REPORT R-1835

STRENGTH AND DUCTILITY OF 7000 SERIES WROUGHT ALUMINUM ALLOYS AS AFFECTED BY INGOT STRUCTURE

by

HARRY W. ANTES

February 1967

DISTRIBUTION OF THIS REPORT IS UNLIMITED.

AD 651929

UNITED STATES ARMY FRANKFORD ARSENAL PHILADELPHIA, PA.

ARCHIVE GOPY

AD

REPORT R-1835

STRENGTH AND DUCTILITY OF 7000 SERIES WROUGHT ALUMINUM ALLOYS AS AFFECTED BY INGOT STRUCTURE

by

HARRY W. ANTES

AMCMS Code 5025.11.29401.01.1 DA Project 1C024401A328

Distribution of this report is unlimited.

Pitman-Dunn Research Laboratories FRANKFORD ARSENAL Philadelphia, Pa. 19137

February 1967

ABSTRACT

A study was made of the effect of ingot structure on the strength and ductility of high strength wrought aluminum alloys. It was found that a fine cast structure facilitated complete homogenization which, in turn, resulted in significant increases in ductility and strength. A completely homogenized 7075-T6 alloy developed tensile properties of 85,000 psi ultimate tensile strength, 75,000 psi yield strength, with 40 percent reduction in area. Completely homogenized 7001-T6 alloy tensile properties were 102,000 psi ultimate tensile strength, 99,000 psi yield strength, with 19 percent reduction in area.

A method was devised for making small ingots having secondary dendrite arm spacing of less than 10 microns. This method involved multiple pass arc melting of commercial rolled plate with a tungsten electrode. This material could be completely homogenized after 3 hours at 900° F; homogenization of the original plate material was not complete after 120 hours at 900° F. Degree of homogeneity was determined by use of metallographic and electron microprobe analyses. The electron microprobe study also showed the preferential segregation of solutes in the microstructure.

TABLE OF CONTENTS

1

ş

.

.

		Page
INTRO	DUCTION	. 1
MATER	IAL CLASSIFICATION	. 1
(Commercial Alloys	1
C	Commercially Produced High Purity Alloys	3
5	Small Chill-cast Plates	8
5	Specially Cast Fine Dendrite Material	13
ĥ	Veld Casting	14
DISCUS	SSION	22
CONCLU	JSIONS	28
RECOM	MENDATIONS	28
REFERE	INCES	29
DISTRI	BUTION	30
	Tiet of Webles	
<u>Table</u>	List of fabres	
I.	Chemical Composition Limits of 7001, 7075, and 7178 Alloys .	3
11.	Tensile Properties of Commercial and High Purity Commercial 7075-T6 Alloys (Rolled Plate, 1-1/2 in. thick)	8
	Tensile Properties of Commercial, High Purity Commercial, and Specially Cast 7075 Alloy	13
IV.	Chemical Composition and Tensile Properties of Commercial and Weld-cast 7001-T6 Alloys	22
<u>Figure</u>	List of Illustrations	
1.	Microstructures of Commercial High Strength Wrought Aluminum Alloys	2

 Electron Image, plus Iron and Copper X-ray Images, of Commercial 7001 Alloy rlate.

List of Illustrations (Cont'd)

ļ

makes which has the even phones a

.

Figure		Page
3.	Electron Image, plus Iron and Copper X-ray Images, of Commercial 7075 Alloy Plate	. 5
4.	Electron Image, plus Iron and Copper X-ray Images, of Commercial 7178 Alloy Plate	. 6
5.	Typical Microstructures of Commercially Produced Standard and High Purity 7075-T6 Alloy Plate	. 7
6.	Effect of Solutionizing at 900° F on the Structure of 1/2 inch thick Chill-cast Plates of 7075 Alloy	. 9
7.	Effect of Solutionizing at 900° F on the Structure of Forged Chill-cast Plates of 7075 Alloy	. 11
8.	Effect of Solution Treatment Time on the Tensile Properties of Chill-cast and Forged 7075-T6 and 7001-T6 Alloys	12
9.	Effect of Homogenizing Treatments on Commercially Produced and Specially Cast High Purity 7075 Alloy	15
10.	Microstructures of Cast and Homogenized 1/8 inch diameter Chill-cast 7001 Rod	17
11.	Schematic of Weld-casting Apparatus	18
12.	Electron Images, plus Copper, Zinc, and Magnesium X-ray Images, of Weld-cast and Homogenized 7001 Alloy	19
13.	Effect of Aging at 250° F on Hardness and Tensile Properties of a Weld-cast and Hot Rolled 7001 Alloy	21
14.	Microstructures of an As-forged and a 10-minute Solutionized Weld-cast "Leaner Solute" Alloy	23
15.	Effect of Aging at 250° F on Hardness and Tensile Properties of a "Leaner Solute" Alloy	24
16.	Microstructures of Weld-cast 7001 Alloy, Hot Rolled and Heat Treated	26
17.	Microstructure of Hot Rolled Weld-cast 7001 Alloy, Solution Treated at 900° F for Four Hours and Water Quenched	27

Ť

.

INTRODUCT ION

High strength aluminum alloys, such as those of the 7000 series, usually freeze by the formation and growth of dendrites. The dendrite arm spacing (DAS) depends on the rate of solidification.^{1*} Commercial ingots are usually direct chill-cast to promote more rapid solidification but, due to the large mass of the ingot, localized solidification times are long and a large DAS results. During solidification, solute elements are rejected by the solid as it forms, causing enrichment of the liquid and, ultimately, solute-rich interdendritic regions.

In order to attain a homogeneous ingot, the segregated solutes must diffuse across the dendrite arms. The larger the DAS, the longer the time for complete homogenization. In the case of commercial ingots, the DAS is so large that the time for complete homogenization is prohibitively long and, therefore, inhomogeneities are always present. These inhomogeneities are carried over to the wrought form during processing, resulting in an impairment of strength and ductility. Further, the mechanical fibering of these inhomogeneities during working results in mechanical property anisotropy.

If complete homogenization could be attained, then higher ductility could be expected. The realization of higher ductility at current strength levels would be desirable; however, it might be possible to sacrifice some of this ductility by adding more solute elements, thus producing even higher strength alloys than are currently available.

Further, if complete homogenization leads to more efficient utilization of solute elements, then more dilute alloys should have modestly high strengths with very high ductility. In all cases, it would be expected that the degree of mechanical property anisotropy due to mechanical fibering would be reduced. Therefore, it was the purpose of this investigation to produce cast structures that would facilitate homogenization, and to determine the effect of homogenization on the properties of high strength wrought aluminum alloys.

MATERIAL CLASSIFICATION

Commercial Alloys

In order to illustrate the nonhomogeneous condition that exists in commercial high strength wrought aluminum alloys, typical microstructures of 7001, 7075, and 7178 are shown in Figure 1. The chemical compositional specifications of these alloys are given in Table I.

*See REFERENCES.

7178-76 .* 6 Scale L 100 µ Scale L 20 µ 7075-76 \$ 1--11 11 3 S: 4 7001-T6 ····· 1. 1 . . , 100 X 500 X

Figure 1. Microstructures of Commercial High Strength Wrought Aluminum Alloys

P1 -	7. E	lement (by weight)	in		
Element	<u>7001</u>	7075	7178		
Zn Mg Cr Si (max) Fe (max) Mn (max) Ti (max)	6.8 to 8.0 2.6 to 3.4 1.5 to 2.5 0.18 to 0.40 0.35 0.40 0.2 0 2	5.1 to 6.1 2.1 to 2.9 1.2 to 2.0 0.18 to 0.40 0.50 0.70 0.3 0.2	6.3 to 7.3 2.4 to 3.1 1.6 to 2.4 0.18 to 0.40 0.50 0.70 0.3		

TABLE I. Chemical Composition Limits of 7001, 7075, and 7178 Alloys

It can be seen in Figure 1 that a considerable amount of undissolved second-phase material is present in each of these alloys. The solute elements associated with the undissolved phases were identified by electron microanalyses. Back-scattered electron images and characteristic X-ray images of the three commercial alloys are shown in Figures 2, 3, and 4. These data indicate that the second phases are regions of high copper and high iron-copper concentrations.

The second-phase material also was analyzed for magnesium, zinc, manganese, chromium, and silicon, but no significant enrichment above that of the matrix was found. Therefore, the problem of homogenization resolved itself into one of dissolving the copper-rich and the ironcopper-rich second phases. In order to accomplish this objective, two approaches were made. The first was to reduce the iron as low as possible, since this element has a maximum solid solubility of 0.03 percent in aluminum. The second was to produce cast structures with finer DAS to facilitate dissolving the second phase.

Commercially Produced High Furity Alloys

A special high purity 2000-1b ingot of 7075 alloy was made by a commercial producer. This alloy contained the following weight percentages of solutes: 5.63 Zn, 2.48 Mg, 1.4 Cu, and 0.21 Cr. All other elements combined were less than 0.02 percent by weight, including iron and silicon at less than 0.01 percent each. The ingot was cast and processed into rolled plate, using standard commercial techniques.

Microstructures of standard commercial 7075 and the special high purity 7075 are shown in Figure 5. It can be seen from this figure that the high purity alloy has less undissolved second-phase material, but a significant amount was still present. The second phase in the high purity material did not contain iron, but it was found to be

4

Figure 2. Electron Image, plus Iron and Copper X-ray Images, of Commercial 7001 Alloy Plate

7001-T6

Electron Image

X-ray Fe(Ka)

X-ray Cu(Ka)

6

Figure 4. Electron Image, plus Iron and Copper X-ray Images, of Commercial 7178 Alloy Plate

Commercial 7075-T6

High Purity 7075-T6

Scale 100 # Mag: 100X

enriched with copper. The slight effects of the increased purity and decrease in amount of second phase on the tensile properties are illustrated by the data in Table II.

TABLE II. Tensile Properties of Commercial and High Purity Commercial 7075-T6 Alloys (Rolled Plate, 1-1/2 in. Thick)²

		Strengt	th (ksi)	Percent	Percent
Specimen		Yield	Ultimate	Elongation	Reduction
Orientation	<u>Alloy</u> ^a	<u>(0.2%)</u>	Tensile	<u>(7/16 gage)</u>	in Area
Longitudinal	с	84	90	10	13
Longitudinal	HP-C	82	89	11	15
Transverse	С	77	85	9	15
Transverse	HP-C	77	87	12	22
Short transverse	с	69	80	4	6
Short transverse	HP-C	67	76	2	6

a C - Commercial

ţ

HP-C - High Purity Commercial

Tensile specimens used in this program were 0.140 inch diameter rounds with a 7/16 inch gage length. The data in Table II indicate that the high purity material has slightly higher ductility than the commercial material. Thus, reducing impurities to a very low level appears to have only a marginal effect on tensile properties of commercial 7075 alloy and no significant beneficial effect on the short transverse ductility.

Small Chill-cast Plates

In order to produce structures with a finer DAS than the commercial ingots, a graphite mold with a copper end chill was used to chill-cast 1/2 by 3 by 6 inch plates of 7075 and 7001 alloys. The DAS was found to be about 40 to 50 microns for the chill-cast plates. A straight line-intercept lineal analysis technique was used to determine the DAS.

Typical as-cast structure and the structures after solutionizing for 6 and 24 hours are shown in Figure 6. It can be seen from this figure that after a 6-hour homogenization treatment at 900° F, a substantial amount of second-phase material remained in the interdendritic regions and at grain boundaries. Increasing the solutionizing time to 24 hours reduced the amount of second-phase material, but a significant amount still remained.

As-Cast

Solution Treated for 6 Hours

Scole 100 # Mag: 100X

Solution Treated for 24 Hours

Figure 6. Effect of Solutionizing at 900° F on the Structure of 1/2 inch thick Chill-cast Plates of 7075 Alloy

The chill-cast plates homogenized 24 hours at 900° F were forged to 3/8 inch diameter bar. The as-forged structure and the structures produced by re-solutionizing 7075 at 900° F for 2 and 100 hours are shown in Figure 7. A standard single-step aging (24 to 28 hours at 250° F) was used for the T6 treatment.

The effect of increasing solutionizing time (increased homogeneity) on the tensile properties of chill-cast and forged 7075-T6 and T001-T6 is shown in Figure 8. The bar graphs in this figure represent the properties of commercial alloys for the T6 condition; the curves represent the properties of chill-cast and forged material. In the case of the 7075-T6 material (Figure 8a), the strength of the chill-cast and forged material remained essentially constant with increasing solutionizing time - at about the same level as commercial material. The ductility also remained constant as the solutionizing time was increased, but the levels of the elongation and reduction in area were considerably higher than the commercial material. These data indicate that a relatively high degree of homogenization was attained in the chill-cast and forged material, even for the shortest solutionizing times.

The tensile data for the chill-cast 7001 material are presented in Figure 8b. It can be seen from these data that the strength of the chill-cast material was slightly lower and the ductility slightly higher than that of commercial material when both materials were solutionized for 5 hours at 900° F and then aged. A considerable increase in ductility, with less significant changes in strength, was observed for the chill-cast and forged 7001 material when the solutionizing time was increased.

The difference in response to solutionizing of the chill-cast and forged 7075 and 7001 alloys may be related to a difference in copper and iron contents and differences in total amount of solutes. If it is assumed that an increase in ductility without significant change in strength is the result of an increase in homogeneity (i.e., a decrease in the amount of second-phase material), then it would take a longer time to homogenize a higher solute alloy such as 7001 since it originally contains a greater amount of interdendritic second-phase material.

It is interesting to note that for both 7075 and 7001 alloys, special chill-casting and homogenization treatments resulted in reduction-in-area (RA) values of approximately 40 and 30 percent, representing values about double that of commercial alloys. Although increased ductility was achieved through increasing homogeneity, not all secondphase material was eliminated and, therefore, mechanical property anisotropy probably would exist to some degree.

1

As-Forged

Solution Treated for 2 Hours

Scale ____ 100 # Mag: 100X

è

Solution Treated for 100 Hours

Figure 7. Effect of Solutionizing at 900° F on the Structure of Forged Chill-cast Plates of 7075 Alloy

Bar-graphs at left are tensile properties of commercial alloys, solution treated for 5 hours at 900 F and aged 24 hours at 250 F

Figure 8. Effect of Solution Treatment Time on the Tensile Properties of Chill-cast and Forged 7075-T6 and 7001-T6 Alloys

Specially Cast Fine Dendrite Material

F

In order to facilitate <u>complete</u> homogenization, it was necessary to produce cast structures with a DAS less than the 40 to 50 microns achieved in the 1/2 inch thick chill-cast plates. Casting with a DAS of from 5 to 10 microns were made by chill-casting 1/8 inch diameter rods in an aluminum mold. A heat treatment of 900° F for three hours produced a high degree of homogeneity in the 1/8 inch diameter cast high purity 7075 material. By comparison, the commercially produced high purity 7075 had a considerable amount of second-phase present after a treatment of 120 hours at 900° F. The microstructures of both materials before and after thermal treatment are shown in Figure 9.

In order to determine the wrought properties of the fine dendrite material, the rods were solution-treated, quenched, and then coldswaged down to 0.06 inch diameter rods. The swaged rods were re-solution treated, quenched, and aged. The tensile properties are shown for the commercial, high purity commercial, and specially cast swaged rods in Table III.

TABLE III.

Tensile Troperties of Commercial, High Purity Commercial, and Specially Cast 7075 Alloy

<u>7075-T6 Material</u>	Strength Ultimate Tensile	<u>(ksi)</u> Yield <u>(0.2%)</u>	Percent Reduction <u>in Area</u>
Commercial	85	75	15 to 18
High purity commercial	85	75	20 to 25
Specially cast fine dendrite	85	75	40 to 45

These alloys were solution-treated for four hours at 900° F, quenched in water, and aged for 24 hours at 250° F. It can be seen from the data in Table III that the highly homogeneous specially cast fine dendrite material exhibited considerably higher reduction-in-area values than either the standard commercial or the high purity commercial alloys.

In view of the high degree of homogeneity achieved with the specially cast fine dendrite 7075 alloy and the resulting high ductility, additonal specially cast rods were made of 7001 alloy. It was found that even with this higher solute material, the fine dendritic structure facilitated homogenization. Virtually complete homogenization was achieved within three hours at 900° F. The as-cast and homogenized structures are shown in Figure 10. Attempts were made to cold-swage the homogenized 7001 specially cast fine dendrite material; however, the alloy cracked, indicating that higher solute alloys such as 7001 must be worked warm or hot.

Weld Casting

A weld-casting technique was developed to make a larger mass with the desired fine DAS. The technique consisted of striking a direct current arc between a nonconsumable tungsten electrode and an aluminum alloy plate. The electrode was moved at a controlled velocity along the plate. The metal, melted by the arc, froze rapidly due to rapid chilling by this arrangement. A schematic of the weld-casting technique is shown in Figure 11. Small ingots of 7001, approximately 1/2 by 1/2 by 10 inches, were made using this technique. The DAS of these ingots was found to be in the range of 5 to 20 microns, depending on the power input to the arc and electrode velocity.

The electron image of a typical weld casting is shown in Figure 12. Also in this figure are X-ray images showing the distribution of solute elements in the as-cast condition and after homogenization. It can be seen from this figure that in the weld-cast material, copper was preferentially segregated at the interdendritic or cell wall regions. Zinc was more uniformly distributed, with a slight increase in concentration at the cell walls. Magnesium was uniformly distributed throughout the alloy. A homogenization treatment of three hours at 900° F, followed by water quenching, completely removed all traces of cell walls and uniformly distributed all the solute elements, producing a high degree of homogeneity in the material.

A 7001 weld-cast ingot was cut away from the base plate with a band saw. This ingot was hot rolled at 900° F from 1/2 inch diameter down to 1/4 inch square bar stock in grooved rolls. This material was solution-treated for four hours at 900° F, water quenced, and aged at 250° F.

A plot of hardness vs aging time is shown in Figure 13a. This curve shows that relatively high hardness exists over the range of aging times from 24 to 98 hours. The tensile properties within this range are shown in Figure 13b. These curves show that yield strength, ultimate strength, and reduction in area increase with increasing aging time up to 98 hours. A comparison may be made between the tensile properties of commercial 7001 alloy and weld-cast 7001 alloy from the data in Table IV.

It can be seen from the data in Table IV that the weld-cast material has both higher strength and ductility than the commercial material. These increases may be attributed to the higher degree of homogeneity achieved in the weld-cast material.

The high strengths and ductilities realized by a high degree of homogenization of fine dendrite spaced material are attractive. However, for metal forming processes and certain military applications, higher ductility, even with somewhat lower strengths, would be more

¥

- Cartas de se a

Scale - 10 µ

Figure 12. Electron Images, plus Copper, Zinc, and Magnesium X-ray Images, of Weld-cast and Homogenized 7001 Alloy

IJ

Figure 13. Effect of Aging at 250° F on Hardness and Tensile Properties of a Weld-cast and Hot rolled 7001 Alloy

TABLE IV.	
Chemical Composition and Tens	ile Properties of
Commercial and Weld-cast	7001-T6 Alloys

	Commercial <u>Alloy</u>	Weld-cast <u>Alloy</u>	
Composition (weight percent)			
Zn	7.40	7.90	
Mg	3.00	2.70	
Cu	2.10	1.60	
Cr	0.25	0.16	
Tensile properties			
Ultimate tensile strength (ksi)	98.0	102.3	
Yield strength (ksi)	91.0	99.4	
Reduction in area (%)	12	19	

desirable. Therefore, a leaner solute alloy was made for evaluation. This alloy contained 4.58 Zn, 2.14 Mg, 1.56 Cu, and 0.18 Cr, with the balance being aluminum. This material was made in weld-cast form, homogenized for three hours and forged to 1/4 inch round bar stock. It was found that on re-solution treatment of the forged material, complete homogenization could be achieved by a <u>10-minute</u> solutionizing time at 900° F.

The microstructures of the as-forged material and the 10-minute solutionized material are shown in Figure 14. These data indicate that a high degree of homogeneity was maintained during the forging operation. The forged material was re-solutionized for three hours at 900° F for aging studies. The effect of aging time at 250° F on the hardness and tensile properties of this alloy is shown in Figure 15. It can be seen from this figure that hardness, yield strength, and ultimate strength increased over the aging range studied (8 to 135 hours), with highest strengths observed being 65,000 psi yield strength and 75,000 psi ultimate tensile strength. These strengths were accompanied by a reduction in area of 51 percent.

DISCUSSION

The beneficial effects of increased degree of homogeneity on the tensile properties of sand cast aluminum-copper alloys were demonstrated by Passmore, Flemings, and Taylor.³ These investigators obtained significant increases in strength and ductility through high temperature-long time solutionizing treatments, although in most cases these materials were still not completely homogeneous. Complete homogenization

AS-FORGED

SOL. TR. 10 MIN. 900 *F

Scole 100 # Mag: 100X

Figure 14. Microstructures of an As-forged and a 10-minute Solutionized Weld-cast "Leaner Solute" Alloy

Figure 15. Effect of Aging at 250° F on Hardness and Tensile Properties of a "Leaner Solute" Alloy

was achieved only in those sections of the castings that were very close to a chill (fine DAS material).

In the case of commercial high strength wrought aluminum alloys, there are two principal factors which preclude complete homogenization. The first is the relatively coarse cast structure of the primary ingot; the second is the fact that iron is present in these alloys as an impurity. The effects of the coarse structure have been discussed. The presence of iron in undissolved second phases is clearly evidenced by Figures 2, 3, and 4.

According to Phillips,⁴ in Al-Cu-Fe equilibrium, a beta phase exists which encompasses the composition Cu₂FeAl₇. The presence of this phase has been observed in aluminum alloys containing copper and the impurity, iron.^{4,5} It was observed by Flemings et al⁵ and during homogenization studies in this work, that iron-rich compounds are virtually impossible to dissolve. Therefore, iron content must be limited to a very low level if complete homogenization is to be achieved. The importance of a fine DAS in facilitating complete homogenization is exemplified by comparing the 50 μ DAS material in Figure 6 with the 5 to 10 μ DAS specially cast material in Figures 9 and 10.

It has been shown⁶ that the relationship between the secondary dendrite arm spacing (d) and the local solidification time (θ_f) is given by

 $d = 7.5 \theta_f^{0.39}$

According to this equation, in order to obtain a DAS of 10 microns, the local solidification time should be on the order of two seconds. This short solidification time requires a high rate of heat extraction or good chilling. The best chilling condition is obtained when no interfacial resistance to heat flow exists between the freezing alloy and the chill. This condition is achieved during welding type operations. Brown and Adams⁷ showed that MIG (metal inert gas) weld deposits of aluminum-copper alloys had a DAS of from 2 to 10 μ , depending on the welding conditions. On the basis of this work, the weld-casting technique was developed for producing 5 to 10 μ DAS material in larger sections than 1/8 inch diameter chill-cast rods.

The ability to homogenize completely a 7001 weld-cast alloy is illustrated by the electron and X-ray images in Figure 12. The microstructures of homogenized weld-cast 7001 alloy after hot rolling, resolution treating, aging for 48 and 98 hours, are shown in Figure 16. Electron microanalyses of these specimens revealed a uniform distribution of all solutes, indicating a high degree of homogenization. The mottling that appears within the grains is due to etch pits present at subboundaries.

Figure 17 is a higher magnification photomicrograph of the solutiontreated material. Triangular etching pits are clearly visible in this

AS-ROLLED

SOL. TR. 4 HRS. 900 °F W.Q.

S.T. & AGED 48 HRS, 250 °F

Scale **– 100 –** Mag: 100X

Figure 16. Microstructures of Weld-cast 7001 Alloy, Hot Rolled and Heat Treated

S. T. & AGED 98 HRS. 250 F

Scole 10 # Mag: 1000X

Figure 17. Microstructure of Hot Rolled Weld-cast 7001 Alloy, Solution Treated at 900° F for Four Hours and Water Quenched figure at the sub-boundaries. The presence of subgrains increases yield strength⁸ since they act as barriers for dislocation pile-up. Subgrains have a lesser effect on ultimate strength and, usually, the presence of subgrains causes a slight decrease in ductility.

The data in Table IV illustrate increases in yield and ultimate strength for the weld-cast 7001 alloy over the commercial alloy, but with higher rather than lower percent reduction in area. This higher ductility is obviously the result of greater homogeneity of the weldcast 7001 alloy.

As a result of this investigation, it has been shown that complete homogenization can be attained in 7000 series alloys and that high strength with high ductility is realized as a result of the homogeneity. Although this work was done with small laboratory castings, the results indicate the potential improvement of 7000 series alloys and imply that similar results may be expected in other alloys.

CONCLUS IONS

1. Complete homogenization results in a substantial increase in ductility of 7000 series alloys, with little or no degradation of strength and, in certain cases, strength may be increased concurrently with improved ductility.

2. The production of a fine-cast structure (i.e., $<\!15~\mu$ dendrite arm or cell spacing) facilitates complete homogenization of 7000 series alloys.

3. Commercial high strength wrought aluminum alloys of the 7000 series contain undissolvable copper- and iron-copper-rich second phases.

4. Eliminating the impurity element (iron) does not in itself eliminate the problem of undissolved second phases, although iron-rich phases are virtually impossible to dissolve.

RECOMMENDATIONS

In view of the attractive properties that have been achieved by high degrees of homogenization of wrought aluminum alloys, it is recommended that studies be made to determine techniques for producing more massive forms of highly homogeneous wrought alloys.

REFERENCES

- B. Chalmers, <u>Principles of Solidification</u>; New York, N.Y.: John Wiley & Sons, Inc., 1964.
- W. Mannschreck (unpublished work), Frankford Arsenal, Philadelphia, Pa.
- E. M. Passmore, M. C. Flemings, H. F. Taylor, "Fundamental Studies on Effects of Solution Treatment, Iron Content, and Chilling of Cast Aluminum-Copper Alloy," Trans AFS, vol 66, pp 96-103 (1958).
- H. W. L. Phillips, "The Constitution of Alloys of Aluminum, Copper, and Iron," J Inst Metals, vol 82, p 197 (1953-54).
- M. C. Flemings, T. F. Bower, T. Z. Kattamis, H. D. Brody, "Effects of Solidification Variables on Ingot Structure," Massachusetts Institute of Technology report (Contract DA-19-020-ORD-5706(A) with Frankford Arsenal), 1 May 1966.
- B. P. Bardes, M. C. Flemings, "Dendrite Arm Spacing and Solidification Time in Cast Aluminum-Copper Alloy," Trans AFS, vol 74 (1966).
- 7. P. E. Brown, C. M. Adams, Jr., "Fusion-Zone Structures and Properties in Aluminum Alloys," Welding J Research Suppl (Dec 1960).
- G. E. Dieter, Jr., <u>Mechanical Metallurgy</u>; New York, N. Y.: McGraw-Hill Book Co., Inc., 1961.

29

¢

J

UNCLASSIFIED

Security Classification				
DOCUMENT CO	DATA - 38	D		
(Security classification of title, body of abstract and index	ung ennotation must be er	itered when	the overall report is classified)	
FRANKFORD ARSENAL, Philadelphia, Pa.	19137	2# REPO	BT SECURITY CLASSIFICATION Unclassified	
(SMUFA L	3300)	25 GROU	P N/A	
3 REPORT TITLE				
STRENGTH AND DUCTILITY OF 7000 SERIES	5 WROUGHT ALUMIN	UM ALLO	DYS AS AFFECTED BY	
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)			· · · · · · · · · · · · · · · · · · ·	
Technical research report				
5 AUTHOR(S) (Last name, first name, initial)		······································		
ANTES, Harry W.				
6 REPORT DATE	78 TOTAL NO OF P	AGES	75. NO OF REFS	
February 1967	32		Eight	
BA CONTRACT OR GRANT NO.	94 ORIGINATOR'S RE	PORTNUM	BER(5)	
AMCMS Code 5025.11.29401.01.1	Frankford Ar	senal R	eport R-1835	
5 PROJECT NO				
DA Project 1C024401A328				
c	95 OTHER REPORT N	0(5) (4 m		
	this report)	O(D) (Ally	omer numbers that may be assigned	
d				
10 AVAILABILITY/LIMITATION NOTICES	·			
Distribution of this report is unlimi	ted.			
11 SUPPLEMENTARY NOTES	12 SPONSORING MILIT	ARY ACTIN		
	AMCRD - RS - CM			
13 ABSTRACT				
A study was made of the effect of ing	ot structure or	the si	trength and duptility	
of high strength wrought aluminum alloys	. It was found	i that a	a fine cast structure	
facilitated complete homogenization which	th. in turn rea	wited i	in significant is	
creases in ductility and strength. A co	moletely homoge	nigod 1	7075 TG aller V l	
tensile properties of 85,000 psi ultimat	a tongilo stwar		0/3-16 alloy developed	
strength, with 40 percent reduction in a	roo Commission	igun, /:	,000 psi yield	
tensile properties were 102 000 pci ulti	meto terrile et	y nomog	genized 7001-T6 alloy	
strength with 19 percent reduction in a	imale tensile st	rength,	99,000 psi yield	
A method was dowiged for melting and	uea.			
anacing of loss than 10 in making small	ingots having	seconda	iry dendrite arm	
spacing of less than 10 microns. This π	ethod involved	multip1	e pass arc melting	
or commercial rolled plate with a tungst	en electrode.	This ma	terial could be com-	

pletely homogenized after 3 hours at 900° F; homogenization of the original plate material was not complete after 120 hours at 900° F. Degree of homogeneity was determined by use of metallographic and electron microprobe analyses. The electron microprobe study also showed the preferential segregation of solutes in the microstructure.

4

.

UNCLASSIFIED

Security Classification								
4 KEY WORDS	4 KEY WORDS		LINK A		LINK B		LINKC	
		ROLE	ΨT	ROLE	<u>w T</u>	ROLE	* T	
Wrought Aluminum Alloys								
Casting								
Solidification								
Microsegregation								
Homogenization								
Electron Microchemical Analysis								
Age Hardening								
Tensile Properties								
Hardness								
INST	RUCTION	s						
1. ORIGINATING ACTIVITY: Enter the name and address	110 4174		V/I 1MIT	ATION N	OTICES	Enter ar	v lim-	
of the contractor, subcontractor, grantee, Department of De-	itations	on further	dissemin	ation of t	he report	, other the	an those	
the report.	imposed	by securit	y classif	ication, u	ising stai	ndard stat	ements	
2a. REPORT SECURITY CLASSIFICATION: Enter the or er-	(1)	"Oualifie	d request	ers may c	btsin con	bies of the	s	
all security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accord-		report from	n DDC.''	,				
ance with appropriate security regulations.	(2)	"Foreign	announce	ment and	dissem:	nation of 1	this	
2b. GROUP: Automatic downgrading is specified in DoD Di- tective 5200, 10, and Armed Farmer Industrial Manual, Fatar	(3)	HUS Go	DDC is n	agencies	may obt	ain conie:	sof	
the group number. Also, when applicable, show that optional	(3)	this repor	t directly	from DD	C. Other	qualified	DDC	
markings have been used for Group 3 and Group 4 as author- ized.		users sha	ll reques	t through				
3. REPORT TITLE: Enter the complete report title in all			1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4					
capital letters. Titles in all cases should be unclassified.	(4)	report dir	ectly from	DDC. C	ther qual	lified user	s s	
tion, show title classification in all capitals in parenthesis		shall requ	est throu	igh				
immediately following the title.		((f			<u>_</u>	
4. DESCRIPTIVE NOTES: If appropriate, enter the type of preport, e.g., interim, progress, summary, annual, or final.	(5)	ified DDC	Dution of users sh	hall reque	st throug	h	Quai-	
Give the inclusive dates when a specific reporting period is								
AUTHOR(S): Enter the name(s) of author(s) as shown on	If th	e report h	as been fi	urnished t	o the Off	ice of Te	chnical	
or in the report. Enter last name, first name, middle initial.	cate thi	s, Departm s fact and	ent of Co enter the	price, if	known.	o the publ	10, 1101-	
It military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.	11. SUI	PPLEMEN	TARY NO	DTES: U	e for add	ditional ex	kplana-	
6. REPORT DATE: Enter the date of the report as day,	tory not	es.			1100.12. 85			
month, year; or month, year. If more than one date appears on the report, use date of publication.	the dep	artmental p	roject of	fice or lat	poratory i	sponsoring	g (pay-	
7a. TOTAL NUMBER OF PAGES: The total page count	ing for)	the resear	ch and de	velopmen	t. Inclue	ie address	5. - 1	
should follow normal pagination procedures, i.e., enter the	13. ABS summary	y of the do	cument in	dicative	of the rep	ort, even	though	
7b. NUMBER OF REFERENCES: Enter the total number of	it may a	ilso appear	elsewhe	re in the l	body of the	he technic	al re-	
references cited in the report.	shall be	attached.	apace ia	i i i qui i cu				
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter	It is	highly de	strable th	at the ab	stract of	classified	d re-	
the report was written.	end with	h an indica	tion of th	n paragra le military	security	classific	ation	
8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate	of the in	nformation	in the pa	ragraph, r	epresent	ed as (T S), (5),	
military department identification, such as project number, subproject number, system numbers, task number, etc.	The	re is no lin	nitation o	n the leng	gth of the	abstract	How-	
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-	ever, th	e suggeste	d length	is from 1	50 to 225	words.		
cial report number by which the document will be identified and controlled by the priginating activity. This number must	14. KE	WORDS:	Key word	ds are tec cterize =	hnically	meaningfu d muy be	ul terms used as	
be unique to this report.	index e	ntries for c	ataloging	the repo	rt. Key	words mus	t be	
96. OTHER REPORT NUMBER(S): If the report has been	fiers, s	r so that n uch as equ	o security	y classifi odel desig	cation is gnation, l	required.	e, milte	
assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).	tary pro	ject code	hame, ger	eraphic 1	ocation.	may be us	ied as inical	
	context	The ass	ignment o	of links, r	ules, and	l weights	15	
	optiona	1.				_		

UNCLASSIFIED

Security Classification