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ABSTRACT

A brief survey of diagnostic programming for digital computers. The purposes

and organization of the program are covered as well as many of the problems attendant

to their preparation. Various techniques that have been used to overcome these are

discussed with emphasis on those that are practical (at least from the point of view of

effort required) and those that have seen wide use. The primary purpose of this paper is

to fully define the nature of the problem and the special considerations involved. Most

of the discussion is fully applicable to both commercial and military equipment.
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PREFACE

The various attitudes toward diagnostic programs range from "the answer to the

maintenance problem" all the way to "they are not worth the preparation effort". A

large amount of this divergence of opinion appears to have been caused by the absence of

a clear-cut framework on which to base common discussion, or an accurate and complete

description of the nature of the problem and its practical considerations. Satisfying this

need is the purpose of this paper.

Much of the material presented here is based on an extensive literature search [l]*

augmented by personal discussion and correspondence with workers in the field. Many of

the points advanced by these sources have been corroborated by experimental work done

by the authors. This experimental work also resulted in the development of several orig-

inal concepts which are also presented here.

When this study was originally conceived it was decided that it should definitely be

oriented toward practical solutions. The scope of the project was to examine the basic

principles and philosophies of diagnostic programs, the methods of perparing such pro-

grams, and the possibility of using automatic programming aids to assist in their prepa-

ration. To meet the requirement for "practical solutions" a test vehicle was needed.

O Since it was anticipated that several different techniques would be examined, a small

computer was desired. Most of the test vehicle requirements were satisfied by the

Fabri-Tek BI-TRAN SIX, a small desk-top unit specially designed for use in teaching

computer concepts. The availability of an actual machine possessing most of the

standard features while still being small was of inestimable value in the project. Although

the test vehicle was small, we have been unable to discern any characteristics that detract

from the general applicability of our findings.

The results of this project are given in three other reports in addition to this one:

'biagnostic Programming for Digital Computers: A Bibliography"

"Documentation Techniques for Digital Computers"

"Documentation of the Fabri-Tek BI-TRAN SIX" (In preparation)

As with most papers of this type, we are afraid we have asked more questions than

we have answered, but that is acceptable since one of our purposes was to identify the

questions that need answers.

*Numbers in brackets refer to items in the list of references at the end of this paper.
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I. INTRODUCTION

A. WHAT IS A DIAGNOSTIC PROGRAM?

A diagnostic program includes the features found in what are commonly called

check-out routines and fault-location routines. The function of a check-out routine is

merely to verify the correct operation of the machine; and, in fact, some of them give no

indication of the general nature or location of a fault if one is detected. The purpose of

the fault-location routine is exactly as its name indicates.

The distinction between 'diagnostic program" and "check-out routines" is primarily

in their basic philosophy and purpose rather than in their organization and operation.

The arguments usually arise when the factor of resolution in the fault-location process is

considered. A rna gnetic tape routine that fails with the gross indication that channel three

failed has certainly accomplished something in the area of fault-location although the

diagnostic programmer will argue that the information is of little value. The "pure" check-

out routine would have to have only two outcomes or indications - "0. K. " or "Error".

* Any additional information such as which part of the check-out routine detected the error

does have some fault-location value (and thus diagnostic value). A more workable dis-

tinction can be derived from figure 1.

Check-out routines are thos e programs whose primary purpose

is the detection of faults. If there are pre-planned procedures or steps

to aid in fault location specified for each fault detected, then the entire

routine is classed as a diagnostic program.

1. Organization

The general organization of a complete diagnostic program including the manual

procedures necessary at the beginning is given in figure 1. The series of test routines

shown down the center of the page is of course the desired route for the program to follow.

By themselves these test routines constitute what are normally referred to as check-out

routines. When embedded in a complete diagnostic program, they are given the name "go

path" by some.*

*eg. Decision Systems Incorporated.

0
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2. Purposes

A good diagnostic program serves several purposes.

(1) It can be used to verify the "fault-free condition" of the system.

(2) If a failure is detected during routine check-out or during production operations,

the diagnostic can be used to identify the replaceable element that contains the

failure.

(3) After the defective element has been replaced, the diagnostic can be used to

verify that the machine is now fault-free.

The expression "fault-free condition" must be used with care in describing the

operation of a diagnostic program. The quality of the program is the key factor, for if

, the machine successfully passes all the tests in the diagnostic, then actually all that can

be said is "it performed these tests correctly - not "it is completely fault-free".

Since the diagnostic program serves all the purposes listed above, there is flexi-

bility as to when it is used. To save the expense of preparing separate 'check-out" routines,

the diagnostic program can be used on a regular basis for machine check-out such as

during morning turn-on. Another technique of use recently proposed was in a time-sharing

system. The diagnostic would be run on a continuously repetitive basis whenever there

were no other demands on the machine [2]. Both of these uses would require some Modi-

fication in the diagnostic program, primarily in the initial manual procedures. Finally,

the diagnostic is used in its complete form whenever a fault is detected or suspected.

3. How They Work in General

As was shown in figure 1, a diagnostic program normally performs a series of tests

to check-out various sections of hardware, and based upon the results of those tests

either continues in the check-out mode or branches to a fault location routine if an error

has been detected, finally arriving at a coded halt which, in association with a dictionary

or similar form of documentation, indicates a replaceable unit in which a faulty element

is located.

In preparing such a program it is essential to make assumptions as to the number

and types of faults which may occur in a given machine. The program itself then con-

sists of a series of first manual and next programmed tests from whose results inferences

are drawn as to the conditions of various hardware elements. The tests which are nec-

essary can be identified only after a thorough study of the logical organization of the

machine and the details of the hardware implementations of that logic. A complete diag-

nostic program must execute tests which verify that every signal functions properly - it

* is either active or inactive as specified by the design logic.
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The general method followed during the execution of the check-out routine is that

only previously checked-out portions are used to examine the operation of a new section.

This means that when a fault is detected it is known to be somewhere in the "new section"

and the program transfers to a fault-location routine to resolve its location. As will be

discussed in the next section, it is usually assumed that only a single fault exists in the

machine so it is then possible to rely on the proper operation of all of the machine except

this "new section" to aid in the fault location procedures.

4. Assumptions Normally Made

The most generally accepted assumptions pertain to the state of the machine and the

number of faults present during the execution of the different phases of the diagnostic as

shown in figure 1. During the manual check-out routines there are normally no assump-

tions made. The purpose of these routines is to validate the assumption made during the

automatic check-out routines that the machine is "breathing", i.e., the input, the memory,

and the control unit are operative at least to the degree that a program can be placed in

memory and the simplest instruction (perhaps a "do-nothing") can be executed without

causing the machine to "hang-up

After a fault has been detected and fault location is initiated, the basic assumption

made in all programs the authors have seen is that there is only one fault or component

failure. This assumption is critical to the basic philosophy of the operation of all extant

diagnostic programs. It is possible for the diagnostics to function properly if more than

one fault is present provided the second one does not cause erroneous results during the

fault-location of the first. In such a situation, the coded halt would specify the first fault,

and after it was repaired the diagnostic would then proceed past the first halt and stop at

the coded halt for the second fault. It is not possible to generalize on the conditions nec-

essary for this to happen - each pair of faults has to be analyzed separately. There has

been some work done on the problem of multiple faults by ARIES, Inc., using a simulator,

but no results have yet been published. [3].

The single fault that is present is also assumed to be a solid one; that is, not an

intermittent. Of course, if the fault is intermittent, there is always the probability that

it will not be present when the tests are run, or it might be present during the check-out

stage which would cause a transfer to the fault-location routine but at that time there may

be "no" fault to locate. The only approach to the problem of intermittent faults appears to

be some form of repetitive testing, but the complications posed by all of the probabilities

involved are obvious. ARIES, Inc., is also doing some sork in this area [3].

4



An area in which a great number of different assumptions have been made is in the

nature of the fault or component failures. The assumptions discussed above appear to be

quite reasonable and do not detract very much from the diagnostic program but those made

in regard to the nature of the possible faults greatly limit its value and usefulness - as

well as have a great effect on the effort required to produce it. Failure data and the prob-

abilities involved certainly justify the assumption that diodes rarely short-out as opposed

"to becoming open. It is usually much more difficult to "diagnose" a shorted diode and for

this reason they are often just "assumed away". However, the real power of a diagnostic

lies in its ability to locate such failures which would otherwise be left to the operator or

maintenance man to find. Often, it is possible to obtain a good appraisal of the value or

quality of the diagnostic by how many and which types of failures are "assumed away".

A final assumption that is frequently made, although it is certainly not as restrictive

as those just mentioned, is that the machine has been assembled properly in accordance

with the documentation on which the diagnostic was based. The diagnostic may be able to

detect and locate wiring errors on the back panel or other assembly errors, but it is

usually not written with this use in mind and may give erroneous indications in such a

situation. Even if the diagnostic results in a "fault-free" output, the machine may still

* contain assembly errors.

5. Signals are Tested - Not the Elements Themselves

All of this discussion about checking-out or verifying the failure condition of the

machine and locating the failure might give the impression that the actual components or

at least the logic elements are tested in some manner akin to using a voltmeter to check

a voltage, an ohmmeter to check a resistor or diode, etc. This is certainly not done if

for no other reason than that the time required would be prohibitive. What is done is that

the ability of a computer to compare the value of a signal obtained during a test run against

a control value permits inferences to be drawn -as to the condition of the hardware that

produced the signal. During check-out, the control value would be that obtained with a

machine known to be defect free. During the execution of fault-location routines the

control values may be those associated with the different failures possible. The import-

ant point is that the signals in the computer are checked-not the hardware itself. Since

this is the situation it is usually not possible to determine whether the failure occurred in

signal generation, signal transmission, or signal reception without making manual tests

with test instruments or using substitutional procedures.

5



6. Diagnostic Program vs Redundancy Checking

The entire concept of using a diagnostic program to both check-out the machine and

then, if necessary, locate the faults present should be contrasted with the technique of

using two systems to obtain fault detection by redundancy. It may be that almost the

entire system is duplicated as in some of the SAGE configurations, or just certain critical

portions of it are redundant. In this situation the duplicate equipments can solve the same

problem and then compare the results. This may be done on the macro scale, i.e. only

for the overall result, on the micro scale, i. e. at each logic element output, or at some

intermediate level. The additional expense of such a system is usually not warranted

solely to replace the diagnostic procedure. If the two systems do not agree at some point,

a fault has been detected, but its location is not known. In fact, without some other test

means, it is not even possible to say which system contains the fault; and, unless the

comparisons are made close to the ultimate micro level, little is known as to which part

of the system contains the fault. Although redundant systems can not be justified to com-

pletely replace the need met by a good diagnostic program, they do provide the capability

of rapid restoration of service.

B. ROLE OF DIAGNOSTICS IN MAINTENANCE PLAN

1. Distribution of Maintenance Times

In a normal commercial environment the distribution of service call durations will

be of the form shown in figure 2a [4]. This figure does not reflect the use of any main-

tenance aids such as a diagnostic program. The fixed increment of time at the origin of

the curve is attributed to the time required for the maintenance man to arrive at the

computer site, and it is this increment of time that often forms the major portion of the

"down time" of the machine.

In any situation the goals desired of a maintenance system are:

(1) Drastically reduce the maximum length of down time.

(2) Substantially reduce the median value of down time.

(3) As a result, the mean down time will also be reduced.

It should definitely be emphasized that these efforts must be made within a group of

constraints:

(1) Cost.

(2) Availability of maintenance personnel and their abilities.

(3) Availability of replacement equipment.

6
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2. Methods of Decreasing Down-Time

a. Train Operator as Maintenance Man

The first logical step would be to train the operators in the basics of maintenance,

but the limitations on time and funds would limit this training, and the operator would be

able to correct only the simplest defects. (This still assumes no diagnostic program

available. ) The distribution of times necessary to restore service would now be some-

thing like that shown in figure b. The operator is able to commence his maintenance

efforts immediately, but his talents are quite limited, and the long horizontal step in

curve is caused by the travel time required by the maintenance man.

b. Use of Maintenance Float

One technique used to drastically reduce the length of down time is the provision for

a maintenance float for portable or mobile installations. A maintenance float is differen-

tiated from maintenance parts in that the "float" is a complete assemblage that is used to

replace the defective system or sub-system with no attempt being made at repair. If it

were economically feasible to do so, the availability of 100% maintenance float at each

operating position would certainly improve the down time picture. This procedure might

even be able to produce a distribution such as shown in figure c, but a complete evaluation

of this approach to the problem would have to consider the following:

(1) Cost of 100% duplication of equipment.

(2) Mean time until failure of the float item both in use and in standby.

(3) The time and costs involved in replacing float items put into use.

The cost picture can be greatly improved by retaining the float equipment at the

maintenance shop, but then the time performance will suffer as shown in figure d, be-

cause of travel times involved.

c. Diagnostic Programs

A primary effect of making available a good diagnostic program to the operator of

the computer will be to greatly increase the percentage of troubles that he is able to remedy.

If the failure is one that the operator is not able to locate with his diagnostic program, then

it will probably require a large amount of time by the maintenance man, so the diagnostic

program should be backed up with a maintenance float at the maintenance shop level to

obtain a down time distribution such as shown in figure e. Some of the aspects of this

procedure that will have to be examined are:

(1) Is it possible to develop a diagnostic program that will locate a substantial

percentage of the failures?

8



(2) Cost of the preparation of the diagnostic program.

(3) Additional training required for the operator in order to be able to use the

diagnostics.

(4) Requirements for special test equipment and maintenance items at the

operating location.

(5) Provisions for repair or replacement of maintenance items put into service.

(6) Requirements for float equipment at maintenance shop level.

(7) Quantity, disposition, and staffing of maintenance shops.

0
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II. DIAGNOSTIC PROGRAM PREPARATION

A. GENERAL CONSIDERATIONS

The approach to be taken in analyzing the computer and preparing its diagnostic

programs should be selected only after considering many factors, some of which are

given below:

(1) What is the basic organization of the machine?

(2) What type of logic is used (AND-OR-NOT, NAND, etc.)?

(3) Is it synchronous or asynchronous?

(4) How is the logic implemented?

(5) What are the mechanical features, size, number of elements, etc., of the

replaceable units?

(6) What is the availability of spare units for use in substitutional testing, etc?

(7) What are the resolution requirements?

(8) What is the availability of test equipment either built-in or external?

(9) Is there any special hardware that will assist in the diagnostic process? (e. g.

a comparator)

(10) What are the programming capabilities available (instruction list, stored-logic,

etc. ) ?

(11) How much manual intervention is acceptable for both start-up and fault-

location?

(12) Are there restrictions on the permissable length of the diagnostic (memory

limitations, input problem, etc)?

It has been observed that an experienced team will greatly change the approach followed

for two different computers because of variations in the factors listed above.

Of all of these considerations, the one that appears to have the greatest effect on the

general philosophy of the diagnostic program is the size of the replaceable unit. The

Honeywell ALERT is a small airborne computer which uses a rather simple diagnostic to

tell which unit is bad (power supply, central processor, input/output, or memory). The

decision here was that complete self-diagnosis was not practical [5]. The effect of inte-

grated circuits will also be quite great. One example is the Litton L-304 which has 400

integrated circuits per plug-in board [5].

Of course, the ultimate goal of all of the various techniques employed is to check

all of the machine. The differences lie in what is used as the starting point and the

method used to select the next area to be tested. All of the methods described below are

10



* not necessarily practical although they all appear to work in theory. References are

given to several projects using some of the systems.

B. ORDER OF TESTING

As pointed out earlier, the first step in the diagnostic procedure is to verify the

assumptions made for the automatic check-out routines that the computer is "breathing",

i.e., that a program can be placed into memory and that the control unit can operate

through a complete instruction cycle. This condition is essential before the program

continues.

If there are not any tight restrictions on manual operations, one technique that can

be used is a step by step manual check using the control console or maintenance panel.

This would allow a check on the controls as well as the loading of the program, the timing

generator, and the cycling.

If manual procedures are undesirable, it is also possible to make a gross check

using an automatic or programmed check. The problem here is that if the automatic

check fails, then it will usually be necessary to now perform the extensive manual pro-

cedures to locate the fault, whereas when the manual check procedures are used the exact

* point of failure gives a large amount of fault location information.

After the breathing machine has been verified it is necessary to move on through the

check-out routines in some systematic manner. There has been some work done on the

selection of test sequences to locate failures in complex equipment [6]. These works,

which make use of the probability of failure, usually apply to situations in which it is pos-

sible to apply a known stimulus to a component and observe the results. Because the com-

ponents or assemblies to be tested in this situation are embedded within the computer, it

is not possible to be sure that the correct stimulus is applied or that the response obtained

is correctly transmitted to the sensing device unless certain other tests are made first.

Primarily for this reason, it is usually not possible to make use of such studies; although,

if the failure probabilities were known it should be possible to reduce the average test

time required.

Some more useful methods for determining the order of testing are given below.

C. CHECKOUT PHILOSOPHY

1. Command Check-Out

Probably the oldest procedure employed to determine the test sequence was a series

of tests to verify the correct operation of each command. Here consideration is not given

11



0
to the logic circuits involved, but merely to the output results obtained with given data

inputs. Of course, the only way to have the computer do anything is to give it commands

to execute, but here the emphasis is on checking at the command level and the order of

testing is usually by functional groups of commands -- arithmetic, input, logic and con-

trol, output, etc. In these tests the normal technique is to repeat each test several times

which is of no value with a solid fault and of questionable value when it is an intermittent.

The test itself consists of executing an operation such as ADD and then comparing the re-

sults obtained with the known answer entered as part of the input data. Also used is a test

that generates random numbers on operands and then checks the results obtained by an in-

verse operation - ADD and SUBTRACT.

One real weakness in this approach is the quantity of testing required to make a

thorough check. Consider for example the test of a parallel adder with a word size of

only 10 bits. Since the analysis is confined to the command level, it is necessary to use

all 210 or 1, 024 bit patterns as operands since it is possible that just one of these will cause

the error present to appear. The use of random operands will not insure getting all pos-

sible patterns, and for large word sizes the problem becomes acute. Command oriented

tests using exhaustive testing have not been seen.

Another weakness of this approach is the small amount of information obtained about

the location of a fault after an error has been detected since each command usually makes

use of a large proportion of the machine. One refinement proposed was a use of the com-

mand check-outs coupled with a dictionary of fault effects as follows [7 ]:

(1) Run all tests noting instructions that failed and contents of registers

after failure.

(2) Find the possible fault(s) that could effect all of the various instructions

that failed.

(3) Check the pattern of register contents to determine which fault it was.

It is usually necessary to use a command level check-out for the "breathing" ma-

chine tests, but these checks only verify that the command is operative enough to produce

the "breathing" machine -- i. e., no gross malfunctions. There may still be undetected

faults in the circuits associated with these commands that passed the limited tests given.

Some combinations of commands that have beenused for this start-up purpose are:

1
12



RCA MICRORAC [81 MOBIDIC [7] 465-L [9]

Clear and Add Clear and Add Clear and Add

Transfer Unconditionally Subtract Exclusive OR

Read Alphanumeric Store Store

Write Octal Transfer on Negative Transfer on Plus

Write Plphanumeric Halt

Sense and Set

Sense and Reset

2. Micro-Instruction or Subcommand Check-Out

The next level below the command or instruction level is the micro-instruction level.

A micro-instruction causes the computer to execute a unique operation such as "Transfer

Memory Buffer Register to Exchange Register" and the diagnostic program is based on

the general premise that each command makes use of a unique set of micro-instructions.

A portion of the chart giving the micro-instructions that constitute each command of the

BI-TRAN SIX is given in figure 3. (The numbers in the chart give the timing pulse on

which the micro-instruction is executed, and the parentheses indicate that the execution

S is dependent on other conditions.) It can be seen that most commands use several dif-

ferent micro-instructions, the only exception being Complement Accumulator Sign (excluding

routine housekeeping functions).

Since the hardware involved in generating and executing a micro-instruction is a

smaller unit than that associated with the complete command the size of the "new area"

under check-out is reduced. It should be noted that even at this level the hardware as-

sociated with each micro-instruction is not necessarily unique just as with the complete

commands. Of course, the smaller size of the check-out units provides more information

at the start of the fault-location process.

The number of micro-instructions in the machine is usually quite reasonable since

a versatile command repertoire can be developed with just a few. The very small size

BI-TRAN SIX has 62 micro-instructions while the stored Program Element of the Air

Force 465- L complex had only 65 not counting in the latter case, those that caused gross

errors and a non-breathing machine [9].

The discussion in this paper would tend to make it appear that the only order in

which to check-out the commands would be from the least complex (considering the number

of micro-instructions) to the most. Although this does appear to be the most useful method,

S there is nothing to prevent using a different order if the situation warrants.

13



1E 81 Hg g -.- 8 HI

'A '0ýi - 8 '0 , 9F1  i8 - 1 0

HOC H

_ ~ 1 7 1KHH H

IH ~~ ___ __ I ~0

14~~



0
3. Logic Term Check-Out

The next step below the micro-instructions would be the logic terms -- those tern

used in the logic equations defining the operation of the machine. Although the micro-

instructions usually are logic terms appearing as both operands and outputs, the total

list of logic terms is much longer and more detailed. Again using the very small BI-TR

SIX as an example, there are 24 commands, 62 micro-instructions, and about 750 logic

elements exclusive of memory drivers, sense amplifiers, etc. The test procedure here

is based on the simple premise that if all of the logic terms function properly, then the

machine is fault-free.

Two problems face the programmer using this approach. The first of these is tha

a logic equation is usually a combination of both AND and OR operations and therefore,

quires more than one level of logic element hardware to implement it. The other proble

is that the logic equation itself is easily used to "look back" to determine what input terr

are used to develope the term under test, but it is quite difficult to "look forward" to de

termine how a failure in the term under test will effect other logic terms. Both the

relation-to-hardware problem and the look-forward problem can be alleviated by special

* documentation techniques described elsewhere [ 10].

4. Hardware Component Check-Out

The approach employed to produce some of the best diagnostics that the authors ha

seen is based on the lowest level possible - each hardware component. The first step uE

this technique is to determine what tests will be sufficient to verify the proper operation

of the srmallest hardware assemblage that can be examined, since every element is not

diagnosible.

The authors define a "diagnosible signal " as one which is used as an input to two o

more elements which belong to at least two different diagnosible trees. A'hiagnosible

tree" is then a collection of interconnected logic elements as shown in figure 4, whose

final output is a diagnosible signal and each branch of which terminates when it reaches

element for which all inputs are diagnosible signals. Without considering in detail the

nature of the logic elements in the tree, it is possible with fairly simple tests to determJ

that some element within the tree is faulty, assuming that only single component failures

exist. Such tests would consist of applying "1known" diagnosible signals to the inputs of

each branch and comparing the output diagnosible signal with the "correct" value. By de

finition, these diagnosible signals may be independently verified.

1
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Figure 4: A "Diagnosible Tree"
(DS indicates Diagnosible Signals)

Resolution can be improved if we further define a "diagnosible assembly" as a subset

of elements within a diagnosible tree, the output of which is either a diagnosible signal or

an OR gate with two or more inputs (in the latter case the input section of the OR gate is

included) and each branch of which is terminated by an element whose inputs are all diag-

nosible signals, or an OR gate with two or more inputs (OR gate output section included).

An example of a diagnosible tree subdivided into diagnosible assemblies is shown in figure

5. Since the function performed by a logic gate is dependent upon whether positive or

negative logic is used, it may be possible to subdivide the same diagnosible tree into two

different diagnosible assemblies and hence gain a further improvement in resolution by

treating the tree as both negative and positive logic elements separately.

The concepts advanced here may not be essential to the functions of a pure check-out

routine, but they are the limiting factors of fault location resolution. Normally it will only A

be possible to localize the fault to being located within a diagnosible assembly. W
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Figure 5: A Diagnosible Tree Subdivided Into Seven Diagnosible Assemblies
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After the check-out routines are written, the fault-location procedure must be de-

veloped. Each component is now examined to determine the effect of a catastrophic failure

such as open diode, shorted transistor, etc. This compon~at is part of a logical element

such as a gate or a storage element such as a flip-flop, and the next step is to determine

a program for use in fault-location that will detect the error caused by the assumed fail-

ure. The very small size of the "new area" under test at each check-out stage provides a

great amount of fault-location information, but this added benefit is balanced in part by

the complex analysis required to determine the effects of feed-back when faults actually do

exist. (A "simple" example of this type is discussed in the appendix.)

When the check-out routine for a given tree is written it may often be found to be

equally applicable to another. The same situation may also occur for many of the individ-

ual fault conditions. These possibilities coupled with the large number of test and fault-

location routines required * present a problem of their own in bookkeeping.

5. Timing Oriented

Although it does not appear to show much promise, it would be possible to use an

approach based on checking out the proper execution of all of the micro-instructions that

should occur on a given timing pulse. Again, the test would sequence through each timing

pulse until all had been shown to be error-free. For the conventional machine with a

normal command structure, this does not appear to be very practical, but with special

computers such as a stored-logic machine it might prove to be quite appropriate.

D. OTHER APPROACHES

1. "Diagnosing" or "Gedanken Experiment"

When studying this subject the reader will often be enticed by titles such as "The

Diagnosis of Circuits", but when the article is examined it is found to apply to the area

* A three-input diode logic AND gate will require four sets of test conditions to

completely verify its operation, and there will be eight different fault conditions

to be analyzed and used as the basis for the preparation of fault-location routines.

0
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S
of sequential switching theory known as machine identification experiments or the

Gedanken Experiment. The basic idea of the theory is that, in response to a sequence of

stimuli, a sequential machine will change from one unique state to some other one in

predictable manner. For the fault-free machine, this sequence of states is known and it

is possible, in theory, to determine what it will be for the "new" machine created by each

component failure. The practical problem of such an approach is primarily the enormous

number of "new machines" that have to be analyzed completely as well as the requirement

that often applies to such experiments that it be possible to place the machine in a known
"ofreset state" to start the test sequence. The necessity to examine the entire sequence of

states and to compare that sequence with all of the possible ones would probably present

an insurmountable data processing problem. And finally, there is the problem that it may

be necessary to use different sequences of input stimuli to distinguish between certain faulty

machine s.

As a general rule, the work in this particular field is not of too much value to the

preparation of practical diagnostic programs.

2. Pattern Recognition

Just as in the use of a Gedanken Experiment, pattern recognition techniques are

faced with the problem of an enormous number of "faulty-machine" patterns. Two other

problems also are common to the two techniques - how do you sense and record the
" pattern" produced and what input stimuli are used? The work done by the Bell Telephone

Laboratories on diagnostics for the No. 1 ESS (Electronic Switching System) might be

considered to fall into this area [11 and 12].

In the ESS the problem of sensing the pattern is solved by using the operative com-

puter of the duplexed-pair found in the Central Control. These two computers are cross-

connected at several intermediate levels which permits using signals other than just the

normal output ones to form the pattern. The faulty-machine patterns were determined by

physically inducing a fault in a given card and noting the results when the input sequence was

applied. There were 50, 000 faults simulated. These produced only 10, 315 different pat-

terns of which 73% (app 7500) were unique to a single possible fault and 13% (1, 341) indi-

cated two possible faults. The limitations of this system might be illustrated by some

further data on the ESS tests. The input sequence consisted of approximately 1000 dif-

ferent tests. With approximately 20, 000 of the simulated malfunctions no tests were

failed, and 2800 of the malfunctions caused the central control to "lock-up" and stop cycling.

* And finally there were inconsistent patterns produced by some malfunctions. These appeared
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to be caused by seemingly inconsequential factors such as the condition of input-output

lines although they are not used, the starting condition of the machine, etc. (Note the

comment above about the requirement for a known starting state. )

Some further work on pattern recognition was done using the ESS test patterns [12]

in a study based on approximately 11, 000 "valid"i patterns which examined the possibility

of a geometric interpretation of the patterns. When the patterns were plotted in 6 dimen-

sions using appropriate weighting based on the discriminator power of that test, cluster

groupings did occur.

I

E. FAULT TYPES AND FAILURE ANALYSIS

The basic nature of the signals present in digital equipment is that they are quantized

into just two values - "binary signals". These two states are referred to by several dif-

ferent sets of names - "high-low", "O-l", "true-false", "active-inactive". Although the

exact value of the actual signals present may vary, a threshold level is always present

that divides the two states. Some of the work in this field has assumed that each failure

caused a fault classed as either "stuck-at-one" or "stuck-at-zero". This is definitely not

the situation as is discussed below, 0
1. Nature of Faults:*

The two fault conditions that may occur are:

(1) a signal is not active when it should be, or

(2) a signal is active when it should not be

Consider the AND gate shown in figure 6. If all input signals, A, B, and C, are

active (true') then the output X should be active. For the OR gate, Y should be active if

either D, E, or F is active. If these conditions do not occur, i. e.the signal is not active

when it should be, the fault is called an "Activate-Fault" or an "A-Fault".

The output of an AND gate should be inhibited (prevented from being active) when

any input is inactive. The OR gate is inhibited only when all inputs are inactive. If these

conditions are not met, then signals will be active when they should not be, and the fault

present is called an "Inhibit-Fault" or "I-Fault".

* Names follow those of Eldred [131

2
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a) AND Gate
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E Y
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b) OR Gate

Figure 6: Basic Logic Gates

2. Relative Frequency and Importance of Activate-and Inhibit-Faults:

One analysis of failure modes and their effects [14] went to great lengths to deter-

mine the probability of failure of each component to determine the relative frequency of

O activate and inhibit type faults. An examination of the Appendix will show that if the de-

sign of the AND and OR gates is symmetric, then the occurence of A-Faults and I-Faults

in a single gate is symmetric also. The normal situation is for a computer to have many

more AND gates than OR's so that the I-faults might be the predominate type. The per-

centage of A-Faults vs I-Faults expected does not appear to have any real significance.

What is important is the effect of the two different types of faults.

Activation-Faults, i.e. the absence of a required signal, are usually detected and

located without any great difficulty. This characteristic stems from the fact that the

check-out routine normally activates only a small "new" or "unchecked-out" portion of

the hardware on each test. The number of possible A-Faults (as well as I-Faults) in the

position under test is usually small and their effects are predictable. The check-out

routine is designed so as to verify all the activation and inhibit actions within the "new

position". On the other hand, an I-Fault in a portion of the machine to be tested later can

create quite a problem.

Even if an Inhibit-Fault is "solid and steady" it may not be detected during several

of the check-out steps, and when it is finally noticed its effect may be to completely
"confuse" the test program. An example of this would be a fault in the adder control

* section that generated a permanent "Initiate Add" signal. This might cause an add action
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S
on every clock pulse for all operation codes, not just during the desired pulse during an

"ADD" operation. As long as the contents of the accumulator were not examined the

fault would probably remain undetected, but then even when it was examined, the results

would be so far from anything predictable that the problem of fault-location would be

extremely difficult.

Another condition that can occur perhaps more than the one just described, is when

the I-Fault completely "clobbers" the operation of the machine. Here the number of

examples is endless, but a few specific ones are:

(1) The timing pulse generator produces more than one timing pulse during

one clock pulse (See figure 7. An inhibit failure of gate X-output stuck

at its active level would cause the following timing pulse sequence to be

generated: 00 and 03, 01 and 03, 02 and 03, 03, 04 and 07, 05 and 07, etc.)

(2) A "Halt-Overflow Error" signal is continuously generated.

3. Failure Analysis

It is only through an examination of the specific circuits used in the equipment that

it can be determined whether a given component failure causes an A-Fault or an I-Fault.

At first, this may appear to be a simple task to perform; however, the interactions be-

tween various assemblies through feed-back paths greatly complicates it and necessitates

experimental verification of any results. An example of fault analysis is given in the

Appendix. It normally is not this simple.

The following factors can be used to describe a failure situation: [151

(1) Duration • Solid or
FrequencyJ intermittent

(2) Nature: logical or timing

(3) Number: single or multiple

(4) Functional position: control signal, data path, register

(5) Unit Position: Processor, memory, I/O, etc.

F. PREPARATION TECHNIQUES

1. Manual Analysis

Of course, the most commonly used preparation technique employs "simple" manual

analysis of the design of the machine. This technique is usable with any of the approaches

or testing levels just discussed. There has been some use of automated aids such as file

management routines for documentation; however, the cost of developing automatic pro-

gramming aids can be prohibitive because of the special considerations required for each 5
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0
type of logic implementation. The field of diagnostic programming does appear to be

maturing now to the level at which automatic programming aids of general applicability

would be feasible.

2. Physically Introducing Fault

The technique of actually introducing the desired fault into the machine was men-

tioned above under pattern recognition when the work by the Bell Telephone Laboratories

on the No. 1 ESS was described Ii]. The usefulness of this technique of diagnostic pro-

gram preparation appears to be limited to approaches employing a pattern recognition

after a standard set of tests.

3. Simulation

A simulator technique was used by ARIES, Inc. to prepare the diagnostic program

for the AD/ECS-37 NASA computer. A Computer Logic Simulator (CLS) operating at the

logic element level was developed. The Failure Generator (FAGEN) was then used to

introduce the faults desired. This system checked for open diodes only. The CLS was

then used to observe the effect of the failure. ARIES also expanded the CLS for use in

analyzing the UNIVAC 422 with the simulator running on the UNIVAC 490.

Computer simulation was also used by UNIVAC for the Nike-X computer to catalog 0

fault symptoms and to produce the dictionary to indicate which chassis was bad [5].

Seshu has used simulation extensively with apparently good results to develop self

diagnosis methods for the CSX-l. The first simulator diagnosis program was run on the

IBM 7090 and then an improved program capable of handling descriptions of sequential

circuits of up to 300 logical elements, with 96 inputs, 96 outputs, 48 feedback loops and

1000 different failures was written for the CDC-1604 [16].

4. Automated

A pre-requisite to a large-scale effort for the automatic generation of diagnostic pro-

grams would logically be the opportunity to use the generator on several pieces of equip-

ment. To do this requires that the hardware implementation of the logic be similar for

the various equipments. This condition would certainly exist in a family of computers,

and it is therefore not surprising to find that IBM has done work in this area on the

System 360 series as well as some of the 1400 models [4].

The "fault locating tests" (FLT's) are produced by a series of programs operating

directly on the Design Automation Logic Master Tape. "This program complex (a) pro-

duces the FLT data to test directly most System/360 CPU components in the larger models;

(b) order these data so that the results of testing can be easily analyzed; (c) keeps these

24



0 data up to date with engineering changes in the hardware logic; and (d) produces up-to-

date documentation, which in itself is sufficient to reduce the duration of many maintenance

calls. " [4]

Several organizations currently use some form of automated design system for their

computers; a profitable extension to these systems would provide for the generation of

diagnostic information as the design is formulated.

5. Problems in Preparation

Some of the more obvious problems in the preparation of diagnostic programs in-

clude:

a. Segmentation. The magnitude of the typical diagnostic program is such that

it is always a team effort. This dictates a considerable task in breaking down the com-

puter into sub units for which separate personnel will write programs, and an even greater

task in coordinating between the teams. Decision Systems Incorporated normally sub-

divides by mechanical units and assigns two-man teams to each unit.

b. Bookkeeping. It is essential to keep detailed track of which elements have been

diagnosed and what failure modes checked for as the work progresses. This is of parti-

cular importance when more than one man is working on the same unit.

c. Documentation. No computer program is worth more than the documentation

supporting it and this is even more true in the case of diagnostic programs. Documentation

cannot be effected after-the-fact but must be carefully considered at the onset of the pro-

ject. Both the segmentation and bookkeeping problems already mentioned will complicate

the documentation problems. The quality of the documentation will be one of the major

factors in determining the overall quality of the diagnostic program.

G. MAGNITUDE OF EFFORT

It is difficult to appreciate figures on the time required to develop a diagnostic pro-

gram without being familiar with the capabilities of the program, the method of using it and

the machine itself; but perhaps these examples will be of interest.

The AN/BRN-3 and AN/BRN-3A Navigation System used the AN/UYK-1 stored logic

computer and another data processor of almost equal size as well as analog interfaces and

input devices. There were approximately 220 cards with about 40 diodes per card. The

design objective of the diagnostic was resolution to a single card which required the de-

velopment of manual fault-location routines to supplement the automatic ones. The length

of the program was 25, 000 instructions, and it required 18-20 man years for preparation.

* Another project by the same company on a medium sized computer required only 6-8 man
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years of effort. One big reason for this great reduction was that the resolution specifica-

tion was greatly relaxed.

The program for the RCA MICRORAC included over 7500 individual diagnostic tests

and 22, 000 words of instructions and data [8 ]. During the preparation of this program,

which required approximately 25 man-years, it was found that a reasonable time allow-

ance for analyzing, determining the symptoms, diagnosing and documenting the location

of a single failure is one man-hour. [14]

0
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III. MACHINE DESIGN AND DIAGNOSTIC PROGRAMMING

A. IMPORTANCE OF SYSTEM APPROACH

The requirements for serviceability and maintainability for any complex electronic

system dictate that these factors be considered throughout the design process. It is usually

quite difficult and often impossible to add service and maintenance features to a completed

machine, but all too often this is attempted.

In a digital computer the catastrophic nature of failures greatly increases the main-

tenance problem. Usually failures occur with no warning, and after they do occur the

machine may be completely useless. As mentioned earlier, the service restoration prob-

lem is further aggravated by the limited maintenance capability of the operator. Some

possible solutions to this problem were also discussed earlier. The point to be empha-

sized here is the effect of a decision to prepare diagnostic programs.

The development of complete diagnostics is a major project that will certainly re-

quire almost as much effort as the design of the machine itself if they are prepared later

by a new team. Concurrent preparation of the diagnostic programs can result in consider-

able savings, even though the final testing, etc., must await the availability of a prototype.

Not only will the team already be intimately familiar with the design of the machine, but

the feedback from the diagnostic programmer to the designer at this early stage may well

yield a system with greatly improved maintainability.

Of course, the number of these machines to be produced and the nature of their use

must also be considered. Another factor that will greatly affect the cost aspects of the

problem is the effect of the availability of a diagnostic program on the requirements for

maintenance assemblies and spare parts.

B. EFFECTS OF HARDWARE DESIGN, IMPLEMENTATION AND ORGANIZATION

1. "Hard-Core" or "Hang-Up" Problem

One of the basic assumptions made in the preparation of all diagnostic programs

is that the machine is "breathing". That is, there must be no gross errors present that

prevent the computer from getting the diagnostic program into memory and executing a

complete instruction. If this cannot be accomplished, then the machine is said to "hang-
UIup.

When the design of the machine is analyzed it is usually found that a very large pro-

portion of the hardware is involved in performing those functions essential to the breathing

machine. This "'essential" hardware is referred to as the 'hard-core and the hard-core
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has been variously estimated as 50% - 91% of the total hardware [17 ]. These figures are

quite misleading and are sometimes based on erroneous reasoning. The most common

fault appears to be classifying an entire logic element as essential even though it may be

necessary for the element to operate properly in only mode, not in all possible ways. For

instance, it may be impossible to clear an "essential" flip-flop, but if it correctly stays

in the set condition during the breating machine tests, then the entire flip-flop should not

be included in the hard-core.

Even though the computer has already executed several tests successfully, it is

still possible for it to "hang-up". An example of this would be an activate fault on the

control signal that terminates the add cycles during a multiply instruction. If this oc-

cured the machine would hang-up in the exedute cycle. This type of problem can become

of such importance that it is desirable to have a special signal generated by an internal

clock to force an access cycle if one does not occur after some predetermined interval.

This feature could be disabled by a maintenance switch if desired.

2. Input-Output Problems

A very bad problem area in the preparation of diagnostic programs is that of the

input-output peripherals. This comment applies to both the check-out as well as the fault-

location routines. This problem is the result of the length of the diagnosible trees asso-

ciated with the input-output. Input/output device tests are usually not diagnostic in nature.

Consider the simple computer shown in figure 8. To perform an automatic check of

the input-output devices, paper tape reader and paper tape punch, the procedure would

probably have to be to punch an output tape, then place the tape in the reader to be checked

for accuracy. Even if an error is detected, it is easy to see that it might have occurred

at any point along a rather long signal path. Unfortunately this is just about the best that

can be done.

For the larger computer, the problem is basically the same; however, it is aggra-

vated now since the number of devices is usually much higher. Consider the system shown

in figure 9. The "loop" to a magnetic tape unit can be closed quite conveniently by the tape

itself since the unit is both an input and an output device. The input/output multiplexer

permits "Simultaneous" operations through both I/0 channels. Then a provision for a con-

nection such as "a" will greatly facilitate the checking of the paper tape channels; however,

such a procedure will not check the electromechanical operation of punching and reading.

Devices such as the line printer, displays, keyboards, etc., will always require manual

actuation and verification for testing. Provisions for closing the real time channels may
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be at the near-end such as connection "b" or at the distant end connection "c", which will

allow checking of the transmission channel and its associated equipment also.

When the entire system is considered, it may seem that it is necessary to specif-

ically design the communication channels so that they may be connected "back-to-back"

[8 ] or that special logic should be included to aid in performing the input/output tests [5].

3. Circuit Packaging - Vertical vs Horizontal Organization

Since their origin, digital computers have been assembled utilizing plug-in component

assemblies. In some of the earliest models these were single vacuum tubes with their as-

sociated circuitry. Very soon the number of tubes per plug-in unit increased so that each

assembly represented several logic or storage elements. The commonest practice was to

have each unit contain several of the same type of elements such as AND gates, inverters,

flip-flops, etc. This practice has been continued with the application of semi-conductor

and integrated circuit devices. Although this technique may be quite advantageous for the

design and manufacturing of the plug-in units it usually has quite a d e trimental effect on

the resolution capability of a diagnostic program. There have been many studies made on

the problem of packaging with a goal of optimization with respect to one or more of the

* following: cost (repair vs throw away), complexity and usefulness, size, production yield,

etc. ; but none of these studies have considered the question of fault location during the

maintenance process.

Consider the diagram shown in figure 10. Noting the predominance of groupings of

four, which would undoubtedly be repeated many more times, the simplest packaging plan

would be to make some cards with four AND gates, some with four OR gates, some with

four flip-flops, etc. This is what has been named "horizontal organization". Since the

only diagnosible signals in this example are the outputs of the flip-flops in the registers,

it can be seen that this diagram contains four diagnosible trees. If an error is located in

a specific bit of the X-Register and the corresponding bits of A and B both function properly,

then the fault may lie in the X-Register flip-flop, in the corresponding OR gate or in one

of the two AND gates. It may not be possible to refine this location any better and the re-

pair instructions would specify the replacement of all four cards that might contain the

fault. If the plug-in card had been "organized vertically" - one flip-flop, one OR gate, and

two AND gates - then the location of the fault has already been resolved to one card.

The use of vertical organization will usually result in a larger number of different

card types and this will often fail to comply with the contract specifications. The rationale

of such specifications is to limit the variety of items in the supply systems, but an equally

31



Q)i

4ý 0 biD
'ro. 0, E- 4-

(1)

322



O important aspect is the quantities of each involved. If the computer is to be repaired by a

low echelon operator-maintenance man he may not have a card-repair-testing capability.

With horizontal organization he w uld have four "suspects" to be evaluated for repair. (He

might be able to use a process of elimination to narrow the choice, but this would definitely

cause a drastic increase in the down-time or mean-time-to-repair. ) With vertical organ-

ization there would be just one card for evaluation. When overall mission requirements

are considered, vertical organization might well result in a smaller quantity of required

operating spares. The value of this approach has been recognized in a computer designed

emphasizing ease of maintenance [18 ].

4. Multiple Use of Elements

The multiple use of a given element such as a logic chain or a register has both

good and bad features. If the operation of the element can be checked under totally dif-

ferent operating conditions, the diagnostics capability may be enhanced. However, such

multiple use will usually have very bad effects on the "hard-core" problem.

C. HARDWARE AIDS TO DIAGNOSIS

O 1. Special Maintenance Commands

The ability to execute certain commands is found to be of great value in the prepara-

tion of diagnostics. Some of the commands which might be included primarily for main-

tenance uses are:

(a) Capability to test (sense) the state of all flip-flops [19 ]

(b) Capability to generate parity errors to exercise parity checking circuitry [19]

(c) Capability of direct register-to-register transfers for all registers. (Not nec-

essarily all-to-all, but at least to one other under direct program control.)

2. Maintenance Panels and Test Points

The maintenance panels associated with many computers today, if they have one,

represent almost a complete absence of engineering from the maintenance point of view.

The operator's control console on the other hand is usually well-designed with great empha-

sis often given to human-factor aspects such as ease and speed of operation. Very often

the maintenance man is forced to use the operator's console since that is all there is, but

it is usually quite inadequate for his purposes. The operator is particularly interested in

being able to sense the state of the machine; quickly detect error conditions such as over-

flow, parity error, etc. ; and take the actions necessary to control the computer such as
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clear error, start, etc. On the medium and smaller machines, there is also the require-

ment to be able to examine the contents of various registers from the console for "console

debugging". The cost of time on a large scale machine usually prohibits this kind of

activity although, luckily for the maintenance men, the capability is often included.

It is possible to select several desirable features for the maintenance panel from a

purely maintenance point of view. Some of these might be a single-clock-pulse push button,

a repeat mode control, and the ability to directly sense and set the state of various control

flip-flops. One extreme here is a panel such as the System Tester for the Autonetics

RECOMP II which was connected to the central processor when necessary. The System

Tester had 180 indicator lights and pushbuttons - one for every flip-flop and other controls

such as timing pulse generator and marginal voltage controls. The main console on the

AN/FSQ-32 (solid state SAGE computer) is almost this complete, but such exhaustive

coverage is usually not provided. The signals to be displayed are usually selected by the

hardware design group deciding what it would be "nice to have" in addition to the operator's

console display. If a diagnostic programming effort is proceeding concurrently with the

design work, then a much better choice can be made as to what to display.

The only two real limitations on the ability of the diagnostic program are:

(1) It will not operate at all unless a certain portion of the computer (usually quite

large) is fault free.

(2) Its resolution is limited by its ability to sense signals.

A proper choice of displayed signals can greatly assist in overcoming both of these.

An example falling into the first category would possibly be the timing chain. If it is not

functioning properly usually nothing will run, but if it is displayed its operation can be

quickly checked. In the second class would be signals such as flip-flops imbedded in a large

diagnostic tree . An example of this might be a buffer register in the input/output multi-

plexer or select/controller. In fact the I/O has so many signals falling in both of these

categories that separate maintenance panels are often associated with the I/O units.

Even with special effort it is usually not possible to design the machine so that the

input/output circuitry associated with FILL control can be diagnosed. For that reason,

this portion of hardware would be liberally displayed; but other I/O channels if present,

can usually be automatically diagnosed. Similar comments can also be made in regard to

the primary and other memory modules.

The important point is the role that the diagnostic programmer can play in the se-

lection of controls and displays needed for the maintenance panel.
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3. Added Hardware - Internal

It is often possible to greatly assist the execution of the diagnostic by adding a

relatively small portion of hardware to the machine. An example of this is a comparator

added to check the contents of one register against another [5 ]. Also falling into this

category are simple test devices used to aid the fault-location process.

One internal feature that is often added is the capability to set marginal voltages

during maintenance tests. This does not assist in the location of a fault that has already

appeared during normal operation, but it does often cause a potential failure to appear

during maintenance when it can be detected without loss of production time.

4. Added Hardware-External

Externally added hardware usually refers to items such as card testers for fault-

location, but other equipment also falls into this category. One example is the previously

mentioned System Tester for the RECOMP II. This device, which was connected directly to

the central processor by several multi-pair cables, was primarily an extensive maintenance

console which displayed the state of every flip-flop and provided controls for setting and

clearing them and for controlling the clocking of the central processor.

* Another good example of external hardware that greatly aids the diagnostic process

is the FALT (Fadac Automatic Logic Tester) for the U.S. Army's small tactical computer,

the FADAC. The FALT is connected to the FADAC by multi-pair cables and then the FALT

"texercises the logic of the FADAC to test it and identify any failures detected.
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IV. QUALITY FACTORS OF DIAGNOSTIC PROGRAMS

The quality of a diagnostic program cannot be assessed by examining only the pro-

gram itself. A valid assessment requires that the entire maintenance procedure (both

diagnosis, repair, and final check-out) be evaluated. It is quite possible to make some of

the features below appear to be very good at the expense of others. The quality factors

that have been identified are:

(1) Time required to execute the diagnostic program.

(2) The skill required to run the diagnostic, interpret the results, and take the

necessary further action.

(3) The documentation required to specify how to run the diagnostic, how to

interpret the results, and how to take the necessary further action.

(4) Proportion of the hardware that can be checked-out.

(5) Proportion of the hardware that can be completely diagnosed.

(6) Resolution of the defective element identification.

(7) Additional manual operations necessary to complete the identification process.

(8) Manual intervention during check-out routines.

(9) Nature of failures considered.

(10) Reliability of the program.

A. CAPABILITIES

1. Nature of Failures Considered:

The case where failures of several types have been "assumed away" has already

been mentioned. The results of some Navy tests are interesting in regard to this quality

factor. During independent testing of a diagnostic program it was found that it would not

run at all for approximately 65% of the faults inserted. Consultation with the developer

of the program determined that they were inserting mostly "illegal" faults and even further

consultation was necessary to have the programmer point out that the test team was now

"inserting them improperly".

2. Proportion of Hardware Checked-out and/or Diagnosible

There does not appear to be any reason that should prevent a 100% check-out of all

of the computer, i. e., if the check-out routine runs correctly or the diagnostic follows the

go-path to its normal end, then the machine can be considered 100% operable. Any de-

viations from this specification should be questioned. The only problem area is the complete

checking of peripheral equipment. Here, there may well be deviations from the 100% 0

specification.
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As pointed out earlier simple check-out is quite different from complete diagnosis

which includes fault location as well as check-out. The primary problem is the propor-

tion of the machine that must be failure-free in order to even load the diagnostic and exe-

cute the first simple test. In various machines the proportion necessary to load and start

the diagnostic has been quoted to be as high as 85% of the total hardware. The implication

is then made that "if the diagnostic program loads and executes the first instruction cor-

rectly 85% of the machine is failure-free leaving only 15% to be diagnosed automatically.

If it does not load properly, then manual procedures must be followed to locate the fault

in the remaining 85% of the machine. " The analysis of the project test vehicle did show

that a large percentage of the machine was required to be operative to obtain a "breathing"

machine but this figure must be critically examined. Consider only an example of a simple

3-input diode logic gate. It may have as many as eight failure modes (not all of which will

have unique effects), but even under one of these failure conditions the gate might still al-

low the basic "breathing" condition to exist. In fact, many of the failure modes may fall

in this category.*

In attempting to raise the proportion of the machine that is diagnosible, it is nec-

O essary to simplify the loading logic as much as possible and to minimize the hardware

used to implement it. ,When this is done, however, the results often are in direct oppo-

sition to the efforts to simplify the overall machine and minimize the total hardware re-

quired. This aspect of the problem was discussed earlier when the effects of logical

design were considered.

3. Resolution

The goal of the complete diagnostic procedure is positive identification of the defec-

tive element that must be replaced. The "replaceable element" referred to here is the

sinallest hardware component that may be removed and replaced by the individual per-

forming the diagnostic (probably the operator), so it will have to be a plug-in assembly.

Normally, the logical organization will restrict the resolution of the fault-location pro-

cedure to a group of logical elements - gates, flip-flops, etc. If these logic elements are

not all on the same replaceable element, then the best that the diagnostic program can do is

to specify a group of plug-in cards as "suspect". Since it is assumed that the operator has

no card testing equipment, his only alternative to replacing all suspect cards is to attempt

*Consider the second example in the Appendix: If the breathing condition requires G=STH,

* then there are only two failure modes that would prohibit further operations.
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to locate the specific card that failed by a substitution and re-check procedure. The time

required to do this will greatly affect the first quality factor discussed above as well as

the one discussed below.

If the "average resolution" capability of the fault-location routines is given, the

technique used to obtain this figure should be questioned. A simple approach to the prob-

lem would be to just take the raw average -

Number of Number of
Suspect Defective Coded Stops Having

Units This Many

2 20
3 18
4 22

5 5
6 17
7 18

Average Resolution: 4. 35 units

But, in an effort to make'the figures look better, some have argued that the median

(middle-most value) would be a better statistic:

Median Resolution: 4 units

A somewhat pessimistic figure is obtained by making a simple assumption as to the fre-

quency of occurrence of each group of coded stops - a coded stop that applies to 4 suspect

units will occur twice as often as one that applies to 2.

Simple weighted average resolution: 5. 33 units

And yet another method would be to obtain a weighting for the probability of occurrence of

each coded stop based on an analysis of the probability of failure of the components causing

that stop. This would certainly be a mamouth task and it is not clear that the results would

be of any value.

The same warning applies here as in any encounter with statistical data - find out

the basic technique used to calculate the statistic quoted.

Some figures based on actual tests of a completed diagnostic are given below [8].

Average resolution 8 cards
Median resolution 5 cards
Maximum resolution 38 cards

B. EXECUTION REQUIREMENTS

1. Running Time

The time required to run the diagnostic program depends on whether or not a fault

is detected. The two conditions then that must be examined are:
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(1) Time required to follow the complete go-path.

(2) Time required to follow the go-path until the fault is detected and then the

time required to locate the fault (worst case condition).

In some instances it is highly desirable to have a short check-out routine that verifies the

condition of the machine; but in a tactical military situation, as in many real time environ-

ments, when a failure does occur the critical aspect of the situation is the maximum length

of time required to detect it, locate the failure, repair it, and return the machine to use.

There are many portions of the go-path, particularly at the beginning, where the order in

which various tests are made is dictated by other considerations; however, for the most

part, the order of tests can be varied and the criterion of maximum time required should

be the governing factor.

2. Operator Skill

Since the primary role of the diagnostic program is to assist rapid restoration of

service, the diagnostic program and all attendant procedures should be designed so that

they may be executed by the operator of the equipment - not a higher echelon maintenance

man.

. 3. Manual Intervention

Because of the specific assumptions made earlier as to the individual using the

diagnostic program and the limitations on the equipment he has available, a two-step pro-

cedure requiring manual operation with external test equipment is to be avoided. If

manual procedures such as substitution and re-check or special tests with internal test

equipment are to be performed they must be clearly and explicitly documented and their

effect on the time and skill required must be carefully evaluated.

A requirement for the operator to manually intervene during the running of the

check-out routines is definitely to be avoided. At the beginning of the diagnostics when

the "breathing" machine check is being made, a certain number of specific manual steps

are usually required; and the operator can be used to "close the loop" on an input-output

test of a device such as a typewriter. A greatly undesirable condition is a requirement for

the operator to make checks during the tests to verify'the correct operation condition.

This may take the form of a display read-out [5] or a print-out. Not only is there a

chance for human error, but the running time of the diagnostic will also be considerably

increased.
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4. Support Documentation

Again the personnel that are to use the diagnostic program and the environment in

which it is to be used must be considered when the documentation is prepared. Both the

logical organization and the physical form of all operator maintenance documentation are

important.

C. VERIFICATION OF THE DIAGNOSTIC PROGRAM

The verification that the diagnostic program meets its design specification may re-

quire almost as large an effort as the development of the program. A decision that must

be made at the onset of the preparation of the acceptance or verification test plan is just

how extensive the tests must be. The standard procedure of statistical quality control

would permit evaluation at various confidence levels by using appropriate sampling plans.

Unfortunately there are always those that come forward to say "This system must work in

a tactical military environment and I must be absolutely certain that 100% of the faults pos-

sible will be detected and located". One would then be inclined toward making the expendi-

ture to verify by testing 100% of the possible faults. Since it is a most unusual test system

that in itself is error free, statistical quality control again says that all results will have

associated with them a probability less than unity. This is not to say that 100% testing

would not be desirable, but only points out that caution must be used in interpreting the

results. In any regard, with such a large population of possible faults extensive testing

will usually be required.

Testing is facilitated by some device used to physically introduce the fault while the

diagnostic is run to locate it. These devices usually take the form of extenders for the

printed circuit cards with control switches built into the extender. Using such a device

with normally controlled switches, it took 30 days at 3 shifts per day to check the diag-

nostics for the UNIVAC 1218 by sampling only [5]. Burroughs on the D-84 project used a

relay operated extender card where the relays were controlled by a D-825 computer [5].

This permitted automatic verification of the diagnostic programs. No time figures are

known.

D. SPECIFICATIONS FOR PROGRAM

The quality factors discussed in the preceeding sections on Capabilities and Exe-

cution Requirements should have a direct influence on the specifications written for diag-

nostic programs. In addition some predetermined procedure to verify the reliability of

the program should be included in the specifications, as discussed in last section.
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0 Certainly no single diagnostic program can meet the ideal standards for each quality

factor. Conflicts will no doubt arise between many factors and it is thus essential that

the specifications assign relative priorities to the factors considered in order that such

conflicts may be satisfactorily resolved. The resulting specifications will then provide

for a realistic diagnostic program with an optimum balance of capabilities and execution

requirements.
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V. SUMMARY

Diagnostic Programming is at present still an unstructured field. Many different

approaches are being pursued with considerable degrees of success.

In this paper we have attempted to provide a common framework in which the var-

ious approaches could be discussed and the many related problems pointed out. The re-

sults of several organizations have been cited to help assess the state-of-the-art as it

is today.

The most important conclusion that can be drawn from the material presented here

is that diagnostic programming should be considered throughout the design stages for

any computer if the real potential of such a maintenance aid is to be realized. A systems

approach of this type should result in a design minimizing the "hard-core" problem and

providing an optimum mix of hardware aids and module organization that will immeasurably

simplify the task confronting the diagnostic programmer without unduly complicating the

logistics problem.

Particularly from the military point of view we would hope that the quality factors

presented and the importance of the systems approach to design will both be carefully

considered when specifications for future computers are written.
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APPENDIX

SIMPLE FAULT ANALYSIS

In order to be completely accurate, an experimental fault analysis for operational

units such as AND gates, OR gates, etc. should be performed in the environment in which

it is to be used. An analysis of the circuit alone, either theoretical or experimental,

fails to take into consideration the loading and isolation provided by other units connected

to the inputs, and outputs. An analysis of an isolated circuit also makes it difficult to

detect feed-back effects of component failures.

As a first approximation to an experimental analysis of actual hardware, a theo-

retical analysis of an operating circuit will be performed. The basic logic gates and

their MIL-STD symbols are shown in figure 11. First a fault analysis of the AND gate

will be made. A typical situation is to have "levels" of AND gates and OR gates as shown

in figure 12 which includes both the logic and schematic diagrams. The gate under study

is AND gate "X". Only catastrophic failures are considered. The ones possible are

listed below and their predicted effects are described.

Di: Open: I-Fault* on X

The AND gate functions just as if A were not connected to it,

and X may be active even if A is not.

Shorted: I-Fault on X

X will be active if and only if A is positive regardless of states

of B and C

I-Faults on B and C

Feedback effects will force B and C to the active state when

A is positive regardless of their own inputs. B and C can also

go positive under the control of their own inputs.

* I-Faults and A-Faults are defined in Section II E, p 20
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D2 : Open: I-Fault on X

Output X is no longer inhibited by B

Shorted: I-Fault on X

X will be active if and only if B is positive regardless of states

of A and C

I-Faults on A and C

Feedback effects will force A and C to the active state when

B is positive regardless of their own inputs. A and C can also

go positive under the control of their own inputs even if B is

inactive. The I-Fault on A will cause an I-Fault on E.

D:3 : Effects similar to those obtained for D2

R1 : Open: A-Fault on X

Output X will also be inhibited by H. (X =A " B * C ' H)

Shorted: I-Faults on A, B, C, and X

Outputs A, B, C, and X will be held in the positive-active state.

In actual experiment, the results depend on actual component parameters and volt-

age levels and the source of the initial inputs, as well as threshold levels assigned to

each gate. Multi-level diode logic without inverters or transistor amplifiers to restore

nominal voltage levels are very difficult to analyze accurately on paper due to the compli-

cated loading effects. A further complication in actual circuits arises from the fact that

one shorted diode can result in one or more diodes being burned out (open) depending on

the order in which signals are applied. Of course the same logic diagram implemented with

different logic gates (for example DTL) will yield quite different results when similar com-

ponent faults are introduced.

The effects of component failures can also be depicted by a modified Logic Diagram

Two of these are given in Figures 13 a and b.

Another method of depicting the effects of failures is to modify the equations des-

cribing the logic. Consider the analysis of failures in OR gate "X" in figure 14.

The correct set of logic equations are given below:

(1) A=0P (6) F = E X = MNQR +MNST +OP

(2) BQR (7) G = X H = OPH +QRH +STH

(3) C ST (8) X=A+B+C=OP+QR+ST

(4) D = M N

(5) E=D+A=MN+OP
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B X* B
44 C
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(a) AND Gate

-V

D
D Y=D+E+F E Y

E

F

(b) OR Gate

Figure 11: Diode Switching Circuits
(Positive Logic)

The possible component failures and their effects are given below, ignoring loading

effects. Only the equations that are changed are given.

Di: Open: A-Fault on X

(6) F = MNQR + MNST + OPQR + OPST

(7) G = QRH + STH

(8) X= B+C =QR +ST

Shorted: A-Fault on X, B, and C

(2) B= Q R A

(3) C = S T A

(6) F OP

(7) G OPH

(8) X = A = OP

45



D 2 : Open: A-Fault on X

(6) F = MNST + OP

(7) G = OPH + STH

(8) X=A+C=OP+ST

Shorted: A-Fault on X, A, C, and E

(1) A =0" P. B

(3) C = S" T * B

(5) E=D+A=MN+OPB

(8) X = B = QR

D3 : Effects similar to D 2

Ri: Open: I-Fault on X

(8) X=A+B+C+H

Shorted: A-Faults on A, B, C, and X

(1) A = 0 (Inactive State)

(2) B = 0

(3) C = 0

(6) F ¢0

(7) G = 0
(8) X = 0

Again, the experimental results will certainly not be completely unambiguous be-

cause of the loading effects and the problem of assigning threshold levels to determine

whether a given gate is active or inactive under the new fault conditions.

This appendix is not intended as a guide to fault analysis, but merely as an indi-

cation of the complexity of this problem area and a few different approaches that may be

helpful. It would appear that the best approach is through experimentation on identical

circuits to the ones in the computer to be diagnosed, similarly imbedded in other logic.
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