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FOREWORD

This interim technical report was prepared on Contract AF 33(615)-1737
between Iowa State University of Science and Technology and Aerospace Research
Laboratories, Office of Aerospace Research, United States Air Force. It
summarizes the research accomplished under the direction of Professors Oscar
Kempthorne and George Zyskind, principal investigators, during the eighteen-
month period July 1964 through December 1965. The contract has been extended
through December 1967 at which time a final report is scheduled.

The work performed under contract was initiated and coordinated by Mary
D, Lum, Research Mathematical Statistician, Applied Mathematics Research
Laboratory, Aerospace Research Laboratories, and supported by funds for
Project 7071, Research in Applied Mathemafics, Work Unit 7071-00-10, Analysis

of Variance and Probability,
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ABSTRACT

Research on Analysis of Variance and Data Interpretation 18 described.
Section I discusses estimation problems in variance component and mixed
model problems, Section II considers the combination of information on
estimable functions from distinct uncorrelated sources and justifies some
of the common applications in experimental design problems. Section III
discusses size and power under experiment randomization of several
competitive tests for the paired design and presents conclusions about
the high relative merits of the variance ratio randomization and the
Wilcoxon tests, Section IV discusses the development of high speed
computational methods for the calculation of fourth degree generalized
polykays of variances and covariances of estimated variance components
for balanced samples from balanced populations. Section V summarizes
briefly papers on the design of experiments and multivariate responses in
experiments and the 1965 Fisher Memorial lecture on experimental

inference,




TABLE OF CONTENTS

Introduction
1 Unbiased Estimation in Variance Component
Models
u Simple Linear Combinability of Information from

Independent Sources

111 Size and Power of Certain Tests under
Experiment Randomization

v Computation of Estimates of Variances and
Covariances of Variance Component Estimates
from Finite Balanced Populations

v Other Topics
References

List of Activities Associated with Contract AF 33(615)-1737
during the period July, 1964 through December, 1965

Page

15

21
33
39

41



INTRODUCTION

The research described in this report deals with aspects of linear
model methodology and with a search for greater understanding of
consequences of sampling and randomization in experiments, The
present report summarizes briefly wérk performed on the contract and
dealt with in detail in separate reports and papers now in final stages of
preparation, The separate but related accounts deal with the following
general topics:

I. Unbiased Estimation in Variance Component Models
II. Simple Linear Combinability of Information from Independent
Sources .
I1II. Size and Power of Certain Tests under Experiment
Randomization
1V. Computation of Variances of Estimated Variance Components

in Finite Balanced Population Structures

V. General Related and Broader Matters

The ensuing sections delineate briefly the main results and general
viewpoints arrived at in investigating the above problems.

L]
AUTHORSHIP OF THE REPORT

The introduction was written by O. Kempthorne and G. Zyskind.
Section I is based on work of R, P, Basson with advice of G. Zyskind,
Section Il is by F. Martin and G. Zyskind. Section III is by T, E, Doerfler
and O, Kempthorne. Section IV is by E,J, Carney with advice from

O. Kempthorne, Section V is by O, Kempthorne.
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I. UNBIASED ESTIMATION IN VARIANCE COMPONENT
MODELS

With regard to variance componen: models we have considered the
problem of minimum variance (M. V.) unbiased estimation of regression

parameters and variance components in the mixed model

T k+1
y = £ X7v.+ X X.B.
i=0 ' q=rs41 P

where ‘yi's are fixed effects, ﬁi's are random effeccts with distributicna!?
properties to be further specified, aud Xi's are known fixed matrices
whose elements are not necessarily restricted to be 0's or 1l's, We

assume throughout that an =1, E(Bi%') =0 (i ;(j), and
E(ﬁk“ ﬁid_l) = IU;H . A model representation is defined to be balanced 2

if X.X!IX.X!'= X.X'X.X! (i#j, i,j=0,...,k+1). A representation that
O A I R A

is not balancedZ is unbalancead.

Completeness of the sufficient set of statistics is established by a
restriction on the number of roots of V = E(yy') - E(y)E(y'). Several
theorems, on the minimum variance properties under normality of
Model I type A, 0.V, estimators for variance components, and simple
least squares estimators of estimable functions of regression parameters
for balancedz mixed models, are proved. Certzin optimality properties
for the same estimators, when the normalify assumption is replaced by a
less stringent condition, are ottained,

Two results for the model




k+1 k+1
y = an.+ ‘Z Xiﬁi = X X.B.

i=1 izo !

where E(Biﬁ!l) = Io': which are due to Graybill and Hultquist {1961), and

which we have refined are:

2 ogti ' = '
(1) If (a) all of are stimable (b) xixiij3 XijXiXi

(i,j = 0,...,k+1) and (c) the random ﬂi vectors are normally
distributed then there is a complete sufficient statistic for the parameters
2 2 kil 2 2
3 - ' T
(K, AR ,a'k“) if, and only if, W = ifl Xixiai + xoxop has k+2
distinct latent roots. The set of complete sufficient statistics consists of

; and y'P;Piy (i=1,...,kt+l) where Pi's are collections of vectors

of P, an orthogonal matrix such that PWP' = A (diagonal), and where

all vectors of Pi (say) correspond to the same latent root of W,

We define the class of situations of type for which commutativity of

Xi){'iX-jX.’i (i,j=0,...,k+1) holds and W has k+2 distinct roots to be

the class P,

{(2) If Bi and Bj are independent for all i and j (i # j) and finite

fourth moments exist for all random variables, and within every given
vector ﬂi » all fourth moments are equal, and all third moments are
equal, then the same estimators, i.e., the usual Model 1. A.o0.V. mean

square estimators for the 6i = E(y! Pipiy) , that are M.V, unbiased under

normality, are best quadratic unbiased (b. q.u.) estimators under present

assumptions,
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We have obtained results analogous to 1, and under slightly more
extended restrictions results analogous to 2 above, for the completely

random model under the assumption that E(Bip;) = (ai\ bi) (i=1,...,k)
where (ai\bi) is a matrix with a; on the diagonal and bi off it. The

same estimators as before are complete sufficient for
2
(s 3 = byaeeesay = Bro Ty )

For the mixed model, under the assumptions (a) normality of B,

vectors (b) E(B,B]) = 1«§ (i=r+l,...,ktl)

(c) X.XIX.X! = XXXX! (i,j=0,...,ktl) (d) the matrix
iT1757) TR

k+l

W = X' z 4 Z XlX‘1 1= J i 2+ V, where V is the variance matrix
=1

of y in the corresponding completely random case, has k+2 distinct roots

and (e) Pin (i #0) # (j#k+1) = 0, where the P, 's are as defined
previously, we have shown that the sufficient statistic (X';LS, si_+1, cees s;&l)

for the parameters (XY, o r+l’ ces ,0’k+l) is complete, We have also given
the counterpart of 2 above for the mixed model, namely best linear

unbiased (b.1,u.) estimators for estimable functions of regression parameters
and b, q.u. estimators for variance co mponents, We have also presented

analogo is results under slightly more extended restrictions for a mixed

model with E(piﬂ;) = (a.i\ ‘oi) (i=r+l,...,k)
The class of model situations with E(ﬂip'i) = Io‘i and for which for at

least some i, (i#j), X X'X X' # X.X"]XIX‘ or the number of roots of




W (or W) exceeds k+2 we designate as the class S-P, In the class

5-P, a class nontaining many design situations, some common and
others less so, the condition of balance 2 is often not 3atisfied and in all
of the examples that we have thus far examined, even if normality of ﬁi's
is assumed, the minimal sufficient set of statistics is not éomplete. It
is not known whether U, M, V. estimators exist in these cases, and if they
do, how to proceed to obtain them. Since here the assumption of
normality cannot apparently be profitably used, and later removed, we
favor obtaining alternative estimators directly, and comparing them at
different points of the parameter space by means of the variances of each
variance component estimator.

We have given consideration to the simple ''least squares' method of
estimation in unbalanced cases. We present a transformation procedure,
which is actually a single degree of freedom breakdown of sums of squares,
and which in random models provides one means of finding variances of
variance component estimators. The procedure suggests theoretically,
at least, an alternative way of weighting single degree of freedom sums of
squares to find estimators with smaller variance than those given by
simple least squares,

We have attacked the problem of the variance of a quadratic form, and
the covariance betwe=n two forms that ari:e in mixed and random models.
We have found considerable simplifications in the case of a usual least
squares method of estimation, also known as Method 3 of Henderson

(1953), and we have found a further simplification under the assumption
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of normality of random effects, We have applied the general results
derived to obtain variance formulae for various sums of squares which
have been suggested for finding estimators of variance components in

random models with added concomitants.
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1I. SIMPLE LINEAR COMBINABILITY OF INFORMATION o
FROM INDEPENDENT SOURCES
The issue of combining informatioﬁ from independent sources has long
been of general interest to experimenters and statisticians alike, A
common procedure has been to combine estimates of scalar parameters by
weighting inversely as the variances, This procedure is nci generally
best for vector parameters. We have therefore examined combinability

with data arising from linear models of the type
y = Xp+te

where X is an n x p matrix, and B isa p x 1 vector of unknown
parameters, The vector of errors e has non-singular covariance matrix
V.

If one has several independent sets of data Y; < Xip t e, with the same
parameter vector f and respective non-singular variance matrices Vi .
there is immediate interest in the simplest possible method of combining
information from the several sources to get the best linear unbiased
estimator (b.l.u.e.) of a parametric function A'p estimable from the
full set of data. A commonly used assumption will be that Vl and V2
are essentially known. The report is concerned with the specific
conditions under which the b.l.u.e. of a A'f, estimable in each
independent source, can be obtained by simple weighting of the information
available in each independent source. Special attention is given to the
situation of exactly two sources of information as, for example, in the
case of inter and intra block information in incomplete block designs,

The particular question examined may be stated as follows: if A'S

is estimable from the data Yy < le te, and also estimable from the

v




independent data Y, ® sz te,, when is the b,l.u.e, A'B* given by

AIB* = wA'B + (1-w)A'B

where A'f and 7\'73' are the b,l.u.e,'s from the first and the second

sources respectively?

Definition: An estimable parametric function A'f is said

to be best combinable by simple weighting (b.c.s.w.) if

A'p* wk'é+(l-w)k'§, 0<K\w<1, or

AB% = X8 or M1B*=NF

"

The extension of this definition to k > 2 uncorrelated sources of
information is obvious,

The following main theorems have been proved,

Theorem 1: A necessary and sufficient condition for A'S to be

b, c, s.w, is that the set of solutions of the conjugate normal equation

(X1X3) P=A

is identical with the set of solutions to either the pair of conjugate equations

1

XVITX P = wh
Xvilx p = (1-w)A
2V2 %
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or
xvilx p = a xvlx p= o0
Vi % Vi %
or
xtvilx_ p= o0 xvilx_ p =2
2V X, APIRY)

Corollary 1, 1: A necessary and sufficient condition for a A'B,

estimable in both sources, to be b.c, s, w. is that A be injthe image of a
i

subspace S such that the mapping X'IV’IIXl restricted to S is a scalar

multiple of the mapping X'ZV;l X, restricted to S, i.e.,

- -1
1 - 1
lel Xl = kXZVZ XZ .

S S

Corollary 1.2: A necessary and sufficient condition that A'S be

best estimated from source one alc 1e, i.e,, A'f* = A'B , is that A be
in the image under the mapping X‘IV;IXl of a subspace S such that S

is contained in the null space of X'ZVEIX2 . |

Denoting the row space of Xi by X; » We may state another corollary

of theorem 1,

-

Corollary 1.3: A necessary and sufficient condition for A'g* = A'B

for every \ in Xy is that xln X, = 0.

To simplify notation and facilitate the discussion we shall hereafter,
with no real loss of generality, restrict Vi to be of the form G:I. If

we restrict attention to vectors A' in Xln X, 70, we may further

——— N . w e P e e e PR e g
" - e ~ o i W . i Eirn ;
had s o o ",
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characterize the set of corresponding b.c.s.w, A'p's by observing that

A'B is b,c.s.w, if and only if A is the image under X'lxl or X'ZXZ of
a vector p such that p is a generalized eigenvector of x'lxl - kX'ZXZ
for some generalized eigenvalue k ;(0 , i.e.,
1 - ' =
(xlxl kxzxz) P 0. (1)

Lemma: If A and B are real p x p positive semi-definite
matrices, with rank (A) = a € rank (B) = b, then there exists a
reai non-singular matrix T and real diagonal matrices A* and B*

such that A* = T'AT and B* = T'BT where

By 0
Tal
Ia. 0 0 “_El___
A* = , B* = -7 (2)
o o Jaux)_
P )
I p-a-btr

and the Bi» i=1,...,r, are positive,

The application of lemma to A = X'X, and B = Xy X

X is evident.

2

Equation (1) becomes

10
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. -1
0 = 'I"(X'l)(l - kX'ZXZ)TT p
1-kp
l-kprl“
= - __l T, ‘3)
Iz . :__
) Sbrl
— o

where p= T7T , Because of the diagonal forms of T'Xl’XlT and

T'X'ZX T in (2), bases for the row spaces of T'X'IXIT and T'X'ZXZT

2
are respectively the transposed columns of El = (¢1,. v ea) and

EZ = (tl,... 1€s € yqreee ’ta+b-r)’ where ¢ is the column of zeros with

1 in the i-th position., Since T is non-singular, any vector 6§ = TT for

some unicue T, Thus for any vector & the image

a
T'X'X. 6 = T'X'X. T7 = Z a,e¢ for the proper coefficients a,, and
171 171 jop 11 i
2 -1
thus for any vector § the image X'IX1 6= X a, (T') €. Hence the
i=1
linearly independent columns of (T')'1 El = (tl'tz’ cae .ta) form a basis

for Xq - Similarly the linearly independent columns of

-1
(T E, = (t),....t , ¢

2 SRR a+b—r) form 2 basis for Xp - Since

the full set {tl’ oy ta+b-r} is also linearly independent, the set

{tl""'tr} is a basis for X1Nx, -

11
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For a corresponding k = p.;l y iz 1,...,r, ¢ is a solution to (3)

and P; = T < is a generalized eigenvector of X'X, - p.{l XX

1% 28 Thus,

the image of p, under either mapping XX, or X.,X, isa vector hi

such that Alp is b.c.s,w. But XX p = X!X T = (T te =t

1 i i
for i=1,...,,r. Thus the basis, {tl,tz,...,tr} (the first r rows of

-1

T "), of XM X, constitutes a set of r independent coefficient vectors

of b, c.8,w, linear parametric functions, We have therefore proved the

following theorem.

Theorem 2: If the rank of the intersection space of the row spaces
of Xl and XZ is r then there exist r linearly independent vectors

A' in X1 N Xy such that A'f is b.c.s.w.

Theorem 3: If a subset of s generalized eigenvalues ki = p.i'l

i<r, of (l)are equal then there exists a corresponding s dimensional
subspace of X1 0 X, in which every vector A' is the coefficient of a

b.c.s,w, parametric function.
Theorem 4: A sufficient condition that A'S be b.c.s.w. is that A
be a common eigenvector of X'IX and X\X

1 272"

Theorem 5: If hl’ .ee ’)‘r is a set of common eigenvectors of

X'IXl and X'ZXZ then (

WM

ai).i)' B is b.c.s.w, if and only if

i=1

12
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k = R

=¢y1¢12°° where 1 and c;, are the eigenvalues

r1r2°

of A, and X'X, and X'
i 171

2x2 respectively,

The above two theorems apply to the case of k > 2 uncorrelated
sources of information,

Making use of the sufficiency of eigenvectors and the fact that the
interblock and intrablock information matrices in any incomplete block
design have a common orthogonal diagonalization we deduced the

following theorems,

Theorem 6: For incomplete designs, a linear function of the
treatments, A'T, is b,c.s.w. from the interblock and intrablock
sources of information if and only if A is an eigenvector of NN' where

N is the treatment by block incidence matrix,

Theorem 7: In an incor.plete block design (t, r, b, k, sij) a
necessary and sufficient condition for the interblock and latrablock

estimates of the set of treatment effects denoted by {tl' tz. . 'ta} to be
b. c.s.w. is that all treatments occur the same number of times with
treatments Tl' TZ' vees T .

a

Corollary 7. 1: In an incomplete block design (t, r, b, k, ’ij ), if

the treatment effects {tl’ e ta} are b, c.s,w, then so are any linear

combinations of the set,

Corollary 7. 2: In an incomplete block design (t, r, b, k, sij ), all

treatment effects t. are b. c. s.w. if and only if the design has a b, i, b.

structure,

13
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The theorem to follow and the necessity conditions of Theorem 7 and
Corollary 7.2 were established by Sprott (1956) using manipulations of
solutions to the normal equations under the restrictive assumption of

estimability in both sources,

Theorem 8: In an incomplete block design (t, r, b, k, sij) a
necessary and sufficient condition that there exist a subset of treatments
Tl' cess Ta , 8uch that t - tj is b.c.s.w, for all possible pairs in the
subset, is that all pairs Ti and Tj , i#j and i,j< a, occur together
in a block a constant number of times and that any other treatment Tu'

u > a, occur in a block a constant number of times 8, with Tl' ey Ta .

In factorial designs in incomplete blocks, resolvable into uncorrelated
replications, each replicate consists of uncorrelated interblock and
intrablock sources of information on the treatment parameter vector 7 .
Thus there are 2r uncorrelated sources of informationon 7. If we
denote the interblock information matrix of the single i-th replicate by

NiN!l the following theorem was easily established,

Theorem 9: In a symmetric factorial design, with complete
confounding of full sets of effect or interaction degrees of freedom within
replicates, any effect or interaction degree of freedom contrast A'T is

such that A is an eigenvector of NiNi’ i=],...,r.

Corollary 9. 1: In a symmetric factorial design, with complete

confounding of full sets of effect or interaction degrees of freedom within
replicates, any effect or interaction degree of freedom contrast is b, c.s.w,

for the whole set of 2r interblock and intrablock sources of information.

14
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III. SIZE AND POWER OF CERTAIN TESTS UNDER

EXPERIMENT RANDOMIZATION

We have conducted an investigation of the size and power of the F

test and three non-parametric tests in an attempt to understand more

thoroughly the consequences of experiment randomization. In particular

we have studied the behavior of tests applicable to a paired design and

have further restricted the investigation to include small samples only.

The test procedures examined in detail were the Fisher randomization

test, the Sign test, the Wilcoxon paired test and the normal theory F

test. A specification of these tests is as follows,

(a)

(b)

The Fisher Randomization Test:

The observed total difference is in. Let Cobs equal the

absoiute value of this, Cor<sider the absolute values of the

possible quantities Z ( i )xi , where each of the 2"
i

different patterns of + or - are enumerated. Let the
absolute values be Cl' CZ' I CM , where M equals 2",
The significance level is the proportion of the Ci which equal
or exceed Cobs . Actually one need enumerate only Zn"l
different patterns, because the criterion is the absolute total

difference,
The Sign Test:

Let the maximum of the number of positive xi's and the

number of negative xi's be Sobs . Follow the same procedure

15
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with this criterion., Actually we do not need to perform the

details, because the possible values of the criterion are

n nl . n . .
n, n-1,..., [-—] , Where [—] is = if n is even and

2 2 2
nt+l . . . . .
- if n is odd, and their frequencies are given by

combining the tails of the binomial distribution for n trials

with probability of success equal to % .

(c) The Wilccxon Paired Test:

The x, are ranked from smallest to largest disregarding
signs, Let the maximum of the sum of the ranks of the
negative cbhservations, and the sum of the ranks of the

positive observations be Wo Follow the same procedure

bs *
with this criterion, The critical values for small values of
n and the possible significance levels are given in tables,

for example by Hodges and Lehmann (1963).
{d) The F Test:

In the case of the paired design, the F test is very simple:
calculate the criterion [trealment mean squares / error
mean square / and compare this value with the chosen
percentage point of the F distribution with the chosen
percentage point of the F distribution with 1 and (n-1)

degrees of freedom, where n is the number of pairs.

The objective of the study was the determination of the relative and

absolute performance of these test procedures with regard to the population

16




of repetitions induced by physical randomization., If we view the
significance level as a summary statistic, a complete characterization

of the situation is given by the distribution of the significance level under
the null hypothesis, and the distribution of the significance level under
the alternative. Since this is an overwhelming task, a co'mmon procedure
is to examine power of tests which is essentially tail areas of the distri-
bution of the significance level under the alternative hypothesis. Thus,
size and power served as reasonable criteria with which to measure test
performance,

With N pairs observed in the experiment, there are ZN possible
ways of applying two treatments within each pair, one of wbich is
randomly chosen by the experimenter. The null hypothesis of no treat-
ment difference is then tested against various shift alternatives. In this
way it is possible to evaluate critically the influential characteristics
inherent in the problem of paired tests. By examining size and power,
we obtain the role of the test criterion, significance level, experiment

size, true treatment difference and the underlying distribution from
which the basal yields are generated.

Since the parametric F test and the Sign test have been dealt with
e .*ensively in the literature, emphasis was concentrated on the
performance of the Fisher and Wilcoxon techniques as applied to paired
data, Completely general integration formulas were developed to enable
power computations to be performed for experin.ents involving three or
four pairs of differences, A perfect agreement of the three non-parametric

tests at the lowest achievable test size was exhibited, regardless of the

17
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experiment size, with the correspondence extending to the three smallest
levels for the Fisher and Wilcoxon cr.iteria.

To extend the iﬁvestigation to larger experiments it was necessary
to perform an empirical study, With z set of differences randomly
generated from various representative distributions and an imposed
treatment effect A, it was possible to generate the totality of
conceptual experiments that might have arisen, Each test criterion was
then evaluated for every possible randomization, and the appropriate
significance levels recorded in each case, In this way exact power
probabilities were computed for each test over the population defined by
the randomization process. By performing these calculations for a
representative number of samples of observed differences, an indication
of the small-sample behavior of the four te;ts of interest was established.
Experiments of 3, 4, 5, 6 and 8 pairs were examined in this manner,
and where theoretical comparisons exist the results indicate excellent
agreement with true power values, Since the power under experiment
randomization does not behave with a noticeable regularity for individual
experiments, comparisons of tests were bascd on average power values
determined from several random samples of differences., Because of the
considerable computing time involved, various sampling techniques were
utilized for a limited investigation of the Fisher criterion for e>periments
involving ten differences,

The general conclusion is that with small samples of differences from
any of the distributions considered, the average powers of the Fisher

randomization test and the Wilcoxon paired test are essentially identical,

18




The power curve of the Sign test is somewhat inferior to that of the other

tests at comparable sizes greater than —-ﬁl-:-i . It is also shown that

2
knowledge of the power of the Sign test at the lowest achievable test size

is complete in the sense that power at all other levels is uniquely

related, The relative behavior of the F test and the non-parametric tests
is somewhat irregular, but in most cases the power values are quite cloie,
There is evidence that departures from normality do not drastically affect
the relative performances of the tests examined, but for extrem:e non-
normal configurations power is low and erratic in its behavior. The
average size of the F test was generally quite close to the nominal normal
distribution size even when the underlying distribution of differences was
decidedly non-normal. The distribution of the size of the F test under
exper ment randomization was examined in some detail, and it was found
that the probability of detecting significance at level a is distributed with
considerable spread about the true test size a. The spread is greatly
dependent on the underlying distribution of differences.

It appears that except for their inability to achieve any prechosen size,
the non-parametric tests are to be preferred because their behavior under
the null hypothesis is known a priori regardless of the underlying pattern
of basal yields. If one admits Fisher's concept of sensitivity relative to
the problem of evaluating significance, the Fisher randomization test is
slightly superior to the Wilcoxon test, while both are considerably more
sensitive than the Sign test, In this framework we look upon the

significance level as a summary statistic giving the weight of evidence

19
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against a null hynothesis with reference to a particular class of
alternatives, For the paired design we have seen that the Fisher
criterion includes more levels for the declaration of significance than
the other non-parametric tests, From this point of view the Sign te st
should be recornmended only when none of the other procedures are
applicable,

It is evident that usage of the Fisher randomization test or the
Wilcoxon paired test is advantageous to the experimenter when testing
two treatments, We have seen that the test critcria can be quickly
enumerated over all possible randomizations when the number of
observed differences is small, For moderate sample sizes, excellent
approximations were observed by sampling a reasonable proportion of

randomizations,

20
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IV, COMPUTATION OF ESTIMA.TES OF VARIANCES AND COVARIANCES
OF VARIANCE COMPONENT ESTIMATES FROM FINITE
BALANCED POPULATIONS

INTRODUCTION

Dayhoff (1964) has shown that the variances and covariances of
variance component estimates for certain simple balanced structures
obtained in the usual way, by e_:quating the expected mean squarcs to the
observed mean squares in the analysis of variance and solving the
resulting linear equations for the variance components, can be formulated
as linear functions of quantities called generalized polykays, The
generalized polykays are a natural extension of the bipolykays defined by
Jdooke (1956a), from which he was able to calculate variances and
covariances of estimated variance componants in two factor crossed
structures, as shown in the papers by Hooke (1954, and 1956b). The
bipolykays were an extension of the polykays introduced by Tukey (1950,
and 1956).

The generalized polykays are, in general, not directly computable,
but can be obtained as linear functions of generalized symmetric means,
which in the case of polykays of degree four, are fourth moments of the
population or sample quantities, Because polykays and symmetric means
have the property of irhcritance on the average, it is possible to obtain
unbiased estimates of the variances and covariances of estimzted variance
components by taking appropriate linea: combinations of generalized
sample polykays. The work of Dayhoff is thus complete for the pure
random sampling situation in that, by his methods, one may obtain

formulas for unbiased estimates of the variances and covariances of the
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estimated components of variation,

The implementation of Dayhoff's methods to obtain numerical estimates
involves two fairly serious problems., First, the algebra required to
obtain the formulas, is, while straightforward in principle, a very tedious
and error prone process in execution. As an example, for a three-factor
crossed structure a single variance formula involves thirty-seven polykays
of degree four with coefficients which are various functions of the numbers
of levels of the factors in the sample and in the population. Each of these
polykays is, in turn, a linear function of as many as 285 generalized
symmetric means of dcgree four. Decause of the heavy burden of algebra
required it seems expedient to perform this task on high speed digital
computers, Accordingly, algorithms have been developed, which, when
presented with an arbitrary balanced complete population structure,
obtain the necessary forrulas for the variances and covariances of
variance components,

The second problem arises in the numerical computation of the
generalized symmetric means of degree four, which, in Dayhoff's method,
are the basic numerical quantities to be computed. It is a rather simple
matter to write a computer program to evaluate a single generalized
symmetric mean from its definition and not extremely difficult to write
a more general program to compute all the generalized symmetric of
degree four in ar given structure. This can be extended further, with some
difficulty, to compute the generalized symmetric means of degree four for
arbitrary balanced complete structures, However, for relatively small

numbers of observations the number of multiplications becomes excessive,
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and a better approach is necessary. A simple illustration of the approach

taken here is given by the familiar identity below

1 1 2 2
e ———— z z V. o e————— . - z .
n(n-1) i itA nyl' n{n-1) [(Z: yx) i yx]

The left hand quantity is a simple symmetric mean of degree two and,
aside from the divisor requires n(n-1) / 2 multiplications and additions,
while the expression on the right requires n+1 muitiplications and
2n+1 additions. Similar identities may be obtained for generalized
symmetric means of degree four, and these result in important savings
in the amount of computations required. These identities do, of course,
increase the amount of algebra required,. and care must be taken that one
does not exchange the problem of performing an impossibly large number
of multiplications for the problem of collecting an impossibly larze number
of coefficients,

A general method of obtaining all the needed identities in a straight-
forward way has been developed and implemented in a computer program,
so that the generalized symmetric méans are formulated in terms of
quantities which are computable in a minimum number of operations.

' The same

These quantities are called D's or '""derived terms,'
quantities, for the particular case of two factor crossed structures, are
used by Hooke (1954). Further programs have been developed which

interpret the D's and compute their numerical values,

23




DAYHOFF'S PROCEDURE

The theoretical basis for the computations, as developed by Dayhoff
(1964) are as follows.

Variance components estimates may be considered as lineaf combina-
tions of sample cap sigmas, The cap sigmas are in fact the same
quantities as generalized polykays of degree two, so that variances and
covariances of variance component estimates are linear functions of the »
variances and covariances of sample generalized polykays of degree two,
Variances and covariances of sample generalized polykays of degree two
are linear combinations of population generalized polykays of degree four,
and unbiased estimates of these are given by the corresponding samf;le
polykays of degree four. The generalized polykays of degree four are
linear functions of the generalized symmetric means of degree four, which

can be computed.

POLYKAYS AS FUNCTIONS OF SYMMETRIC MEANS

The generalized polykays for a crossed structure are defined as
functions of simple polykays by means of symbolic multiplication. Thus
levt P = (a/B) denote a generalized polykay of degree four for two factors,
The a and P symbols may be considered as indicating a partition of the
subscripts into classes which are equal for each element of the fourth
degree product of the "leading' symmetric mean in the definition of (a).
We make use of the notation, introduced by Dayhoff, of giving a symbol

for each element of the product with the equality of these symbols

24




£
e

indicating equality of the subscripts, Thus to denote a product yi3 Yir 0

write 0001, while YiYi ¥y Ppn is denoted by 0123, If one uses primes
to indicate restrictions on the subscripts, then the symbols a, f etc,
can be considered simply as a list of the number of primes on the
successive y's for the first, second, etc. factors,

These lists can be considered as partitions of the integer four, with
a further order restriction; we will call them "ordered partitions, '
The ordering consideration is not necessary when simple polykays are
considered, but when more than one factor is considered the ordering
becomes necessary so that the relationships of the restrictions for the

various factors will be preserved.

The simple polykays may be expressed as linear combinations of

simple symmetric means, so that

(a) = ?ai <ai)

The generalized polykays for completely crossed structure are defined by

a symbolic multiplication

(a) @ (B
(Za; <)) @ (Z bj <l3j> )
i j

P = (a/B)

ZZab; Lo @ B
i

f ;Z. a; bj <ui/'3j>
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or, say
P=Z €. 8y .
u-

Unfortunately the notation described above is redundant in that we
may have <a/B) = <u.'/p'> with afa', or p#Pp' or both, No
simple notation has been discovered for removing this redundancy,
although an algorithm haa been developed to give a many-to-onc mapping
of all the possible symbols for a given set of generalized polykays into a
set of distinct ones., Carrying out the symbolic multiplication, combining
like terms and collecting coefficients is all that is necessary in obtaining
the polykays and their formulas in terms of generalized symmetric means
for crossed structures, The handling of arpitrary structures require a

few additional operations.

SYMMETRIC MEANS AS FUNCTIONS O" D's

Th. symbolic multiplication is also applicable in obtaining the

expansions of the generalized symmetric means in terms of the D's,

=nn

p "ap
<u/ﬂ> . (If A is the number of levels of the first factor, then

Let Nu denote the divisor of the generalized symmetric mean

n = A(A-1)s - (A - r + 1) where r is the number of different symbols
in the list a.) Let <°i> denote 2 simple symmetric mean. Then there

exists a formula

= L
(o = n, 1 dik logs )
i

where ,nik, denote the '"'D'" quantities for a single subscript. For
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example, consider

1

. N 1 7 2
(o> = <0012} = N(N-1)(N-2) Z Y Yi¥;0

then

{2012)

NN S 2.2 _ 2z 3 . 2
NIN-1)(N-2) [f iy, - Byl - Zyjy - Zyly vy,

#

+ 22yi4] = N(N_l‘)(N_Z) [[oole - Joo1y - jooos| - [oo10]

N
+ 2 ‘OOOOIJ » where y = X ¥; .
. ‘:l

1

It can be shown that if <a'1/‘3j> is a generalized symmetric mean for

_ 1
a crossed structure, and <°i> z o z dgp ‘aiki
i

1
B T e T Y [Pkl o then Ka/Bd = <ad @ (5
J

1 1

= E T Ty eyl ) x (H;f TR T
i j

]

= ZZd, e, la ® 8. |
n n ik ~jt , 1k’ ‘_]k
o, ﬁj k #

1
= o™, T2 dy dyy oy /8y

27




e on

Combining the two symbolic multiplications gives

P = (a/B) = (a) @ (B

1]
™
™M
o
o

i

£
~
w

~/

= f?l aibj CY, ® <ﬁj>

i J
ab, ' '
=z —L1L =z x4, 4 a. ® |s.
i j n“inpj k 1 ik “j1 l 1k| l 34
aib'dikd'l
S B D A A la./ﬁ.‘or P=Zw D , say.
P n n ik’ "j1 88
ij k1 a, ﬁj ]

Thus the crossed structure polykays can be evaluited as linear functions
of the D's, and the proper linear functions are determined by successive
symbolic multiplications. When dealing with a structure containing some
factors nested in others the above operations are modified in the following
ways: (l’ Some of the polykays of the crossed structure do not exist in
the nested structure, These are eliminated, (2) In performing the first
symbolic multiplication those polykays of the crossed structures which

do not exist in the nested structure are mapped into other polykays of the
nested structure and the terms collected, This procedure gives the
proper formulas for the polykays of the nested structure in terms of the
generalized symmetric rheans for the nested structure. (3) Before
performing the second symbelic maltiplication, some of the terms in the
expans‘ion for nested polykays are eliminated in a systematic way depending
upon the terms in the expansion for. nesting factors, This procedure gives

the correct formulas for nested structures,
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COMPUTER PROGRAMS

The programming system for obtaining estimated variances and

covariance of variance component estimates consists of the foilowing.

(1) PFORM - A program to generate the polykays for a given structure
and obtain the formulas for these polykays as linear functions of the
generalized symmetric means, This portion of the system is run
separately since the formulas depend only upon the structure and not .,
the particular data being analyzed. The major subroutines of this program
are:

a, SYMPY - A routine for symbolic muitiplication

b. UNREP - A routine which maps the various representations

of a given polykay into a unique representation,

(2) DCOMP - A routine which computes numerically all the D's for a
given structure and sample. This program consists ‘of two major portions;
one to interpret the symbolic representation of a D and generate certain
tables which determine the base addresses, powers, operations, and
sequence of opefations required to compute the particular value symbolized,
and a second program to follow this sequence of operations and obtain the

desired numerical quantity.
(3) DVCMP - A routine to compute the divisors for the generalized
symmetric means,

(4) GCOMP - A program which pe‘rforms the symbolic multinlication to
obtain the expansions for generalized sygnmetric means in terms of the D

quantities and uses the D's from DCOMP, and the divisors from
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DVCMP to evaluate the generalized symmetric means,

(5) PCOMP - Reads the formulas for generalized polykays in terms of
generalized symmetric means (i.e., the output of PFORM) and evaluates
these formulas using the values of the generalized symmetric mean

computed by GCOMP,

(6) VCVC - This program performs a variety of tasks, largely algebraic
in nature in obtaining and evaluating the formulas for the variances and
covariances of variance components for the particular structure in terms
of the polykays of degree four which have been previously computed by

PCOMP, Included are the following operations:

a. The complete model for the present structure and the
corresponding completely crossed model are generated. This
provides a symbolic list of all the variance components and
cap sigmas needed.

b. The formulas for the variances and covariances of the crossed
polykays of degree two in terms of crossed polykays of degree
four are generated by symbolic multiplication of the formulas
for multiplication of simple polykays of degree two. These
formulas are then evaluated for the polykays of the present
structure to give the numerical values of the estimated variances
and rovariances of crossed cap sigmas for the present structure,

¢. The model terms for the present structure are expanded in the
terms of a completely crossed structure to give the formulas for

the cap sigmas nf the present structure as sums of crossed cap
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sigmas, This transformation is then applied to the variance-
covariance matrix of crossed cap sigmas to give the variance-

covariance matrix of the cap sigmas of the current structure,

d. The tranformation for cap sigmas in terms of variance
components are generated, inverted, and applied to the variance-
covariance matrix of the cap sigmas to give the estimated

variance-covariance matrix for the components of variance.

USE OF THE SYSTEM

Thus far the computations with the system have been made with
rather special data for the purpose of checking the computer programs,
It is planned to use the system to investigate the variances and
covariances of realistic populations and samples and to compare the
results with those obtained under infinite model assumptions,

The algorithms are designed to operate for any number of factors,
However, the present program is limited to 3 factors so that various
arrays need not exceed the storage capacity available with the IBM 7074
FORTRAN Operating System which allows about 8000 ten digit words
for program and data. It would not be very difficult to expand the program
to 4 or 5 factors with the present 20,000 word IBM 7074 equipment,
but this is not contemplated at the present time because this equipment
will be replaced in the near future,

Thus far the computations have not proved too costly. For example,
with a four by four crossed sample the complete computation required in
th? neighborhood of 28 seconds. (This included some extra operations

required for generating the data). With two or thr:e factors good sized
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samples (say 1000 observations) can probably be computed in a matter
of a few minutes, say 1 to 5 minutes, depending on the model. By
comparison, a program for computing the generalized symmetric means
directly would require in the neighbdrhood of 1000 hours with the same
computing equipment.

One familiar with large scale numerical computations will recognize
that the type of computations described above may lead to serious
truncation errors, This is indeed true, but can be countered to a large
extent by the use of double precision arithmetic at selected points in the
algorithm and by standardizing the observations. In summary it seems
fair to claim that the systems described provides a practical method for
obtaining unbiased estimates of variances and covariances of variance
components for finite balanced complete structure when few factors are
involved, and, while such computation may be of little importance for any
particular data set, they are of some importance in the investigation of

the properties of variance component estimates in general,
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V. OTHER TOPICS

A, THE DESIGN OF EXPERIMENTS

A review of developments in the design of experiments over the past
ten years was prepared and presented at the Tenth Conference on the
Design of Experiments in Army Research, Development and Testing
(Kempthorne, 1965a). The problems of inference from experiments is
touched only briefly, and the main area reviewed is the design and
analysis of investigations in multifactorial situations, The sequence of
developments with regard to qualitative factors is outlined, from fhe
testing of the full factorial set, to the Fisher plans for 2™.1 factors
each at 2 levels in 2" observations, the Plackett-Burman plans for
4N-1 factors at 2 levels in 4N observations, and then the development
of fractional replication by several workers, In the case of continuous or
quantitative factors, the developments are reviewed with regard to
optimum seeking. The work of Box and Wilson, and the PARTAN method
which are essentially strategies based on assumption of ellipsoidality of
‘contours without sizeable error variation are discussed, as is the work of
Kiefer and Wolfowitz and others which is concerned with proving
convergence with probability one whatever the amount of error present.
Work on the general problem of exploring the relationship between control
variables, such as temperature and pressure, and yield is discussed.

The plans developed by Box and his co-workers are discussed particularly
with reference to the problem of scaling of variables. In contrast to this
line of work is that of Kiefer and Wolfowitz who make a direct attack on

design to achieve optimality with regard to a completely defined aspect of
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the investigation, It appears that this approach is informative, but not
decisive, because an experimental investigation rarely has a single
criterion of value and it is usually the case that a design which is near
optimal with respect to one reasonable criterion of value is quite non-
optimal with respect to other criteria of value which the experimenter
must consider, It would appear then that at best the problem of design
can be formulated in programming terms, that is, one would like
optimality with respect to one criterion with a reasonable degree of sub-
optimality with respect to other criteria., This type of al;proach to design

is being explored currently,

B. MULTIVARIATE RESPONSES IN EXPERIMENTS

A review of the status of procedures for data interpretation and
inference for the case of multivariate responses in comparative
experiments was presented to the International Symposium "dn Multivariate
Analysis (Kempthorne, 1965b). The view is expressed and substantiated,
partially at least, that the theoretical work in multivariate analysis has
so far led to quite meager results with regard to the drawing of
experimental conclusions, A dichotomy is drawn between experiments
the purpose of which is to make terminal decisions, such as the naming
of the ''best'" treatment, and experiments performed to add to knowledge.
The obvious names for these are '"decision'’ experiments and "information"
experiments. It appears that the great bulk of theoretical work is aimed
at ""decision'' experiments, and that the improvement of data procedures

for "information'' experiments has been disappointingly small. Some
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discussion is given of the rival modern "religions' of statistics, which
are associated with the words, "Bayesian" , "decision' and "likelihood."
An assessment of what scientists want from the comparative
experiment with multivariate response is made, and related to the
current availability of techniques, It is concluded that the situation is

deplorable, The conclusions of the review are as follows,

(1) The purpose of statistical analysis of experimental informational
data is to form opinions about the underlying situlajtion. One can certainly
form opinions on the basis of univariate techniques, which are
communicable and fairly easily understood. The question of what
multivariate analysis can provide over and above separate univariate
analyses has an obvious answer at an elementary level, as in the study

of the error matrix, but is unanswered beyond this. It is relevant, for
instance, to ask why one would get significance at a particular level by
correlated univariate tests and not by the corresponding multivariate
test. An observation that this happens is in itself, informative of the
situation under analysis and requires examination of the data to see "“why"
it happened. There are, however, situations in which the multivariate
analysis tells one something about individual components of the observation
vector. Suppose one observed the following in a completely randomized

design:
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Mean squares and products

2 2

1 x1*2 X2

Treatments 500 250 190
Residual 100 75 200

Th