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ABSTRACT

Titanium and Ti/6AL/4V under torsion exhibit unusual insta-
bility which shows itself as (a) abnormally prolonged creep on
yielding, (b) ineffective strain~hardening after yielding, and
(c) deviations from elastic strain at loads abnve a limit of
proportionelity which is low compared with the bulk yield stress.
As a result of this inherent instability it is possible to pro-
duce significant axial extensions under low tensile stresses com-
bined with small-amplitude cyclic torsion; and to reduce the nomi-
nal bulk yield stress in torsion to at least half its nominal value

by suitable prior straining.
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1, Introduction

Alpha~titanium loaded in torsion to or beyond its bulk yield-
point at room temperature creeps abnormally., Typical creep curves
are shown in Fig. 1 for commercially pure titanium in the form of
tubular specimens obtained by turning, boring, and reamering 5/16
in, diameter rod to smoothly finished tes® portions 1 1/2 in. long,
1/4 in. o.d., and 3/16 in., i.d, The twist in these curves is plot-
ted in degrees, since degrees gives a ready picture of its extent,
but it can be expressed as shear strain by the relation 1 degree
twist equals 0.00145 surface shear.

This creep is plotted only to 300 hours but actually was meas-
ured up to 700 hours, or until it caused undue buckling of a speci-
men, and though it had slowed down it was still in progress at the
end of each test. This creep too refers to titanium which had been
annealed in vacuo for 1/2 hour at l3OOOF, but it appeared equally
in unheated specimens and in specimens which were solid. Thus it
seems that alpha-titanium in any form when strained above the yield
becomes unstable, basically because it is incapable of strain-harden-
ing effectively.

It was of interest therefore to test how stable the alpha-tita-
nium might be when strained below the yield and also to test alloys

containing alpha-titanium as a constituent phase. The alloy reported
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on here is Ti/6A4/4V (AMS 4928), reduced like the titanium from
5/16 in. rod to similar tubular specimens and similarly tested

in dead loading.

2. Pseudo-Elastic Range (Titanium)

An outstanding feature of titanium loaded below its yield was
a low limit of proportionality relative to its bulk yield. This
feature is illustrated by the torque/twist curve in Fig. 2 which
shows an L.P, ~18 ib,-in. and a yield ~50 1lb,-in, Because the met-
al thus exhibited a long drawn-out range between L.P. and yield it
also exhibited easily observed permanent sets on unloading from

-

points within this range, for example from points A and B in Fig.
2. Moreover a specfmen on re-loading to A or B showed a small in-
crement of strain as a result of the cycle, an irreversibility,
clear at point B for example, which confirmed that the true linear

elastic range of the metal was not as extensive as its high yield

point might suggest,

3. Pseudo-Elastic Range (Ti/6A%/4V)

The alloy showed even more marked evidence of the above pseudo-
elasticity because its yield, but not its L.P., was much higher than
that of the pure metal; so that the range between L.P. and yield was
drawn out even more, This range is illustrated by Fig. 3, the L.P.

now being only about 1/10th of the yield point. Consequently, as

-



Fig. 3 also illustrates, unloading from points such as A, B, C, D,
in this range led to obvious permanent sets.

Fig. 3 refers to a specimen which was not heat treated after
machining and which therefore might be taken as characteristic of
a cold-worked state. However, specimens which were heat treated
showed essentially similar effects, though their vield point and
L.P. might be lowered a little by the heating. For example, as
shown by Fig. 4, similar effects occurred in specimens hweated in
vacuo for 1 hour at 13000F. Other heat treatments were 1 hour at
1200°F, 3 hours at 1200°F, 3 hours at 1300°F; so the effects were
characteristic of the material and not of any particular heat treat-
ment, Fig. 4 also serves to illustrate further that the process of
unloading and re-loading from points such as A, B, C itself produces
an increment of strain; thus the point B from which an unloading be-
gan does not lie on the re-loading curve to C, a further confirmation

of the pseudn-elasticity.

4, Cycles of Torsion Combined With Axial Tension

If a specimen were truly elastic in torsion up to a yield torque
TO and in tension to yield o, it should be elastic also under combina-
tions of T and ¢ corresponding to points within a Mieses type ellipse
with axes To and o,s as depicted in Fig. 5a; and it should remain elas-
tic when T is reversed to -T. 1If however it is beyond its elastic
range under the combination T, o it should exhibit a permanent axial

-3~
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extension when T is reversed. Such extension provides a sensitive

indication of deviations from elasticity because it is additive in
successive reversals,

This test was applied to the alloy at T, ¢ combinations well
within the above type of ellipse. Nominal tensile yield according
to the suppliers was 130,000 to 140,000 psi, so the SR axis of the
ellipse in Fig. 5a has been made equivalent to 15,000 psi. Yield
in torsion according to the present tests occurred at 6 ~ 12 degrees
and the torsion axis of the ellipse for convenience has been left in
degrees, with eo = 12 degrees. Test points corresponded to points
like P where 86 was only 3 degrees and ¢ only 20,000 psi.

The test was applied in a machine designed for the method.
Standard procedure was first to apply the axial tensile load and
allow any resulting extension to come to rest; then to apply the
cycles of torsion, normally at 1500 cpm., Extra extension induced
by the cycles was plotted against cycles.

Fig. 5b, which shows the curve corresponding to point P, demon-
strates a significantly large induced extension and so proves a marked
deviation from elasticity at stresses well within the.nominal yields
of the alloy. Fig. 5b includes curves showing extensions at even less
o, 8 values than those at P.

Thus the alloy is even more unstable when cyclic torsion is super-

posed on static tension than under static loading alone and unstable

—4—
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moreover under combinations well within its nominal torsion and

tensile yields.

5. Instability Induced By Cycles Of Large Amplitude

The initial yield torque of the alloy could be at least halved
by a prior straining conveniently described by reference to Fig., 6,
A specimen was first lcaded in torsion to its yield To’ here 170 1lb.~
in.; then allowed to creep under To through 6 = 53 degrees, the time
taken in creep being 65 hours., It was then subjected to the reverse
torque -~ To' As Fig. 6 indicates the specimen as a result of this
reversal tended to creep at loads less than - TO and, when - TO it-
self was reached, crept more rapidly than previously at + TO; it now
crept through 53 degrees in only 23 hours. Next the load was re-
versed to + TO in the original direction. Creep during this rever-
sal was further accentuated and at + TO now produced a twist of 53
degrees in only 2 hours; and so on in a second cycle,

If after a second cycle the specimen was held under torque 90
lb.-in., a load only about half of its original nominal yield To,
it exhibited a slow but continuous creep which did not occur before
this cyclic straining; this creep is shown i Fig. 7 for the first
300 hours. Thus the nominal high yield of this alloy is rot a fixed
property. It may be reduced to at least half by prior treatments,

here prior cycles of strain,



6, Discussion

Alpha-titanium and its alloy Ti/6A4{/4V may possibly exhibit
weaknesses in service because they do not strain-harden efficient-—
ly. In particular they exhibit unduly prolonged creep on yielding,
so their stress/strain relationship above yield is meaningless, and
they lack the safeguard of hardening which allows normal metal to
adjust itself to overstrain. It appears that in assessing whether
an alloy can withstand service stresses some attention should be
paid not only to its yield strength but also to its capacity for
strain-hardening.

It should be possible to tell why the alloy does not strain-
harden efficiently from a study of its deformed microstructure,
Meanwhile it seems reasonable to make the following comments,based
on current theories of mechanical strength, These would attribute
its high yield-strength to interstitials, impurity atoms, and phase
boundaries, which strongly pin the dislocations responsible for plas-
tic flow; yield becomes the stress needed to pluck dislocations away.
In normal metal the dislocations thus set free soon become pinned
again and plastic strain ceases; but not, apparently, in titanium
and the alloy. An inability to pin mobile dislocations appears to
be the basic cause of its special behavior.

This inability, again according to current theories, is likely

to arise when interstitial and impurity atoms do not diffuse easily



to the mobile dislocations and recapture them., Such slow diffusion
in titanium is perhaps to be expected, for it has strong chemical
affinity for the common interstitials and impurities, oxygen, car-
bon, nitrogen., It might be overcome by additions «f impurity atoms
with less affinity.

The inability to pin dislocations could also account for specif-
ic observations. The drawn-out pseudo-elasticity between L.P. and
yield would result from odd dislocations which are already free, The
halving of an initially high yield stress like that described in Fig.
6 would arise because the prior creep straining at yield is likely to
set free a large number of mobile dislocations; these then persist
and permit plasticity under a subsequent lower stress; other prior
treatments with similar results might be anticipated.

Finally it might be predicted that the instability at room tem-
perature may diminish at higher temperatures because higher tempera-
tures normally expedite diffusion. However, for the same reason, in-

stability coulu persist at lower temperatures,
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Fig. 1. Room-temperature creep of titanium at yield ~ 50 1b,-in,

and above,
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