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ABSTRACT

The proiect i. a ;ontinuation of research on problems in non-

regular estimation reported in ARL Technical Documentary Report No.

ttii VJ-i77i196). IiiOl... in that report was a lower bound on the

variance of unbiased estimators of the location parameter of the Pearson

Type III distribution, applicable in the non-regular case. This report

Includes the results of a numerical investigation of that bound for

varying values of the shape parameter of the Type III distribution and

varying sample sizes. The bound is apparently of the correct order of

magnitude in a certain region of the parameter space but sub-optimal

elsewhere. Approximations to the Pitman estimators for location param-

eters are investigated for both the Pearson Type III and Weibull distri-

butions. In both cases, the minimum observation Rpparently contains

the major part of the information concerning the unknown location

parameter. Some results on the non-regular estimation problem, particu-

larly concerning the derivation of variance bounds, in the cases of

densities with bounded domain depending on an unknown parameter and of

mixtures of uniform distributions, are also discussed.
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1. INTRODUCTION AND SUMMARY

An estimation problem in which the conditions, on the underlying

probability distributions, given by Crame'r [ 6, Section 33.3) are not

satisfied is called a problem in non-regular estimation. It is from

conditions such as those given by Cramer that follow the well-known

asymptotic properties of maximum likelihood estimators and of the large

class of estimators, known as BAN estimators, which are asymptotically

equivalent to maximum likelihood. When the regularity conditions are

not satisfied, it often happens that the estimation problem is not amen-

able to any of the standard approaches which might provide zt least a

straightforward asymptotic solution such as that provided by the theory

of maximum likelihood in the regular case. In such situations, problems

of considerable analytical complexity are encountered.

In a previous work [2 ], investigations of several aspects of the

problem of non-regular estimation, including a number in the latter

category, were reported. This report is concerned with additional re-

sults on non-regular estimation, including continuations of some studies

initiated under the previous project as well as some new studies. As

reflected in the title of this report, the major part of the effort in

this project, and consequently the majority of the results, are concerned

with estimation of the location parameter, in the non-regular case, of

the Pearscn Type III and Weibull distributions.

In the regular case, the BAN estimators are consistent, asymptoti-

cally normally distributed and asymptotically efficient in th sense

Manuscript released by authors November, 1966 for publication as an
ARL Interim Technical Documentary Report.
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that no other asymptotically normal estimator 1_- an asymptotic distri-

bution with smaller variance. Soi-e or all if these results may fail to

hold in the non-regular case. This is true for a non-trivial subset of

the prrameter space for both the distributions of interest to this in-

vestigation. In fact, in certain regions the likelihood function is

unbounded. One must, therefore, necessarily seek alternative estimators.

In this search we use the property of minimum variance as our criterion

of optimality, although it is recognized that this choice is subject to

criticism in the absence of at least asymptotic normality.

In attempting to construct minimum variance estimators for location

parameters of the Weibull and Type IllI distributions, it was discovered

that not only did the regularity conditions not hold, but most of the standard

techniques for constructing lower bounds on the variance of estimators led

to trivial results. kn general, except for a few special cases, for exam-

ple cases where a complete sufficient statistic exists, this further

complicates the estimation problem. A substantial part of our previous

effort L 2] was devoted to the construction of new bounds which would

yield non-trivial results for the non-regular case of the Weibull and

Type III distributions. The bounds obtained were found to be analytically

quite complex. For this reason, a numerical investigation of the bounds

was initiated for the Type III distribution. This investigation has been

extended considerably. The results, to be discussed in detail below,

are somewhat mixcd. It appears that the bound is quite good, i.e. is

essentially attainable for a part of the parameter srace but, while

non-trivial, is also non-optimal elsewhere.

Some additional analytical results concerning lower bounds on the

variance for the Type III distribution are also given. These include
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the derivation of a generalization of the bound given previously. The

generalization is even more complex than the original and has not been

investigated numerically.

An investigation of the estimation problem itself has also been

initiated. The approach pursued is to approximate an estimator proposed

by Pitman [11]. The Pitman estimator of a location parameter, although

known to be optimal in a number of respects, including miniumzm variance,

is quite intractable for the distribution in question. Thus an analyti-

cal investigation requires some form of approximation. The approxima-

tions used appear to yield quite reasonable results.

A similar investigation of the Pitman estimation technique has been

initiated in the case of the Weibull distribution. In the Weibull case,

since exact moments of the order statistics are available, certain

approximations in the derivation of the Pitman-type estimator, necessary

in Uhe Type III ease, can be avoided. Preliminary results indicate that

the Weibull case is quite simiiar to the Pearson Type III.

Finally, some miscellaneous additional results on the construction

of variance bounds are discussed. These include bounds for densities

with finite domain and specifically for mixtures of rectangular distribu-

t ions.
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2. VARIANCE BOUNDS FOR ESTIMATORS OF THE LOCATION PARAMETER

OF THE PEARSON TYPE III DISTRIBUTION

Let XI,..., X be independent random variables, each having a

Pearson Type III distribution

(2.1) f(x) e 1 (• ) -(xa) > a

-0 otherwise,

where -- < a < 00 and 0 < C1, 0 < -. It is assumed that the scale parameter,

5, and the shape parameter, a, are known. The problem is to estimate the

location parameter, a, in the non-regular case, that is, when • - 2. In

the ensuing discussion YI'*. Y n will be taken to be order statistics of a

sample of size n from the Type III distribution.

Before considering the problem of constructing estimators for a,

we shall present some results, mostly numerical, concerning lower bounds

on the variance of such estimators. We begin with a brief summary of

previous work on this problem which was reported in reference [ 2 1.

2.1 Previous Results

Since in the non-regular case of the Pearson Type III distribution

2
(2.2) f a lo2gf(X) dx M 00

a a 2

the Cramer-Rao bound becomes the trivial inequality V(t) ý 0, where t

is any un~biased estimator of a. Alternative methods for obtaining lower

bounds on the variance must therefore be investigated.

Blischke, et al. [2 1 discussed application of several alternatives

to the problem at hand. The notation4sed is as follows: Xl,..., Xn
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are assumed to be identically distributed random variables with common

density f(x,Q), where 0 8 ) is ar s-dimensional parameter with

01 unknown. The function t - t(X 1 ,.. ,Xn) is an unblased estimator of "

(Although this discussion is limited to unbiased estimators, the results

can be generalized in an obvious way to yield'lower bounds on the mean

square error of biased estimators. In fact, in the sequel we shall not

be particularly concerned with the question of bias. Since the generali-

zation is obvious, we shall avoid unnecessary complications by consider-

ing only the unbiased case at present.) The density f is assumed to be-

long to some family of densities, Y, indexed by the parameter 0 belonging

to a set 8. We define

(2.3) H ={h!(1+h,0 2 ,o...,0) e ,

(2.4) P = {pj there exists a function k(G) such that

ik(G)fP(x,Q) sY

and

(2.5) H-P - {(h,p)IkfP(x,Q+h) e Y for some k},

whereh = (h,O,...,O) e E S, i.e., G+h - (0 1+hh 2 ,...,0), We write

y(G) for that function of 9 for which k(@)fP(x,0) - f(x,y(0)) and assume
! g

that y(0 1 ,...,0s) - for all 0 e @. Finally, p1 and P2

are any probability measures on H such that E 1 hdjil(h) < - and

E 2 f hd•i 2 (h) < .H

The bounds discussed previously included those given by Chapman and

Robbins [4 ], Fraser and Guttman [ 7], and Kiefer [ 9]. The Chapman-

Robbins bound is
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I [I c n f 2(xi, @+b)n 1
(2.6) V(t) t- inf .~ T1 f119 f dx-J)

The bound derived by Fraser and Guttman is

(2.7) V(t) z_ i nf 1. ./* -1 Ji, 1  i-1(I

r

where ¢I *"' Cr are non-negative and sum to unity, and Hr - (hj H

for J 1,..., r}. Kiefer gives the result

(K h - Khh2

JrfHfl f(x1  '4") dCnil(h) "1dh

• II dxij

where the s..prenuIm is taken over all measures to ui2 for which the

integrals are defined.

A discussion in which these and the ensuing bounds are compared and

applied to several distributions is given in reference ii 2 ]. For the

Pearson Type III distribution the Chapman-Robbins and Fraser-Guttmuan

bounds yield trivial results for • •- 1/2 and, except for a limiting form

of the Fraser-Guttman bound when cy 1 , are less than the optimal bound

for 1/2 K cr - 2. The Keifer bound, although proved by E&rankin Il] to

be optimal under certain conditions, is essentially an exi'itence theorem

in the sense that it does not provide an applicable analytical technique

for construction of a bound.

Two additional bounds were developed in reference fo 2r in an attempt

to obtain applictble non-trivial bounds for the entire range of 2 in the
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Type III distribution. These are

h_ 2 /k2n(_ )

and

(2.10) V(t) Lt i(" 2 o) r c "ff(x J) - Ulf (A 1 0UYJ-1)2!UV -t Cl""Cr/___"__,_ _____________

where

(2.11) HroP - [(h,p)lkfP(x,O+Jh) c I for some h and all j - 0,...,rJ.

The latter two inequalities do yield non.trivial inequalities for all cr.

In practice, however, considerable analytical and numerical difficulties

are encountered. The details of the application of inequality (2.9) only

were given previously. Application of inequality (2.10) will be the

subject of Section 2.3 below.

Note that for the Pearson Type III distribution H - fhIO<Q }1,

P p Ip 1/2<pFq(cv)I, where

(2.12) q(cr) - 2(1-a) 0 <a < 1

- • a - 1,

H.P is the Cartesian product of H and P, and

(2.13) k(9) - Pp -P+'1P(a)
O 1"I• (PO-p+l)*

2.2 Numerical Methods for Investigation of the Variance Bound

It has been shown that application of inequality (2.9) to the Type

III distribution yields the inequality
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(2.14) V(t) -! sup -. (P P+l) (e g ( h;2pP-
he L nn(a) P2 n( *-1p+l)

Pe p

-2 2 (l p)flh/ý n(4 : h; (l-P )(Y) + rn(p-p02

where

(2.15) g(b;a,c) f Yac(y+b)-C e-y dy.
0

Because the above bound is analytically quite intractable, a numerical

investigation was initiated. This investigation involves numerical

integration of the function g and utilizes a modification of a method

known as the "Single" procedure for the steepest-ascent method described

by Brooks [3 ] in searching for the supremum on the right-hand side of

inequality (2.14). Some preliminary results were given in reference [2 ].

An early version of the computer program to calculate the lower bound

of inequality (2.14) was described in detail in [2 ]. In Section B3 of

Appendix B of that report, certain modifications to the program were

proposed with a view to providing greater efficiency of table generation,

and to dealing with certain convergence problems that had been troublesome.

Several of these modifications have been implemented. In addition, sub-

sequent difficultles encountered in the investigation have necessitated

further changes and improvements. The following additional features have

been introduced into the program described in [2 1:

Storage of tables of auxiliary functions, g(baac). The most time-

consuming feature of the program is the numerical integration required to

evaluate the function g(b;a,c) given in equation (2.15). It is therefore

desirable to store values of this function as they are generated, and to

use table look-up and interpolation as much as possible in subsequent cal-

cu lat ions.
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The previous version of the program was modified so that the tabu-

lated values are stored efficiently. The tabulated values corresponding

to different values of the parameter o are maintained in separate card

decks. Thus, on any particular run, only those decks for the a-values

used in this run need be read in. This permits all calculatiuns to be

carried out in core. At the same time, the searOh procedure was improved.

This feature t.creases the efficiency in two ways. Firstly the

same grid of tabulated points can be used for all values of sample

size n, for the same value of the distribution parameter O. Considerable

overlap occurs in the maximum seeking paths. Secondly, if sufficient

convergence has not been obtained by a specified number of steps of the

procedure prior to cut-off in a given run, the search can be continued

from this point at the next run, without the need for recomputing values

of the g-function. Furthermore, if nuunerical procedures are ever applied

to the Fraser-Guttman-type bounds (to be discussed in the next section),

¶ the tables already generated for the present procedure will cover a sub-

stantial fraction of the numerical integration required.

The table-interpolation device was found to be of greatest use in

the region p < 1. In the region p k 1, exact calculations were needed

immediately. This is due to the fact that some of the quantities become

critical in this area, and the interpolation, with interval 0 %I for both

p and h, is of little help in the search procedure and can, in fact, lead

away from the value sought.

In cases where the interpolation method was used, at least one

iteration was perforwned using the exact method to conclude the search

procedure. This duq not help appreciably in determi•ning the (p,n) values,

9



but does provide an exact value of the variance bound at a point very

close to the true maximum.

It should be noted that the exact mcthod is vcry much more time-

consuming than the table-interpolation method (by a factor of 10 or

greater).

Reduction of step-size. The original program involved a maximum-

seeking method for the (p,h)-combination at which the maximum value of

the bound occurs. A 2x2 design is used at an arbitrary starting point,

and the gradient of the surface is estimated. A step of predetermined

l'nath is made in this direction, and the step is repeated as long as

improvement in the bound occurs. When no improvenent occurs, a new 2x2

design is used. The question of when the step size should be reduced

was treated as follows: If the gradient previously used was less than

a predetermined constant, 0.1 say, the new step size is set at 0.6 of

the old. If not, then we continue with the old step size.

This procedure has been improved in two ways; first, the new

gradient is used to determine whether to reduce step size, and the pre-

determined constant is now an input variable and hence can be made de-

pendent on the sample size n. I: hPs been conjectured [ 2 ] that for

larger values of n, the value of the bound can be expected to be of the

order n"-1" It therefore seemed reasonable that the value of the

gradient at which we start to reduce step-size be made proportional

to this.

The second improvement involving a reduction in step size concerns

the possibility of the sequence of steps crossing itself or going roun4

in a circle. This was observed to happen in early runs. It is reason-

able, under these circumstances. to suppose that we are near the

10



maximum, and that step size should be reduced, regardless cf the current

value of the gradient. To implement this, we examine .he six previous

trial points at every stage. If our current position is within the

current step size of any of these, we reduce step size by the factor 0.6.

Boundary constraints. The h parameter mnst not be permitted to

becomc negative, since the result of inequality (2.14) is then no longer

valid. If the next step of the search procedure would suaki, h negative,

I we refrain from taking this step, and insteid perform the 2x2 design

segment of the procedure, centered on our current position, after re-

ducing our basic interval by the factor 0.6. Furthermore, if at any time

the 2x2 design overlaps the h-axis, we reduce the interval similarly,

and repeat the operation. A similar procedure is followed when the p

parameter nears its boundaries, namely p > 0.5, and p < [2(l--i)]" in

the event that c < 1.

One further case in which interval size is reduced should be noted.

This occurs when the values of the bound calculated at the corners of

the 2x2 design all fall below the value at the center. This means that

a maximum (or at least a lncal maxitmun) occurs within the design square,

so we reduce interval size and repeat the procedure.

The case of p - I. The numerical method "sed to obtain the bound is

also applicable, of course, when p is set equal to 1 in the event that

a > 1/2, i.e., when the Chapman-Robbins bound is applicable. The re-

sulting bound, in general, will not be optimal, but it is interesting

to see what effect this modification has.

Since p is fixed, we can no longer perform interpolation in the (p,h)

plane. It would be possible to perform interpolation in one dimension,

namely, along the h-axis, but it was decided that, in view of the limited

amount of computation proposed for this special case, it would not be
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worth the trouble of writinC special routines for this purpose. Thus

the function g(b;a,c) was calculated directly in each step. The

search procedure was carried out using the routine "LARMAX" (Linear

Maximization). We start with a suitable value of h, and a suitable

step-size, Ah, say. The variance bound is calculated for three values

of the h-variable, viz., h - Ah, b, and h + Ah, and for two intermediate

values, h - (112)Ah and h + (1/2)Ah. This pattern of five points is

preserved throughout the search procedure. The range is then extended

in either direction, and/or the step-size is reduced, in such a way that

the m#xinmum is determined to any required degree of accuracy. This will

lead to the maximum value of the bound, assuming that it is unique.

Overflow precautions. In computing the expression on the right-hand

side of the inequality (2.14), care must be taken that none of the quanti-

ties exceed the floating-point capability of the computer (approximately

10 38). The following feature provides for this. The critical quantities

are r 2 n(l•-rlsb) in the numerator, and rn(or), and the linear combination

of S of two arguments and rn( 2Ia-2p-*+2 ), in the deneminator. These

five quantities are calculated by successive multiplications, 2n or n

times, as appropriate.

When any of these three factors (or in the case of the linear

combination, any of its three components) exceeds 1015 during the multi-

plication loop, the factor is multiplied by 0.1 a sufficient number of

15
times to bring it below 10 . By keeping track of the number of times

this is done, we can re-insert the factor into the final result, or, if

this would exceed capacity, print the factor separately.

The final form of the computer program used in the numerical investi-

gation of the bound of inequality (2.9) is given in the Appendix. Included

12



in the Appendix are a brief discussion, including a flow-chart and

sample input sheet, and a complete listing of the FORTRAN statements

of the program. The program, in its present form,has enabled us to in-

vestigate quite efficiently the lower bound of inequality (2.14) for

several values of n and several values of 0. The next section is con-

cerned with the results of this investigation.

We note that some possible improvements for general search tech-

niques in two (or more) dimensions are suggested by experience in this

problem. To our knowledge, these have not been considered in the

literature. In particular, the pEper by S. Brooks [ 3 ], on which this

technique was based, does not consider them.

The difficulty arises in the arbitrary choice of the initial step-

size, or in its arbitrary reduction by a factor of 0.6 when a search

path reaches a "dead end" (i.e., no improvement over the previous maximum).

It will be recalled that this reduction is effected only if the current

gradient of the path is less than an assigned constant. However, it can

happen that a point quite close to the maximum is reached, and the next

step takes us away from this maximum. To avoid this, it is suggested

that we examine the function values vl,v 2 ,v 3 ,v 4 for the sample points of

the experimental design, and compare them with the value v . already

attained.

If all values v,, i - 1 to 4, are less than v0 , then obviously we

must have a local maximum in the vicinity of the point with value v 0.

There is no point in taking a step based on this configuration, since we

13



should then get further away from the maximum. The design should thus

be reduced in size unti; at least one point has value v exceeding v.0

Alternatively, the design could be compressed until all four points ex-

ceed a fixed fraction (e.g. 0.9) of the value v 0  The former procedure

was found to be effective in this study.

2.3 Numerical Results

A number of runs were made for sample sizes 1, 11, 21, 31, 41, 51,

71, 91 and 131 and for Q - .25, .5, .51, .60, .75, 1.00, 1.25, 1.5, 2.0,

3.0, and 5.0. As indicated above, the calculations proceed as foilows.

For each Alpha-value, a library deck is read in. This provides a tabu-

lation of values of two functions, g, and g2, having p, h as arguments,

for values of p, h in the range p = 0.0(0.01) 1.50, h - 0.00(0.01)...

without limit. The calculations for various sample sizes are then made,

using tabulated function-values where available, and when appropriate,

and computing and storing them when they are not. When all calculations

for this value of o are complete, the tables are sorted internally, and

a new library deck is punched out on jine.

Substantial library decks have been accumulated for most of the

parameter values; in fact, these tabulations cover most of the grid points

that would be needed for any sample size calculation in the rarge I to 100,

for the parameter values listed. An indication of the saving in computer

time was provided by comparing runs using substantially complete library

decks with those where no prior values were known. A rough estimate is

that run time is cut to one fifth or one tenth by the library deck feature.

All of the results to date are summarized in Table 2.1. The table
2

includes the maximizing points nh and p, n times the maximum and, for

a '- 2, n times the maximum. For completeness the table also gives

14



TABLE 2.1

SUMMARY OF VARIANCE BOUND NUMERICAL RESULTS

Sn nh p n2Var n2/ A Var

.25 1 0.8006 0.540 0.0757 .0757

11 0.2756 0.624 0.7573 (-7) .1345
21 0.1036 0.626 0.3414 (-11) .0027 (-1)
51 0.0264 0.656 0.4217 (-22) .7420 (-12)
91 0.0036 0.660 v.2452 (-30) .1392 (-18)

.5 1 0.8230 0.592 0.2960 0.2960
11 0.5090 0.764 0.3430 (-2) 0.4150
21 0.1395 0.886 0.2011 (-3) 0.0887
31 0.1000 0.970 0.1568 (-5) 0.1507 (-2)
41 0.0101 0.999 0.4039 (-5) 0.6790 (-2)
91 0.00015 0.999 0.9489 (-9) 0.7858 (-5)

.51 1 0.8280 0.589 0.2798 0.2798
11 0.5119 0.775 0.4312 (-2) 0.4312
91 0.00051 0.999 0.1360 (-7) 0.7906 (-4)

.60 1 0.8434 0.605 0.3670 0.3670
11 0.6504 0.824 0.0220 0.5381
91 0.0749 0.9988 0.3356 (-3) 0.1376

.75 1 0.8475 0.6325 0.5221 0.5221
11 1.0956 0.8842 0.1257 0.6222
21 0.8481 0.9423 0.0802 0.6112
31 0.7093 0.9426 0.0631 0.6235
41 0.7786 0.9849 0.0525 0.6246
51 0.2297 0.9959 0.0486 0.6658
91 0.5550 0.99898 0.0322 0.6520

131 0.4430 0.99900 0.0286 0. 7379

1.00 1 1.1101 0.6761 0.8120 0.8120
2 1.3468 0.8076 0.7161 0.7161
4 1.4745 0.8993 0.6780 0.6780
6 1.5158 0.9324 0.6670 0.6670

11 1.5521 0.9630 0.6578 0.6578
16 1.5653 0.9746 0.6545 0.6545
21 1.5722 0.9806 0.6528 0.6528
26 1.5763 0.9843 0.6518 0.6518
3. 1.5792 0.9869 0.6511 0.6511
36 1.5812 0.9887 0.6506 0.6506
41 1.5827 0.9901 0.6502 0,6502
46 1.5839 0.9912 0.6500 0.6500
51 1.5849 0.9920 0.6497 0.6497
56 1.5857 0.9927 0.6495 0.6495
61 1.5863 0.9933 0.6494 0.6494
S1.5936 1.0000 0.6476 0.6476

• (-x) indicates that tabulated vatue is to be multiplied by 10x.
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TABLE 2.1 (Continued)
2 2f•

n nh nV U Vat

1.25 1 1.2396 0.7103 1.0981 1.098

11 1.9500 1.0000 1.7246 0.662

21 2.1370 1.0075 2.1034 0.622

31 2.2417 1.0081 2.3963 0.607

41 2.2726 1.0006 2.7089 0.613

51 2.3000 1.0000 2.978 0.618

71 2.5606 1.0012 3.3058 0.601

91 2.6000 1.0000 3.6463 0.600

1.50 1 1.3477 0.7409 1.3784 1.378

11 2.1931 1.0158 3.1642 0.640

21 2.4735 1.0189 4.3750 0.575

31 2.6792 1.0170 5.3629 0.544

41 2.8511 1.0198 6.2372 0.525

51 2.9558 10144 7.0321 0.511

71 3. 1779 1.0117 8.4537 0.492

2.00 1 1.7470 0.7969 1.8821 1.8821

11 2.4240 1.0279 6.8506 0.629

31 3.0291 1.0229 14.2368 0.448

51 3.4251 1.0186 20.644 0.410

91 4.1235 1.0061 32.158 0.353

3.00 1 2.3361 0.8538 2.7622 2.7622**

11 2.4934 1.0391 15.8955 1.445

21 2.9280 1.0247 27.5487 1.310

31 3.2298 1.0104 38.6824 1.248

41 3.4855 1.0010 49.3972 1.205

51 3.5928 1.0012 60.2271 1.181

5.00 1 2.9591 0.9139 4.45 4.45

11 2.419 1.022 36.42 3.31

21 2.611 1.018 66.79 3.18

* n Var from ihis point on.
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values for a = 1 obtained in a previous study [ 2 ]. Although a few

entries of the table may not be completely accurate, some general

patterns are apparent. The results are of considerable interest,

although not all are as had been expected.
2/Ia

For 1 1 a -• 2, the bound times n appears to be approaching a

constant as n increases. For t <- 1, however, no such general conclusion

is apparent. It is quite evident that the bound is of smaller order

than n2/4 for the cases run witha '1 .6. For o - .75, however, the

curve again appears to be approaching an asymptote. These results are
2/01

shown graphically in Figure 2.1, where n times the bound is plotted

for a - 2 and n times the bound for a : 2. Their apparent regularity is

an interesting feature of this pattern of curves.

Note that our investigation has included some values of a c3rre-

sponding to the regular case. For Alpha greater than 2, we know that

the Cramer-Rao bound exists and that the variance of the maximum likeli-

hood estimator asymptotically achieves this bound. Thus the value of p

for which the maximum is attained in the above should tend to 1 as the

sample size increases.

This appears to be happening for at -3.0 and 5.0. For finite

samples, however, the Crame'r-Rao bound is uot attained; this is because

the criterion

(2.16) log L, A(a) ft-al,
8 a

where a is the location parameter and A(a) is any function of a alone,

is not satisfied for the Pearson type III distribution. (See Kendall

and Stuart [8, Section 17.17].) Hence we might expect to do better than the

Crame/r-Rao bound for finite samples; the values given in Table 2.1 do,
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in fact, yield such bounds. This follows since (in the regular case)

j the Cramer-Rao bound is simply (•c-2)/n (recall that we have taken 0 - 1).

For Y - 3 and 5, respectively, the laound times n becomes simply 1 and 3.

The tabulated values exceed these in both cases.

It would also be interestirn to sen whether these improved bounds

come close to the actual variarce for maximim-likelihood estimators in

the regular case. This would establish the efficiency of these esti-

mators for finite sample sia.es.

Some runs have also been ma'le for --1.5 with p set equal to 1.

This provides a comparisor with the Chapman-Robbins bound. The results

of this study are given in Table 2.2. It is interesting that there is

apparently little improvement in -he bound by the introduction of the

variable p "rnd thaL furthermore as n-- • the two bounds appear to be

identical. (Recall that this result had been proven only for a - 1.)

TABLE 2.2

COMPARISON OF MAXIM•M VARIANCE BOUNDS ATTAINED

WITH p SET EQUAL TO 1, AND WITH p UNRESTRICTED

-=1.5

p Unrestricted p Il

2 ar 2/or
2ch R n Var nh n Var

1 1.35 0.741 1.3784 - -

11 2.19 1.015 .6397 2.1596 .6386

21 2.47 1.019 .5743 2.4244 .5719

31 2.68 1.107 .5439 2.6195 .5404

41 2.85 1.020 .5245 2.7556 .5210

51 2.96 1.014 .5113 - -

71 3.178 1.012 .4930
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In Figures 2.2 and 2.3 the values of p and h at which the maximum

is attained are shown for the non-regular and regular cases, respectively.

The solid lines correspond toa - 0.25, 0.5, 0.6, 0.75, 1.00, 1.25, and

2.0, in Figure 2.2 and to a - 3.0 and 5.0 in Figure 2.3. The dashed

lines correspond to n = 1, 11, 21, 31, 41 and 51. (To preserve clarity,

the lines for sample sizes 71, 91 and 131 have not been drawn). The

scale used in Figures 2.2 and 2.3 is a logarithmic one on which 1.03

corresponds to unity on the log scale and each decrement of 0.01,

reading from right to left corresponds to equal increment on the log

scale. This transformation provided greater clarity in th- region

where p > 1.

Not all the points plotted correspond to cases in which the maximum

variance bound has been very accurately obtained (say to within .000001).

Most of them, however, are quite accurate. In a few cases, in which it is

clear that we are nowhere near the true global maximum, the point has

been omitted. For example, this is the case with o - 1.25 %nd n - 41

and 51.

The curves for a - .25 and .5 are restricted to the regions p - 2/3

and p ' I, respectively, according to the theory. In fact, it is seen

that as the sample size tends to infinity, the (p,nh) point tends to

(.666...,0) and (1.0,0) respectively. In the region .5 i o 1.0, it

is conjectured that the limit points occur on the axis p - 1, the curves

for e - 0.5, 0.6 and 0.75 suggesting this. It is known that the curve for

S- I tends to (1,1.5936), again a point on the p - I axis, with increasing

n [2, Section 3.1.11.

For I I a LS 2, the curves extend further into the p > 1 region, attain

a stationary point for p, and then tend asymptotically to the p - I axis.

For ' > 2, the curves initially have a negative gradient, and then
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Figure 2.2

Maximizing Values, (p,nh), for Variance Bounds in the Non-Regular Case.
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behave as in the case I !Cr L 2. However, this family of curves does

not conform to that for a f 2. There is thus an apparent discontinuity

atf =Y-2.

The dashed curves for constant sample size n are quite consistent

for • values less than or equal to 2. For G > 2, the points for n - 1

fit in well. The points for sample sizes 11, 21,..., however, do not

conform to the main family.

Some additional numerical work along the above lines may be con-

sidered. In any such additional runs, the curves of Figure 2.2 can be

used to provide quite accurate initial values of p and nh.

2.4 Generalization of the Bound

Application of the bound of inequality (2.10) to the Type IlI

distrihution is analytically quite straightforward, although some

additional numerical difficulties can be anticipated. We consider only

the case r - 2.

It is known that the bound of order 2 will be an improvement over

that of order 1, i.e., over the bound discussed in the previous section.

We shall see that, in aidition, most terms of the second order bound

can also be expressed in terms of the integrals g given in equation (2.15).

Thus the bound can conceivably be investigated numerically with relatively

considerably lcss programming effort than was required in the original

such investigation. Whether or not a further investigation of this

type would be worthwhile has not yet been deterv'ned. This could be an

interesting area for further research. Should a numerical study of the case

r - 2 be conducted and found to yield results suggesting & cimsiderable

improvement in the bound, values of r in excess of 2 would also be con-

sidered.
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We proceed with the construction of the bound for the case r - 2.

The second order bound of the type given in inequality (2.10) is

(2.17) V(t) s-uup h 2/k2nS . r[-cIfp(x,a)+(cI-c
2 )fp(x, a+h)+c 2 fP(x, a+2h) 32ýj' f(x,a) dx

where f iý the Joint density of X1 ,...,Xn, each following a Type III distri-

bution, k is given in equation (2.13), and x - (x-,...,xn).

To maximize with respect to the c 's, we use the fact that c2=I-c 1

and differentiate with respect to cI. Write

(2. 18) fu = [f(x,a+v)]U.
v

The maximizing value of cI is determined from the equation

(2.19) 0-- f..[-, +(c-f+(1C) fP p] 2 f-lndxi

1 0 1 cLh + 1  2h] h 2h

We find

(2.20) c 1  2 (fp2fP+Ep) 2 f fldxi

The integral in the denominator of the bound (2.17) therefore becomes

(2.21) .. 2 2. clf 2 +2c,I1-2c )fpf1-2c (-c )fppfp+(1-2c ) 2 f 2p

1 0 - 1 0h 1 1 02h1
2 f1.. 2 hI+flfP/1 )2f2p1 -1Tldx

1 f1c h -2h2cl - f2h +

C I j,..f 22p-fpfp.2pfp +4.f2 fpf php+f2p)f-fldx

1 0 0 h-0 2h- h h 2 2h 0

24



+ 2c j.. i(fpfphfpfp 2 fh2f+3fpf _fp) f-j~fdx1

+ f* ... (f 2p_ 2fpfp+f2)f- r~dx

f ... (fp-fp )2 f - ndx- ~ ,~ 2hffhf0 2h 0 1dxJ
fp) 2f1Pdf... f(fp-2fp+~ 0.1x

(In all of the above, h is positive and the limits of integration are

i

Equation (2.21) involves six basic integrals, including all second

degree combinations of the form fPfP*, where v,v' - O,h,2h. Except for
v v

const.ants, these are

(2.22) ~f c fl H(X -a) ( 2 p-1 ) (o 1 ) expt -E(2p- 1) (x 1 a)/O] fldx, -nr pl (2py.. 2p.-42),

a..h ah flx

(223.24 f O.. G (x 1-a-2b) 2p('t-1 1 exp( -2pEZ(x 1- a-2h)/O) Jd
a+2h a+2h fl(xi-a)l 1exp(-E(xi- a)/Pl £

. Pn e nh/0 gn (2(p-l)/0,2pCt-)'

CO cc I[(x -a) (x -a-h)]P(ct-)exp(- J2 E(2x -2a-h))
(2.25) f -*f i 1 0 I1dx

a+h a+h f (x 1-a)ý 1 expf-E(x 1 -a)/O~]
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T O.e. "L' ft(xi+h)P- Ix.] exp " E[ (p-1)(x,+h)+px 1 J) fIdx,

-U pe(1-P)flhl 4  _ h, JL, (l-p)(6-1)),

(2.26) C n[(x -a-2h)(x la)]P(a-l)expt- 2 E~( -a-h)J

fCxIB i -Ildx
11(x i-a)ý- I expt -E(x -a)/Oj

pne 2 (1-p)nh/O / n(2(2p-)lJ _. (l-p)(a-1))

and

S• l[ (x- a- h) (x- a- 2h)] P(C" l)expt - J2F,(2xi-2a-3h)}

(2.27) f ... Bl

&2h a+2h 1 (x -a) exp[-Z(xi-a)/0I

"a (2-Dhnh/B C Fp 2p-lkI p:~ I~p~ E~X
= e . l~x Pi 2-(X h) (x +2 h)- B-' e i l dx1

0 0 L" (2-p)nh/S 0" n • i+ ýJn

. pe(2p~n/Bg•2h•0 I pt'-, 0B h),

say, w•ere

(2-28)~ P 2 Iof- 2 p--•+2
(2.28) " 2p-p-+

Note that the last integral is defined in terms of a new special

function, namely,

(2.29) gI(bacd) 0 [Y(Y+d)]ac(y+b)'Ce-Ydy.

All other integrals involve only the function g. For increasing r,

similar additional special functions are introduced. The exact form

of these has not been investigated.
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3. APPROXIMATIONS TO THE PITMAN ESTIMATOR FOR THE

TYPE III DISTRIBUTION

Previous results had led to the conjecture that the mini=u= ob-

ser-,ation, YI, is an efficient estimator of a, or, at least, is "nearly

efficient" in the sense that the order of magnitude in n of its asymptotic

variance agrees with that of the optimal bound. As noted previously,

he variance of Y is of crder n The numerical results given in

the previous chapter suggest that the bound livestigated is &Xn

only for 1 -i a - 2. The unresolved question with regard to the remainder

of the range of a is whether the lack of agreement in order of magnitude

is due to inefficiency of the estimator or sub-optimality of the bound.

(A third possibility, of course, is that the numerical results are

anomalous. Th~s could result, for example, because of convergence to a

local maximum which is orders of magnitude smaller than the global maxi-

'mum. There is, however, no evidence to support such a conclusion.)

Assuming that the numerical results are correct, one suspects, since the

bound ultimately decreases very rapidly with incrcasing n for a < 1,

that the difficulty is inherent in the bound, but the question remains

open. In any case, the knowledge that Y1 is not even sufficient other

than for a = 1, along with the possibility that it is inefficient even

with respect co order of magnitude in n, provides motivation for an in-

vestigation of alternative estimators, Alternatives of the type suggested

by the work of Pitman [Il] are the subject of this chapter.

3.1 Pitman's Estimation Technique

The estimator introduced by E. J. G. Pitman [11] is "optimal"
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according to several criteria of optimality and under quite general con-

ditions. Pitman proved that it is unbiased, minimum variance among all

invariant estimators and it has been shown by Stein [12] to be admissible

under mean-square-error loss. This estimator is therefore "best" under

almost any reasonable definition of the term.

The basic Pitman method, in general, is as follows. Let XI,-, Xn

be independent and identically distributed random variables with dis-

tribution function of the form F(x-Q) admitting of a density F'(x) = f(x).

Suppose f(x) - 0 for x < @. Let Y1 f Y2  . Y nbe the corresponding

order statistics.

The Pitman estimator is

Ca n
! i1•if(Xi-9) dQ

(3.1) (p(Xl,...,X ) L - = i
n CO

H Uf(X -Q) dQ

Note that, because of the assumption Xi > 9, the limits on the integrals

in equation (3.1) actually extend only to the minimum observation, Y1 "

Furthermore, chis expression can be written in terms of the Yi as well,

namely YI Sn
ý.= 9 U~lf(Yi-Q) dO

(3.2) Y (YI'"''Yn) = Y1 n
1I1 f(Y.- 9) d@)

_CD i=l i

Substitution of the Pearson Type III distribution into equation (3.1) or

(3.2) yields integrals which cannot be expressed in closed form, An

approximation to the estimator must therefore be constructed in order to

pursue the analytical investigation in this case. The remainder of this

chapter will be devoted to a series of approximations based upon an

alternate representation of the Pitman estimator for densities bounded

from below.

28



3.2 Approximations; Application to the Type III Distribution

An alternative representation of the Pitman estimator which immediately

suggests a relatively simple approximation is obtained as follows. Let

9 - YI - X and Zi = Yi - YI for i = 2,..., n. In terms of these vari-

ables, the estimator becomes

.(Y- X)f(() IT f(Z +X) dX

j f(k) i 2 f(Zi+X) dX

j OXf(X) Rf(Z +X )
0 O i=2

Jf(X) nl f(Zi 4 ) d
0 i-2

= YI - EtY I!Z2""'Zn'Q = 01.
1 1 I2 Zn" )

Thus the estimator can be expressed as the difference between Y1 and he

regression of YI on Z2 ,... ,Zn. The essence of the approximation to be

developed below is to restrict consideration to a fixed number m < n

of the Z and to use, instead of the above, the estimator

A

(3.4) 0 = Y - E(YllZ2''''Zm

where E [Y 3Izz...,Zm} is the best linear regression of Y1 on Z2 ,... ,Zm.

We propose to investigate the asymptotic properties of estimators of

this form for the parameter a in the Pearson Type III distribution.

Without loss of generality we may take

U-I
(3.5) f(x) x e= x-! 0

O x<0.
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The determination of E requires a knowledge of the first two moments and

the second order cross moments of Y "...,Ym" Since the exact forms of

these are quite complex, we again seek approximations. Approximations

to these moments for large n (and fixed m) are determined as follows.

We may write

(3.6) Y- M F" (U` )'

where U 1* U.2  U are order statistics from a uniform distributionwhr 1 < 2• . n

on (0,1). Since

(3.7) F(x) tcyO -tdt,

we have, for x sufficiently small so that e 1,

'? 4) F 1(u) =-[ar(r)u]1/V

[ur tI~ +l)] c

It is easily seen that the density, say hi, of Ui is

(3.9) hi(u) M i(7)Ui-l(lu)n-i 0 < u < 1

W 0 otherwise.

It follows that

(3.10) rtir 4U r U(,+l)] r/c,

1 /cr/ai 6 I -l+r n-id

[ :r(,+)] r/ir(n+l) r(i+r/1u) r un-i+ .

r(i) r(n-i+/) r(n+1+)/r1)

To facilitate the ensuing calculations, it is convenient to make

one final approximation. Using Stirling's Formula, we have, for Igcge n,
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(3f-11b lo (n-Ib-i) - (rsc-1) + (n+c-1) log(n+c-1)

- (is-b-i) log(n+b-1) + (l/2)log(n+c-l)

- (l/2)log(n+b-1)

- b - c + (n-l)log t~--l) + c log(n4-c-1)

-blog(n+b-l) +(1/2) og(c-1)

- b - c + (n-1/2) log (+ c- + c log(n+c-1)

-b log(n+b-l1)

b -+ n-12) I-b- + c log(n+c-l) -b log(n+b-l)

-c log(rk+c-1) - b log(n+b-1).

Thus

(3.12) r(mi-c) *(rk.c-1)c

r (n+b) (n-b- 1) b

Applying this to the right-hand side of equation (3.10), we obtain

(3.3) EY - E(cy+1)]rl r (i~r/o) n______
(313 r(i) (n 1i) 1+r /ot

M01+__/ r (i+r/

Similarly, since, for i < J, U i and U have joint density

we find thatfor i,j small with respect to n,

(3.15) EYn.[ r (ot+)1 2 Ice jI jv ui-l+l/a' vl/G (v-u) -- (l-v)n- dudv.
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Making the substitution u - tv in this expression, we obtain

(3.16) Ei• n!f (c,+ 1)]j 2llon I I I v j-l+2/a lo v)n-j ti-l+/a •( -t)ji-ldtdv
•n 0 0

. n'[r (,,+l)] 2/ r(J+2/0) r(n-j+l) r(i+I/a)r(j-i)
(i-l)!'(J- i- I) .(n-jý r)' (k+ 1+2/AY) 0J+I/0f)

.[.r ot+o)] /o r(9±+1 r(1+2!d) r(i+l/o)
F(i) Fn(n+1+2/2) r(+la)

)2/1 r_(_i+______) r (J+2 ki) .
- i) r(i) r(~l/()

It follows from equation (3.13) that

(3.17) V(Yi) = (r(n+ )) 2/r 
2(,

and from equations (3.13) and (3.15) that, for i < J,

(3.18) Cov(Y•)2/ r(i+l/ct) F(1+2/1) r(]+t/ou
( 2Y¼'J)/"r(i) LF (J+llO) F(J) "

To determine the best linear regression of Y on Z2 ,... ,Zm, we
m

minimize the quantity EfY -Clm-iE2 Cim Z 12, Clm being the constant and

c 2m,...,cmn the coefficients of Z 2,...,Zm, respectively, in the mth

order approximation. Thus we determine

m m 2

(3.19) inf E(Y - Cm E c i2 2 - inf E[Y 1 lm - cim(YY " Y )})
li,..imi1m lm", ,i

m m 2
minf E( c -c Y

c m ,...i n 2 , i

Equating partial derivatives to zero, we obtain

m m
(3.20) 0 - c - (1 4iEc )EY +) c EYIurn i=2 ii Ii.2 im I
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and for j - 2,...,m,

(3.21) m 2 2 m
)0 (1 + c )EY + cjEY + c 2EY Y

i.2 im 1 Cj + Cjm 12 Ji
j i

m

-C1 EYI - EYIY (1 +iE 2 c)

m

"-Ec EYIY + c EY.
i-2 im 1 1 lm j,

Thus

m M
(3.22) Y+ECE c Y

C1  E 1 +Xc) irnE 1 i.2 im i

and c,. .c are obtained as the solution of the system of linear

equations M M
(3.23) 0 - +2ci EY 2 + Cm - 2(EY C (EY

cM M 1i 2  iY j EY i=2 Cim(EI)

m (1nm m

+ E c EY EY - + E c EYIYj E EYY
i=2 im I i 12 1-2 im 11

E 12 2 iEYEYj

+ i +m 2" Cm [EYi' •' 12 _ (EY1)2 + Ey1EYJ _ Ey1Y il

+ i Cim i YJi EY iEYji + EYI1EY i - EY1IY

for J- 2 .... m. With the notation

(3.24) V, - Vi - V(Yi)3

(3.25) V ij CO( Cov(V i.Y
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equation (3.23) becomes

m r m

(3.26) 1. + i rac / L 1 l- j +1-2 Cim(Vij-vii) - 0.

Thus

m
(3.27) E c (V V ) -Vi-2 im(VI VIi JVIi- i "Vij -V

A matrix representation of the general solution of this system of

equations is quite straightforward. Note that

(3.28) V1 - V1 j + Vtj - ViI - E(Y 1
2 - Y1 Y1 + YiY YY 1)

"[-, )2- +EYiEYj _ Ey1EY

- E(YI-Yi)(YI-Yj) E(Y 1-YI) E(YI-¥Y)

- COV(Y 1-YiY1-Yj)

- Oij P

say. Thus the system of equations (3.27) can be written

M
(3.29) 12 Cl MUij iVj - VI

say, where k M V1 - VI, or, in matrix notation, as

(3.30) A mc - ,

where &M is the (m-1)x(m-I) matrix with elements Uij, cm is the vector

of c 's, and k in the vector of a 's. Thus the matrix representation
im j
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of the general solution is

(3.31) c = A-1 X.
m m

An explicit solution of this equation, expressing the Clm as functions

of c, has not been obtained for general m. It is interesting to note

that for the Type III distribution, since the quantity (r(f+l)/n)2/6

factors out of each V and this is the only function of n involved in
ij

Vii, the vector cm is independent of n. We next consider the explicit

results for m - 2, 3 and 4.

3.3 Approximations of Small Order

For small m, it is possible to express the cim explicitly as

functions of n and O. We begin with the case m - 2. For m - 2, equation

(3.23) yields

(3.32)-EY2 + (EY)2 + EYIY 2 - EYEY2

22 I2 + 22 Z - (EY1)2 + 2EYIEY2 - 2EY IY2 -(EY2)2

-V1 + V1 2

V1 + V2 - 2V12

where the notation is as in equations (3.24) and (3.25). Thus, from

equations (3.17) and (3.18),

(3.33) c22 {- r(1+2I "2) + r + (1+/) 2+1/) r(2+1/,)] }

Fr(l+21t) - r 2 (1+1/1) + r(2+2/o) - 2(2+l/0)

-2r(++lF) (2+2/) r(2+1/a)j}- 2'(i I r• L(2+1l/C,) 3

= {-t(1+2/c0) +.r 12 (l+1/i_) + -- r(2+2/i) -r (1+1/cr) r(2+1/oe)-
a1
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r(1+2m) ' 2 1

2 1,) F2(1+/ar) . Z•-• (2+2/ar)

+ 2F(i+11/c) r(2+1/O)}

& r(1+2h) r 2(1+1//)

-7~+/a)-- r2(1+1/a1)21 r(1+2/a,) . 2(.l/t

and, from these and equation (3.22),

1/ct ýl ( 1/+1
r£Z Y •/•r(1i+1/ar) + " r (ar+1)N,,1

(3.34) c1 2 - n l + c22 \, n r(1+1/ar)

- Q •n--l))' r(2+1/a')]
"12 n ,11 1+22• 1F (+1a

+ 1.0- r'+1/ar,)

- n rI'(1+1/a,)(1 - .a0

For m = 3, the solution of the system of equations (3.27) is

c2 i (V -2Vl)(V1+V-"2V1) - (Vl3"V )(VI+V23"VI2"V23 D '121 1 313 V13 1  ~1 +V23 12 13J

(3.35) -1 3 3(V 1 2 -V 1 ) - V2 3 (V1 3 -VI) + VI(VI-V

S 3[V(V13-Vl) - V2 3 (V1 2 -VI) + V1 2 (V12"V13),

L33 D 3 ~1I 123  -j

where

(3.36) D3 = (V1 +V2 -2V 1 2 )(V I+V3-2V1 3 ) - (V1 -V 1 2+V2 3 -V 13 ).

To express these resI.s explicitly as functions of Ca, we use the

notation ri - r(1+i/a), and kn ýr(v+l)In] . We find. from previous
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results, that

2[ r r 2]i
V1  [ 2 1

v2 k 2[ (,+2) 2-(Ot+1)
2 r 2-1V2 " n L t F2 2"

(3.37) V3 -" L a z r 2  4ot 4

V1 2  n L (ct+l) a 2

S(+),+) (2+1)

V13 +1n r2 0t+ - 2y 2

v 21 2(Lc+l)(Oc4 2>)r -eo+1) 
2 (b+) r 2

V23 "n a (2cY+l) 2 2cr3  1

Note that, from equations (3.37),

V2 3  a 13

(3.38) V2 -(4l) v
2 V12

v (+l) (2ot+1) = (2c V23.
V3 20 •2 V13 2 3

Thus

D 3c 23 V3 (V12-) - v3 2 (V13 -V 1) + V13(V13-V12)

SCt(+1)(2y+1) -( "a)9.V. (V.V) + v

2: 2 
V13(V12 V -V 

1

Vr (c,+l)(• 2+1) (V , (0+1( + (Vv3-2)

-V 1 3 L 2[12 (V1 2 -V1 . c (V1 3 -V) 1312

V13 +(-,rb+l) v - v
1 0 22 2 12 22 1
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(3.39) - F-2(a+2) + Lb +2) L;+ ( __ _+_)_ +

n- ir - I
2c2 (2r+() ) (32 3

- +k (3V )(ot+2) A11 - -2()+ o •3 30f2 1

- kn 2 V131 "(°Of -• i) - I
•2a(r+l) (2cY+) 2J

n 2 L_ 2 +) 2 2 1

Similarly,

(3.40) D 3c k 4 --F - ) +- -- r 2
3 f - (•+l)2 ( •+ 1) 33 n i .2

To express D3 in terms of a and the r,, we determine

(3. V +V 2V12 • V1 +- -V 1 -a

1 2 1 2 2V 12 1 V1?

2 1 c(c+l) g 2 " - )(r+l)

ccr=k 2[ 2_ F F 2-ý
n (o•+I -7az

S imi lar ly,

21 b'+2(3u+1) 2, 2-1
(3.42) V1I + V 3 2V 13=k n 2i b 2+ l ,2 - 4ot ) r

nr (2•+1)

and

(343) V Vi- + V2 k 2f• 50+4 - b+r 2].
"1 23 " (3l)(2+l) 2 23 " 1 "

Thus,
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J2

(3.44) D3 - (V1+V2 -2V 1 2 )(VI +V3- 2V3 - (VI-V 1 2 +V23-V13)

k 4 , 2(7+2) 2 (5c+4) 2  -2 2-n4 (_cr3(+1)(2•+1) cr2(ar+l)2(2•+l)2--

nt.32 2 2 2r2, " L~o 2C(o+)(+ 4(01+1 (2D/+I)

(3b +3Y 2+12+1- 2(159Y +1 b +4) I

S+ [ (k+1)2  (3+.)2 -• 4J21

i2f+ 6 - -o6 F2 42J

4F ((Y+2) :2 +4a+3) 2
ce L3 2 (2at+l) 2 2 265rlrJ

Hence

(a+2) r 2
2T 1

(3.45) c 2 3 = - _(-Ia) ( 2 +2) ,to23(-or+)_(30i 2- '4a+21 F2 - + r- F 2

SCt l 2 (2:Y+l) 2 2 2 1
201

and

of+2 F2 _ F2

(aC+) 2(0+1) 2 (0t2 1
( 3 . 4 6 ) c 3 3  J 0 1+ 2) ( Y2 + + 21

2 2 2 2Y 412 (a+I-)2 (2r+1)2

Finally,

(3.47) C1 3  (1+c 2 3+c 3 3 ) EY 1 - (c 2 3 EY2 - c 3 3 EY3

"k + k r- k (1+-)r I + r kr k -(24 1)(1+-±•)1r
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k ~ F o+l
ni 1 023 2Y2 33

k r (+2)( +-4Y42) +(01-1)(CY+2) (q2 ___________inkrLK 2 (C~)2(21 f2 (l 20l 2 v2 (0+)2(2+) 2

- I _.¶+ 1 + 0-1 -b+l 2 27
\ý23 4 4;z ;t-'ý 1 J

~(Y+2) (3o +4c+2) a+- r 22
Lot2 (I+1)2(y 2 22 2C 4 1i

or+2 krr

2 (i+l) (2u+l) 1 2

(pi +2 23 -14~+2) ,- l

(C~)2 (2~)2 2 -2(2 1

Similar tedious algebra leads, for the case m =4, to

(3.48) = 0a-l L(e2 )(02 2 t 2 '3
A (201+1) (bc+l)133 J

(3.49) = 2 rc-l (Ot+2) (30o+2) -~r 1 2] ?C 4
34A L (a+l) 2 120f 3'24

(3.50) 3 q c+2 r 1 722
44 A (a±1)(2u+l) (_b+1) 2 31

and

(3.51) c 1 n12

where
2 C+)(3'2 23t2

(3.52) A 2(~2( 7~2 2 3 1 ~+
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The explicit form of the general solution is not apparent from

these results. It is interesting to note, however, that for the case

1
S- 1, the above reduce tok = - c m and cim - 0 for i - 2 and all m.

Thus, in spite of all the approximations, the estimator reduces to
* -1

a = Y which is known to be the best unbiased estimator for the

case a 1.

3.4. Comparison of the Estimators

The improvement attained (asymptotically) by introducing order

statistics other than YI into the estimation procedure can be assessed

by comparing asymptotic variances. The asymptotic variance of the

estimator for general m, say Vm follows readily from the above results.

We have, with Z the vector of Z 's,--mi

m

(3.53) v* - V Y c E c (Y Y1)

- V(Y c'm Z)

= V(Y1) - 2 Coy (Y1,c' z) + V(c' Z)

M V - 2c' Coy (Y ,Z ) + c' v

= V1 - 2c' " + c' A c
m m mm

= V - 2(A- X), X + (A-1  (, A- 1 K)Ss imm m M

V A~-1 X
1

Note that it follows that the improvemient, in terms of asymptotic

variance, in the estimator achieved by introducing terms up to order in is
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(3.54) V1  V* A I m

The right-hand side of equation (3.54) is always positive (a 0 1).

Furthermore, since on the right-hand side of equation (3.53) the quantity

IL 2 /CIkn M (r(or+l)/n) factors out of both terms, it is clear that, so long

as m is not a function of n, the order of magnitude of the variance of

the estimator involving terms up to order m remains n . The question

as to whether the variance remains e(n 2/t) when m increases with n

(for example, m - n 1/2) remains open.

A small numerical study of the improvement in the variance (using

the above asymptotic results) by the introduction of higher order terms

has been conducted. Note that, given the cim, the numerical calculation

of V* is most conveniently performed by use of the relationm

* _ ,h-Ix
(3.55) Vm M1 m i

m 1 in
"M V I - X'cm

m
"iV-2 Cm(V1i-V 1

The results, for m = 2, 3 and 4 and Cr = .25, .50, .75, 1.50, 2.00 and

3.00, are given in Tables 3.1 and 3.2. Table 3.1 gives the cim and

Table 3.2 n times the asymptotic variance of the approximations to

the Pitman estimators and the asymptotic efficiencies relative to YI"

(Note that n1Il c1m are tabulated. As noted previously, the remaining

c im are independent of n.)

Some of the results of Tables 3.1 and 3.2 indicate a number of

potentially fruitful topics for further investigation, both analytical
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TABLE 3.2

Asymptotic Variances and Relative Efficiencies

of the Approximations to the Pitmen Estimator for the

Pearson Type III Distribution

a•.25 .50 .75 1.50 2.00 3.00

n 2aV1  18,107 12.337 2.0717 .54913 .42920 .34780

n2/6V* 16,464 11.515 2.0357 .52505 .37775 .26189
n 2

n2/V * 16,184 11.292 2.0224 .51278 .35168 °22259
3

n2/6 * 16,112 11.205 2.0159 .50501 .33502 .19882
n V4

V /V2 1.100 1.071 1.018 1.046 1.136 1.328
1 2

VI/V 1.119 1.093 i.024 1.071 1.220 1.563
1 3

V I/V 1.124 1.101 1.028 1.087 1.281 1.749
1 4
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and tiumerical. It is interesting to note, for example, that the Cim

apparently converge quite rapidly for fixed i as m increases (e.g.,

for a - .5, c 2 2 m .1667, c 2 3 - .07627 and c 2 4 w.07569), and that, for

another example, in the non-regular case the minimum observation appar-

ently contains the most significant information relative to the location

parameter (the asymptotic variance decreases relatively slowly as

additional observations are introduced). We plan to investigate these

aspects of the problem more thoroughly in future research. It is not

surprising, incidentally, that, in the regular case investigated (0 - 3),

the efficiency increases more rapidly as additional observations are

introduced since the maximum likelihood estimator, which is asymptotically

efficient in this case, is a function of all of the observations.

Other aspects of the problem of interest for further investigation,

particularly in the non-regular case, include the small-sample properties

of the approximation to the Pitman estimator and a comparison of the

approximations with the exact Pitman estimator. Some Monte Carlo studies

of these aspects of the problem are anticipated.

A very interesting and difficult additional topic for further in-

vestigation is the problem of estimating a when the remaining parameters,

Cv and 0, are unknown. Because of the relative rates of convergence, it

is by no means clear that a Pitman-type estimator such as the above can

be constructed in the non-regular case when all paramLters are unknown.

We plan to pursue this aspect, as well, in future investigations. The

apparently pathological case of a exactly equal to 2 is an additional

challenge of, at least, academic interest.

Finally, we plan to investigate approximations other than the linear one

discussed above. The objective of such an investigation would be the deri-

vation of an estimator which converges to (i.e., is asymptotically equiva-

lent to) the exact Pitman estimator.
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4. APPLICATION OF THE APPROXIMATIONS OF THE

PITMAN ESTIMATOR TO THE WEIBULL DISTRIBUTION

For the Weibull distribution,

(4.1) f(x) - K(x-a) e-xe(xaa)X

0 otherwise,

the analysis of the Pitman-type estimator is very similar to that given

above. Eq:ation (3 31), in fact, provides a general solution for the

c in*It remains to express these explicitly as functions of the Weibull

shape parameter, K. Because of the nature of the two distributions, these

can be expected to be of the same general form as in the Type III case.

For the Weibull distribution, however, since the distribution function

can be expressed in closed form, the distribution of, and, in fact, the

moments of, the order statistics can be determined explicitly for small

sample sizes. Thus approximations of the type given in equations (3.8)

to (3.18) are not necessary in the Weibull case.

The moments of the Weibull distribution have been derived by

Lieblein [10]. The rth moment of the ith order statistic is
r (i-I--t/

(4.2) EYi - i ()r 1 + (-I) I (n+v-i+l)-l-r/K

The required cross-moments, with i < J, are

a! i-l J-i-1 V (V2J- i-l')(4.3) EY iYj- (i-l):(J-i-l):(n'j): uj E 0 E-02 -,

2

where
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[': I 1+ 1]/K I

(4.4) *(s,t) - r 12 + -V Bp ,l + +, i+4>;

p - s/(s+t), and B (.,.) is the incomplete Beta-function.

We shall consider the linear approximations of the form given in

the previous chapter with m - 2 and m - 3. The coefficients c m are

expressed in terms of the variances and covariances, given, in the

notation of rhe previous chapter, but with Bp B(1 + K 1' a

r(1+J/K), by

(4.5) VI =n-2/K \T2 -rl2)

r -2/K 2 1 -/K -l/K 2(4.6) V - n(n-l) - (n-1)n jr - n(n-1) - (n-l)n r2
2 2 L. J1'I

(4.7 V3 - - I~~n- )(-2)2 /K l-2/K D -2/K

(4.7) V n(n-)(n-2"2 2n(n-l) (n-2) (n-l)(n_2)f2
1 I/ -1K -/Kn

in(n-1)(n-2) -/K 2n(n-l)I/K (n-2) + n -l)(n-2)_k2

(4.8) V1 2 = (1+2/K) n (n-1) 2Bi n(n-1)/ K (n-1)/K _ i2

n

( ) (1+2/F) n (n-1)(2n-4)-lKB, 2(n-l) 1/A(n-2)3 W2(4.9• V13  2 L1

n n

1 -1/K - /K - I/K 2
n-n n(n-)(n-2) /2n(n.-l) (n-2) + n (n-l)(n-2)f 1 1

and

(4.10) V (+2/K) n (n-) 2 (n- 2 )/K (2n-4)- B23 * 12 /K n (nI 2 2 1/
n-i n

S1-I/K -1/K - -I/K -1/Kn(n-1) (n-1) n(n-1)(n-2) -2n(n-l) -2)

- 1/K 2

+ n (n-1)(n-2) f1
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The c( are now obtained by substituting these results into equatiorn

(3.22) and (3.31). Note that the solutions for the cim are considerably

more complex when the exact variances and covariances given in equations

(4.5) to (4.10) are employed. Furthermore, the cim will be functions of

n for all i. Nonetheless, a small numerical study, including se',ctal

values of K and n, has been conducted. The results are given in Table

4.1. The numerical evidence suggests that as n-*- the cim for the

Weibull distribution converge, for i > 1, to those computed for the

Fe.arson Type III utilizing asymptotic moments. This, of course, is to be

expected since the asymptotic distributions of order statistics from the

Weibull and Type III distributions are identical except for a constant

factor which cancels out in the derivation of the c. for I > I. It is
im

interesting to note that the convergence is apparently moderately rapid

for the values of K investigated. Some further numerical work on the

Weibull cate is anticipated. In particular, a tabulation of the coefi-

cients c. would be of interest. This is especially true of Lhc- case r n,
LM

although this case would involve a substantial amount of calculation ex-

cept for quite small n. Small sample properties of the approximations

and a c,•nparison with the exact Pitman estimator would also he of interest.

Finally. as in the case of the Pearson Type III distribution, the question

of using the Pitman-type estimators, whe:: the shape and scale parameters

(trhe iatter naving been set equal to unity in the above) are unknjvn, re-

mains oF n. We plan to investigatt this proble'-, as well, in future

r esearch.
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5. ADDITIONAL RESULTS ON MIN&INM VARIANCE BOUNDS

This chapter is concerned with a few additional results on special

problems in non-regular estimation. Included are the problems of con-

structing lower bounds on the variance of estimators in the case of

densities whose domain is finite and depends on the unknown

parameter and for estimators of the parameters of mixtures of uniform

distributions. Since relatively little effort has been expended on

these problems, the results are incomplete. In particular, many details

of the estimation problem have not been considered. One of the more

interesting aspects of both problems, however, is the one to be con-

sidered, namely, construction of the bounds.

5.1 Construction of a Bound for Densities with Finite Domain

None of the bounds discussed in reference [ 2] is applicable to

estimators of a parameter, say a, for densities with finite domain de-

pending on 9. An example of such a density is the uniform distribution

en (9, +1), viz.,

(5.1) x m ± xL 04+1

0 otherwise.

It is not difficult, however, by use of the same basic ideas invol~-.d in the

derivation of the Chapman-Robbins and Fraser-Guttman bounds, to construct

bounds for densities of this type. Although a more general result can be

derived, we shall here consider only the relatively simple density of

equation (5.1). The essential additional idea needed to develop a bound

for this example is that of approximating the density from inside. This
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will avoid the problem of a zero denominator in integrals such as those

in the Chapmaa-Robbins bound.

We proceed as follows. Let

i

(5.2) f (xQ) l h 0+h 1 x @ + I -h

M 0 otherwise,

1

where 0 < h < 1. Suppose that for the family of densities2

[fh(x,9) O<h<',-=•-<)9<c, the statistic t = t(XI,...,X), where XI,....X

is a sample of sizc n from fh(xG), is an unbiased estimator of G+h,

identically in h,9. Then by an argument exactly as before L2 ],

(5.3) V(t) ý sup, 0+1 0+ h+ l-

0 2 S0  "''f lfh(xi,e) - Ff 0 (xi,Q)] 2 llfo0 -(xi,)Ildxi

Thus

(5.4) V(t) sup, 0+1 9+i 21

"!t<! •0 " fI[ fh(xi'O) f -l(xi,Q)]ndk - 1

h
2

• sup. 0+1-h 
1 2

2 1 ýý2 jd n -1
9-h 

1

h
2

-sup 1  -n
S(1-2h) -1

The maximizing value of h is the solutiai of

(5.5) 0 - (1-2h)"n- I - nh(l-2h)

i.e., of

(5.6) 0 - (l-2h)n+l + nh - I + 2h
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For large n, the term (L-2h) tend. to zero since 0 < h <K-, so that

an approximate solution of equation (5.6) is h S'•'.titution of S~n+2

this approximate solution into inequallioy (5.4) yields
I

(5.7) V(t) -n

2-
e

.157
2

n

We shall see that, although this is not an optimal result, it is of

the correct order of magnitude in n. (It is thrrefore not unreasonable

to assume that the usual type of generalization to bounds based on higher

order differences will give the optimal result.) Although it is easy to

construct examples in which this is not the case, for the specific

example chosen an optimal estimator can be deduced from simpler con-

"sLt,, itions. In fal-L, che statistic (X( 1 ),X(n), where X(i) is the ith

order statistic, is a minimal sufficient statistic for Q. To determine

the best linear combination of X(1) and (n), where "best" is equivalent

to minimum variance, unbiased, we need the joint distribution of X

X(n), namely,

(5.8) dFX (1)X(n) (Xlx) - n(n-l)[F(x n) - F(x)]n- 2 dF(xl)dF(xn)

- n(n-l)(xn-x1 ) n2dxldxn

with 0 < x1 < Xn < 0+1. Thus the marginal distributions are
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(5.9) f x l) - n(l-x1+Q)

-0 otherwise,

and
n(X.O l- 0 <x < O+1

(5.10) f (x) un(x -9) n

x (n)

()0 
otherwise.

We find

I n-I
(5.1) EX(l) rn~nx(l-x-

9) dx

1

and
n

(5.12) EX - +
(n)

By symmetry we conclude that V(X( 1 )) ( V(X(n)) Thus the best linear

'rnbination nf X-1) and XIN is evidently

X (1) + X(n)-

(5.13) o- (• (i
2

To compute V(•), we need V(X( 1 )) and Cov(X( 1 ),X(n))" Since

2 0+1 n+l
(5.14) E(1-X(1 ) + 0) Jo n(1--x+O) dx

n
nn+2,

we find
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r

( 5 + (in4-) +2( 1)

I
n 2

n+2 (1+9) + 2(l+0)(@+

=2 + 2 O+ 2

nD+l (D+i) (n+2)"

Similarly, since

4+i 4+1(5.16) E(X -)X( 1 ) 2  j n(n-1)(x n-x ) dx dx

Sn(n-z) _
(nU+l)(n+2)

we find

(5.17) XX + 0 +
(1(n) n+2

It follows from equations (5.11) and (5.12) that2 2 2+1

(5.18) Vx 0 + 1 0 +(nl)(2) - (Q+
V( (1 )-1 _________- U

nI 
- V(X ()(n-1) (n+2) (n)

and from equations (5.11), (5.12) and (5.17) that

(5.19) Cov(X(1 ),X(n) 2

(+)(n+2)

Thus

(5.20) V() )V(X()) + V(X ) + 2Cov(X (1),x )]

1

U ( -+)n+2)



flince the optimal bound is evidently, for large n, approximately 1/2n2.

5.2 Estimation for a Mixture of Two Uniform Distributions

Suppose X1 ,...,Xn are a sample of size n from a mixture of two uni-

form distributions, defined on (0,1I) and (0.02), respectively. Recall

that the uniform distribution itself presents a non-regular estimation

problem. This is also true of a mixture of uniforms. In fact, such

mixtures are examples of distributions for which the regularity con-

ditions fail to hold for several parameters. Although we are admittedly

a lng way from solution of the general problem of non-regular esti-

mation, it is interesting to investigate the additional complexity

introduced because of the mixture structure. Thf, mixt'ire to be con-

sideced is one of the simplest such distributions. Furthermore, as we

shall see, the estimation problem has been partially solved for this

example.

The density function of a mixture of two uniform distributions is

CI r2

(5.21) f(x) 2+ x ol
01 92

122 (•- 1 < x• 2

-0 otherwise,

w!,ere 0 < G1 < 02 < C, 1 ,o 2 > 0 ands 1 +oa 2 =1. We shall assume that

the mixing probabilities 1I 2 are known. Although we shall not give a

detailed analysis of the estimation problem as far as 02 is concerned,

it is easy to see that the maximum observation, X(n ) , is a consistent,
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highly accurate estimnator of 0 2 having v'ari...ce if order n 2. In fact

!2'

X (n) is the maxirmum likelihood estimator of 02* We proceed with the

problem of estimating 91*

Note firstly that the likelihood function can be writrtex as

Sa R n-R1• 2
(5.22) L 2 2

1 2 2

where R = number of X - 0. Thus

a 1 2Cal •2 a2
(5.23) logL = R log . -r" -w + (n-R) log 0•/

1 2 2

a 2
n log -•2 + R log + L4

2 2 1

The maximum likelihood estimator of 01 is therefore that valur 91 X(N)

such that
max j log + 1- 2 log +- 12

(5.24) J=l,... ,n (2N(j) a X()

where either @2 is also known or X is substituted for { 2 Note that
(n) 2'

if we write eYa j log LI + (orlQ 2/0 2 X(J))J, then Q1 is a function only of

Yn an extremal order statistic. This suggests, from past experience,
• -l

that the variance of 9 is of smaller order than n Before proceeding

with this analysis, we consider the problem c-4 constructing a lower

bound on the variance of estimators of 01.

We aote that the Chapman-R.bbins bound is applicable and that iu

similar problem it has resulted in bounds of the correLt order of mag-

nitude. There art several ways of formulating -he Chapman-Robbins bound

in this problem. Th,- simplest procedure is evidently to derive the

bound in Lerms -•f f(x,QI) and f(xQ -h), with 0 - h .. 0 C We find
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(5.25) V(t) su
sup 2 2

I f2 0 1 [f (xt l I-h)f'(VisoI)dx - I

The integral in the denominator of inequality (ý.25) is

(5.26) 2J 2f(XOh)fI (X,@ )dx

f2 1l .h + ný j "

02

a ,,2 2 02  2 r2,•1 of 2 2  C 1 2- n

h1 + -h) + h -- +-, + +-
1 2" ~2 1 - ' 2~

Iror1 + 2 + 02 C, I ,2 -1n

T2h

a, 2 a -n

(5.28) C -)-i 2

Since the exact. determination of the boutid leads to certain algebraic

difficulties, we shall consider only ats asymptotic form.
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To compute the supremum for large n, we proceed as follows. Con-

sideralion of the form of Inequality (5.27) suggests that the supremum

will occur at a point h which is 0Y(l/n). Let tus therefore make the

transformation

z01

(5.29) h m - .
n

The denominator of the right-hand side of inequality (5.27) then becomes

(5.30) + + 2 n-

"0' 22 n

- f 22 + *J -1

o + 0 ( ' n
1 2 I 2)

"LE(a +j--

say. Note that a + b 1. It follows that

n log0 + b-•

(5.31) 1Am a+ b1 -f lim a (a + lT)

-, expf l,, log (a

l/n

x•(i l (1--)2 j

11...: Iilz/ n

.xp lim -z/n
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z(1-a)

zb
-e

where L'Hospital's Rule, with n considered a continuous variable, has

been employed in the third step of the derivation. It follows that for

large n the bound becomes approximately

(5.32) V(t) _ sup 1
O<z<n expyt 2 12/9 1 c-1

914 c 2  14z2/12c2

2 4 sup
n O<z<n exz 2

1c 2
1 sup u27e-l

nI O<u 29I c e

The supremum required is precisely that encountered in the corresponding

analysis in the case of the exponential and uniform distributions.

(Cf. reference [2 ].) From these we conclude that the supremum occurs

at approximately u 1.5936 (an acceptable solution if n > 1.59369 1c/d 1 ;

hence for sufficiently large n). By analogy with the previous such

analyses, we conclude that

.64801 4c2

(5.33) V(t) 2 4
n 1

1

n'2481 2221+ 7@'20)
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Although this is not an optimal result, the bound is apparently of the

correct order of magnitude. From past experience it is conjectured

that the Fraser-Guttman will provide, in the limit, the optimal bound.

The solution of the estimation problem itself is given by Chernoff

and Rubin [ 5 J in a paper in which this solution enables the authors

to attack a more general problem of estimat>•g the location of a dis-

continuity in density. Chernoff and Rubin derive the maximum likeli-

hood estimator givr in equation (5.24) and investigate its asymptotic

properties, By a rather complex ana'ysis, they deduce the limiting

Sdastributio of n(@-9 and thereby verify that, in fact, V(Q I) -•

We note that this does not complete the solution of the mixture

problem. An estimator of the mixing measure has yet to be constructed.

Although this should not be difficult, the problem of determining the

joint asymptotic distribution of the estimators could provide some

difficulty. This problem ir.dy be investigated further in future research.

In addition, other mixtures of non-regular distributions may also be

considered. The motivation for this line of investigation is as follows.

We have been concerned with distributions, Such as the Pearson Type III

and Weibull, which have many applications in areas such as life-testing.

The specific problem under investigation is that of estimaLing a location

parameter presumably different from the origin. In the life-testing

applications this parameter would therefore necessarily be posiLive. It

follows that the distri.butions considered give zero probability to sore

non-degenerate interval to the right of the origin. This does not appear

to be a very realistic model. In most life-testing applications unusually

early failures occasionally occur. Ii such an unusual observation is

obtained, then a very misleading picture of the distribution cen result
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by uning the estimator under ctrnsideration in spite of the fact that the

given life distribution may fit very well to the remaining data. The

problem is further aggravated by the fact that the estimators are

chosen on the basis of their asymptotic properties, whereas it is pre-

cisely in large samples that such unusual observations can be expected

to occur. The fact that early failures may be "unusual" in some appli-

cations, i.e., may, in fact, be outliers, suggests that a more appropriate

model sy be a mixture of distributions with one component of the mix-

ture located at the origin (possibly with small mixing probability) and

one component with poeitive locatiou pazameter.
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APPENDIX

COMPUTER PROGRAM FOR CALCULATION OF BOUND

Description of Program

MA&IN

The number IKONT is read in. If non-zero, it indicates that tables

of values for the g(.,.,.) function follow, and the routine TAPEIN is

-.alled to rcad thccc in. These quantities are now read in: (All symbols

refer to inequality (2.14))

H: Starting value for h

XN: Samnle size n (in floating point form)

P: Starting value for p

ALPHA: a

IPRST: If non-zero, certain additional output is printed for debug
purposes.

If H - 100.0, this signifies the end of calculations for the current

ALPHA value, we call O3TIT, and proceed to the next ALPHA value, if any.

These quantities are next read in:

S: Step size for search procedure (initial value)

FICR: Increment for use in tables of g-function

CST: Cut-off value for use when variation in the variance bound
is smal I

FNQl: Number of iterations to be performed using interpolation method

FNQ2: Number of iterations to be performed using exact method + FNQI
(i.e. total number of iterations)

GFAC: Cut-off value for use, in comparison with current gradient of
search path, to decide whether to reduce step size

GFLAG21 When non-zero, P is constrained t2 be unity.
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The initial value of the variance bound V is obtained, for the

initially specified p,h values, by callirg VAR(V). The specified

number of interpolation iterations, followed by the specified number

of exact iterations, is performed and the resulting variance bound is

printed oct. The procedure is truncated if the variation in the last

experimental design for V becomes sufficiently small. The terminology

"experimental design" is used iWi conformity with most papers on optimum

seeking procedures. Each iteracton is performed by calling FUDGIT. In

the case where P is constrained to be unity, PFUDG is used instead.

RJDGIT

An experimental design, consisting of the four corners of a square

is set up. If the design overlaps thu experimental boundaries, the de-

sign is reduced in size. (The side of the square is always maintained

at 0.6 times the step-size. Hence reduction of the size in design

always implies reduction in step-size, and vice versa.) The routine

VAR(V) is called four times to obtain V at these four experimental

points and, if none of the calculated values at the four corners ex-

ceeds that at the center, the design is also reduced in size. Finally,

a •+-7 is taken in the direction of steepest ascent. If this results

in improvement, similar steps are taken, until no improvement is ob-

served. If the current point is within step-size of any of the last

six, the quantity NRFLAG is set equal to 1 and step-size reduced by the

factor 0.6. Otherwise ISTYMI is set equal to 1, and the question of

whether to reduce step size is dealt with in the next iteration, once

the current gradient of the path is known.

65



VAR

This calculates the variance bound V uo:ng equation (2.14), and

obzaining the values for g(.,.,.) from GETALL(GVAL1, G'%'AL2).

GETALL(GVAL1, GVAL2)

Ihis obtains the g(.,.,.) values either by table interpolation,

or by calculation exactly in either of two events: (1) If GFLAG is

non-zero. (2) If GFLAG2 is non-zero (the P - 1 case, used by the PFUDG

routine). In case (1), EXGETL is called, and in case (2) PGETAL is

called. These routines are in fact identical, and obtain the g values

from the routine G(.,.,.) in a straightforward way. The remainder of

this description applies to the interpolation case.

The (p,h) point in question,(Po,,) say, is imbedded within the

appropriate square (pi,hi), i - 1,...,4, whose corners are integral

multiples of the tabular interval, FINCR. According to which quadrant

of the square (po,ho) is in, two further points are added, for example,

3 4

5

These 6 points determine a quadratic surface, from which the g value at

(Po,h ) is obtained. The selection of points 5 and 6 is performed by

the routine KOSS. The g values for the six points are obtained from the

routine SEARCH, described below. The routine PERM orients the points to

the standard form:

2*(0,1) 4:(I,I)

5:(-1,o) 1:(o,o) 3:(1,o)

6:(O,-l)
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where (.,.) denotes the ordered pair (p,h) with suitable origin. For

convenience we shall change variable nomenclature to (x,y). The vector

of the g valueb is denoted by (Zi,ial...6). Then we have, for the

quadratic surface Alx2 + A2 y2 + A3 xy + A4 x + A5y + A6 - 0,

[A"'",A ] 0 0 1 1 1 0 [Zl,...,]

0 1 0 1 0 1

0 0 0 1 0 0

0 0 1 1 -1 0

0 1 0 1 0 -1

1 1 1 1 1 1

or

[AI ... ,A] 6 [Z, .. ,z 6] -1 -1 1 0 0 1

0 1 -1 0

0 I1 0 0

2 2

2 2 11 0 1 0 0

0 1 0 -
0 0 0 0

2 2

Thus

6
A(I) F- E(J)G(IJ).

J-1

The G(I,J) entries are read in by means of the routine STRATE. The

A(I), I - ,..., 6, are calculated aaJ used to calculate the g-values at

(po,h ). Since two form of the g function are involved in inequality

(2.14), the whoie process is carried out for each form, in parallel.
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SEARCH

The routine attempts to locate a table entry for a specified (p,h)

ordered pair, and, if it does not find one, calculates the value and

stores it for future reference. The initial search is made in the section

of the table the- was read in, corresponding to the p-value. The

starting location of this section is stored in IP(I,IPVAL), where IPVAL

is p expressed in units of FINCR. If not found there, we search in the

blocks (each 10 cells long) whose starting locations are given by

IP(2,IPVAL), IP(3,IFVAL),..., IP(10,IPVAL). If the required h-value is

found in this search, we take the corresponding values for G(.,.,.),

GVAL1, and GVAL2, and return.

If not, we calculate them, using the routines VALUT and VALU2, and

store them (using the routine STORE) in the next available location in

the storage block -- e.g., the block whose starting location is given by

IP(2,IPVAL) -- currently being used (or, if exhausted, assign a new block).

In the storage area TAB(.,.), the h values are stored in TAB(I,.),

the first form of g in TAB(2,.), and the second form in TAB(3,.),

c(BACC)

This is a numerical integration routine that calculates the function

defined in equation (2.15). It takes special account of the case o < 1

where the ordinate tends to infinity as (x-a) tends to zero. Since

standard numerical integration methods are used, the routine will not be

described in detail.

PFUDG

This is a maximum seeking routine used when p is constrained equal to

1 -- i.e., the search is performed in one dimension, with h the variable.
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An auxiliary routine IARMAX is employed. This has been described in

the main body of this report. LARMAX uses the same routines described

above to obtain calculated values for theg(.,.,.) functions-- no

interpolation is employed.

R•IAIN•R4G ROUTINE

The remaining routines are sufficiencl,, well described by their

flow-charts and listings. The flow charts are given in Figures A-I

thrcugh A-6, below. A sample input sheet is given in Figure A-7. The

listing follows the figures.

9
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jigure A- 1: Flow-chart for MAIO routine

MAIN

START: Iinitili ed CalPL(J IPl+)

Read in L, F NR, CT, FQ N2, FC, FL2

-i~~~aCal VAR(V:)M rN HX, ,
Set~LPA IO, STST-

This ~ ALPH vaaut Dolcrula 1tios 150

terwintCal te.CllIL'fl) IPIJl

00



Figure A-2: Flow-chart for FUDGIT Routine

FUDC IT

DO0 10, Il Call

Ge HF() F(I) , -

- PFFI)

25~~ NoQ2~ P>

Lý0>ý >Ye S Call vAR(v)

DO10, ,

-L- V-S0
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Figure A-2: Flow-chart for FUDGIT (Continued)

iDO 7c704 1 1

rOIIrHOLDis ne

14-MA

M iultiply 6step 1 .ý &0 G

ýsizeEhR by.-*- GFA

HOM is n2



Figure A-3: Flow-chart for VAR routine

VAR(V)

E Start

iCall GETALL ( GVALl, GVAL2)

Calculate V

1<IPRST -- > 0

IPrint detailed output

Print V

I'

Figure A-4: Flow-chart for GETALL routine

GETALL ( GVALIa GVAL2 )

' iStarjtf

G0--- FLAG----- >0- all PGExTA . -

0 GFAGý >0 Kii7 Fi. f -fTA

(Gets matrix values for interpolation)

Call KUSS
J (Gets the six points for use in interpolation)

Do 9000 I = 1, 6
Call SEARCH

(Gets, from the tables or by calculation, the g(.,.,.)
values for the six points)

Call PERM (orients the points for application of the matrix)
Calculate GVALl, GVAL2 by interpolation

Write GVALl, GVAL2
RETURN
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Figure A-5: Flow-chart for TAPEIN routine

TAPE IN

ji -J 3 1
iIlHOID - 3

2005

READ IN4 IPVAI.
. . (p expressed in integer form,

with unit - FINCR)

"(99IPVAI. C1999 REUR

> 150 --<'IVAL15

IP( 1, IPVAI. ) =JJ

i" (Starting point for
table for new p value)

Read in table entries: ITEKP, TAB2J, TAB3J

ITEMP2, TAB2K, TAB3K
ITEMP3, TAB2L, TA83L

Store the above This p value exhausted
table entries

IPLTH - IHOLDN - IHOLDO

a length of record

-* - IHOLDO.i= IHOLDN
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Figure A-6: Program flow-chart

OUTI- MANITAP

SO O RTYl ýTPI

[SORTZ IFUDGIT PFUDG

ISORTAC VAR(V) LARMAX

GAMMA]SRCH

STRATE rEAL
or

ýzIIIA , -I LVALU2
FU-

I g(b,ac,c)i
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