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APPLICATION OF STATISTICAL ESTIMATION TECHNIQUES TO
GROUND-~BASED PASSIVE PROBING OF THE TROPOSPHERIC
TEMPERATURE STRUCTURE

by
Ed R. Westwater

and

Otto Neall Strand
Abstract

The theory of radiative transfer in the microwave region is
discussed. A method for*she numerical solution of a Fredholm integral
equation of the first kind is derived and illustrated.” The method
employs an a priori constraint vector together with covariances of
both the constraint vector and the measurement errors. The method
automatically incorporates an optimurn amount of smocthing in the
sense of maximum-likelihood estimation. The problem of obtaining
optimum basis vectors is discussed. The trace of the covariance
matrix of the error in the solution is used to estimate the accuracy of
the results. This trace is used to derive a quality criterion for a
set of measurements and a given set of constraint statistics. Examples
are given in which the behavior of the solution as obtained from a
specific integral equation is studied by the use of random input errors
to simulate measurement errors and statistical sampling. The quality
criterion and behavior of the trace of the error covariance matrix for
various basesare also illustrated for the equation being considered.

A least-squares analysis of microwave absorption data to determine
line width for water vapor and oxygen is presented. Calculations of
the error covariance matrix and quality-criterion values to be expected
when probing for the tropospheric temperature structure from micro-
wave emission measurements are presented.




1. Introduction

The general subject of passive probing of the atmosphere by

electromagnetic means has recently received attention by several
- .

authers: Fleming and Wark, [1]; Kaplan[2]; and King, [3].
In spite of the wide differences in the specific techniques applied
to each spectral region, several elements are common to all pas-
sive probing schemes. The first of these elements is the sensor,
which measures relevant properties of the radiation emanating
from the spatial region being probed. Secondly, detailed know-
ledge is required concerning the mechanisms by which radiation:
is generated at the region being probed and by which the radiation
is propagated to the sensor. The last, but certainly not the least,
is the manner by which information concerning the physical
property of interest is derived from the set of radiation measure-

ments, the so-called "inversion process'.



The probing methods discussed here attempt to derive informa-
tion about the temperature distributior of the troposphere by measur-
ing the microwave brightness temperature of the atmosphere from
the ground looking up. The propagation and emission of this radia-
tion are determined for the most part by the absorption coefficients
of oxygen and water vapor.

The inversion methodj;e derive here is illustrated for the
physical situation of ground-based upward probing; however, the in-
version equations are applicable to mo;'e general situations. This
technique extends methods given by Phillips [4], Twomey[S],[ 6],
and Twomey and Howell [ 7] for the solution of integral equations
of the first kind. These methods use a controlled amount of smooth-
ing in solving the matrix system derived from a quadrature approxi-
mation, but give no systematic method of determining the required
amount of smoothing. In this paper, we derive and illustrate a
general least-squares process for estimating the solution and show
that it contains Twomey's method of weighting an a priori constraint
vector as a special case. The optimum amount of smoothing
{in the sense of maximum-=-likelihood estimation) depends on certain
covariance matrices describing the measurement process. Ina
manner similar to that of the more recent work [8],[91, [10], and

[11], we derive and use statistically orthogonal basis vectors.



Certain other bases are also used and numerical comparisons are
made for a particular kernel. In our method, the covariance matrix
of the error in the resulting solution is calculated and its trace is
used as a measure of the error in the final results. It is shown in
this paper that the trace of the error covariance matrix is mini-
mized when the num@r of basis vectors equals the number of
quadrature points. We use the resulting minimum trace as a quality
criterion describing the effectiveness of a given matrix equation
(with specified accuracy of observation and a specified distribution of
~
the constraint vector) in reducing the variance of the a priori con-
straint vector. We also derive and discuss the condition for an
optimum basis and present numerical examples using random inp}lt
errors to simulate the measurement process. We discuss and
present a least-squares analysis of line width and absorption data
for both water vapor and oxygen. We also present numerous calcu-
lations of the solution quality criterion and indicate how this criterion

could be used to determine both experimental feasibility and optimum

choice of probing frequencies.

2. Theory of Radiative Transfer in the Microwave Region

The equation of transfer in a steady field of radiation in the case

of local thermoadynamic equilibrium is given by Kondrat'yev [12]



cos 8 o I\J U\)
—_— = K —_ ! 1 t o )
5 5h v Bv + in 5Iv(h, r )P\)(h. r',r)dw (K\)'*' ’JV)IV ’ (1)

where I\) is the intensity of radiation, U is the zenith angle, h is the
height above the surface,Kv and G, are the mass absorption and mass
scattering coefficients respectively, p is the density of material absorb-
ing the radiation, Bvis the Planck intensity function, and
dw' . . o .
an Py (h,r',r) is the fraction of energy incident upon the scattering
volume in the direction r' which is scattered in the direction r.

The integration over duw' extencls over all directions of r'. For
a cloudless atmosphere and for microwave frequencies, the scatter-

ing coefficient is zero and the equation of transfer for a purely

absorbing atmosphere is obtained

8 3l
cos
—— — = K -
p dh V(B\) I\J) ) (2)
This can be integrated to give
hl
r (h )/ A ® _5‘ K o dh''
- s ®)/cos € V cos §
I(h) = I(=) e yK h dh’
v v ¥ v? BV ¢ cos 8’ (3)

h

for the intensity received ''looking up'' at a height h and at a zenith
angle 8. In (3), I\)(‘”) is the unattenuated intensity incident outside

the atmosphere and T (h, =»)is the total vertical attenuation given by



N

e mee . TR CR

Ty () = i\“vodh' . (@)

The Planck function, B\), multiplied by the absorption coefficient is pro-
portional to the power flux density emitted per unit bandwidth and may be
approximated by the Rayleigh-Jeans law in the microwave region | 13] :
2V
B = k T, (5)

<V 2

where k is the Boltzman constant,c is the speed of light, and T is the

absolute temperature. The intensity, Iv’ may be related to the bright-

ness temperature, Tb , by the defining relation

I-’—Zk'l‘- (6)

It follows immediately from (3), (5), and {6) that

hl
-7 (h,9)/cos 8 o - S" p dh'"/cos 8
Tb th) = Tb(w) e v . (K 0T e b v dh' )
v 4 I cos§°
' h

The apparent sky temperature, as measured by an antenna

immersed in a radiation field, will be the contribution of (7) from

M i e AR 4 i =

s A

[



each direction seen by the antenna multiplied by the appropriate
antenna gain factors and integrated over the antenna pattern.

I it is desired to determine the brightness temperature of the
atmosphere from directions confined to a narrow solid angle, it is
necessary to have a highly directional antenna with iow side lobes
such that the contributions from the desired direction are maximized.
The noise temperature of the antenna can be measured directly by

comparing the received sighal with that of a known source.

In using (7) to deduce T(h) from measurements of Tb, one may
vary either zenith angle, g,or frequency, v. In ground-based probing,
however, there are reasons to avoid the angular scheme. First,
an assumption of horizontal homogeneity of the atmosphere is necessary.
It is also probable that some of the space swept out by the observing
antenna will include discrete cloud structures whose emission is not
easily taken into account. Finally, it is very difficult to take account
of ground ¢missions and reflections because of uncertainties in antenna
gain patterns. We will therefore only consider inversion using measure-
ments at different frequencies. This scheme reduces, but does not
eliminate, the above difficulties. Henceforth, it will be assumed that

no clouds are present in the main beam of the observing antenna.

gl N T B e s et
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Equation (7) is non-linear in the temperature because the
absorption coefficient depends o.1 temperature and pressure.
As discussed by Westwater [ 14], this non-linearity can be handled by
assuming a mean temperature profile to determine a first approxi-
mation to the absorption, solving the resulting Fredholm equation of
the first kind, and iterating. The next section presents a method of
solving the linearized equation in the presence of measurement error
by statistically weighting=a priori knowledge of the temperature pro-
file against information given by the integral equation. Bucause of the
nature of the constraint, it is presumed that convergence of the itera-
tion sequence will cause no problem, even in the presence of large

experimental errors. This has not yet been verified.

3. Inversion Method

Let {f(y), a Sy S b} be a Gaussian random process having
continuous sample functions. I K(x,y) is a continuous function of

x and y and if

b
SK(X, y) £ (y)dy = g (x) (8)
a



b e

SN e o

then g(x) is also a Gaussian process with continuous sample functions.

The main idea is to estimate f(y) by measuring g(x) at various values

of x, say X=X, i=l, ...n. Introducing a quadrature formula of the

m

type fah(y)dy =j§l Wj h(y'j) gives a matrix equation

Af =g (9)

where

A= (Aij) i=l,2, ... nj=1,2, ..:m,

m is the numbew of quadrature abscissas,
n is the number of observations of g(x),
yj are the quadrature abscissas,

X, are the specific values of x for which g(x) is observed,

w, are the weights associated with yj,

fj = f(yj),

g = glx.),

Aij = Wj K(xi, yj),

f ] T is the column vector of unknown functional values,

f:[flfz...

(the superscript T denotes matrix transposition throughout this paper},
anﬁ g= [gng ce gn] T is the column vector of values of g(x).

We assume that the mean vector E(f) = fo and the covariance matrix,
Sf, of f are known. (E( ) denotes the expected-value operator and Sv
denotes the covariance matrix of any vector v throughout this paper).

By the linearity of E and the propagation rule for covariance matrices,

respectively, we have E(g) = g, = Afo and Sg = ASfAT. In the cases



of interest here g is a vector of measurements subject to error.

Thus one observes

g, =8 *+¢E (10)

instead of g. In addition to the assumptions already made, we assume:

a) the errors ei are independent of f, hence independent of g;
b) the errors ¢ are normally distributed with zero mean and

known covariance matrix S ;
Sy €

c) the quadrature errors are negligible with respect to ¢;

d) Se and Sf are both nonsingular with dimensions nxn and

mxm, respectively.

A

It is convenient in practice to represent the solution in terms

of a small number of basis vectors. We let U= [U1 IUZ l... l"L]
(lines denote matrix partitions throughout this paper) be a matrix
of k linearly independent m-component basis column vectors and
C= [ClC2 e G ] T be a vector of coefficients to be determined
where k s m.

The inference problem to be solved is the following. Given the
observed vector 8 and the covariance matrices S and Se’ estimate

f

f and € under the constraint g - Af = e, Putting
n=i-f, h=g- g, = Alf-f)=an

he=h+€=Aﬂ+€, (11)

10



where TN is to be approximated by UC gives an equivalent problem:

. . . uC . .
given he’ estimate Mand € in the form = subject to the constraint
he - AUC = € . First, note that the maximum-likelihood estimate of n
in the absence of measurements g, is = 0. The estimate N= 0 may
be coupled with the set of measurements, ge, to form an '"effective'
measurement vector .ITQ—.J From this vector and the Gauss-Markov

e
least-squares principle for correlated variables [ 15], a maximum-

e
likelihood estimate of IL-:—J' can be obtained. Since the covariance

S - -
. ny.. rftlo ] ) . SUC G
matrix of[e ] is L-O—-!?e— , the des‘1red estimate L-—ér—_] must be such

that R(C, €) is rendered stationary, where

“x

R(C, €) = (UC) T sf'1 (UC) + eTse e+ uTavc - ho+e),  (12)

and p.T is a row matrix of Lagrange multipliers. Differentiating with

respect to C, €,and p and equating to zero gives the solution

vc=up~! uTat se'lhe (13)

and

1

T -
S¢ h_ > (14)

&= h - AUD-IUTA
where

D=UYXU and X = sf' +AS_ A (15)

11
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We may also

Uc = wut

We apply the

where UC is

rewrite (13) in the equivalent form

-1 _ .- -1
sJE T[s k au(u? s, = U) 1UTAT:' h . (16)
propagation rule f{or covariance matrices to uc-n,

given by (13):

-1 -1
UG - n= unp L uTAT s, (An=c) -7
ard s
ro.-1 T, T_ -l J[ 1 T, T -1, .°T
SUC-T“.—LUD UAS€ AISf UD UA:: A I_}
1T T, Y. . -1.T, T -1T
+[UD Uta's, Js {upTuUTATS ,
€ s L €
so that
SUC - = TYSfYT - (TYSf + Sf YT) + Sf + TYT, (17)
where
-1 -
Y = ATSe Aand T = UD 1 UT . (18)
-1
Substituting Y = X - S, = into (17) and noting that TXT =T gives
= T - £ - = < rr‘,
SUC -1 Sf +T+T (XSfX} T T‘(S1 Sf'(J. (19)
and
T
Se - eC ASUC -1 AT, U (20)

12




[ R
.

Expressions (13), or(16), and (14) give the desired statistical estimates
of the solution for any given basis U. Equations (19) and (20) give the

error covariance matrices by which the quality of the results may be

estimated, as will be seen in the next section. In the work reported

in this paper no use has been made of the estimate (14) of € of the

expression (20) giving S,é e
Various special cagges may be noted. I k=m, that is, if U is

a nonsingular mxm matrix, (13}, (16), (19), and (20) become,

respectively,
vec=AR=x"1aTs "ty | (21)
€ e
fi=sAaTuln (22)
=8, “h, o,
-1
Sf.n = X , (23)
-1, T
= A
Sg.e T AX A ’ (24)
where
_ T
H=S_+ASA

From (22), a result equivalent to (23) is

-1 T.,-1 -1
= = - +
X S'ﬁ - SfPsfPSf Z.SfPSf Sf + SfA H Se H ASf ) (25)

where 1
P=aTula.

13
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The study of special cases will be confined to the case k=m here. If

-1

Se =0, i.e., if the measurements have large errors, we obtain
A -1 . .
NM=0orf= fo and Sﬁ = Sf. If Sf 0, then X will be nonsingular
. . A T, -1,.-1 T_ -1

if and only if rank A=m. Then M= (A Se A) A Sp he and

T. -1,.-1 . .
Sﬂ-'ﬂ= (A Se Ay ", I Se—°0, i.e., if the measurements of g are

perfect, and if rank AU=n then n<m and (22) and (23) become

. A T T5-1 _ T T, -1
respectively, A= SA ‘&A.sz | handsy =S -SA (ASAT)TAS.
In computational practice the latter situation will not occur since the

quadrature errors will invalidate the assumptions as Se"O. Finally,

if S, -0, then (22} and (25) give, respectively, T = 0 or f=f_ and

We may show the correspondence of the present method with
2
that of Twomey [ 6] as follows: for k= m, let S€=c5€~ L s.=0 I
-02/02 f-"f.+¢1-f dg =g in (21) t r d with
Y—e f’o—p'o =1ti,an ge—gm 0 correspond wi

Twomey's notation [ 6]. Then

- _r T -1 T- -

f=LA A+YI] [A g+yp], (26)
which is identical to Twomey's equation (6), p. 105. Thus, if the
covariance matricas Sf and Se are both scalar, the optimum choice
of y (in the sense of maximum-likelihood estimation) is given by the
ratio of variances. However, in commonly occuring physical situations

Sf has substantial off-diagonal elements.

14



The basis U= Iwith m = k gives an adequate solution via (21),

% ‘ (23), and (24). However, it is often convenient to represent the
solution in terms of k parameters, where k < m, usirg (13), (19), and
(20). The quality of such a representation depends on the choice of

basis. In the next section we discuss the problem of basis optimi-

zation.
-

4, Determination of Optimum Basis Vectors

Previous solutions by Wark and Fleming [ 10], and Twomey [ 11]

have employed basis vectors (i, e.,columns of U) which were obtained
to fit the data in an optimum manner without reference to the integral
equation to be solved. It will be shown below that the integral equation

(a8 represented by the matrix A which is an ingredient of S

UcC - n)
plays a part in obtaining the optimum matrix U, but (see section 5)
the use of an exactly optimum basis U is often not critical, so that

U as employed in earlier solutions should suffice. This classical
determination of U (as exemplified by Obukhov's paper [16], for
example) is presented here and interpreted in terms of the covariance

matrix of the residuals. The criterion which must be satisfied for an

optimum basis for the integral equation is then easily seen.

T & e

Consider the quadratic form

(d - UC)T (d - UC)= g (U, C). (27)

15
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Here U and C have the same meaning as in section 3 and d is a
sample vector from a population having a multivariate m-dimensional
normal distribution, say, with zerc mean and covariance matrix Sd.

For any specified basis U, q(U,C) is minimized when

ve = uwluyt ol g, (28)

as can be scen by differentiaticn. Thus the minimum value of q(U, C)

for any given basis U is given by

oy TP T -1 T _1T{ T -1.T T .
q_; ("=d LU(U SNSRI SHE LA DI - O {29)

Various criteria may be used to determine what is meant by
"'smallness'" of ¢ In the classical case the optimum U is that which
minimizes the expected value of YUnin (U). Let TrB = trace £ denote
the sumn of the diagonal elements of any matrix B. By expanding

and employing the linearity of the operator E we may show that

E{ atQdl = Tr 5, Q (30)
for any real symmetric matrix Q. Applying (30) to (29) gives U

as that basis which minimizes

r _T - "1, I'!
Tri{syl I - UL U} U .

= TrS, - Tr L-*Tst(UTU)~1 . (31)

16
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In the last expression we have used the relation Tr AL = Tr BA, which
holds whenever AB is square. Expression (31) is invariant with respect

1-

to replacement of U by UB, where B is any nonsingular kxk matrix.
. T,..-1.T . . .
In fact, the matrix SdU(U ) "U" is unaffected by such a transforma-
tion. Furthermore, let J be an mxm syimetric positive definite
matrix and let ¥V be any mxk hasis matrix. Since VTJV is positive
definite, there exists [ M] 2 real nonsingular upper triangular kxk
. -1 - -

matrix B such that VTJV = (B I)T(B l). Let U= VEB. Then

T T T N T
U"JU=B (V'JV) B=1 Thus any normalization of the form U AU =1
may be assumed without loss of generality. We suppose

U'u =1L (32)

s

dU} subject to the

Hence U must bé found which maximizes Tr {U
constraint (32). By partitioning U into individual columns of basi
vectors and considering the maximization process involved, it can
be shown [ 18] that the columns of U must be chosen as those
eigenvectors corresponding tv maximal eigenvalues ll z...2 )‘k >0
of Sd' Thus U must satisfy

S U=UM, (33)

where

17



Substituting (32) and (33) into {3}) gives

k
E {qmin(U)] = 'l"r.Sd - Tr i :i—Zki i’or optununm U,

The ratio a = Tl?g——*" (34)

is sometimes called [8)] the fraction of the total variance "explained"
by the basis U.
It follows from (28) and (31} by us. < the propagation rule for

covariances, with TrAB= TrBA, that

Ef{q . (U)}=Trs . .
Thus E [qmin(U)} may also be given another interpretation. As a
criterion of the size of the errors resulting from a distribution
having zero mean and second moments defined by a given coveriance
matrix 5§, we may choose TrS. Since the trace is equal to the sum
of the eigenvalues of a matrix, this interpretation is geometrically
equivalent to defining the ''size' of an m-dimensional ellipsoid as the
sum of the squares of its semi-axes, The interpretation of
E{qmm(l})] as the trace of the covariance matrix will be freely used
throughout the remainder of the report. Note that E{qm.m(U)} is also

equal to m times the expected overall mean- square error of the

approximation d ~ UC.

18
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Although no use is madc of the result in what follows, it is interest-

ing that the minimum of the quadratic form

- . T. -1
qd(u,(,) - (d-UC)'s, (d -UC)

has the expected value m -k for any choice of U, and therefore cannot
be used to determine an optimum basis.
From the preceding discussion it follows that an optimum basis

U for use with the integral equation would be that which minimizes

TrSyc.n ™ TriS +T+T (XSX) T-TXS -SXT]} , (35)

From the definition of T we see that, even with the normalization
T . . R

U~XU = I, expression (35) is of fourth degree in the elements of U.

Since minimization of (35) is ditficult, and since classical basis
vectors seem to suifice in practice, the determination of U from

(35) will not be pursued farther in this paper,

5. Quality Criterion
. -1
The quantity TrX ~ can be used as a measure of the accuracy to be
expected from a given integral equation with given covariance matrices

Sf and Se and a given set {xi} of values of x. For k=m, i.e.,for a non-
. : -1
singular mxm matrix U, SUC _npreduces to X = by {23). Furthermore, as

1

demonstrated below, TrSUC _nETer for any basis U, Thus, TrX

is a measure of the best that can be done for a given problem. Calcu-
. -1 . .
lating TrX = and comparing with 'I‘rSf indicates the amount of improve-

ment over the a priori statistical knowledge that can be expected in a

given case.
19
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Theoren: Tr SUC 1 -Trx X—IE 0, where, as previously defined,
x=51+aTs 1 a,
1 g
D = UTXU,
-1. T
T=UD "U ,
TrS —'rx'l—'r~[s +T+szxr~'rxs-sx”r-x'1}
uc-n_ " T E b € t "~ Of
U= [ ‘ l | U] m where the Ui are linearly independent

and m = k.

-

-1
Lemma: Tr BT Sf B:Tr BT X "B where B is any real mxm matrix.

Proof: Ler S =(5 ), X™" = (X "), and B = (B ). By direct calculaiion,

-

I

m
by
LP"-IQ pi) BSB

m
Tr BTS,B= z B L y
i 3 P pc\ ql ‘E’ p:l q:.' i=1l

1, P.oq
. .th .
where B is the i—- column vector of B. By an extension[19] of

Bergstrom's inequality we have, for any real column vectors y and z,

T T -1 T 2
(y Sfy)(z Sf z)>2{y z) .

- - T !
Since X = 5. 1 + AT S_ ! A so that 2 Xz 22 S. z, we have

“

el
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X Bi gives

1}

T . T 2 )
(y Sfy‘)(f'-TXZ) 2(y z). Puttingy =B, z

- -1
(BiT SIB,)(B;I x! B) = (BiT x'B)% 1 B, 7 0, dividing out the positive
1

. T -1 A § e ol -1 _ )
quantity bi }\i Bi gives Li SfBi 2 B X Bi. (I Bi = 0, the in

i

equality is trivially true.) Thereiore,

TrBL S B = ZB S, B, ZB X B -TrBTx 'B. This proves

the lemma. It can now be applied to prove the theorem. Note that

-x ! may be written as S ~x7 e xr-y Tsf(xr -1) +

Suc -1 UcG -7

T -X-l. By the lemma

-1 - -
Tr {sUC_n-x bere {xT-p x™ (xT-0 }+TrT-Trx”!
=Tr{TXT-2T +X ' =T-X"'3. Since TXT = T we have
. -1
- > = 0. q.e.d.
Tr iS5 .y - X }=2Tr0=0.q.e.d

There are conditions for which a basis may be chosen such that
K i S I
Tr S"C __ndecreases as K Increases, and approaches TrX for k
considerably less than m. Such behavior is illustrated in figure 1,
which presents the valtues or Tr SUC ~ v8. k for the integral equation
=
(36), giver and discuss:2 in section 6. The conditions are:

Se = ,0l [, n=17, m =15 with {xi} and {yj} as given in section

6. The Obukhov basis resulting irom the S, of table 1 is

used. Figure 2 presents the values of

=




TrSUC . V8- k under similar conditions using the power basis
j~1 . c. .
Uij = y’l and figure 3 presents similar results for the trigonometric
. . /ZnJyl < . ~
basis Ui,Zj = sin /i 1,2, 15, j=1,2, . 7
72Ny ) - i =
Ui,2j+1=C°B'\b-a i=1,2, ... 15,j=0, 1,2, ... 7.

Evidently k= 6 will suflice for the power basis and k=11 will suffice
for the trigonometric basis. Figures 1,2, and 3 are combined for
easy comparison in figure 4.

The results of figures 1 through 4 arise from reasonably well-
chosen bases. The type of behavior to be expected for ill-chosen bases

is indicated in figures 5and 6. Figure 5 presents TrS s. kiora

uc-n"
basis consisting of random numbers uniformly distributed between -1
and +1. Figure 6 presents similar results for the basis U.lj = bij. Clearly,
in these cases nothing less than a full complement of basis vectors

(i.e.,k = m = 15) will achieve the desired accuracy. By noting that

. 1s m times the theoretical overall mean-square error of the

TrSUC R
fit, we see that 'I‘w:Sf = 120.407 corresponds to an overall rms error of

2.88 and that Tr}(-1 = 23.946 corresponds to an overall rms error of
1.26. This shows the extent to which the original statistics of f may
be improvad by using the integral equation in this particular case.
The analysis presented here serves a similar purpose to the
analysis of the ''degree of independence" of the measurements of

g{x) as discussed by Twomey[ 6], [11] . However, in the present

22
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case the actual rms error to be expected is found and the results
are necessarily dependent on the statistics SF and Sf_. as well as

on the kernel of the integral equation.

6. Numerical Inversion Results

For purposes of numerical experimentatior the following equation

AT Tty A NN i e i A g Py mf
Lo 1

was used:

s -y/H
o "x)H alx) §e -y/H, f(y)ea(x)Hoe 0 dy = g(x). (36)
[}

This equation occurs in remote atmospheric probing work if an
exponential atmosphere is assumed. Here H is a constant and
o

a{x) is given by

afx) = 1.1 x - 1 (37) .

[
3
1

for the purposes uf this section. U { = fc = const. is inserted in the
left side of (36) and the integrations performed, the resulting right

side is:

i _ -H/H
g(x) = fc [1 —e a(X)}IO(l e 0)] . (38)

Substituting (38) into (36) will, of course, give an integral equation 4
whose correct solution is f = fc. In the work reported here, the

values H = 10, Ho = S,and fc = 293.997 were assumed. To study the

LS A ot gt o AR 51 ¢
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behavior of (36) in the presence of measurement error, random

errors distributed in accordance with Se were added to g(x) as given

by (38) and the mean value fo was varied randomly from fc in a manner
determined by Sf, which is given in Table 1. ;

Since the solution f simulates an atmospheric temperature pro-
file, Sf was obtained from radiosonde data from 240 soundings during
August at Denver, Colorado. The matrix Se was assumed to be
scalar and the values assumed will be indicated. The method of
constructing random errors is indicated below.

The CDC 3600 computer has a FORTRAN function, RANF (-1},
which gives random numbers uniformly distributed between 0 and 1.

These numbers are random in the same sense that a table of random

[Tree e

nurnbers is random; that is, if the series of statements \-‘i = RANF(-1),

- i

i=l,2,...M is repeated in the same manner, where i=1 refers to

the first use of RANF (-1) in a given computer run, the same seguence
will result, but the sequence itself is random. It follows {rom the cen-

A
tral limit theorem [ 20] that the variable V_ , where

M

12: vV, - M/2 -,

M7 Mz (9

A

\r
is approximately a random normal deviate (i.e.,it has a normal
distribution with mean zero and standard deviation 1), the degree of

the approximation depending on the size of M. A sample of

9,000 values of Vy; was calculated for M=1,2,4,8, and 16.
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B 2

Histogram frequencies were found and compared with the frequency
distribution for random normal deviates. There appeared to be no
significant discrepancy between the histogram and the theoretical
curve for M=8. In all work reported here M= 10 was used.

To simulate errors having a given covariance matrix S, we {irst

determine [ 17] a matrix W such that

S=W W ., (40)
T . .
If V=(V1, VZ' ce Vm) is a sample of independent random normal

T

deviates, we form V=W V. Then, since S_ . = I, it follows {rom the

v
propagation rule for covariance matrices that

s = wHiwhHT s wlw = s. (41)

This process was used to simulate errors having zero mean and
covariance matrix Sf.

In the simulation of errors the mean vector fo was varied rather
than the sample vector f because the integration to give the right
side of (36) could then be obtained in closed form as (38), and
a check on the accuracy of quadrature could also be obtained. A
total of 15 quadrature abscissas were chosen; these consisted of 5
Gass-Legendre values for each of 3 intervals: Otol, 1to3;and 3 to 10

respectively. Intervals of different length were needed because of

26
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the general decaying-exponential character of the kernel. The
interval enclosing the x, was tzken as 1 Sxi 1.98, i=1l...n. The
x, were evenly spaced, and the values used will be indicated. Under
these conditions a numerical integration with Gaugsian quadrature was
compared (for f= fc) with (38) and the maximum quadrature error

was found to be .00ll in the righ' side, for which the actual value
varied from about 103 to 292. All solutions used the classical
Obukhov basis. In table 2 results are shown for x; = 1(.0544...) 1.98,
where the x; are roundzd to four decimal places. Here n= 19,a(xi)

is gi by (37), S, i i in table 1, § =o° 1=10"%. ]

is given by ), ¢ 16 as given in table 1, § =0 1I= -1,

and fc=293.997 as indicated. The solutions were run with k=5,

-1—

Under these conditions TrS TrX 12.8. There was some

uc-n"
loss of accuracy in the computation, so that trace values are good
only to one decimal place. These were the only trace computations
tor which the computation crrors were noticeable; most other

trace values were computed using double precision. The overall
rms error corresponding to 'I‘r}{_l =12.8 is .92. The solution of
table 2 and two others are shown graphically in figures 7, 8, and 9.

The three solutions were selected at random from a '"'run'' of 40

solutions.
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Table 2
SOLUTION #1 CF INTEGRAL EQUATION, fc = 293.997;
SAMPLE RAMS ZRROR: 0.71
y ucC f=£o*UC fo ,
.04¢9100%77 -1.220 294,02 295.24 !
. 23076534 ~1.894 293.25 295.15 .
.500G0000 -2. 087 293. 86 296.35
. 76923404 -3.018 295.07 2938.09
. 95308992 -3.075 295.03 298.1
1.0938202 -3.066 294.89 297.95 f
1.2613307 -2.614 294.05 297.00 :
2.0000000 -2.475 293.85 296.33 |
2.5381693 -2.155 293.60 295.75
2.9061798 -1,341 293.44 295,28
3.3283705 ~1.598 293.98 295.58
4.6153574 -1.157 292.94 25%.10
6.5000000 -1.779 295.16 276. 94
8.3846%2 -2.332 293.55 295.89

9.6716295 -2.268 294.52 296.79 : :




T s

-1 : -
The index TrX =~ was computed for exactly the same conditions as for

LQE e a

2
the solutions of figures 7,8, and 9 except that Se =T, 1=(.01)1. Undex

these conditivns it was found that TrX-l = 21.44. Next every second and

third value of X, was removed to give the set x; = 1(.1633...) 1.98 Y

Brd

where the resulting x, are rounded to four decimals. In this case

S

n=7 and 'I‘r,*{.l = 23.95. This is the case shown in figure I. N - )

Decreasing n from 19 to 7 had very little effect on the expected exrar. \ SR

The effect of changing n is summarized in table 3, For this kernel,

the theoretical rms error is not strongly influenced by n, as long as

the interval (1, l.98) remains fixed. 3
{
\
Table 3 ‘%
1y .
T:x ! FOR VARIOUS x-CONFIGURATIONS ON (1, L. 98} |
! A Y
n x, ‘I‘rX-1 Theoretical % -~
Overall rms errors :
19 1{. 0544)1.98 21.44 1.20 T
7 1{.1633)1.98 23.95 1.26
2 1(.98) 1.78 27.45 1.35

Figures 10,11, 12, and 13 present results for the conditions of tablc 3

with n=7 and k = 4. These solutions were selected at random from

a "run'" of 40 solutions, The improvement of the solution over the

statistical values is not as pronounced, because of the increase of o

from .01 to .1,
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The 40 solutions of which figures }0 through 13 are a sample

TR oo B T

were also run for k=1,2,3,5,6,9,12, and 15. The same scquence
of random errors was used for each run of 40. A typical solution is
shown in table 4 for various values of k., Table 4 shows typical

behavior of the solution as k is varied. In this case, any value of

k from 3 through 15 would have given essentially the same solution,

B A R o T

P
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7. Absorption of Microwaves in the 10-150 GHz Frequency Band,

The Van Vleck-Weisskopf thcory | 21] was applied by Van Vleck

[22],[ 23], to the absorption of microwave by oxygen ana water vapor.

The formula obtained by Van Vleck [22] for the atsorption of O2 is

87:3VN Re B
6 d ‘2
Y = 10°(log,, ¢) —
c(3k T)
Ly, ttyg vle 1P 2ly s vl (42)
N+ W’ U UN+ N- N-’
N
-E
2 " 2 N/kT
IPN_I + F(V);HN| le / ,

0

AN
where the following notation has been introduced:

a) N, 1is the total number of molccules per cubic centimeter

d

and R is the fraction of the total which is Oy
2

b) ¢, k, and Vv are the speed of light, Boltzmann's constant, and

the frequency of the imposed microwave, respectively;

¢} fand F are form factors for the line shapes given below;
P g

d) \JN+ and \JN- are resonant frequencies of the transitions;
(N, labels the so called zero irequency transition)*
e) ¥ is the absorption in decibels per kilometer and is numerically
equal to the product of the mass absorption coefficient times the dens
f) N runs over odd integers labeling certain rotational quantuin states;
g) !uN!Z is the square of the matrix element dipole moment evaluated
o between approzriate anzular momentum states;

. . . . . -1
h) B is a rotatioral constant whose magnitude is 1. 44 ¢ 7, and

The transition frequeacies for oxyoen can te caleculated with sufficient

accuracy for the purposes of this report from the formulas in Tovnes and
r

Schawlow ,241.
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i} EpNis the energy level of the Nth quantum state.

In (42) the expression of Van Vleck has been translated into the
more modern notation and two of these cquations are consolidated.
Furthermore,VanVleck's expression is for pure oxygen. The fraction,
R°3’ of oxygen in the dry atmosphere is about 0.2. In the actual atmos -
phere, Ro varies slightly since the mixing ratio of water vapor also
varies.

The form factors in (42) are given by

<
f(v"v)z":i [(vi-v);: v? (vi+v>?‘v+ o )
and >
F(v) = tiir_x;o [v ftv,m] = : E:Ziv(b\’)zl . (44)

The matrix elements of the dipole moment can be calculated from forin -

ulas in Townes and Schawlow [ 247,

The formula for the absorption by water vapor at the 22.235 GHz

resonant line in decibels per kilometer is given by Van Vleck [ 23] as

; . 8 \)NdRHZO l 2 -ES,-l/kT
6575 = 10°(log) ge) —5—— L 5-1| e
(45)
v, flv, : Y
6575y 6575 )
and G is the rotational partition function given by
-] J . -E k
_ Ir y/T
G = (2 -(-1)"'] T+1) e (46)
J=0 T=-7J
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The dipole moments and transition frequencies of H, O may be calcu-
lated from formulas in the Appendices of Strandberg [25.. Thesc are
much more complicated than the cofresponding calculations of Ol'

Equation (46) implies that other transitions are possible for the
H,0 molecule. If the form factor in (43) were valid for these, then
the absorption of each of these lines would have the same form as (45).
These frequencies are much higher, . general, than the highest frequency
of interest for this paper. Thus, an approximate formula for these con-

tributions Y can be written as YRe » given by
s.

2
YRCS. =K pv Av. v47)

The total Y due to HZO is the sum of the contributions of (45) and
(47).

The experimental values appropriate for the K and AV's for the Van Vle~k
equations will be discussed in the next section. The AV is derived in the
VanVleck-Weisskopf theory from considering broadening to arise from the

finite extension of the time between collisions. In fact, 274V is the rzcip-

rocal of the mean time between collisions in the VanVleck-Weisskopf theory.

If one had hard spherical molecules, the mean time between collisions

could easily be calculated from kinetic theory [26] . lowever,

mulecules interact in a much more complicated way than can be described

by the simple hard-sphere collision picture. A better approximation can
be made by considering the molecular interactions to be more compli-

cated functions of the separation than the hard-sphere approxi-

mation. This at least improves the temperature dependence of &v.
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The classical theory described atove does not explain why different

lines have different widths. One could account for this in the classical

approximation by ascribing a different interaction between each state.
No a priori knowledge from classical theory can supply this sort of

information and it must be introduced as an additional set of assumptions
if one is to proceed further via a classical

mechanical calculation of
line widths,

S,
A partial quantum mechanical approach to the problem was given

by Anderson as quoted in Tsao and Gurnutte, [ 27]. The translational

motion in this calculation is treated as a classical mechanical problem,
™,
whereas the internal state iransitions are treated as a quantum mechani-

cal problem. In this picture Av is given by

AY = nvo

) 4 (48)
wherc

g = Zva db (I, b).

In (48}, n is the number density of perturbers, v is the average relative
velocity, b is the separation of the molecules at closest approach and

(I, b) is the distribution function for cross section as a function of the

internal coordinates, I, and b.

R it =
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8. Least-Squares Analysis of Line Width Data

The absorption eéuations given in the last section, as developed by
VanVleck and Weisskopf [ 21], contain essentially one undetermined
parameter, the line width constant, A V/C- Calculations of this quantity
are laborious and many uncertainties are present in such calcul«..ons.
Examples of such uncertainties are lack of knowledge of the exact form
of the moleculas interaction, imprecise knowledge of molecular constants

~
(such as quadrapole moments) which enter into the theory of line broad-
ening, and the effect of higher order corrections to the perturbation
expansions,
.

As a check on theory, there are fortunafely many experimental
results on line broadening and absorption coefficients for a variety of
conditions of pressure and temperature. For low pressures (around
10 to 20 mm of Hg), direct measurements of line widths can be made
since unresolved lines are well separated and there is very little line
shape asymmetry from the ''negative frequency' portion of the VanVleck-
Weisskopf iine shape. However, there is danger in extrapolating these
low pressure measurements to high pressures, especially if the individ-
ual lines are not well resolved at the higher pressures. A notable
example of this type of behavior is oxygen.

In the work reported in this section, the absorption data of various

resecarchers have been least-square analyzed to determine line widths
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and, in the case of water vapor, line shape factors. A least-squares
analysis applicd to nonlinear equations (‘such as the VanVleck-Weisskop!
equations) cannot, in general, be solved exactly; the solution must be
determined iteratively by use of a reasonable first estimate to insure
convergence.

The least-squarcs mcthod used here may be described as follows.

We wish to characterize N data points di’ by a function f, of n parameters
i

T
pj such that N 2
E‘(di - fi(pl,pz.-‘--pn)) w, = min , (49)
i=l '
where w, = positive definite we ight of the ith data point. It is assumed

that ""reasonable" first approximations to the parameters p, are known.

(0)

If these first approximations are labeled as pj , then the functions f,
: i

may be expanded in a Taylor series atout p.(o) :

n
. (0) z of (0) (0)
f(p.)= f.(p. + — (p. . - P. . (50
(P = £+ ) 55 By ey R )
k=1
- . N A
LCt C;.l afl vfl
35 ¢ 3o
ap1 apz pn
=} 2 )
f fZ f2
0 o)
7= °P) °P, Py N, (51)
ch :fN_ ch !
A A ¢ !
! p1 'pZ c’pn | <
<— n- >
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and

d, -f .-t 1% (52)

reldy s fdy o, e dy - Mg

vector of residuals.

"

In (51) and (52), both the function fi and its derivatives are to be

- . (0)
'valuated at the J 1 ate . . PR .
cevaluated a ¢ original estimate pJ *.  Then minimizing (49) yiclds

the matrix equation given by Strand [ 28].

Apzop - p(o) = (JTF J)-l JTFI‘, (53)

where

T = diag (Wl, w Gy W), (54)

2’
Equation (53} is theun itcrated by reevaluating {51) and {52} at each
stage of the iteration process-

Equation (53) was applied to the oxygen absorption data of Artman
[29) and Crawford and Hogg [ 30] to determine the values of
the line width constants for both the (+) and (-) transitions. The data
of Artman were taken under laboratory conditions at T = 300°K and
pressures of 1 atm, = 2tm, and ‘} atm in air. Each of the above samples of
data was taken at approximately 25 frequencies covering the range of

50 to 62 GHaz.
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Each piecc of data was weighted with unit weight. The data of Crawford

and Hogg were taken from_transmission studies through the atmosphere

at sea level pressures. As stated in their article, the approximate

temperature range during the period of measurement was 9 % 3°C.

Hence, as with most data taken in the field, the uncertainiy of these data iz
greater than that of laboratory measurements, The results of the least-squares
_ fit are shown in table 5, As P®s bcen discussed previously [31],

the numerical values of the normalized line width parameter (4 v/c)/P

decreasc with increasing pressure. A new fcaturce, possibly of significance

for line breadth theory, is that the line widthg of tac + transitions are
consistently higher than thosc of the - transitions for all of the data
examined. In addition, the data of Crawford and Hogg give higher values

of the line width than a simple extrapolation using the usually assumed

temperature dependence would indicate. This fact causes the authors to

speculate that the interaction of HZO with 02 might give rise to the

increase in oxygen line widths. Of course, the residual absorption of

the 22 GHz and the 183 GHz HZO lines might also appear in this

analysis as an increase in line width, but because of the absence of

relative humidity measurements while the absorption measurements were

being taken, it was impossible to ascertain if this was the case. In any

case, it would be useful if measuremeuts were taken of oxygen line

broadening in the presence of water vapor.
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The 22 -GHz water vapor absorption data of Becker and Autler (32]
were also analyzed, but in a slightly different fashion. For a fixed temp-

erature, the water vapor absorption coefficient may be written [23]:

2 2

.1 = cl\) ~A2\’/C Z+ —— Z/CA\JZ}+C2V —E-', (55)
g ©-3)%+(av/e)® O+ )% =)
0 0 c
AV ~
where — = af{l + bp). From 66 measurements of % vs, p and vV, four-

and five.parameter {its to the data were determined. The parameters

, a, b, and, in addition, for the five-parameter
N

fit ;0. The results are tabulated in table 6 . The initial estimates in all

determined were cp» c2
cases were taken from accepted values of these constants.

Note that the resonant frequency determined by the five-parameter fit .
. -1 C s .

is very close to the accepted value .7417 cm , which is determined

by other means. The values of ¢, and b, which describe respectively

2

!
|
z‘

the nonresonant contribution of the 183 GHz and higher lines and the
effect of H,0-H,O line broadening, are both noticeably higher than the :

accepted values. Again, these facts could be of theoretical significance.

Surprisingly good consistency was obtained between the four-and-five- ‘
parameter determinations, considering that the data were somewhat

noisy.

e ——n s
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| . Table 6
| .

i Water Vapor Absorption Parameters Determined by a Least-Squares Analysis

of the Data of Becker and Autler Using the Form
Y- . 32 ¢ av/e + Av/e 34 e '\;Z Ay
1 ~ ~ 2 ~ ~ 2
° (V-v ) + (av/e)® (wvo)2 + (av/e) ¢
where Av/c = a(l + bp)
) 3
Units: y/p dB/km per P¥m
-1
Av/c em
c:m-l
3.-1
b (g/m”)
~ o~ -1
V)Y, cm .

- . th )
Four-Parameter Fit Initial Estimate 107" Iteration

a . 087 . 08478
[ . 005 . 00708
c1 . 004 .00361
<, .05 .06089

rms deviation in y/p = .00114 dB/_};cm per g/m3

average y/2 = .0154 dB/km per g/m

Five-Parameter Fit

a

Initial Estimate 10th

Iteration
. 087 . 08366
. 005 .00710
.004 ’ . 00355
.05 . 06204
L7417 . 74380

rms deviation in v/p = .00114 dB/km per g,/m3

average y/p = .015% dB/km per g/m
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9. Application of Quality Criterion to Determine the Reduction

of the Variance of a pricri Temperature Data by

Microwave Radiation Measurements .

In recent work by Twomey [ 11] and Mateer [ 8], the information
content of radiation measurements has been discussed. In particular,
it was shown that for physically realistic smooth kernels, independent

T
information obtained from separate measurements is severely limited
due to ubiquitous measurement error. Twomey [ 11] goes further in
his analysis and determines, from a large number, p, of possible
AN

measurements with a given noise level, the number of independent

pieces of information, 4+, which can be found [ 11], and gives a pro-

cedure for determining optimum frequency locations for the L measure-

ments (£ <p). In many inversion problems, however, certain informa-

tion about the unknown. function is known before any measurements are

made. This a priori knowledge is embodied in the mean and the

covariance matrix, both of which can be estimated from past data.

The information content of radiation measurements should be judged by

the improve.ment over the a priori knowledge.

-1
As noted in section 5, the quantity TrX =~ can be used as a

measure of the overall accuracy to be expected from a given integral
equation with given covariance matrices Sf and S and a given set

{x;} of x. Calculating Tr X-l and comparing with TrSf indicate
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the amount of improvement over the-a priori statistical knowledge

that can be expected in a given case. It is important to realize,
-1 . :
however, that TrX ~ is not a panacea because no single number
can adequately describe m(m +1)/2 of them. More detailed informa-
*

tion, such as the amount of reduction of variance of the function at

h -
various points, can only be obtained by comparison of Sf and X 1.

The calculations of X—l in this section have been carried out for
ground-based probing 'looking up'" and for an integral equation
determined by the Van Vleck equation (42) for microwave oxygen
absorption. The temperature and pressure structure used in calcu-
lating the absorption at each height were determined by assuming a
constant lapse rate of 6.5 °K/km to determine the temperature and

by integrating the hydrostatic equation to determine the pressure.

The effect of non-linearities in the kernel due to fluctuations of the
temperature from the mean value has not been included in

this analysis. The water vapor absorption was assumed to be zero,
and surface temperature and pressure were taken as 0° C and 850 mb,
respectively. For simplicity the pressure dependence of t};e normalized
line width constant (AV/P) was neglected and the values of

<‘(éé\i-)/p)i = (:):?2‘;18 cm-l/atm were used for + and - transitions respec-

tively. The calculations at each frequency have been made assuming
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monochromaticity, so that the degradation of intormation due to

finite receiver bandwidth is not accounted for. This effect should
be small, however, since the ratio of receiver bandwidth to pressure-
broadened linewidth can be made quite small for microwave receivers.

Because of the previous assumptions, the calculations involving X-lare

meant to be illustrative only.

TYS—

Before presenting these calculations, we must give one more theo-
retical extension of the methods of sections 3,4, and 5. For a ground-
based probing scheme, the value of the function at the lower point, a,
can usually be measured directly. This constrained point should be

used to modify the statistical estimation of the function and its

GNP oy petit

. . -1 . . .
uncertainty as given by X . First, the constraint can be incorporated

into the integral equation by using a quadrature formula (such as ! _

Gauss~-Radauv) which uses the value of the function at a, f(a), directly:
b m

SK(x,y) fly)dy = E w. K(x,v.} £(y.)

a £ J J

m

= w, Kl(x.a) f (a) +;Z¥j Kex, v, £(y)) (56)

Thus, by subtracting wjK{x,a) f(a) from the measured quantity,

g{x), a matrix equation to be solved for (m-1) cornponents of the

AT T YT T M oM i s

i P Aenibobin B, A !{ﬂ' i

Bt -
N TR T ne . . .
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function of f is obtained. Second, knowing f(a) reduces the un-er-

tainty in all the other functional values. The new covariance matrix,

Sf(c), of dimension ( m - 1) x (m - 1), has elements
S..S,.
R W C i V] i,j=2,3, ..., m} |
1) by} S ! i
11 _ |
where
- (c) .. (c)
SI = (Sij) and Sf = \Sij ) - (57)
For convenience, the matiix Sf {c} will be referred to in the {ollow-

ing as the constrained covariance matrix. Furthermore, instead of the

mean, f, as the best a priori estimate of f, the effect of knowing f1

modifies this optimum a prigri estimate to T where

S
A = il — i
fi-fi-i-s-l—l—(fl-fl), i=2, ..., m. (58) i

Equations (57) and {58) may be derived from linear regressions of the

(m - 1) functional values fz, f3, eeey fm as functions of the surface valve

fl.
The two temperature covariance matrices and the corresponding
means were obtained by ensemble averaging of 5 years of radiosonde 1
data for the 2 months, February and August, at Denver, Colorado.
The February and August averages were over 163 and 240 soundings,

respectively. The temperatures, given at heights determined by the

radiosondes, were interpolated linearly to determine values at the 15
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desired quadrature points. (Gauss-Radau quadrature was used for the
subinterval 0 to 1 km, while Gavssian quadrature was used in the sub-

intervals 1 to 3 km and 3 to 10 km.) The means T (hi), and elements of the

covariance matrix, S(hi, hj) = Sij’ were determined from

~ N
T (h,) =-11;I Z To (hy) , (59)
a=1
and N
N i .
l -— —
S 4= R azl (Ta (h) - T(hi))('ra(hj) - T(hj) ey

where N is the number of soundings, @ is an index for each sound-
ing, and Tq (h;) is the temperaturé of the ath sounding at the height -
hj. The constrained covariance matrix was then calculated using
(57). The means of February and August are.given in table 7 and
the constrained covariance matrices for February and August are
given in tables 8 and 9, respectively. It may be of interest to
compare the unconstrained covariance matrix for August, given in

table 1, with the constrained matrix for the same month, table 9.

The elements of the matrices differ considerably only below the

10th quadrature point (around 3 km).

v a
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Table 7
Five-year Mean Temperature Profiles at Denver, Colorado,for February
and August.
i h, T(hi) (Feb.) T(hi)(Aug.)
(kun) CK) CK)
1 0.000 268.23 294.00
2 0. 140 269.92 293.48
3 0.116 269.56 292.47
4 0.723 268.15 2990. 87
5 0.943 266.83 289.43
6 1.094 265. 87 288.40
7 1.462 263.5% 285.69
8 2.000 260.08 281.56
9 2.538 256.76 277.32 ;
10 2.906 254,40 274.47
11 3,328 251,59 271.25
12 4.615 242.506 262.74
13 6.500 228.80 250.11 i
14 8.385 219.18 236.16 '
15 9.672 217.11 226.76
To determine the amount of reduction of the a priori temperature
variance by microwave measurement: of cxygen emission, calcula-
tions of X-l were made for a set of frequencies which approximately
cover the entire oxygen band. This set is shown in table 10.
1
48




LeUge
€67
20°S

L 1-
90 "¢~
Ll ¢-
6% "P-
¥2°9-
85 "L-
218~
LZ°8-
% "8~
06 " L-
AT

5667
sLLe
8¢ v1
<Pl
L9y
98°¢
00'¢
961
(AN
s~
L=
€11~
TL--
9¢ "~

¢0°S

87 %1
¥L92
Lz ez
S9°81
Y7 Ll
I19°91
79°S1
£0°FI
69 °¢1
¥r-et
(A0 B
¥£°6

18°¢

Teet-
<yl
Lz e
Lo-¢ce
6L71¢
e 07
G1°61
16°LT
Hw.oa
68 %1
6y %1
6S°€1
(42N
so0°L

90 °¢-
9%

6981
6L 17
62°22
L0712
L6661
£Z°8I1
6¢ 91
66 "¥1
09 "¥I
89 "¢T
€11
LL'9

LLog-
98°¢

PPLT
be 07
L0°1e
8¢ "0¢
0961
88 "LT
¥0°91
S9 %I
22°%I1
ge’eT
56°01
€279

6% b~
00°¢
1¢°91
9161
L6617
09 °61
0661
12°81
L8 91
2691
6% %1
RN
6111
659

2 °9-
9¢°1
29761
16° LT
¢ 8T
B8 LT
12°81
L8 81
U8 "Ll
LS 91
81°91
s2'91
6921
6¢°L

86 "L-

')
1

£0°¥P1
1¢°91
6¢ ‘91
¥0°91
LE "I
08°LI
8581
2081
PLTLT
6891
ST PI
LZ°8

21°8-
16~
6921
68 " F1
66 %1
S9 b1
6 %1
L5°91
20°81
1€ 81
22°81
G9° LI
€6 %1
8L°8

LZ°8-
L=
ANN4A
6% vl
09 "%1
9T "¥1
6Pl
81°91
PLLI
27781
8¢ 81
28°LT
81791
66 °8

66 8-
19 B
AR
69 ¢l
89°¢l
gerel
56 ¢l
$2°¢T
6891
S9° LT
78" LT
3L7LT
Le'st
SZ°'6

06 "L~
[

43

(22NNt
€1l
S6°0T
61°11
69 °¢1
SI°PI
£6°¥1
8l 61
Le'sT
16 %1
89 "6

Le "G~
9¢ "-
18°%
s0°L
LL"9
€679
669
6e "L
L8
8L'8
668
57°6
89°6
96 °8

103 BlR( IPUOSOIpRY ‘AIBnIgqa ‘I9AUI(T JO .NAMoV Ul *XIIjBJA 9OUBIIBAOD danjeradwa T

"9anjes3dwa ] 9DeJING PaUIBILISUOD YJIM SJUTOF HInjeIipenyd UG O3 puz ayjy

g 2168

49

it

A iy iy o8

=




R o L

6¢ LT
[4 RN
5879
9¢°¢
98 ' 1T
59 °1
Ly 1
[A8!
98’

3¢’
52’

v el
Lo-21
9¢ "L
¥r-oe
0% "¢
£0°¢
8L°1T
8T'I
16°
19°
8¢ "
91"’
61"’

<1 "-

c8°9

9¢ "L

L¥°9
oL°€
€42
61
£€9°1
90°T1
€L
05
Is"
80"
1%
90 -

1 ——— - ———— ¥ ¢ 14

962
Yre
oL ¢
08°¢
16°1
8% °1
ot
gL°
bs
8¢’
€’
o1
12"
I

981
0¥ °¢
€% 7
16°1
0Z°¢
€61
L1
8¢ "1
€1l

[4:
g9
6% "
2

S9°1
£0°¢
61
8v°1
€6°1
96°1
26°1
oLT
$S°1
serl
1 XA
80T
08"
Lee

AN
8L°T
£€9°1
P71
£LT
26°1
£€1°¢
60°¢
002
081
89°1
0s°1
or-1
v’

(AN
821
90°'1
8L’
8E T
0L°1
60°2
¥
Ls'e
(444
£E "¢
¥1°¢
VAT
€9

68 ”
16°
cL
bs -’
€1r

LS
19°
0s”
8¢’
CH
Ge I
08°1
424
0¢ ¢
§9°¢
2L ¢
09°¢
LL'?
el

8¢ *
8¢ "
Ie’
52
28"
€21
89°1
£g°¢
§¢'¢
2L°¢
88 ‘¢
£€8°¢
10°¢
9% "1

92"
91"
8C "
or°

g0 T
01
v1°¢
$0°¢
09°¢
€8¢
86°¢
(408
0L'T

t£e’
61"
v1°
12°
bt"
08"
o011
LSt
372
LL2
I0°¢
(A
SG'e
81 °7¢

€1 -
°R
90 -
€T’
(AN
Le:
(4
€9
L6
Te’t
9% ' 1
0L"T
81°7
P12

sprnjezadwa ] 32®BJING POUTBIISUCD YIlm SIUTOJ danjurpend YIGT 3yl 03 puz ayy

10} eje(] Ipuosoipey ‘1sndny ‘aaaua jo .NAML ur ‘X{IJBN 9JUBIIRAGY axnjeradwsa ]

6 2138l

50




e

Table 10
Frequencies Used inCalculations of Trx!
V(GHz)
47.02650 52.02593 60. 43505 !
47.22650 53.93117 61.80036
47.94917 55.22163 62.48631
48.45304 56.26466 62. 68631
50.28294 58.44669 63.98631
-1
The calculations of X were run for both months, and for assumed
rms brigntness temperature measurement errors of .0l OK, .1 OK,
and 1.0 °K. The entire matrix of X—l for Denver, February, wah
0.=.01 °K is shown in table 11.
The meaning of a 15x15 covariance matrix cannot be presentedin
simple form. A rough estimate of the standard deviation to be
expected at each quadrature height is given by the square root
of the corresponding diagonal element of the covariance matrix.
These quantities are plotted as functions of height in figures 14 through
19. For ease of comparison, the error distributions to be expected
in the constrained solution are shown in figures 20 and 21. The cor-
-1 .
responding overall quality criterion, TrX ~, is tabulated in tables
12 and 13.
H
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Traces of S

f

Table 12

Mcasurement krrors, 0
[

-1 R .
and X For Denver, February, for Various rms

-1 2 -1 2
o Trs(°K)> xR | Tr 5,(°K) Tr X 1°K)
(OK) Unconstrained Unconstrained | Constrained Constrained
.01 615.22 20.85 310.70 18.19
.1 615.22 43,86 310.70 37.91
1.0 615.22 93,11 310.70 85. 05
Table 13
-1 .
and X = {or Denver, August, for Various rms

Traces of Sf

Measurement Errors, 0.

o -1 -
e T: S, (°K)? Tr X (°K)% TrS, °k;% = X 1 °K)?
{ K) Unconstrained Unconstrained Constrained Constrained
.01 120.48 5.73 68.92 4.76
.1 120.48 14.23 68. ¢ 12,67
1.0 120.48 33.91 68. 92 31.61
53
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The study of X and its tracec can be directed towards an
importani erperimental consideration i.e.; namely, that of deiermining i
an optirnwm distribution of measurement frequencics, given that only

a certain numter of them (usually small) will be available. This problem

has been studied by Twomey [11] }from the point of view that the
optimum location of measurements is determined by the integral
equation itself. Furt.cr, from tue analysis of a certain matrix, which
depends on the kernel, he shows that the number of independent pieces of

information is limited by the number of eigenvalues which are larger than

- e I bt bt =

the noise level of the measurements. In the absence of additional

information, the above approacn seems reasonable.
When additional information is available, such as the statistical

{
information contained in Si" it is clear that the optimum frequencies should 5
i H
be determined from a statistical comipromise among Sf, Se' and the proper- j

i

ties of ATA. This optimum set could be different for periods of different
meteorological statistics, If the measuring instrument(s) is (are) not

tuncable, a heterogeneous ensemble averaging over yearly data might be in
order. A method which properly weights all available information has the ad-
vantage of allowing the choice of frequencies such that the duplication of easily
available information (that of Si and f_) by difficult experimental measure-~

ments is made as small as possible. The concept of '"'number of
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independent pieces of information' is not as straightforward with

this analysis as it was in Twomey's. However, an "offcective number",
such as the number of mcasurcments required to reduce the

a priori variance to a desired level, given that the noisc level is
fixed, can be defined. In a theoretical sense, such a number could
always be obtained for any given level greater than zero since dupli-
cating measurements is cquivalent to lowering the noisc level.
Practically speaking, if a reasonably large reduction in variance
with a few well-placed measurements is not possible, the experiment
is probably impractical.

An atten,pt was made to determine the approximate sensitivity
of Tr X-l to choice of and number of frequencies for one, two)and
three {requencies and for o= .01°K. The one~frequency search was
carried out starting with 47.0 GHz and adding a .5 GHz increment
until 56 GHz was reached. ''hese resultr, for toth the constrained
and unconstrained data, are shown in table 14 for the Denver,

August, statistics.

The frequencies corresponding to the minimum trace are 54,5 GHz
{for the unconstrained (U) case (Trxﬁl= 50. 6 (OK)Z) and 4.75 GHz for
1

~ - . 2

the constrained (C) case (Ty X = = 37.7 (°K)”). The traces of .‘5f :
. -1 ’

were 120.5(C) and 68.y (U), (OK)Z, and the traces ot X for the

e
15 freauencies of tahle 10 were 5.7(°K)"(U) and 4.8(°K)2 (C). Thus

55
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Tabic 14

Trace X_l vs. Frequency, Denver, August 9. .01 °K
(Single Frequency, n= 1) Trace S£ = 120.48
v 1% O K)® e X OK) |
(GHiz) Unconstrained Constrained l
: |
47.5 60.3 37.7 g
48.0 56.9 39.2 :
18.5 55.4 39.9
19.0 54.8 40.2
49.5 54,5 40.4 .
50. 0 54, 2 10.6 1
50.5 53.9 40.7 §
51.0 3.6 40.9 %
51.5 53.2 41.2 ;
52.0 52.8 41.5 :
52.5 52.3 41.9 |
53.0 51.8 42.4
53.5 51,2 43,1 )
54.0 50.7 44,2 !
N 54.5 50. 6 45.6 i
55.0 51.0 47.0
55.5 51.8 48.3
56.0 52.7 49.4
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the use of & singiv [reguency, with this choice ol a.s rcduces the
variance by a factor of 2 (rcughly).

The two-frequency calculations were done by fixing vl = 47 GHe
and varying the second frequency, VZ’ from 48.3 Glz to 0.0 GHz in
1.3 Gllz increments. These results are shown in table 15, which
indicates that the variance obtained from the one-frequency calculations
is roughly halved by the addition of the second frequency.

The three-frequency calculations were done by fixing v, = 47 GHz
and \)2 = 50.9 GHz and varying the third frequency, v3, from 47.5 to
58.0 in .5 GHz increrments. These recsults, again for Denver, August,
and 0, = .01 °K, are shown in table l6. It should be observed that
TrX  is approaching that of the l5-frequency calculations, and
that addition of more frequencies will yield diminishing returns. The
relative minimum of ’I‘rX_l at 47.5 GHz is presumably due to the

nearby resonant line at 47.4465 GHz. A rigorous search for

optimum frequencies would necessarily examine the effect of each

resonant line on Tr X
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Table 15

. - . . -1
Two-Frequency Calculations of Tr X = for Denver,

August, 0 = .01 °K, v = 47.0 GHz
|
v, Trx? e X7
(GHz) Unconstrained Constrained ;
48.3 22.3 18,1
49.6 21.9 17.7
50.9 21.6 17.4
52.2 21.5 17.4
53.5 21.8 17.9 i
54.8 22. 6 19.0
56. 1 24.3 21.0 ;
57.4 26,2 23.3 ’
58.7 ' 27.4 24.8 *
60.0 27.9 25.3 :

—————— ot T o e
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Table 16
Three-~Irequency Calculitions of Tr X.:l for Denver, August,

vy = 47 GHz, v, = 50.9 Gliz, o_ = .Cl °K

v, Tr X -1 Tr X1

(GHz) Unconstrained Constrained

47.5 15.4 11.8

48.0 21.4 17.3

48.5 21.4 17.2

49.0 21.5 17.2

49.5 21.5 17.3

50.0 21.5 17.3

50.5 21.5 17.3

51.0 21.5 17.3

51.5 21.4 17.2

52.0 21.1 17.0

52.5 20.4 16.4

53.0 19.2 15.3

53.5 17.8 . 14.0

54.0 16.5 12.9

54.5 15,6 12.2

55.0 15,1 11.8

55.5 14.9 11.7

56.0 14.9 11.9

56.5 15,0 12.2

57.0 15.1 12.5

57.5 15.3 12.8

58.0 15.4 13.0

t
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10. Summary

A method for the numerical solution of a Fredholm integrai
equation of the firsp kind has heen derived and illustrated. The
method requires knowledge of the covariance matrices of the con-
straint vector and the measurement error vector. Such knowledge
is frequenctly available in physical problems when it is desired to
derive values of physical functions from integrals involving them.

-
If both covariance matrices Sf and S€ are scalar, the equations re-

duce to those of Twomey [ 6], where the optimum smoothing parameter

v is given by the ratio of variances between the diagonal elements

of Se and Sf, respectively. The preéent method automatically

incorporates the optimum amount of smoothing in the sense of maxi-
mum -likelihood estimation.

The trace of the error covariance 'ma.trix, TrS is used

uc -n

to estimate the precision of the solution. When k = m (i.e.,when the

basis forms a nonsingular mxra), S reduces Lo

UuC-n
-1 -1 -1 -1 -
(S + AT S A) . The positive number TrX 1 is related

X £ €

W

to the error to be expected in the solution and is used as a quality
-1 e 1
criterion. A comparison of TrX = with TrSf indicates the amount of

information contained in the integral equation with observation errors

-1
determined by Se' It is evident that TrX can be used to study
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optimization of the spacing of observations. Such a study could be
valuable for planning measuring systems.

The method of estimation and the use of the quality criterion
TrX-1 were illustrated by studying the effect of various sequences
of random errors on the solution of a specific integral equation.
The effect of varying the number and type of basis vectors was
studied for this example. The results apparently agree with.theore-

.
tical predictions, although confidence tests were not run.

Calculations of X"1 and its trace were then performed using
certain meteorological statistics of Denver, Colorado, and absorption
coefficients determined from the Van Vleck absorption equations for
the microwave oxygen complex with a linear temperature profile.

These calculations were performed for a set of 15 frequencies

selected to cover the oxygen band, and for three sets of assumed
brightness-temperature rms errors of .0l °K, .1°K, and 1.0 °K.

The square roots of the diagonal eiements of X_l were plotted as
functions of height in an attempt to show the accuracy with which various

parts of the tropospheric temperature profile could be
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o aEm,

inferred from ground-based measurements of oxygen emission.

Questions of optimum choice of frequencies for this probing were

discussed and illustrative calculations relevant to this choice were

presented.

11. Acknowledgements
We acknowledge the contribution of Dr. M. M. Siddiqui, who
read parts of the manuscript and made valuable suggestions. The

encouragement of Mr. Martin Decker throughout the performance of

this work is appreciated. We thank Mr. W. B. Sweezy for supply-

J
ing the meteorological data which were used in constructing the

covariance matrices.

62




—g

“we i,

12. References

1, fleming, H. E., and D. Q. Wark (1965), A numerical method for

dctermining the relative spectral response of the vidicons in a

il L VIR O RS I

nimbus satellite system, Appl. Optics _'_1_, No 3, 337-342.

2. Kaplan, L., D. (1959), Inference of atmospheric structure from
remote radiation measurements, J. Optical Soc. of Amer. 49,

No. 16, 1004-1007.

NI L D e et AR R

3. King, J. I. F. (1964), Inversion by slabs of varying thickness,
J. Atmospheric Sci., 21, 324-326.

4. Phillips, D. L. (1962), A technique for the numerical solution of
certain integral equations of the first kind, J. Assoc. Comp. Mach.
9, 84-97.

R

5. Twomey, S. (1963), On the numerical solution of Fredholm integral
equations of the firsf kind by the luversion of the linear system

produced by quadrature, J. Assoc, Comp. Mach. 10, 79-101.

6. Twomey, S. (1965), The application of numerical filtering to the
solution of integral equations encountered in indirect sensing

measurements, I, Franklin Institute, 279, No. 2, 95-109.

7. Twomey, S, and H. B. Howell' (1963), A discussion of indirect sounding
methods with special reference to the deduction of vertical ozone é
distribution from light scattering measurements, Mon, Wea. Rev.,

_9l. 659‘664.

8. Mateer, Carlton L. (1965), Onthe information content of Umkehr
observations, J. Atmospheric Scl., 22, 370-38L.

AR P S = o 2

63

B

T T T e e el i i PR S




LSRR S

10.

11.

12,

13.

4.

15.

16.

T

17.

Alishous, J. C., L. J. Crone, H. E. Fleming, F. L. Van Cleef,
and D. Q. Wark (1965), A discussion of empirical orthogonal
functions and their application to vertical temperature profiles,

submitted to Tellus.

Wark, D. Q., and H, E, Fleining (1966), Indirect measurements of
atmospheric temperature profiles from satellites: I. Introduction,

Mon., Wea. Rev. 94, No. 6, 351-362.

Twomey, S. (1966), Indirect measurements of atmospheric
temperature profiles from satellites: II, Mathematical aspects

of the inversion problem, Mon. Wea., Rev., 94, No. 6, 363-366.

Kondrat'yev, K, Ya (1965), Radlative Heat Exchange in the
Atmosphere, Translated by O. Tedder (Pergamon Press,
New York).

Goody, R. M. (1964), Atmospheric Radiation (Oxford, Clarddon

Press).

Westwater, E. R, {1965, Ground-based passive probing using the
microwave spectrum of oxygen, Radio Sci. J. Res. NBS, 69D,
No. 9, 1201-1211.

Deutsch, Ralph (1965), Estimation Theory (Prentiss-Hall, Englewood
Cliffs, New Jersey).

Obukhov, A, M. (1960), The statistically orthogonal expansion of
empirical functions, Akademiya Nauk, SSR Izvestiya Seriya
Geofizicheskaya, No. 3, 432-439, English translation by the
Am. Geophys. Un., Nov. 1960,

Faddeeva, V. N, (1959), Computational Methods of Linear Algebra
(Dover, New York) 81-85.

64




18. Courant, R, and D. Hilbert (1953), Mcthods of Mathematical Physlics,
Vol. 1, Interscience, 23-27.

19. Beckenbach, E, F. and R, Bellman (1961), Incqualities (Springcr-
Verlag, Berlin), Theorem 12, 9.

b R HRPE ey L g s w‘p%[r‘m

20. Cramer, H. (1946), Mathematical Methods of Statistics (Princeton,
N.J.}), 213-220.
2l.  Van Vleck, J. H, and V, F. Weisskopf (1945), On the shape of

collision-broadened lines, Rev. Mod, Phys. 17, Nos. 2 and 3.

22. Van Vleck, J. H. (1947a), The absorption of microwaves by oxygen,
Phys. Rev. 71, No. 7, 413-424.

R

23.  Van Vleck, J, H, (1947b), The absorption of microwaves by
uncondensed water vapor, Phys. Rev. 71, No. 7, 425-433.

24, 7T wnes, C. H, and A, L. Schawlow (1955), Microwave Spectroscopy
{(McGraw-Hill, New York, N.Y.

25. Strandberg, M. W, P. (1954), Microwave Speétroscopy, Methuen's

e R ¢

Monographs on Physical Subjects.

26. Kennard, E. H. (1938), Kinetic Theory of Gases (McGraw-Hill,
New York, N. Y.). -

27. Tsao, C. J. and B. Curnutte (1954), Line widthe of pressure
broadened spectral lines, Publication of Ohio State University

Res. Foundaticn.

28. Strand, O. N. (1963), Determination of parameters for corre.ated
data by the use of a generalized least-squares criterion using
linearized residuals, U.S. Naval Ordnance Test Station,

Report 7942, April, China Lake, California.

65

C et A T Avet g e e Al




. wwW mﬂu

~
Y o)

30,

31,

32.

mlillimeter wavelength vregion, Columbia Radlation Laboratory

Report, June, Columbia University, New York, N, Y.

Crawford, A. B, and D, C. Hogg (1956), Measurement of atmospheric
attenuation of millimeter wavelengths, The Bell System Tech. J.
35, 907-916.

Abbott, R, L. {1964), Width of the microwave llaes of oxygen and
thelir relationship to the thermal noise emlission spectrum of
the atmosphere, Proc, 3rd Symp. on Remote Sensing of the
Environment, Univ. of Mich., Ann Arbor, Michigan.

Becker, G. E. and S. H. Autler (1946), Water vapor abscorptlon of
electromagnetic radlation in the centimeter wave-length range,

Phys. Rev. 70, 5, 300-307.

66




w
bip s, ]
,,a*m _‘..M..fr,: PR bt hon s -

Bl

R R R P VO IR 1 L AP

U 9i Gl bl 11 4] 1] 0l 6 8 L 9 S | § 4 } 0

XK e X K —— X X —— K —— X — N —— X — X d.ﬁlm.mm.ul_uﬂuﬂ

x

10b 021 =353

0

02

0¢

06

ool

ol

0

i ! ! I 1 1 Il 1 L l | 1 | ( l |

‘1 s1qe3 ur se’s 110" = °g

‘GT=wt ‘L=U ‘SISEQ AOYMQO 0} ¥ sA * Olgay,

0¢!

B N R

Y

- e G 3

PSS UE

B D e L

EEERTERNS




W omy s

7 "813
-— )

gl U 9l Gt 11 gl | 1 0l 6 8 ! 9 G 3 2 | 0
| | I | ! 1 1 | [ 1B | ! | | I 0
- —{ol
. oz

XK K —— X e X —— X X —— X —— X —— X—— ¥ —— X X 9VEEZ XL
— —{ 0k
X
I~ —{ 0%
— —0¢
- —09
X
- —0l
— —08
~ —06
— oo
— -40H
zovozi=tsi | 0%
1 | : | | | ] | | | | | | 1 061
‘1 siqerut se’s Tip° =g
‘grEw ‘L= -s1seq Jamod 107 % .m>s103mu.ﬁ
-




e R

.

B

Tt SRR i o e e SR

You PR TN 7 s T T TR - .-
¢ "8iq
-
@4 8 % e ® A w0 & & L 9% & o 2
\ |3 | | 1 I | I | 3 f [ T T T
=
X X X X — XX N 9p6tes Xil
x
- % X » 8
X
x
x
-
106021 =541
I U N A RN DA N AN DA NN N SN RN SR S SR

‘gr=w ‘L=u

'1 319E3 Ul mﬁum ‘110" ="8

‘stseq d1a1jawot 08113 I0F

"SA

«-0N

3

SaL

R iilx!i%%é

il

0¢

0t

0%
0 =
w
= N
u g
3
ng

06

ot

on

0ei

0%i




v g
-—
@ 0 S S W oo® A W % 6 % L 9 S p § 7z 1 0
| l | ] | ! I i | ] | ] ! ] ] ] I
— —
® —0 @8 O ¥ *¥—x—k—»—*—F—}ere %1
Q -
B 4
o X
— O 0 o o —
O
p— + —
! | 0 _
; ®
B T
5ISVE DIML3NONODIHL O ]
ﬁ SISVE ¥3IMOd X
B SISVE AOHYNBO  + 1
B 20 021 = 4511
, | IS SRS NS SRS NS U SN S S SR AN BN SR S
‘1 s1qe3 ut sels Tro- = s
. en == 0N
‘gr=w 'r=u  SPSVQ JUIIBJJIP IIIY) I0] Y “SA g1l

PR

e

i e

]

0¢

0t

001

oH

08l

RSP




g 'B1g
«— Y

] L 81 Gi ¥l 11 2 I 0l 6 8 l 9 S ¥ £ ¢ | 0

1 | ] ! [ T I I i | 3 ! | ! 1 Bl I 0

X 9v652 - [XIL
— ~001
ovoal s dsar  xT %
x % X
002
-
§ 7
&
_ x X x s &
X 3
X
— % — 00
X x

_ —1 00§

Ly SR S R SN N RO S S SO SR RN B W 9

‘[ aiqe; ur se ’g ‘1o = 5 ‘gr=w ‘y=u

*l+ PUEB |- UB3m3}aq UCTINQIIISIP WIOCJIUN B WOIJ $IIqUinu

uasoya-A|WOPUERT JO BUIISTSUOD SISBQ B I0F ¥ 'SA T UDwu.H

o - e =

RN I




- — r—— - - —— . RSN j? e S

~—
L I e e L 8 | 9 g b2 | 0
1 V_A T T T 1 T T _ T _ T T T T 0
X Sv6TC = | Xi.
X X
X X X x
— X x — 001
% 10b 021 = 1511
j < — 002
v (1]
— —o0¢ m &~
=3
B — 00b
- x —00§
. ] i L | JE L “ ! 009
T e1Rey ul mmum .j..o.uwm ‘Cl=w ‘L=u
o T

1
y = 1 SisBqQ ,jun, ayj 10] ¥ ‘sa sal




gt £

L8
wy ‘£
—t e e
— — 06¢
- — 162
6
£62
¥6e
g62
96¢
162
862
—1662
an+ 9% nounies —100¢
03LVNILSI-ANYIILTIIWS X
05 Q3NINH3LIA - KNINCINYY  + — 10¢
—20¢
. . i I i I T cos

1
8671 5 X s 7

‘61 =u ‘G=3 '] 21qv3 Ut se g 5-01 = 'S ‘L0 = 0112

uolnjos swa ajdweg -uotjenbs jei1Bsur jo 14 uolINOg

$33593Q0 *NOILNN0S

73




wy ‘A
0i 6 8 L 9 S ¥ £ 11 1 0
] ] | 1 [ 1 1 1 |
— —
+/
-
— —
B +
Ow ]
-
+ |
[~ X.
\ /* KX/
= MY 5 e X T VAR ot Y
T — 166€62 = ) /x\\\o «ﬂx x % ~y
an+%
B +/
—
I~ 9N+ 9 NOILATOS +/ +\
B G3LYNILSI-ATIVIILSILVLIS X +\+F+\ ]
Oy gININEIL3T-ANOONVY  +
) 1 1 | ! 1 { { |

“6r=u ‘g =+ ‘1 2qe Ut 5B S

un1njos swa ajdweg ‘uorjenba

‘8615 'x 5 1
3
vooﬁ =z § '$'Q = I0XI9

tex3ajur Jo gy uornjog

e

982

18

882

682

062

$334930 'NOILLNI0S

7L




ﬁgf-i AR S g s

e n WSSO,

6 'Bia
wy ‘A
0l 8 (] 1 9 S ¥ t 4 |
I | I I ! ) | T I
— -—
Q.
i \+ + » +
X
l‘.ﬁ\\\&\@“”mw/u{ i} // xl\X\ /X\XX:K
. s s, 3, e—————— ~
} N +9 x//+-A+ =¥
B l+/
r +
/+
-
\
\
+
3 N+ 9 NOILNI0S
A3LYWILSI ~ATTIVIILSHLIVLIS X
O} Q3NIWY3L30 -AINOINVY  + +/+
! — ! 1 | | 1 | |

"
)
«
S
"

‘61 =u ‘g=3 ‘[ 219e1 ur ST g T 5-01

10119 uorinjos swax sjdweg -‘uorjenba [exFajur yJo ¢4 uonniog

06¢

16¢

62

£62

{ (24

g6

962

162

114

662

00t

10¢

¢

£o¢

1411

$334930 'NOILNOS

e o

75

S N AR B B




o1 %13
wy ‘£
o 6 ] ! 9 S 1] t I ) 0
T T T T T T T T T 682
~ —082
— 182
— —22

i \\ + %
= + // \ x/ .
/’XAX \X\XKX/X\%

N
o
€
166562 = ) SR 862 S
: 2
on+ 9 ™~ %2 3 o
- ++\+/+\/l 162 %
P 1]
m
— Moz O
- —166¢
B 2N+ % NOILNT0S —{00:
Q3LYWILST-A1WIILSINLS X "
0y g3INIWNILIC -AINCONYY  +
- — 208
- ! I\ Nl | { | 1 | £0¢
861 s x5 I

‘L=U 'y =3 ‘T 9|qe} Ul s .«m. ‘I1°0 = um ‘g0 s I04I3

uonnios swa ajduweg -uorienba [exdajur jo p§ uolInjog

Bt v




e R P — s J——

3

K
: 4
: . SO ¥ ;
v wy ‘A u
i o § v 1 3 g ’ £ 2 i 0 i
; T ; T T T T T T T 682 ]
- —106¢ :
H |
; — — 162 ;
u ez |
a an+ cw (62 "
f

x e
\\ //X.\\X /x nXlXIX vmm

66 tEe = 3T I xX—X /
R —_—
\ ~— x—{s62

: +
L \ I+i+/ {962
_ 162

862

$334930 ‘NOLLNIOS
77

+
90+ % NOILATOS —{00¢

SLYWILSI-ANTVIILSILYLS X
O Q3NINNILIO-KNINOONYY

'p=u *p=3 °T 9[q¥I UI v ww ‘110" =

uotn(os swJi ajduieg ‘uorjenbas [erldsjur Jo ¢y vonniog




Lo acimeiana it

FARRRIK |
wy ‘A

(] [ 8 ] 9 S ¥ ¢ l } 0

| i ] | I T I ] 1}
ﬁ' —
= + -

/ OF
- + +/ -
ﬁl —
¥
B on+9% =
+
e S \
= +
/ x
— + i
L66°€€2 = = X T

N

- =)= _
x
B on+ % NOLLATOS 1
QILVWILSI-ATIVIILSILVLS X

o) g3ININEILIA-ATWOONYY  + B

] 1 L ] | ] 1 1 ]

1
86T = X = 1

cp=up=y ‘eEIurse’s G107 = S ‘60 = 10112

uorjnios swir adwes -ucrienba [exdajur Jo 9 uoTIn(og

98¢

182

83

6%

162

8¢

¥6e

§6¢

8€¢

L6e

{4

662

$33¥93Q ‘NOLLNI0S

78

PRSI X B Y

_realeg 1o

. .




ymm e

- W

.?gi.. hiel 1T L SR

S Y e

v

0

o e W M e L e e - L e 1 e D

-
—
—“
-4 >
-
~
o~

692

— 08¢

-116¢

113

166¢62 - 7] \ N e ~x
+ /
+

—

+\\

\x
X JN+04

+

\
+ }

sn+% NGiLNI0S
QIIVNILSI-ATTIVIDILSILVLS x

O; GININYILIA - AINOONYY +

1 i l | I L !

v6¢

662

162

86¢

66¢

00¢

10¢

0!

!
‘86l 5 X = T

l=u ‘p=3 ‘I 9|1} Ul SE I qf10° =5 't0 = 10110

uornjos swaz ajdweg -uorjenbs jer%ajur 10 gy UOIN[OG

£0¢

$334930 ‘NOILNTOS

i R el D,

-




4

E -~ r W O

- —p

Square Roots of Diagonal Elements of Covariance Matrices of Temperature
Statistics, Sf, and Solution, X'l. vs. Height for Denver, August,and for
Measurement Errors, ’IE. of .01 °K.
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Square Roots of Diagonal Elements of Covariance Matrices of Termnperature
Statistics, S, and Solution, X'l, ve. Height for Denver, February,and for
Measurement Errors, Oe’ of .01 K.
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Square Roots of Diagonal Elements of Covariance Matrices of Temperature
Statistics, S, and Solution, X'l, vs. Height for Denver, Felbruary, and for
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