strain Incompatibility 
and Qrajn Boundary Damage in Fatigue . 
August 1964. 

10) Shinozuka. M. Random Vibration of a 
Beam Column October 1964 . 

11) Wood, W.A. and Reimann, W.H. Some di- 

j:e£t Observations of Cumulative Fa¬ 
tigue Damage in Metals. October 1964. 

12) Friudenthal, A.M., Gerrelts, J.M. and 
Shinozuka, M. The Analysis of Struc¬ 
tural Safety. October 1964. 

13) Ronay, M. and Freudenthal, A.M. Sec- 

end 0rder_Effects m Dissipative Sol¬ 
ids . January 1965. 

14) Shinozuka, M. and Nishimura, A. On 

General Representaricn of a Density 
r...iction. February 196.,. 

15) Vood, W.A. and Nine, H.D. Differences 
in Fatigue Behavior of Single Copper 
Crystals and Polvcryatalline Copper 
at Elevated Temperatures. February 
1965. 

16) Ronay, M. On Second Order Strain Ac¬ 
cumulation in Torsion Fatigue. Feb¬ 
ruary 1965. 

17) Heller, R.A. and Heller, A.S. A Pro¬ 
babilistic Approach to Cumulative 
Fatigue Damage in Redundant Struc¬ 
tures. March 1965. 

18) Wood, W.A. and Reimann, W.H. Exten¬ 
sion of Copper and Brass under Ten¬ 
sion and Cyclic Torsion. April 1965. 

19) Grosskreutz, J.C., Reimann, W.H. and 
wood, W.A. Cprrelation of Optical 

and Electron-Optical Observation! in 
Torsion Fatigue of Brass. April 1965. 

20) Freudenthal, A.M. and Shinezuka, M. 
On Fatigue Failure of a Mul- 

tjgle-toad-Path Redundant Str^ctgre. 
June 1965. 

21) Shinozuka, M. and Yao, J.T.P. On the 
Tag-Sided Tim«.-Dependent Barrier 

Bafrlem- June 1965. 

22) Ronay, M. On Second Order Strain Ac¬ 

cumulation in Aluminum in Reversed 
Cyclic Torsion at Elevated Tempera¬ 
tures . June 1965. 

23) Freudenthal, A.M. Second Order Effects 
on Plasticity. August 1965. 

24) Wood, W.A. Experimental Approach to 

Basic Study of Fatigue. August 1965. 

25) Ronay, M. Conditions of Interaction 

gj Cyclic Torsion with Axial Loads. 
August 1965. 

26) Heller, R.A., and Donat, R.C. Experi- 
Eeirtt on the Fatigue Failure of a Re¬ 
dundant Structure. October 1965. 

27) Shinozuka, M., Yao, J.T.P. and Nishi- 
mura, A. A Note on the Reliability of 
Redundant Structures . November 1965. 

28) Mason, W.P. Internal Friction Meaanre- 
megt. and Thejr ye. ^ pete^inipg 

the interaction of Acomtic Waves 
gjffnpnf. Electrons and Dislocation. 
January 1966. 

29) Shinozuka, M., Hakuno, M. and Itagaki, 
H. RgAgmSS Of a Multi-Story Fr,.^ 
Structure to Random Excitation. Feb¬ 
ruary 1966. 



i 

■o. 

30) wood, w. A., SMpprwl 
Indue«d by Cyclic Tor« 
p«r under TwIon. April 

<m ot 
ion in Cop- 
irll I960. 

31) Shinoruka, N. and Sato, Y., 
' * Simulation of “ 

arv Random Proceaaai. Apt 

32) Maaon, W. , Effet of Elactron- 
I D*WPfd Oia^oeatlfflaon 

nation of the Suparconductifla 
Papa of Hatala. May 196t>. 

33) Murro, A. »., craao Sahavior of «ft 
Ajuminun AUoy under Tranal.nt Temp«^ 

BnargY 

atura». Juno 1 

3*) 

35) 

36) 

37) 

38) 

39) 

40) 

41) 

Konay, M., On tha Micro-MachinUM 9i 
Sacond-Ordar Extanajon of A^lnum in 
Aavaraad Cyclic Toralon.Jun»196o. 

wood, W. A., Yl»td ai>dJaç9n4-ydl£ 
Effect» Inducad by Cygllç To^FPlon ia 
S9SBSL. '»naion. June 

Mina, H. D., and Wood, W. A., _ 

Jacoby, 0., PTYU>m flt frattooranhic 
¿^hoda f?r ^atfqaa fac¬ 

tura Surfacaa. July *>06. 

Donat, *. C. and Hallar, A. A., 

Freudenthal, A. M., and Pou, ». »., 
Accumulation of Second Oyday 
¿nÇYçjlc Loading of Viacoua ttt« 
Sapteniber 1966. 

Nason, W. ?.. Agouatic Waves and 
Dialocation Motion». October lÿ66. 

Maaon, W. »., and »ataman, T. ». 

B 
Attenuation of mtraaonlc wayaa 
in Nonconducting and Metallic 
Cryataj 

43) 

Maaon, W. »., and Bateman, t. m 

i.tlon o| Üïtr..onlc ».YM 

42) Wood, W. A., a—examination Of 
Fab- Mechánlcaj'HYataraaia. 

ruary, 1967. 

Maaon, W. »., and Aooanbarg, A. 
" Coaf- 

il 

44) Maaon, W. ». HBOIl f aa • * • t 

■íonal^ibratlõnaT 

nachanical 
U-4V Under 

inatabillty. 
Large Extan- 

45) Wood, W. A. wood, w. A., Inata» 
and Tl-6Af-4V Alloy a 
tU££. 

-2Í. tanlus 
a- 

« 

. 

vi\ 



TABLE OF CONTENTS 

I. Introduction 

Pnae 

1 

II. 

III. 

IV. 

V. 

Methods For Measuring Internal Friction And 
Modulus Defects At Small ¿»train Amplitudes. 

A. Low Frequency Measurements. 
B. High Frequency Measurements..... 

Method For Generating And Measuring The Properties 

Of Materials At High Strain Amplitudes. 

A. Introduction. 
B. Description of System. 
C. Equations for Stub Transformer and 

Speciman Shapes. 

D. Exponential Horns... 
E. Transducer Equations and Methods for Evalu¬ 

ating the Internal Friction, the Modulus De¬ 

ft r-t and the Longitudinal Strain. 
P. Calibration of the Systems by Means of an 

Electrostatic Pick-up. 

8 
8 
9 

13 
31 

35 

45 

Experimental Results 
48 

Theoretical interpretations. 

A. introduction.. • 
B. Linear Range for Dislocation Damping. 
C. Evaluation of Square Law Attenuation and 

Dislocation Drag Terms for single Crystal 

Lead, Aluminum and Copper. 
D. Sources of Square Law Attenuation. 
E. Mechanisms for the Deunping of Dislocations... 

F. High Amplitude Region. 

54 
54 
56 

62 
64 
73 
78 

—vii— 

REFERENCES 
84 



FIGURE CAPTIONS 

Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4a. 

Fig. 4b. 

Fig. 5a. 

Fig. 5b. 

Fig. 5c. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 

Fig. 10. 

Fig. 11. 

Fig. 12. 

Fig. 13. 

Method for measuring modulus change and internai 

friction at low frequencies. 

Method for superposing static stresses. 

Pulse method for measuring high frequency internal 

friction. 

Ceramic transducer, stub transformer and sample. 

Ceramic transducer, exponential horn and sample. 

Mechanical resistance of transducer plus stub trans¬ 

former for strains present in the speciman. 

Mechanical resistance of transducer plus exponential 

horn for strains present in the speciman. 

Mechanical resistance of system plus 7075 aluminum 

sample. 

Characteristic impedances of input and output of stub 

transformer. 

Electrode arrangement for eliminating pick-up device. 

Electrostatic pick-up device. 

Calibration curvœ for transducer and stub transformer. 

Calibration curves for exponential horn system. 

Internal friction of copper, with various amount, of 

zinc added, as a function of the strain amplitude. 

Internal friction as a function of strain and tempera¬ 

ture for a 99.995% pure aluminum single crystal. 

Measured fast and slow shear-wave loss at 300 K as a 
function of the frequency. Dashed lines represent a 

breakdown of the loss into a square law loss and dis¬ 

location loss. Assymptotic value indicated by the 

dashed lines on the right. 

■viii 



Fig. 14. Measured attenuation for longitudinal wave along <100> 

and slow shear wave along <110> direction. Dashed curves 

show breakdown into square law and dislocation loss. A 

comparison is given of dislocation loss along <100> meas¬ 
ured by Granato and Stern. Assymptotic values indicated 
by dashed lines on the right. 

Fig. 15. High amplitude internal friction and modulus defect for 

7075T6 aluminum and 99.99% pure polycrystal aluminum.Aver¬ 
age grain size for pure aluminum is 0.1 m.m. 

Fig. 16. High amplitude internal friction and modulus defects for 
commercial titanium and the alloy Ti-6% Ai-4%V. 

Fig. 17. Granato-Liîcke mechanisns. 

Fig. 18. Form of zig-zag dislocation that crosses lattice rows in 
a slip plane (after Cottrell). 

Fig. 19. Normalized internal friction and modulus defect curves for 

single loop distribution and exponential distribution. 

Fig. 20. Normalized attenuation curve. 

Fig. 21. Attenuation of a longitudinal and two shear waves transmitted 

along a <110> axis of a pure lead single crystal as a func¬ 

tion of the frequency. Points show measured values. Dashed 
lines show separation into a frequency square law value and 
a dislocation component. 

Fig. 22. Internal friction of three modes for a lead single crystal. 

Dashed lines show assymptotic values as determined by the 
standard curve of Fig. 19. 

Fig. 23. Square-law attenuation for lead, measured at 150 MHz, plotted 

as a function of the temperature. Dashed line shows calcu¬ 
lated thermoelastic loss while the difference between the 
solid and dashed lines shows phonon viscosity component with 

Fig. 24. Measured drag coefficients for lead (open circles) and the 
three components of dislocation drag. 

Fig. 25. Square law attenuation for copper, measured at 150 MHz, plotted 

as a function or the temperature. Slow shear wave along <110> 
(D value is 3.0). 



Pig. ¿6. Square law attenuation for copper, measured at 150 MHz, 

for a longitudinal wave along <100>. 

Pig. 27. Dislocation drag coefficients for copper, and the three 

components of dislocation drag. 

Pig. 28. Square law attenuation for slow shear wave (v » 3.11x10 
cms/sec) in single crystal aluminum. Dashed curves show 

electronic and phonon damping terms. D is evaluated as 

8.6. 

Pig. 29. Square law attenuation for fast shear wave (v ■ 3.41x10 
cms/sec) in single crystal aluminum. Dashed curves show 
electronic and phonon damping terms. D is evaluated as 

7.25. 

Fig. 30, Drag coefficient for aluminum. Dashed curves show two 
components of damping. Phonon scattering is too small 

to show on scale. 

Pig. 31. Thermal properties of lead. 

Fig. 32. Resistivity of copper and aluminum as a function of the 

temperature. 



I. Introduction 

The mechanical properties of single crystal and polycrystalline 

metals and other types of crystals are largely determined by what 

types of imperfections can be actuated by the applied mechanical 

stresses. For metals and some other crystals, the governing imper¬ 

fection is usually the dislocation. As is well known one type of 

dislocation, the edge dislocation, results from the absence of a 

plane of atoms below a plane - known as the glide plane - with re¬ 

spect to the number of planes above the glide plane. The other type 

of dislocation, the screw dislocation results from a spiral arrange¬ 

ment of the atoms around the dislocation line, which results in the 

atoms on one side of the dislocation being displaced by the slip 

distance (the Burgers vector) from those on the other side. Since 

in the growing crystals, atoms can arrange themselves in a spiral 

staircase around the dislocation with the expenditure of the least 

amount of energy, the presence of a few screw dislocations plays a 

prominent role in crystal growth mecheinians. 



These imperfections can move along under the effect of a re¬ 

solved shearing stress in the glide planes and the interactions of 

dislocations with impurity atoms, vacancies, other dislocations, 

thermal waves and electron waves in the solid determine the energy 

loss and hence the attenuation and velocity dispersion of acoustic 

waves propagated in the solid. 

It is the purpose of this chapter to discuss the various phases 

of the internal friction and modulus changes that occur at different 

strain levels. A brief description of the standard measuring methods 

is given and a long description is given of recently developed high 

amplitude internal friction and modulus defect measurements since no 

accounts of these types of measurements have previously been given. 

Typical measurements by all types of techniques and over wide 

stress ranges are next discussed. The internal friction method is 

a very sensitive one but it requires a model to interpret the re¬ 

sults. The model that has received the widest application is the 

stretched string model due to Granato and LUcke. This suggests 

three amplitude ranges, a low linear amplitude range where disloca¬ 

tions are mainly damped by interaction with phonons, electrons and 

impurity atoms, an intermediate range for which internal friction 

and modulus defects are associated with breakaway of dislocations 

from pinning points, and a high amplitude range where dislocation 

effects are increasing due to generation by such mechanisms as Frank 

2 



Read mills and cross-slip. This theory neglects the effects of 

Peierl's barriers and the motion of pinning points along the dis¬ 

location lines which have produced measurable effects. 

It is the purpose of this chapter to review the measurements 

and to compare these with existing theories. It is obvious that 

considerable experimental and theoretical work remains to be done, 

particularly in the high amplitude range. 

II. Methods For Measuring Internal Friction and 
Modulus Defects at Small Strain Amplitudes. 

A. Low Frequency Measurements 

Internal frictiors and modulus defects can be measured at low 

frequencies by exciting some type of a resonance vibration and 

measuring its response at frequencies slightly different from the 

resonant frequency, or by observing the decay of the vibration am¬ 

plitude with time. By using torsional pendulums, flexural vibra¬ 

tions or longitudinal vibrations, frequency ranges from less than 

a cycle per second (i.e. a Hertz) up to frequencies of several 

hundred kilohertz have been measured. By exciting the vibration 

with different amounts of input power, measurements can be carried 

out over a wide range of strain values. The limits are usually set 

by the lowest amount of defectible power and ly the breaking stress 

or other limitations of the driving transducer. For quartz crystals 

which have mostly been used in these measurements, the limitation is 

-3 
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from a strain of a few times 10 to a few times 10 

One of the most widely used systems^ is shown by Fig. 1. It 

consists of a half wave length quartz crystal - sometimes of the 

♦5 X cut type in order to produce a longitudinal vibration with a 

low temperature coefficient of frequency - which is cemented on one 

end to a half wave length sample of a material to be measured, and 

on the other to a half wave length quartz crystal with an electrode 

for use as a monitoring device. The driving crystal is plated on 

two of its surfaces and is held by two wires attached to the surface 

by cements or solders. The two wires serve also as electrical con¬ 

nections to the plating. Two small wires are also connected to the 

pick-ip electrodes and these are connected to the terminals of a volt 

meter which reads the generated open circuit voltage. To make this 

device work correctly the resonant frequencies of all three parts 

have to be adjusted closely - at least within a cycle - in order to 

measure internal friction and modulus defect values. Frequency 

changes of one part in 106 and internal friction values down to Q 

of lo”^ have been claimed for these devices. 

Several methods can be used to evaluate the internal friction 

curves. One method is to observe the width of the resonance curves 

when the amplitude has decreased ky 1/^2 - i.e. 3 db. The internal 

friction Q_1 is this width Af divided by the resonant frequency. 

Another method is to excite the resonance by an applied voltage. 

-4- 



The voltage is then turned off and the rate that the vibration 

dies down is observed on a timing oscillograph. For this case 

the internal friction q”1 is equal to l/rrft, where t is the time 

required for the oscillation to die down to 1/e of its initial 

value. Another method is to observe the ratio of the applied to 

the pick-up voltage as discussed in Section III. 

Such measurements are carried out over a range of amplitudes. 

It is usually found that the internal friction increases and the 

resonant frequency of the composite structure decreases as a func¬ 

tion of the applied strain. The method for deriving the internal 

ffiction Q and the modulus defect AS/S has been discussed in de¬ 

tail in a chapter by Prof. D. Beshers in Vol. I of this series and 

the reader is referred to this chapter for a description of the 

calculations. 

It is sometimes desirable to find the effects of a static 

strain on the vibrational properties of the sample. An apparatus2 

for doing this is shown by Fig. 2. In this system two half wave 

length steel resonators are placed before and after the sample. 

These have flanges at the points of minimum motion which can act 

both as supports for the system and as points for applying static 

tensions or compressions. Since they are at a node of the motion 

they do not put much damping on the system. 

B. High Frequency Measurements 

This type of measurement is limited in frequency to several 



hundred kilohertz on account of the small lengths of the driving 

and pick-up crystals. A number of effects require much higher 

frequencies to study. One of these is the damping of dislocations 

by phonon and electron damping. Such high frequencies can be ob¬ 

tained by using the arrangement of Fig. 3. Here a thickness vi¬ 

brating longitudinal (X cut) or shear (Y cut, AT cut) quartz crys¬ 

tals are attached to a speciman and a pulse of acoustic waves is 

sent into the sample by putting a series of electrical waves onto 

the crystal. The length of the pulse is usually in the order of 

10 or more alternating cycles of the frequency of the wave to be 

sent into the speciman. This length pulse is necessary in order 

that the full amplitude will build up in the transducer. For a 

10 MHz fundamental this requires a pulse length of about 1 micro¬ 

second . 

This type transducer produces a pulse of waves which is picked 

up by another crystal at the other end or more often by the same trans¬ 

ducer picking up the reflection from the end of the sample. This re¬ 

quires that the sample has very parallel edges, and this provides a 

limitation on the top frequency that can be used. By special tech¬ 

niques such as the generation of acoustic waves at the surface of 

the crystal, frequencies as high as 114 Gigahertz have been employed. 

Measurements as high as 1 Gigahertz are quite common. 

The method of measurement of velocity is to time the received 

series of pulses. Very good accuracy4 can be obtained by a pulse 



superposition method which balances out individual cycles of a 

series of received pulses. Attenuation measurements are made 

by determining the rate at which successive pulses decrease in 

amplitude as a function of the distance. Care must be taken to 

obtain nearly an exponential decay rate. Factors which prevent 

this are non-parallelity of the speciman, transducer or cement 

layer. Another source of difficulty is the loss associated with 

the diffraction of the beam. Calculations5 show that this type 

of loss becomes less at the high frequencies and can usually be 

neglected above 30 MHz. Some loss also occurs in the cement layer 

and in the transducer itself. This loss can be evaluated experi¬ 

mentally by putting another crystal on the far end and measuring 

the increased loss per reflection. For a path length of 4 cms 

this loss is usually less than 0.06db per cm and is usually much 

smaller than the attenuation introduced by a metal crystal. For 

very low loss materials, however, more care is needed in evaluating 

this loss. 

The strain values introduced in the sample is rather small un¬ 

less a very high voltage is put on the crystal. The strain level 

introduced in the sample by transducers is discussed in the next 

section and it is there shown that the strain introduced at the 

center of the driving crystal is 

-7 



where Z - ipv)* is the characteristic impedance of the trans- 
T T 

ducer and Z = (pv) is the characteristic impedance of the spec- 
B S 

iman. Since the velocity is continuous into the speciman from the 

transducer, the strain in the speciman is (v.j/vg) tiro®8 that in the 

transducer, or the strain in the speciman is 

*. , (C11t ) 

11 ‘ C11S 

where c.. and c.. are the elastic stiffnesses of the two materials. 
11t 11s _12 

For example for an applied voltage of 2800 volts, d^ = 2.25x10 

coulombs per Newton for quartz,a 20 MHz X cut crystal with a thick¬ 

ness of 0.000145 meters and with the elastic moduli assumed equal, 

the strain induced in the speciman is 8.7x10 . This is a high enough 

strain to introduce non-linearity in lead and very soft crystals but 

not in aluminum. If the crystal is used at a high harmonic, the strain 

introduced is the inverse of the harmonic number. By going to a ceram¬ 

ic transducer with a much larger value of d, the strain can be made much 

larger for a given voltage. 

HI. Method For Generating and Measuring the Properties 

of Materials at High Strain Amplitudes 

A. Introduction 

The methods for measuring the internal friction and modulus change 

discussed in the previous section are limited in the amount of strain 

amplitudes that can be generated. The low frequency method is limited 

-4 
by the breaking strain in the quartz crystal which is a few times 10 
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in longitudinal strain. The high frequency method is limited by 

the voltage breakdown characteristic of the crystal as well as by 

the lintiting strain that the crystal and cements will stand. 

Some time ago a method was derived by the writer** for producing 

higher strains in a metal sample and for measuring the internal fric¬ 

tion and modulus change in a sample under high strain. This method 

has been considerably improved recently, and it is possible to meas¬ 

ure internal frictions and modulus defects from less than 10 ^ to 

—7 -2 
values of 0.2 for strain ranges from 10 up to IO- . The upper limit 

may be pushed even higher by using different types of alloys in the 

transformers and horns of different shapes. It is the purpose of this 

section to describe the properties of these measuring systems. 

B. Description of Systems 

The systems used, as shown by Figs. 4a and 4b consist of ceramic 

transducers - in this case Clevite PZT 4 - cemented to mechanical trans¬ 

formers by thin layers of epoxy resins. Fig. 4a shows a half wave 

transformer consisting of two quarter wave stubs of different areas. On 

the end of the transformer is a new type sample held in place by a 

screw and friction joint which is sufficient since the joint comes at 

a point of small strain. As shown in Section IIIC the stub transformer 

increases the sample impedance by a factor (Dj/D2)4 where is the 

diameter of the large end and D2 the diameter of the small end. As 

shown also in Section IIIC, the strain in the speciman section is in- 



creased by a factor of 5 over that in the horn and is very uniform 

throughout the small part. For the aluminum transformer employed, 

the amplitude transformation ratio is 25 since - 2.5 inches and 

D »0.5 inches, and the motion on the end is 25 times as large as 

the motion on the end of the ceramic transducer. This larger strain 

is enhanced by a new type of sample for which the strain in the small 

section is quite uniform and equal to 5 times the strain generated by 

the transformer. With the two large sections of the sample on the end, 

each equal to half the length of the small section, the length of the 

sample is much reduced over that for a half wave length section neces¬ 

sary to produce resonance at the resonant frequency of the driver. The 

sample is stiff enough flexurally to not cause trouble and reproducible 

results have been obtained up to strains of 3x10 in samples of 7075 

aluminum. 

The quarter wave stub transformer of Fig. 4a is very advantageous 

for measuring internal friction since with the large impedance trans¬ 

formation ratio of 625 most of the damping on the transducer is due 

to the sample impedance. The damping of the transducer itself and the 

stub transfprmer can be separately measured and subtracted from the 

total as discussed in the measurement Section HIE. However, the 

strain that can be generated and measured in the sample is limited 

by the linearity of the stub transformer. Fig. 5 curve A shows a 

measurement of the mechanical resistance of the transducer plus stub 

-10- 



transformer as a function of the r.m.s. longitudinal strain. Since 

the strain is measured by a pick-up voltage from the transducer or 

from an electrostatic pickup, it is more convenient to express the 

strain in terms of the r.m.s. voltage which is 2/rr times the maxi¬ 

mum voltage. In the same way the maximum strain is n/2 (56 percent) 

higher than the r.m.s. strain. Fig 5 shows that a strain of about 

-4 
6x10 (r.m.s.) can be used before much nonlinearity is encountered. 

Furthermore the change in frequency of the transducer horn system is 

less than 1 cycle in 15,000 over this amplitude range. Also if much 

higher strains are used, the resistance of the measuring system does 

not repeat since some dislocation production occurs and it is neces¬ 

sary to anneal the horn before it comes back to normal. 

The reason for this relatively small strain in the measuring 

system is that to get a high motion on the end, the strain in the 

center of the stub transformer is determined from the equation 

6x ■ < ; lx8ii» (d 

where 6x is the displacement on the end, i the length of the quarter 

wave stub and Sn the strain at the connecting point of the stub. 

The velocity on the end is the angular frequency uu times the dis¬ 

placement 6x. Furthermore the length of the stub is determined by 

the quarter wave condition 

U/jt 

V 

TT 

2 (2) 
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where v is sound velocity (determined by Young's modulus YQ divided 

by the density o). Hence the particle velocity 

ù ® w6x * vSn ^ 

Different types of vibrators satisfy the equation 

û » ^ 

where ^ has been defined by Eisner7 as a figure of merit which de¬ 

pends only on the shape of the vibrator. For a bar, Equation (3) 

shows that ¢=1. For the stepped transformer, the discontinuity 

acts as a stress raiser, and Eisner suggest that the figure of merit 

is about 0.8. 

For the exponential horn shown by Fig. 4b, the point of maximum 

strain comes at a point where the area of the horn is larger thar at 

the end. In Section HID, it is shown that the figure of merit is 

7 
t or 2.73. Other shapes such as the Gaussian horn may have a figure 

of merit as high as 5. However, such horns have not come into general 

use and the present section is limited to a discussion of exponential 

horns. 

Using the horn of Fig. 4b, an amplitude step up of 12 to 1 is 

obtained and an impedance transformation ratio of 144 to 1. If the 

j strain in the sample is limited by the range of the linear strain in 

the measuring system, this can be 3.4 times as large as that for the 

stub transformer or about 2xl(f3. The sample shape gives another 
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factor of 5 so that if the sample can take it, strains as high as 

lO“2 are possible. Usually a large increase in internal friction 

or fatigue in the sample occurs before this strain is reached. 

The exponential horn is also advantageous if the damping gets 

very high since the damping on the transducer due to the speciman 

is only multiplied by 144 rather than 625. Hence both types of 

systems are of use. 

C. Equations for Stub Transformers and Speciman Shapes 

Since the properties of the measuring system depend on the 

transformition ratios that can be obtained in the transformer 

sections it appears worthwhile to derive the equations of motion 

for such sections. Account can also be taken of the effect of 

dissipation in the structures. All of these structures are de¬ 

signed on the assumption that plain longitudinal waves will exist 

in all the elements and that the forces and velocities are con¬ 

tinuous across the interfaces. At first sight this might seem 

somewhat questionable but experimentally it is found that the 

equations derived on these assumptions appear to be in good agree¬ 

ment with the experiments. Slight corrections to the lengths of 

the individual parts sometimes have to be made to match resonant 

frequencies. 

The equations of motion of extensional waves in a rod have 

been derived in a number of references. Starting with the equa- 



tions of motion 

2 *2 

p òt2 ôx7 
(5) 

it is readily shown8 that the force and particle velocity on the 

end of a rod is given in terms of the force and particle displace¬ 

ment at the beginning of the rod by the equations 

U)X . . . WX 
F2 - F1 cos ^ - jù1Zosin — ¡ û2 - Û1 cos - S _ j -1. sin — (6) 

J 2 V 
o 

where Z the characteristic impedance of the infinite rod is equal 
o 

to 
= ovs 

o 
(7) 

where s is the cross-sectional area of the rod. This equation holds 

for a more general case if the velocity v = reP^ace<^ ^y 

(8) 

where o is Poisson's ratio, a is the radius of the rod and X the 

wave length. For the largest rod of aluminum used, a is 3.22 cms, 

o = 0.355 and X is 32.3 cms at the operating frequency of 15,500 

cycles. Hence the correction to the velocity is just over 1 percent. 

Since dissipation is to be measured by the system, the equation 

of motion is generalized to take account of some form of dissipation. 

The one most easily accounted for is a viscous type of dissipation 

which occurs in a metal due to conversion of acoustic energy to 

thermal phonons or electrical charges. For the present purpose this 
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is sufficiently general. The equation of motion then becomes 

2 2 3 2 
a u „ a u , ^ a_u /v .,. a u 

“ - YoïZ + " îi? “ (Yo*yn) W 

where T, is the coefficient of viscosity. ? solution for this 

equation is 

u = [a/X + B.-rX]«-j"'t (10) 

Substituting this equation in (9) it is found to be a solution 

if 

(ID 
2 
Q 

Y +jw71 
o 

F is then complex and we designate the two parts as 

r » a + jß (12) 

where a is an attenuation usually expressed in nepers per cm. and 

ß is a phase shift expressed in radians per cm. The expression 

in (11) can be simplified somewhat if lUT] « Yq which is always the 

case with a metal, under these circumstances it is readily shown 

that 

ß ;■ “ ■ »!(f) 
O 

(13) 

Hence 

a 
ß 

SÆ. 
2Y 

or a = 
TV» 

2Y vv 7; 
O 0 

2 

2pv3 
(14) 

It will presently be shown that the ratio of the resistance at re¬ 

sonance to the effective mass of a vibrating rod at resonance - 

which is defined as the internal friction Q 1 of the sample - is 
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equal to 

f 
i 

¿2. « q“1 ; Hence a » 
ß w ¿ 

(15) 

Hence the internal friction of a sample can be determined in terms 

of the attenuation and phase shift of the sample. 

Returning to the solution of Equation (10) the particle velocity 

and the force on the sample are given by 

(16) 
u ; u - - jw[A«rX + B4'rXl«"jU,t 

èt 

Fx “fx -jwt 
F - s(Yo+jM) ^ - s(Yo+j»n)r(A. - B« )« 

The constants A and B can be evaluated in terms of F, and the 

force and velocity at the Input of the rod. The values are 

jú> tFt/s(Yotj^)r _ ^ 

* 2 

Introducing these value, of A and B into Equation (16) and collecting 

terms, the two equations of (16) can be written 

F1 
û « û.cosh(a+jß)x - -T- sinh(a+jß)x 

1 o 

P « p^cosh(a+jß)x - ü^Zosinh(a+jß)x 

where 

(18) 

Zo “ 

S (Y -t-jWTlK -— 
_2- « */(Y ♦jwn)0 

juu ° 

— 1UJT. 
S/Yoo (1 + -Jp 

Since JiT 
« y , the characteristic impedance becomes 

Z = */Yo 
o ° 
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which is the same as that for the non-dissipative material. 

1. Equations for a Simple Rod 

Equations (18) are useful in determining the dissipative 

properties of a rod or combination of rods. For a single rod 

driven by a transducer on one end and with the other end free, 

we can set equal to zero in the last of Equation (18) and 

solve for the ratio of The result is 

£ - Z0t,»Ma+jPM - Z0[l“Sr] (20) 

At the resonant frequency of the bar ßi « rr and tan ßi = 0 so that 

the impedance is a resistance equal to 

- ZQtanh ai * ZQ(ai) (21) 

Near the resonant frequency 

(uu +AU-')i 
tan ßi * tan 

Am. 
tan TT (1 + J-) 

R 

(22) 

where w is the angular resonant frequency. Using the multiple 
R 

angle formulae, we have 

tan TT (1 + ^“4 

tan TT + tan 
rrAm 
UJR 

1 + tan TT tan 
ttAU) 

uu 

nAm . ttAuu 

an "fe “r ’ 

(23) 

since tan tt — 0 and Am/uu is assumed to be a small quantity. Hence 

near the resonant frequency the mechanical impedance of the speciman 

is 
r * • ttAQUI 

ZM = ZoLaX + 3 “üTj 
(24) 
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This combination can be represented by a mass M, a stiffness S 

and a resistance R„ which resonate at the same frequency as the 
M 

bar resonates. Then 

= ,25) 

Since the ratio S/M is set equal to the angular mechanical res- 

onance t , the equation reduces to 
R 

t2S JË2- _ jZ TT^t) 
IL UU 

U 
o 

Hence 

S = - Z x = 
2 o R 

2 Sv/Y p X y/Y /0 
TT O _ O 

2 sY 
TT O 

(26) 

(27) 

when we make use of the fact that wrVv * tt and v * v^/p . The 

mass M is determined by the fact that the stiffness and mass have 

to resonate at Hence 

M = - S¿o 
(28) 

or half the static mass of the bar. 

The quality factor Q of a resonant circuit is defined as the 

ratio of the reactance of one of the elements to the resistance of 

the ciicuit or 

Q 

UC s¿0 
R 

0) 
_R_ 
2aV 2a 

(29) 

RM 2xv/YqP xia 

Hence as indicated in Equation (15) the internal friction, which is 

defined as the inverse of Q is given by 
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-1 2a 

‘ß 
and Z 

M 
« fTT . nAun 
zoL7 Q + j T“. (30) 

This equation indicates one way of measuring the internal fric- 

tion Q . If the frequency is changed until Z has increased by 

the square root of 2 - i.e. 3db - then 

! a-1 z0 - 2o 
Hence 

-1 2AUJ 
uu f_ (31) 

Since 2aw is 2n times the whole frequency difference Af between 

the two three db frequencies, the internal friction q”1 is this 

frequency difference divided by the resonant frequency f^. 

2. Equations for a Stub Transformer 

The two quarter wave sections of rod shown by Pig. 4a, re- 

in a mechanical transformer which increases the particle 

velocity on the small end by the ratio (Dj/D^2 and increases 

the impedance of the terminating sample by the ratio (D^/D^4 

on the driving transducer. To show this we first consider the 

case of two dissipationless rods, each a quarter wave length 

long, joined together at the mid point. The diameter of the 

large section is and that of the small section is Dj• Prom 

Equations (6), the equations for the two rods are 

wi, in/. wf (1)/ 

F2 - F1 cos — - jZ0iVin —j F4 
P3 cos T - ^o2Û38in V 
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iij 
u. cos 
1 V 

Oil. dl dl 

- D sin 
; U4 

COS 1 — sin .. 
J Z V 

°2 

(26) 

At the joint between the two rods, it is assumed that the total force 

F exerted by the first rod is equal to the force F_ exerted on the 
2 -3 

beginning of the second rod and similarly the velocities are con¬ 

sidered continuous between the rods. Hence 

F__ • « 
= F : u = u 

2 3' 2 3 
(27) 

Inserting these values, we can eliminate the interior variables and 

express the output variables F^ and in terms of the .vnput vari¬ 

ables FThe result is 

Z + Z 
2 dl o 2 dl o. o 

l[COS T • ~ sin —] ' jÙl[ 2 j 3in 

dl 
2 1 

F = F 
4 

r 2 dl^ Oj^ 2 dl 

u4 = llecos — - — sin — 

°2 

(28) 

Z +Z ... » 
r °i c2-| 2 X1 

i] - MîTT^Jsin 
01 °2 

These are the equations of a transforming band pass filter such as 

have been discussed in Reference (10). It is there shown that if 

these equations are written in the form 

F. » F,A - Û.B; û = û C - F.D (29) 
4 1 14 1 J- 

that the structure is equivalent to a transforming band pass filter 

which has the image impedance Z on the input side and on the 
*1 2 

output side, as shown by Fig. 6, and a propagation constant 0, 
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(30) 

These quantities are given by the equations 

_ / BC „ kB t . / BD 
Z = ,/ TTT J Zt “ ; tanh e = / — V AD VCD ' V AC 

If we replace the half length of the transformer by i/2, where 

Í is the total length, these equations become 

zT = yz z 
ri °1 °2 

COS 
2 aii 

2v 
°1 . 2 uujt 

z— sin — 
¿Q2 2v 
z02 . 2 uuX 
rr-*" sin r— 
Z0l 2v 

cos 
2 uj_£ 

2v 

Z_ = v/Z Zo 
^ °1 °2 

2 U)i 2 , 2 uuX 
cos ---5— sin — 

2v ¾1 2v 

2 uuX Qi . 2 uui 
cos --- sin — 

2v Z^ 2v 
(31) 

Z +Z 

°1 °2 . uu¿ 
sin 

Plots of Z and Z are shown on Fig. 6. The resulting 
I2 

structure is a low and band pass filter with a mid band when 

1 n or f = ~r (32) 
wi 
V 

or at a half-wave resonance of the complete bar. The pass band 

is determined by the condition 
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4 

sin 
u £ 

4Z Z 

°1 °2 

(Z +Z ) 
°1 °2 

(33) 

°r2 C1 + z ) 

For example for diameter of 2.5 inches and 0.5 inches, Z /Z_ is 
°2 1 

equal to (.5/2.5)2 =0.04 and n£/v = 157.2° and 202.8°. Hence the 

band width of the transformer is 

Vfi 
fM 

202.8 - 157.2 

180 
0.254 (34) 

Within this frequency range the device will act as a transformer. 

The impedance ratio of the transformer at mid-band is deter¬ 

mined by setting u)£/2v = n/2. Hence 

v/z Z X -— 0.0 Z 
12 O, 

v/Z Z X — 

zt 

'°i . A/ 

r"2 
°2 2 

(35) 

In using such a transformer, it is necessary to adjust the 

half wave length frequency to the resonant frequency of the 

transducer driving the system. At the resonant frequency » 0 

and 

Z = — = j 
T Uj^ 

(■ 

Z +Z 
°1 °2 \ . w£ 
——-) sm — 

2 y y 

2 uj£ °2 . 2 uu£ 
cos 2^ " 7” sin 17 

°1 

0 at 

K £ 
R 

(36) 

-22- 



Near the resonant frequency, the transformer can be represented 

by an equivalent mass, stiffness and resistance as can a single 

rod. The mass and stiffness can be calculated by taking a fre¬ 

quency difference Aw from the resonant angular frequency By 

using the multiple angle formulae it is readily shown that 

sin 
^ AfN, TTAf 

sin tt (1 + 

2 it* r TT /, Lf''- y /AfN 
c°s — - [cos 2 + rjj • T V.77; (37) 

2 ni 

Neglecting squares and higher powers of (Af/f^) we have 

z +z z 
(38) 

This impedance is to be compared with the impedance of a mass and 

stiffness given by Equation (25) and (26). Equating the two expres¬ 

sions we have 

S 1 + M 1 1 

“7J 
(39) 

The total mass is equal to half the mass of the large section plus 

4 
half the mass of the small section transformed in the ratio (D^/l^ . 

Similarly if account is taken of the resistance of the sample,the 
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resistance at resonance is the resistance of the large section 

R plus (D./D times the resistance of the small section. 
2 

Since the small section is strained more highly its resistance 

4 
will be higher and when transformed in the ratio (Dj/D^ , pro¬ 

vides practically all of the damping. The total stiffness S is 

tt2/8 times the stiffness of the large section plus tt /8 times the 

4 
stiffness of the small section transformed in the ratio • 

When a speciman resonating at the frequency is attached 

to the end of the transformer it is of interest tc find out what 

impedance is obtained on the large end of the transformer, since 

this impedance will damp the transducer. To determine this we 

set, in Equation (28) 

ÜB f! _ “4 1 + R* - X ^ + Rß - ZB 
w L J B R B B (40) 

Inserting this value in Equation (29), and solving for we 

find 

Fx jB + CZß 

“ A + jDZß 

2 xi 1 . 2 uui 
Z +Z 

S' 1 2\ ■ UJ X ^ W i <7 

(-2-) sln T +LCOS 27 ‘ Z Sln 2vJ ZB 
o 

2_ 

r 2 uui 2 _._2 M 
Lcos 1Ï-Z 

°1 

Z +Z 
2 XjX-] .r °1 °2l QÍ_üi£ v 7 

Sin 2vJ +\2Z Z J “"T X ZB 
°1 °2 

(41) 

If we develop this expression around the condition wr£/v = tt; the 

expression becomes 
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(42) u 

F 

1 

1 

The denominator can be set equal to - z /Z since this is large 

compared to the square of the term Af/f and hence 
R 

F 
1 

(43) 
1 

Hence the resistance and reactance components of the load are multi¬ 

plied in the ratio 

(44) 

and this impedance adds to the resistance and reactance components 

of the transformer. Hence to obtain the properties of the speciman 

alone, it is only necessary to evaluate the properties of the trans¬ 

ducer and transformer alone and subtract these values from a measure¬ 

ment of the whole system. 

3• Speciman Shapes of Use For Measurements 

The success of this system depends on obtaining a high strain 

in the speciman to be measured while still maintaining the strain 

in the linear low amplitude range for the transducer and the trans¬ 

former, At the same time it is desirable to produce a nearly constant 
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strain over the highly strained region. Both requirements are met 

by the sample shape shown on Fig. 4a or 4b which terminate the stub 

transformer or the exponential horn. 

This specimen takes the place of two stub transformers back to 

back, but the length is much shorter than two half wave lengths. In 

deriving the equations for this speciman shape,account is taken of 

the dissipation of the center section, but this is neglected for the 

large sections at the beginning and end. Hence the three sets of 

equations are those shown by Eq. (45). These are joined together 

at the interfaces by assuming that the forces and velocities are con¬ 

tinuous. The equations become 

F2 - F1 cos ^ - jV^sin ^ ; ¿J - \ ce ^ sin ^ 

P. 
cosh - ù2Zos*Î2±^; û3 . ù2cosh - ^•inh(a+3P) 2 

U)A . • » mi 

F4 * F3 cos ~ - DV^sin 4v Í ù4 
mi jF3 , mi. 

û3 cos 77 ' “ Sin 4v (45) 
°l 

Here i is the total length of the sample, v the velocity of propagation, 

P the force and ü the particle velocity, a is the attenuation in nepers/ 

meter,ß the phase shift in radians per meter - i.e. w/v - ZQ the 

characteristic impedance of each section i.e. pv times area. These 

units would be in the MKS system. Por the cgs system which has large¬ 

ly been used in the mechanical properties of materials the attenuation 

and phase shift are 100 times as large while the characteristic imped- 
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Sill 

anee Z is 1000 tines as large. The units used here are the cgs 
o 

units. 

F. ■ 

If we combine these equations, we have the two 
z z 

F1 [cosh (a+3ß) ^ cos + -^--— sinh(a+jß) - sin — j 

- jûJZ sin 
lL 

uui . ia+ißW . 2 mi °1 . 2 ui/, , » . L1 
— cosh s—“ - DZq [cos ~ 5»in —]sinh(a+Dß) j j 

UUJÍ 
¿4 * Û. I^cosh (a+jß) 2 008 2v + -2 sinh(a+jß) — sin ~J (46) 

- iFi[ 

sin^ cosh -ÍSLiiâLi 
i . 2 iwi 

z lcos ^ 
°2 

Z 
^2 
Z 2 
°1 

sin2 ^isinh felißl! ] 

Since ai is much smaller than ßi, we can set 

V ai ßi . , V ai . ßi 
cosh(a+]ß)— - cosh — cos , - J sinh — sin 

uui .ai . uui 
co» 27 -3— sin -Z 

sinh(a+jß)- 
4 V ai ßi ^ . 

sinh — cos J + 3 
V ai . ßi 

] cosh — sin — 
ai uui ^ . oui 
-T- COS T“ + j ®in T" 2 2v J 2v 

(47) 

Since the force F, on the end of the sample is zero, we can solve for 
4 

the ratio of from the first of (46) and obtain the impedance of 

the sample. Introducing the values of (47) in (46) and separating out 

the real and imaginary parts, we have 
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Z * 
B a, 

j(Z -fZ )sxnr—(cos —--r-sin ~r~ 
T. ¿V 4v 4v 

2 2 . cl 2 . 
lr uui U)/ . jujî i e{n uüX, 

zoL,in ^V0^(CO8 “ 4v ) 

[ 
(T7^2)” 2 

c°817 - ITT- sin 27]+3f[8in27 Âi. _°L 

°1 °2 

idX 
wmmmm 

2v 0- 

(Z <¿+z *) 
1 2 Y 

2Z Z^ yj 

°1 °2 
(48) 

At the resonant frequency the imaginary part of the numerator is zero, 

which occurs when 

* 2 
D„ 

tan 
2 
4v 

D 
^ 2 
V D, 

uuX 
tan *7” “ r~ 

4v D, 
(49) 

For this condition 

uiX 
2/Z Z 

_°1 °2_ 
(Z +Z ) ' 
o o 

°2 

cos 
gjX 

2v 

Z -Z^ , 

°1 ..1. 8in M 
Z +Z ; 8ln 4v 

°1 °2 
z +z 
°1 °2 

2 U)X ^ °1 ^ 

Z Î COS 4v 

Introducing these values into (48), the impedance Z^ at resonance is 

u. 

4Z Z - (Z -Z ) 

ICO ’ - ] 

yz z 
°1 °2 

(50) 

The last term in the denominator is small compared to unity and can be 

neglected. Hence the resistance at resonance is 

"b 

Z ai (Z ,-Z )- 4Z Z 
o o o o. o0 
_i  r  ^ 2 - 4 » 

2 L (Z ^ +z ) 

°1 °2 
] 

(51) 
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If we expand (48) in powers of it is readily shown that 

ZB - »B + 5 \0 ‘T> 
(52) 

Comparing this with the reactance and resistance of a mass stiff¬ 

ness and resistance, we find 

M 

Z t 

°1 
2v 

pVSj^i 
(53) 

This is half the mass of a sample of length X, density o and area 

equal to the large part of the specimen. The stiffness S is deter¬ 

mined from the resonant frequency fR according to the equation 

2 2 /V. (54) 

The internal friction of the strained part of the sample which has 

a nearly uniform strain is given by 

.1 aX 

! Ti 

zoQ pl r °1 
; Hence RB - -£5-[—J* 

-1 (Z -Z ) - 4Z z 
Z Q ßX rV 0. 0' 0 0 
9 -,.-1- F-1 ^ -1—2-] (55) 

+Z ) 

°1 °2 

Since Z » s.pv, ß ■ wD/v, this becomes 
0 1 K 

(z„ +Z„ ) 
O, O R. . (Zo.+Zo.> 

-1 r 1 2 1 . r 1 ? 1 (56) 
Q ■ Tv^R “'r'* L(zo1-zo2) 

por the transformer of Pig. 4a, the correction factor is 1.4 times 

the ratio of resistance to reactance of the speciman. 

The question arises as to how much the strain in the small 

part of the sample is increased and how uniform the strain is through 
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the small section.A derivation is given here for the dissipation- 

less case. However, the results should be quite accurate for even 

the highly stressed samples since the attenuation is small compared 

to the phase shift. To obtain the strain in the sample, we have to 

know the particle velocity at any point along the sample. From 

Equations (45) - neglecting dissipation - and replacing 1/2 by x 

the distance from the junction in the second set of equations, we 

find that 

uul uux wX , WX 
sirrrcos“ cosT-sirr—_ 

r uuX wx . mi . u>x~] . r 4v _v , —4V ï-"| (57) 

¿3- ul[COS4vCOrv~ ” ain4v8Ínv J-jPlL Z0 Z J 
2 1 2 

At the resonant frequency F]L = 0. Differentiating û3 by x, we find 

Z 

At the edge of the sample x - 0 and 

For the 5 to 1 sample of Fig. 4a, this gives 

At the center of the sample the strain is 

(58) 

(59) 

(60) 
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■im.. iiiniWH 

V 
+ 1 ) 

ul . Z +Z %/Z Z 

2v_-| = -irr, °1 - °2- 
2 J vTV z y z +z V 

(61) 

Hence the strain is very uniform through the small part of the sample. 

With this small length sample no trouble has been experienced with the 

generation of flexure modes. Since the strain in the transformer is 

from Equations (3), equal to u^/v, the sample has increased the strain 

in the small section by a factor of 5. 

D. Exponential Horns 

The other type of a mechanical transformer used in these measure¬ 

ments is the exponential horn shown by Fig. 4b. This has the advantage 

of being able to produce a larger strain in the speciman, but since its 

transformation ratio is less for a given ratio of input to output radii 

it does not concentrate the damping in the speciman as well as the stub 

transformer does. If the damping is very large, this is an advantage. 

The equations for an exponential horn have been previously dis¬ 

cussed^ and will be outlined only here. Since the largest diameter 

used is less than a quarter-wave length, the elastic modulus can be 

taken without much error to be the Young's modulus Y . Normal horn 
o 

theory gives a good representation of the measured results. The equa- 

12 
tion for a horn, first given by A. G. Webster, is 

d^ú jl ds dû . 

,2+sdxdx+ 2U 
dx V 

0 (62) 
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where s is the cross-sectional area of the horn. For an exponential¬ 

ly varying area, we can write 

s = s < 
o 

-YX 
or 

i s 1 _o 
I s. 

(63) 

where s is the initial area and s, the final area at a distance i 
o 1 

from the beginning. For the exponential taper, Equation (62) be¬ 

comes 

d û du . tu . 

2 - + ~U 
dx V 

A solution of this equation is 

(64) 

vx/2r. tux . _ . tuxi , 
< Acos~r B sin—r i where v' 

L v' v'J 

f- 

~22 
y 
ÎT 

4 tu 

(65) 

A and B are constants and v' is the wave velocity in the tapered rod. 

In order to make v' real, we must have 

tu » 2nf * or * yv/4tt (66) 

Below fQ, the velocity v is imaginary. This corresponds to an atten¬ 

uation without phase shift. Above f , real propagation takes place 
c 

vx/2 
and the horn acts as a transformer. On account of the term «T , 

the particle velocity increases as the square root of the ratio sq/s^ 

and therefore the ratio of the starting diameter Dq to the final 

diameter D^. 

-32- 



The tapered rods are ordinarily used as half wave length 

devices for which the stresses are low at the two ends. The 

stress at any point x is given in terms of the particle dis¬ 

placement u and the particle velocity ú by 

VU Yo dû ^o, vx/2r .Ay wB. wx .By Aid. . ■> ie.n\ 
Tas- —— =-— —-f ' (-^-+ —-)cos~T^-( -■)sin-T- |j (67) 

2x juu 3x uu 1 L' 2 v'7 V' ' 2 v'7 v*JJ 

If we terminate the horn in the impedance of the speciman which 

is adjusted to resonate at the half-wave frequency of the horn, 

we can set 

w-i Tsl 3Vo T«'^2 

ù * vv jzo1(i;)^ - ú1 OJ vl/2, uji _ . ml. 
■e [A cos~7 + B sinrr-) 

(68) 

since s^ ■ so-e Since cos “ = -1 and sin “ * 0. this equation 

determines a relation between A and B 

B , Ml r-* + —1 
ID L 2 jY_s_J 

(69) 

o o 

The impedance "looking" into the horn at x 

I» ÜO jv° (~1+ 3feir> 

0, is 

u_ u^ (D 
z « 
B 

yi 
Zb 
B Q 

(70) 

Therefore the horn working at its half wave frequency steps up the 

terminating impedance in the ratio SQ/8^» ratio. 
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We are aleo interested in the maximum strain in the horn re¬ 

quired to produce a given particle velocity at the small end 

of the horn. The strain is given by 

S„- £ . è<ë> - è *W2t(^.B)co^ 1 (71) 11 ÔX joi'^x 2 V' 

When the terminating impedance Z is zero we have from (69) 
B 

_ -Ayl 
B - ~— Y 

2uu 

Hence the strain as a function of the distance x is 

(72) 

’ll 

-jA«Vx/2sinr7 

TW 

(73) 

The strain is zero on the two ends and reaches a maximum at a 

distance of 71 percent from the large diameter. Since the velo¬ 

city on the end is 

.V*/2 (74) u 

we have the relation 

fa 

A« 

u 

y—SF 
vsn/i - farz 

ev(x-*)/2sin^ 
V* 

¢/8 
11 

(75) 

If we insert the value of x corresponding to the point of maximum 

7 
strain it has been shown that the factor ® “ 2.72. Hence the ex¬ 

ponential horn will produce a larger particle velocity û for a 

given maximum strain than will a stub transformer. 
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When the measuring frequency is slightly off resonance it is 

readily shown by expanding (x+ah) 1/v' = ujrX/v' (1 + A*/wR) that 

the effective mass at the input of the horn, the effective stiff¬ 

ness and the resistance values are 

o = /oYo/(l - v2v2/4(U2) sq. 

(76) 

where Z The resistance of the horn 

and transducer are separately determined and subtracted from the 

measured value of the sample, transducer and horn. Fig. 5 

curve C shows a measurement of the mechanical resistance of ex¬ 

ponential aluminum horn and transducer. 

To determine the internal resistance of the sample the re¬ 

sistance of the horn and sample are subtracted. From Equation (56) 

the internal friction Q ^ of the small, highly strained part of the 

sample is equal to the resistance measured at the transducer divided 

by the effective mass of the sample multiplied by the transformation 

ratio of the horn and by the ratios of the characteristic impedances 

of the large and small portions of the speciman. 

E. Transducer Equations and Methods For Evaluating the Internal 

Friction, the Modulus Defect and the Longitudinal Strain 

All the measurements required to determine the internal friction, 

modulus defect or longitudinal strain involve measuring the applied 

voltage, a pick-up voltage obtained from an electrode on the trans- 
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f 
ducer or the voltaoe generated by an electrostatic pick-up device. 

The latter device is used as a calibration device after which all 

quantities can be determined from the applied and pick-up voltages. 

Hence it is necessary to derive the transducer equations in order 

to evaluate these measurements. 

The transducer system, as shown by Fig. 4a consists of a 

ceramic transducer - in this case Clevite PZT4 - constructed in the j 
form of a concentric cylinder of outside radius inside radius 

r^ and length l. The inside surface is completely silvered while | 

the outside surface has one large electrode and two small electrodes 

near the driving end. The electrode nearest the transformer acts as 

a pick-up electrode, the next electrode is a grounded electrode to 

prevent any electrostatic pick-up between the large driving electrode 

and the pick-up electrode. For the transducer used on the stub trans- . 

former the total length it, 9.85 centimeters and the distance from 

the free end of the transducer to the center of the pj.ok-up electrode 

is 9.48 cms. The pick-up electrode is 0.635 cms wide and its edge is 

0.053 cms from the driving end of the transducer. An insulated space 

of 1/8 inch (0.318 cms) separates the shielding electrode (0.635 cms) 

from the driving and pick-up electrodes. Hence the total length of 

pj the driving electrode is 7.89 cms. 

The transducer is strongly cemented to the transformer by an epoxy 

resin. Before cementing the transducer its resonant frequency was 

measured to be 15,490 cycles. This determines the compliance modulus 
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and the velocity of propagation to be 

(77) 

The equations of motion of a transducer without dissipation 

are well known to be 
13 

(F+cpVA) » (F1+tpVA) cos ~ - jû1ZTsin — 

T 

(78) 

i = vA(jwC0) - <p(û2- ûx) 

where F is the force applied to the transducer at a distance x, from 

the free end, F^ is the force on the free end, û the particle velocity 

at the free end, i the current into the transducer, VA the applied 

voltage, <p the electro-mechanical transformation ratio and the 

2 2 
characteristic impedance of the transducer which is equal to ”ri ) 

where o is the density and v the sound velocity in the transducer. With 

the dimensions of the transducer r2 = 2.86 cms, * 2.22 cms this im- 

7 4 
pedance becomes 2.33x10 cgs mechanical ohms or 2.33x10 MKS mechanical 

ohms. The value of «p, the force voltage ratio is 

^ * s22E(thickness) 

d31(area) 

E 
(79) 



Where is the piezo-electric constant which for PZT4 is given*^ 

-12 
as 123 X 10 coulombs per Newton. Since the value may be slightly 

different for the transducer with partial plating, the value is deter¬ 

mined from the measurements of the electrostatic pick-up device. The 

-12 
value of 121x10 calibrated is close to the quoted value. 

When account is taken of the dissipation in the transducer. Equa¬ 

tion (78) becomes 

(F+cpV ) = (F +cpV )cosh(a+jß)x - ù Z sinh(a+jß)x 
AXA XT 

F1+CPVA 
ú = ú^cosh (a+jß)x - (—-—sinh (a+jß)x 

T 

(80) 

where a is the attenuation per unit length and ß = w/v is the phase 

shift in radians per unit length. Since the voltage in the pick-up 

plating is proportional to the strain in the pick-up, we wish to know 

the strain as a function of the distance along the transducer. From 

the second of Equations (80) 

F +çpV 

sil=! fx = Òx X 4 = [^siHMa+jßix - ( 1z A)cosh(a+jß)xj (81) 

Since the end of the transducer is free, F^ = 0. At the end of the 

transducer x = £, the ratio of F /u = Z , where Z is the mechani- 
¿2. B B 

cal impedance looking into the transformer and speciman. Replacing 

X by £ the equations to solve are 

*2 = l<pVA(COsh(a+jß)£ -1)- u1ZTsinh(a+jß)£]/zB 

<PVA 
ù = d. cosh(a+jß)£ - -— sinh(a+jß)£ 

¿ L ZT 

(82) 
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Solving for we find 

çpy fcosh (a+jß)X-l sinh (a+jß) £ ) 
ù = —“ I--- 
1 zt ^ZR 

— cosh(a+jß)Xfsinh(a+jß)X 

(83) 

As long as (^/^) =* [RB+j2K(ûf/fR) ] (0^2)4^ZT -where K = SB>R 

is smaller than unity we can replace 

ti) X 
uuX uuX our A^X . R . ¿uuX, 

sinh(a+jß)X = aXcos—" + j sin— = aX (cos ” cos“-'-sin—-sin----) + 

. n ^_AtuX 
üb X 
R . AwX. 

"■ ' ■"■lie •! " "■" N 
AujX 

+ j (sin-^—cos-^-+ cos—sin-“^-) = - aX- j —- (aX+j -—) 
TT Af. 

■R 

cosh(a+jß)X = - 1 + j naX(Af/f ) 
K 

If we insert these values in the denominator of (83) and determine 

the minimum value, this results when Af = 0 or the transducer re¬ 

sonates at the unloaded resonant frequency as long as Z resonates 

at this frequency. Hence the expressions for and become 

-2-cxXr /z. 
2- (aX) 

41 “ ‘?VAL-[RB+ZTai]T ] ; Ù2 - - VVA [r.+Z.c.í j 
B T 

(84) 

Inserting this value of u^ in Equation (81) we find 

lRn 

. l Q V . 2 Zm -1 UJ X UÜ X U) X Oi x . U)_X 
(g+iß)Xr T ,ttQ . R . R . ■ R , . R . .n.-l 

11 jujXZ 
[--- [JI^-“(“^-)cos-^fjsin-^-]-[cos-^fj^Q" sirr^-] J 

i 8 ^ ä—1. 
) 

T (85) 

-1 
As long as the value of Q of the transducer is small and Rn/Z is 

o T 
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smaller than unity, this expression reduces to 

uux 
<pv 23 sin 

S, 
r2j 8in y i Lr_ , j (86) 

’ll VZ Lr , 
T -B ^ Q-1 

2 T 

Up to values of (RB/Z_ +(n/2) q”1) of 0.25 the corrections terms are 
B T 

small and Equation (86) gives reasonable results. For higher damp¬ 

ing values it is more desirable to use the exponential horn since 

this gives only 23 percent of the damping that the stub transformer 

does. 

The distance from the center of the pick-up electrode is 9.48 

cm, V * 3.03xl05 cms/sec. If uu is the resonant frequency 2ttx15, 490 

then 

x9.48 _ o 
gin 3R03—s = sin 174° » 0.1045j cos 174 = - 0.9945 (87) 

1 

The device will also work over a frequency range from 15200 to 15700, 

which involves a range of values of the sine term. 

Since the impedance of the pick-up electrode is in the order of 

4000 ohms at the resonant frequency, any voltmeter will measure the 

open circuit voltage. This is determined by the average strain xn 

the pick-up electrode. For a zero current drawn from the ceramic, 

the relation between the strain and the open circuit voltage is from 

the last of Equations (78) 

V (jwC ) » cp(û -ù ) 
pu O 2 1 

juJ{p(u2-u1) or Vpu 

cpO^-u^ 

C 
0 

(88) 
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T 
Since the strain is (u2“u1)/iE and c0 * TT^ri+r2^E* the 

open circuit voltage is 

pu 

oS. ) ip 
+ _11 .a—L . CT * free dielectric constant (89) 

n(ri+r2)• 

Inserting the value of from (88), the ratio of the pick-up 

voltage to the applied voltage is 

}U * (r2-rl) 

VA (r2+r1)TTVcTZT 

2 j sin oux/v 

n/2 Q*1 J B T 

(90) 

2 
when we use the relation wi/v « tt. Inserting the value of cp from 

(79) and v = we have 

3U d312 

L i 

d/8 
E 

E T 
S22 Ä 

22. 

^. , uux 
2i sm — 

1—-s-tt] («> 
JLZ /z +n/2 Q 

B T 

Since Tr(r i-r12Vo/822E is the charscteristic impedance of the 

transducer and d312/s22E.T is the square of the electromechanical 

coupling factor, this reduces to 

V 
_£U 

VA 

„ . . UUX 
2t sxn — 
J v 

V*! + n/2 Q Fl 
(92) 

Hence by determining the coupling coefficient, the ratio of the pickr 

up voltage to the applied voltage will determine the resistance Rß 

applied to the transducer in terms of the transducer characteristic 

impedance ZT. As long as ZB/ZT is small the first term predominates 

I >1», 
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and the second can be neglected. It will be noted that the second 

tens places a limit on the ratio of that can be measured. 

Since the phase angle of the ratio Vpu/VA is not measured we deal 

with the absolute values. This results in 

7 V 
B tt -1 2 _A . Ü2L 
T + I Q = 2k T Sin V 
T pu 

(93) 

We are also interested in the strain in the transformer and 

th(' strain in the sample as measured by the applied and pick-up 

voltaqes. These values can be calculated from the displacement 

velocity u2 given by Equation (84). Since the velocity is con¬ 

tinuous across the interface, the velocity on the end of the trans- 
2 

former will be ¿2 multiplied by the transformation ratio (D^Dj) =25 

for the transformer shown by Pig. 4a. From Equation (3), the strain 

at the center of the transformer is 

25x2cp(V ) 
u _A 

’ll = V “ (ZB+ZTa£)v 

50V31 
-TST" 4 TT -1. 

<vri)(i; + TQ > 
T 

22 

(94) 

The 2 2 X”" 
when we insert the value of cp and ZT = TT(r2 ^p/s 

strain generated depends on the degree of damping of the horn and 

spcciman. If we insert the value of the damping from (93) the 

strain is equal to 
O K\t a ^ 

(95) 

’ll 

E T 
25V c 

du 22_ 

d31sin“(r2-ri> 

Hence the maximum strain in the transformer is directly proportional 

to the pick-up voltage. 
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Since the velocity is continuous between the transformer out¬ 

put and speciman input, then since the strain in the sample is from 

Equation (61) equal to 

(96) 

the strain in the sample is 5 times that in the horn, if the velo' 

city of the sample is the same as that in the hornj otherwise the 

value is 

S (97) 

It will be noted that the correction terms disappear if the 

pick—up electrode is located at the center of the transducer. 

Furthermore the ratio of the pick-up voltage to the applied volt¬ 

age increases for a given value of + (tt/2)Q . Hence a 

higher damping value can be measured with this form of plating 

arrangement. It is also obvious that a slight variation of fre¬ 

quency from the resonant frequency will not cause a change in 

sensitivity since the value of sin(wx/v) changes very little. 

This type of arrangement was tried on the transducer mounted 

on the exponential horn. The electrode arrangement is shown by 

Fig. 7. To preserve symmetry two small pick-up electrodes are 

used mounted diametrically opposite. These are surrounded by 

narrow grounded electrodes to prevent pick-up from the driving 

electrodes. The area of each of the pick-up electrodes is 1 square 
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centimeter which gives sn impedance of 12,200 ohms at the resonant 

frequency of 17,500 cycles. With this type of electrode the ratio 

of (Z /Z + n/2 o'1) and the strain in the speciman are equal to 
B T 

fa TT -1 2k2x(Ï4-) . s = fx(T-ft)xVpu*B22 = 1.1X10-6(T.R.)XV -Ä + Q - 2k X(v ), s d x(v _v ) 
z- pu 31 2 1 (g8) 

pu 

where TR is the transformation ratio. In order to measure a high 

internal friction in the sample, at a high strain, a lower trans¬ 

formation ratio (TR) is desirable. The internal friction Q 1 in 

the sample was shown to be (Eq. 56). 

-1 rbxM 

id M(TR) 
R 

—6 
2.22x10 Rß 

(TR)2 ~ 
(99) 

where M, the mass of the sample is a half the total weight or 6.5 

grams. This is multiplied by (TR)2 to give the reactance at the 

same spot that Rß is measured. 

Hence we find that 

% _ (TR) V1 2k‘ 

(51.6) ; Vpu = <VZT)V* 

174x51.6V; 

2 -1 
(TR) Q 

10"V 
, su= 

(TR)Q 
-1 

(100) 

With 250 volts available and a transformation ratio of 12 for the 

exponential horn, a (f1 of 0.20 can be measured for an rms strain 

of 10"3. For larger strains or higher values of internal friction, 

a larger amplifier is desirable. With a strain of lo“3 in the sample 

the maximum strain in the horn is 1.36xl<f4 and the strain in the 
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transducer is 2.7 5xlo'5. Hence all the components are in the linear 

range except for the speciman. 

F, Calibration of Properties f the System By Means 

of an Electrostatic Pickup 

Since it is desirable to prove experimentally the equations de¬ 

rived above and also to obtain exact values for the constants enter¬ 

ing the equations it is necessary to measure the displacements on 

the ends of the horn or sample by means of a displacement measuring 

device. The simplest such device, and the easiest one to calibrate 

is an electrostatic pick-up device, which for this system is shown 

in Pig. 8. For this case a micrometer, calibrated in mil inches, 

is mounted on an insulated panel and backed off a known distance 

from the position that electrical contact is made with the horn. 

The horn is grounded and is connected to a 45 volt battery on one 

end and to the grounded terminal of a 10 megohm voltmeter. The 

battery is connected to a megohm resistor, the end of which is 

connected to the active side of the voltmeter and to the micro¬ 

meter. The wire to the micrometer is run in a shielded cable in 

order to prevent pick up from outside sources. The shield of the 

cable is grounded and hence a static capacitance is put across the 

input to the voltmeter. In order to find out how much this capac¬ 

itance was, a 100 picofarad condenser was put across the input and 

the voltage ratio was measured for a given setting of the micro- 
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meter. The ratio indicated a capacitance of 117 picofarads across 

the input. 

Since there is no assurance that the micrometer and end sur¬ 

face of the hern are exactly parallel, the voltage pick up was 

measured when the setting was 2 mil inches and 4 mil inches spacing 

from the point where electrical contact was maintained with the 

horn. From the theory of the electrostatic pick up,the alter¬ 

nating voltage generated is 

(101) 
8.85x10 s 

dxl0-3x2.54 

where d is the spacing in mil inches. The diameter of the micro¬ 

meter was 0.3 inches so that s the area is 0.455 sq. cms. The dis¬ 

placement 6x from Equation (1) is inserted in (101) and the complete 

equation reduces to 

(102) 

since the length of the small diameter of the horn is 3.06 inches. 

When the spacing d was 2 mil inches beyond contact, the voltage 

pick up was 0.079 volts while when d was increased to 4 mil inches, 

the voltage was 0.025 volts. To determine the actual displacement 

taking account of non-parallelism,the equation to solve is 

(103) 
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This is a quadratic equation which has the solution d = 2.5mils. 

Hence the strain is from Equation (102) since d »4.5 mils, 

1.94x10”4S11 
0.025 * ^- —■ -—— = 568 S11 (104) 

Hence the indicated strain - which will be the r.m.s. strain, i.e. 

(2/tt) times the maximum strain, since the voltage measured is r.m.s. 

is 

Sn * 4.4xl0~5 (105) 

The applied and pick-up voltages VA and Vpu for this case were 

V. » 1.5; V = 0.95; f » 15470 (106) 
A pu R 

Hence from Equation (86) - neglecting the square root term - the 

strain indicated by the measurement is 

25x0.95x1.46xl0“11xl300x8.85xl0"12 

11 d31x0.118x0.635xl0“2 

5.31x10 
-15 

(107) 

‘31 

••5 -1 
Setting = 4.4x10 , gives a value of d^ equal to 121x10 

14 
which is in good agreement with the listed value. with this 

value the coupling coefficient squared is 

JLL 
E T 

S22 * 

11.21xl0~10)2 

1.46xl(f xl300x8.85xl0-12 
0.087 (108) 

Using these values, a set of curves can be drawn for the stub 

transformer system for various frequencies of operation as shown by 

Fig. 9. This is given for ratios of applied to pick-up voltages 
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from 0.1 to 2o since larger ratios do not give good measurements. 

These determine the ratio of (Zp/ZT ♦ ("Z2) Q ^ as a function of 

V /V . Prom (95) the strain is determined by (ZB/ZT + (n/2) Q ) 
A pu 

and the applied voltage V A single curve on Fig. 9 shows the 

relation between (ZB/ZT ♦(n/iXf1) and the strain in the stub 

transformer. This has to be multiplied by 5VA to give the strain 

in the speciman. A single curve suffices for the transducer with 

pick-up electrode at the center. This relation is shown in Fig. 

10, for the exponential horn of Fig. 4b. 

The ratio of the electrostatic pick-up voltage has been com¬ 

pared with the transducer pick-up voltage over a wide range of in¬ 

puts and the two are found to be proportional. The electrostatic 

voltage at the end of the sample has been found to be the same as 

that at the end of the transformer for the same transducer pick¬ 

up voltage. Hence the input and output velocities are the same 

as is expected from Equation (46) with the dissipation neglected. 

This verifies that the strain in the speciman is in agreement with 

theory. 

IV. Experimental Results 

A large number of internal friction and modulus defect measure¬ 

ments have been made over wide frequency and amplitude ranges by the 

techniques discussed in Sections II and III. It is the purpose of 

this section to show some typical measurements which illustrate the 

-48- 



i matÊÊÊÊIÊÊIKÊ 

mechanisms discussed in Section 5. 

Typical of low frequency measurements are the results of Figs. 

16 
11 and 12. Fig. 11 shows measurements of the internal friction 

of 99,999 percent pure copper as a function of strain amplitude 

for a flexure bar at 2000 cycles. The strains shown are the maxi¬ 

mum values for the vibration. The effect of adding certain per¬ 

centages of zinc is to lower the internal friction in the linear 

region and to raise the strain for which the internal frktion starts to 

17 
increase. Somewhat similar results are shown in Fig. 12 for a 

99.995 percent pure aluminum crystal measured as a function of 

strain amplitude and temperature. 

The data of Fig. 11 shows the effects of impurity atoms in¬ 

troduced in the pure material in pinning dislocations. This re¬ 

sults in a lower internal friction in the lineal range and an in¬ 

crease in the strain range for which the internal friction is in¬ 

dependent of the amplitude. This relation between internal fric¬ 

tion and modulus defect and the number of pinning points on a dis¬ 

location has been used18 to study radiation damage and the diffusion 

of point defects. The data of Fig. 12, shows that for a given im¬ 

purity content the dislocations in aluminum are more closely pinned 

than in copper. The cause of the different pinning distances in 

different metals is not clearly understood. For titanium for which 

data are given in Fig.16 , it appears that the pinning is much closer 
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still and dislocation effects do not occur up to strains of 10 

or higher. The data of Pig. 12 show also that temperature has a 

large effect on the number of pinning points. At high temperatures 

the pins seem to be boiled off the dislocations and the internal 

friction increases and the non-linear effect occurs at smaller 

stresses. 

High frequency ultrasonic measurements have been used to 

study the damping mechanisms of dislocations. This follows from 

the fact that dislocations are overdamped and the internal fric¬ 

tion that they produce above the peak value falls off inversely 

proportional to the frequency. Fig. 19 shows the calculation of 

Oen, Holmes and Robinson19 for the internal friction due to dis¬ 

locations for two different types of loop length distributions. 

The internal friction is plotted against a normalized angular 

frequency u>o equal to 

uu 
Jibi 
Bi 2 o 

(109) 

where I is the loop length for a delta function distribution or 
o 

the exponent in the distribution function 

—1/1 
N 

N(l) - , « 
(110) 

where N(i) is the number of loops having a length I and Ñ the total 

number of dislocations per squam cm. At frequencies above the peak 
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value the internal friction approaches the value 

mi.i ■iMifflMBIIT 

Q"1f 
ub2NR 
2ttB 

(111) 

-1 
Hence if the product Q f can be approximated and N determined by 

etch pit counts or by X-ray scattering the value of B can be deter¬ 

mined. Ñ usually cannot be determined better than a factor of 3 to 

5 so that B is not accurately determined. However the variation 

with temperature can be determined and compared with different models 

for the damping mechanisms. The internal friction is related 

to the attenuation by the equation 

-1 
a = 

2v 
(112) 

where a is in nepers per cm and v the velocity of propagation. Since 

one neper is 8.68db, this can be expressed in terms of 

a 
8.68(uQ 

-1 
(113) 

(db/cm) 2v 

Fig. 20 shows the normalized attenuation plotted against the normal¬ 

ized frequency. This is the type of curve which has to be compared 

with the attenuation due to dislocations in order to obtain the drag 

coefficient B. Since the sound velocity of Equation (113) usually 

runs from (0.1 to 1.0)xlO , Equation (U3) can be expressed in terms 

of the attenuation in db per microsecond by the equation 

a db 

(delay for 1 cm) 

db(0.1 to 1.0) 
microsecond 
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and this expression is often used. 

In order to obtain the damping coefficient B it is necessary 

to separate out the dislocation component from other sources of 

attenuation. This has been done by a variety of techniques. For 

copper the attenuation of well annealed single crystals have been 

20 
measured over a wide frequency range, after which the crystals 

have been neutron irradiated. The difference of the attenuation 

measured before and after irradiation is taken as the dislocation 

20 , 
component. Using this technique Granato and Sterns and Alers 

and Thompson have concluded that the drag coefficient B is around 

A 0 
6.5xlo” dyne-sec/cm at room temperature. For lithium fluoride 

the pinning points appear to pin the dislocations at room tempera¬ 

ture and to produce any dislocation attenuation it is necessary to 

introduce fresh dislocations by deforming the crystal. A disloca- 

21 
tion component has been derived by O.M.M. Mitchell which gradual¬ 

ly disappears at room temperature and within an hour at 100 C. Using 

—4 22 
this component she finds B « 3.5x10 . Other experimenters find 

4 2 
values from 7 to 13x10 dyne-sec/cm . The writer has recently 

measured the attenuation of lead and aluminum over a wide fre¬ 

quency and temperature range and found that it was possible to 

separate the measured attenuation into a dislocation component and 

a square law component which could be separately evaluated. Fig. 13 

shows a measurement for one of the shear waves in aluminum. This 
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process has recently been applied to copper crystals and Fig. 14 

shows a measurement of one of the shear waves for copper. Using 

this technique the damping coefficient has been evaluated over a 

wide temperature range with results which will be discussed in the 

next section. 

The final set of data were obtained by using the high ampli¬ 

tude measuring device discussed in detail in Section III. Fig. 15 

shows the modulus defect and the internal friction Q ^ for two dif¬ 

ferent types of aluminum. One is the standard 7075T6 aluminum which 

has the composition Ai 91%, Mg 2.8%, Zn 6% with traces of other ma¬ 

terials. Tliis has a static yield stress of 78,000 lbs/sq. inch 

(5.35x10 dynes/cm ). The other material is a very pure aluminum 

having in the order of 100 p.'.rt per million impurities. This is a 

very soft material which is easily bent. Both materials show dis¬ 

location effects occuring at different strain levels. The 7075T6 

has three ranges while the very soft aluminum may have four ranges. 

These are discussed in the next section. 

The final data curves(Fig. 16) are for commercial titanium and 

the alloy Ti-6% A¿-4%V. Both these materials show a much different 

behavior than the aluminum. The internal friction and modulus de¬ 

fects are practically independent of the strain amplitude up to 

-3 
strains in the order of 2x10 . At these values the materials be¬ 

come unstable and exhibit large increases in internal friction and 
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modulus defects. Fatigue has been observed in some sample for 

strains of this order. 

V. Theoretical Interpretations 

A. Introduction 

The internal friction technique is a very sensitive one but 

it requires a model to interpret the results. The model that has 

received the widest application in interpreting the results is the 

Granato-Lücke model of Fig. 17. In this model a dislocation is 

assumed to cross the Peierl's barriers in a more or less straight 

line as indicated by Fig. 18. If however, the dislocation lies at 

only a small angle from the direction of the Peierl's minimums- 

which are directions for which the dislocation has its minimum energy- 

it was calculated that the lowest energy state will be obtained if 

the dislocation lies partly in the Peierl's trough and partly across 

the Peierl's barrier in a "kink" or width w. The width of the kink 

depends on the height of the Peierl's barrier; the higher the barrier 

the smaller the width. In the Granato-Lücke model it is assumed that 

most dislocations are not kinked but are held straight by the line 

2 
tension T which has been evaluated to be about nb /2. 

Recently modifications of the Granato Lücke theory have been 

proposed. In the low amplitude range, it is proposed that most 

dislocations follow the kink model of Fig. 18. In the high temper- 

27 
ature range the model produces results which are very similar to 

-54- 



the string model but at very low temperatures the barriers to kink 

motion are large enough so that the modulus defect Ac/cq approaches 

zero at absolute zero. For face centered metals about one-third of 

the modulus defect has disappeared at 0.1 K. For body centered 

metals, a considerably smaller part is left29 at 1.5°K. For materials 

with very high Peierl's barriers, such as the crystals silicon and 

germanium which crystallize in the diamond structure, the motion of 

kinks - which are probably in the form of a very narrow kinks - i.e. 

regions for which the extra planes of atoms extend one atomic spacing 

lower on one side of the region that they do on the other - requires 

the breaking of a primary bond between adjacent atoms. According to 

the measurements of Southgate 9 this requires an energy of 1,61 e.v. 

For all temperatures up to about 600°c the stress-strain curves are 

linear and fracture occurs by brittle fracture at imperfections on the 

surface. Above this temperature, dislocations become free, due to 

31 
thermal agitation, and plastic dislocation effects occur. 

In the first non-linear range, ascribed by Granato and Lücke to 

the breakaway of dislocations from pinning points, non-linear effects 

32 . 
can occur in the kink model before breakaway occurs. Another effect 

not envisaged by the Granato-Lücke theory is the motion of pinning 

points along the dislocation in the presence of a moderate ultrasonic 

vibration. This effect may cause a time dependence of the internal 

friction in the breakaway region and may be the origin of acoustic 

"softening" of metals which allows forming of brittle materials. These 
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effects are discussed in detail in Section VC. 

For the linear range it appears that for all temperatures 

above 20 K, the Granato Lucke mechanism for the linear range is 

in good agreement with experiment. 

B* Mnear Range For Dislocation Damping.introduction 

The linear phase of the theory occurs when the dislocations 

are bowed out under the action of the applied stress as shown by 

Fig. 17b and c. In this region, the dislocation bows out under 

the application of a shearing stress in the glide plane. It is 

damped by the drag coefficient B, and may be resonant due to the 

mass term M. However, for all drag coefficients measured, the 

dislocation is overdamped and no resonance effects have been meas¬ 

ured. By neglecting the mass term M, Oen, Holmes, and Robinson19 

have obtained a solution in closed form both for the single loop 

case and the exponential distribution of loop lengths given by 

Equation (115) 

N(J)df » 1 ° di (115) 

lo 

where i8 the average spacing between impurity atoms. Ñ is the 

total dislocation length per c.c. and N(je) is the number of loops 

of length i in a cubic centimeter of material. This type of distri- 

18 
bution results when the positions of the pinning points are randan. 

There are two normalized curves presented on Fig. 19, one for a 

single loop length and one for the exponential distribution. The 

ordinate is the ratio of the internal friction q"1 to the product 



— 2 
NRi where R is an orientation factor which relates the 

o 

strain in the acoustic wave to the average strain in 

the glide planes. The abscissa is the normalized angular fre¬ 

quency which is the ratio of the angular frequency w to where 

*> 2 
u) = ub~/BJÍ . Here M- is the shearing modulus in the glide plane, 
o o 

b is the Burger's distance, B the drag coefficient and the 

average loop length of Equation (115). In terms of the elastic 

moduli c,,, c,- and cAA of a cubic face centered crystal 
11 12 44 

“ " <cll * C12 + c44)/3 (116) 

It is obvious that independent of the distribution,the in¬ 

ternal friction Q * becomes inversely proportional to the fre¬ 

quency at very high frequencies. Introducing the normalized co¬ 

ordinates we find 

q -1 = êSübi or B . Mb! (117) 
UL uuB (wQ-1). 

là 

Hence if the product of the limiting slope Q by the angular 
iJ 

frequency is determined, the drag coefficient B can be measured 

in terms of the number of dislocations Ñ, the orientation factor 

R, the shear modulus p. and the Burger's distance b. The last 

three quantities are known when the orientation of the crystal 

is determined and Ñ can be approximated from etch pit patterns 

or from X-ray scattering results. This value is the least ac¬ 

curately determined quantity and is probably not known to better 

than a factor of 4. Hence absolute values are not too accurate 

but relative values over a temperature range can be obtained. 



In all the measurements made it is the attenuation and not 

the internal friction that is measured. The two are related 

through the equation 

2k/ 
uu 

-1 Q - (118) 

where A is the attenuation in neper/cm - 1 neper * 8.68db- and 

V is the sound velocity. The normalized attenuation curve is 

• 2 
then shown by Pig. 20. Here the ordinate is 2AvB/NRM>b . When a 

match to the shape of the dislocation attenuation is obtained, 

the limiting attenuation AL in nepers per cm can be determined. 

Prom this value the drag coefficient B- which is defined as the 

force per unit length on the dislocation occurring when it is 

moving with a velocity of 1 cm/sec- can be determined from the 

equation 

B - (119) 
2Alv 

The success of this method for determining the drag coef¬ 

ficient for the dislocation depends on being able to separate 

the part of the attenuation due to dislocations from the re¬ 

mainder due to other causes. One method that has been widely 

employed is to measure the attenuation of an annealed crystal 

as a function of frequency and temperature and then to remeasure 

]ß . 
it after it has been neutron irradiated. Neutrons produce im¬ 

purity atoms and vacancies which diffuse to the dislocation,pin¬ 

ning them and removing the dislocation loss. The difference be- 
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tween the first and second measurement represents the disloca- 

20,25 
tion attenuation. This method has been used to evaluate the 

34 
drag coefficient in copper. In lithium fluoride new disloca¬ 

tions were produced in the crystal by plastic deformation. These 

produced an added attenuation which could be removed by annealing 

the crystal at 100°C for an hour. The difference in the attenua¬ 

tion between the deformed and annealed crystal was taken to be 

the dislocation contribution. In all these cases, the shape of 

the dislocation contribution agreed with that given in Pigs. 19 

and20 and it was possible to obtain asymptotic values which al¬ 

lowed the drag coefficient to be obtained. 

35,36 
In two recent papers a separation of the dislocation 

component has been made by observing that for pure annealed crys¬ 

tals the attenuation consists of a dislocation component of the 

type shown by Fig.20 plus an attenuation which varies as the 

square of the frequency. This latter term is due to direct con¬ 

version of acoustic energy into heat through the thermoelastic 

effect and the phonon viscosity term plus the conversion of acous¬ 

tic energy to electron motion through electron viscosity. The 

success of such a division depends on there being two standard 

curves, a square law curve and an attenuation of the form of 

Pig. 20. 

The success of this process is shown by the measured attenu¬ 

ation shown by Fig. 21 for the two stiear modes and the longitudinal 
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tion component which follows the standard high frequency form 

of Fig. 20. The square law terms for the shear modes are small 

and cannot be determined accurately. For the slow shear mode 

the square term is probably less than 1.5db/cm at 102 MHz. 

Plotting the internal friction (for dislocations) as a 

function of the frequency, the curve labelled L<110> of Fig. 

22 results. From the shape of the curve one finds that the 

maximum value occurs at a frequency 4.1 MHç/sec., the value 

Qm is 1.02 X 10 and the asymptotic value is shown by 

the dashed line. This form is confirmed by the two shear 

_ 
attenuation curves which are labelled S(110) and S(100). All 

three curves are parallel but differ in value on account of 

the different orientation factors R for the three modes. The 

orientation factors for waves along the <110> direction have 

20 
been calculated by Alers and Thompson with the results 

n *mr* 2 

0.057 

R 
c 
44 

3 L 
i r 

(120) 

R 
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The numerical values are the results obtained for lead by sub¬ 

stituting the elastic moduli of Equation (121). 

c,,4.85 X 1011; c.. - 4.09 x 1011; c.„ » 1.44 x 1011 dynes/cm2 
11 '12 44 

The ratios between the Q-1 curves are in rough agreement with the 

ratios between the orientation factors R. 

The dislocation drag coefficient B can be determined from the 

asymptotic values of Q ^f which are shown by the dashed lines of 

Fig. 22. The drag coefficient is given by 

NRub^ 
B" ^r)L 

Taking the shear wave with polarization along <100> as being the 

most accurate and taking the number of dislocations for a freshly 

- 7 
produced crystal as the reasonable value of N « 10 per cc, one 

finds the drag coefficient B to be 

B . lO7*,216x7,33*1010x12,25X10-16 . 3.7xl0-4 (122) 

which is close to the theoretical value as will be discussed in 

Section VC. Some information on the average loop length lQ of 

Equation (115) can also be obtained from the frequency of the maxi¬ 

mum q”1 and the value of q”1. By fitting the measured values 
M M 

to the standard curve, it is found that 

uu » 2tt x 4.1 x 106 = 2.55 x 107; q“1 « 3 x lo“3 
M M 

From the form of the standard curve it is seen that 

(123) 

0.38 x ub _ -1 ^ “ 

% ’ El 2 i On ' °-35 * ““o 
O 

(124) 

(121) 
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Prom one equation I - 6xl0”5 cm while the other gives 6.3x10 cms, 

° 37 
a reasonable check. This value is similar to that found at low 

temperatures for copper of a comparable purity i.e. 99.999%. Table 

I shows that the loop length does not change with temperature for 

lead. 

C. Evaluation of Square Law Attentuation and Dislocation Drac[ 

Terms for Single Crystal Lead. Aluminum and_Copper 

This process has been carried out over a temperature range for 

the longitudinal mode for single crystal lead, the longitudinal and 

two shear modes for copper crystals and for the two shear waves in 

aluminum single crystals. Since the measurements have been given 

in previous papers35"36 only the values of the square law attentua¬ 

tion at 150 MHz and the drag coefficients are given here. However 

measurements have been made to lower temperatures in aluminum which 

alter the values given previously to a small extent. The measure¬ 

ments for copper are new. 

The longitudinal mode for lead along the <110> direction has 

been measured for lead from 66°K to 300°K. The square law attenua¬ 

tion measured at 150 MHz is shown by the circles of Fig. 23. Two 

theoretical mechanism, which are discussed in Section VD, are shown 

and their sum, as shown by the solid line is compared with the meas 

ured points. The corresponding drag coefficients are shown by the 

circles of Fig. 24 and they are compared with the sum of three drag 

mechanisms which are discussed in Section VE. By evaluating the 
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values of uj and (5 as discussed in Section VE, the loop length 

has been evaluated over a temperature range and as shown by Table 

I, it is approximately constant over a temperature range and sub¬ 

stantially equal to the value found at low temperatures for a cop- 

37 
per of comparable purity, i.e, 99.999%. 

Similar measurements have been made in copper single crystals 

to a low enough temperature to evaluate the electronic component of 

the square law and dislocation drag effect. Pig. 25 shows the square 

law values obtained for the slow shear mode (direction <110>, polari¬ 

zation <1Ï0>) for a <110> type crystal. On account of its low veloc¬ 

ity - 1.63xl05 cms/sec - this mode has a high enough square law loss 

to be evaluated in the presence of a larger dislocation component. 

This allows an evaluation of the non-linear coefficient for the inter¬ 

action between acoustic waves and phonons. A second crystal was ob- 

38 o o 
tamed for which the resistance ratio from 300 K to 4.2 K was known 

to be 600. This had its length along the <100> direction. Measure¬ 

ments were made for the longitudinal moue and the shear mode which is 

5 
controlled by the elastic constant and has a velocity of 2.9x10 

cm/sec. With this high a velocity, the square law component was too 

small to be evaluated. However it could be evaluated for the longi¬ 

tudinal mode and this is shown plotted on Fig. 26 These measurements 

were carried down to 20°K and hence give a good evaluation of the elec¬ 

tronic viscosity damping coefficient. Measurements were also made for 

the dislocation damping coefficient for all three modes and these are 
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shown plotted on Fig. 27. The method for determining these values 

is discussed in Section VE. 

Finally more complete measurements have been made for the two 

shear modes along the <110> direction for an aluminum single crys¬ 

tal. These also have been carried down to 20°K and provide a better 

determination of the electronic damping coefficient. Fig. 28 shows 

the square law attenuation at 150 MHz for the slow shear mode (polar¬ 

ization <1Ï0>, velocity 3.11xl05 cm/sec) along <110> direction, while 

Fig. 29 shows a similar curve for the fast shear mode (polarization 

<100>, velocity 3.41x10 cms/sec). Fig. 30 shows the drag coefficient 

measured for the slow shear mode. The values for the fast shear mode 

are similar but are not as accurate on account of the smaller resolved 

shear stress factor R. 

D. Sources of Square Law Attenuation 

1. Thermoelastic Effect 

The thermoelastic loss of a solid is one of the principal sources 

of conversion of acoustic energy to thermal energy. It results from the 

flow of heat from the compressed part of the wave to the cool expanded 

part of the wave. The thermoelastic loss for a cubic crystal is given 

39 40 
by the formula * 

2 
A 
(nepers/cm) 

U) Act 

j»vi3 

(125) 

where Ac is the difference between the adiabatic and isothermal elas 

tic moduli and t is the relaxation time for the interchange of heat 

-64- 



between the hot and cold regions in the crystal. The quantities 

have the values for cubic crystals 

; T = ( Ac 
a2<Cll*2c12>2|r 

oC oC V 
V l 

(126) 

where cn+2c^2 sum e^astic moduli for cu! ic crystals, K 

is the total thermal conductivity due to electrons and phonons, oCv 

is the specific heat per unit volume, v, is the velocity of the Ion- 

gitudinal elastic wave and T the absolute temperaaure. The values of 

a, the temperature expansion coefficient, K the thermal conductivity 

and pCv the specific heat per unit volume (for lead) are shown plotted 

as a function of the temperature for lead by Fig. 31. From these values 

the calculated attenuation in db per cm - 1 neper is 8.68 db - is shown 

plotted by the dashed line of Fig. 23. This accounts for about half the 

measured frequency square law attenuation at room temperature but only 

about one-third of that measured at 60°K. Similar values are shown for 

copper on Fig. 26. 

For non-conducting crystals, for which all the thermal conductiv¬ 

ity is by phonons, this source of loss accounts for only about 4 percent 

of the measured value. Furthermore it does not account for any shear 

loss in either a metal or a non-conducting crystal, 

2. Phonon Viscosity 

41 
Akheiser first pointed out another source of conversion of acous¬ 

tic waves to thermal waves which is aimilar in principal to a viscosity 

concept. Zn this effect a suddenly applied strain causes a separation of 
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the temperatures of the different phonon modes by amounts which 

depend on the type of strain applied and on the direction and type 

of the phonon modes. The amount of the separation is determined by 

the values of the non-linear elastic moduli - i.e. the third order 

42 
elastic moduli - as discussed in a number of references. This sud¬ 

den change in the phonon temperatures results in an energy storage 

equal to ûcS .2 (127) 
2 j 

where Ac is an increase in the elastic modulus associated with 

the strain component S^. By summing all the contributions to 

42 
the thermal energy, it was shown that the modulus increase is 

equal to 

Ac 

. 2 
3 Y E.(V.3) 
/.11 

(128) 

i 

where is the thermal energy of mode i and is the 

Gruneisen number associated with the particular mode and strain. 

For a longitudinal mode of vibration, the difference between the 

isothermal and adiabatic moduli has to be subtracted since, for 

equilibrium conditions, the temperatures do not relax down to 

the unstrained value but rather to the adiabatic value associated 

with the average temperature rise AT. , Hence for longitudinal 

waves, the modulus change associated with the non-equilibrium 

temperature distribution due to a suddenly applied strain is 

Ac » 3 y " y2DCvTo (129) 

i 
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where y is the ordinary Grüneisen constant associated with a 

volume expansion. 

This energy storage is relaxed down to a thermal equil¬ 

ibrium temperature with a relaxation time t. For an acoustic 

shear wave, which can communicate its energy directly with the 

thermal phonons, the relaxation time is equal to the thermal 

relaxation time 

T = 
JK 
oC F (130) 

where K is the lattice thermal conductivity, pCv is the specif- 

43 
ic heat per unit volume and V the Debye average velocity, which 

for lead is 9.53 x 104 cms/sec. Longitudinal acoustic waves do 

not couple directly to the thermal phonons but interact only with 

shear and longitudinal waves in the same frequency range. Hence 

the mean free path, and therefore the relaxation time t, is larger 

for longitudinal waves. Experimentally the factor appears to be 

in the order of 2. 

The rate for which the wave energy is transformed into thermal 

energy is determined by the product 

r\ » Act (131) 
P 

where, in analogy with the expression for the viscosity of an 

44 
ordinary gas or liquid, the product act is equal to a viscosity. 

To simplify the expression for Ac we note that in the high temperature 

approximation, the thermal energy of each mode is proportional 
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to the total thermal energy Eq. So far the 39 pure modes exist¬ 

ing for a cubic crystal have been used to evaluate the expression 

for Ac. Hence for this case a non-linearity constant D is de¬ 

fined equal to 2 

D , r3li(vi > v "cvT 
0 - 3 L 

n 
(132) 

In terms of this constant the "phonon viscosity" term is 

E K 
2D 

E K 

J 
V (long) 

(¾) (133) 
shear 

For a shear term v ■ 0 and the last term drops out of (132). 

45 
The constant D has been evaluated for six non-conducting 

crystals from the measured third order moduli with good quanti¬ 

tative agreement. The D values for shear waves vary from 0,29 

(ytrium iron garnet) to 2.0 (Nad and MgO). The longitudinal 

values range from 4.5 (silicon) to 40 (Nad). For a metal it 

is necessary to separate the lattice thermal conductivity from 

the electronic since it is only the former that determines the 

relaxation time. The lattice thermal conductivity of a metal 

can be determined from thermal conductivity measurements made 

on the metal with varying impurities content and for copper 

46 
has been shown to fit the equation 

K » 32.5/T (134) 

from temperatures above 30°K. Using this value in Equation (133) 

and a value of D » 42 calculated from the recently measured*7 
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third order moduli for copper, it is found that the phonon 

viscosity loss, determined by the equation 
U)2r 

* » - 

(neps/cm) 2oV. 
(135) 

agrees well with the difference between the measured values 

and the thermoelastic loss and electron viscosity losses shown 

by Fig. 26. 

For lead no measurements exist for the lattice thermal 

conductivity but this can be estimated from a calculation due 

48 
to Leibfried and Schlomann. Using a simple model for a cubic 

crystal they derive the formula 

’S,(watts/cm)' 3-6a*e3A2T 
(136) 

where a is the lattice spacing, A a constant equal to 92.9, 

0 is the Debye temperature and y the Grllneisen constant. With 

0 » 105°K,43 a - 4.9496 x l(f8 cms and v * 2.65 from the data 

of Fig. 31 one finds 

Wts/cm2) “ 2-7VT (137) 

46 
This formula tends to overestimate the value so that it is 

assumed that the lattice thermal conductivity is 

K- / *.4./ 2» = 2/T (138) 
L(watts/cm ) 

Using this value and determining the ratio of Eq to oCv from 

49 
tables of Debye functions, the quantities necessary to cal- 

—2 — 4 2 
culate E K/pC V are given in Table II. V = 9.53 x 10 cms / 

o v 

sec, 
43 
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If we insert the value of 2D(E K/pC V2)-n into Equation 21 
o V * 

with uu - 2ttx1.5x10®, p«11.34 and Vi*2.285xl05 ons/sec - the velocity 

of a longitudinal wave along the <110> direction - the value of D to 

agree with the phonon viscosity attenuation of Fig. 23 is 35.2. This 

value is consistent with that found for copper and other crystals. 

Over a temperature range the sum of the thermoelastic attenuation 

plus the phonon viscosity attenuation is in good agreement with the 

measurements. The shear attenuation indicated for the slow shear 

mode - i.e. 1.5 db at 150 MHz - indicates a non-linear constant D in 

the order of unity. 

For copper the data of Fig. 25 indicates a non-linearity factor 

of D*3.0 for the slow shear mode. On account of the large velocity for 

the fast shear mode, the constant cannot be measured. In calculating 

the drag coefficient of Fig. 27, it is assumed to be equal to that for 

the other mode. 

Finally the shear curves for aluminum,as shown by Figs. 28 and 29, 

indicate non-linearity constants of D * 8.6 and D ■ 7.25 for the slow 

wave and fast wave respectively. Since these constants are important 

for dislocation drag terms, the non-linearity constant for the glide 

plane is given by 

Dg » 2x8.^7t.2^ * 8.15 (139) 

since the elastic constant (c11”ci2+C44^3 is twice the elastic con“ 

stant for the slow shear wave plus that for the fast shear wave. With 

these evaluations of D, the measured square law attenuation is in good 
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agreement with the electron viscosity component, discussed in the 

next section, plus the phonon viscosity Ijss. For shear waves there 

is no thermoelastic loss. 

3. Electron Viscosity 

It is well known that acoustic waves are damped principally at 

low temperatures by the presence of free electrons in a metal. The 

action is equivalent to a viscosity as was first pointed out by the 

writer.For a free electron model the viscosity was shown to be 

9xl01]îh2(3TT2N)2/3 

, 2 
(140) T 

e 

where ‘ft is Planck's constant h divided by 2rr, N is the number of 

e.s.u and p is the free electrons per cc, e is the charge 4.8x10 

electrical resistivity in ohm-cms. This value gives a good agree¬ 

ment with experiment for those materials for which the Fermi surface 

approximates a sphere, notably copper, gold, silver, sodium and po¬ 

tassium. If, however, the Fermi surface differs substantially from 

a spherical surface, the amount of damping becomes anisotropic and 

may differ from the free electron value. 

For aluminum, for which data are given by Figs. 28 and 29 the 

measured values agree with (140) provided that we assume 1.43 elec¬ 

trons per atom. This is somewhat different from the measurements 

of Lax51 and Filson52 which would indicate a larger attenuation. The 

measured attenuation is consistent with am electron viscosity deter- 
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mined by the equation 

9 X 1011fi2(4jp¿N)2/3 -8 
- _ ,,.-- --_.z,- .• - . _ 1.64 X 10 
»- * - ,2,, ————— (aluminum) (141) 5e- 

,22 
since N = 6.11 x 10 atoms per cc for aluminum. 

The solid lines of Figs. 28 and 29 marked electron viscosity 

represent the calculated attenuation at 150 MHz for a shear wave 

along the <110> direction with partirai motions along <110> and 

<100> respectively which have the velocities 3.11 x 105 and 3.41 x 

10 cms/sec. The electronic viscosity is calculated from Equation 

(141) by using the measured resistivities of Fig. 32. 

The difference between the measured points- shown by the 

circles- and that due to the electron viscosity has been used 

to evaluate the non-linearity constants for the two waves as dis¬ 

cussed in the preceeding section. The lattice thermal conductive- 

2 
ly over this range was taken as 107/T watts/cm as discussed in 

the previous paper. The Debye temperature 6 is taken as 425°K. 

_2 
Table III shows a calculation of the product (EoK/oCvV ) needed 

to determine the shape and constant D for the phonon viscosity 

term. The agreements with the sum of the electron and phonon 

viscosity attenuation, with the measured values, is quite good. 

22 
For copper N = 8.5x10 atoms per c.c. and the number of 

electrons is taken equal to the number of atoms. Hence the factor 

—8 “8 
1.61x10 takes the place of 1.64x10 for aluminum. The resis¬ 

tivity of copper is also shown by Fig. 31. The agreement with the 

experimental values of Figs. (2 5) and (2 6) is good. 
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E. Mechanisms For The Damping of Dislocations 

When a dislocation moves through a perfect crystal, the only 

interaction possible is with the phonon and electron waves present 

in the crystal. The latter interaction occurs only in electrical 

conductors and is important only at low temperatures. 

The first interaction mechanism proposed was the conversion 

of the energy of the dislocation into heat by means of the thermo- 

53 
elastic effect. This interaction is smaller than the other two 

mechanisms and furthermore does not account for any drag on screw 

dislocations since a screw is surrounded only by a shear strain 

field. Hence it will not be discussed here. 

A larger source of dislocation damping by phonons is the 

scattering of thermal phonons by a moving dislocation first derived 

54 
by Leibfried. This source of dislocation damping takes the form 

aE 
B = 

lOv 
(142) 

where a is the lattice constant, v , the shear velocity in the glide 
s 

plane and E is the thermal energy density. This expression has been 
o 

55 
rederived on a kink basis by Eshelby with a very similar result. On 

4 
account of the low shear velocity - 8.09x10 cms/sec - this source of 

dissipation is particularly large for lead. It is shown plotted on Pig. 

24. The values for copper are considerably less as shown by the curves 

Figs. 27. For aluminum the value is less and has been neglected in com¬ 

parison to the other two sources which are much larger. 
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This other source of phonon dislocation damping, proposed 

by the writer,is damping due to phonon viscosity. This fol¬ 

lows since the dislocation is surrounded by a strain field which 

varies as the dislocation moves through the crystal. The energy 

loss w which is equal to the square of the rate of change of the 

shear strain multiplied by the viscosity and integrated over the 

region surrounding the dislocation, is for a screw dislocation 

w « b^T} u^/Sna ^ (143) 
s o 

where u is the velocity of the dislocation and aQ a cut off 

radius below which the concept of phonons is not valid. This 

energy loss is equated to that caused by the drag coefficient 

B, equal to 
2 2 ,2 

b t u b v 

w = Bu * — ^T~ » Hence B = 0naS2 (144) 

nao ° 

This drag coefficient depends critically on the radius 

a , on which there are two limitations. The first of these 
o 

has to do with the size of the region around the dislocation 

which can exchange energy with the surrounding phonon field. 

It has been suggested that material inside a radius equal to 

the mean free phonon path should be excluded from the calcu- 

22 
lation. It was first shown by Suzuki, Ikushima and Aoki 

that this suggestion only holds when the dislocation is moving 

with the speed of sound. For slower speeds there is more time 

to interchange energy between a suddenly stressed region and 

the phonons, and Suzuki et. al. suggest that the radius should 

be 
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r » Ïu/V 
(145) 

where t is the mean free phonon path, u the velocity of the 

dislocation and v the Debye average sound velocity. Hence 

it is only if u is equal to the sound velocity, that I de¬ 

termines the excluded radius. 

This result can be seen from the fact that in the neigh¬ 

borhood of the dislocation, the strain changes discontinuously 

when the extra plane moves over by the Burger's vector b. To 

determine whether the material at the edge of the dislocation 

should be included in the calculation, the criterion is whether 

the phonon modes can be equilibrated in a t\roe less than the 

time between jumps. If they cannot, then energy is not lost 

to the phonons but is returned to the dislocation. This cri¬ 

terion results in the inequality 

(146) T/t ■ UT/b i£ 1 

where t is the time the strain remains constant. If all the 

material is to be included up to the dislocation edge 

(147) UT “ u^/v £ b 

For all the measurements reported here, this criterion is satis¬ 

fied. A similar criterion holds for the damping by electron vis¬ 

cosity with t replaced by electron-phonon relaxation time. This 

time is equal to 

3.55x10 

Np 

3 
(148) 
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where m is the mass of an electron. For all cases considered here 

Equation (146) is more than satisfied and the radius xs determined 

by the second limitation. 

The other limitation is that the concept of the phonon as an 

acoustic wave transmitted through the medium may breakdown suffi¬ 

ciently close to the dislocation on account of the non-linear terms 

in the elastic energy. An estimate of the relative amounts of energy 

stored in the various terms can be obtained from the expression 

w = 2; cijk£SijSk^ 3: Cijk£mnSijSk£Smn+* 
(149) 

47 
For measured values of third order moduli of metals, the second 

order terms have energies about 50 percent of the first order terms 

for strains of about 20 percent. This corresponds to a value of 

3^5:(3/4 b) for a screw dislocation. Using this value of aQ, the drag 

coefficient is 

B = 0.0706 T (150) 

56a 
Similar calculations for an edge dislocation show that the 

drag coefficient for this case is given by 

1 
72tt 

3 . b\ . 1 
B = 7 ( 0 + 7 9tt ( 2 

2 2 
b_j±_L 

a \ 2 2* 
8rr (l-o ) aQ 

2 2 
h (l-o) aQ 

) (151) 

where u is the shear modulus (^1-^2^44^^ H is the bullC modulus 

(cll+2ci2)/3, 0 is Poisson's ratio, and x is a compressional viscosity 

given by 

^ “ 3 ^s = X 
(152) 

Although * is much larger than T1 for lead, the multiplying constants 

reduce the effect so that the indicated drag coefficient for edge 
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where m is the mass of an electron. For all cases considered here 

Equation (146) is more than satisfied and the radius is determined 

by the second limitation. 

The other limitation is that the concept of the phonon as an 

acoustic wave transmitted through the medium may breakdown suffi¬ 

ciently close to the dislocation on account of the non-linear terms 

in the elastic energy. An estimate of the relative amounts of energy 

stored in the various terms can be obtained from the expression 

w * 2) cijkl^i3' Cijklmn^ij®k£^mn+ 
(149) 

47 
For measured values of third order moduli of metals, the second 

order terms have energies about 50 percent of the first order terms 

for strains of about 20 percent. This corresponds to a value of 

a =(3/4 b) for a screw dislocation. Using this value of a , the drag 

coefficient is 

B * 0.0706 T (150) 

Similar calculations for an edge dislocation^3 show that the 

drag coefficient for this case is given by 

b2T| 

< 

8tt(1-o) a 
2 2* + 72tt ( 2 

,2 2 

* 2 2 
h (l-o) ao 

> (151) 

where u is the shear modulus (cii"ci2+c44^3' K the bullc modulus 

^11+2°^)/3, o is Poisson's ratio, and X is a compressional viscosity 

given by 2 

- 3 * U52) 

Although " is much larger than 1\ for lead, the multiplying constants 
* s 

reduce the effect so that the indicated drag coefficient for edge 
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dislocetions is in the order of twice that for screw dislocations. 

If half the number of dislocations are tcrew and half edge the re¬ 

sulting internal friction is 

q"1= — r -i- + -i-i » ¿(1 5) . a — (153) 
Q 2 uu 1 B B.J 2' * ^ uuB 4 uuB ' 7 

s X s s 

This results in a combined drag modulus which is about (4/3)rds of 

the screw drag constant. Prom the measured square law attenuation 

for the slow shear mode - 1.5 db/cm at 150 MHz, - we find 

n s 1,9x10 ^poise. Hence B =0.0706^ *1.3x10 ^ ^^-2(154) 
s s s cm* s s 

-4 o , 
Fig. 24 shows a plot of B assuming a value of 1.5x10 at 300 K and 

-2 
a temperature variation similar to (E K/pC V )of Table II. For alu- 

o V 

minum the average non-linear value of D = 8.15 (from Equation 139) 

»2 
is used with the values of (E K/oC V ) listed in Table III. The re- 

o V 

suiting dislocation drag term is shown on Fig. 30 by the top dashed 

curve. The compressions! viscosity term x is assumed small enough 

to neglect. For copper the curve shown by Fig. 27 results from the 

-2 
values of E K/pC V shown by Table IV and the non-linearity constant 

o V 

D = 3.0. 

The final source considered is the damping of d ilocations 

by electron viscosity. This source is entirely similar to damp¬ 

ing by phonon viscosity and in fact the same formulas hold with 

the exception that x is zero for electron damping. The non-line¬ 

arity radius, however, is different since it depends on the 



non-linearity of the Fermi surface rather than for the elastic 

57 
constants. This damping is discussed in two former papers 

and arguments are given for assuming that aQ is in the order 

of 10 7 cm. With this value the electron drag coefficient will 

be equal to . 
bt. 

B 
e 

12 2 
3.96 X 10 bT (155) 

Bna 

Actual determinations for the ratio of the non-linearity radii 

for phonons and electrons can be obtained for copper and alumi¬ 

num by comparing the values of n to Ti at the temperature for 
P ® 

which they are equal. For this case 

oe 
(156) 

op p 

For copper this ratio appears to be about 3.5 while for aluminum 

it is 3.4. An average value 5.0 is close to the ratio of (3/4 b) 

.7 
to 10 cm. The dashed curves of Figs. 27 and 30 are plotted on 

the assumption that a^ * (3/4)b while aQe is determined by the 

above ratios. The agreement with experiment is within experimental 

error. Electron damping is shown for lead by Fig. 24, but the 

measurements are not carried out to a low enough temperature to 

make this a factor. 

F. High Amplitude Region 

As the strain becomes higher, a value is reached above which 

the internal friction and the modulus change increase as a func- 
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tion of the applied strain. The strain to produce the non-linear 

effect depends on the purity of the sample, as shown in Fig. 11, 

and for a given purity content it also depends markedly on the 

temperature. Fig. 12. For strains about 30 to 50 times that re¬ 

quired to initiate the second region, a third region occurs for 

which both the internal friction and the modulus defect increase 

very rapidly with strain. This region is associated with fatigue 

in metals which can occur throughout this region for a sufficient¬ 

ly large number of cycles. 

According to the original mechanisms shown by Fig. 17, the 

second region is associated with the breakaway of dislocations 

fron’ their pinring points whereas the third region is associated 

with the generation of new dislocation loops by the Frank-Read 

sources shown by Fig. 17F and G. The only theoretical derivation 

is the one given for the second source. Fig. 17D and E, which is 

ascribed to the breakaway of dislocations from their pinning points 

and the subsequent repinning later in the cycle. This cyclic vari¬ 

ation generates a hysteresis loop which produces a loss proportional 

to the frequency. For a single loop length, this causes a sudden in¬ 

crease in loss followed by a decrease in the internal friction at 

higher strains. This follows since the width of the hysteresis loop 

is constant so that the energy loss is proportional to the applied 

stress whereas the energy stored is proportional to the square of 
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the applied stress. When account is taken of an exponential dis¬ 

tribution of loop lengths, the product of the internal friction 

times tie shearing strain is given by 

Qh’1s13 " C1C2 6 
"C2/S13 (157) 

where 

C1 « R (-) C2 - 4YJ^ " s13 

the average shear strain required to produce breakaway. Yq is the 

value of Young's modulus, eQ is Cottrell's misfit parameter (r^-rj/r 

where ^ is the diameter of the pinning atom and r the diameter of 

solvent atom. Since 4R is usually in the order of unity, ^/Yq is 

in the order of one-third and «Q order of 0.1 to 0.2, the 

shearing stress to cause breakaway is in the order of 1/30 to 1/15 

of b/i . Since the strain to produce an actuation of the Frank- 
A 

Read sources is in the order of b/Rl^, then the third region of in¬ 

ternal friction occurs for strains in the order of 30 to 50 times 

that for the breakaway region. 

Equation (157) has been compared with experiment in several 

review papers58'59 with fair agreement. The tests consist in 

plotting log QH’1S13 against 1/S13 since a straight line should 

result. If the strain is limited to a 10 to 1 region, straight 

lines are usually obtained with increasing slopes for increasing 

concentrations of impurities. As the temperature increases, the 
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slope decreases. A simplified treatment for the effect of tempera¬ 

ture has been given by Friedel^ who finds that the activation energy 

for breakaway from impurity atoms in the presence of a finite temper¬ 

ature is given by 

vb 

= <TirTi3 )bdx ♦ kT ln-IT 
M iJo 20^ \Q 

(158) 

where d « b is the width of the dislocation, T13 is the applied shear¬ 

ing stress, _ a possible Peierl's stress, v is the atomic frequency, 

v is the frequency of the applied stress X the average length between 
o 

pinning points and Q ^ the internal friction. Binding energies of a 

few tenths of an electron volt are obtained in this way for various 

metals. 

Two other effects not considered in the original theory have re¬ 

cently been discussed. One involves the kink model for which calcula¬ 

tions indicate"^ that non-linearities can appear at lower strain 

values than are required to produce breakaway. This might lower the 

stress level for non-linearity effects to appear. The other and more 

important effect is the diffusion of pinning points along the dislo¬ 

cation under the action of an ultrasonic vibration. The origin of 

this effect61 is that the vibration of long dislocation loops produce 

a force on the pinning point, directed away from the loop, which is 

larger than the force exerted in the opposite direction by a smaller 

loop. The result is that pinning points tend to diffuse along the 
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dislocation in a direction to make large loops larger and small 

loops smaller. A criterion for this effect to be of importance 

is that 

E 

3 

8 
2 kT (159) 

-5 
For example for loop lengths of 4x10 cms found for alloyed cop¬ 

per, strains in the order of 3x10 ^ could produce some change. 

For strains in the first non-linear region, a large effect should 

be produced. At the same time the vibration can lower the dif¬ 

fusion constant for the motion of pinning points along the dis- 

61 
location by several orders of magnitude. This effect may well 

be the origin of a time dependent increase in internal friction 

observed in the breakaway region and may contribute to acoustic 

62 
softening of refractive material observed by Langenecker and 

associates. Further experimental studies are desirable for this 

region. 

The final phase has been studied to some extent by B. T. 

Lazan63 and the writer.64 This phase starts when dislocation 

loops can be generated by sources such as Frank-Read disloca¬ 

tion mills or by cross slips. The approximate strain level 

is given by 

S (160) 

where R is an orientation factor and an average network length. 

Examples for two purities of aluminum are shown by Fig. 15. With 
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—8 
orientation factors of 0.25 and with b«2.86x10 cms, the loop 

-2 -4 
length L become 3x10 , and 1.0x10 cms for the three materials. 

N 

These represent the longest loops present in the materials. 

During the final phase the internal friction and modulus de¬ 

fect change with time and definate values are not possible. Due 

to the large amount of plastic strain produced the network lengths 

become shorter on account of the entanglement of many loops and 

the material becomes harder. Many vacancies can be generated by 

cross dislocation cutting in the body of the material and in slip 

bands. These can be the origin of fatigue cracks which can occur 

throughout this high amplitude region. 

The titanium and titanium alloy data of Fig. 16, show that the 

dislocations are very closely pinned and do not exhibit the first 

two dislocation phases of the aluminum. At strains in the order of 

1 to 3x10 3, breakaway occurs from the pinning points and the dis¬ 

locations are free to move. According to W. A. Wood, who discovered 

this effect,65 creep occurs indefinitely for stresses of this order. 
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Table I 

Data for determining the drag coefficient B and the loop 
length l as a function of the temperature. 

Temp°K Q 
£m ln 

MHz/sec 

r
-
H
 

I 

a 
o
 

4 
BxlO NxlO”7 l 

o 

300° 

200° 

78° 

60° 

4.2xl05 

5.05X105 

12.6xl05 

14.2X105 

50 

8 

12 

17 

l.SxlO-3 

1.3xl0"3 

2.4xl0"3 

2.15xl0"3 

3.7 

3.1 

1.24 

1.1 

2.4 

2.4 

2.4 

2.4 

5.4xlO_S 

5 xl0"S 

6.2xl0”5 

5.7xl0“S 

(Q are limiting values for high frequencies. B in units 
of dyne sec./cm2; /0 in cms. 
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Table II 

Table listing quantities necessary to calculate 

the phonon viscosity for lead 

o 
Temp K E /pC in °K 

O V K(watts/cm2) 

E K , 
o . «3 

7c"F x 10 
V 

300 

200 

150 

100 

78 

60 

265 

166 

116.5 

69.8 

49.5 

34.1 

0.0067 

0.01 

0.0133 

0.02 

0.0256 

0.0333 

1.95 

1.82 

1.7 

1.54 

1.39 

1.25 
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Table III 

Table listing quantities necessary to calculate the 
phonon viscosity and phonon damping of aluminum 

0 
Temp K E /oC in °K 

O V *Si(watts/cm^) 

E K , 
BxlO4 

10 

300 

200 

150 

100 

77 

66 

187 

104 

66.5 

34.4 

23.2 

18.4 

0.356 

0.535 

0.715 

1.07 

1.39 

1.62 

5.44 

4.55 

3.88 

3.01 

2.63 

2.43 

31.5 

26.2 

22.2 

17.3 

15.2 

14.0 

e = 425°Kj V = 3.5xl05; B * . 0706D (E^/oC^j D = 8.15 
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Table IV 

Table listing quantities necessary to calculate 
the phonon viscosity and phonon damping of copper. 

o 
Temp K 

300 

200 

150 

100 

77 

58 

E Ac in K 
o V 

200 

114.8 

74.5 

39.6 

26.2 

17.1 

(watts/cm^) 

0.125 

0.187 

0.25 

0.375 

0.486 

0.64 

E K 
—S-y X 103 
PC V2 

3.7 

3.17 

2.74 

2.2 

1.88 

1.64 

BxlO 

7.85 

6.7 

5.8 

4.65 

3.98 

3.48 

e - 343°K; V = 2.6x10; B 

.2 E K , 

-7 (“TTTuT) j 0=3.0; a = — b 
Bna 2 'pc ' o 4 

o V 

-92 
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Fig. 1. Method for measuring modulus change and internal 

friction at low frequencies. 
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Fig. 2. Method for superposing static stresses. 
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Pig. 9. Calibration curv» for transducer and stub transformer. 
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rig. 10. Calibration curvea for exponential horn ayaten. 
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ture for a 99.995% pure aluminum single crystal. 
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Frequency in MHz 

Fig. 14. Measured attenuation for longitudinal wave along <100> 
and slow .shear wave along <110> direction. Dashed curves 
show breakdown into square law and dislocation loss. A 

comparison is given of dislocation loss along <100> meas¬ 
ured by Granato and Stern. Assymptotic values indicated 
by dashed lines on the right. 
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20 30 
FREQUENCY IN 

40 50 60 7080 100 
megacyles/sec. 

Fig. ¿1. 
Attenuation of a longitudinal and two shear waves transmitted 

along a <110> axis of a pure lead single crystal as a func¬ 
tion of the frequency. Points show measured values. Dashed 
lines show separation into a frequency square law value and 

a dislocation component. 
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Fig. ¿2. Internal friction of three inodes for a lead single crystal. 
Dashed lines show assymptotic values as determined by the 
standard curve of Fig. 19. 
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Square Law Attenuation in db/cm at 150 MHz 
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Fig. 28. Square law attenuation for slow shear wave (v = 3.11x10 
cma/sec) in single crystal aluminum. Dashed curves show 
electronic and phonon damping terms. D is evaluated as 

e .6. 
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Fia 28 Square law attenuation for slow shear wave (v - 3.UxlO 
F 9’ ™./.ec) in single cry.tal .lu»in»,. “*f 

electronic and phonon damping terms. D rs evaluated 

8.6. 
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Fig. 32. Resistivity of copper and aluminum as a function 

of the temperature. 
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