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APPLICATION OF STATISTICAL ESTIMATION TECHNIQUES TO

GROUND-BASED PASSIVE PROBING OF THE TROPOSPHERIC

"TEMPERATURE STRUCTURE

& by

Ed R. Westwater

and

Otto Neall Strand

Abstract

The theory of radiative transfer in the microwave region is
discussed. A method for-t-he numerical solution of a Fredholm integral
equation of the first kind is derived and illustrated. The method

employs an a priori constraint vector together with covariances of
both the constraint vector and the measurement ernors. The method
automatically incorporates an optimum amount of smoothing in the
sense of maximum-likelihood estimation. The problem of obtaining

optimum basis vectors is discussed. The trace of the covariance
rmatrix of the error in the solution is used to estimate the accuracy of
the results. This trace is used to derive a quality criterion for a
set of measurements and a given set of constraint statistics. Examples
are given in which the behavior of the solution as obtained from a
specific integral equation is studied by the use of random input errors
to simulate measurement errors and statistical sampling. The quality
criterion and behavior of the trace of the error covariance matrix for
various bases are also illustxated for the equation being considered.
A least-squares analysis of microwave absorption data to determine
line width for water vapor and oxygen is presented. Calculations of
the error covariance matrix and quality-criterion values to be expected
when probing for the tropospheric temperature structure from micro-
wave emission measurements are presented.



1. Introduction

The general subject of passive probing of the atmosphere by

electromagnetic means has recently received attention by several

authors: Fleming and Wark, [ 1]; Kaplan [ 2] ; and King, [ 3]

In spite of the wide differences in the specific techniques applied

to each spectral region, several elements are common to all pas-

sive probing schemes. The first of these elements is the sensor,

which measures relevant properties of the radiation emanating

from the spatial region being probed. Secondly, detailed know-

ledge is required concerning the mechanisms by which radiation

is generated at the region being probed and by which the radiation

is propagated to the sensor. The last, but certainly not the least,

is the manner by which information concerning the physical

prpperty of interest is derived from the set of radiation measure-

ments, the so-called "inversion process"
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The probing methods discussed here attempt to derive informa-

tion about the temperature distributior. of the troposphere by measur-

ing the microwave brightness temperature of the atmosphere from

the ground looking up. The propagation and emission of this radia-

tion are determined for the most part by the absorption coefficients

of oxygen and water vapor.

The inversion method we derive here is illustrated for the

physical situation of ground-based upward probing; however, the in-

version equations are applicable to more general situations. This

technique extends methods given by Phillips [4], Twomey [53,[ 6],

and Twomey and Howell [73 for the solution of integral equations

of the first kind. These methods use a controlled amount of smooth-

ing in solving the matrix system derived from a quadrature approxi-

mation, but give no systematic method of determining the required

amount of smoothing. In this paper, we derive and illustrate a

general least-squares process for estimating the solution and show

that it contains Twomey's method of weighting an a priori constraint

vector as a special case. The optimum amount of smoothing

(in the sense of maximum-likelihood estimation) depends on certain

covariance matrices describing the measurement process. Ina

manner similar to that of the more recent work[8J , [93, [ 10o, and

[11], we derive and use statistically orthogonal basis vectors.
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Certain other bases are also used and numerical comparisons are

made for a particular kernel. In our method, the covariance matrix

of the error in the resulting solution is calculated and its trace is

used as a measure of the error in the final results. It is shown in

this paper that the trace of the error covariance matrix is mini-

mized when the number of basis vectors equals the number of

quadrature points. We use the resulting minimum trace as a quality

criterion describing the effectiveness of a given matrix equation

(with specified accuracy of observation and a specified distribution of

the constraint vector) in reducing the variance of the a priori con-

straint vector. We also derive and discuss the condition for an

optimum basis and present numerical examples using random input

errors to simulate the measurement process. We discuss and

present a least-squares analysis of line width and absorption data

for both water vapor and oxygen. We also present numerous calcu-

lations of the solution quality criterion and indicate how this criterion

could be used to determine both experimental feasibility and optimum

choice of probing frequencies.

2. Theory of Radiative Transfer in the Microwave Region

The equation of transfer in a steady field of radiation in the case

of local thermodynamic equilibrium is given by Kondrat'yev [12]

4



Cos @ I B+V
c h = V B + -• I(h,r')p (h,r', r)dw' - (KV +V )1', (1)

where I is the intensity of radiation, 8 is the zenith angle, h is the
V

height above the surface, K and a are the mass absorption and mass

scattering coefficients respectively, p is the density of material absorb-

ing the radiation, B o0bis the Planck intensity function, and

dw'4 p, (h, r' , r) is the fraction of energy incident upon the scattering

volume in the direction r' which is scattered in the direction r.

The integration over dw' extends over all directions of r'. For

a cloudless atmosphere and for microwave frequencies, the scatter-

ing coefficient is zero and the equation of transfer for a purely

absorbing atmosphere is obtained

cosO K (B

This can be integrated to give

h'

-T (h, -)/cos 0 K dhos

I (h) I (00) e + K p B e h dh' (3)
V V V cos 0'

h

for the intensity received "looking up" at a height h and at a zenith

angle e. In (3), I (co) is the anattenuated intensity incident outside

the atmosphere and TI (h, -n)is the total vertical attenuation given by

5



TV (h, V p dh' (4)

The Planck function, B), multiplied by the absorption coefficient is pro-

portional to the power flhx density emitted per unit bandwidth and may be

approximated by the Rayleigh-Jeans law in the microwave region [13]

2
B - k T, (5)V 2

c

where k is the Boltzman constant, c is the speed of light, and T is the

absolute temperature. The intensity, IV, may be related to the bright-

ness temperature, Tb , by the defining relation

/22

2V-kT (6)
v 2 b

It fo~lowsimmeiatel fr c (3,() ndV)ta

It follows immediately from (3), (5), and (6) that

h'

-T-hc )/cosQ jvP dh"/cos 0

Tb (h) Tb(-) e + K pT e h dh'
) 

Cose

h

The apparent sky temperature, as measured by an antenna

immersed in a radiation field, will be the contribution of (7) from

6



each direction seen by the antenna multiplied by the appropriate

antenna gain factors and integrated over the antenna pattern.

If it is desired to determine the brightness temperature of the

atmosphere from directions confined to a narrow solid angle, it is

necessary to have a highly directional antenna with low side lobes

such that the contributions from the desired direction are maximized.

The noise temperature of the antenna can be measured directly by

comparing the received siglfal with that of a known source.

In using (7) to deduce T(h) from measurements of Tb, one may

vary either zenith angle, e,or frequency, v. In ground-based probing,

however, there are reasons to avoid the'angular scheme. First,

an assumption of horizontal homogeneity of the atmosphere is necessary.

It is also probable that some of the space swept out by the observing

antenna will include discrete cloud structures whose emission is not

easily taken into account. Finally, it is very difficult to take account

of ground emissions and reflections because of uncertainties in antenna

gain patterns. We will therefore only consider inversion using mtasure-

ments at different frequencies. This scheme reduces, but does not

eliminate, the above difficulties. Henceforth, it will be assumed that

no clouds are present in the mi-in beam of the observing antenna.

7



Equation (7) is non-linear in the temperature because the

absorption coefficient depends oi temperature and pressure.

As discussed by Westwater [ 14], this non-linearity can be handled by

assuming a mean temperature profile to determine a first approxi-

mation to the absorption, solving the resulting Fredholm equation of

the first kind, and iterating. The next section presents a method of

solving the linearized equation in the presence of measurement error

by statistically weighting-a priori knowledge of the temperature pro-

file against information given by the integral equation. Bicause of the

nature of the constraint, it is presumed that convergence of the itera-

tion sequence will cause no problem, pven in the presence of large

experimental errors. This has not yet been verified.

3. Inversion Method

Let (f(y), a • y ! b) be a Gaussian random process having

continuous sample functions. If K(x,y) is a continuous function of

x and y and if
b

SK(x, y) f (y) dy g (x) (8)
a

8



then g(x) is also a Gaussian process with continuous sample functions.

The main idea is to estimate f(y) by measuring g(x) at various values

of x, say xx., i= , .. .n. Introducing a quadrature formula of the
b

type Sah(y)dy E w.h(y.) gives a matrix equation

Af g (9)

where

A= (A..) i= 1,2, ... n; j = 1,, ... m,

m is the numbe-eof quadrature abscissas,

n is the number of observations of g(x),

yj are the quadrature abscissas,

x. are the specific values of x for which g(x) is observed,1

w. are the weights associated with y.,
f j = f(y j ,

gi = g(xi)1

A. = w.j K(x., yj),
T

f[flf= 2 f mI is the column vector of unknown functional values,

(the superscript T denotes matrix transposition throughout this paper),

and g = [glgZ ... gn]T is the column vector of values of g(x).

We assume that the mean vector t(f) = f and the covariance matrix,0

S, of f are known. (E( ) denotes the expected-value operator and S
v

denotes the covariance matrix of any vector v throughout this paper).

By the linearity of E and the propagation rule for covariance matrices,

respectively, we have E(g) = go = Af and S= ASf A In the cases
o g



of interest here g is a vector of measurements subject to error.

Thus one observes

g g+ (10)
ge =g+€(0

instead of g. In addition to the assumptions already made, we assume:

a) the errors e. are independent of f, hence independent of g;1

b) the errors e . are normally distributed with zero mean and1

known covariance matrix S

c) the quadrature errors are negligible with respect to e;

d) S£ and S are both nonsingular with dimensions nxn and

mxm, respectively.

It is convenient in practice to represent the solution in terms

of a small number of basis vectors. We let U= [U IU L..IUl
1 ZR

(lines denote matrix partitions throughout this paper) be a matrix

of k linearly independent m-component basis column vectors and

C [C 1 G2 .. ] T be a vector of coefficients to be determined

where k 5 m.

The inference problem to be solved is the following. Given the

observed vector g and the covariance matrices S and S estimate
ef

f and £ under the constraint ge - Af = C. Putting

T= f-f, h = g - go = A(f- fo) An

h =h + C = An + C, (i
e

10



where TI is to be approximated by UC gives an equivalent problem:

given h ,e estimate Tland E in the form [v] subject to the constraint

te

in the absence of measurements ge is 'n = 0. The estimate 11 = 0 may

be coupled with the set of measurements, ge, to form an "effective"

measurement vector [j 2-ej. From this vector and the Gauss-Markov

least-squares principle for correlated variables [ 15] , a maximum-

likelihood estimate of an be obtained. Since the covariance
LJ Ca

matrix f- is L 0 the desired estimate -•- must be such

that R(C, r) is rendered stationary, where

R(Ce) (UC)T S (UC) + C T -1 + T (AUC - h + e), (12)I C e

T.
and •T is a row matrix of Lagrange multipliers. Differentiating with

respect to C, Cand F4 and equating to zero gives the solution

UC =UD-1 UTA hS h£ e (13)

and

=h - AUD 1 UTAT S 1C ,I (14)e £ e

where

DU XUandX S +A S -1A. (15)u~x ad X= f- £As

11



We may also rewrite (13) in the equivalent form

T -1 -1 TAT[S TT Ts-I I- iT T]-Ih (16)
UC UI(U S fU) U A S AU(U U) U A h (16

We apply the propagation rule for covariance matrices to UC-7),

where UC is given by (13):

UC- '=UD 1 T AT S -1(A

a r.d

S r F -1I T AT S A-1 IlSEUD -1 UT AT S.IA-I'1
UC- LJL

+ [uD' U TA T S SFUD1 UT TAT Slj]T

so that

S -U TYS.YT - (TYS£ f- Sf YT) - Sf- TYT, (17)

where
T -I- T

Y As A and T = UD U (18)

-1

Substituting Y = X- Sf into (17) and noting that TXT T gives

S _= Sf + T + T (XS X) T -TXS - SXT, (19)

and

T
S. AS A (20)

UC -



Expressions (13), or(16), and (14) give the desired statistical estimates

of the solution f or any given basis U. Equations (19) and (20) give the

error covariance matrices by which the quality of the results may be

estimated, as will be seen in the next section. In the work reported

in this paper no use has been made of the estimate (14) of e of the

expression (20) giving S_ e

Various special cass may be noted. if k=m, that is, if U is

a nonsingular mxm matrix, (13), (16), (19), and (20) become,

respectively,

UC =X A S -h , (21)
C e

A T -1
Sf AH he (22)

=x, 1 (23)

-I TS^ =AX A(
S-(4)

where

H =S + AS fAT

From (22), a result equivalent to (23) is

-1T -1 -1X =S = SPSPS -2SPS +S +S A H S H AS (25)7~,1 f f f f f f f £ f (5

where
T -P =A H A.

13



The study of special cases will be confined to the case k=m here. If

-1
S - 0, i.e., if the measurements have large errors, we obtain

-10 or f= f and S^ _,= S . If S -0, thenXwill be nonsingular
o -T) f f

if and only if rank A= m. Then TI = (A S A) A S Clh and

SA =(AT S IA) If S - 0, i.e., if the measurements of g are

perfect, and if rank AU=n then n!*m and (22) and (23) become

T _fA T 7-1 T -1respectively, TI= S A ~S A jh and S5- T = S - SA(S ) fSf f TI f f AS

In computational practice the latter situation will not occur since the

quadrature errors will invalidate the assumptions as S 0. Finally,

if Sf -0, then (22) and (25) give, respectively, j= 0 or f=f and
0

S = 0.

We may show the correspondence of the present method with

that of Twomey [ 6] as follows: for k= m, let S,= 2 I, Sf= 2

Y = (2/ 2 o = , f +1 = fand g = • in (21) to correspond with
C f o 0o

Twomey's notation [6]. Then

= [ATA+I yI [Arj + - ](26)

L ~iI

which is identical to Twomey's equation (6), p. 105. Thus, if the

covariance matricas Sf and S are both scalar, the optimum choice

of y (in the sense of maximum-likelihood estimation) is given by the

ratio of variances. However, in commonly occuring physical situations

Sf has substantial off-diagonal elements.

14



The basis U= I with m = k gives an adequate solution via (21),

(23), and (24). However, it is often convenient to represent the

solution in terms of k parameters, where k < m, usir.g (13), (19), and

(20). The quality of such a representation depends on the choice of

basis. In the next section we discuss the problem of basis optimi-

zati on.

4. Determination of 'Optimum Basis Vectors

Previous solutions by Wark and Fleming [ 10] , and Twomey [ Ii]

have employed basis vectors (i. e.,columns of U) which were obtained

to fit the data in an optimum manner without reference to the integral

equation to be solved. It will be shown below that the integral equation

(as represented by the matrix A which is an ingredient of SUC _ -q)

plays a part in obtaining the optimum matrix U, but (see section 5)

the use of an exactly optimum basis U is often not critical, so that

U as employed in earlier solutions should suffice. This classical

determination of U (as exemplified by Obukhov's paper [ 16], for

example) is presented here and interpreted in terms of the covariance

matrix of the residuals. The criterion which must be satisfied for an

optimum basis for the integral equation is then easily seen.

Consider the quadratic form

(d -UC) (d -UC) q (U, C). (27)

15



Here U and C have the same meaning as in section 3 and d is a

sample vctor from a population having a multivariate m-dimensional

normal distribution, say, with zero mean and cova~riance matrix Sd

For any specified basis U, q(U,C) is minimized when

UC = U(U TU)1 UT d, (28)

as can be seen by differentiaticn. Thus the minimum value of q(U, C)

for any gien basis U is given by

T T -1 UT _ TI -IuT "ri] d -19U
qn(UTJ = d u(uu) - Ijd (29)

Various criteria may be used to determine what is meant by

"smallnesL" of q In the classical case the optimum U is that which

minimizes the expected value of qm. (U). Let TrB trace B denote
mnin

the sum of the diagonal elements of any matrix B. By expanding

and employing the linearity of the operator E we 1a1y bho~v that

E[ dTQd] = Trr Sd Q (30)

for any real symmetric matrix Q. Applying (30) to (29) gives U

as that basis which minimizes

r T -1 T,
Tr(SdI - U(U U) -U;

TrS - Tr UT SdU(UU) - (31)

16



In the last expression we have used the relation Tr A13 = Tr BA, which

holds whenever AB is square. Expression (31) is inv,.riant with respect

to replacement of U by UB, where B is any nonsingular kxk matrix.

T -1 T
In fact, the matrix SdU(U U) U is unaffected by such a transforma-

tion. Furthermore, let J be an mxm symmetric positive definite

matrix and let V be any mxk basis matrix. Since V TJV is positive

definite, there exists [Ir ] a real nonsingular upper triangular k x k

matrix B such that V TJV = (BI ) T(B-I ). Let U = VB. Then

U JU = B (V JV) B = I. Thus any normalization of the form, U-AU = i

may be assumed without loss of generality. We suppose

UTU = I. (32)

Hence U must bd found which maximizes Tr [U S U) subject to the
d

constraint (32). By partitioning U into individual columns of basis

vectors and considering the maximization process involved, it can

be shown [ 18] that the col-uwrns of U must be chosen as those

eigenvectors corresponding to maximal eigenvalues > 0

of S . Thus U must satisfy

SdU = U, , (33)

where
A = diac, 2 . .k

17



Substittitin-; (3.) and (33) into (31) gives

k

E: (q n(U) TrSd " Tr A for optimum U.

k

i=l1
The ratio L = (34)Tr Sd

is sometimes calledj[8] the fraction of the total variance "explained"

by the basis U.

It follows from (28) and (31) by vi_ - the propagation rule for

covariances, with TrAB= TrBA, that

E (qmin(U)] TrS _ d"

Thus E (q n(U) 3 may also be given another interpretation. As a

criterion of the size of the errors resulting from a distribution

having zero mean and secornd moments defined by a given cov~riance

matrix S, we may choose TrS. Since the trace is equal to the surn

of the eigenvalues of a matrix, this interpretation is geometrically

equivalent to defining the "size" of an m-dimensional ellipsoid as the

sum of the squares of its semi-axes. The interpretation of

Eq min(U) ) as the trace of the covarian.ýe matriŽ, will be freely used

throughtout the remnainder of the report. Note that EVq min(U) 3 is also

equal to Tn tim-es the expected overall mean- square error of the

approximatioa d UC.

18



Although no use is made of the result in what follows, it is interest- j
ing that the minimum of the quadratic form

q (u, C) - (d - UC) S d(d - UG)

has the expected value rn-k for any choice of U, and therefore cannot

be used to determine an optimum basis. S

From the preceding discussion it follows that an optimum basis

U for use with the integral equation would be that which minimizes t

TrSuC = TrS f+T+T (XSfX) T-TXS -ST fXT (35)

From the definition o0 T we see that, even with the normalization

U Txu = I, expression (35) is of fourth degree in the elements of U.

Since minimization of (35) is difficult, and since classical basis

vectors seem to suffice in practice, the determination of U from

(35) will not be pursued farther in this paper.

5. Quality Criterion

-l
The quantity TrX can be used as a measure of the accuracy to be

expected from a given integral equation with given covariance matrices

S and S and a given set fx. ] of values of x. For k= m, i. e.,for a non-

-1
singular mxm matrix U, S _• reduces to X by (23). Furthermore, as

-l -1
demonstrated below, TrSuG _CTITrX for any basis U. Thus, TrX

is a measure of the best that can be done for a given problem. Calcu-

-1
lating TrX and comparing with TrSf indicates the amount of improve-

ment over the a priori statistical knowledge that can be expected in a

given case.

19



TiheŽo r cm TrS - Trx- ;x 0, where, as pruviouisly defined.

X S.-t +ATs A

D = uTxu,

Ij T
T =UD- U

TrS - TrX- Tr [Sf - T + TXSXT - TXSf - SXT - X'

U [U IUZ ... I U1k]m where the U.i are linearly independent

k

and m 2 k.
T T -1

Lemma: TrB T 5. B - Tr B X B where B is any real mxm rnmatrix.

-1 -1IProof: Let S, = (S .j), X (Xii ), and 3 = (Bij). By direct calc-ulation,

Tr BT SAB B S B -c BB
1, Pp q P)

where B is theth[1 o

where 1 1 is the icolumn vector of B. By an exteasion[19 of

Bergstro:i's inequality wve have, for any real column vectors y and z,

T T -1 T 2
(y Sy)(z S ) z (yz ) z

Sinc e X S.-I +A S-I A so that z X z z S. z, we r-avt

.20



T T T 2 -1
(y (Y Xz) Ž (Y z). Putting y B.,i z X 13. gives

-T T-(BSiB )(1 X- F1.) (03 X B') . If B.I = 0, dividing out the po~zt, it.:

quantity B. XT-1 B3 gives F, T S 1BiBT X B (if 13 =0, the in-
1 i 11 1 "

equality is trivtally true.) Therefore,

rn niTr ?T B=.1 T•-
TrB iSB Bi SB. BT X B. =TrB X B. This proves

the lemma. It can now be applied to prove the theorem. Note that

S -- I may be written as S U _ X"I (XT1 TSf(XT - ISUCTq U - =(T-I I

T -X- . By the lemma

Tr SiUG_1-X- I 1 Tr (XT-I) Tx" (XT-1) J+TrT-TrX-

=Tr (TXT-2T +X -'T-X 3. Since TXT= T we have I
Tr [SU 1 - X Tr 0 = r O.q.e.d.

There are conditions for which a basis may be chosen such that

rr S Tdecreases as k increa.ses, and approaches TrX fur k

considerably less than m. Such behavior is illustrated in f igure 1,

which presents the values oz TrSuC - , vs. k for the integral equation

(36), given and discussel in section 6. The conditions are:

S = .01 1, n 7 n = 15 with (x.) and (y.) as given in section

6. The Obukhov basis resulting irom the S- of table I is

used. Figure 2 presen:-c the values of

21



TrSuc I vs. k under similar conditions using the power basis

U =. 1 and figure 3 presents similar results for the trigonometric
(ZTj ii.

basis U sin ZJyi•i l,2, 15, j=1, 2, 7i, Zj -'6a-v--)

Uioj+ I b-a ... 15, j=0, 1, 2,.... 7.i, 2j + I ,b -a )

Evidently k= 6 will suffice for the power basis and kt 11 will suffice

for the trigonometric basis. Figures 1, 2, and 3 are combined for

easy comparison in figure 4.

The results of figures 1 through 4 arise from reasonably well-

chosen bases. The type of behavior to be expected for ill-chosen bases

is indicated in figures 5and 6. Figure 5 presents TrSuC _vs. k iora

basis consisting of random numbers uniformly distributed between -1

and + 1. Figure 6 presents similar results for the basis U..= Clearly,

in these cases nothing less than a full complement of basis vectors

(i. e. , k = m = 15) will achieve the desired accuracy. By noting that

T'rS _ - is m times the theoretical overall mean-square error of the

fit, we see that TrSf Z 120.407 corresponds to an overall rms error of

-1
2. 88 and that TrX = 23. 946 corresponds to an overall rms error of

1. 26. This shows the extent to which the original statistics of f may

be improi,-9d by using the integral equation in this particular case.

The analysis presented here serves a similar purpose to the1

analysis of the "degree of independence" of the measurements of

g(x) as discussed by Tworney [6] [II] . However, in the present
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case the actual rms error to be expected is found and the results

are necessarily dependent on the statistics S and S.. as well as
Cb

on the kernel of the integral equation.

6. Numerical Inversion Results

Fur purposes of numerical experimentatioi the following equation

was used:

H

e- C(x)H 0y/H 0 f(y) eyoH(x)H °e 0 dy = g(x). (36)

This equation occurs in remote atmospheric probing work if an

exponential atmosphere is assumed. Here H is a constant ando

n(x) is given by

CO(x) = .1 x - 1 (37)

for the purposes of this section. If £ = f c const. is inserted in theC

left side of (36) and the integrations performed, the resulting right

side is:

gex) = fc e -e-(x)Flo(l - e H/Ho)) (38)

Substituting (38) into (36) will, of course, give an integral equation

whose correct solution is f f . In the work reported here, thec

values H = 10, H = 5,and f = 293. 997 were assumed. To study the
0 c
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behavior of (36) in the presence of mez.surement error, random

errors distributed in accordance with S were added to g(x) as given

by (38) and the mean value f was varied randomly from f in a manner
o c.

determined by Sf, which is given in Table 1.

Since the solution f simulates an atmospheric temperature pro-

file, Sf was obtained from radiosonde data from 240 soundings during

August at Denver, Colorado. The matrix S was assumed to beE

scalar and the values assumed will be indicated. The method of

constructing random errors is indicated below.

The CDC 3600 computer has a FORTRAN function, RANF (-I),

which gives random numbers uniformly distributed between 0 and 1.

These numbers are random in the same sense that a table of random

numbers is random; that is, if the series of statements V. = RANF(-I),

i- 1,2, .. M is repeated in the same manner, where i= I refers to

the first use of RANF (-I) in a given computer run, the same sequence

will result, but the sequence itself is random. It follows from the cen-

A
tral limit theorem [20] that the variable VMS whereV - 1Iv - M/ a

VM M/12 (39)

is approximately a random normal deviate (i. e. it has a normal

distribution with mean zero, and standard deviation 1), the degree of

the approximation depending on the size of M. A sample of

9,000 values of VM was calculated for M= 1,2,4,8, and 16.

i
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Histogram frequencies were found and compared with the frequency

distribution for random normal deviates. There appeared to be no

significant discrepancy between the histogram and the theoretical

curve for M• 8. In all work reported here Mr 10 was used.

To simulate errors having a given covariance matrix S, we first

determine [ 17] a matrix W such that

S = wrw (40)

if V =(V 1 . V.... V)T is a sample of independent random normal
2 m

deviates, we form V =W TV. Then, since SV = I, it follows from the

propagation rule for covariance matrices that

S W = (WT) I(wT)T = W TW = S. (41)

This process was used to simulate errors having zero mean and

covariance matrix Sf.f

in the simulation of errors the mean vector f was varied rather
0

than the sample vector f because the integration to give the right I
side of (36) could then be obtained in closed form as (38), and

a check on the accuracy of quadrature could also be obtained. A

total of 15 quadrature abscissas were chosen; these consisted of 5

Gass-Legendre values for each of 3 intervals: 0 to1, 1 to33and 3 to 10

respectively. Intervals of different length were needed because of

Z6



the general decaying-exponential character of the kernel. The

interval enclosing the x. was taken as 1 x. ! ; 1. 98, i= 1 ... n. The1 1

x. were evenly spaced, and the values used will be indicated. Under1

these conditions a numerical integration with Gau-sian quadrature was

compared (for fn--f ) with (38) and the maximum quadrature errorC

was found to be .0011 in the right side, for which the actual value

varied from about 103 to 292. All 8olutions used the classical

Obukhov basis. In table 2 results are shown for x. = 1(. 0544...) 1.98,1

where the x. are rounded to four decimal places. Here n= 19,0c(x )

2 -4
is given by (37), Sf is as given in table 1, S 0. I= 10•

and f =293. 997 as indicated. The solutions were run with k =.5.
C

-1
Under these conditions TrSuc - = TrX = 12.8. There was some

loss of accuracy in the computation, so that trace values are good

only to one decimal place. These were the only trace computations

for which the computation errors were noticeable; most other

trace values were computed using double precision. The overall

-1
rms error corresponding to TrX - 12..8 is .92. The solution of

table 2 and two others are shown graphically in figures 7, 8, and 9.

The three solutions were selected at random from a "run" of 40

solutions.
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Ta'ble 2

SOLUTiON .. CF 1NTEGRAL EQUATION, f = Z93.997;c

SAMtPLE RNLS ERROR: 0.71

y UC f=f .UC f
0 0

.046910077 -1.220 294. 02 295.24

. 23076534 -1. 894 293.25 295.15

.50000000 -2.687 293.86 296,55

• 769234%6 -3.018 295.07 298.09

.95308992 -3. C75 295.03 298. 1.0

1.0938202 -3.066 294.89 297.95

1.4615307 -2.9944 294.03 297.00

2.0000000 -2.475 293.83 296.33

2.5384693 -2.155 293.60 295.75

"2.9061798 -1. 84-1 293.44 295.28

3.3283705 -1. 598 293.98 295.58

4.6153574 -1.157 292.94 294.10

6.5000000 -1.779 295.16 296.94

8. 3846426 -2. 332 293. 55 295.89

9.6716295 -2.268 294.52 296.79
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The index TrX was computed for exac:Wy the sa'-e conditions as for

the solutions of figures 7, 8, and 9 except that S 2 01). 1. Undex

these conditions it was found that TrX- 21.44. Next every second and

third value of x. was removed to give the set x. 1 (. 16Q3...) 1.98

where the resulting x. are rounded to four decimals. In this case
-1 1

n= 7 and TrX = 23. 95. This is the case shown in figure 1.

Decreasing n from 19 to 7 had very little effect on the expected error.

The effect of changing n is summarized in table 3. For this kernel,

the theoretical rnis error is not strongly influenced by n, a.s long as

the intrerval (1, 1. 98) remains fixed.

Table 3

TrX- FOR VARIOUS x -CONFIGURATIONS ON (1, 1. 98)

n x. TrX 1  Theoretical
1 Overall rms errors

19 1(, 0544)I. 98 21.44 1.20

7 i(. 1633)1. 98 23.95 1.26

2 1(.98) 1.98 27.45 1.35

Figures 10, 11, 12, and 13 present results for the conclitions of tabl 5

with n = 7 and k = 4. These solutions were selected at random from

a "run" of 40 solutions. The improvement of the solution over the

statistical values is not as pronounced, because of the increase of a-

from .01 to .1.
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The 40 solutions of which figures 10 through 13 are a sample
I

were also run for k = 1,2, 3,5,6,9,12, and 15. The same sequence

of random errors was used for each run of 40. A typical solution is

shown in table 4 for various values of k. Table 4 shows typical

behavior of the solution as k is varied. In this case, any value of I
k from 3 through 15 would have given essentially the same solution.

3I

it°
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7. Absorption of Microwaves in the 10-150 GHz Frequcncy Band.

The Van Vleck-Weisskopf theory 21] was applied by Van Vlecc

[22] ,[23] , to the absorption o- microwave by oxygen ana water vapor.

The formula obtained by Van Vleck [221 for the absorption of 0 is

6 ~~8 T-3 %) Nd R Q2 B%

y = 10 6 (log1 0  C) - 2
c(3k T) 2

12

D N2 I)N+ f ('+, V N+ N-+ N I-N' f(V N-0 v) (42)

N

12 2 -N/kT
N- + F()) ". No e

- N.

where the following notation has been introduced:

a) Nd is the total number of molecules per cubic centimeter

and R is the fraction of the total which is 02;

b) c, k, and V are the speed of light, Boltzmann's constant, and

the frequency of the imposed microwave, respectively;

c) f and F are form factors for the line shapes given below;
d) V N+ and vN_ are resonant frequencies of the transitions;

(No labels the so called zero frequency transition)*

e) is the absorption in decibels per kilometer and is numerically

equal to the product of the mass absorption coefficient timnes the dens

f) N runs over odd integers labeling certain rotational quantulrl states;

g) !,N! is the square of the matrix e-ernent dipole moment evaluated
between appropriate angular momentum states;

h) P is a rotatlonal cclnstan, w:.'ose n•a nituude is 1.44 cm•1 and

The transition frecuc.ucies for o-::ygen can 1e calcul-ated with sufficient
accurac-" for the purposes of this re ?ort from' the forMLulas in Townes and
Schawlow r24-,.
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i) EN is the energy level of the Nth quantum state.

In (42) the expression of Van Vleck has been translated into the
more modern notation and two of these equations are consolidated.
FurthermoreVanVlecks expression is for pure oxygen. The fraction,

Ro, #of oxygen in the dry atmosphere is about 0.2. In the actual atmos-
phere, R varies slightly since the mixing ratio of water vapor also0
varies.

The form factors in (42) are given by

f + 'i6 V __-'_._+_ ] (43)
2 22 .2S(v. -v•) + (•v) (vi+v) + (v)6 V

and

F(v) =li [v f("V, v)] 2 V V (44)
v.0 -o [ liv (+v) ]

The matrix elements of the dipole moment can be calculated from fori-
ulas in Townes and Schawlow [ 24].

The formula for the absorption by water vapor at the 22. 235 GHz
resonant line in decibels per kilometer is given by Van Vleck ( 23] as

8Tr 3 NdHO0 2 "5, -1/kT
Y6_5"5" = 10 6 (log1 0 e) 3 G kT 46 5 I e

S-5- 4-

(45)

V f(v V6_5 5- _-16_5- 5_

and G is the rotational partition function given by

SJT
G (2 (_,)IT (2J+ I) e ,46)

J=O T= -J
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The dipole moments and transition frequencies of 1120 may be calcu-

lated from formulas in the Appendices of Strandberg [25.'. These are

much more complicated than the cofresponding calculations of 02.

Equation k46) implies that other transitions are possible for the

H 2 O molecule. If the form factor in (43) were valid for these, then

the absorption of each of these lines would have the same form as (45).

These frequencies are much higher, general, than the highest frequency

of interest for this paper. Thus, an approximate formula for these con-

tributions Y can be written as YRes.1 given by

2
YRes. = K p v v. %47)

The total Y due to H - 0 is the sum of the contributions of (45) and

(47).

The experimental values appropriate for the K and Av's for the Van Vle-k

equations will be discussed in the next section. The &0 is derived in the

VanVleck-Weisskopf theory from considering broadening to arise from the

finite extension of the time between collisions. In fact, 2TRAV is the rccip-

rocal of the mean time between collisions in the VanVleck-Weisskopf theory.

If one had hard spherical 'nolecules, the mean time between collisions

could easily be calculated from kinetic theory [26] . Hlowever,

nm.lecules interact in a much more complicated way than can be described

by the simple hard-sphere collision picture. A better approximation can

be made by considering the molecular interactions to be more compli-

cated functions of the separation than the hard-sphere approxi-

mation. This at least improves the temperature dependence of nýV.
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The classical theory described above does not explain why different

lines have different widths. One could account for this in the classical

approximation by ascribing a different interaction between each state.

No a priori knowledge from classical theory can supply this sort of

information and it must be introduced as an additional set of assumptions

if one is to proceed further via a classical mechanical calculation of

line widths.

A partial quantum mechanical approach to the problem was given

by Anderson as quoted in Tsao and Gurnutte, ( 27]. The translational

motion in this calculation is treated as a classical mechanical problem,

whereas the internal state transitions are treated as a quantum mechani-

cal problem. In this picture / v is given by

AV = n v , (48)

where

S= 21TS bdbf(I,b).

In (48) .n is the number density of perturbers, v is the average relative

velocity, b is the separation of the molecules at closest approach and

f(I, b) is the distribution function for cross section as a function of the

internal coordinates, I, and b.
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8. Least-Squares Analysis of Line Width Data

The absorption equations given in the last section, as developed by

VanVleck and Weisskopf [ 21], contain essentially one undetermined

parameter, the line width constant, A v/c. Calculations of this quantity

are laborious and many uncertainties are present in such calcul1..ons.

Examples of such uncertainties are lack of knowledge of the exact form

Of the moleculav" interaction, imprecise knowledge of molecular constants

(such as quadrapole moments) which enter into the theory of line broad-

ening, and the effect of higher order corrections to the perturbation

expansions.

As a check on theory, there are fortunately many experimental

results on line broadening and absorption coefficients for a variety of

conditions of pressure and temperature. For low pressures (around

10 to 20 mm'n of Hg), direct measurements of line widths can be made

since unresolved lines are well separated and there is very little line

shape asymmetry from 1he "negative frequency" portion of the VanVleck-

Weisskopf line shape. However, the:.e is danger in extrapolating these

low pressure measurements to high pressures, especially if the individ-

ual lines are not well resolved at the higher pressures. A notable

example of this type of behavior is oxygen.

In the work reported in this section, the absorption data of various

researchers have been least-square analyzed to determine line widths
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and, in the case of water vapor, line shape factors. A least-squares

analysis applied to nonlinear equations (such as the VanVleck-Weisskopf

equations) cannot, in general, be solved exactly; the solution must be

determined iteratively by use of a reasonable first estimate to insure

converg ence.

The least-squares method used here may be described as follows.

We wish to characterize N data points d., by a function f. of n parameters
1 1

p. such that N 2

(d. - fi ( ; Pl 0...pn)) w. = min (49)
j 1

where w. = positive definite we ight of t,ýe ith data point. It is assumed1

that "reasonable" first approximations to the parameters pi are known.

If these first approximations are labeled as pj(.), then the functions f.

may be expanded in a Taylor series about p.(0)

nJ

f(p) . (pj(0)) + X Tk •_ (p) - pj(0)) (50)

k-l

Let fI f3

Lc f 2

p1 1 ___

bi P2 n N , (51)

cf ~ffN N N

p1  p . . p
1 2 n
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and

r = [d - fit d 2 - f. ,d N NT (52)

= vector of residuals.

In (51) and (52), both the function f. and its derivatives are to be
1

evaluated at the original estimate pj . Then minimizing (49) yields

the matrix equation given by Strand [ 28].

Ap 1 p - p = (0) =(T IJ)I - T rr, (53)

where

diag (wt w 2 .... WN (54)

Equation (53) is then iterated by reevaluating (51) and (5Z) at each

stage of the iteration prOcess.

Equation (53) was applied to the oxygen absorption data of Artman

[291 and Crawford and Hogg [301 to determine the values of

the line width constants for both the (+) and (-) transitiori. The data

of Artman were taken under laboratory conditions at T = 3000K and

pressures of I atm, t atm, and i atm in air. Each of the above samples of

data was taken at approximately 25 frequencies covering the range of

50 to 62 GHz.
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Each piece: of data was weighted with unit wecight. The data of Crawford

and Hogg were taken from transmission studies through the atmosphere

at sea level pressuren. As stated in their article, the approximate

temperature range during the period of measurement was 0 * 3UC.

Hence, as with most data taken in the field, the uncertainty of these data is

greater than that of 'aboratory measurements. The results of thc least-squares

fit are shown in table 5. As fts been discussed previously [311,

the numerical values of the normalized line width parameter (L v/c)/P

decrease with increasing pressure. A new featurc, possibly of significance

for line breadth theory, is that the line widthk of tnc + transitions are

consistently higher than those of the - transitions for all of the data

examined. In addition, the data of Crawford and Hogg give higher values

of the line width than a simple extrapolation lusing the usually assumed

temperature dependence would'indicate. This fact causes the authors to

speculate that the interaction of 1-12 0 with 02 might give rise to the

increase in oxygen line widths. Of course, the residual absorption of

the 22 GHz and the 183 GHz H 0 lines might also appear in this
2

analysis as an increase in line width, but because of the absence of

relative humidity measurements while the absorption measurements were

being taken, it was impossible to ascertain if this was the case. In any

case, it would be useful if measureme-uts were taken of oxygen line

broadening in the presence of water vapor.
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The 22-GHz water vapor absorption data of Becker and Autler [32]

were also analyzed, but in a slightly different fashion. For a fixed temp-

erature, the water vapor absorption coefficient may be written [23]:

2 4VC

p C1 ,2/ V + 27' (55)
(V - V) 2 + (,V/c) (v+ v) + 2

where a(l + b p). From 66 measurements of - vs. p and V , four -
C P

and five-parameter fits to the data were determined. The parameters

determined were c 1 , c 2 , a, b, and, in addition, for the five-parameter

fit V 0 The results are tabulated in table 6 . The initial estimates in all

cases were taken from accepted values of these constants.

Note that the resonant frequency determined by the five-parameter fit
-1

is very close to the accepted value .7417 cm. which is determined

by other means. The values of c 2 and b, which describe respectively

the nonresonant contribution of the 183 GHz and higher lines and the

effect of H O-H 0 line broadening, are both noticeably higher than the

accepted values. Again, these facts could be of theoretical significance.

Surprisingiy good consistency was obtained between the four-and-five-

parameter determinations, considering that the data were somewhat

noisy.
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Table 6

Water Vapor Absorption Parameters Determined by a Least-Squares Analysis

of the Data of Becker and Autler Using the Form

-2 dOv/Ca ~ V/C 2
( -v )z + ( + L(vOv + + C zv/ C

where 6,A/c = a(l + b p)

Units: y/p dB/km per"&mm
3

OV/C cm-
-1

a cm

b (g/m)3

VV cm-1

Four-Parameter Fit Initial Estimate 10th Iteration

a .087 .08478

b .005 .00708

C .004 .00361

Cz .05 .06089

rms deviation in '/p = .00114 dB/•rn per g/rn3

average y/o = .0154 dB/km per g/m

Five-Parameter Fit Initial Estimate 10th Iteration

a .087 .08366

b .005 .00710

c .004 .00355

c .05 .06204

V .7417 .74380

rrns deviation in -I/a .00114 dB/km per g/mn3

average y/p = .0154 dB,/km per g/m 3
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9. Application of Quality Criterion to Determine the Reduction

of the Variance of a priori Temperature Data by

Microwave Radiation Measur em ents

In recent work by Twomey [112 and Mateer [81, the information

content of radiation measurements has been discussed. In particular,

it was shown that for physically realistic smooth kernels, independent

information obtained from separate measurements is severely limited

due to ubiquitous measurement error. Twomey[11] goes further in

his analysis and determines, from a large number, p, of possible

measurements with a given noise level, the number of independent

pieces of information, , , which can be found [ 112, and gives a pro-

cedure for determining optimum frequency locations for the t measure-

ments (t,<p). In many inversion problems, however, certain informa-

tion about the unknown. function is known before any measurements are

made. This a priori knowledge is embodied in the mean and the

covariance matrix, both of which can be estimated from past data.

The information content of radiation measurements should be judged by

the improvement over the a priori knowledge.

-1
As noted in section 5, the quantity TrX can be used as a

measure of the overall accuracy to be expected from a given integral

equation with given covariance matrices Sf and S and a given set

-1
[xiJ of x. Calculating Tr X and comparing with TrSf indicate
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the amount of improvement over theoa priori statistical knowledge

that can be expected in a given case. It is important to realize,

-1
however, that TrX is not a panacea because no single number

can adequately describe m(m41)/2 of them. More detailed informa-

tion, such as the amount of reduction of variance of the function at

•" -1
various points, can only be obtained by comparison of S andX

f

-1
The calculations of X in this section have been carried out for

ground-based probing "looking up" and for an integral equation

determined by the Van Vleck equation (42) for microwave oxygen

absorption. The temperature and pressure structure used in calcu-

lating the absorption at each height were determined by assuming a

constant lapse rate of 6.5 OK/kmn to determine the temperature and

by integrating the hydrostatic equation to determine the pressure.

The effect of non-linearities in the kernel due to fluctuations of the

temperature from the mean value has not been included in

this analysis. The water vapor absorption was assumed to be zero,

and surface temperature and pressure were taken as 00 C and 850 mb,

respectively. For simplicity the pressure dependence of the normalized

line width constant (Av/P) was neglected and the values of

+ P) . 0" cm /atm were used for -ý- and - transitions respec-

tively. The calculations at each frequency have been made assuming



monochromaticity, so that the degradation 0i intormation due to

fEnite receiver bandwidth is not accounted for. This effect should

be small, however, since the ratio of receiver bandwidth to pressure-

broadened linewidth can be made quite small for microwave receivers.
-1 "

Because of the previous assumptions, the calculations involving X are

meant to be illustrative only.

Before presenting these calculations, we must give one more theo-

retical extension of the methods of sections 3,4, and 5. For a ground-

based probing scheme, the value of the function at the lower point, a,

can usually be measured directly. This constrained point should be

used to modify the statistical estimation of the function and its

uncertainty as given by X1 . First, the constraint can be incorporated

into the integral equation by using a quadrature formula (such as

Gauss-Radau) which uses the value of the function at a, f(a), directly:

b m

S•KX,y) f(y) dy w. K(x, y.) f(y)

in

SwI K(x.a) f (a) + •w. K(x, y,)f(y.) (56)
I"

Thus, by subtracting w1 K(x, a) f(a) from the measured quantity,

g(x), a matrix equation to be solved for (m-I) components of the

45



function of f is obtained. Second, knowing f(a) redut es the un-per-

tainty in all the other functional values. The new covariance matrix,

Sf(c), of dimension (m -1) x (m -1), has elements

(c.) = s3. ... , 3in;Sj S SI

where

(c) (c)Sf = (Sii) and S f (Si ). (57)

For convenience, the matiix Sf (c will be referred to in the follow-

ing as the constrained covariance matrix. Furthermore, instead of ti,e

mean, f, as the best a priori estimate of f, the effect of knowing fl

modifies this optimum A prj2ri estimate to where

S.il -
f f .- .f - (fl - f) i , -.... m. (58)

Equations (57) and (58) may be derived from linear regressions of the

(m - 1) functional values f2 , f 3 ... $ f as functions of the surface valve3' m

fV"

The two temperature covariance matrices and the corresponding

means were obtained by ensemble averaging of 5 years of radiosonde

data for the 2 months, February and August, at Denver, Colorado.

The February and August averages were over 163 and 240 soundings,

respectively. The temperatures, given at heights determined by the

radiosondes, were interpolated linearly to determine values at the 15
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desired quadrature points. (Gauss-Radau quadrature was used for the

subinterval 0 to 1 kin, while Gaussian quadrature was used in the sub-

intervals 1 to 3 km and 3 to 10 kmn.) The means T (hi), and elements of the

covariance matrix, S(hi, h)= Sij, were determined from

1 J

"T (hi= d L T.(hi), (59)

and
N

ij N N- 1 h)(c~. h) (60)

where N is the number of soundings, a. is an index for each sound-

ing, and TCL (hi) is the temperature of the Ctth sounding at the height

hi. The constrained covariance matrix was then calculated using

(57). The means of February and August are .given in table 7 and

the constrained covariance matrices for February and August are

given in tables 8 and 9, respectively. It may be of interest to

compare the unconstrained covariance matrix for August, given in

table 1, with the constrained matrix for the same month, table 9.

The elements of the matrices differ considerably only below the

1 0 th quadrature point (around 3 km).
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Table 7

Five-year Mean Temperature Profiles at Denver, Culoradofor February

and August.

h1  T(hi) (Feb.) T (hj)(Aug.)

____ (krn) ( 0 K) ( 0 K)

1 0.000 268.23 294.00

2 0. 140 269.92 293.48

3 0.416 269.5 6 Z92. 47

4 0.723 268.15 290.87

5 0.943 266.83 289.43

6 1.094 265.87 288.40

7 1.462 263.54 285.69

8 2.000 260.08 281.56

9 2.538 256.76 277.32

10 2.906 254.40 274.47

11 3. 328 251.59 271.25

12 4.615 242.56 262.74

13 6.500 228.80 250.11

14 8. 385 219. 18 236. 16

15 9.672 217. 11 226.76

To determine the amount of reduction of the a priori temperature

variance by microwave measurenment:- of oxygen emission, calcula-

-1
tions of X were made for a set of frequencies which approximately

cover the entire oxygen band. This set is shown in table 10.
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A

Table 10

Frequencies Used in Calculations of TrX-

v(GHz)

47.02650 52.02593 60.43505

47.22650 53.93117 61.80036

47.94917 55.22163 62.48631

48.45304 56.26466 62. 68631

50.28294 58.44669 63.98631

-1
The calculations of X were run for both months, and for assumed

rms brightness temperature measurement errors of . 01 'K, . I 'K,

and 1. 0 °K. The entire matrix of X- for Denver, February, wxth

o = .01 K is shown in table 11.

The meaning of a 15x15 covariance matrix cannot be presented in

simple form. A rough estimate of the standard deviation to be

expected at each quadrature height is given by the square root

of the corresponding diagonal element of the covariance matrix.

These quantities are plotted as functions of height in figures 14 through

19. For ease of comparison, the error distributions to be expected

in the constrained solution are shown in figures 20 and 21. The cor-

-i1
responding overall quality criterion, TrX , is tabulated in tables

12 and 13.
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Table 12

Traces of Sf and X- 1 For Denvcr, February, for Various rms

Measurement Lrrors, o

(3 T r S,( K) TrX- ( K)2 TrSf( K) Tr X- ( K)2
CIf

(0 K) Unconstrained Unconstrained Constrained Constrained

.01 615.22 20.85 310.70 18.19

. 1 615.22 43.86 310.70 37.91

1.0 615.22 93.11 310.70 85.05

Table 13

Traces of S and X for Denver, August, for Various rms
f

Measurement Errors, n

a -1(o -o

C TrS f(K)2  TrX ( K) TrSf (0K)2 Tr X- ( K)2

( K) Unconstrained Unc onstr c, ined Constrained Constrained

.01 120.48 5.73 68.92 4.76

.1 120.48 14.23 68. . 12.67

1.0 120.48 33.91 68.92 31.61
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The study of X and its trace can be directed towards an

important experimental consbiduejatiun i.e.; namely, that of detveriining

an optimnum distribution of mneasurement frequencies, given that only

a certain nwmncer of them (usually small) will bc available. This problem

has been studied by Twomey [11 Jfrom the point of view that the

optimum location of measurements is determined by the integral

eqoation itself. Furt ,er, from tCie anal. sis of a certain matrix, which
!

depends on the kernel, lie shows that the number of independent pieces of

information is limited by the number of eigcnvalues which are larger than

the noise level of the measurements. In the absence of additional

information, the above approach seems reasonable.

When additional information is available, such as the statistical

information contained in Sf, it is clear that the optimum frequencies should

be determined from a statistical compromise among f, S, and the proper-

ties of AT A. This optimumn set could be different for periods of different

meteorological statistics. If the measuring instrument(s) is (are) not

tuneable, a heterogeneous ensemble averaging over yearly data might be in

order. A method which properly weights all available information has tlh- ad-

vantage of allowing the choice of frequencies such that the duplication of easily

available information (that of Si and f) by difficult experimental measure-
I!

ments is made as small as possible. The concept of "number of
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independent pieces of informntion" is nolo as straightforwvard with

this analysis as it was in, l'woln cy'.s. Hlowever, an '"JfecCit ";c nu11be1er'',

such as the number of zncasurcezluts required to reduce the

a prior variance to a desired level, given that the noise level is

fixed, can be defined. In a theoretical sense, such a number could

always be obtained for any given level greater than zero since dupli-

cating measurements is equivalent to lowering the noise level.

Practically speaking, if a reasonably large reduction in variance

with a few well-placed measurements is not possible, the experiment

is probably impracticai.

An attempt was made to determine the approximate sensitivity

-1
of TrX to choice of and number of frequencies for one, two and

three frequencies and for a = .01 0 K. The one-frequency search was

carried out starting with 47.0 GHz and adding a . 5 GHz increment

until 56 GHz was reached. These result:-, for both the constrained

and unconstrained data, are shown in table 14 for the Denver,

August, statistics.

The frequencies corresponding to the minimum trace are 54. 5 GHz

for the unconstrained (U) case (TrX 1= 50.6 ('Kr) and 4.75 GHz for

the constrained (C) case (TrX 37.7 ('K)). The traces of S

were 120. 5 (G) and 68. , (U), (OK) , and the traces ot X for the

15 freouencies of taMe 10 were 5.7(°K) (U) and 4.8(°K 2(C). Thus
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Table 14

Trc -1 0

Tracc X vs. Frequency, Denver, August r, = .01 0KC

(Single Frequency, n.t 1) Trace Sf = 120.48

v TrX-I( K)Z Tr X I( K)?

(GtI ) Unconstrained Constrained

47.5 60.3 37.7

48.0 56.9 39.2

48.5 55.4 39.9

49.0 54.8 40.2

49.5 54. 5 40.4

50.0 54.2 40.6

50. 5 53. 9 40.7

51.0 t63.6 40.9

51.5 z 41.

52.0 52. 8 41. 5

52.5 52. 3 41.9

53.0 51.8 42.4

53.5 51.2 43. 1

541.0 50.7 44.2

54.5 50. 6 45.6

55.0 51.0 47.0

55. 5 51.8 48.3

56.0 52.7 49.4

56



the use of 'i sing it. frequei.y, with this choice oi o , reduces Ihe

variance by a factor of 2 (rcughiy).

The twvo-freqiiency calculations were done by fixing \ -- 7 (llz1

and varying the second frequency, v2, from 48. 3 Gllz to (00. 0 GIlz in

1. 3 GIN increments. These results are shown in table 15, which

indicates that the variance obtained from the one-frequency calculations

is roughly halved by the addition of the second frequency.

The three-frequency calculations were done by fixing V 1 = 47 GHz

and v. = 50.9 GHz and varying the third frequency, v 3 , from 47.5 to

58.0 in .5 G~lz increments. These results, again for Denver, August,

and o .01 0 IK, are shown in table 16. It should be observed that

-1
TrX is approaching that of the 15-frequency calculations, and

that addition of more frequencies will yield diminishing returns. The

-1
relative minimum of TrX at 47.5 GHz is pre3umably due to the

nearby resonant line at 47.4465 GHz. A rigorous search for

optimum frequencies would necessarily examine the effect of each

resonant line on TrX"1.
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Table 15

-1
Two-Frecquency Calculations of Tr X for Denver,

August, ot0 .01 K, v1 = 47.0 GlIz

-1 ~-1'
"V2  TrX Tr X

(GHz) Unconstrained Constrained

48.3 22.3 18.1

49.6 21.9 17.7

50.9 21.6 17.4

52.2 21.5 17.4

53.5 21.8 17.9

54.8 22.6 19.0

56.1 24.3 21.0

57,4 26.2 23.

58.' 27.4 24.8 8

60.0 27.9 25.3

i1I



Table 16

-1
Three-irequency Calc'ilitions of Tr X 1for Denver, August,

V1  47 Gliz, v2  50.9 611z, - .01 OK

V 3  Tr X- Tr X-
(0HIz ) Unconstrained Constraincd

47.5 15.4 11.8

48.0 21.4 17.3

48.5 21.4 17.2

49.0 21.5 17.2

49. 5 21.5 17.3

50.0 21.5 17.3

50.5 21.5 17.3

51.0 ZI 5 17. 3

51.5 21.4 17.2

52.0 21. 1 17.0

5Z.5 20.4 16.4

53.0 19.2 15.3

53. t 17.8 14.0

54.0 16.5 12.9

54.5 15.6 12.2

55.0 15. 1 11.8

55.5 14.9 11.7

56.0 14.9 11.9

56.5 15.0 12.2

57.0 15.1 12..5

57.5 15. 3 12.8

58.0 15.4 13.0
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10. Summary

A method for the numerical solution of a Fredholm integrai

equation of the first kind has been derived and illustrated. The

method requires knowledge of the covariance matrices of the con-

straint vector and the measurement error vector. Such knowledge

is frequenctly available in physical problems when it is desired to

derive values of physical functions fr3m integrals involving them.

If both covariance matrices Sf and S are scalar, the equations re-

duce to those of Twomey [ 6], where the optimum smoothing parameter

"- is given by the ratio of variances between the diagonal elements

of S and Sf, respectively. The present method automatically

incorporates the optimum amount of smoothing in the sense of maxi-

mum-likelihood estimation.

The trace of the error covariance Imatrix, TrSuc - , is used

t'o estimate the precision of the solution. When k = m (i.e.,when the

basis forms a nonsingular mxr.i), S UC_ reduces to

X-I= (Sf- 1 AT SC-1 A)- . The positive number TrX is related

to the error to be expected in the solution and is used as a quality

-1
criterion. A comparison of TrX with TrSf indicates the amount of

information contained in the integral equation with observation errors

-1
determined by S It is evident that TrX can be used to study

6
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optimization of the spacing of observations. Such a study could be

valuable for planning measuring systems.

The method of estimation and the use of the quality criterion

-1
TrX were illustrated by studying the effect of various sequences

of random errors on the solution of a specific integral equation.

The effect of varying the number and type of basis vectors was

studied for this example. The results apparently agree with theore-

tical predictions, although confidence tests were not run.

-I

Calculations of X and its trace were then performed using

certain meteorological statistics of Denver,, Colorado, and absorption

coefficients determined from the Van Vleck absorption equations for

the microwave oxygen complex with a linear temperature profile.

These calculations were performed for a set of 15 frequencies

selected to cover the oxygen band, and for three sets of assumqd

brightness-temperature rms error5 of .01 OK, .1 °K, and 1.0 OK.

-1
The square roots of the diagonal elements of X were plotted as

functions of height in an attempt to show the accuracy with which various

parts of the tropospheric temperature profile could be
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inferred from ground-based measurements of oxygen emission.

Questions of optimum choice of frequencies for this probing were

discu,-sed and illustrative calculations relevant to this choice were

presented.
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Square Roots of Diagonal Elements of Govariance Matrices of Temperature
Statistics, Sf, and Solution, X-1, vs. Height for Denver. August,and for
Measurement Errors, 7 of 01 K.
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U: Unconstrained Lower Point
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Fig. 1-4
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Square Roots of Diagonal Elem-ents of Covariance Matrices of Temiperature
Statistico, Sfand Solution, X-1, vs. Height for Denver, August,and fo..r
Measuremnent Errors, C0 of I 'K.
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Square Hoots of Diagonal ;Ilemeints of Covariance Matrices of Tciiperr.ture

Statistics, Sf, and Solution, X vs. Height for Denver, u-t, and for

Measurenjent Errors, 0 of 1. 0 K.
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10 C: Constroined Lower Point
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Fig. 16
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Square Roots of Diagonal Elements of Covariance Matrices of Tcrnperature
Statistics, S , and Solution, X vs. Height for Denver, _Februazy, and for
Measurement Errors, 0 , of .01 'K.

12 I

II -I
Curve Labels

U: Unconstrained Lower Point
I0 C: Constrained Lower Point

0

CC

cn 4 -

Solution Statistics

4-

0 1 6 T 8 9 10 1I

Height in km

a!

Fig. 17
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Square Roots of Diagonal Elements of Covariance Matrices of Temperature
Statistics. S and Solution, X-1, vs. Height for Denver, February, and for
MeasuremenSt Errors, 0 , of I 1 •K.
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Fig. 18
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Square Roots of Diagonal Elements of Covariance Matrices of Temperature
Statistics, Sf. and Solution, X- 1 , vs. Height for Denver, February, and for
Measurement Errors, c7, of 1.00 K.
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