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SUMMARY

Presented in this investigation is a theoretical analysis of
the thrust augmentation characteristics of jet ejectors.

The analysis includes the effects of flow compressibility,
major flow losses, and forward speed. Numerical r- ults are
preseuced in the form of nomographs for a wide range of
practical operating conditions. These computaticns were
performed with the aid of an IBM 360 digital computer, The
chaits can be used to predict the jet ejector performance
and as such represent an effective analytical tool for
preliminary design purposes. The numerical results are used
to determine the effects of the more important aerodynamic,
thermodynamic, and geometrzic parameters on jet ejector
thrust augmentation. A correlation of these results with the
available experimental data is also made.
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I. INTRODUCTION

The concept of generating thrust augmentation by means of a
jet ejector became an active research subject several

decades ago. Since then, numerous studies have been
conducted providing a considerable amount of jet ejector
data. Much of this work was done, however, for different

and diverse applications, and because of the complexity of
the jet ejector flow problems, the available information
cannot be readily used for practical applications to aircraft
design and performance.

The main objective of this program is to evaluate the avail-
able data as to their practical applicability and to extend
and modify existing theories to provide an analysis for
realistic appraisal of the potential of jet ejectors for
achieving augmented thrust.

The review of the existing literature covered a major
portion of technical reports (total 585) which are listed

in Appendix II. A discussion of the more important of these
investigations is presented in Section III.

The theoretical analyses which are formulated in Section IV
are performed for an axisymmetric ejector and include the
effects of compressibility, flow losses, and ejector geom-
etry. These analyses utilize various simplifying assumptions,
among which are the conditions that the velocity profile at
the secondary entrance is uniform and that the mixing of the
primary and secondary flows is completed at the exit of the
mixing chamber. The former assumption limits the appli-
cability of this one-dimensional theoretical approach to

not too large secondary-to-primary area ratios. A three-
dimensional analysis is indeed a formidable task and has not
been undertaken by any of the investigators in the past. To
keep the complexity of the analysis within the scope of the
present program,an empirical correction factor for thrust
augmentation ratio is herein formulated to account for the
effect of the nonuniform velocity distribution at the
secondary entrance. The latter assumption implies that the
mixing chamber length of a given ejector configuration must
be sufficiently long to ensure complete mixing of the exit
flows. No precise information is available on this sub ject,
and therefore a semiempirical approach is herein utilized




for qualitative evaluation of the mixing chamber length
required for complete mixing,

Furthermore, a comprehensive parametric study is conducted
to determine the effects of the more important aerodynamic,
thermodynamic, and geometric parameters on jet ejector
performance. A discussion of these effects is presented in
Section V,

Section VI contains a correlation of the theoretical results
with the available experimental data.

Section VII contains a summary of the theoretical results
for rapid predictions of jet ejector performance. These
results were obtained with the aid of an IBM 360 digital
computer and are presented as nomographs,

Y -
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IT. JET EJECTOR PRINCIPLE

A jet ejector is a device in which a secoandary, or driven,
fluid is entrained by a primary or actuating fluid with
subsequent transfer of energy through turbulent mixing in a
mixing chamber. The primary fluid, which is originally at a
higher stagnation pressure, is discharged with a high
velocity into the mixing chamber of specific shape. Due to
viscous shear, the fluid surrounding the primary flow is
brought into motion at the entrance of the mixing chamber,
This motion causes a drop of static pressure, as a result of
which the secondary fluid, in many cases ambient air, is
entrained into the mixing chamber. The secondary flow thus
formed mixes turbulently with the primary jet in the mixing
chamber and energy transfer occurs. The mixed flow then
proceeds toward the exit end of the mixing chamber and
finally discharges to some back pressure which may be
atmospheric, If a diffuser is attached, the mixed flow
builds up some static pressure before reaching the exit. As
a result of the pumping action as described above, the total
momentum of the mixed flow at the ejector exit is increased
due to the entrainment of the secondary fluid, as compared
with the momentum of the primary jet discharged directly into
the atmosphere. Jet thrust augmentation is thus achieved.

In essence, the jet ejector can be considered as a device
which converts a low mass flow propelled at high velocity to
a high mass flow propelled at low velocity. If this is
accomplished at little energy loss, thrust augmentation can
be achieved.

The efficiency of this conversion process depends on the

ejector configuration, the detail geometry of these configu-

rations, and the thermodynamic and aerodynamic operating

conditions,

The more important jet ejector configurations are as follows:
(a) Single nozzle ejector

(b) Multiple nozzle ejector

(c) Annular nozzle ejector




The prime parameter affecting the performance of these
configurations is the minimum mixing chamber length required
for complete mixing of the primary and the secondary flows.
No precise analytical methods are available for determining
this parameter; therefore, a semiempirical method is herein
formulated for this purpose. An analysis of various e jector
types is presented in Section IV.

The major geometric parameters affecting thrust augmentation

are:

(a)

(b)
(c)

(d)
(e)

Secondary-to-primary area ratio at the entrance
to the mixing chamber.

Shape and length of the mixing chamber.

Diffuser exit-to-entrance area ratio and diffuser
angle.

Primary nozzle configuration and location.

Secondary entrance inlet contour.

Finally, the thermodynamic and aerodynamic parameters of
importance are:

(a)
(b)
(c)
(d)

Stagnation properties of the primary fluid,
Stagnation properties of the secondary fluid.
Atmospheric conditions at the ejector exit.

Forward speed of the ejector system.




III. REVIEW OF THE AVAILABLE PERTINENT LITERATURE

Presented in this section is a brief review of the state of
the art of jet ejectors. The papers selected for this
discussion are those which are more directly related to the
work under the present program, and they are herein arranged
in a chronological order. A more complete bibliography on
jet ejectors is presented in Appendix II.

The analysis performed by Roy (Reference 1) deals with
compressible fluid flow under practical operating conditions
of jet ejecrors. Entrance and diffuser losses are accounted
for by assuming the flow processes as polytropic. The
friction loss at the mixing chamber wall is alsc considered.
This analysis results in a system of 24 flow equations for
which no close-form or digital computer solutions are
presented.

Morrisson (Reference 2) performs an incompressible analysis
in which it is assumed that the mass flow rate of the
primary jet exhausted to the ambient is the same as that
discharged into the mixing chamber. This assumption may not
be valid since the pressure reduction created in the mixing
chamber results in an incrcase of mass flow rate of the
primary jeL as compared to that when the primary jet is

ischarged into the atmosphere. The analysis presents
charts of thrust augmentation ratio versus the mass flow
ratio., However, these charts cannot readily be applied for
determining jet ejector performance, since the mass flow
rate is unknown.

Sargent (References 3 and 4) performs idealized analyses of
the performance ¢. jet ejectors for both static and forward
speed conditions, In these analyses, the flows are assuned
to be incompressible and the sclution for the flow equations
is made by a trial and error method with the area ratio and
mass flow ratio as variables. These analyses rely on the
assumption that the mass flow rate of the primary jet
exhausted to the ambient is equal to that of the primary jJet
inside the ejector.

The analysis of McClintock et al (Reference 5) results in an
« uation for thrust augmentation as a function of the mass
flow ratio which is not determined. In spite of the tfact




that the analysis is performed for incompressible fluids, an
attempt is made to account for different densities of primary
and secondary flows. This appedrs to be contradictory, since
an incompressible analysis is only valid for primary and
secondary fluids nf nearly equal densities.

Ellerbrock's analysis (Reference 6), which includes the loss
due to wall friction, treats compressible flow for constant
area mixing. However, in obtaining solutions to the flow
equations, assumed values of the pressure ratio at the

e jector entrance plane to that of the ambient are introduced.

The analysis performed by von Karman (Reference 7) presents
the basic infcrmation on cylindrical jet ejectors operating
under idealized, incompressible flow conditions. The
expression. for the nondimensionalized velocity of the mixed
flow at the exit appears to be erroneous, although the
relationship ror thrust augmentation ratio finally obtained
is correct. in this analysis, an attempt is made to account
for the effect of the nonuniform velocity profile at the
secondary entrance on jet ejector thrust augmentation. How-
ever, the analysis utilizes the assumption that the mass flow
rate for the nonuniform velocity profite is the same as that
in the case of uniform velocity distribution, As the result
ot this assumption, an increase rather than a reduction in
thrust augmentation is achicved,

Szczeniowskl, in his incompressible analvsis (Reference 8),
considers a hypothetical approach in which momentam and
cnergy are transtferred between the privary and sccondary
streams while the two flows remain separdate at the exit of
the < jectur. The justification of this approach is rather
ditticult,

Sandc s et al (Reterence 9) compute the cjector thrust by
integ. ation oY surface prossures: however, the momentum of
the tlow frem the exit of the cjector is completely ivnored,
I'his approach does not vield the total thrust ausmentation,

The analvsis pertormed by Bertin et al (Reterence 10)

utilizes the ususl one-dimensional tlow approach but vields
no close-torm solution for the jet ejector performance. The

e . - -




performance charts presented in this refercnce have limited
practical application bezause Liie mass flow ratio which is
used as an independent variable cannot be determined.

Chisholm's work (Reference 1ll1) covers compressible and
incompressible flows with constant area and constant pressure
mixing. Although the ejector flow equations are formulated,
no solution has been attempted for determining ti.c thrust
augmentation ratio.

Reid's investigation (Reference 12) is chieflv aimed at the
reduction of jet noise by means of an ejector; however, an
expression of a so-called thrust parameter is presented. A
simplified theoretical analysis for constant . . i mixing with
assumed common stagnation temperaturc for the primary and
secondary streams is presented. The analysis indicates that
although the system of flow equations formulated can be
solved in principle, the numerical solutions are very
difficult to obtain,

The analysis presented in Reference 13 is {or a constant
pressure mixing jet ejector with dittuser. The primary and
secondary flows are assumed to have the same stagnation
temperature. As pointed out in this rererence, the svstem
of equations can be solved when the mixing pressure is known.
However, since the mixing pressure is one of the paranmeters
to be determined, this analvsis has no direct practical
application.

Storkebaum in his work (Reference 14) deals with “oth
incompressible and compressible tlow analyvses., For tiwe
incompressible case, thoe idedlized thrmist augmentat:on ratio
is presented as a function of the sceondarv-to-primary arca
ratio. The citect of the losses at the entrance to the
mixing chamber is disc siudicd. Ir the cempressible analvsis,
the cquations for thrust aupmentation are ftormulateds

however, the procedure of solving the cquations is not
presented.

Wan periforms an incompressible analvsis {(Reference 13)
similar to that presented bv von Karman (relerence 7), with
the exception that the mixvd flew velrcity at the cjector




exit is considered to be ncnuniform. However, the validity
of this analysis appears to be doubtful because, despite the
nonuniformity of the exit velocity, the static pressure at
the exit is assumed to be uniform.

Payne (Reference 16) conducts a theoretical analysis of a
jet ejector with constant pressure mixing treating flows as
incompressible. This analysis indicates that the optimum
thrust augmentation is primarily dependent on the diffuser
efficiency and that augmentation ratios as high as 4.0 or
more are possible with high diffuser efficiencies. This
conclusion is based on an infinite secondary-to-primary mass
flow ratio which cannct be achieved in practice. Also, in
performing the differentiation process to obtain optimum
thrust augmentation, the analysis uses the pressure in the
mixing chamber as the independent variable and considers the
mass flow ratio as a constant. This appears to be incorrect,
since the mass flow ratio appearing in the basic flow
equation is a function of the pressure in the mixing chamber
and cannot be treated as a constant. Furthermore, in the
breakdown of the location cf thrust increase; the analysis
indicates that the largest contribution to the total thrust
augmentation is due to the bellmouth lip intake rather than
the change of momentum of incomiang and outgoing flows. N>
experimental data are presented to justify this conclusion.

Sandover (Reference 17), utilizing the work of Payme
(References 16 and 18), performs an analysis also based on
one-dimensional incompressible fluid flow, This aralysis
commences with an assumpticn that the constant pressure in
the mixing chamber can be achieved with a uniform cross
section of the chamber; then an attempt is made to determine
the optimum exit-to-entrance area ratio. Furthermore, the
analysis indicates that an increase in thrust augmentation
can be achieved by increasing the temperature of the primary
jet flow., This is consiuered to be incorrect for both the
incompressible or compressible flow analyses., In the former
case, temperature does not affect tae thrust; in the latter
case, a: indicated in the present report, the increase of
the primary jet temperature results in a decrease ratner than
an increase of the thrust augmentation ratio. This result
has been verified by available experimental data.




From the above review, it is seen that little usable informa-
tion on jet ejector perfcrmance is available in the existing
technical literature. Despite the fact that in numerous
investigations, equations representing the ejector flows are
formulated, no explicit solutions are presented for the
practical evaluation of jet ejector performance. In the
cases where some numerical solutions are presented, they are
generally expressed as functions of such parameters as the
mass flow ratio, the pressure at the mixing chamber entrance,

primary jet Mach number, etc., none of which can be readily
determined.
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IV. THEORETICAL ANALYSES

As pointed out in the previous section, the presently
available literature does not provide adequate information
on the thrust augmentation characteristics of jet ejectors.
Existing analyses were therefore modified and extended and
practical methods were formulated by means of which the
potential of jet ejectors camn be ellectively evaluated.

Because of the complexity of the problem, the following
simplifying assumptions are made:

(a)
(b)

(e)

(£)

(g)

(h)

(1)

The ejector geometry is axisymmetrical.

The ve'ocity and static pressure of the primary
and secondary flow are uniform at the entrance
plane to the mixing chamber,

The static pressures of the primary and secondary
flows at the entrance to the mixing chamber are
equal.

The velocity and static pressure of the mixed flow
are uniform at the exit of the mixing chamber, and
in the case of an ejector with diffuser are
uniform for any cross section of the diffuser.

Both the primary and secondary fluids are perfect
gases having the same specific heat.

The pressure at the exit of the mixing chamber, or
in the case of a diffuser, at the exit of the
diffuser, is equal to the ambient pressure.

The stagnation conditions of the primary flow are
unaffected by the presence of the ejector, and the
losses in the primary flow up to the exit of the
nozzle are neglected.

No heat losses occur at the mixing chamber and
diffuser walls.

The motion of the ejector system, if any, is in
the same direction as that of t e primary jet flow.

10




With these simplifying assumptions, the ejector flow field is
reduced to a on=s-dimensional fluid flow pioblem which can be
treated analytically utilizing the following principles of
fluid dynamics:

(a) Conservation of mass.

(b) Conservation of energy.

(¢) Newton's second law.

(d) Equation of state for perfect gases.

(e) Thermodynamic processes of the flows.
The formulation of the jet ejector flow equations is herein
accomplished utilizing Figure 1. As indicated in this
figure, various stations of jet ejectors are designated by
rumbers (0), (1), (2), and {(3) which are assigned to
represent the respective stations of the jet ejector flows

as follows:

Station (0) Upstream of the entrance of the mixing
chamber.

Station (1) Plane at the entrance of the mixing
chamber, which is also the exit plane
of the primary nozzle.

Station (2) Plane at the exit of the mixing chamber,
which is also the plane at the entrance
of the diffuser.

Station (3) Plane at the exit of the diffuse.

Utilizing the nomencliature of Figure 1 and the assumptions

and conditions described above, the following jet ejector
flow equations are obtained:

11
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Figure 1. Schematic Representation
of Jet Ejector Configuration,
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Continuity in the Mixing Chamber

Plpvlp+QE P!svls = (aE+I> pzvz

Continuity in the Diffuser

P2 V2 * Qpp3V3

Momentum Across the Mixing Chamber

(QE+|)(P2-p|)= g g 9

(ag +1E(L/D}p, +pp) W, +V,)°
aq

Conservation of Energy in the Mixing Chamber

2
. Vg
PlpV|p CpTop J+QE P|SV|SA, \,pTo J + 29 )

Conservation of Energy in the Diffuser

2 2
X P2 Yo .y Po Vs
y=t P2 29 ¥y I p3 23
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Conservation of Energy for the Primary Flow up to the
Nozzle EXit

2
y Py Vip (
PR AU T 4 6)
Cp TOp\J 7" p,p + 29

Conservation of Energy for the Secondary Flow up to
the Entrance to the Mixing Chamber

cpTad+ XL L 1ls (7)

pl _<r . pl \)"—l (8)

Irreversible Adiebatic Process for the Secondary Flow
up to the Entrance to the Mixing Chamber

2 Y
_P'_:[L. y P +<.__‘_><,_ﬁ__>1 YT (9)
Pa Llme y=1 pigCpTad Me 2g¢pTgd/ J
Irreversible Adiabatic Process in the Diffuser

2
x . P2 Vz) ’
P2 pz(r‘ P, 24
) Z
Pa <_2;_.f1+)i
Pa\y 1 0, " 29

(10)
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The unknown quantities in the above equations are: P, , P,,
\qp, Vie s V2 s Vi, P s Pig » P, , and P;. The problem .
basicaily reduces to a simultaneous solution of 10 nonlinear
equations with 10 unknowns. As can be noted, no close-form
solution for these equations is possible, and even an
iterative solution with the aid of a digital computer is
indeed a formidable task.

Hence, in order to obtain a practical evaluation of jet
ejector performance, further simplifications are necessary
in the analysis.

The present approach consists of first formulating a very
simplified analysis, defined herein as the idealized
analysis, which enables rapid prediction of maxinum thrust
augmentation and the entrainment ratio of jet ejectors, for
the most idealized flow conditions. The idealized analysis
is herein formulated considering perfect fluid flow with no
losses and no forward speed effects. This analysis is
performed for two types of jet ejectors with constant area
mixing and constant pressure mixing.

As a second step, a practical analysis is formulated. This
analysis consists of two parts:

(a) The effects of major flow losses, forward speed,
and diffuser are considered assuming incompressible
fluid flow.

(b) The effect of flow compressibility is determined
on the basis of no flow losses, no diffuser, and
no forward speed.

This approach makes it possible to perform with reasonable
computationai effort a comprehensive parametric study of the
relative importance of the individual flow parameters on jet
e jector performance and also provides a practical method for
the evaluation of various jet ejector systems.

A. IDEALIZED ANALYSIS

The idealized analysis, which in part is also presented in
Reference 7, utilizes the following additional simplifying
assumptions:
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(a) The flows are inccmpressible, which implies that
the fluid density is uniform and constant
throughout for all the flows and is unaffected by
temperature and prescure,

(b) All flow losses are neglected.

(c) The ejector system has no forward speed,

These assumptions apply to both constant area mixing and
constant pressure mixing.

1. Constant Area Mixing

The thrust augmentation ratio ¢ 1is defined as the ratio of
the thrust produced with an ejector on F3 to that produced

by the primary jet when it is discharged directly into the

atmosphere Fop'

Thus,

¢' F (11)

where the thrust produced by the ejector is given by

P 2
F3:7§'A3 Vs (1)

and the thrust produced by the primary jet discharged
directly into the atmosphere is

_ P 2
FOp' g AlpVOp (13)
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Substituting equations (12) and (13) into equation (1l1),
there follows

(14)

Applying Bernoulli's equation for the primary flow
discharged into the atmosphere and the primary flow
discharged into the ejector, and assuming that the
stagnation pressure Py, is not affected by the presence of
the e jector, there results

. | 2 | e

Also applying Bernoulli's equation between stations (0) and
(1) for the secondary flow,

t 2 ;
PO=P.‘S+-2—g-pV‘S (16)

Fron equations (15) and (16) there results

oy i b Z, + 5
P,S+ngv‘s+2gpvop-&p+ T ’pV‘p (17)

Using the assumption that Pip = Pig» equation (17) reduces to
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or

Vop 2- Vig
(‘vr,;‘> () (18)

Substituting equation (18) into (1l4) yields

Vig

The analysis will now proceed to develop the relationships
for Vig/Vip and V37V, in terms of the area ratios
ag: Ag/Aiy  and ag Ay/Ap s AYIA +A ]

Using the continuity equation between stations (1) and (3),
there results

A Vigt A Vi AzVy (20)

Equation (20) reduces to

(Vs
v, (a£+nao\%p>%

w

|

(21)

<

[¢
'p E

Applving Bernoulli’s equation between stations (2) and (3),
using Py Pg, there follows

! 2 ! 2 .
Pat55pV2 *Pat 50p Vs (22)
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Substituting equation (16) into equation (22) vields

i 2 2 i 2

' .
PasPig v 5gPVis t 5gPVs ~ 2P Ve (23)

Also, from momentum considerations between stations (1) and
(2), there results

A|pp +A|SF'S—A2P2:——AZVI———AI

'p

Substituting equation (23) into (24) and using P.p=PIS
yields

2
[

/ P 12 P 2

—é—Alp\'lp - _;;-‘AISVIS

| 2 p 2
ZQPVZ ):"E‘Az\/z‘

Equation (25) can be simplitfiid as follows

I '
: 3
H c + —— -
¢ \acth ('pf kv ) }

(_\2§.> (26)
VT ag -

From continuity equation between stations (2) and (3),

Vz”]o\l’} (37\

Squaring equation (27) and substituting into equation (26)
vields
4

2 (Vs
" ? (Gr“){do'*”\v;;)"z
( ") : (28)
V'D GE*‘
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Squaring equation (21) and equating it to equation (28),
there results the following quadratic equation for Vs/\l‘p :

Vi 2lae-Nap <V3> 2ae-| ‘5
— ] - - - ‘_9
( > aftap’ Vig z0 (2%

Solving equation (29), the relationship for V3/V|p is as

follows:
5 _
<V_§>-‘(QE‘|)QDI ag/ 2p t2ag-| (30)

v,
'p

2, 2
aeTQD

It can be noted that the velocity ratio V3/V,, must always
be greater than zero for all positive values of the area
-atios ag and ap. Since ap > 1, there fcllows that for
ag 2 0, the positive sign in front of the second terms
must be used. Hence,

/2
<_\_/__3_\:_(QE—”00+C!E ap + 2ag-|

v (31)
V'p/ QEZ'*'C!DL
Substituting equation (31) into equation (21) yields
2 T 2 2
( VlS) ) (Qe+|)ao[_(QE_”aD+aE QD+2C!E—| J'(Q£+ao) (3,))
Vip agia52+a§)

Finally, substituting equations (31) and (32) into eguation
(19), the thrust augmentation ratio ¢ can be analytically
expressed as follows:
2 [ 2 ]2
ae lagtiapi-lag-l) aptag/ apt2ag-|

2 2 22 / 2 242
Qe (QE +QD)_ {(QE'H)C!D[’(CE“‘” aptage 002+205‘| ] _(QE+QD)}

... (33)

$ =
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Similarly, the mass entrainment ratio w is given by

7z 1 2, 2
- E )

a52+a02

For a special case of constant area mixing condition with no
diffuser, i.e., ap = 1.0, the thrust augmentation ratio ¢
reduces to

2
(ag+]-lag-1 +ag. /2a¢]
¢ =% =7 , o= 12 (35)
(QE+“—L—2QE+'\QE+” ZaeJ

and the mass entrainment ratio becomes

2
We (QE_”[“(QE“H-*‘QE 2QE]“.QE+” (36)

2
QE+ |

It can be seen from equation (35) that ¢ approaches a limit
of 2,0 as ag tends to infinity. This obviously is not true
even under idealized conditions, since an ejector with
infinite secondary-to-primary area ratio is equivalent to a
free jet discharged into the atmosphere, in which case no
thrust augmentation exists and hence ¢ = 1.0. This
discrepancy is attributed te the unrealistic assumption that
the seccndary velocity at the entrance to the mixing chamber
is uniform regardless of the area rat:o., A discussion on
this subject, together with the derivation of an empirical
correction factor for the noruniform secondary entrance
velocity profile, is presented later in this report.

2. Constant Pressure Mixing

The mixing chamber of an ejector is sometimes of variable
cross-sectional area. Due to the lack of information on the
longitudinal pressure variation inside the mixing chamber,
it is, in general, difficult tu express the pressure force
on the walls in the momentum equation. However, one
configuration exists for which an analysis can easily be
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performed. This is the so-called ccnstant pressure mixing
configuracion which implies that the pressure inside the
mixing chamber is considered constant throughout,

Thus, for constant pressure mixing, the additional condition
is that the stagnation pressur s P, ,P,S , and P, are equal
and can be denoted as P, P

Furthermore, since the contour of the mixing chamber in this
case varies such as to maintain the constant pressure
requirement, the area at the exit of the mixing chamber A
cannot be equated to A!pH\ls , but must be determined from
the analysis.

It should be noted that if the flow from the mixing chamber
is directly discharged into the atmosphere, the pressure
throughout the ejector would be atmospheric. In such a case,
there would be no secondary flow entrainment and, therefore,
no thrust augmentation, i.c., ¢ = 1.0. It therefore follows
that a diffuser is required to create a pressure drop in the
mixing chamber which would entrain secondary flow in order

tc produce thrust augmentation (¢>1.0).

The idealized analysis for constant pressure mixing can be
performed in a manner similar to that for constant area
mixing. Thus, using equation (19), the relaticnsaip for
thrust augmentation ratio ¢ can be rewritten in the following
form:

(37)
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In order to obtain the solution for the thrust augmentation
ratio for constant pressure mixing, it is now necessary to
determine the area ratio A;/A|g as well as the velocity
ratios V3/V|p and V%/VT . This can be accomplished as
follows:

Using the continuity equation between stations (1) and (2),
there results

A VigtAigVig = AzV, (38)

Also, applying momentum considerations between stations (1)
and (2) and considering the constant pressure condition at
the mixing chamber walls, there foliows

2 2 2

9 g 9 (39)

{2) PA
PA|p+ PA'S —PAZ —deAn=
()]

where dAp is the axial component of the incremental e jector
surface area.

(2)
The integral deAn is given by
1]
(2)
fpdAn P(Ajg+Alg =Ae) (40)
m

Substituting equation (40) into (39), there results

A, AV ALY, (41)

P
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Squaring equation (38) and dividing by equation (41) yields

(A,pv.p+A Vg

A,: (42)
A,pV.p+A.SV|S

Equation (42) can be transformed as follows:

Be = <\\J/'|:>] (43)
i

Using equation (20), the velocity ratio Vig/Vi, can be
expressed as follov-- P

(5)=oleg) () = “

Substituting equation (43) into equation (44) and solving for
Vs/Wp , there follows

(45)

)
R

Also, from equations (23) and (27) and the constant pressure
condition, there results

) =)
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Equating equations (45) and (46) and simplifying, the
following quadratic equation for Vls/le is obtained:

2 2
Vig ; ap Vig\ | Afap -l -0 (47)
Vi Vi
P aglag-./ag-1) " P

Solving equation (47) for V.S./V.p , there results

<Vls) -apt '\/;02+4QE A/ QDZ‘I lap-/ QDZ'”

) (48)

2 QE(QD" A/ QDZ'”

It can be noted that the velocity ratio V¢/V,, must be
greater than zero. Since in equation (48) the term

QE(QD‘ QDZ'”

2 2 /2
'\/Oo+4az ap-l (@ap- A/ap-1) >ap

for ap> 1.0 and ag> 0, the velocity ratio V,(/V|, will be
greater than zero only if the positive sign in front of the
square root term is used. Hence,

(Vls>- -do+\A102+4dg«/aDz—l (Qo‘a/aoz-” (49)

V|p )

2aglap- aoz~l)

Finally, substituting equations (43) and (46) into equation
(37), the thrust augmentation ratio ¢ for constant pressure
mixing can be expressed as a function of area ratios ag
and ap and the velocity ratio V.S/V.p . Thus,

z P (50)

e -5 ]
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where Vig/Vi5 , ac given in equation (49), is also a function
of the area ratios ag and ap only.

Similarly, the mass entrainment ratio w can be expressed as

W < V's) -agt \/;,24-405./(15—l(ao—,/aoz-l) (51)
= QE =

2(00" ao"l)

For the special case of constant pressure mi.’ , ejector

without diffuser, i.e., ap = 1.0, it is evident from
equation (49) that ws/wp = 0.

The above result indicates that for the case of no diffuser,
i.e., ap = 1.0, there will be no secondary flow and,
therefore, no thrust augmentation.

B. PRACTICAL ANALYSIS

Presented in this section is a practical analysis which
includes the effects of many important jet ejector flow
parameters neglected in the idealized approach yet yields
solutions with a relatively reasonable computational effort.
This analysis pertains to a jet ejector with constant area
mixing having a conical diffuser attached to the exit of the
mixing chamber.

As mentioned previously, the practical analysis is performed
in the tollowing stages:

1. The Incompressible Analysis With Flow Losses

Although this analysis is based on the .ncompressible fluid
flow conditions, it includes the following practical
operating conditions and flow losses:

(a) Effect of forward speed (parallel to ejector
walls).

(b) Effect of diffuser.
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(c) The total head loss at the secondary ~ntrance to
the mixing chamber.

(d) The friction head loss at the mixing chamber walls.

(e) Total head loss in the diffuser.

For the incompressible analysis including the flow losses

and the operating conditions specified above, the jet ejector

flow equations (1) through (10) can be reduced to the
following:

Continuity in the Mixing Chamber

Vipt e Vig=(ag+ 11V, (52)
Continuity in the Diffuser
V2=QDV3 (53)
Momentum Across the Mixing Chamber
2 2
PV ag PV
(@g+1)(Py=P,) s —E— ¢ 5 .
g g
2 2
q 29
Bernoulli's Equation for the Secondary Flow up to
the Entrance to the Mixing Chamber
2 2
pVa p“+XaV%
P e -+ ——— 55
Pg + T P, T (55)
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Bernoulli's Equation for the Flow in the Diffuser

[tao-1) -~ Aplag-l} | Vs

The solution of the system of five equations, (52) through
(56), is similar to that presented above for the idealized
theoretical analysis, In the final analysis, the five
equations can be reduced to one quadratic equation for the
nondimensional mixed flow velocity at the ex't of the
diffuser V3/V,p. This equation is

{(QEZ+ a§)+,u.2[a:(aoz—l) +2ag ag] +

[Aelagtnapt f(L/DN2agtn e+ Apaglag=1)’ |-

V 2
pa[f(L/D)(2aE+l)zaoz+ )\Da:(aoz—l)]} (T/_3> +
{
P

2 2
{2(05“')00“4# QEQD‘Z[f (L/D)(ZQE"‘” QD+ XE(QE'*I)QO] +

v
2u°H(L/D)2ag+D) ap} (Vi) -
"\,

{12ag-1 +pagtag-21-[nettiL/O] 4 tL/D } 0 (57)

f:.:




Also, the nondimensionalized secondary velocity ratio
V,S/V,p is given by

Vi
(ag+a (——)—l
<_V'S\= i\ (58)
le/ Qe

The thrust augmentation ratio ¢ for the ejector with forward
speed Vg 1is given by

p
¢ - - (59)

Vop

Equation (59) can be expressed in the following form:

| 2 ‘ 2 v3)
: (@g+){i-p laplo—) -
’ ) Lodae i °°<th

2
ag {1+ XE)[(QE‘H)QD(—

V3 2 . \/3 2 2 }
;Lagﬂae+l)ao<vﬂ;>—@,v/fag-(L+AEWﬂaE+l)ao<vﬂ;>—I] }(l~y.)

...(60)
where
e Va (61)
vV
Gp
The mass entrainment ratio w is
Vv
W:QE<___|§__\ (62)
lel

The above analvsis is utilized to determine the effects of
various flow losses, diffuser area ratios, and forward speed.
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2. Effect of Flow Compressibility

As discussed previously, the effect of fiow compressibility
is treated assuming no losses, no uiffuser, and no forward
speed,  This analysis utilizes the flow equations (1)
through (10), with the following conditions:

Va=f(L/D)=XE :AD:O
ap *meg*7Mp=1.0 (63)
P2:p0
Using the above stipulated conditions, the jet ejector flow
cquations (1) through (10) can now be reduced to seven
equations with seven unknowns, which are PW‘PG’PZ'VW’

Vig »Vz , and P . These equations in their non-
dimensioralized form are as follows:

Continuity in the Mixing Chamber

P v /P (VY I TAWA ,
(Fop) () e ) () e (G ) 09
Pap VOp: Pa ch Pap VOp

lagtNPy-P)) 1 <p|p\ <V|p\2 Qg /pPig /\f'.s)2 (agth / pz) < \ 2)2
Z — +—- -

]
Pcpvcpz 9 \pPap/ Wap/ 9 \pap/ \Vgp 9 \POp Yap

.(65)

Conservation of Enerpy in the Mixing Chamber

2
) (L) (05 (1) Loy o oy Va7 P v
<Pop> VOp' +GEKPOQ) &Vﬁp) KTOD) ) CDTODJ Pﬂp VOp / qu P2 * 29
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Conservation of Energy for the Primary Flow up to
the Nozzle Exit

(67)

ngpTQpJ _2ngT|RJ R (V,p)z

2 2

Vap Va Vap

p

Conservation of Energy for the Secondary Flow up to
the Entrance to the Mixing Chamber

(68)

29cpTad  29cpTg +<v,$>2

2 2
Vap Vag Vo,

Isentropic Process of the Primary Flows

f'_:[Y . p*TJ]T-T (69)

fL:[Y- P17+ (70)

In these equations, Pap and Vap refer to the density and
velocity, respectively, for the primary jet exhausted
directly to the ambient and are given by

y-I

4 Pa_ (Pop\7

pont —— (71)
P Y“l Cp TQpJ PQ

ja)
vcp=%qcprop~1[s—<pon> ] (72)
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The solutioun of the system of equations (64) through (70) is
performed as follows:

From equations (69) and (70),

(;"S\z P (73)
Top
Substituting equat. : (72) into equation (67), there follows
T
v 2 I-<='T—l—p"\)
Vipy,_\op/ (74
VG P Z..__I.
o _q_> %
POp
Since
@) EY
TOp TQp/ TOp
and
y-
/T09>_<Po)'_r'
Too! \Pog .
(T.p>:(T|p\(Pq>"r" (75)
' Top Top, POp
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Substituting equation (75) into equation (74) _ields

/Tu pq 7—-|
e ) )
W) s
% _(Pa\F
! (POp)

Similarly, substituting equation (72) into equation (68),
there follows

(V'$\= - P (77)
Vap/ (po )Z:_'
|- B Y
Cp
Since
bl
({207
To) Pa
y-!
)7
TOI Tﬂp)
and

(l‘.&)(ﬁ) (78)
TO T(Jp
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Substituting equation (78) into equation (77) yeilds
()i
2 l+—]-{==
(V",i)- TOp TOp.
Van/ i
% ‘_(f.o_)?-'n
Pbp
Using the basic isen*ropic relationship,

o
(::gHI;e)T-T (80)
POp TQp ‘

Substituting equation (80) into (73) yields
|
_Tm)'ﬂ

(fns\= (pr (;;%)—77

PQp/ (TO)
Top

(79)

(81)

From the equation of state,

-
PQ = ‘Ly"'Cp poqupJ

_ )"'l Pq -_7_
--—77'CpP0prp<§;;> J (82)
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Also, from the isentropic relationship,

B2
P (_1‘2)7" (83)
Pa \Tqp

Substituting equation (82) into equation (83), there follcws
y-

, Po v/ Tio\se
XL ALARA A 84
Bl o

Making use of equation (64) and substituting equations (76),
(77), (80), (8L), (82), and (84) into equation (65), there
results

R w
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Simiiarly, equation (66) can be transformed as follows:

o /) ()

7 /-

Equations (85) and (86) are the two final equations which
contain the unknowns T,,/Vg, and V,/Vg, and can be solved
by an iteration method. It is seen that ¢p, the specific
heat at constant pressure, no longer appears in tne
equations,

The thermodynamic properties of the flows at different
stations along the ejector can be expressed in terms of
ﬂp/Top and Vz/Vop as follows:
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Pa p/
Y- .
(T£i537'(112)7"

POp dp

-\ (Vi
pip\ (Vip (_E‘_) (__s_\
(F&ﬁ) (ch) tae Pap VGD/

o B

5 7
op

e

Pap

Y
P| T|p —'f:T
(535'(Td
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(87)

(88)

(89)

(99)

(91)

(92)

(93)

(94)




(95)

- 2 |
M‘S- ),-' Ti-p . (96)
<'T‘o;")
2=
| (P° ’
" \Pop,
. _2 (pa\| _*7P 97
MZ’ 7" <P°J Po .L):l ( )
l <P0p)

Finally, the thrust augmentation ratio ¢ and the mass
entrainment ratio w can be determined as follows:

¢ = lag +n(;‘;—i> (\—\,’-(j)z (98)

(ﬁ'i) (&z)
POp \vOp

o) (%)
dp VOp

3. Nonuniform Velocity Profile at the Secondary Entrance

W,= Qg (99)

In both the idealized and practical analyses, a one-
dimensional approach is used which assumes the secondary flow
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velocity at the entrance plane as uniform, irrespective of
the secondary-to-primary area ratio., For the case of no
diffuser, the idealized analysis yields a maximum thrust
augmentation ratio of 2.0 at an infinite area ratio. This

is obviously not correct, because when the area ratio tends
to infinity, the ejector configuration reduces to a free jet,
in which case the augmentation ratio must be unity, It is
believed that this discrepancy is caused by the assumpticn of
the uniform flow velocity at the secondary entrance. In
other words, the applicability of the one-dimensional approach
is limited to mot too large secondary-to-primary area ratios,
and a three-dir-nsioual analysis is required fcr _elatively
large area rat.os. However, such a task has never been
undertaken by any of the investigators, and it is beyond the
scope of this program to formulate a solution to this

complex problem.

Instead, an empirical correction factor is herein developed
to account for the 2flect of the nonuniform secondary flow
velocity profile. The derivation of this factor is as
follows:

Under the assumption of uniform secondary flow velocity, the

momentum equation for the control volume inside the mixing
chamber with no diffuser and no losses becomes:

(ag+h (Pg-P,) =3P-[V,:+ aE\—/,Z—(aE-H)V:} (100)

By using Bernoulli's equation for the seconda.y flow aud the
ambient conditions in front ui the ejector, equation (100) is
reduced to

(‘\72 )i '+\T) (ﬁ)

e (101)

QE+|

In these equations, the "bar" denotes uniform values.
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If the secondary velocity is not uniform, the momentum
equation becomes

—_ aEfplsdAls
(QE+|)PO_P| - —'T——‘
's
2
_Z r: V'SdA'S 2
=%[V|p+ "J "'(QE+”V2} (10\,

It g

The solution of equation (102) for (Vzlvwﬂ is bas~d on the
following assumptions:

(a) The primary velocity at the entrance plane is
still the same as in the case of uniform secondary
velocity.

(b) The primary pressure at the entrance plane is
the same as in the case of uniform secondary
velocity. Hence,Fﬂp=P.

(c¢) The exit velocity of the mixed flow V,, though
different from that in the case of uniform
secondary velocity, is uniform at the mixing
chamber e.it,

Since the secondary flow has a uniform stagnation pressure

Pg far upstream, by assuming parallel strecamlines at the
entrance plane it is possible to evaluate the static pressure
distribution P, by making use of Bernoulli's equation.

Thus, equation (102) is finally reduced (o

2
I
Qe fﬁ; dA% ‘ /v%\z
2 I* "'é‘&:-_‘)
<V2>: 2A Vip
ag+|

(103)
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Equations (101) and (103) yield the exit-to-primary velocity
ratios based on uniform and nonuniform secondary entrance
velocity profiles, respectively. The corresponding thrust
augmentation ratios for the two cases are given below.

The thrust augmentation ratio for the case of uniform
secondary velocity is

¢ = —— (104)

where Vgy/\ 5 and Vp/Vip can be obtained from the idealized
theoretical analysis as follows:

s ol

= (105)
V|p QE"'
and
AN (ae-1) +ap /20 ‘
2 “\Qg-
TN ety v (100)
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For the nonuniform case, the thrust augmentation ratio is

2

Va
(QE +1 <7‘;>

7
Ve

- 2
where (V2/V,p) as given by equation (103) will be
determined below,

(107)

¢ :

The correction factor for thrust augmentation ratio due to
nonuniform velocity profile at the secondary entrance is
herein defined as

=Y_2—2
N %_(X%_E_ (108)
G

Vip /

It is_nog necessary to establ_ish relationships for Vls/v.p
and Vi /Vi, to determine Vzlwp given by equatior (103).
According to Reference 26, the velocity profile of a flow
entrained by a free jet can be well approximated bv a
cosine curve., Therefore, it is reasonable to ass' e that a
cosine curve distribution, as shown in Figure 2, will
adequately represent the velocity profile at the secondary
entrance of a jet ejector system,

It {s further assumed that the local secondary ve.iocity at
the jet periphevy is the same as the uniform velocity
Vig . Thus, the secondary entrance velocity profile at any
radial station can be expressed as follows:

K-V (109)
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Figure 2.

Bommi form Velocity Profile

at Secondary Entrunce.
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In eqg.ation (109), r' is the radial distance from the ejector
center line, nondimensionalized by the jet radius, and «, is
a constant defining flow nonuniformity at the secondary
entrance. This equation applies only for the range

0 <{r-'/x ¢ 1. In other words, as shown in Figure 2, the
local velocity V|4 gradually decreases to zero at point

and maintains zero at any larger radial distance from the
ejector center line. The location of ointC:)depends on the
constant «.

By assign%ng a suitable value of x, the integral
[ Wig/Vip)® dAg/Ag in equation (103) can be evaluated for all
values of ag in terms of Vig . Let

2
Vi, dA
¢ ir___'_s__z‘_s (110)
VigAig

Substituting equation (109) into equation (110), there
results

QE+| F‘

&——)

(r'-bwry ,,
[l + cos ]r dr
0 K

Integrating equation (111) with respect to r' yields

3 Jag+l (Jag+i-w (Vag+I -
€=—+K € sin 3 [4+cos——E———]-
8 4QETT K K

2 Jagti-| JagF1-l
K [I—cos —————-——( Je )-”'][‘E)~!-cos-(-——-—---—-aE )1r]

2
8agm K K

for ag < x(x+2) and

_ 3xik+ 2)77'2--I€:'n<2
§: 2
8ag

for ag <x(k+2)




The correction factor fcr the thrust augmentation ratio given
by ejuation (108) thus becomes

\7
X _p ) (114)

ag—| _\_/E
1+ —— (V )

where £ is given by equation (112) or (113) and V, /V,p can
be obtained from the idealized analysis equation (32) ‘as
follows:

+Eognt (T

-\7|5 ] (aE-H)[-(aE-I) +ag 205]-(a§2+|) (115)
le QE(QEZ'H)

Equation (114) is utilized to compute the thrust augmentation
ratio ¢ as affectec by the nonuniform velocity distribution
at the secondary entrance. The results are herein presented
in Figure 3, which shows the variation of ¢ vs., ag for
constant values of the parameter x. By examining this
figure, it can be noted that as x tends to infinity, the ¢
vs. ag relationship reduces to that as obtained by the
idealized analysis with uniform secondary velocity profile,
Also, for any finite value of x, ¢ reaches a maximum value
(less than 2.0) at a finite @g and then decreases to unity
as ag tends to infinity,

In order to determine the parameter «, appropriate test data
are required which could be used to determine the area ratio
ag at which the thrust augmentation ratio is maximum,
However, most of the available test data (see Section VI) are
cbtained for ejectors having area ratios qg of less than 100,
at which values the thrust augmentation ratio ¢ does not
reach a maximum value, For example, the correlation shown in
Table II (Section VII) indicates that at an area ratio of

ag = 104, the rate of increase cf ¢ with ag is quite small.
It is reasonable to assume, therefore, that for ag ranging
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from 150 to 200, the thrust augmentation would have reached
its peak value. Therefore, it follows from Figure 3 that a
practical value of the parameter x would be between x = 60
and x = 70, This, however, necessitates further experi-
mental evidence.

4. Analysis of Various Ejector Types

The most common types of jet ejectorc consist of either
single nozzle, multiple nozzle, or annular nozzle configu-
rations. These configurations differ from each other
primarily in the efficiency at which the primary, low
momentum flow is converted intc a high momentum flow., The
conversion takes place in the mixing chamber, which, in order
to reduce wail friction losses, should be of minimum length.
No precise method exists at present to determine the minimum
mixing chamber length required to achieve complete mixing
between the primary and secondary flows. The following
analysis will provide, however, a first-order approximation
of the relative effects of the different configurations on
the mixing chamber length,

First, it is assumed that the mixi 3 chambcer consists of two
parts as shown in Figure 4. The first part (L,) , which
allows for the primary jet expansion, starts at the jet exit
and ends at a point where the jet boundary reaches the
ejector walls. The second part (L,) starts from thereon and
extends to the exit of the mixing chamber, where the mixing
process is assumed to be completed.

a, Single Nozzle Configuration

The work of Squire and Trouncer (Reference 19) is
utilized to determine the length (L,) for a single-
nozzle primary flow configuration.

In this reference an analysis is performed for
determining the expansion angle of a single,
circular jet discherging into a free stream of
uniform velocity., If it is assumed that this
expansion angle is not affected by thie presence of
the mixing chamber walls, the primary jet boundaries
can be plotted as a function of the secondery flow
velocity as shown in Figure 5. In this figure the
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Figure 4., Definition of Parameters for
Single »nd Annular Nozzle Configurations.
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streamvise distance from the primary jet exit is
denctcd by X, and the radial distance of the jet
boundary from the jet center line is denoted by r.
Typical variations of V,4/V,, versus secondary-to-
primary area ratio ag are shown in Figure 6.

Using Figures 5 and 6, the length L, can now be
determined as follows:

(1) A value ag is assumed, and from
Figure 6 the corresponding value of
V%/VW is obtained.

(i1) The value of r/a is obtained from the
following relationship:

r/a =, /ag+l (116)

(1i1) With the above values of Vig/Vip and r/a,
the corresponding value of X/a is
obtained from Figure 5.

(iv) Finally,

_L_',.L(L/_O.) (117)
D 2\r/a

The above calculations were repeated for several
values of ag, and the results are plotted in

Figure 7 for the incompressible and the compressible
analyses. Similar curves can also be obtained
including various flow losses. Figure 7 indicates
that, for practical values of ag, the ratio (L,/D)
i1s of the order of 3 to 4.

Insufficient data exist to determine the length of

the second part of the mixing chamber, L, .
However, it will be assumed that this length is
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Incompressible Analysis
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LD'__ l_/ \ Compressible Analysis
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Qe
Figure 7., Variation of Length of the First Part
of Mixing Chamber with Secondary-to-Frimary

Area Ratio (No Diffuser; No Forward Speed;
No Losses).
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proportional to the contact surface area between the
primary and the surrounding flows.

Multiple Nozzle Configuration

The first portion of the mixing chamber length, L, ,
for a miltinle nozzle configuration can easily be
determined for the two-dimensional ejector by
assuming that these nozzles are evenly spaced with
respect to the mixing chamber and with respect to
each other.

For a multiple nozzle configuration having N number
of nozzles of the same total area as the single
central nozzle, (Ap)g , the primary area of each
nozzle is

(At 1 (Arg) (118)

S

Also, if the total secondary area of tne multiple
and single nozzle configurations is the same, it
follows that

i

WN ) (119)

(A% S

(Ag)

Therefore, from equations (118) and (119) it follows
that the secondary-to-primary area ratio for each
nozzle of multiple nozzle configuration is the same
as that for the corresponding single central nozzle
tvpe, i.e.,

(A )y (A)
= z _—.u. = l
(Q{ )M A )u (A|p)s (QE)S (120)
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Since the area ratios are the same (equation 120),
using Figure 7, the effective {L,/D) for each
nozzle of the multiple nozzle configuration is the
came as that for the single nozzle design, i.e.,

N

\

L \
), (121)

From equation (119), the diameter of the effective
mixing chamber for each nozzle of the muitiple
nozzle configuration can be determined as follows:

2 2
7D\_ I (7D 2
<T>M N (4 )s (122)

or

(Dly= —= (D) (123)

L
VN

From equations (121) and (123), it follows that the
mixing chamber length (L,) required for the jet
boundary to reach the ejector walls for the multiple
nozzle configuration is reduced by a factor of
1//N~  of the corresponding single nozzle length,
Thus,

(L!)M:%N(Ll)s (124)

Assuming that th¢ second part of the mixing chamber
length L, 1s a .unction of the total contact area
of the primary flow with the surrounding air, the
relationship for the mixing chamber lengths (Lzlu
and ‘_,)s of multiple and single nozzle configura-
tions can be obtained as follows:
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The contact area of the priiary jet with the
surrouniding £lcw for a single certral nozzle type
is given by

:‘S)S:W(D)S(LZ)S (125)

Similarly, the tctal contact area of the primary
jet for a multiple nozzle configuration of N
nozzles is

Substituting equation (123) into (126) yields

Assuming that in each case the contact areas are
such as to produce complete mixing at the exit cf
the mixing chamber, equations (125) and (127) yield

(Lolw® f (Lp)s (128)

Combining equations (124) and (128), there follows

J_ (L)g (129)
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Equations (124), (128), and (129) indicate that for
a muitiple nozzle jet ejector configuration, each
part of the mixing chamber length as well as the
total length reduces by a factor of 14/N as
compared with the single central nozzle configura-
tion. This reduction in the mixing chamber length
results in the reducticn of head loss due to wall
frictiov.., Therefore, the muitiple nozzle configu-
ration would yield a superior performance as
compared to that of the equivalent single nozzle
ejector if the complete mixing conditions at the
exit of the mixing chamber are satisfied in each
case,

Annular Nozzle Configuration

For the case of an annular primary jet located
midway between the walls and the center of the
mixing chamber walls, both parts of the mixing
chamber lengths (L;)p and {L,)s , as discussed above,
will also substantially reduce as compared to the
equivalent single nozzle configuration,

The analysis for determining the mixing chamber
lengths for the annular nozzle ejector can be
pertormed as follous:

Using Figure 4(a), the primary area of the single
nozzle configuration is given by

(Bi)g 7o (130)

From Figure 4(b), the corresponding primary area e
for the annular nozzle is e

(A|p A= {"(dzz‘df) (1%1)
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For the same primary jet areas, equations (130)
and (131) yield

d%=d2-d%= (dy+¢,){dp-d)) (132)

Since the annular jet is centrally lccated within
the mixing chamber having a fixed diameter D, it
follows that

dy*+d, D

T — (133)
2 2
Equations (132) and (133) yield
2
dZ_dl:g“— (134)

D

Since the primary jet areas for the two configura-
tions are the same and cince outside diameters D
of the mixing chambers are also the same, it
follows that

= . 2 2
(A ) -(A,S)A-%(D -d®) (135)

From the above analysis it therefore follows, that
the secondary-to-primary area ratio of the annular
nozzle ejector is equal to that of the equivalent

single central nozzle configuration, i.e.,

(aE)A= (czE)s




Using equations (130) and (135), the corresponding
secondary-to-primary area ratios are

Mg D? .
ag: 1227~ (136)
'p
%—= ag+! (137)
Assuming ldentical primary jet stagnation conditionms, 7

the velocity ratios V,,/V.j will also be equal,
Using Figure 5, it therefore follows that the
primary jet expansion angle,

- -ifr/a
8 =ton (§7;)

for annular nozzle configuration and the
corresponding single jet will be the same. Thus,
using Figure 4(c), the first part of the mixing
chamber length for a single nozzle configuration
can be expressed as follows:

(L))s= Dz’d To“:;? (138)

Similarly, using Figure 4(d), the corresponding
length for the annular nozzle ejector is

~(d,-d !
(L)as ‘dg ) e (139)
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Equations (138) and (139) yield

(L), ! [ D-(dz—d;)]

) D-d

Ly 2 (140)

Substituting equation (134) into equation (140),
there follows

L), + d
_([_I)_s._.é_(i-f-ﬁ) (141)

Substituting equatiocn (137) into (l4l) yields

L S R ) (142)
(L')S 2\ QE'H 2
oY
| |
(L) ='—-<|+ )(L) 143
Ao Jag+i/ 'S (143)

Equation (143) shows that the first part of the
mixing length (L;), for the annular nozzle
configuration is a function of the area ratio ag
and that for large values of ap it is approximately
equal £o a half that of the corresponding single
central nozzle ejector. For small values of the
area ratios, this length approaches (L,)s.

The secord part of the mixing chamber length for the
antular nozzle ejector can be determined as follows:
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The surface contact area of the primary jet with
the surrounding flow for a single nozzle ejectc. is

(S)g= wd Lyl (144)

The correspending contact area for the annular jet
1s given by

(S)‘ﬁ W(d2'+d;)(L2)A (145)

Assuming that in each case the seme constant contact
surface area is required to compiete the mixing
process at the exit of the mixkin, chamber,

equations (144) and (145) yield

d
(La) ¢ -dz_+d, (La)g (146)

Substituting equation (1£3) into (146) yields
(Loh= -2 (L) (147)
2A° D 2'g

From equations (142) and (147), ticre results

| ~
(Lalyr = (L), (148)

Equation (148) shows that the second part of the
mixing chamber length for the annular nozzle
configuration reduces by a factor of I//ag+!

as compared to that of the equivalent single jet
e jector,



Finally, using equations (143) and (148), the
total mixing length for the annular jet ejector
is given by

- _— S B 149
(L)A2<I+ «/EEW>(L')S+ J&E_H—(Lz)s (149)
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V. EFFECT OF PARAMETERS ON JET EJTECTCR PERFORMANCE

Presented in this section are the results of a study showing
the =ffects of various aerodynamic, thermodynamic, and
geometric flow parameters on ejector thrust augmentation
performance. The study includes the following parameters:

A, FLOW LOSSES

The erfect of flow losses is to reduce ejector performance.
This effect cau pe ¢.early seen from the nomographs of
Section VII and requires no further explanation.

B. DIFFUSER

The results of the idealized analysis presented in Figures 8
and 9 show that under static conditions, at any secondary-to-
primary area ratio, an increase in diffuser area ratio yields
better thrust augmentation performance, However, as shown in
Figure 10, this is not true for a1 practical case when the
flow losses are included. Although the overall diffuser loss
factor Ay, varies with the area ratio ag, for the purpose of
this duscussion all flow losses including the diffuser loss
factor Ay are held constant (at typical values) for all
diffuser area ratios.

Examining Figure 10, it can be seen that for any pracitcal
value of secondary-to-prima.y area ratio ag, the thrust
augmentation ratio ¢ reaches an optimum value with the
diffuser area ratio ap ranging between 1.5 and 2.0. For the
diffuser area ratios larger than 2.0, the thrust augmentation
ratio would be actually lower than that indicated in

Figure 10 as a result of increase in the diffuser loss factor
Ap with increase of a.

C. FORWARD SPEED

Figure 11 shows the effect of forward speed on thrust
augmentation ratlo for an idealized condition with no flow
losses and no diffuser. It can be seen from this figure
that an increase in forward speed results in a substantial
reduction of thrust augr :ntation ratio for all secondary-to-
primary area ratios,a;. Furthermore, for any specific
nonzerc value of forward speed, the thrust augmentation
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ratio reaches an optimum value c¢f 1.0 < ¢ < 2.0, and then
reduces to unity as the area ratio further increases to
infinity. Fromn a physical point of view, the case of
infinite ag corresponds to the condition of primary flow
discharged directly into the ambient, resulting in thrust
augmentation ratio of unity. This figure also shows the
locus of maximum thrust augmentation ratio (dotted line) as
a function of ag for the range of forward speed considered.

Figure 12 shows the effect of forward speed on thrust
augmentation ratio ¢, including typical flow losses for the
case of ag - 2.0. Comparing Figures 11 and 12, it can be
noted that the effect of forward speed on the reduction of
thrust augmentation ratio is more severe when the major flow
losses are included. Specifically, fcr forward speeds
greater than u = 0.05, the thrust augmentation ratio
continuously reduces with an increase in ag and eventually
reaches a value of less than 1,0 in the practical design
range of ag.

The above discussion refers to an ejector forward speed along
the ejector longitudinal axis, i.e., parallel to jet thrust.
1f, however, the forward motion is normal to the ejector
axis, under idealized flow condition, the ejector performance
should not be affected by such motion., In a practical case,
the forward motion of an ejector perpendicular to the
direction of thrust will result in an asymmetric inflow at
the secondary entrance, thereby causing an increase in the

A

secondary entrance head loss ; _,

D. FLOW COMPRESSIBILITY

The effect of flow compressibility on jet ejector performance
is herein determined assuming nc forward speed, no diffuser,
and no flow losses. Typical computer results for this
analysis are presented in Figures 13 through 15. In each of
these figures, the thrust augmentation ratio obtained from
the idealized incompressible analysis is also shown for the
purpose of comparison. It is seen that in general the thrust
augmentation ratio ¢ is reduced when the flow compressibility
is accounted for.
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Figure 13 shows that the increase of the primary stagnation
pressure Pg, from 20 psia to 25 psia results in about 3
percent reduction of the thrust augmentation ratio. Pg, 1is
limited to 25 psia in the calculations in order to avoid the
choking condition of the nozzle.

The effect of the variation of the primary stagnation temper-
ature Vo is illustrated in Figure 1l4. The temperature range
unde. consideration is between 600°F and 1400°F, It is seen
from this figure that an increase of temperature Top
decreases the thrust augmentation ratio up to a maximum of
about 4 percent at area ratios around 10.

The increase in ambient temperature, as shown in Figure 15,
results in an increase of thrust augmentation ratio ¢ . This
increase, however, does not exceed 2 percent for the range of
ambient temperatures raised from 0°F to 200°F and the range
of ag considered.

In general, it can be concluded that although th> effect of
flow compressibility is to reduce the jet ejector performance
as compared to the idealized flow conditions, the effect of
the variation of the compressible flow parameters, such as
Pop,Top, and Tq, seems to be of little consequence.

E. MIXING CHAMBER SHAPE

In the present investigetion, two m'xing chamber shapes have
been considered; i.e., the constant area and the constant
pressure mixing configurations.

The analysis of the mixing chamber shapes, other than the
two investigated, is indeed a very difficult task and has
not been successfully attempted by any of the investigators
in the past. It appears, however, that due to possible flow
separation at the mixing chamber walls, a divergent mixing
chamber shape would not be suitable,

Some of the information on the mixing chamber shapes can be
obtained by comparing Figures 8 and 9. Examining fhese
figures, {t can pe seen that for the same secondary-to-
primary area ratio ag and diffuser area ratio ap, the constant
area mixing chamber shape yle.ds superior ti -ust augmentation
performance as compared to that of a constant pressure

mixing configuration.
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F. MIXING CHAMBER LENGTH

The data presented in this report are valid only for the
case when the velocity of the mixed flows at the exit of the
mixing chamber is uniform., This implies complete mixing of
the primary and secondary flows which necessitates adequate
mixing chamber length,

The exact mixing process inside a mixing chamber of an

ejector is not yet clearly understood. Mikhail (Reference

20) made an attempt to solve the problem; however, the final
equations are developed in terms of "mixing length parameters"
which vary from case to case and have to be determined
empirically.

The experimentali data of Reference 15 show that for the
mixing chamber length of L/D = 12, the velocity distribution
at the exit of the mixing chamber is uniform. The value of
L/D = 12 is not necessariiy representative for a variety of
jet ejector configurations, since this value will in general
depend on the secondary-tc-primary area ratio ap and other
geometric pavameters.,

On the other hand, the experimental data of Reference 2
indicate that an increase in the mixing chamber length
beyond the value of L/D = 5.0 or 6.0 causes an adverse effect
on the jet ejector performance, This implies that the flow
losses due to partial mixing, associated with short mixing
chamber lengths, are less predominant than the friction —
losses caused by incrzasing mixing chamber length to achieve
complete mixing. It appears, therefore, that in selecting
practical mixing chamber lengths the cousiderations of the
flow losses due to partial mixing may be of secondary
importance.,

This subject is further discussed later in the text. Also,
the charts for estimating mixing chamber lengths of various
ejector configurations are presented in Section VII. These
charts are based on the fact that the practical mixing
chamber length required for optimum e jector performance is
less than that required for complete flow mixing. Further-
more, it is assumed that the flow losses due to partial
mixing can be neglected provided that the total mixing
chamber length for a single nozzle jet ejector is greater
than L/D = 6.0.
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G. DIVERGENCE AND INCLINATICN OF NOZZLES

In the previous discussions, it was assumed that, irrespec-
tive of the ejector type, the orientation of the primary jet
nozzles was along the longitudinal axis of the ejector.

For the case of the central nozzle or multinozzles installed
at an angle with the ejector axis, or for the case rf the
annular nozzle with the jet diverging from the ejector axis,
the one-dimensional analysis is considered to be inadequate
in predicting the performance of such ejector configurations.
The major effect will be the increase of mixing lusses due to
the flow interaction which is difficult to treat analytically.

In the muiticcncerntrfc annular nozzle configuration as
developed by Bertin, Reference 10, the divergence of the
nozzle seems to be of merit insofar as mixing is concerned.
However, no analytical work, besides the usual one-dimensional
approach, has been presented by Bertin for the purpose of
analyzing the performance of jet ejectors with divergent
multiconcentric annular nozzles.

H. EFFECT OF GROU.J PROXIMITY

Available test data, e.g., References 21 and 22, indicate that
in the ground proximity, the thrust augmentation of an ejector
i1s reduced. This is attributed to the reduction of static
pressure prevailing in the flow from the ejector exit. The
test data also show that the ejectors operating in parallel,
with & common baseplate, yield a higher thrust augmentation
than the ejectors operating individually. This is due to the
building up of pressure underneath the baseplate where a
stagnation condition exists. This effect is similar to what
prevails in the case cof annular nozzles in ground proximity,
for which some theoretical and experimental data are

presented in References 23 and 24.

I. NONUNIFORM VELOCITY AT THE SECONDARY ENTRANCE

The practical analysis presented in Section IV as well as
other analyses available from the existing literature, is
perfo.med with a one-dimensional flow approach. The necessary
assumptions, among others, are that the velocities at the
secondary entrance and also at the mixing chamber exit are

74

!
o




Tl -

uniform. In practical operations these idealized conditions
do not always apply.

For small secondary-to-primary area ratios, the velocity at
the secondary entrance is practically uniform. However, as
the area ratio a; increases, the secondary entrance velocity
close to the mixing chamber walls becomes much lower than
that close to the primary jet.

For very large area ratios (as ag tends to infinity), the
velocity of the secondary flow becomes zero at a finite
radial distance from the primary jet. In fact, this
condition corresponds to a free jet discharged directly into
the ambient, ian which case no thrust augmentation is possible,
The available analyses, utilizing the assumption of uniform
secondary flow velocity, result, however, in a thrust
augmentation ratio of 2.0 as ag tends to infinity.

In the previous section, an attempt is made to account for
the radial variation of the local velocity at the secondary
entrance. However, this analysis is based on a semi-
empirical approach requiring furhter experimental verifica-
tion.

J. INCOMPLETE MIXING

The effect of incomplete (partial) mixing of the primary and
secondary flows at the exit of the mixing chamber has also
been investigated., As discussed previously, the incomplete
mixing will exist due to the insufficient length of the
mixing chamber, thereby resulting in a nonuniform velocity
profile at the exit of the mixing champer,

The difficulties of analyzing partial mixing are in principle
similar to those associated with nonuniform velocity at the
sccondary entrance discussed above. In this case, however,
even {f the velocity profile at the exit of the mixing
chamber 's known or assumed, the corresponding variation of
the static pressure distribution cannot be analviically
determined.

Forstall and Shapiro (Reference 25) indicate that the
velocity profile at the exit of the mixing chamber can be
quite accurately represented by a cosine cr three-halves




power curve. However, information on the static pressure
distribution at the exit of the mixing chamber and the mass
flow rate of the partially mixed flow is not available.

Thus, in order to predict reliably the effects of the
incomplete (partial) mixing, an experimental investigation is
necessary to obtain the pertinent data on pressure and
velocity distributions at the exit of the mixing chamber.

K. MIXING LCSSES IN THE MIXING CHAMBER

The mixing losses in the mixing chamber cannot be considered

as an additional external force which could be readily

introduced in the mcomentum equation. One method of

accounting for the mixing losses is to assume a mixing '
efficiency factor (,) in the flow momentum considerations. ¢
However, there is no information available for determining

this mixing efficiency factor.

L. FLOW VISCOSITY

A real fluid flow is generally treated as an inviscid flow,
except that at the locations close to the walls a boundary
layer effect is taken into consideration. The flow viscosity
effects give rise to friction drag which in turn reduces the
jet ejector thrust. In the present investigation, the losses
due to the friction drag along the mixing chamber walls are
included in the friction factor f, which appears in the
momentum equation.

For the diffuser section, the losses due to frfction drag and
flow separation are included in the diffuser loss factor Ap .

M. HEAT CONDUCTION LOSSES

In the practical analysis (compressible flow), the heat
conduction losses will affect the energy equations presented
in Section IV. However, the information pertaining to the
rate of heat conduction which varies with ejector geometry,
conductivity of mixing chamber walls, and the operating
conditions c© the ejector system is inadequate for reasonable
evaluation,
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Furthermore, due to the heat conduction losses, the ejector
flows become neither isentropic nor adiabatic, resulting in
an additional difficulty in analyzing the flow process.

In general, however, the mixing chamber 1s usually not very
long and the seconda.; flow is almost under ambient
conditions, so that Leat conduction losses, if any, through
the mixing chamber and diffuser wails are not significant
and can be neglected without materially affecting the
accuracy of the analysis,

N. EFFECT OF SPECIFIC HEAT RATIO Y

Using th~ computer program, Appendix I, an investigation was
performed to determine the effects of the specific heat
ratio y on jet ejector performance. It was found, however,
that for a range of y from 1.25 to 1.4, the thrust augmenta-
tion ratio is practically unchanged "'~ss than 0.1l percent).

It appears, therefore, that the effect of the specific heat
ratio can be neglected in the practical jet ejector analysis.
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VI. CORRELATION WITH EAPERIMENTAL DATA

Available experimental data which are suitable for
correlation with the results of the present analysis are
rather limited. Those data which contain infermation on
thrust augmentation do not, in general, furnish sufficient
design and construction details which could be used to
determine the various flow loss factors. Consequently, for
some of the jet ejector configurations, these loss factors
were determined by using good engineering judgement.

Specifically, the friction loss factor f£(L/D) was determined
assuming f = 0.003 and using the test values of (L/D)
provided in most cases. Reference 26 was used to determine
the overall diffuser loss factor A,

As pointed out previously, it is not easy to determine the
secondary entran.e flow loss factor Ag. It appears that the
intake geometries of the various ejector configurations
tested are of either round or bellmouth shepe, for which,
according to the results of Reference 27, the entrance loss
factor is about 0.1. Thus, in the absence of better infor-
mation applicable to each specific configuration, A¢ has been
taken as 0.1 for the present correlation,

The correlation of the test data with the theoretically
predicted results uvrilizing the loss factors described above
is performed in tabular form as shown below, The reason for
the selection of this method of presentation is the fact that
the test data obtained or a variety of jet ejector configura-
tions are unsuitable for graphical comparison,

The correlations are performed for the following jet ejector
configurations:

A. SINGLE CENTRAL NOZZLE CONFIGURATIONS

The fo'lowing references contain the test data obtained for a
single central nozzle configuration:

(1) Reference 2 presents the test data for the case of
an ejector without a diffuser. The correlation of
these data with theoretically predicted values is
given in [lable I,

78




TABLE I

CCRRELATION OF THEORY WITH TEST DATA OF REFERENCE 2,
SINGLE NOZZLE EJECTOR WITH NO DIFFUSER

%E T‘n?orv Tgst

; 6.0 1.30 1.25
11.0 1.36 1.29
24.0 1,42 1.34
2.0 1.44 1.38
59.0 1.51 1.43

= The calculated values are based on the following

luss factors:
Ae = 0.1

f(L/D) = 0.02

I

Ap = 0 (No diffuser)

o The above table indicates a satisfactory

Ee correlation between the theoretical and experimental A
E results, T

(11) The test data obtained from Reference 15 are for a
central nozzle configuration without a diffuser.
The correlation of the test results with the
theoretically predicted values is given in
Table II.
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TABLE II

CORRELATION OF THEORY WITH TEST DATA OF REFERENCE 15,
SINGLE NOZZLE EJECTOR WITH NO DIFFUSER

The theoretically predicted values are based on the
foliowing flow loss factors:

%e Theory T;tt
3.0 1.22 1.03
10.7 1.36 1.20
15.0 1.37 1.26
28.7 1.44 1.40
46.0 1.48 1.48
104.5 1.55 1.50

Ag = 0.1
f(L/D) = 0,02
Ap = 0 (No ciffuser)

S The comparatively poorer correlation at small area

- ratios is believed to be due to the higher secondary

B entrance losses. Also, the test data indicate that
with the increase of the area ratio ag from 46.0 to
104.5 (more than double), the increase in augmenta-
tion ratio is only about 1 percent. On the other
hand, from the theoretically predicted results, the
corresponding increase in thrust augmentation is
about 5 percent. This can be attributed to the
effect of the nonuniform velocity profile at the
secondary entrance (not accounted for in the theory),
This effect becomes more important at high secondary-
to~primary area ratios.
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(£14)

(iv)

Reference 16 quotes the following test data for a
constant area mixing ejector without diffuser:

QE Test
129.5 1.95
33%.0 2.11
329.0 2.21
369.0 2.21

The thrust augmentation ratios shown above are
either close to or higher than the maximum possible
values which can be obtained from the idealized,
one-dimensional incompressible analysis, viz., 2.0,
Furthermore, on account of the large area ratios of
ag > 130, the secondary velocity at the euncrance
plane would no longer maintain its uniformity;
consequently, it would be doubtful whether the
maximum augmentation ratio of 2.0 could be reached
at all even if all the losses were neglected. The
original work (Reference 28) does not furnish any
usable information to justify the unusually high
performance claimed for the simple central nozzle
type ejector as illustrated therein.

Reference 29 presents the test results for the
ejector with and without a diffuser. The correla-
tion of these data with the theoretically predicted
values is given in Table III.
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TABLE III

CORRELATION OF THEORY WITH TEST DATA OF REFERENCE 29,
SINGLE NOZZLE EJECTOR WITH AND WITHOUT DIFFUSER

Qg p Theq?)rz Teﬁt
265.36 1.00 1.45 1.37 |
7.54 1.00 1.34 1.28 |
7.54 2.49 1.41 1.23 “
19.55 1.00 1.43 1.35
5.42 1.00 1.29 1.27
5.42 2.49 1.39 1.29

The test data of Table III indicate that for
constant area ratios ( a@g= 7.54 or ag = 5.42), the
addition of a diffuser with ap= 2.49 results in a
reduction of thrust augmentation ratio ¢ . This
reflects a poor diffuser efficiency (high losses)
of the jet ejector configuration tested.

(v) The tests of Reference 30 were performed on a two-
dimensional model with no diffuser. A comparison
of the test data with the theoretically predicted
results is given in Table IV.
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TABLE IV

CORRELALION OF THEORY WITH TEST DATA OF REFERENCE 30, ;
SINGLE NO4ZLE EJECTOR WITH NO DIFFUSER B |
g Theory Test ‘ i
3.24 1.16 1.08 1
7.13 1.24 1.16 1
11.5 1.27 1.23 i
19.0 1.31 1,30 1
23.0 1.32 1.30 |
27.0 1.33 1.30
31.0 1.34 1.28

The predicted values are obtained by taking A = 0.1
and f(L/D) = 0,05. A higher friction loss factor is
used in this case, as compared with the above
configurations, in view of the fact that due to the
larger wall area in the two-dimensional model, the
friction losses are undoubtedly higher, especially
at low secondary-to-primary area ratios,

The results presented in Tabie IV show a good
correlation between the theoretical and experi-
mental values.

(vi) Reference 31 presents the test data on the effect
of total primary stagnation pressure ratio on
thrust cugmentation, The test conditions are as
follows:
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(vii)

Top = 300°K = 510°R (50°F)
Tq = 283°K = 478°R (18°F)
ag = 50.0

L/D = 5.0

The test data of Reference 31 indicate that the
thrust augmentation ratio ¢ decreases gradually
from 1,24 to 1.22 as Py,/Pq increases from 1.4 to
1.8. From the analysis, the thrust augmentation
ratio is obtained as 1.25 by taking f£(L/D) = 0.025,
as suggested by the paper.

Reference 32 shows that at an area ratio ag = 2.33,
the central nozzle ejector without diffuser

(L/D = 6) has its thrust augmentation ratio ¢
decreasing from 1,195 to 1.165 as the primary
pressure ratio Pp,/Pg increases from 1.4 to 1.8.
The corresponding theoretical value based on loss
factors of f(L/D) = 0.02 and Ag = 0.1 is 1.20.

B. MULTIPLE NOZZLE CONFIGURATIONS

The test data for the multiple nozzle configurations are
obtained from the following references:

(1)

The test data reported in Reference 12 pertain to
an ejector configuration with multiple nozzles, a
rectanguler mixing chamber, and a diffuser with
lemniscate contour. Table V shows the correlation
of the test data with the theory.
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TABLE V

CORRELATION OF THEORY WITH TEST DATA OF REFERENCE 13,
MULTIPLE NOZZLE EJECTOR WITH RECTANGULAR
MIXING CHAMBER AND A DIFFUSER

9 D Thégrv Téﬁt
35.5 3.11 1.38 1.55
55.5 2.73 1.54 1.66
74.4 2.36 1.70 1.79

135.5 1.36 1.79 1.78

The above table shows a satisfactory correlation
between the test results and the corresponding
theoretical values. This correlation is based
on the following flow loss factors:

Xe =0.1

it

f(L/D) = 0.02
XD :0-2

(1i) The test data of Reference 18 and the predicted
values are given in Tabie VI.
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TABLE VI

CORRELATION OF THEORY WITH TEST DATA OF REFERENCE 18,
MULTIPLE NOZZLES ARRANGED IN A CIRCLE ‘ i

Qg p Theory Tégt f
14.37 1.8 1.71 1.72
31.4 2.2 1.75 1.71
51.0 2.47 1.73 1.90

The test model used has multiple nozzles arranged
in a circle. The mixing chamber is slightly
convergent (the exit area is 8 percent less than
the entrance area), which does not assu e constant
pressure at the walls, The predicted values shown
in Table VI are obtained using the following loss

factors:
Ag =0.1
f(L/D) = 0.01
Ap = 0.2

It 1s seen that for the first two configurations,

correlation is satisfactory, whereas for the last

one the test result is 10 percent higher than that
theoretically predicted.

(i11) Table VII shows the effect of diffuser area ratio
ap on thrust augmentation ¢ for constant secondary-
to~-primary area ratio ag = 12,0, The test data
were extracted from Reference 21 and are applicable
to a four-row nozzle configuration,
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TABLE VII

CORRELATION OF THEORY WITH TEST DATA OF REFERENCE 21,
FOUR-ROW NOZZLE CONFIGURATION WITH VARIABLE DIFFUSER

Qg p Theory T;ﬁt
12.0 1.00 1.37 1.35
12.0 1.19 1.48 1.45
12.0 1.38 1.56 1.55
12.0 1.58 1.59 1.61
12.0 1.77 1.59 1.64
12.0 2.16 1.53 1.57

Table VII shows & good correlaticn between experi-
mental and theoretical results, indicating that the
best diffuser area ratio ap for optimun thrust
augmentation ratio is between ap = 1.5 and 2.0,
Similar conclusion is reported in Section V, where
the effects of a diffuser are discussed.

(1v) The configuration referred to in Reference 33
consists of a rectangular parallel-wall mixing
chamber with a diffuser and mujtiple primary
nozzles, The comparison of the predicted thrust
augmentation ratios with the corresponding
measured values is presented in Table VIII,




TABLE VIII

CORRELATION OF THEORY WITH TEST DATA OF REFERENCE 33,
SINGLE AND THREE-ROW NOZZLES,
RECTANGULAR MIXING CHAMBER WITH DIFFUSER

Test
¢ Single-Row Three-Row
ag ap Theory Nozzle Nozzle
6.6 1.23 1.44 1.27 1.36
12.0 1.38 1.56 1.37 1.50
29.3 1.61 1.70 1.45 1.83 5
51.9 1.73 1.77 1.56 1.89

The third column {n Table VIII represents predicted
values based on the foll_wing values of flow loss

factors:
Ag = 0.1
£(L/D) = 0.02
Ap = 0.2

It is seen that for the first two area ratics

(ag = 6.6 and 12,0), the predicted values are
higher than the test data for both configuracions,
viz,, single row of nozzles and three rows of
nozzles. This is believed to be chiefly due to an
underestimation of the total head loss factor at
the secondary entrance A

. For the other two area ratios (ag = 29.3 and 51.0),
i the predicted values are higher than the test data
for the single-row nozzle configuration but lower
than those for the three-row nozzle configuration.
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C. ANNULAR NOZZLE CONFIGURATIONS

Finally, for the annular nozzle configuration, the following
test data are utilized:

(i) The tests as reported in Reference 22 were
performed with single annular nozzle configurations,
For the model with a straight mixing chamber
(no diffuser), the results are shown in Table IX.

TABLE IX

CORRELATION OF THEORY WITH TEST DATA OF REFERENCE 22,
ANNULAR NOZZLE EJECTOR WITH NO DIFFUSER
¢

Qg 9p Theory Test
13 1.0 1.41 1.29
17 1.0 1.44 1.38
22 1.0 1.46 1.472

The precicted values are based on the fciloving
flow losses:

Ae = 0.1
£(L/D) = 0.01
A\p - 0 (No diffuser)
The corresponding results for a divergent mixing

chamber-diffuser (exit area approximateli double
the entrance area) are shown in Table X.
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TABLE X

CORRELATION OF THEORY WITH TEST DATA CF REFERENCE 22,
ANNUTAR NOZZL1E EJECTOR WITH DIVERGENT MIXING CHAMBER-DIFFUSER

3; 2E Theory Test
S 8 1.78 1.48
9 1.79 1.53
11 1.81 1.56

The theoretically predicted values for the thrust
augmentation ratio ¢ have been cbtained for a
diffuser area ratio of ap = 2.0 with the followiug
loss factors:

XE = 0,1

I

£(1./D) 0 (No mixing chamber)

i

. Ap 0.2

The large discrepancy between the actual
performance and the predicted results is attributed
to the incomplete mixing that can be expected at
the exit of a diverging mixing chamber-diffuser of
relatively small length.

.
NS

Presented in Reference 22 are also some two-
dimensional and three-dimensicnal test results for
the annular jet ejectors.

The correlation of theory with the two-dimensional
results 1s shown in Table XI.




TABLE XI

CORRELATION OF THEORY WITH TWO-DIMENSIONAL DATA
OF REFERENCE 22, ANNULAR NOZZLE EJECTOR
WITH DIVERGENT MIXING CHAMBER-DIFFUSER

g Y Th;ﬁry Test
9.0 2.C 1.80 1.30
11.5 2.0 1.82 1.50
14,0 2.0 1.84 1.43

The predicted values are obtained from the
practical analysis with the following flow 1l.ss
factors:

AE = 0.1
f(L/D)

it

0 (No mixing chamber)

As can be seen from Table XI, the test results are
appreciaebly lower than the corresponding predicted
values, This diff.rence in the results can be
attributed to the following factors:

(a) The tests were performed for the ejector
configuration having a small length-to-
diameter ratic (L/D = 3.0). At this ratio
of L/D, it can be expected that the
mixing at the exit of the diffuser will
not be complete, contrary to the complete
mixing assumption in the theory.

(b) Since the primary jet is very close to the
diffuser walls, it is expected that the
friction loss in the diffuser will be
increased as compared to conventional
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central nozzle configurations. This
increase in the skin friction in the
diffuser could be accounted for by
increasing the ciffuser loss factor A, .

The correlation of three-dimensional test data of
Reference 22 with the theoretically predicted
results 1is shown in Table XII.

TABLE XII

CORRELATION OF THEORY WITH THREE-DIMENSIONAL DATA

OF REFERENCE 22, ANNULAR NOZZLE EJECTOR

WITH DIVERGENT MIXING CHAMBER-DIFFUSER

(i1)

Qg 2y Theory Teﬁt
20.8 1.45 1.66 1.34
20.8 1.63 1.69 1.40
20.8 1.85 1.68 1.47
20.8 1.94 1.66 1.49

e e e e e e e

The predicted results are based on the same loss
factors as the two-dimensional results. Also in
this correlation, the three-dimensional test dat-
are lower than the corresponding predicted values
for the same reasons as explained above in the
two-dimensional correlation.

Table XIII shows the correlation of the test data
as presented in Reference 34 with the theoretically
predicted values.
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TABLE XIII

CORRELATION OF THEORY WITH TEST DATA OF REFERENCE 34,
THREE-RING ANNULAR NOZZLE EJECTOR WITH DIFFUSER

éé - ap an Theory Tégt
; 44,0 1.58 1.93
. 44,0 1.90 2.02 2,16

44.0 2.30 2.32

The test data are for the configuration with a
three-ring annular nozzle. The theoretically
predicted value of ¢ = 2.02 applies8 to ag= 44.0
and ap = 2.0 and is based on the following loss
factors:

XE = Ool

£(L/D)

0 (No mixing cuamber)
XD = 0.2

It can be noted that the theoretically predicted
value is lower than the test data claimed.

93




VII. RAPID METHOD FOR EJECTOR PERFORMANCE PREDICTION

Presented in this section is a compilation of charts for
rapid prediction of jet ejector performance. The numerical
results used in these charts were obtained by solving the
theoretical flow equations presented in Section IV.

A. IDEALIZED ANALYSIS

The idealized flow equations were computed manually for both
constant ares and constant pressure mixing. The corre-
sponding numerical results are herein presented in Figures
16 and 17, which show the variation of the idealized thrust
augmentation ratio ¢ as a function of secondary-to-primary
area ratio ag for & series of constant values of diffuser
area ratio ap.

B. PRACTICAL ANALYSIS

The practical analysis was solved with the aid of an IBM

360 digital computer utilizing FORTRAN IV machine language.
In this case, two computer programs were developed, one for
the incompressible analysis including the effects of major
flow losses, diffuser, and forward speed, and the other for
the compressible analysis including only the effects of flow
compressibility. A detailed description of the programs
including flow diagrams and typical computer outputs is
presented in Appendix I, The final computer results obtained
for static conditions are herein presented as nomographs,
Figures 18 through 22,

These charts represent an effective analytical tool in
predicting jet ejector performance including flow losses and
the effects of flow compressibility and are suitable for use
in the preliminary design of jet ejectors. One of the
advantages of the selected method of presentation is the
fact that a wide range of practical jet ejector operating
conditions as well as a variety of flow losses are condensed
in & total of five nomographs. Four of these charts,
Figures 18 through 21, contain the computer results for the
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Figure 19. Nomograph for Thrust Augrentaticn Ratio - Incompressible
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incompressible analysis (including flow losses) for the
diffuser area ratios ap= 1.0, 1.5, 2,0, and 2.5,
respectively, The fifth nomograph, Figure 22, presents the
computer results for the compressible analysis for a wide
range of the nondimensionalized input parameters Pa/Pop
and Tg /Top

1. Evaluation of Flow Losses

In utilizing the nomographs for the incompressible analysis,
the values of the various loss factors must be predetermined.
No precise information is available on there loss factors
which are dependent on the design and constiuction details
of the system, However, the following will serve as a
general guide:

a, Friction Loss Factor f(L/D)

The friction loss factor of a given jet ejector
configuration is a function of the friction
factor f along the ejector walls and the mixing
chamber length-to-diameter ratio L/D required for
complete flow mixing.

The friction factor f = 0,003, which is commonly

used for commercially smooth pipes is reccmmended
to be used for fairly smooth mixing chamber walls
of jet ejectors,

No precise information is available for estimating
the mixing chamber length-to-diameter ratios
required for complete mixing. However, in order
to provide the designer some basis for selection
of the required L/D ratios, a semiempirical
approach is herein utilized for estimating this
parameter. This approach is based on the
assumption that for a single nozzle jet ejector
the flow losses due to partial mixing can be
negiected provided that the mixing chamber lergth-
to-diameter ratio is not less than 6,0. This
implies that the flow mixing is considered to be
complete for L/D > 6.0,

PRECEDIiG
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The results thus obtained are presented in

Figure 23. This figure can be utilized to
estimate the total mixing chamber length required
for complete flow mixing for single, multiple
(four evenly spaced nozzles), and annular jet
ejector configurations,

Thus, utilizing the friction factor of £ = 0.003
and the L/D ratics from Figure 23, the required
friction loss factor f(L/D) for any given jet
ejector configuration can be determined.

Diffuser Loss Factor Ap

The diffuser loss factor Ap is a function of a
total head loss within the diffuser, the dynamic
pressure at the diffuser entrance and its exit-to-
entrance area ratio. A mathematical definition of
this factor is presented in the list of symbols.,
Some usable data for determining the loss factor
of various diffuser configurations is presented in
Reference 26,

Secondary Entrance Loss Factor Ae

Very limited information is available for
determining the loss factor at the secondary
entrance. This factor is majinly a function of the
size and shape of the inlet, but it also depends on
the blockage effect of the components of the
ejector, such as manifolds, instrumentation, etc.,
located in the passage of the secondary flow
entrance., It is not possible to determine this
factor accurately, since it varies from case to
case. In Reference 27, representative values of
"internal iunlet" loss factor, i.e., for static
conditions with no obstruction of the passage, are
presented as follows:
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Qe
Figure 23, Variation of Minimum Mixing Chamber

Lengths Required for Complete Mixing for Various
Ejector Configurations (Idcalized Analyeis).
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Type of Entrance Xg

Flared
Lemniscate contour 0.02
Circular contour 0.03
Straight contour 0.05
Rounded Edge C.1
Sharp Edge 0.3

It can be noted from the 'bove data that
lemniscate lip contour i preferable in ejector
designs. This contouv t:nds to minimize adverse
pressure gradient ovir ne lip and thus results in
lower entrance loss fa. .or. Furthermore; in
evaluating the entrance 1 ss factor, a consider-
ation must be given to the ratio of the entrance
diameter to the mixing tube diameter. If this
ratio is less than 1.5, an additional loss in
thrust augmentation ratio may occur., This loss may
be accounted for by appropriately ircreasing the
entrance loss factor

2. Correction Factor for the Nonuniform Velocity Profile _
at the Secondary Entrance

Section IV contains an empirical analysis for determining the
effect of a nonuniform velocity profile at the secondary
entrance on jet ejector thrust augmentation. This analysi=s
requires a knowledge of the flow nonuniformity parameter «
which can only be reliably pre-icted from appropriate experi-
mental data.

The limited experimental data such as present 2d in Table II

of Section VI indicates that the approximate valiue of this
parameter is about x = 70, Thus, using Figure 3,the empirical
correction factor y for thrust augmentation ratio due to
nonuai form velocity profile at the secondary entrance can be
determined as follows:
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. Px=10 (150)
X ¢I

where ¢, = 70 is the thrust augmentation ratio with non-
uniform secondary velocity profile for x = 70,and ¢, is the
ideal thrust augmentation ratio for the same ag .

3. Compressibility Correction Factor C¢

The compressibility correction factor C¢ can be obtained as
the ratio of the compressible to the ideal value of thrust
augmentation ratio ¢ for the same values of ag and ap .
Thus:

Ce® IC (151)
I

The compressible value of thrust augmentation ratio ¢ can be
.btained from the nomograph, Figure 22, for a given set of
irput conditions of Fy/P, and Tg/Tg,. The corresponding
ideal value ¢; can be obtained from %he nomograph, Figure
18, using Xg¢ = £(L/D) = 0.

4 Net Value of Thrust Augmentation Ratio

The net value of thrust augmentation ratio of a given
ejector ceonfiguration can be expressed as follows:

¢ =xCcPL (152)

where ¢_ represents the incompressible value of thrust
augmentation ratio including the effects of major flow
losses. This value can be obtained from appropriate nomo-
graphs, Figures 18 to 21. Thus equation (152) can be used to
predict the total thrust augmantation ratio of a given
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ej=ctor configuration including the effects of nonuniform
entrance velocity, flow compr-ssibility, and major flow
losses discussed above.

S. Use of the Nomographs

The procedure for determining ejector thrust augmentation
performance requires the use of the nomographs presented in
Figures 18 to 22. In order to utilize these charts,it is
first necessary to determine e jector geometry, major flow
losses, and operating conditions of a given jet ejector
configuration., The use of the nomograph is explained
graphically in the key of each chart.

The procedure for the use of nomographs for a general case
cf an ejector with a diffuser is as follows:

(a) Select an appropriate nomograph for a given
diffuser exit-to-entrance area ratio Ap.

(b) On the upper left-hand plot of the nomograph,
draw a vertical line at a given ag to intersect
with the curve corresponding to the computed
value of entrance loss factor Ag. Interpolate
between Ag curves if required.

(c) From the pcint of intersection of step (b),
project a8 horizontal line to intersect with the
curve corresponding to the computed value of the
friction loss factor f(L/D). Interpolate between
f(L/D) curves if required.

(d) TFrom the point of intersection of step (c), draw a
vertical line to intersect the curve corresponding
to the computed value or the diffuser loss factor
Ap . Interpolate between )\, curves if required.

(e) TFrom the point of intersectiorn cf step (d), draw
a horizontal line to intersect with the scale of
the thrust augmentation ratio., Read off this
value of thrust augmentation ratio ¢, which in
this case would correspond to the incompressible
value including the flow losses and the effect of
a diffuser.
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Similar procedure is applied in the use of the nomograph

for an ejector without diffuser (Figurc 18), except that the
vertical line cof step (d) is drawn to intersect the
horizontal scale of thrust augmentation ratio. The point of
intersection of the vertical line with the scale yields the
required value of ¢, with no diffuser.

The procedure for the use of the nomograph (Figure 22) to
determine the compressible value of thrust augmentation
ratio is similar to that described above. HlHowever, in this
case the nomograph is entered using the precomputed values
of ambient-to-stagnation pressure and temperature ratios,
Polpop and Th/pr respectively,

In the (ases where the ejector performance is required for
some intermediate values of diffuser area racios ap, the
usual interpolation procedures betw~en the nomcgraphs can be
utilized,

6. Limitations of the Nomographs

Although the nomographs (Figures 18 to 22) represent a rapid
and a practical anaiytical tool in evaluating performance
of a given jet ejector configuration, the usefulness of the
cha.ts is limited by the assumptions inherent in the
analysis.

The major problem exists in the user's ability to accurately
predetermine the required flow losses of a given ejector
configuracion,.

The assumptions used to determine the friction factor along
the mixing chamber walls (f= 0.003), the total mixing chamber
length for complete mixing, and the flow nonuniformity
parameter ( x= 70) for the velocity profile at the secondary
entrance require further experimental verificatior

The nomographs have been carefully prepared and thelr
accuracy is expected to be within -3 percent of the
computer results.
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C. PROCEDURE FOR DETERMINING PERFORMANCE OF 2 GIVEN JET
EJECTOR CONFIGURATION

The following procedure can be utilized to determine the
performance of a given jet ejector configuration:

(1) Determine the following geometric parameters
and operation conditions:

(a) Type of ejector configuration

(b) Number of primary nozzles, N

(c) Secondary-to-primary area ratio, ag

(d) Diffuser exit-to-entrance area ratio, ap
(e) Diffuser length and expansion angle

(f) Mixing chamber shape

(g) Ejector intake geometry

(h) Ejector operating conditions, Pq/Pq
p
and TG/TOp

(ii) Knowing ag and the type of ejector configuration,
enter Figure 23 and obtain the total mixing
chamber length (L/D) required for cor-"ete mixing.
For the case of a multiple nozzle eje.tor configu-
ration with N# 4,0,determine the total mixing
chamber length using the following equation:

J; (153)

(-
D f'

where (L/D)s can be obtained from Figure 23.
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(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

Assuming friction factor £ = 0.003, compute
ejector friction loss factor f(L/D) using
(L/D) value from step (ii).

Using data of Reference 26 (or other pertinent
data) and the diffuser geometry from step (i),
determine diffuser loss factor Ap .

Using data of Reference 27 (or other pertinent
data) and ejector intake geometry from step (i),
determine the ejector entrance loss factor Ag .

With the flow losses determined in steps (iii) to
(v) and known values of ag and ap from step (i),
enter the appropriate nomograph and obtain the
incompressible value of thrust augmentation ratio
including flow losses, ¢, .

Using ag from step (i) ar’ assuming x = 70, enter
Figure 3 and obtain ¢,.74 and ¢y . Then
compute the empirical correction factor yx from
equation (150). This factor accounts for the
reduction of thrust augmentation ratio due to
nonuniform velocity profile at the secondary
entrance,

Us v the Oyglu{;iuu cvuitio. ol PO/FQ aud -'-_ s
and ag from step (i), enter nomograph Figure 22
and determine the compressible value of thrust
augmentation ratio ¢, . Also, enter Figure 18
using Ag = £(L/D) = 0 and obtain ideal value of
thrust augmentation ratio ¢; . Then compute the
compressibility correction factor C; using
equation (151).

~

Using ¢, from step (vi), x from step (vii), and
Cc from step (viii), compute the required thrust
augmentation ratio from equation (152).

For a known mixing chamber shape, compute mass

entrainment ratio w using equation (34) for
const~nt area mixing or equation (51) for constant
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pressure mixing, The mass entrainment ratio for
compressible analysis or incompressible analysis
including major flow losses can be most conven-
iently obtained using the computer program
described in Appendix I.

D. SAMPLE CALCULATION

To more clearly indicate the analytical procedures for

determining ejector performance, a sample calculation is
performed as follows:

(1)

(ii)

(iii)

Assume a single, central nozzle configuration

of constant area mixing chamber hawving ag = 100
and ap = 2.0. Also assume the following
operation conditions Tq = 70°F, Top = 600°F,

Pq = 14.7 1b/in?, and Py, = 21 1b/inZ,

Compute
Ta _70+460 _ 530 05
Top 600+46C 1060
Pa _ 147
s 5= =07
Pop 2.0
Using ag = 100,enter Figure 23 and obtain
S -

Assuming friction factor £ = 0,003, calculate
ejector friction loss factor using (L/D) = 6.43
from step (ii). Thus,

f(L/D)=0.003 X6.43-0.0193
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(iv)

(v)

(vi)

\vil)

Using data of Reference 26, determine the
diffuscr loss factor

XD=O.2

Using data of Reference 27, determine entrance
loss factor

)\E: 0.1

With the flow losses computed in steps (iii) te

(v) and using a¢ = 100, a; = 2.0,enter

nomograph Figure 20 and determine the incompressible
value of thrust augmentation ratio including flow
losses

¢, =198

Assuming « = 70 and using ag = 100, enter
Figure 3 and obtain

Prezr0” 1745

$,=1.776

Compute the empirical correction factor x for
thrust augmentation ratio due to nonuniform
velocity profile at the secondary entrance; thus,
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 Prayo | 1745
X""¢, ~1L776

=0.983

(viii) Using the values Pa/Pop = 0.7 and Ta/Top = 0.5
computed in step (i), enter nomograph Figure 22
and obtain the compressible value of thrust
augmentation ratic corresponding to ag = 100,
Thus,

¢ 1737

Also enter nomograph Figure 18 using
A = f(L/D) = 0 and ag = 100 and determine
ideal value of thrust augmentatioun ratio. Thus,

¢,=1.776

Compute compressibility correction tractor

.737

_ % b

Ce: J’; 1776 =0.978

(ix) Finally, using ¢_= 1.98 (from step (vii),
x = 0.983 (from step (vii)), and C¢ = 0.978
(from step viii), compute the required thrust
augmentation ratio as follows:

¢ =P xCc =198 X 0.983 X 0.978 =1.90
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(x) Using ag = 100 and ap = 2.0, compute mass
entrainment ratio w from equation (34); thus,

_ lag +I)ao[-(ag-l) ap+agJ/ap?+2ag-| ]—(a52+ ap?)

) 2

QEZ""QD

i
o 100+1120(100-1)2 +100 /28 +2X100-1 ]—(|002+22)
1002+ 22

_ 202 [-198 4100,/103 Fi0004 __ 5.49
10004 '
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VIII. CONCLUSIONS AND RECOMMENDATIONS

A review of the technical literature shows that the
existing analytical and experimental information on

the thrust augmentation characteristics of jet ejectors
cannot be used as an effective design tool,

The analysis performed in this report indicates that a
constant area mixing ejector yields a higher thrust
augmentation ratio than an equivalent constant pressure
mixing configu-ation.

For any practical value of secondary-to-primary area
ratio, the thrust augmentation ratio reaches an cptimum
value with the diffuser area ratio ranging between 1.5
and 2.0.

‘o obtain a maximum thrust augmentation, the mixing
chamber length should be compromised so as to achieve
the best mixing with a minimum wall f{riction.

Annular and multiple nozzle ejectors require
substantially shorter mixing chamber lengths for complete
mixing as compared to an equivalent single, central
nozzle configuration,

The Jicw Lusoos have n predominant 2ffect en jot ejector
persvimance, whereas flow compressibility is only of
secondary importance,

An increase of forward speed (parallel or pe_ pendicular
to the ejector) causes a decrecse of the thrust
au, wentation ratio.

The available test data are insufficient to determine
reliably the validity of the assumptions utilized in
the analyses, It is therefore recommended that a
systematic test program be conducted to deteraine the
applicability of these assumptions as well as to
provide more precise information to evaluate the
empirical correction facturs presented in this report.
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APPENDIX I

COMPUTER PROGRAMS FOR SCLUTION CF FLOW EQUATIONS
FCR _THE PRACTICAL ANALYSIS

Due to the complexity of the flow equations which require
tedious and lengthy computation, it was decided that a more
efficient and accurate method of obtaining the required
results would be by the use of a digital computer. The
practical analysis presented in Section IV was therefore
programmed on an IBM 360 computer utilizing BPS FORTRAN IV
language. Two separate prog..ms were performed. The first
program deals with the incompressible flow analysis whereby
ma jor flow losses and the effect of a diffuser and forward
speed are included. The second program deals exclusively
with flow compressibility.

1. Incompressible Flow Analysis

As mentioned previously, the effect of the major flow losses,
diffuser, and forward speed are investigated on the basis of
the incompressible flow analysis. This is accemplished by
solving equation (57) for the velocity vatio Vs/V,,. The
velocity ratio Vi /V,, is then computed from equatf%n (58).
The thrust augmentation ratio ¢ and mass entrainment ratio w
are obtained from equations (60) and (62), respectively. A
simplified flow diagram of this program is presented in
Figure 24, and a typical IBM computer output is shown in
Table XIV.

2. Compressible Flow Analysis

The compressible flow analysis as rresented in Section IV
involves a simultaneous solution ci the two norlinear
equations (85) and (86) for the two unknowns V,/V, and
Tip/Tap In terms of given input parameters Pa/Pop, Ta/Top »
and ag. However, in generating the required computer data,
equations (85) and (86) are solved in their equivalent
dimensional form as follows:
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FEAD: NO. OF CASES
AND NO. OF ag$S
READ: ag'S

i

READ CASE TITLE,
LOSSES, AREA RATIO
AND u

l

COMPUTE: Vig/ Vi
Va/Vig. ¢ AND
w FOR EACH ae

t

PRINT: INPUT
QUANTITIES AND
RESULTS

Figure 24.

. HAS .
LAST CASE
~_RUN _~~
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Computer Flow Diagram
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The two nonlinear equations, (154) and (155), are solved for
the two unkncwns p,, and Vp in terms of dimensional input
values of Pa, Pop,‘%q, and Tgg. The solution of these two

equations, designated as Y, and Y, respectively, is
obtained using the Newton-Raphson iteration procedure and

Taylor's series as follows:

(Vo) = (Vo). + (), (157)

i+

where i = 0, 1, 2 ... representing successive iterations.

U'sing Taylor's series, the functions ). and
NJZ)Hl can be expressed as follows: L4
oy, a\y,)
] oY ALl 158
(».y,)m (\p,)i +(h)i (dp‘p), Hk)i(dvz | (158)
i i
oV, V.
oy s bt —r2 159
W), T +(h)i(apb2 +(mi(6Vz>i (159)

Solving for (h); and (k) from equations (158) and (159)
ylelds

ay,
-y, ..5.;.,-2.
L, W
Wl (160)
TR
aPlp aVz
OV, v
ap|p an i
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oy,

dp|p -"pl

o,

a)C’lp 2 .
(k) = ! (161)
S 9% 9

Opip OV

an an

ap|p aVZ i

The above iteration procedure is started assuming initial
conditions (i = 0)

(Pip), =K: Pap (162)

V), *KzVay (163)

where K, and K, are suitable programmed constants and Pap
and Vg, are obtained from equations (71) and (72),
respectively,

A simplified flow diagram of this computer program is shown
in Figure 25, and a typical sample cf final output is
presented in Table XV.
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analysis includes the effects of flow compressibility, major
flow losses, and forward speed. Numeri~al results are presented
in the form of nomographs for a wide range of practical
operating conditions. These computations were performed with
the aid of an IBM digital computer. The charts can be used to
predict the jet ejector performance and as such represent an
effective analytical tool for preliminary design purposes.

The numerical results are used to determine the effects of

the more important aerodynamic, thermodynamic, and geomet:ic
parameters on jet ejector thrust augmentation, A correlation
of these results with the available experimental data is also
made,
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