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Suinmarv 

Miner's rule for the cumulative damage due to fatigue, the behavior 

of which Is well known In engineering practice as a deterministic rule, 

is examined from a probabilistic point of view. By adopting a model for 

stochastic crack growth with incremental extensions having a distribution 

with increasing failure rate, and utilizing some results from renewal 

theory, we exhibit conditions of dependence upon load under which Miner's 

rule does yield the mathematical expectation of the fatigue life. We also 

obtain conditions of dependence under which it Is conservative and others 

when it is unconservatlve. The relationships between the mathematical 

assumptions which govern when the rule is, on the average,  conservative 

or unconservatlve, are related to the physical conditions in practice 

which are known to force significant departures from the rule. 
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Introduction 

In one of the first papers dealing with the prediction of fatigue 

life, M. A. Miner [6] proposed over 21 years ago a criterion which has 

become famous (or infamous) as "Miner's rule".  Dealing with fatigue 

as if It were a deterministic phenomenon and using such non-quantifiable 

concepts as "internal work" and "damage" the author derived heurlstically 

a rule which has been applied )  the prediction of fatigue life under 

repeated cyclic loadings with varying stresses. 

It was soon experimentally verified that Miner's rule could not 

give a fatigue life prediction under all types of loading, which would be 

sufficiently accurate to be used without modification as an engineering 

design tool. Thus, since its formulation in 1945 there have been a score 

or so other deterministic rules proposed to take Its place. However, 

because Miner's rule was so simple to apply and seemed to give no worse 

results than any of the others, it has remained as a standard for 

comparison. In fact, calculations performed on some extensive empirical 

data [3] showed that in many practical cases the rule yields approximately 

correct and rather conservative results, i.e. that it tends to underestimate 

the true number of cycles to failure. On the other hand, recent experimental 

studies carried out under carefully controlled conditions, see [4], [5] and 

the references given there, have resulted In data which make It seem likely 

that the applicability of Miner's rule depends on the arrangement of the 

loading sequence within the cycle, and that under some circumstances this 

rule may substantially overestimate the true number of cycles to failure. 

i ■-' 
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2.  The Traditional Derivation of Miner's Rule 

We consider standardized specimens of a material which are exposed 

to fluctuating stresses due to periodic loading. To be specific by a load 

(or load osoillation)  we mean a continuous unlmodal function on the unit 

interval, the value of which at any time gives the stress imposed by 

deflection of the material specimen.  Thus our load function contains all 

the information needed to determine such parameters as maximum strpss. 

minimum stress and average stress which are usually used to define the 

loading oscillation. 

The assumptions usually made to obtain Miner's rule may be 

summarized as follows: 

(a) The amount of damage absorbed by the material in any 

one oscillation is determined only by the load during 

that oscillation. 

(b) Each specimen can absorb the same amount of damage and 

when that amount is attained, failure occurs. 

This amount will be called the total damage at failure. 

(c) The total damage absorbed by the specimen under a 

sequence of load oscillations is equal to the sum of 

damages absorbed in each oscillation during the sequence. 

We Introduce the following notation: 

W » total damage at failure 

w. * amount of damage during one repetition of load oscillation i, 

N. » number of oscillations to failure under repeated application 

of the same load i, 

where there are only l»l,...,k possible loads considered. 

%. 
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Under (a), (b), (c) there follows immediately the equality 

(2.1) W - N^ for each 1-1,....k. 

If a sequence of  loads is applied which are different  from 

oscillation to oscillation, and failure occurs after load    £,     was 

applied in    n..     oscillations and    £»     in    n2,     etc., we must have 

k 
(2.2) ^ n w    =  W 

1        1 

and from (2.1) and (2.2) follows 

(2.3) I r=1 

1=1 1 

as a necessary and sufficient condition for failure to occur after 

the number of oscillations to failure given by 

k 
(2.4) N - ^n.. 

1-1 1 

The most frequently used form of Miner's Rule is the following: 

If a given cycle contains various numbers of different oscillations 

say   n,    oscillations of load    I.    for    1=1,...,k    then the number of 

such cycles that  can be repeated until  failure is 

(2.5) N k    n. 
y — ^   N 

1-1    1 

Hence by the cumulative damage rule we determine the fraction of damage 

accrued during one cycle and use Its reciprocal to estimate the total 

life. In practice N. are determined from available S-N data and 

*^mmmmkäimiiäM 



«afiww^»^ ■MMMMMM 

the n  are calculated from a typical spectrum of loading during the 

cycle and then we use (2.5) to estimate N. 

The assumptions underlying this traditional derivation of Miner's 

rule are strictly speaking not verifiable and the conclusion derived, 

namely the deterministic formulation of the rule, is acceptable only as 

a first approximation.  The following comments about assumptions (a), (b) 

and (c) make this point more specific. 

Firstly the vague concept of "damage" is in need of 

re-interpretation in the light of modern fractography.  Secondly, 

instead of assuming, as in (a) that constant repetition of the same 

load i,    on each oscillation should contribute exactly the same 

amount w. of "damage", it would appear more plausible to make the 

assumption that the "damage" caused in any single oscillation might vary 

from one oscillation to the other and depend upon factors other than the 

load at that oscillation.  Similarly instead of (b) one would prefer to 

assume that the quantity W,  the total "damage" at failure might also 

be a random variable which can assume different values for different 

specimens of the material.  Finally, assumption (c) that the "damage" 

accruing in the j  oscillation is linearly additive to the "damages" 

sustained in the preceding oscillations appears also to be in need of 

re-interpretation and it would be desirable to modify it. 

In the next section these assumptions are modified in the sense 

suggested above and some mathematical results are obtained which are 

analogous to Miner's rule In its traditional form. But these are stated 

In terms of mean values of the random numbers of cycles to failure and are 

derived under conditions which appear reasonable, at least when failure is 

a state attained during an early stage of the fatigue process. 

\ 



mm*ß>f^wmfm>m<i&uy**K0&!$ffl ' 

-5- 

3. A Probabilistic Model I 

We assume that fatigue failure is due to the growth and ultimate 

extension of a dominant crack. At each oscillation of the imposed stress 

this crack is extended by some amount which is a random function, due to 

the variation in the material and to the influence of environment, of the 

magnitude of the imposed stress as well as the geometry of the specimen. 

The extension of the crack at each oscillation is therefore a 

non-negative random variable whose distribution may depend upon several 

parameters the nature of which we do not specify now. 

Let iL,^,... be the sequence of loads which are to be applied 

at each oscillation so that at the i  oscillation load i,     is imposed. 

We suppose that the loading is oyalia  in the sense that for some m > 1 

and all i«l,... ,m 

and 

Vi = ^km+l for a11 J *  k- 

fti+1(0) - ^(D 

(3.1) 

Hence the (j+l)st cycle is the loading  (£.  .,...,£,   ) and the total 

damage, in the sense of extension of the crack, during the cycle of loads 

is for j=0,l,2,... 

L- 

j+1        jm+1 jm+m 
(3.2) 

where    X is the microscopic crack extension due to load    i,    applied 

in the i      oscillation of the (j+l)st cycle.    We now set 

S    -¥.+•••+¥ n        1 n (3.3) 

as the total crack length at the end of n cycles. 
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Now we make the assumption 1° below corresponding to (a) In 

Section 2, namely that loads which are the same In any cycle force a 

crack extension which has the same distribution no matter where they 

occur in the sequence of loads.  Specifically, we assume 

1°  If the load  £  is applied at the 1  oscillation, then 

the incremental crack extension X.  is a random variable 

with a probability distribution depending only upon £. 

This assumption implies the independence of xrack extension in each 

oscillation from the total crack length, as well as the order of the 

loads.  While this may be realistic in the early stages of fatigue crack 

growth, It is not applicable in many practical situations, and modified 

assumptions will be proposed in Section 4. 

We also make an assumption about the behavior of this incremental 

crack extension.  Specifically, we assume 

2°  For each i»l,2,...  the random variable X.  is non-negative 

and has a distribution with an increasing failure rate. 

We believe that this assumption is realistic, at least during the 

stable phase of crack growth, by the following reasoning:  a well-accepted 

mechanism of crack growth says that the longer the crack propagates during 

an oscillation the more blunt it becomes (with the consequent relaxation 

of the stress intensity at the crack tip) and the farther into unworked 

material it progresses.  Assumption 2° is compatible with such an 

explanation since the concept of increasing failure rate applied to 

incremental crack lengths can be Interpreted as meaning that the longer 

the incremental crack has grown as a result of one oscillation, the more 

likely it will not propagate a given distance farther.  For a discussion 

of the definition and properties of increasing failure rate (IFR) 

distributions (or random variables), see [1]. 

Perhaps assumption 2° can be made more plausible by the following 

argument:  Consider molecular bonds holding at the tip of the crack within 

i 
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the plastic zone of the metal. The stress due to the load should 

attenuate away from the crack tip.  It is reasonable that for a given 

stress the probability of the successive rupture of each molecular bond 

given the preceding one has ruptured must decrease since the stress is 

relieved.  But it follows that this is equivalent with the random number 

of bonds broken during each oscillation being IFR. This assertion is 

made explicit in Section A of the appendix. 

If W is the total crack length at which failure occurs, the 

number of such cycles until failure is the integer valued random variable 

N defined by the event 

[SN_1 ' W' SN-W1- 

Note that failure as we have used it may mean anything from "catastrophic 

rupture" to "the crack is of such a length that it is inspectable". For 

this and other reasons one might consider the crack length W which is 

defined as failure to be a random variable with a given distribution function 

G. Now we make our last adsumption: 

3° The crack length W is statistically independent 

of the crack length S  for all n=l,2,... . o    n 

This means simply that knowing the length w at which failure will take 

place has no influence upon the behavior of the crack growth. 

The conditional distribution of N given W is for n=l,2,... 

p (w) = P[N=n I W=w] = P[S  . < w, S > w] rn ' n-1      n — 
(3.4) 

Pn(w) = Hn-l(w) " Hn(w) 

where H  is the distribution of S  tor n=l,2,... and Hn = 1. n n U 

Thus the distribution of N is given by 



RHMMHHRMMMMmw '-"•^•■^B-- ma» mmmmm mmmmm w «e 'm m ■ mmm ■-■ 

-8- 

[N<n]  =    j    ^p(w)dG(w)-    / [1-H  (w)]dG(w). (3.5) 

If we  let    v    denote   the expected number of  cycles  to failure,   then 

OD -CO 

v - EN «    /    I   np  (w)dG(w)  =   j    X    Hn(w)dG(w). (3.6) 

0 n"1       " 0 n=0 

Notice that in our case, from our assumption of periodic loading, the Y. 

for j=l,2,...  are identically distributed. We label the common distribution 

F.  Then H  is merely the n-fold convolution of  F with itself.  Now let 

the expected crack increment per cycle be denoted by 

00 

U = EY = /  xdF(x) 

and we  can utilize our notation to state a well-known  result   from renewal 

theory which  is  fundamental  in what  follows: 

Lemma;     If    Y..,Y_,...     are  independently  and   identically distributed 

non-necative   random variables, with    H       the distribution of    Y,   +•••+ Y   , 6 n In' 

then  for all    w  >  0    we  have  the  left-hand  inequality holding 

- - 1 <   2    H(w)   < - (3.7) 
U -n=0    " -y 

while if the Y  are also IFR, then the right-hand inequality holds as well. 

A complete proof of this is given on page 53-5A, reference [1]. 

If we denote the expected value of W by 

T = EW = /  wdG(w) 
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and substitute the results (3.7) into equation (3.6) we obtain the 

fundamental inequality involving the means 

 1 < V < — 
P    -  - M 

(3.8) 

T 

Since we can expect in our application that - is quite large we 

could interpret (3.8) as equality for practical purposes.  If we did 

so we would have what is indeed Miner's rule in a different form as we 

now shew.  If we let X  have distribution F(«,£,)  and 

00 

U = EX - / xdF(x:Ä )   i=l,...,m 

,th 
be the expected length of the crack extension due to the i  load 

oscillation it then follows from (3.2) that 

m 
- 1 

i=l V 
(3.9) 

Of course, if we consider the derivation above in the special case 

where all the imposed stresses are the same for each oscillation, resulting 

from the same load function I.,    we would have from (3.8) 

-^ - 1 < v, < ^- 
U.    - i — p. 

(3.10) 

where v. is the expected number of oscillations until failure under 

I . Substituting (3.9), (3.10) into (3.8) and simplifying yields the 

following inequality 

I- 
1 vi 

1 < V < m 

TV1 

(3.11) 
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In view of the assumption of periodicity as stated in (3.1), there 

are only a finite number, in fact not more than m, distinct load functions 

which can be assumed in any one oscillation of any cycle. Say, that the 

number of distinct loads ih    k,  then by virtue of 1° we can assume 

£.,,..,L  are those distinct load functions.  If also during all m 

oscillations of the cycle the load £. occurs n  times, 1=1,...,k, 
k 
^ n. " m,  then we have from (3.11) that 
i-1 

1  - 1 < v 1 . -   . (3.12) k n.    —     —    k    n^ 

i vi i v1 

This formula is a direct analog of (2.5) stated in terms of mean values and 

in this form is precise. 

We now point out that the same formula (3.12) holds in the case of 

randomized stresses with the proper interpretation of the notation. 

Suppose that during each oscillation of the cycle each of the k distinct 

loads  £..,..., i,  may occur at random with probabilities r, ,...,r. , 

respectively; then we obtain by a similar argument that (3.12) holds but 

n. now denotes the expected number of oscillations of load i,    during 

the cycle:  n, = r.m. 

Now we note that in both cases, prograraned as '»ell p$  randomized stress, 

we can write 

EN i -^— (3.13) 

1   — 
1=1 ENi 

as an approximate equality since one sees that in fact 

1 i      1         l 

'S     v1 
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Thus under assumptions 1°, 2°, 3° we see (3.13) is a correct 

re-interpretation of Miner's rule in the form (2.5) stated in terms 

of expected values.  Hence under any physical conditions for which 

these assumptions are approximately true we might expect good agree- 

ment on the average. 

It is necessary, however, to delineate carefully what has been 

claimed in (3.13), and to point out that, if some assumptions made in 

deriving this formulation of Miner's rule are not satisfied, (3.13) 

cannot be justified and indeed, may be incorrect.  Two such instances 

are now presented in what follows. 

The usual interpretation of Miner's rule takes into account only 

the maximum values of the loads (in fact, n.  is often taken as the 

number of loads with the same peak value as  £.)  and we do not claim 

that this is correct procedure.  In fact, we specifically state that 

it is the number of loads which are exactly equal to i      which are to 

be counted.  Thus if one wishes to use only the maximum value of the 

loads one must first utilize some theory to reduce the actual imposed 

load to its equivalent.  For example, if one believes that the expected 

incremental crack growth per oscillation (in some other terminology this 

is called the crack growth rate) for a given load I    is proportional to 

a b 
(max £) (max I -  min i)   , (3.14) 

for some known a,b > 0,  (an assumption made for example in [4] and 

the article by W. Weibull, page 201 in [7]), then we must reduce this 

to an equivalent load 1°    which has minimum stress zero.  We find 

' >«*!# 
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a a 

max H0 = (max I)       (max J, - min ü,)3 

i 

and it is the loads ({,?,..., £0)  to which one should apply Miner's 
im rr     j 

rule when taking account only of maximum values of the load. 

It has also been stated that all theories, for which the expected 

crack growth per oscillation depends only upon the load during that 

oscillation (such as in assumption 1°) must fail to account for such 

empirically demonstrated behavior as crack deceleration, crack 

acceleration, crack jump and crack arrest. To see that this crticism 

is at least partially justified we consider the following fairly 

general model. 

We utilize the evidence given e.g. page 57 [4] that incremental 

crack growth takes place only during the stress rise portion of an 

oscillation.  Suppose we take as the expected incremental growth per 

oscillation 

u.   = EXU  )   =   /    hU   (t)][£'(t)rdt (3.15) 
J J -'Q J J 

+Xifx>0 j.- ^■ e ^J where x = _  j,     „ and h is some non-negative function. 
0  if x < 0 

It can be seen that for any h the expected crack extension during 

any loading, such as is drawn in Section B of the appendix would be exactly 

the same if one integrates only along the rise portion, in the manner of 

(3.15) whether the cycle was reversed or not. This claim is detailed in 

Section B of the appendix. 

However, experimental evidence such as reported in [8] shows that 

reversing the cyclic order alters the mean crack extension Fignificantly. 

This effect cannot be accounted for by models using assumption 1°, e.g. 

as exemplified by (3.15). 
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A.  A Probabilistic Model II 

It is clear that assumption 1° of the preceding section is the 

one upon which our results depend most heavily but also it is the one 

that is the most open to question. In fact, careful experimentation 

shows that it would seem to be false under many conditions, 

(see [41, [5]). Thus in order to obtain a model which is consistent with 

knowledge gained from study of fracture mechanics and metallurgy we make some 

adaptations in 1° and 2° but throughout this section we assume 3° holds. 

We now suppose that the loading is cyclic in the sense of (3.1) 

and that 

I,   (0) = 0 for j=l,2, 
jm 

(4.1) 

and instead of 1° we propose the assumption 

1' The incremental crack extension X.  following the 

application of the i  oscillation is a random variable 

with a distribution which depends upon the size of the 

crack at the start of the cycle, upon the actual 

incremental extensions caused by oscillations which have 

preceded X  during that cycle, and a certain number, 

say r, of the preceding loads. 

Note that the actual extensions during preceding cycles have no influence 

upon subsequent cycles.  This assumption is based on the empirical evidence 

of the influence of the crack size, the prehistory of the loading and the 

resulting incremental crack extensions during those oscillations 

(fluctuations) of the cycles (see for example [3]). 

uuwW 
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The loading cycles which we consider all have zero load at the 

start of each cycle.  Thustat that time, we believe there is no memory 

beyond that of the actual crack size and the most recent loads. This 

Is plausible if each load fluctuation causes strain energy which is 

dissipated either in the extension of the crack or the production of 

a plastic zone near the crack tip or both.  Even when the load is 

relaxed, there may remain some strain hardening or other effects caused 

by certain loads within the recent past which can still influence the 

crack growth. 

Except for the initial cycles, which we neglect, the exact number 

determined by r, we have 

j+1   1      m 
(4.2) 

where each X  in the j  cycle has a distribution with parameters 

(S. ,X. ,... ,X. .»X.)  where  X. = U., .Ä., ,.. .,«..  )  is the vector consisting 

of prior r loads.  The indices of X  are repeated with period m as 

indicated in (3.1).  As before S ■ Y, +•••+ Y  is the total crack length n        1 n 

at  the end of the n      cycle. 

Actually the incremental crack extension per oscillation might well 

be a  function of the  total crack length up to that  loading including the 

extension caused by the previous oscillation.    However,  our assumption 

in 1'   is the more general since we consider the crack length only up to 

the beginning of the previous cycle and an arbitrary dependence upon 

the  incremental growths since  the beginning of that cycle which includes 

the  former as a special case. 
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We now make tlie further assumption 

2'  For a given value of total crack length at the end of 

the j  cycle, say s.,  and the observed crack extensions 

x ,...,x  .  in the cycle prior to the 1  oscillation, 

the incremental crack extension for the i  oscillation 

is X. (s.jX, ,... ,x . ,,A.) which is a non-negative IFR random 
1 j 1     i-l  i ft 

variable. 

This assumption that  X.  is an IFR random variable has been made 

before and its justification is given by the argument in Section A of the 

appendix.  We subsequently consider several specializations of this very 

general assumption 1' and examine their consequences. 

We first assume 

1" The dependence of X  is only upon  A.. 

This means the effect of the actual prior incremental crack extensions 

during that cycle and the total crack size at the beginning of that cycle 

have no influence on the stochastic behavior of X.  and can be neglected. 
i 

It follows from 1" that the incremental extensions X. are independent IFR 

random variables.  This loaves us with conditions somewhat more general 

than 2°. 

By a result of Barlow, Marshall and Proschan [2] namely that the 

convolution of IFR random variables is IFR, we have from the periodic nature 

of our loading that Y.  are independent identically distributed IFR random 

variables and thus our lemma (3.7) from renewal theory applies and it follows 

that 
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\j(X),  the expected number of such cycles  A - (i.,...,i )    which 
i m 

can be repeated before failure, must satisfy 

^ - i 1 »U) i ^ "•3) 

where T - EW and p(X) - EY (A)  for j-1,2   For while It Is 

true that 

Dl 

EY (A) - £ EX (A.) 
J     1-1  1  1 

we see thai the problem of supplying adequate data, for the expected 

Incremental growth during a load I.    when that load has been preceded 

by  (*..,_i»'« • »fcj. )  becomes magnified. 

Is this formula as far as we can go toward a rederlvatlon of Miner's 

rule? As It stands there Is no expression possible within the present 

model which can enable one to give the expected life, under an arbitrary 

periodic load from the Information contained only In the conventional 

S-N diagram since the S-N diagram tells us nothing about the Influence of 

load order.  Moreover, unless more specific Information on the nature of 

the dependence of  r and A.  can be obtained nothing can be done with 

(4.3). 

In order to apply Miner's rule and use the S-N diagram to calculate 

the expected life the set  A of all load sequences of m elements must 

^ contain a subset, say A-,  to which assumptions 1°, 2° do apply. Then 
Ü 

the remaining obstacle Is to find a transformation a from A into A» 

such that 

if a(A) - A0,  then p(A) - u(A0) (4./.) 
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that is, the random incremental crack growth per cycle under X    and 

A0 both have the same expectation.  By using this identity, since 

model I now applies to A0  in A0, we have the same bounds holding 

as in (3.11) and the same approximation, namely 

v(X) -   1 

k n. 

1 4 
i vi 

with v° = EX()i°)  for i=l,...,k where k is the number of distinct 

i 
loads among A0  and n.  is the multiplicity of i.°    within A0. i 

i 1 i 

Of course the determination of the transformation a is the real 

problem and the sine qua non  of a generalized Miner's rule. However, 

this discovery awaits more data of the type which is now being 

generated in the investigations by Schijve, Hardrath and others. 

For example if the dependence upon A,  was actually a known function 

of the greatest peak load in the preceding  r loads and r was known to 

be of moderate value, then such a formula could be developed. 

We now make assumption 

1"* The dependence of X.,  the i  incremental extension in 

the j  cycle, is upon the prior crack extensions X. ,,.,.,X. 

and upon the prior loading  A. ■ (^^»Ä._,,.-.,£._ )  and not upon 

the total crack length at the beginning of the cycle. 

In this case we have dependence between successive X.'s and 

their convolution need not be IFR.  For without further specification 

of the type of dependence, we can only conclude that the Y.  are 
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independent, non-negative and identically distributed.  We then have 

only half the fundamental Inequality holding, namely 

Too" li^- 

Thus if the conditions  are such that  the dependence of    Y.    on 

S    ,       can be neglected,   perhaps whenever the total  crack length is 

not   large,  e.g.   failure being defined as the crack becoming only large 

enough to be inspectable,   then we see Miner's  rule must always be 

conservative.     In case  the transformation    a    can be  found and    a(X)  ■ A0, 

then one would have 

v(X)   > -: 1. —    k      n. 

A "^ 

Lastly if 1' holds, the Y  need not be Independent so that in 

this case Miner's rule may well be unconservatlve.  If the influence of 

the dependence of the Y  is such that the enlarging of the total crack 

size causes the subsequent random crack increments per fluctuation to 

become stochastically larger (roughly the probability that they will be 

larger is increased) then we have only the other half of the fundamental 

inequality for the expected number of cycles to failure, namely 

v(x) ^7(xT- 

This claim is detailed in Section C of the appendix.  In such cases we 

have Miner's rule always being unconservatlve in the sense discussed 

here. 
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In order to summarize our conclusions in this study we repeat 

our basic premise.  For a given total crack length at the end of the 

j  cycle, say s,  and observed crack extensions x,,...,x, .  in the 

cycle prior to the i  oscillation, with the  r preceding load 

functions i.   ,,...,£,  , the incremental crack extension for the 
i-l     i-r 

i  oscillation is a random variable depending possibly u^-on all these 

parameters: 

X, (£. ,...,£,.  .x.. ,. . • ,x,_. ,S/ • (4.5) 

We have agreed that this should reasonably be assumed to be an IFR 

random variable.  Keeping this in mind we now see that if 1° is true, 

all the arguments of (4.5) may be omitted except Z,.     In this case the 

crack growths per cycle become independent identically distributed 

IFR random variables and Miner's rule for the number of cycles until 

failure is true in expectation and S-N data can be utilized to predict 

the expected life. 

If 1" is true, namely, that the arguments of (4.5) may all be 

omitted except  £,..., H  ,  then the random crack growths per cycle 

are independent and identically distributed IFR random variables.  In 

this case a generalized Miner's rule for the number of cycles until 

failure is still true in expectation but information must be provided 

about the influence of load order for it to be correctly utilized. 

If 1'" is true, namely, that the argument  s may be deleted in (4.5), 

then the crack growths per cycle can be regarded as only independent and 

identically distributed random variables not necessarily IFR.  In this case 

Miner's rule for the number of cycles until failure is always less than or 

I 

- . . ' 

, 
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equal to the  true expected number of cycles until   failure,  i.e. 

it   is conservative. 

If 1'   is true and the dependence upon    s    is  such that the crack 

growths per cycle are dependent and stochastically  increasing with  the 

total crack length,   then Miner's rule is unconservative and yields a 

number which exceeds  the  true expected number of  cycles until failure. 
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Appendix 

Section A: 

Consider a macroscopic crack, within a material which, to fix 

ideas, we picture as follows: 

- 

V' 

f 

For a given stress  imposed let    U    be the   (random)  number of bonds broken 

(unzippered).     Let    q.    be the probability that the  i      bond  is broken 

st 
given that  the   (i-1)      bond  is broken and  hence    p    =  1  - q       is  the 

probability the  i      bond  is unbroken given the i-1      bond  is broken.    Of 

course we  assume  that  the  probability  that  the  i      bond  is  broken  given that 

st 
the  (i-1)       is unbroken is zero.     Hence  in the multiplication theorem of 

conditional probabilities 

P[U-1]   -  q^ 

P[U-2]   - q1q2p3 

I 

We now prove  the 

n-1 
P[U=n-l] - Pn TT q.« n i-1 
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Lemma:  The q  are decreasing iff U is IFR. 

Proof;  By definition U is IFR iff r(n) is Increasing where 

r(n+l) OD 

S    P[U=k] 
k-n 

n-1 
pn • TT qi 

i=i 
n-l n 

Pn^Tqi + Pn+1 FTq^- 

n-l               n 
qi  "           qi 

1       1         1       1 

= i • 
n-l n                n               n+1 

']7qi + T7qi" V''0""*" 
■ V 

from which the assertion is clear.|j 
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Section  B 

Consider a  loading  cycle  as   follows: 

bm.l/\ 

b3   /    am   \ 

1_U I U... 
ft    II     A m 

The  Incremental  extension due  to  the  forward cycle,     ijf,     is 

m      .1 
S    M,   =    S     /    h[)l.(t)][y'(t)]+dt. 

j=i j=i •'o      J        J 

Integrating only along  the  rise  portion,  from    a       to    b, ,     for    j=l,...,m, 

we  have 

in    r i m      C   j m 

Uf =   1     I        h(x)dx  =   I    [H(b  )-H(a  )] 
"       j=l    a, j=l J 

where    H     Is  the  integral  of     h. 

Now to obtain the crack extension along the reversed cycle      \i      we 

integrate  from    a      to    b     •. ,   j=2,...,in-l    and    a.,     to    b 

..—*,«.ai....... JWHArfShMg . HMMMH 



«RRP«'^:»«*!»!» »f «WMNh^f* ,. V-.-' 

^J 

-24- 

tn-1    ,1 

r "   S    i      h[Äm-1Ct)HC  4(t)]
+dl 

Pr = H(bm)   - HCaj)  + ^    /   " '    h(x)dx 

J=1    Vj+1 

m-1 
= H(bm) 

m H^)  +   I     [HCo^-HCaj^)]   =  Uf< 
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Süction C 

Consider two  sequences  of  non-negative  random variables 

'/     7 W" 

The  Z 's are independent and identically distributed by F, while the 

Y.'s  are dependent such that Y ,,  depends upon S  = Y, +•••+ Y .  The 
i        v n+1   f     '    n   1      n 

conditional distribution of  Y ,,  given S  is 
n+1        n 

P[Y J_t<x S =s] = G(x:s). 
n+i—  n 

The distribution of T = Zn +•••+ Z  is F^n ,  the n-fold convolution 
n 1 n 

of     F    with itself.     The distribution of    S       is    H       where  for    n=0,l,2, n n 

(C.l) Hn+1(x)  = ^  G(x-s:s)dHn(s) 

with     H    = F        =1    and we  assume that 

(C.2) G(y:0) = F(y)  for all y > 0 

(C.3) if s1 < s„,  then GCxrs^ >^G(x:s2) 

In other words the distribution of the initial crack increments per cycle 

Z1»Y.  are the same but the influence of the total crack size causes the 

subsequent increments to become stochastically larger for the Z process. 

We now prove that for all x > 0 

I H (x) < S F(n)(x) 
n=0 n=0 

. ■•■ 

- ~^w^''**m&**r*a**itHl&li&^ 
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by showing that for all  n"l,2,. 

(C.4) H (x) < F(n)(x)  for all x > 0. 
n   — 

We do this by Induction.  (C.A) is true for n=l by (C.2). Assume 

it to be true for n and examine the case for  (n+1) .  Integrating (C.l) 

by parts we have 

(n) 
Hn+1(x) - j      Hn(x-y)dyG(y:x-y) < j  F(n)(x-y)dyG(n:x-y), 

by using (C.3) to show that G(y:x-y)  is an increasing function of y 

and the induction hypothesis (C.4). But reversing the integration by parts 

we have 

H^x) < f    G(x-s:s)dFn(s) < Fn+1(x) 
n+l   - ./0 

since G(x-s:s) < F(x-s)  by (C.2) and (C.3). 



r-yai-t.  •' 

•27- 

Acknowledgments 

The authors wish to thank the following persons at the Boeing 

Company:  W. E. Anderson, S. Bhatt, J. P. Butler, W. L. Gray, and 

G. L. Hollingsworth, who read this document in a preliminary version 

and commented critically about it. Many improvements are due to 

their suggestions, those difficulties which remain are undoubtedly 

due to our obstinacy. 

••««*»■&■%*&,,. 



* 

1 

i 

BLANK PAGE 

II 

. jommi 



-.m-m"'-***'®*® 

-29- 

Bibliügraphy 

[1]     Barlow,   Richard   F..   and  Proschan,   Frank.     Mathematical  Theory of 

Reliability.  John Wiley and  Sons,   New York,  New York,   1965. 

[2]     Barlow,   Richard  E. ,  Marshall,   Albert  W.   and Proschan,   Frank, 

Properties  of Probability Distributions  with Monotone  Hazard  Rate, 

Ann.   of Math.  Statist.   34,   375-389,   1963. 

[3]     Crichlow,  W.  J.   et al.     An Engineering Evaluation of Methods  for 

the Prediction of  Fatigue  Life   in Alrframe  Structures.     Air  Force 

Systems  Command.     Aeronautical  Systems  Division Technical  Report 

ASD-TR-61 -434,   1962. 

[4]     Hardrath,   H.   F.     Cumulative  Damage,   p.   345,   Fatigue:     An 

Interdisciplinary Approach, Proceedings cf the Tenth Sagarrore Army 

Materials Research Conference,  August  1963,  Syracuse University 

Press,   Syracuse,   New York,   1964. 

[5]    McMillan,  J.   Corey and Pelloux,   Regis M.   N.     Fatigue Crack  Propagation 

under  Programmed  and Random Loads.     Boeing document  Dl-82-0553,  1966. 

[6]     Miner,   M.   A.     Cumulative  Damage  in  Fatigue,  J.  Appl.   !-'.ech.   1£. 

A159-HI64,   1945. 

[7]     Schijve,  J.     Heath-Smith,  J.   R.   and Welbourne,  E.  R.   (Editors). 

Current Aeronautical Fatigue Problenui, Proceedings of the ICAF 

Symposium,   Rome,  April 1963,  Pergamon Press, New York,  New York, 

1965. 

[8]     Schijve,  J     and Jacobs,   F.  A.     Program-Fatigue Tests on Notched Light 

Allow Specimens of  2024  and  7075 Material,  NLR Report M.2070,  March 

1960. 

**     •■.-ÄkASitoW/i^i-Ä:- iik.-...^--r ■ .iL.,,5[-ai--A^i. 


