UNCLASSIFIED

70351

AD 652 358

EFFECTS OF DEIONIZED WATER IMMERSION OF PREPARED ALUMINUM SURFACES ON ADHESIVE BONDABILITY

Raymond F. Wegman, et al

Picatinny Arsenal Dover, New Jersey

May 1967

Processed for . . .

DEFENSE DOCUMENTATION CENTER DEFENSE SUPPLY AGENCY

> CLEARINGHOUSE FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION

U. S. DEPARTMENT OF COMMERCE / NATIONAL BUREAU OF STANDARDS / INSTITUTE FOR APPLIED TECHNOLOGY

UNCLASSIFIED

UNCLASSIFIED

70351

AD 652 358

EFFECTS OF DEIONIZED WATER IMMERSION OF PREPARED ALUMINUM SURFACES ON ADHESIVE BONDABILITY

Raymond F. Wegman, et al

Picatinny Arsenal Dover, New Jersey

May 1967

Processed for . . .

DEFENSE DOCUMENTATION CENTER DEFENSE SUPPLY AGENCY

CLEARINGHOUSE FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION

U. S. DEPARTMENT OF COMMERCE / NATIONAL BUREAU OF STANDARDS / INSTITUTE FOR APPLIED TECHNOLOGY

UNCLASSIFIED

NOTICE TO DEFENSE DOCUMENTATION CENTER USERS

This document is being distributed by the Clearinghouse for Federal Scientific and Technical Information. Department of Commerce, as a result of a recent agreement be ween the Department of Defense (DOD) and the Department of Commerce (DOC).

The Clearinghouse is distributing unclassified, unlimited documents which are or have been announced in the Technical Abstract Bulletin (TAB) of the Defense Documentation Center.

The price does not apply for registered users of the DDC services.

5.

. :

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

PICATINNY ARSENAL DOVER, NEW JERSEY

ARCHIVE COPY

Technical Report 3495

EFFECTS OF DEIONIZED WATER IMMERSION OF PREPARED ALUMINUM SURFACES ON ADHESIVE BONDABILITY

by

Raymond F. Wegman William M. Bodnar Michael J. Bodnar Modesto J. Barbarisi

May 1967

Distribution of This Document is Unlimited

DA Proj ICO24401A329 AMCMS Code 5025.11 295

Plastics & Packaging Laboratory Feltman Research Laboratories Picatinny Arsenal Dover, New Jersey

ACKNOWLEDGEMENTS

The authors wish to acknowledge the assistance of Messrs. G. F. Carter of the E. I. DuPont de Nemours & Co. Experimental Station, Wilmington, Delaware, and K. Storks of Bell Telephone Laboratories, Murray Hill, New Jersey, in conducting the x-ray fluorescence studies.

The authors also wish to acknowledge the consulting assistance of Dr. J. R. Hall and Mr. W. C. Tanner, as well as the assistance of Messrs. E. S. Duda and W. Bechtold in the mechanical testing of specimens.

The authors further express their appreciation to Mr. B. Bernardo and the Continental Water Conditioning Corporation for the use of their deionization service unit.

TABLE OF CONTENTS

1

•

: •

Objective	2	1
Summary	7 ·	1
Conclusi	ons	1
Recomm	endations	2
Introduct	ion	3
Discussi	on of Results	3
Referenc	ees	10
Distribut	ion List	19
Tables		
1	Effects of pretreatment before water immer- sion on the adhesive bond strength to alu- minum	11
2	Effect of pH variation on the bondability of water-immersed aluminum alloy	12
3	X-ray fluorescence analyses of aluminum surfaces	13
4	Effect of water immersion on acid-etched alclad and bare aluminum alloy	14
5	Effect of water immersion on vapor-de- creased alclad and bare aluminum alloy	15
6	The effect of additives to deionized water on bond strength to treated aluminum	16

Figure

1

Effect of temperature, type of water, and pH on sealing of alumina

18

OBJECTIVE

To compare the effect of deionized water immersion and tap water immersion on the bondability of 2024 aluminum which has just undergone sulfuric acid-sodium dichromate surface treatment.

SUMMARY

al

The effects of immersion in deionized water and in tap water on the bondability of 2024 aluminum which had been surface treated with sulfuric acid-sodium dichromate solution were compared. Substantial losses in bond strengths were experienced with aluminum that had been immersed in deionized water. Poor bonding surfaces were readily identifiable from the formation of an iridescent coating which further investigation revealed to be related to the thickness of the hydrate layer formed. Addition of certain multivalent compounds to the deionized water was found to affect the formation of the hydrate layer and subsequently to increase the bond strengths.

CONCLUSIONS

Prolonged immersion (15 minutes or more) of sulfuric acidsodium dichromate pretreated aluminum in deionized rinse water at 60° C results in iridescent appearance of surfaces and subsequent substantial loss in adhesive bondability of the surfaces. Limited tests have shown that the development of the iridescence and loss of bondability are not related to the acid pretreatment but that these phenomena are solely functions of the deionized water immersion.

When the aluminum is immersed in pure deionized water at 60° C, $Al_2O_3 \cdot 3H_2O$ is formed, a phenomenon known as sealing. This hydrated layer is cohesively weak and greater than 1000 A units thick, hence the visible interference colors (iridescence).

Multivalent compounds added to deionized water preferentially absorb into the aluminum oxide and block the entrance of water, thereby preventing further attack. The mechanism for this might

1

° p 2

be through the formation of spinels; hence, no buildup in thickness or the oxide layer due to formation of the trihydrate occurs, no interference colors are visible, and good bond strengths are obtained.

If the deionized water is made acidic or alkaline (defined here as having a pH below 5.5 or above 7.5), the hydrated oxide is dissolved and only a thin Al_2O_3 layer remains. Therefore, good bond strengths are obtained.

RECOMMENDATIONS

Since the mineral salt content of potable tap water varies widely throughout the country, it is recommended that, when chemical treatments of aluminum alloys are used prior to adhesive bonding, a modified deionized water be used in rinsing the treated surface. The modification should involve the addition of certain types of compounds to a high purity deionized water. These compounds should preferably be such as to effect a slight acidity (pH below 5). Multivalent compounds such as H_2SO_4 , $MgSO_4$, CrO_3 , $Na_2Cr_2O_7$, Na_2SO_4 , $FeCl_2$, and $FeCl_3$ are effective for modifying deionized water to give good bonding surfaces.

It is further recommended that alkaline compounds such as $NaHCO_3$, Na_2CO_3 , and K_2CO_3 be omitted. These allow good bond strengths to be obtained but have been found to attack and discolor the aluminum.

It is further recommended that additional studies be made of the effects of adding the ions mentioned in the first recommendation above on the corrosivity of the aluminum.

Specification MIL-A-9067C, "Adhesive Bonding, Process and Inspection Requirements For" should be revised to caution users of the danger of prolonged rinse times, when deionized water is used after sulfuric acid-sodium dichromate treatment of aluminum surfaces.

INTRODUCTION

In a previous investigation by Wegman (Ref 1) of the effects of an inert atmosphere on the bonding of metals it was found that, when aluminum alloy is immersed in water at temperatures above 60° C prior to adhesive bonding, the resultant bond strength is related to the type of water in which the part is immersed and, to a lesser degree, to the temperature of the water. Immersion of the aluminum in warm distilled or deionized water was reported to be undesirable from the standpoint of adhesion while immersion in potable tap water was found less harmful to adhesion. Most process specifications for the adhesive bonding of aluminum in use today (military and civilian) call for the use of warm deionized water rinses after the chemical treatment of the metal. Further investigation of the effect of using various types of water was therefore considered imperative.

During the initial studies, some preliminary investigations of the use of electron diffraction were made. On the basis of these investigations, a contract was awarded to Stevens Institute of Technology under which they were to attempt to determine the differences in the surfaces which existed after various prebonding treatments. Weil and Everson (Ref 2) concluded that substances found on the surfaces of aluminum treated for bonding were essentially noncrystalline and that the noncrystalline material appears to obscure the pattern obtained by reflection diffraction. They also reported that some samples immersed in deionized water showed extra diffraction rings which were tentatively identified as Cr_2O_3 . Reevaluation of these rings (Ref 3) since publication of their report indicates that they might also be $All_2O_3 \cdot 3H_2O$ (bayerite).

DISCUSSION OF RESULTS

In conjunction with the electron diffraction studies conducted by Weil and Everson at Stevens Institute of Technology, adhesion studies were conducted at Picatinny Arsenal. A summary of the results of these studies is shown in Table 1. The data shows that the relative effect of the deionized water on aluminum is the same with respect to adhesion regardless of the pretreatment. In all cases, a substantial loss in bond strength occurred after deionized

water rinse as compared to tap water rinse. The treatment given as acid etch (Ref 4) is a 10-minute immersion in a solution consisting of 1 part by weight (pbw) sodium dichromate, 10 pbw concentrated sulfuric acid, and 30 pbw water. The electropolishing was done by Stevens Institute in a solution consisting of 25 cc methyl alcohol, 25 cc nitric acid, and 1 cc hydrochloric acid at a current density of 10.7 amp/sq in.

During the investigation, a number of possibilities were considered as to why deionized water immersion gives lower bond strengths than tap water immersion. The first was the difference in the pH of the two waters. In the preliminary work the pH of the deionized water was reported as being 6.38 while the pH's of two sources of tap water were reported as being 7.77 and 7.45. The respective adhesive bond strengths were reported as 990, 2960, and 2920 psi. To evaluate the effect of this variation in pH, the aluminum alloy was treated in solutions of varying pH values. The pH values of the solutions were determined at 23^oC before and after the aluminum was immersed for the prescribed 30 minutes at 60° C. The aluminum parts were allowed to air dry and were then bonded together to form lap shear specimens having a $1 \times 1/2$ -inch bonded area. The data obtained from tensile testing of these specimens can be seen in Table 2. It can be noted from this data that, in general, there was a rise in pH level after the 30-minute immersion. The bond strengths obtained in this set of experiments indicated that adjusting the pH up to that of the tap water does not eliminate the bonding problem. However, the addition of magnesium sulfate or chromium trioxide did appear to eliminate the problem. The addition of sodium chloride resulted in an initial pH of 5.5, as with the magnesium sulfate. However, the bond strengths were not comparable in these two cases. In all cases in which poor bonds were obtained, the typical failure was adhesive and the faying surface was discolored and iridescent.

For the purposes of this report, an adhesive failure will be considered as a failure which occurs outside of the adhesive. It may be at the adhesive-adherend interface or in the surface layer of the adherend material. Cohesive failure always occurs in the adhesive, leaving a layer of adhesive on both faying surfaces after failure of the bond. The second possibility considered was that some ion from the acid etch was present on the surface of the samples treated in the tap water but not on those treated in deionized water. It was thought that if the chromium ion, for instance, was absorbed on the surface during the acid etch it might be dissolved off in the deionized water. Possibly, however, the high salt content of the tap water would not allow the dissolving of all of the chromium from the surface. To investigate this possibility, samples of aluminum treated by the various immersions were analyzed by x-ray fluorescence techniques. The results of these analyses are given in Table 3. From the results, it is concluded that nothing significant is added to the surface by the acid etch which is removed by the deionized water and not by the tap water.

A third consideration to be investigated was whether the observed phenomenon was peculiar to the alloy or true of pure aluminum also. It was thought that possibly the alloy constituents had something to do with this phenomenon. A set of experiments was drawn up in which both alclad and bare 2024 alloy specimens were used. The length of time in the acid etch was also changed so as to use both 5- and 10-minute immersions to determine any acid attack on the alloy constituents. The results are shown in Table 4. The data in this table shows that discoloration, iridescence, and poor bond strengths after immersion in deionized water are not peculiar to either the alloy or the pure aluminum and have nothing to do with the immersion time in the acid over the time periods studied in this test series. To further investigate the role of the acid etch, parts made of both alclad and bare 2024 alloy were vapor degreased in perchloroethylene vapors and subjected to 30 minutes immersion at 60° C in either tap or deionized water without an intermediate acid treatment. The results of this investigation can be seen in Table 5. From the data in this table, it is again evident that immersion in deionized water is undesirable from the standpoint of adhesion, and that the discoloration and iridescence which appear on the surface have nothing to do with the acid etch. As expected, the bond strengths were lower than when the surface was acid etched.

To review the findings to this point, it was seen that the difference in pH of the tap water and the deionized water is not the cause of the iridescence and poor bond strengths. Further, the problem has nothing to do with adding anything to or removing

anything from the acid etch solution. Also, the problem is not peculiar to either pure or alloy aluminum.

As was pointed out in the original investigation, when aluminum is corroded in water the product is usually beta-trihydrate. When the water temperature is maintained at 70° to 100° C, the alphamonohydrate tends to form. It was also pointed out that Harrington and Nelson showed in 1940 (Ref 5) that sheet aluminum which is notanodized will acquire a film of alpha-monohydrate when it is heated in water at 80° C or higher but not when it is heated at 60° C.

The next theory to be investigated then was that the iridescent colors and the weak bonds were related to absorbed water or water of hydration. By use of x-ray fluorescence techniques, a comparison of the relative thickness of the surfaces was made. Analyzing for aluminum gave the following counts per 100 seconds:

Bare vapor-degreased 2024T - 3 alloy1008A cid-etched 2024T - 3 alloy1080A cid-etched and tap-water-immersed
2024T - 3 alloy1095A cid-etched and deionized-water-
immersed 2024T - 3 alloy867

If the count obtained is related to the thickness of a coating, then the lower the count obtained, the thicker the coating on the surface. What can be deduced from these figures then is that the acid etch removes the oxide from the bare alloy, and atmospheric oxidation reoxidizes the surface in a short time but not to the original thickness. Immersion in tap water does not appear to cause any further buildup in the thickness of the oxide coating. However, immersion in deionized water for 30 minutes at 60° C increases the thickness of the coating. Crude calculations reveal that the increase in thickness over that on the acid-etched alloy is 1000 A units or greater. It was noted during testing that while the specimen is under the vacuum for analysis the iridescence appears to diminish. It is assumed that the vacuum dehydrates the oxide. To further study hydrated aluminum oxide, panels of 2024T-3 bare alloy were treated with the acid etch and then immersed in deionized water at $60^{\circ}C$ for 15 minutes. Again the iridescent colors developed. One-half of the panels were air dried for about 2 hours at room temperature and then bonded while the other half were force-dried in a tube furnace at $260^{\circ}C$ for 1 hour in a flow of dry nitrogen. After the force-drying, most of the iridescence had disappeared. The bond strength to the air-dried iridescent surface was about 2000 psi, the failure being adhesive. The bond strength to the force-dried specimen was about 3100 psi, the failure being cohesive.

Thus the data shows that, when the aluminum is immersed in deionized water, a hydrated surface more than 1000 A units thick is formed to which strong bonds cannot be obtained or which is very weak cohesively in its structure. However, this does not explain why tap water acts differently, i.e., why it is more desirable from the standpoint of adhesion.

Wernick and Pinner (Ref 6) in their book on surface treatments of aluminum point out that "when aluminum is immersed in hot water, a more-or-less dense protective oxide film forms. The structure of this film and its chemical composition vary particularly with the temperature of the water. In pure water up to about 75° to 80° C this film appears to consist mainly of bayerite, $Al_2O_3 \cdot 3H_2O$, with some other undefined hydrates." These authors go on to explain the growth of the hydrated oxide film by the following half-cell reactions:

The anodic reaction is

A1
$$\rightarrow$$
 A1⁺³ + 3e⁻

while the cathodic reaction is

$$H_2O + e^- \rightarrow OH^- + \frac{1}{2}H_2$$
.

Hydrogen, which is evolved as a gas, can be seen leaving the surface in the early stages of immersion. The cathodic reaction renders the solution more alkaline than the original (note the final pH readings in Table 2). The hydroxyl ion reacts with the aluminum ions to form the hydrated oxide and similar compounds

$2A1^{+3} + 6OH^{-} \rightarrow Al_2O_3 + 3H_2O$

The authors (Wernick and Pinner) refer to the work of Ginsberg and Wafer (Ref 8), who believe that in hot water, aluminum ions migrate through the oxide film, the free lattice sites being taken up by oxygen ions to form an oriented hydrate. Further reference is made to the work of Domony and Lichtenberg-Bajza (Ref 9), which states that an equilibrium is set up between oxidation and movement of metal ions at an oxide/metal interface. The equilibrium is disturbed when the oxide is soluble in the environment. Since the resistance of the hydrate is less than that of the oxide, the film continues to grow. Under these conditions, therefore, the temperature determines not only the thickness but also the structure.

While discussing the sealing of aluminum surfaces, Wernick and Pinner (Ref 7) also discuss the effect of water characteristics. They point out that not only the temperature and time but also the type of water used for sealing is important: "with nearly neutral tap water the sealing efficiency, even at optimum temperature, does not reach 100%, probably due to precipitation of lime in the pores...with distilled water, however, complete sealing is obtained even at 80° C." Figure 1 is a graph based on information taken from Wernick and Pinner (Ref 7) which shows sealing efficiency as a function of sealing temperature for three types of water. If it is recalled that the water immersion investigations were conducted at 60° C, it will be seen that in deionized water the surfaces will be approximately 80% sealed and, as mentioned earlier in this report, the compound formed will be mainly $Al_2O_3 \cdot 3H_2O_2$. It has been known for a long time that good bonds cannot be effected to aluminum surfaces that are anodized and hot water sealed.

It has been recognized for some time that potable tap water can vary from one location to the next. That is why the use of deionized water has been called for in process specifications for the fabrication of bonded assemblies. A further reason for the use of deionized water in the production setup has been a matter of economics. It is too costly to be constantly discarding rinse waters, yet quality control requires fresh supplies of rinse waters. Deionization units are therefore used to purify and reclaim the

REFERENCES

- 1. Wegman, R. F., <u>The Effect of an Inert Atmosphere on the</u> Bonding of Metals, Picatinny Arsenal Technical Report 3206, April, 1966
- Weil, R. and Everson, E. N., <u>Electron-Optical Studies of</u> <u>Aluminum Surfaces Pretreated for Adhesive Bonding</u>, Dept of Metallurgy, Stevens Institute of Technology, Contract No. DA-28-017-AMC-3388(A), November 1966
- 3. Private communication with Dr. R. Weil of Stevens Institute of Technology
- 4. Muchnick, S. N., WADC Technical Report 55-87, Part II, February 1958
- 5. Harrington, P. A. and Nelson, H. R., "An Electron Diffraction Study of Anodic Films," <u>Trans American Inst. Mining</u> and Met. Engrs., 137: 62-75, 1940
- Wernick, S. and Pinner, <u>Surface Treatments of Aluminum</u>, Robert Draper, Ltd, Teddington, Great Britain 1964, 197-8, 1964
- 7. [bid, 483-4
- 8. Ginsberg, H. and Wefers, K. <u>Aluminum 37</u>, No. 1, 19-28, 1961
- 9. Domony, A. and Lichtenberg-Bajza, E., <u>Metalloberflaeche 15</u>, No. 5, 134-8, 1961

water. Because it saves money, deionized water is and will continue to be used to rinse production lots of aluminum parts which are chemically prepared for bonding. Since we now have a better understanding of what happens to parts immersed in deionized water at 60° C, the problem is to prevent the formation of the undesirable hydrated surfaces.

To determine a possible solution to this problem, a different chemical was added to each of several samples of deionized water. Acid-etched alclad aluminum alloy was then immersed in one of the solutions for 30 minutes at 60° C. Table 6 identifies the additive, the bond strength obtained after immersion, the type failure after test, the color of the faying surface after immersion, and the valence of the compound. From the data presented in this table, it can be seen that when multivalent compounds are added, there is no coloration of the metal, and high subsequent bond strengths with cohesive failure are obtained. Addition of monovalent compounds to the deionized water, on the other hand, results in iridescence, adhesive failure, and lowered bond strength. The addition of sulfuric acid and hydrogen peroxide lowers the pH of the solution below the initial 5.5. No coloration develops, since the acid dissolves the oxide coating as it is formed. The addition of basic compounds such as the carbonates and the bicarbonate caused typical alkaline attack, with a gaseous evolution and darkening of the aluminum surface. However, the pH is such that, as fast as the $Al_2O_3 \cdot 3H_2O$ is formed by OH⁻, it is also dissolved. The bond strength to the resultant surface is good, with cohesive type failure resulting when the joint is loaded to ultimate strength. However, the addition of chemical compounds to deionized rinse water should not be considered for production application without further investigation as to the effects on the metal and on the durability of the bond.

Effects of pretreatment before water immersion on the adhesive bond strength to aluminum

	Average <u>Shear</u>
al Treatment	<u>Strength</u> , psi
Acid Etch	3240
Acid Etch + 30 min immersion in tap water at 60 ⁰ C	3030
Acid Etch + 30 min immersion in deionized water at 60 ⁰ C	1850
Electropolish + acid etch	2130
Electropolish + acid etch + 30 min immersion in tap water at 60 [°] C	2030
Electropolish + acid etch + 30 min immersion in deionized water	400

Effect of pH variation on the bondability of water-immersed aluminum alloy

٠

2

ś

Solution		ionized Water	NaOH-pH adjusted Deionized H ₂ O	0.05% NaCl in Deionized H ₂ O	0.05% MgSO4 in Deionized H2O	150 ppm CrO ₃ in Deionized H ₂ O
Initial pH (before aluminum immers	sion)	5.9	7.8	5.5	5.5	3.5
Final pH (after aluminum immersion	on)	8.8	7.8	6.9	7.5	3.6
Bond Strengths, psi		1580 1380 820 1580 1420	1570 700 500 1350 1100	1500 1560 1240	2700 2800 2840	2660 2640 2860
	Average	1360	1040	1430	2780	2720
Type of Failure	Adhe	sive	Adhesive	Adhesive	Cohesive	Cohesive
Appearance of Faying Surface after Immersion		oloration and scence	Discoloration and iridescence	Medium discoloration and iridescence	No color or iridescence	No color or iridescence

2

r

X-ray fluorescence analyses of aluminum surfaces

						Е	lementa	l Analy	rsis						
Specimen	Cr	Mn	Fe	Ni	Cu	Zn	Pb	Ti	Ca	Sb	Sn	Si	CI	S	Mg
Vapor-degreased 2024T-3	Tr ^a	Pr ^b	Pr ^b	Possible trace	Pr ^b	Tr ^a	None	Tr ^a	Tr ^a	None	Present	Tr ^a	Tr ^a	Tr ^a	Not tested
Acid-etched 2024T-3	Tr ^a	Pr ^b	Less than original	Possible trace	Pr ^b	Tr ^a	None	Tr ^a	Tr ^a	None	Negat ive	Tr ^a	Tr ^a	Tr ^a	
Acid-etched 2024T-3, tap water immersed	Tr ^a	Pr ^b	Less than original	Possible trace	Pr ^b	Tr ^a	None	Tr ^a	Tr ^a	None	Negative	Tr ^a	Tr ^a	Tr ^a	
Acid-etched 2024T-3, deionized water immersed	Tr ^a	P r ^b	Less than original	Possible trace	Pr ^b	Tr ^a	None	Tr ^a	Tr ^a	None	Negative	Tr ^a	Tr ^a	Tr ^a	
2024T-3 alloy composition, %	0.1	0.6	0.5	-	4.5	0.1	-	Tr ^a	-	-	-	0.5	-	-	1.5

^aTr = trace. ^bPr = present.

<u>'</u> .

Effect of water immersion on acid-etched alclad and bare aluminum

			lad			Bare Al	lloy	
Treatment	Appearance	Shear Strength, psi	• •	f Failure % Cohesive	Appearance	Shear Strength, psi	• •	Failure % Cohesive
10 min. acid etch, 30 min. deionized water immersion	Brownish with some iridescence	1040 ^a 460 ^a 720 ^a	100 100 100		Iridescent	1640 ^a 1920 ^a 960 ^a	100 100 100	
10 min. acid etch, 30 min. tap water immersion	No iridescence	3160 3260 3280		100 100 100	No iridescence	3100 3040 3320		100 100 ^C 100
5 min. acid etch, 30 min. deionized water immersion	Iridescent	1180 ^a 1140 ^a 1320 ^a	100 100 100 ¹⁵		Iridescent	380 ^a 660 ^a 740 ^a	100 100 100	
5 min. acid etch, 30 min. tap water immersion	No iridescence	2880 2880 3360		100 100 100	No iridescence	3280 3100 3200		100 100 100

^aScatter in values was noted as a function of the type of failure in the adhesive fillet. ^b95% to one adherend, 5% to other adherend. ^cCohesive failure very close to interface.

.

.

,

.

Ĩ

:

Effect of water immersion on vapor-degreased alclad and bare aluminum alloy

		Alc	lad			Bare A	lloy	
		Shear Strength	Type of	Failure		Shear Strength,	Type of 2	Failure
Treatment	Appearance	psi	~ -	% Cohesive	Appearance	psi		% Cohesive
Vapor degreased,	Iridescence	520	100		Iridescence	280	100	
30 min. deionized		360	100			400	100	
water immersion		380	100			600	100	
Vapor degreased,	No iridescence	1460	85	15	No iridescence	1760	75	25
30 min. tap water	•	1940	85	15		2380	75	25
immersion	,	1380	85	15		1980	75	25

.

The effect of additives to deionized water on bond strength to treated aluminum

Group	Additive	Strength, psi	T y pe Failure	Color After Immersion	Valence	Comments
A	NaHCO 3	3240 3120 2780	Cohesive	Tan	Mono	Alkaline attack
В	NazCr2O7	Avg 3050 3160 3120 3110 Avg 3130	Cohesive	No color	Di	
С	FeCl ₃	3260 2800 3240 Avg 3100	Cohesive	No color	Tri	
D	BaCl _z	2420 2940 3000	Cohesive	No color	Di	
Е	H ₂ SO ₄	Avg 2790 3060 3180 3270	Cohesive	No color	Di	Acidic attack
न	None	Avg 3170 1240 1200 1120	Adhesive	Iridesc en t		
G	None	Avg 1190 900 680 1000	Adhesive	Iridescent		
Ħ	MgSO	Avg 860 2700 2800 2840	Cohesive	No color	Dł	
ĩ	CrO3	Avg 2780 2660 2640 2860	Cohesive	No color	Di	
J	Na2CO3	Avg 2760 2540 2360 2940	Cohesive	Brown	Di	Alkaline attack
		Avg 2610				

• *²

. 1

TABLE 6 (Cont)

1

4.

1.

Group	Add itive	Strength, psi	Type Failure	Color After Immersion	Valence	Comments
К	K₂CO₃	2140 2600 2280	Cohesive	Brown	Di	Alkaline attack
		Avg 2340				
Ι,	NaC2H3O2	1060 Broke in handling 980	Adhesive	Iridescent	Mono	
		Avg 1020				
Μ	KCl	420 1220 960	Adhesive	Iridescent	Mono	
		Avg 870			3	
N	NaNO ₂	300 760 360	Adhesive	Iridescent	Mono	•
		Avg 470				
0	K₂SO₄	2700 2960 2880	Cohe sive	No color	Di	
		Avg 2850				
Р	FeCl ₂	2680 3060 2780	Cohesive	No color	Di	
		Avg 2840				
ନ	NaCl	480 420 1440	Adhesive	Iridescent	Mono	
		Avg 780				
R	H ₂ O ₂	2900 3000 2360	Cohesive	No color		Adjusted to pH 4.5 from initial pH 5.5
		Avg 2750				
S	NaHCO3 repeat of (A)	2540 3040 2800	Cohesive	Tan	Di ^a	Alkaline attack
		Avg 2790				
т	Tap water used in- stead of d ionized	Avg of many	Cohesive	No color		

 $\overline{{}^{a}_{It is possible}}$ that some carbonate is formed.

\$

UNCLASSIFIED Security Classification

٩

Security Classification			·····			
DOCUMENT CO (Security classification of title, body of ebstrect and index	ONTROL DATA - R&		the overall report is classified)			
1. ORIGINATING ACTIVITY (Corporate author)	_		AT SECURITY CLASSIFICATION			
		Unc	classified			
Picatinny Arsenal, Dover, New Jers	ey	2 b. GROUP)			
3. REPORT TITLE						
EFFECTS OF DEIONIZED WATER I	MMERSION OF	PREP	ARED ALUMINUM			
SURFACES ON ADHESIVE BONDAB						
4. DESCRIPTIVE NOTES (Type of report end inclusive dates)						
5. AUTHOR(S) (Lest name, first name, initial)	<u> </u>					
Wegman, Raymond F., Bodnar, Wil Bodnar, Michael J., Barbarisi, Mo			•			
6 REPORT DATE	74 TOTAL NO. OF P	AGER	75. NO. OF REFS			
1967	25		9			
S. CONTRACT OR GRANT NO.	94. ORIGINATOR'S RE	PORT NUM	BER(S)			
. D. PROJECT NO.	Technical Re	port 34	195			
• DA Proj 1CO24401A329	96. OTHER REPORT NO(S) (Any other numbers that may be easigned this report)					
d AMCMS Code 5025.11 295						
10. AVAILABILITY/LIMITATION NOTICES						
	:					
	· · · · · · · · · · · · · · · · · · ·					
11. SUPPLEMENTARY NOTES	12. SPONSORING MILIT	TARY ACTI	VITY			
; ;		,				
13. ABSTRACT	_ I					
The effects of immersion in deioni	zed water and ir	ton w	ater on the hondahility			
of 2024 aluminum which had been surfa						
chromate solution were compared. Su						
perienced with aluminum that had been						
ing surfaces were readily identifiable						
which further investigation revealed to						
layer formed. Addition of certain mul						
was found to affect the formation of the	e hydrate layer	and sub	osequently to increase			
the bond strengths.						

DD , JAN 44 1473

UNCLASSIFIED

Security Classification

KEY WORDS		IK A	LINK B		LIN	IK C
	HOLE	wτ	HOLE	WT	NOLE	wτ
Adhesives						
Surface treatment						
2024 aluminum						
Deionized water						
Bond strength						
Bonding of aluminum						
Bonding metals		ļ				
					· ·	
INST	UCTIONS	<u></u> -		· · · · · · · · · · · · · · · · · · ·		
1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of De- fense activity or other organization (corporate author) issuing the report.	10. AVAILABILIT itations on further imposed by securi such as:	dissemir	ation of t	the report	, other th	an thos.

2n. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in sccordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200, 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8s. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

 (1) "Qualified requesters may obtain copies of this report from DDC."

- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known-

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory aponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual aummary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no accurity classification is required. Idenfiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

> UNCLASSIFIED Security Classification

۰,