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PR A T

ABSTRACT

The profect is & continuation of research on problems in non-
regular estimation reported in ARL Technical Documentary Report No.
AL 05-177(1903). Iucluded in that report was a lower bound on the
variance of unbiased estimators of the location parameter of the Pearson
Type III distribution, applicable in the non-regular case. This report
includes the results of a numerical investigation of that bound for
varying values of the shape parameter of the Type III distribution and
varying sample sizes. The bound is apparently of the correct order of
magnitude in a certain region of the parameter space but sub-optimal
elsewhere. Approximations to the Pitman estimators for location param-
eters are investigated for both the Pearson Type III and Weibull distri-
butions. In both cases, the minimum observation apparently contains
the major part of the information concerning the unknown location
parameter. Some results on the non-regular estimation problem, particu-
larly concerning the derivation of variance bounds, in the cases of
densities with bounded domain depending on an unknown parameter and of

mixtures of uniform distributions, are also discussed.
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1. INTRODUCTION AND SUMMARY

An estimation problem in which the conditions, on the underlying
probability distritutions, given by Cramer [ 6, Section 33.3] are not
satisfied is called a problem in non-regular estimation. It is from
conditions such as those given by Cramér that follow the well-known
asymptotic properties of maximum likelihood estimators and of the large
class of estimators, known as BAN estimators, which are asymptotically
equivalent to maximum likelihood. When the regularity conditions are
not satisfied, it often happens that the estimation problem is not amen-
able to any of the standard approaches which might provide atvleast a
straightforward asymptotic soiution such as that provided by the theory
of maximum likelihood in the regular case. In such situations, problems
of considerable analytical complexity are encountered.

In a previous work [ 2], investigations of several aspects of the
rioblem of non-regular estimation, including a number in the latter
category, were reported. This report is concerned with additional re-
sults on non-regular estimation, including continuations of some studies
initiated under the previous project as well as some new studies. As
reflected in the title of this repcrt, the major part of the effort in
this project, and consequently the majority of the results, are concerned
with estimation of the location parameter, in the non-regular case, of
the Pearscn Type III and Weibull distributions.

In the regular case, the BAN estimators are consistent, asymptoti-

cally ncrmally distributed and asymptotically efficient in th sense
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that no other asymptotically normal estimator ! an asymptotic distri-
bution with smaller variance. Some or all Jf these results may fail to
hold in the non-regular case. This is true for a non-trivial subset of
the prrameter space for both the distributions of interest to this in-
vestigation. 1In fact, in certain regions the likelihood funczion is
unbounded. One must, therefore, necessarily seek alternative estimators.
In chis search we use the property of minimum variance as our criterion
of optimality, although it is recognized that this choice is subject to
criticism in the absence of at least asymptotic normality.

In attempting to construct minimum variance estimators for location
parameters c¢f the Weibull and Type III distributions, it was discovered
that not only did the regularity conditions not hold, but most of the standard
techniques for constructing lower bounds on the variance of estimators led
to trivial results. .n general, except for a few special cases, for exam-
ple cases where a complete sufficient statistic exists, this further
complicates the estimation problem. A substantial part of our previous
effort [ 2] was devoted to the construction of new bounds which would
yield non-trivial results for the non-regular case of the Weibull and
Type III distributions. The bounds obtained were found to be analytically
quite complex. For this reason, a numerical investigation of the bounds
was initiated for the Type II1 distribution. This investigation has been
extended considerably. The results, to be discussed in detail below,
are somewhat mixed. It appears that the bound is quite good, i.e. is
essentially attainable for a part of the parameter space but, while
non-trivia', is alsou non-optimal elsewhere.

Som¢ additional analytical results concerning lower bounds on the

variance for the Type 111 distribution are also given. These include
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the derivation of a generalization of the bound given previously. The
generalization is even more complex than the original and has not been
investigated numerically.

An investigation of the estimation problem itself has also been
initiated: The approach pursued is to approximate an estimator proposed
by Pitman [11]. The Pitman estimator of a location parameter, although
known to be optimal in a number of respects, including minimum variance,
is quite intractable for the distribution in question. Thus an analyti-
cal investigation requires some form of approximation. The approxima-
tions used appear to yield quite reasonable results.

A similar iavestigation of the Pitman estimation technique has been
initiated in the case of the Weibull distribution. In the Weibull case,
since exact moments of the order statistics are available, certain

approximations in the derivation of the Pitman-type estimator, necessary
in the Type III case, can be avoided. Preliminary results indicate that

the Weibull case is quite similar to the Pearson Type III.

Finally, some miscellaneous additional results on the construction
of variance bounds are discussed. These include bounds for densities
with finite domain and specifically for mixtures of rectangular distribu-

tions.




2. VARIANCE BOUNDS FOR ESTIMATORS OF THE LOCATION PARAMETER

OF THE PEARSON TYPE III DISTRIBUTION

Let X . xn be independent random variables, each having a

O
Pearson Type III distribution

R 0 _ /B
(2.1) f(x) = E‘r?z'—a')'&"é'e) e (x-8) x>a

= ( otherwise,

where -®* < a <® gnd 0 <@, B <=, It is assumed that the scale parameter,
8, and the shape parameter, o, are known. The problem is to estimate the
location parameter, a, in the non-regular case, that is, whena = 2. 1In

the ensuing discussion Y ey Yn will be taken to be order statistics of a

1
sample of size n from the Type IIIl distribution.

Before considering the problem of constructing estimatore for a,
we shall present some results, mostly numerical, concerning lower bounds

on the variance of such estimators. We begin with a brief summary of

previous work on this problem which was reported in reference f21].

2.1 Previous Results

Since in the non-regular case of the Pearson Type III distribution

[
2
(2.2) D‘L o) logg‘xz dx = ® ,
da

the Cramer-Rao bound becomes the trivial inequality V(t) £ 0, where t
is any unbiased estimator of a. Alternative methods for obtaining lower
bounds on the variance must therefore be investigated.

Blischke, et al, {2 ] discussed application of several alternatives

X

tec the problem at hand. The notation ysed is as follows: xl,..., .




are assumed to be identically distributed random variables with common

density f(x,0), where 0 = (91,...,93) is ar s-dimensional parameter with
91 unknown. The function t = t(Xl,..
(Although this discussion is limited to unbiased estimators, the results

.,xn) i8 an unbiased estimator of 91.
can be generalized in an obvious way to vield lower bounds on the mean
square error of biased estimators. In fact, in the sequel we shall not

be particularly concerned with the question of bias. Since the generali-
zation is obvious, we shall avoid unnecessary complications by consider-
ing only the unbiased case at present.) The density f is assumed to be-
long to some family of densities, ¥, indexed by the parameter 6 belonging

to a set 8. We define

(2.3) H= {h§(91+h,92,,..,es) € @} ,

(2.4) P = {pl there exists a function k(8) such that
x(0)£P(x,0) ¢ s},
and
(2.5) Hep = {(h,p)lkfp(x,gfh) ¢ ¥ for some k},
where h = (h,0,...,0) ¢ Es, i.e., 8th = (91+h,92,...,0 ). We write
]
v(8) for that function of @ for which k(G)fp(x,Q) = f(x,y(8)) and assume
t '

that 7(01,...,98) - (91,92,...,95) for all @ ¢ ®. Finally, By and Ky
are any probability measures on H such that E1 = L hdul(h) < ® and
E, = [ hd, (h) < e.

H

The bounds discussed previously included those given by Chapman and
Robbins [ 4 ], Fraser and Guttman [ 7 ], and Kiefer [{9]. The Chapman-

Robbins bound is




< 2 '1
1 o f%(x,,8+h) D
2.6) v(t) z{inf [ n_ i =" Max - }
( ( {;2“ h! _I -i {m] e e x, :] .

The bound derived by Fraser and Guttman is -1
L n n 2
c [N £(x,,84+3h)-N £(x ,6+(3-1)h)]
2.7 vweyz{¢ iaf L[ [} din i=1 a
C,50:+,C h‘ n . dx ’
b, n_£(x,,0) =114
heH i=1

*
where Cyreees € are non-negative and sum to unity, and Hr = {h|jh e H

for = 1,..., r}. Kiefer gives the result

2
(zlh - xzh)

N

(2.8) V(t) 2 su =
Hpky) 2 2 2
{fﬂﬂ £(x,,8+h) d[ul(h) - uz(h)i} ,

{1 dx
i
E A M £6x,,0) ./

where the supremum is taken over all measures ul, u2 for which the

integrals are défined.

A discussion in which these and the ensuing bounds are compared and
applied to several distributions is given in reference [ 2 ]. For the
Pearson Type III distribution the Chapman-Robbins and Fraser-Guttman
bounds yield trivial results for ¥ = 1/2 and, except for a limiting form
of the Frager-Guttman bound when ¢ = 1, are less than the optimal bound
for 1/2 <a = 2. The Keifer bound, although proved by Barankin [ 1] to
be optimal under certain conditions, is essentially an existence theorem
in the sense that it does not provide an applicable analytical technique
for construction of a bound.

Two additional bounds were developed in reference [ 2] in an attempt

to obtain applicable non-trivial bounds for the entire range of o in the
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Type 11I distribution. These are

n2 /.2 0)
(el 1eP 2
(2.9) V(t) Z sup [nf (xi’o"'h) - (f (xiio)] Ndx 4
(h,p)eH-P | f- £ (x_,0) i
and
K32%0) - (E e [n£P 4 .
(2.10) inf —— q-lcj nf (xi’o"']_b) - NIf (xito"(j'l)B)]
V(E) 2(e e | w2 . flax, | (°
1 r - nf(z,,0) 1
h)p‘“:'
where

(2.11) H:°P = {(h.p)lkfp(x.9+j§) ¢ 5 for some h and all § = 0,...,r}.
The latter two inequalities do yield nonrtrivial inequalities for all a.
In practice, however, considerable analytical and numerical difficulties
are encountered. The details of the application of inequality (2.9) omly
were given previously. Application of imequality (2.10) will be the
subject of Section 2.3 below.

Note that for the Pearson Type III distribution H = { h|0<h<},

P = {p|1/2<p<q(a)}, where

1
(2.12) q@) = (1<) 0<a <1
= o a = 1,

HeP 1is the Cartesian product of H and P, and

(2.13) K@) = E:T'P+1rpg:) .
B T (pr-ptl)

2.2 Numerical Methods for Investigation of the Variance Bound

It has been shown that applicatiom of inequality (2.9) to the Type

II1 distribution yields the inequality




<, o (2p¥-2p-a+2)a2n, -
(2.14) V(t) 2 sup h (2p-1) = (px-ptl) e“hlag“ (2-(—82—11 h;2p,a-1
€

rn(a)pzn(p-wl)
peP
_2e{1-P)nh/B 0 Qgi). h; T:Lx;’ (1-p) @-1)) + I(2p-2p-a42)) !
where
B ac -c -y
(2.15) s(b;a,c)-,](;y (p+0) " e dy.

Because the above bound is analytically quite intractable, a numerical
investigation was initiated. This investigation involves numerical
integration of the function g and utilizes a modification of a method
known as the "Single" procedure for the steepest-ascent method described
by Brooks [ 3 ] in searching for the supremum on the right-hand side of
inequality (2.14). Some preliminary results were given in reference [ 2 ].

An early version of the computer program to calculate the lower bound
of inequality (2.14) was described in detail in [2 ]. 1In Section B3 of
Appendix B of that report, certain modifications to the program were
proposed with a view to providing greater efficiency of table generation,
and to dealing with certain convergence problems that had been troublesome.
Several of these modifications have been implemented. In additicn, sub-
sequent difficulcles encountered in the investigation have necessitated
further changes and improvements. The following additional features have
been introduced into the program described in [ 2 ]:

Storage of tables of auxiliary functions, b,a,c). The most time-

consunming feature of the program is the numerical integration required to
evaluate the function g(b;a,c) given in equation (2.15). It is therefore
desirable to store values of this function as they are generated, and to

use table look-up and interpolation as much as possible in subsequent cal-

culations.




The previous version of the program was modified so that the tabu-
lated values are stored efficiently. The tabulated values corresponding
to different values of the parameter & are maintained in separate card
decks. Thus, on any particular run, only those decks for the a-values
used in this run need be read in. This permits all calculatiuvns to be
carried out in core. At the same time, the search procedure was improved.

This feature jacreases the efficiency in two ways. PFirstly the
same grid of tabulated pointe can be used for all values of sample
size n, for the same value of the distribution parameter &. Considerable
overlap occurs in the maximum seeking paths. Secondly, if sufficient
convergence has not been obtained by a specified number of steps of the
procedure prior to cut-off in a given rum, the search can be continued
from this point at the next run, without the need for recomputing values
of the g-function. Furthermore, if nuwerical procedures are ever applied
to the Fraser-Guttman-type bounds (to be discussed in the next section),
the tables already generated for the present procedure will cover a sub-
stantial fraction of the numerical integration required.

The table-interpolation device was found to be of greatest use in
the region p < 1. In the region pZ 1, exact calculations were needed
immediately. This is due to the fact that some of the quantities become
critical in this area, and the interpolation, with interval 0 71 for both
p and h, is of little help in the search procedure and can, in fact, lead
avay from the value sought.

In cases where the interpolation method was used, at least one
iteration was performed using the exact method to conclude the search

procedure. This duce not help appreciably in determining the (p,n) values,




but does provide an exact value of the variance bound at a point very
close to the true maximum.

It should be noted that the exact mcthod is very much more time-
consuming than the table-interpolation method (by a factor of 10 or
greater).

Reduction of step-size. The original program involved a maximum-

seeking method for the (p,h)-combination at which the maximum value of
the bound occurs. A 2x2 design is used at an arbitrary starting point,
and the gradient of the surface is estimated. A step of predetermined
length is made in this direction, and the step is repeated as long as
improvement in the bound occurs. When no improvement occurs, a new 2x2
design is used. The question of when the step size should be reducad

was treated as follows: If the gradient previously used was less than

a predetermined constant, 0.1 say, the new step size is set at 0.6 of
the old. If not, then we continue with the old step size.

This procedure has been improved in two ways; first, the new
gradient is used to determine wvhether to reduce step size, and the pre-
determined coustant is now an input variable and hence can be made de-
pendent on the sample size n. [: has been conjectured [ 2 ] that for
larger values of n, the value of the bound can be expected to be of the
order n'ZA:. It therefore seemed ressonable that the value of the
gradient at vhich we atart to reduce step-size be made proportional
to this.

The second improvement invclving a reduction in step size concerns
the possibility of the sequence of steps crossing itself or going round

{n a circle. This was observed to happen in early runs. It {s reason-

able, under these circumstances. to suppose that we are pear the

10
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maximum, and that step size should be reduced, regardless cf the current
value of the gradient. To implement this, we examine .he six previous
trial points at every stage. If our current position is within the
current step size of any of these, we reduce step size by the factor 0.6.

Boundary constraints. The h parameter must not be permitted to

becomc negative, since the result of {nequslity (2.14) is then no longer
valid. If the next step of the search procedure would msr~ h negative,
we refrain from taking this step, and instead perform the 2x2 design
segment of the procedure, centered om our current poeition, after re-
ducing our basic interval by the factor 0.6. Furthermore, if at any time
the 2x2 design overlaps the h-axis, we reduce the interval similarly,
and repeat the operation. A similar procedure is followed when the p
parameter nears its boundaries, namely p > 0.5, and p < [2(111)]-1 in
the event that o < 1.

One further case {n which interval size is reduced should be noted.
This occurs when the values of the bound calculated at the cormers of
the 2x2 design all fall below the value at the center. This means that
a maximum (or at least a local maximum) occurs within the Jesign square,
8o we reduce interval size and repeat the procedure.

The case of p = 1. The numerical method used to obtain the bound is

also applicable, of caurse, vhen p is set equal to 1 in the event that
a > 1/2, i.e., vhen the Chapman-Robdbins bound is applicadble. The re-
sulting bound, in general, will not be optimal, but it is interesting
to see what effect this modification has.

Since p is fixed, we can no longer perform ioterpolation {n the (p,h)
plane. It would be possible to perforam interpolation in one dimensioa,

namely, along the h-axis, but it was decided that, in view of the limited

amount of caomputatior proposed for this special case, it would not be

11




worth the trouble of writing special routines for this purpose. Thus
the fuaction g(b;a,c) was calculated directly in each step. The

search procedure was carried out using the routine "LARMAX" (Linear
Maximizaticn). We start with a suitable value of h, and a suitable
step-size, Ah, say. The variance bound is calculated for three values
of the h-variable, viz., h - Ah, h, and h + Ah, and for two intermediate
values, h - (1/2)Ah and h + (1/2)Ah. This pattern of five points is
preserved throughout the search procedure. The range is then extended
in either direction, and/or the step-size is reduced, in such a way that
the maximum is determined to any required degree of accuracy. This will
lead to the maximur: value of the bound, assuming that it {s unique.

Qverflow precautions. In computing the expression on the right-hand

side of the inequality (2.14), care must be taken that none of the quanti-
ties exceed the floating-point capability of the computer (approximately

1038). The following feature provides for this. The critical quantities

2n
are I'" " (my-p+l) in the numerator, and F“Qy), and the linear combination

[4
»

of g‘ of two arguments and Fn(ZPW-2p43+2), in the dencminator. These
five quantities are calculated by successive multiplications, 2n or n
times, as appropriate.

When any of these three factors (or in the case of the linear
combination, any of its three components) exceeds 1015 during the multi-
plication loop, the factor is multiplied by 0.1 a sufficient number of
times to bring it below 1015. By keeping track of the number of times
this is done, we can re-insert the factor into the final result, or, if
this would exceed capacity, print the factor separately.

The final form of the computer program used in the numerical investi- -

gation of the bound of inequality (2.9) is given in the Appendix. Included

12 ?



in the Appendix are a brief discussion, including a flow-chart and
sample input sheet, and a complete listing of the FORTRAN statements
of the program. The program, in its present form,has enabled us to in-
vestigate quite efficiently the lower bound of inequality (2.14) for
several values of n and several values of &. The next section is con-

cerned with the results of this investigation.

We note that some possible improvements for general search tech-
niques in two (or more) dimensions are suggested by experience in this
problem. To our knowledge, these have not been considered in the
literature. 1In particular, the peper by S. Brooks [ 3], on which this
technique was based, does not consider them.

The difficulty arises in the arbitrary choice of the initial step-
size, or in its arbitrary reduction by a factor of 0.6 when a search
path reaches a "dead end" (i.e., no improvement over the previous maximum).
It will be recalled that this reduction is effected only {f the current
gradient of the path is less than an assigned constant. However, it can
happen that a point quite close to the maximum is reached, and the next
step takes us away from this maximum. To avoid this, it is suggested
that we examine the function values vl,vz,va,v4 for the sample points of
the experimental design, and compare them with the value v, already
attained.

If all values Vi 1 =1 ¢to 4, are less than Vo thea obviously we
must have a local maximum in the vicinity of the point with value A

There is no point in taking a step based on this configuration, since we

13
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stiould then get further away from the maximum. The design should thus
be reduced in size until at least one point has value v exceeding vy
Alternatively, the design could be compressed until all four points ex-
ceed a fixed fraction (e.g. 0.9) of the value Vo The former procedure

was found to be effective in this study.

2.3 Numerical Results

A number of runs were made for sample sizes 1, 11, 21, 31, 41, 51,

71, 91 and 131 and for @ = .25, .5, .51, .60, .75, 1.00, 1.25, 1.5, 2.0,
3.0, and 5.0. As indicated above, the calculations proceed as foilows.
For each Alpha-value, a library deck is read in. This provides a tabu-
lation of values of tvo functioms, 8y and 8y having p, h as arguments,
for values of p, h in the range p = 0.0(0.01) 1.50, h = 0.00{0.01)...
without limit. The calculations for various sample sizes are then made,
using tabulated function-values where available, and when appropriate,
and computing and storing them when they are not. When all calculations
for this value of o are complete, the tables are sorted internally, and
a2 new library deck is punched out on line.

Substantial library decks have been accumulated for most of the
parameter values; in fact, these tabulations cover most of the grid points
that would be needed for ary sample size calculation in the rarge 1 to 100,
for the parameter values listed. An indication of the saving in computer
time was provided by comparing runs using substantially complete library
decks with those where no prior values were known. A rough estimate is
that run time is cut to one fifth or one tenth by the library deck feature.

All of the results to date are summarized in Table 2.1. The table
includes the maximizing points nh and p, n2 times the maximum and, for

2/

2, n times the maximum. For completeness the table also gives

-,

a >
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TABLE 2.1

SUMMARY OF VARIANCE BOUND NUMERICAL RESULTS

o n nh p nZVar nZAIVar
.25 1 (.8006 0.540 0.0757 * .0757
11 0.2756 0.624 0.7573 (-7) . 1345
21 0.1036 0.636 0.3414 (-11) .0027 (-1)
51 0.0264 0.656 0.4217 (-22) <7420 (-12)
91 0.0036 0. 660 0.2452 (-30) .1392 (-18)
.5 1 0.8230 0.592 0.2960 0.2960
11 0.5090 0.764 0.3430 (-2) 0.4150
21 0.1395 0.886 0.2011 (-3) 0.0887
31 0.1000 0.970 0.1568 (-5) 0.1507 (-2)
41 0.0101 0.999 0.4039 (-5) 0.6790 (-2)
91 0.00015 0.999 0.9489 (-9) 0.7858 (-5)
.51 1 0.8280 0.589 0.2798 0.2798
11 0.5119 0.775 0.4312 (-2) 0.43i2
91 0.00051 0.999 0.1360 (-7) 0.7906 (-4)
.60 1 0.8434 0.605 0.3670 0.3670
11 0.6504 0.824 0.0220 0.5381
91 0.0749 0.9988 0.3356 (-3) 0.1376
75 1 0.8475 0.6325 0.5221 0.5221
11 1.0956 0.8842 0.1257 0.6222
21 0.8481 0.9423 0.0802 0.6112
31 0.7093 0.9426 0.0631 0.6235
41 0.7786 0.9849 0.0525 0.6246
51 0.2297 0.9959 0.0486 0.6658
91 0.5550 0.99898 0.0322 0.6520
131 0.4430 0.99%00 0.0286 0.7379
1.00 1 1.1101 0.6761 0.8120 0.8120
2 1.3468 0.8076 0.7161 0.7161
4 1.4745 0.8993 0.6780 0.6780
6 1.5158 0.9324 0.6670 0.6670
11 1.5521 0.9630 0.6578 0.6578
16 1.5653 0.9746 0.6545 0.6545
21 1.5722 0.9806 0.6528 0.6528
26 1.5763 0. 9843 0.6518 0.6518
31 1.5792 0.9869 0.6511 0.6511
36 1.5812 0.9887 0.6506 0.6506
el 1.5827 0.9901 0.6502 0.6502
46 1.5839 0.9912 0.6500 0.6500
51 1.5849 0.9920 0.6497 0.6497
56 1.5857 0.9927 0.6495 0.6495
61 1.5863 0.9933 0.6494 0.6494
® 1.5936 1.0000 0.6476 0.6476

-X
* (-x) indicates that tabulated value is to be multiplied by 10 =,

15




TABLE 2.1 (Continued)

2 2/
a n nh P 0 Yar o yar
1.25 1 1.2396 0.7103 1.0981 1.098
11 1.9500 1.0000 1.7246 0.662
21 2.1370 1.0075 2.1034 0.622
31 2.2417 1.0081 2.3963 0.607
41 2.2726 1.0006 2.7089 0.613
51 2.3000 1.0000 2.978 0.618
n 2.5606 1.0012 3.3058 0.601
91 2.6000 1.0000 3.6463 0.600
1.50 1 1.3477 0.7409 1.3784 1.378
11 2.1931 1.0158 3.1642 0.640
21 2.4735 1.0189 4.3750 0.575
K3} 2.6792 1.0170 5.3629 0.544
41 2.8511 1.0198 6.2372 0.525
51 2.9558 1.0144 7.0321 0.511
71 3.1779 1.0117 8.4537 0.492
2.00 1 1.7470 0.7969 1.8821 1.8821
11 2.4240 1.0279 6.8506 0.629
31 3.0291 1.0229 14.2368 0.448
51 3.4251 1.0186 20.644 0.410
91 4.1235 1.0061 32.158 0.353
3.00 1 2.33561 0.8538 2.7622 2.7622%*
11 2.4934 1.0391 15.8955 1.445
21 2.9280 1.0247 27.5487 1.310
31 3.2298 1.0104 38.6824 1.248
41 3.4855 1.0010 49.3972 1.205
51 3.5928 1.0012 60.2271 1.181
5.00 1 2.9591 0.9139 4.45 4.45
11 2.419 1.022 36.42 3.31
21 2.611 1.018 66.79 3.18

*% n Var from this point on.
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values for @ = 1 obtained in a previous study (2 ]. Although a few
entries of the table may not be completely accurate, some general
patterns are apparent. The results are of considerable interest,
although not all are as had been expected.

For 1 2o 2 2, the bound times nzA: appears to be approaching a
constant as n increases. For @ < 1, however, no such general conclusion
is apparent. It is quite evident that the bound is of smaller order

-2/e for the cases run with.@ 2 .,6. For o = .75, however, the

than n
curve again appears to be approaching an asymptote. These results are
shown graphically in Figure 2.1, where nzﬁ’ times the bound is plotted
for a = 2 and n times the bound for @ € 2. Their apparent regularity is
an interesting feature of this pattern of curves.

Note that our investigation has included some values of a corre-
sponding to the regular case. For Alpha greater than 2, we know that
the Cramer-Rao bound exists and that the variance of the maximum likeli-
hood estimator asymptotically achieves this bound. Thus the value of p
for which the maximum is attalned in the above should tend to 1 as the
sample size increases.

This appears to be happening for o = 3.0 and 5.0. For finite
samples, however, the Cramer-Rao bound is uot attained; this is because

the criterion

(2.16) 3_1303_L = A(a) {t-a},

a
where a is the location parameter and A(a) is any function of a alone,

is not satisfied for the Pearson tvpe III distribution. (See Kendall

and Stuart [ 8, Section 17.17].) Hence we might expect to do better than the

Cramer-Rao bound for finite samples; the values given in Table 2.1 do,
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in fact, yield such bounds. This follows since (in the regular case)
the Cramer-Rao bound is simply (@-2)/n (recall that we have taken B = 1).
For « = 3 and 5, respectively, the tound times n becomes simply 1 and 3.
The tabulated values exceed these in both cases.

It would also be interestirz to se~ whether these improved bounds
come close to the actual variarce for maximum-likelihood estimators in
the regular case. This would establish the efficiency of these esti-
mators for finite sample siz=s.

Some runs have also been macde for @ = 1.5 with p set equal to 1.
This provides a comparisor with the Chapman-Robbins bound. The results
of this study are given in Table 2.2. It {s interesting that there is
apparently little lmprovement in the bound by the introduction of the
variable p ~nd thav furthermore as n —3 ® the two bounds appear to be

identical. (Recall that this result had been proven only for o = 1,)

TABLE 2.2

COMPARISON OF MAXTMUM VARTANCE BOUNDS ATTAINED
WITH p SET EQUAL TO 1, AND WITH p UNRESTRICTED

o = 1.5
p Unrestricted H p=1
n oh N nZA’Var ah 2ﬁ:v
1 1.35 0.741 1.3784 - -
11 2.19 1.015 .6397 2.1596 .6386
21 2.47 1.019 .5743 2.4244 .5719
31 .68 1.107 . 5439 2.6195 . 5404
41 2.85 1.020 . 5245 2.7556 .5210
51 2.96 1.014 -5113 - -
71 3.178 1.012 .4930 - -
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In Figures 2.2 and 2.3 the values of p and h at which the maximum
is attained are shown for the non-regular and regular cases, respectively.
The solid lines correspond to o = 0.25, 0.5, 0.6, 0.75, 1.00, 1.25, and
2.0, in Figure 2.2 and toa = 3.0 aad 5.0 in Figure 2.3. The dashed
lines correspond to n = 1, 11, 21, 31, 41 and 51. (To preserve clarity,
the lines for sample sizes 71, 91 and 131 have not been drawn). The
scale used in Figures 2.2 and 2.3 {s a logarithmic one on which 1.03
corresponds to unity on the log scale and each decrement of 0.01,
reading from right to left corresponds to equal iacrement on the log
scale. This transformation provided greater clarity in the region
where p > 1.

Not all the points plotted correspond to cases in which the maximum
variance bound has been very accurately obtained (say to within .000001).
Most of them, however, are quite accurate. In a few cases, in which it is
clear that we are nowhere near the true global maximum, the point has
been omitted. For example, this is the case witha@ = 1.25 and n = 41
and 51.

The curves for @ = .25 and .5 are restricted to the regions p 3 2/3
and p = 1, respectively, according to the theory. In fact, it is seen
that as the sample size tends to infinity, the (p,nh) point tends to
(.666...,0) and (1.0,0) respectively. In the region .5 2 a = 1.0, f{t
is conjectured that the limit points occur on the axis p = 1, the curves
for 4 = 0.5, 0.6 and 0.75 suggesting this. It is known that the curve for
o = 1 tends to (1,1.5936), again a point on the p = ] axis, with increasing
n (2, Section 3.1.1].

For 1 # o 2 2, the curves extend further into the p > 1 region, attain
a stationary point for p, and then tend asymptotically to the p = 1 axis.

For + > 2, the curves initially have a negative gradient, and then
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behave as in the case 1 2 a = 2. However, this family of curves does

1A

not conform tuo that for ¢ = 2. There is thus an apparent discontimuity
at o = 2,

The dashed curves for constant sample size n are quite consistent
for @ values less than or equal to 2. For a > 2, the points for n = 1
fit in well. The points for sample sizes 11, 21,..., however, do not
conform to the main family.

Some additional numerical work along the above lines may be comn-

sidered. In any such additional runs, the curves of Figure 2.2 can be

used to provide quite accurate initial values of p and nh.

2.4 CGeneralization of the Bound

Application of the bound of imequality (2.10) to the Type III
distribution is analyticallv quite straightforward, although some
additional numerical difficulties can be anticipated. We consider only
the case r = 2.

It is known that the bound of order 2 will be an improvement over
that of order 1, i.e., over the bound discussed in the previous section.

We shail see that, in aidition, most terms of the second order bound

can also be expressed in terms of the integrals g ziven io equation (2.15).
Thus the bound can conceivably be investigated numerically with relatively
considerably lcss programming effort than was required in the original

such investigation. Whether or not a further investigation of this

type wvould be worthwvhile has not yet been determined. This could be an
interesting area for further research. Should 2 numericai study of the case
r = 2 be conducted and found to yleld results suggesting a consilerable
improvement in the bound, values of r in excess of 2 would slso be con-

sidered.
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We pruceed with the construction of the bound for the case r = 2.

The second order bound of the type given in inequality (2.10) is

. 2, 2n
(2.17) v(t) = clfgg’h.p h™/k
;"E-clf"(x,a)+(c1—c2)f"(x,a+h)+c2fp(x,a+2h)]2
"J dx
f(x,a) i

‘uherc f i+ the jJoint density of xl,...,xn, each following a Type TII distri-

butfon, k is given in equation (2:13), and x = (xl,...,x ).
n

To maximize with respect to the c,'s, we use the fact that ¢ =l-c1

3 2

and differentiate with respect to ¢ Write

.
(2. 18) f: = [£(x,a+v)]".

The maximizing value of ¢, is determined from the equation

1

(2.19) 0 = S%' j...f[-clfg + (2c1-1)fg + (1'°1)f;h32f51ndxi
1

N L¢P _1y¢P ce V6P Vo ProeP_ (P
fo.Jt e fg + (2¢,-1)E] + (1-c )£ J(-£0+2€7-£5, Mdx .

We find

P _ Py P ogPicP yem
220 . ’.f...f(th £P)(£] 2£h-+f2h)fclndxi ‘

P_oeP,eP (2.
Joof (£2-26P4gR 526 Tnax,
The integral in the denominator of the bound (2.17) therefore becomes

. W0 2 29+ {1- PeP_ - PP - 2.2p
(2.21) f J[clfo 2c:\1 2c)E Ep 2¢,(1 cl)f0f2h+(1 2¢)°f
—2(1- - P¢P - )2 el
2(1 2c1)(1 cl)fh£2h+(1 cl) fzh fo dx1

Zp 2P_, PePL o ePeP L4 2P, (PeP L ¢2Pye"
a2 L (E2P-uePePuoePEP a2 gPed e Py Mo,
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2e (o TCEPEP.gPEP _og2P, 2 (PP _ 2Py -
+2¢ [ [(eBEP-£PEP 262PyaePeP f2h)fo'lﬂdx1

P [ (E2P_ o ePcP 2Py~
+ JoJOEP-26PeP 42y Tnax,

2
P _¢PyePoePugP 60
{ 8.0 0ceR -ePy(eB-26Puel yeo x|

2 -
f .j’(fg-zf:u‘z’h) folT!dxi

a P_eP (2.- -
J‘...j(fh fop) fol'ndxi

(In all of the above, h is positive and the limits of integration are

a < xi <« fori=1,...,n.)

Equation (2.21) involves six basic integrals, including all second
degree combinat ions of the form fsfs., where v,v' = 0,h,2h. Except for

constants, these are

(2.22) [, M(x,-2) PP D@ Doyl 5 (2p-1) (x,-2) /8} Ndx, = o™ (2p-2p042),
(2.23° > J-“’ H(xi-a-h)ZP(a'l)exp[-ZPE(xi-a-h)/ﬁ} dx
a+h a+h -1 i
H(xi-£3 cxp[-E(xi-a)/ﬁ}
- pne“h/BIO"'IO y2P(“-Y-1)(y + 2g-lh)-02-1) e Ydy
= pnenhlagn@(ZP'l)/B aZPsO"l)»
(2.24) ® ® II(xi-a-Zh)ZP(a-l)exp{-ZpE(xi-a-Zh)/ﬂ}
. “£+2h. . .J;+2h a-1 nd"i
M(x;-a)"  exp{-Z(x, -a)/B]
= pneznh/sgn@h(zp'l)/a :ZP»U‘])o
2.25) J,“‘ = M(x;-a) (x,-a-h)]P@ Dyl - £ £(2x,-2a-)}

a+h i

Il(xi-a)a-1 exp{-E(xi-a)/B]
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g0

@ _ a-1 1
- J‘O' . ."‘O n{ (x1+h)p lx?j exp{- b’ 2[(9-1)(xl~+h)+px1]} Ildx1

- pne(l-p)nh,fagw\.'ésr_! h, —11_’-‘;, (1-p)@-1) ),

—{ldx

(2.26) [ ¢ ﬂ[(xi-a-Zh)(xi-a)]p(a"l)exp{-gz(xi-a-h)l
L&Zh LZh

- i
ﬂ(xi-a)a 1 exp{—Z(xi-a)/B}
- pnez(l-p)nhlﬁgn<z_$_P__L2 B'l b T%),(1-13)(&-1))
and
® a- a- pla-1) P Coan
2.27) J‘ ® ng (xi a h)(xi a-2h)] expl - Bz(zxi 2a-3h)}
at2h  a+2h flax

H(xi-a)‘m-1 exp{ -E(xi-a)/B}

. (2-p)nh/8 m._. . p 2p-1,4P 2p-1 - 1Pp-1 -Ix
P e J‘O JlO ﬂ[xi(xi-b—éL— ) (x1+2 -g._ h) 1 e 1 Ndx,

. pne(z-p)nh/Bgtll th 232-1’ p,a-1, 262-1 h),

say, waere

2pr-2p-o+2

(2.28) P = -2437—]) .

Note that the last integral is defined in terms of a new special

function, namely,

(2:29)  g)(Ba,e50) = [ [y(pead] *(y40) % Vay.

All other integrals involve only the function g. For increasing r,
similar additional special functions are introduced. The exact form

of these has not been investigated.
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3. APPROXIMATIONS TO THE PITMAN ESTIMATOR FOR THE

TYPE 111 DISTRIBUTION

Previous results had led to the conjecture that the minimum ob-

servation, Y., is an efficient estimator of a, or, at least, is 'nearly

19
efficient” in the sense that the order of magnitude in n of its asymptotic
variance agrees with that of the optimal bound. As noted previously,

2k

he variance of Yl is of crder n . The numerical results given in

the previous chapter suggest that the bound iuvestigated is 6(u-2A1

)

only for 1 = a = 2. The unresolved question with regard to the remainder
of the range of @ is whether the lack of agreement .(n order of magnitude
is due to inefficiency of the estirator or sub-optimality of the bound.
(A third possibility, of course, is that the numerical results are
anomalous. Thus could result, for example, because of convergence to a
local maximum which is orders of magnitude smaller than the global maxi-
mum. There is, however, no evidence to support such a conclusion.)
Assuming that the numerical results are correct, one suspects, since the
bound ultimately decreases very rapidly with incrcasing n for ¢ < i,

that the difficulty is inherent in the bound, but the question remains
open. In any case, the knowledge that Yl is not even sufficient other
than for ¢ = 1, along with the possibility that it is inefficient even
with respect co order of magnitude in n, provides motivation for an in-
vestigation of alternative estimators. Alternatives of the type suggested

by the work of Pitman [11] are the subject of this chapter.

3.1 Pitman's Estimation Technique

The estimator introduced by E. J. G. Pitman [11] is "optimal"
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according to several criteria of optimality and under quite general con-
ditions. Pitman proved that it is unbiased, minimum variance among all
invariant estimators and it has been shown by Stein (12] to be admissible
undexr mean-square-error loss. This estimator is therefore '"best" under
almost any reasonable definition of the term.

The basic Pitman method, in general, is as follows. Let Xl""’ Xn

be independent and identically distributed random variables with dis-
tribution function of the form F(x-0) admitting of a demsity F'(x) = f(x).

Suppose f(x) = O for x < 0. Let Y, = Y2 £.,..2 Yn be the corresponding

order statistics.

The Pitman e~stimator is

«® n
[ o1 £(x.-0) do
- i=] i
(3-1) (P(xl,one,xn) = >

[ 1 £x,-0) de
j=) i

-® {=

Note that, because of the assumption Xi > 8, the limits on the integrals

in equation (3.1) actually extend only to the minimum observation, Y

E
Furthermore, this expression can be written in terms of the Yi as well,
namely Y

p 1 n

{m e iI:I‘lf(Yi--Q) de
3.2) @ (Yl""’Yn) = Yl "

I £(Y.-0) de
L i=1 1

Substitution of the Pearson Type III distribution into equation (3.1) or
(3.2) ylelds integrals which cannot be expressed in closed form. An
approximation to the estimator must therefore be comstructed in order to
pursue the analytical investigation in this case. The remainder of this
chapter will be devoted to a series of approximations based upon an
alternate representation of the Pitman estimator for densities bounded

from below.
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3.2 Approximations; Application to the Type III Distribution

An alternative representation of the Pitman estimator which immediately

suggests a relatively simple approximation is obtained es follows. Let

0= Yl - A and Zi = Y1 - Yl for i = 2,..., n. In terms of these vari-

ables, the estimator becomes

n

] fﬂgyl-x)f(x) JLEE ) a

(3:3)  9y(¥,Zy0e0002)

«

n n
Jo f) £ +) A
ey R ez ) a
_ ‘o0 i=2 1
_.Yl-.

x® n
[ £y 1 £(2, ) A
0 {m2

Y, - E{Yljzz,...,zn,e = 0}
Thus the estimator can be expressed as the difference between Y1 and “he

regression of Y1 on Zz,...,Zn. The essence of the approximation to be

developed below is to restrict consideration to a fixed number m < n

of the Zi and to use, instead of the above, the estimator

~ g
(3'4) ) "Yl - E {Yllzz:"'szm}’
here E cee inear ceesZ .
where E {YIIZZ ,Zm} is the best linear regression of Yl on 22, ,Zm

We propose to investigate the asymptotic properties of estimators of
this form for the parameter a in the Pearson Type III distribution.

Without loss of generality we may take

a-1
=X__ X
(3.5) f(x) @) e x2 0
= 0 x < 0.
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The determination of E requires a knowledge of the first two moments and
the second order cross moments of Yl,...,Ym. Since the exact forms of
these are quite complex, we again seek approximations. Approximations

to these moments for large n (and fixed m) are determined as follows.

We may write

-1
(3.6) Y, = F (U),

where Ul = U2 s,..2 Un are order statistics from a uniform distribution
on (0,1). Since
X
R | a-1 -t
(3.7) Fx) = roy [ 7l e,

X

we have, for x sufficiently small so that e = = 1,

-1 > 1
(2 8) F (u) = [al(a)u] o
1
= (W (@+1)] fe
It is easily seen that the density, say hi’ of U1 is
(3.9) h, (u) = 1(‘1‘)u1'1(1-u)ﬂ'i 0<uc<l
=0 otherwise,

It follows that

(3.10) B " = HUT@+)] i

1
= [re+n1™” “1@)]'0 WA iy

(re+n)] r/ar (o+1) T(itr/a) T(n-i+1)
(i) F(n-i+1) I'(n+l+w/a)

To facilitate the ensuing calculations, it is convenient to make

one final approximation. Using Stirling's Formula, we have, for }agge n,
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(3.11) log %%;IS% = (ntb-1) - (mic-1) + (mtc-1) log(mc-1)

(n+b-1) log(m+b-1) + (1/2)1log(ntc-1)

(1/2)log(n+b-1)

n+c-1
= b - - log(ndc-1
b- ¢+ (n-1)log( ey R og( )
nc-1
- b log(ntb-1) +(1/2)108(;;E:I
=b - c+ (n-1/2) log (1+ c-bl) + ¢ log(mtc-1)
n4b-
- b log(mtb-1)
. C‘b
b-c+ (n-1/2) ol log(mbc-1) - b log(n+b-1)

= ¢ log(mtc-1) - b log(mtb-1).
Thus

(3.12) T(nte) o+ (n#e-1)°
T (ntb) (o+5-1)°

Applying this to the right-hand side of equation (3.10), we obtain

63y m T eI rae _ a

i T'(i) 141 fo

(nir /o)

i} (I‘(a+1)r/a C(i+t/d) |
n I'(1)

Similarly, since, for i < j, Ui and U, have joint density

3

n!

(1I-DT(G-1-D(n-1)!

(3.14) hyy(u,v) = wl™ ey d iyl
we find that, for i,} small with respect to n,

J-i-1

(3.15)  EY,¥ . n.'[F(a+1)]2/Ot lJ_v A-Lel/a 1k
booanio-enIe-nt Tot,

(v-u)
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Making the substitution u = ty in this expression, we obtain
2/ i1
. I @+1)] )- 142 fa n-j i-1+1/a -1-1
3.16) EY.Y, = .- IR A -ty
( L) (t-l).'(j-i-l)!(n-j)’.f [ v (1-v) = 7t (1-£)7 = "ded

n.'[[‘(or+1)J2/d F'(j+2/a) T'(n-3+1) T(4+1/2)(§-1)

(1-DI-1-DT (-1 T(nrl42/0) T (j+1/a)
- M [(ntl [ (j+2/a) I(i+1/a)
1“(i) w142 /Q r(j+1/a)

.‘.( rga+12)2/°‘ [(i+lfa) T(j+2/a)
n T T (j+1/a)

It follows from equation (3.13) that

2/a r2
T gor+1}) [;‘(1+2 fo) (1+1/a)]

and from equations (3.13) and (3.15) that, for i < j,

2/a
o+l T (i+1/a) g1+2/a2 C(j+l/a)
(3.18) Cov (Y Y) (-L—l) 1‘(1) (j+101 F(j) ]

To determine the best linear regression of Y, on Z
m

2
minimize the quantity E{Y1 Cim -122 im Zi} ' m

yoee,C the coefficients of Z_,...,Z , respactively, in the mth
mm 2 m

order approximation. Thus we determine

A we
)m’

1 2’

being the constant and

c2m

m m
2 2
. - - VA = 3 - - . Y - Y
(3.19) inf E{Yl ®lm "y Cin J inf  ElY, - ¢ - Fe (Y %)
C, ,er4,C €, ,e.4,C
im mm 1m mm
£ & +z . 2
= in E{ (14+2.C -
e Uiy - - §°1in}
Im’ ’ “mm

Equating partial derivatives to zero, we obtain

m

(3.20) 0= im " (1 +1E c )EY1 +l);2ci FYL’
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-

and for j = 2,...,m,

m
(3021) - m 2 z
0= (1 +1§2c1m)EY1 + cijYj + cjm 159 LYj
i
L
.clmEY1 - EYIYJ(I +1-2cim)
m
- 2 .
1-2cimEY1Y1 + clmEYj
Thus
m m
= -5
(3-22) ®im EYI +i§7cimEY1 ngcimgyi
and czm,...,cmm are obtained as the solution of the system of linear
equations

3.23) 0= (14% 2 L 2 _ e (Ev)?
(3.23) - +5,%m/ B +°3mi-2“in‘ (EY,) - El i FY

m m m
- c EY.Y, -
+1§2c1mEYlEYi (1 +i§2 1m> 173 1§2cimm1Yi

a 2 2
= (1+i§2cin) E:Yl - (EYl) + EYIEYJ - EYle

m

+i}52c1m EYIYJ - EYiEYJ + EYlEYi - EYlY]

for § = 2..., m. With the notation

(3.24) Vi n Vii - V(Yi)’

(3.25) V1j - Cov(Yi.Yj).
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equat ion (3.23) becomes

m r .om
(3.26) U +1§2clm/ LVL—VIJJ +1§2 cim(vlj-vli) = 0.

Thus
m
3.27) 1§2 cm(vl~vlj + vlj-v“) - vlj -V

A matrix representation of the general solution of this system of

equations is quite straightforward. Note thac

2
(3.28) Vl - vlj + Vi'1 - vil - E(Y1 - YIYj + YiYJ - Yin)

2 ] .
- [(nl) - EY,FY, + EY,EY, - EY EY |

b b
= E(Yl'Yi)(Yl'YJ) - E(Yl‘Yi) E(YI'YJ)
= Cov(Yl-Yi’Yl-YJ)
-Uij ]

say. Thus the system of equations (3.27) can be written

(3.29) vV,. -V

T -
=1eliy Yy Yy

- XJ.

say, where XJ =V, "V or in matrix notation, as

1)

(3.30) & c =X,

where Am is rthe (m1)x(m-1) matrix with elements S is the vector

Ulj

's, and A is the vector of A 's. Thus the matrix representation

im |

of ¢
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of the general solution is
(3.31) c =4
m

An explicit solution of this equation, expressing the Cim 88 functions

of &, has not been obtained for general m. It is interesting to note

that for the Type III distribution, since the quantity (F01+1)/n)zﬂx

factors out of each V,, and this 1is the only function of n involved in

1j

V.., the vector < is independent of n. We next consider the explicit

i}
results for m = 2, 3 and 4.

3.3 Approximations of Small Order

‘For small m, it is possible to express the Cim explicitly as
functions of n and @. We begin with the case m = 2. For m = 2, equation

(3.23) yields
2

2
-EYI + (EYI) + EY1Y2 - EYIEYZ
(3.32) c22 = i - V) )
EY1 + EY2 - (EYI) + ZEYIEYZ - ZEYIYZ -(EYz)
) -V1 + V12
- ]
Vl + V2 2V12

where the notation is as in equatinns (3.24) and (3.25). Thus, from

equations (3.17) and (3.18),
- (3.33) €y = {- T(12/k) + 1‘2(1+1/o:) + T(1+1/2) [;%—1%’3 - I“(2+1/o:)] } -

{_I"(1+2/cx) - T2 (141 /) + T(242/0) - T2(241/a)
- T (1+1Av) [—L—Héﬁ/g) - l"(2+1/oz)]}

[ 2 o .
= T +2/) +T7(1+1/) + e F@2+2/a) =T (1+1/0) r(2+1/a)} -
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2@ rasem - (2+ 2+ L) r20ue) - 363 resm)
a

+ 2F(+1/a) r‘<2+1/a)}

o 2
_(?4-—1 F(i+2k) - T (1+1/e)

2
a+l

T (14+2/a) - 0-1, r2(1+1/0)

and, from these and equation (3.22),

NV . Ry
G.30) e, =) Tr s + ey, [(FEH) a1/
l/x
. (Tetl)
A ) I‘(2+1/a)]

1/& -
1 -
- C_&c:‘_'."_l) r(1+1/a) [1+c22\1 (1+l/o )),1

[«

. 1/o
T (a+1) - 2
a[\_i;_-l) F(141/x)(1 - _..__2)

o

For m = 3, the solution of the system of equations (3.27) is

] v -
3 = 03\[("12"’1)("1""3'2"13) TR TASS LT T! V13)]

1
(3.35) = 33&3("12"’1) = Vo3(Vyg V) + v13("13“’12)]

1
33 = '63["2("13"’1) - Vpa(VV + vlz(v12-v13)] g

where

2

(3.36) D3 = (v1+v -zvlz)(v1+v3-2v13) - (vl-vlz+v23-v13) .

2

To express these resuirs explicitly as functions of o, we use the

notation Fi = [(1+1/a), and kn- €F01+1)/n]lﬁy. We find. from previous
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results, that
2 2
o =y - 1]

2
_ ey o @D 1 2]
v2 kn [ 1“2 2 r.1 .I

« o

(3.3 v, %[.@‘Ll)%ﬂl . (zm) @+1)? ¢ ]

; 2
v K 2[ (&+2) r - ga:l) rl ]

127 % L+ "2

ZJ'+1

23 n  a(20+l)

v 2@ G ) ¢ 7]
2 .

Note that, from equations (3.37),

= gor+1)
V23 o vl‘}

o fot1)
(3.38) v, ” Via
(@+1) (2or+1) _ (20+1)
v, = Vin = A
3 2‘1{2 13 .o 23

Thus

DyCyy = V(¥ p-Vy) = V3p(VyyVy) + Vy3(¥37Yy))

_ a41) (+) i (@+1)-- i
o2 V37V - Ta o V130137V + Vi3V 5oyy)

(o41) (2o+1) (a+1) . )
3[ o’ O A e U TR LRI T "12)]

""13[ Lﬁ"z 5;_;_12\,1]
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[ T-2(x+2) g.‘tul)(awz o+l M -(.
3.39) =k %y ) o+l M- (2+1){a+1)
( ) 131 vo(b-ﬂ) + 2 _jrz K 3

2a (a+l) Xy ) X

gh+l§ga+l) ga+12 ‘I‘] 2
410

-(@-1)
-k, v r
13[ 202 (@ +1) (20+1)

.k ar_ (. fe-1)(a+2) r o4l 27

3 ¢ X
C @yt T et 1
Similarly,
oy Ao T +22 Sl s20
(3.60) Dy, =k | —H r,-—r’ .

n 2"a(a+1) (2+1) ¢

To express D, in terms of & and the Ti, we determine

- " Ei_l . . -1
(3. v1 + v2 "Vu v1 + v12 zv12 = v1 = Vn

. kz{(lnwﬁ[ -[-1-.!.‘?.'_121.2&_"’_'1).—‘ 12}

notL af@+ly S 2 L N
2 2 1,.2°
*n [a(a+1 fa- 2%
Similarly,
- o 2
(3:42) V) 4 Vy - 205 =k £ :Zah_{z - A Iy )
] nelmen 2 g
and
2 Xr4+4 r v+l 2”‘
- - = - O E—— .
(3.43) Vl v12 * v23 \i3 kn [a(a+1)(20r+1) 2 20,3

Thus,
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e TR AREX

o

(3.44) D

Hence

(3.45)

and

(3.46)

Firnally,

(3.47)

3

[

[+

2
= VAV, 2V )V -2V ) - (V)Y 0oV )
af [ 2(Ra+2) (o)’ L2
ko113 2 2 21 2
o (a+1){(2041) o (@+1) (2r+l1)
G 3wiims) 2(15: 2 1h44) } L2
z:"(a+1)(m+1) X (a+1)(zx+1)
('.u+lz (3or+1) r
25 2,
2 FRAY 1
kna[(a;z 3;. ) | 22 - S rlzer‘
o @+1) (2+1) %
(@+2) r 1 r 2
- - a@-1) ) (41)” gl 1
23 (@+2) (3 2ty 42) r, a4l [ 2
(a+1) (2lar+1‘2 zxz 1
2+2 Iy - ‘}’2' l~12
B 220 (2a+1) X
33 (1) (2 Zie42) L qtl 2
o (or+1) (2a+1)2 2 214 1
13 = (Heyq¥eqq) FY) - (c)aFY, - ¢ EY,)

= knrl + [knrl

L e @ ]
- k(L4 J Cpy + [ KT 1K ZED (T fess




1.3l
a 23 2

=k Tl(l -
n 2%

C

33)

(@-1)(@+2)

N @+2) (2 +a+2)
nl or"z(oz+1)2(21-|»1)2

« . [as2) (alsas) .

2 2

< Laf@+1) (2a+l)

a+2
2(a+1) (2x+1)

kl"ll“2

(2]

a2(0+1)(m+1)

2'\

0+1
rl J

2 4

@+2) (2 %4a+2) -
2, 2. ‘2 2
(@+1)" (22+1) X

_otl 2

1

Similar tedious algebra leads, for the case m = 4, to

(3.48)

(3.49)

(3.50)

and

(3.51)

where

(3.52)

L
24 A L’ ()’ 1
02_(0,_1) r (Q'+2)(3Q+2) r 1
Cyy = - . 7 7ty 3t
A @+1) (22+1)"(3a+1) 12
3 ]
k% a+2 1 2
. ___[ - r.- —=T. |,
W A @) (2+1) (Rx4l) 2 43 14
knrlrz(a+2)
‘16 © :
2(2r+1) (+1)A
2 2
2@+2) (3 “+3+2) X “Hat2 -2
A= > r2 - 3 I“1 .
@+1) (@+1) (3x+1) 12
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The explicit form of the general solution is not apparent from

these results. It is Interesting to note, however, that for the case

1m im
Thus, in spite of all the approximations, the estimator reduces to

o =» 1, the above reduce tok = % noC and ¢ m (0 for 1 £ 2 and all m.
n

*

a = Y1 - %, which i known to be the best unbiased estimator for the

case & = 1.

3.4. Comparison of the Estimators

The improvement attained (asymptotically) by introducing order
statistics other than Yl into the estimation procedure can be assessed
by comparing asymptotic variances. The asymptotic variance of the

*
estimator for general m, say Vm, follows readily from the above results.

We have, withlgm the vector of Zi's,

. m
(3.53) v V(Y1 “®ln -igzcim(Yt-Yl)>

P |
v(Yl °m ?-m)

- ) [
V(Y,) - 2 Cov (¥, Z) + V(e 2)

= - 1 ?
V1 2cm Cov (Yl,gm) + n V(gm)cm

- - ' !
v 2e} A+ c Amcm

-1 -1 -1
=V -2 R A H (BTN A (AT

-1
= - ' .
v A Am A

Note that it follows that the improvement, in terms of asymptotic

variance, in the estimator achieved by introducing terms up to order m is
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(3.54) V., -V =A'A

The right-hand side of equation (3.54) is always positive (@ # 1).
Furthermore, since on the right-hand side of equatior (3.53) the quantity
an - 0"0:+1)/n)zﬁxfactors out of both terms, it is clear that, so long
as o is not a function of n, the order of magnitude of the variance of

2k

the estimator involving terms up tc order m remains n . The question

as to whether the variance remains O(n-zﬁj) when m increases with n

(for example, m = n1/2) remaips open.
A small numerical study of the improvement in the variance (using
the above asymptotic results) by the introduction of higher order terms

has been conducted. Note that, given the ¢ the numerical calculation

im’

of V; is most conveniently performed by use of the relation

* -1
(3.55) Vo=V, - AT
a ot
V1 M cm
m
=V - ViV

The results, for m = 2, 3 and 4 and @ = ,25, .50, .75, 1.50, 2.00 and

3.00, are given in Tables 3.1 and 3.2. Table 3.1 gives the c, and

im
Table 3.Z n2/a times the asymptotic variance of the approximations to

the Pitman estimators and the asymptotic efficiencies relative to Y

1
(Note that nlﬁ, ¢ 3re tabulated. As noted previously, the remaining

c are independent of n.)

im

Some of the results of Tables 3.1 and 3.2 indicate a number of

potentially fruitful topics for further investigation, both analyrical
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TABLE 3.2
Asymptotic Variances and Relative Efficiencies

of the Approximations to the Pitmen Estimator for the
Pearson Type III Distribution

{

a .25 .50 .75 1.50 2.00 3.00

2/ %

n" vy 18,107 12,337 2.0717 .54913 62920 .34780

o2fay* 16,464 11.515  2.0357  ,52505 .37775 .26.89
2

nZﬁ’v; 16,184  11.292  2.0226  .51278  .35168  .22259

nzﬁyv* 16,112 11.205 2.0159 . 50501 .33502 .19882
4

* %

vl/v2 1.100 1.071 1.018 1.045 1.136 1.328

v:/v; 1.119 1.093  i.024  1.071 1.220 1.563

k *

vllv4 1.124 1.101 1.028 1.087 1.281 1.749

(VA




o

B Y e anan]

and uwumerical. It is interesting to note, for example, that the cim
apparently converge quite rapidly for fixed i as ™ increases (e¢.g.,

.1667, ¢ = ,07627 and c = .07569), and that, for

fora = .5, ¢ 23 2%

22
another example, in the non-regular case the minimum observation appar-
ently contains the most significant information relative to the location
parameter (the asymptotic variance decreases relatively slowly as
additional observations are introdu:ed). We plan to investigate these
agpects of the problem more thoroughly in future research. It 18 not
surprising, incidentally, that, in the regular case investigated (@ = 3),
the efficiency increases more rapidly as additional observations are
introduced since the maximum likelihood estimator, which is asymptotically
efficient in this case, is a function of all of the observations.

Other aspects of the problem of interest for further investigatiom,
particularly in the non-regular case, include the small-sample properties
of the approximation to the Pitman estimator and a comparison of the
approximations with the exact Pitman estimator. Some Monte Carlo studies
of these aspects of the problem are anticipated.

A very interesting and difficult additional topic for further in-
vestigation is the problem of estimating a when the remaining parameters,
a and B, are unknown. Because of the relative rates of convergence, it
is by no means clear that a Pitman-type estimator such as the above can
be constructed in the non-regular case when all parameters are unknown.
We plan to pursue this aspect, as well, in future investigations. The
apparently pathological case of @ exactly equal to 2 is an additional

challenge of, at least, academic interest.

Finally, we plan to investigate approximations other than the linear one

discussed above. The objective of such an investigation would be the deri-
vation of an estimator which converges to (i.e., is asymptotically equiva-

lent to) the exact Pitman estimator.
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4. APPLICATION OF THE APPROXIMATIONS OF THE
PITMAN ESTIMATOR TO THE WEIBULL DISTRIBUTION

For the Weibull distribution,

K
(4-1) £(x) = K(x-a)K 1 & (%-8) x>a
= 0 otherwise,

the analysis of the Pitman-type es:imator is very similar to that given
above. Equation (3.31), in fact, provides a general solution for the
Cim' It remains to express these explicitly as functions of the Weibull
shape parameter, K. Because of the nature of the two distributions, these
can be expected to be of the same general form as in the Type III case.
For the Weibull distribution, however, since the distribution functiom
can be expressed in closed form, the distribution of, and, in fact, the
moments of, the order statistics can be determined explicitly for small
sample sizes. Thus approximations of the type given in equations (3.8)
to (3.18) are not necessary in the Weibull case.

The momente of the Weibull distribution have been derived by

Lieblein [10]. The rth moment of the ith order statistic is

i-1

r n I 1y (i-1 - -1-t/K

(4.2) “1 -1(1)I‘<1+K)v2 (-1 (u// (mv-i+1) .
The rvequired cross-moments, with i < j, are

! i~1 j-i-1 v

+v . - N
. V2 (DY (3-1-1
4-3) BYy = DTG DI DT vheo vimo 1 (J’ll)(”z /

V(j-i+vl-v2,n-j+v2+1),

where
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(4.4)

1+1/K / 2 ) )
Vo) = o) T 2+y)B l+p 1+g )

p = s/(s+t), and Bp(.,.) is the incomplete Beta-function.

We shall consider the linear approximations of the form given in

the previous chapter with m = 2 and m = 3. The coefficients ¢, are

im

expressed in terms of the variances and covuriances, given, in the

1. 1Y
notation of crhe previous chapter, but with Bp = Bp(i +x 1+ E/)and [ =

]

F(1+3/K), by

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

and

(4.10)

-2/K o 2

Viy=n N2t

1

- -2/ i 2
v, = a1 @ r, Ta@eny L @ena T 2

-2/ -2/

K(n-2) + 0

-1/

Vy = -% [n(n-l)(n-z)'uK - 2n(n-1) K(n-l)(n-2)jfz

/K _ 1/

. % [n(n-l)(n-Z)-1 2n(n-1) K(n-2) +10 K(n—l)(n-Z)_j'Zle.-

. . - - ~ 2
Vi, = (142/K) n (n-1) 1/% FBi-m LR [n(n-l) 1/K-n 1/K(n~1)§fl ,
n

. i -1/K }
Vi3 =3 02/0 al @D, - 20 w03y T

oI

/K -1/ 2

/K-Zn(n--l)-1 (n-2) + n K(n-l)(n-2)JT1,

- % n-l/l [n(n-l)(n*Z).l

1 o1 )
V)3 =3 (142/K) n (n-1) [2(n-2> /X By - (&) I/KBZ 2
n-1 n
-3 a0 Ry e @e2) YR a1 R a2y

+ n'l/K(n-l)(n-z);rlz.
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The ¢, are now obtained by substituting these results into equation:

(3.22) and (3.31). Note that the solutions for the Cim are considerably
more complex when the exact variances and covariances given in equations
(4.5) to (4.10) are employed. Purthermore, the Cim will be functions of

n for all i. Nonetheless, a small numerical study, including se-.cral
values of K and n, has been conducted. The results are given in Table
4.1. The numerical evidence suggests that as n-3® the ‘i for the

Weibull distribution converge, for i > 1, to those computed for the
Fcarson Type IIl utilizing asymptotic moments. This, of course, is to be
expected since the asymptotic Jdistributions of order statistics from the
Weibull and Type III distributions are identical except for a constant
factor which cancels out in the derivation of the im for 1 > 1. It is
interesting to note that the convergence is apparently moderately rapid
for the values of K investigated. Some further numerical work on the
Weibull case is anticipated. In particular, a tabulation of the coefi-
cienteg Cim would be of interest. This is especially true of the case m = n,
although this case would involve a substantial amount of calculation ex-
cept for quite small n. Small sample propertics of the approximations

and a c¢omparison with the exact Pitman estimator would also be of interest.
Finally. as in the case of the Pearson Type IIi distribution, the question
of using the Pitman-type estimators, when: the shape and scale parameters
{the iatter naving been set cqual to unity in the above) are unknown, re-
mains o n. We plan to investigate this problea, as well, in future

research.

.
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5. ADDITTONAL RESULTS ON MINTMJM VARTANCE BOUNDS

This chapter is concerned with a few additional results on special
problems in ncn-regular estimation. Included are the problems of con-
structing lower bounds on the variance of estimators in the case of
densities whose domain is fimite and depends on the unknown
parameter and for estimators of the parameters of mixtures of uniform
distributions. Since relatively little effort has been expended on
these problems, rhe results are incomplete. In particular, many details
of the estimation problem have not been considered. One of the more
interesting acpects of both problems, however, is the one to be con-

sidered, namely, construction of the bounds.

5.1 Construction of a Bound for Densities with Finite Domain

None of the bounds discussed in reference [ 2] is applicable to
estimators of a parameter, say 8, for densities with finite domain de-

pending on 8. An example of such a density is the uniform distribution

cen (8,8+1), viz.,

(5.1) “{x,9) =1 9> x = o+l

= 0 otherwise.

It is not difficult, however, by use of the same basic ideas involwvcd in the
derivation of the Chapman-Robbins and Fraser-Guttman bounds, to construct

bounds for densities of this type. Although a more general result can be

derived, we shall here consider only the relatively simple density of
equation (5.1). The essential additional idea needed to develop a bound

for this example is that of approximating the density from inside. This
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will avoid the problem of a zero denominator in integrals such as those
in the Chapmaa-Robbins bound.

We proceed as follows. Let

(5.2) fh(x,G) = 6+h = x = 6+1-h

.
1-2h
=0 otherwise,

where 0 < h <-§. Suppose that for the family of densities

1
{fh(x,9)|o<h<:,-w<9<w}, the statistic t = t(X ,...,X ), where X X

12

is a sample of sizc n from fh(x,O), is an unbiased estimator of ©+h,

identically in h,0. Then by an argument exactly as before (2 ],

2
h
=
(5.3) Vv(t) = su?l T 9+It = T .
0I5 fg ,,,fg Nf, (x,,8) - T£,(x,,0)]7 NE " (x,,0)dx,
Thus
n2
(5.4) V(t) = SUP) e T o )
o 2 -1,
9 ves nL£S(x,,0) £. (x,,0)jMdx, - 1
fg fo K i 0 ‘i i
n2
T sup
1 -
0<h<§ ( 8+1-h . 1 \2, 30
gy T/ ) 1
~ " 6+h
n2
= supy, T
0<h<% (1-2m)" " -1

The maximizing value of h is the solutica of

(5.5) 0 = (1-20)"® - 1 - nh(1-28) ™3,
i.e., of
(5.6) 0= (1-2)™! 4 oh - 1+ 2n .
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For large n, the term (1-2h)n+1 tends to zero since 0 < h <--, so that

en approximate solution of equation (5.6) is h = ;%E' Svtotitutinn of

this approximate solution into inequaliiy (5.4) yields

2
(5.7) v(t) Z = (&)

2 .o
Q- -

N gllntz
2
e -1

-157

We shall see that, although this is not an optimal result, it is of

the correct order of magnitude in n. (It is therefore not unreasonable

to assume that the usual type of generalization to bounds based on higher
order differences will give the optimal result.) Although it is easy to
construct examples in which this is not the case, for the specific

example chosen an optimal estimator can be deduced from simpler con-

scuerations. In face, che statistic (x(l),x(n);, where X is the ith

(1)

order statistic, is a minimal sufficient statistic for . To determine

the best linear combination of X(l) and X(n), where "best" is equivalent

to minimum variance, unbiased, we need the joint distribution of X(l),
X , namely,
(a) y

(5.8)  dF (x,,x ) = n(a-DIF(x) - F(x,)]" 2dp(x,)dF(x )
X(l)’x(n) 1’"n n 1 x n

n-2
n(n-l)(xn-xi) dxldxn

with 8 < x, < X < 8+!{. Thus the marginal distributions are

1
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(5.9)

and

(5.10)

We find

(5.11)

and

(5-12)

By symmetry we conclude Lhat V(X(l))

crmbination of x<1) and X(n)

(5.13)

Tc compute V(a}, we need V(X(l)) and Cov(x(l),x

(5.14)

we find

X1

EX =8+

(n) w1

X + X

L)

£, (x)) = n(l—x1+9)“

(n)

-1

= V(X

(n)

is evidently

1

2

o+1

1 ez-j 1-x+0
E( —x(l) + 8) gt\( x+8)

n+2
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o+l
dx

).

T el

otherwise,

g <x <&+l
n

ctherwise.

Thus the best linear

(n))' Since
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p3 n 2
{5.15) Ex(l) = ;:5 - (149)" + 2(4+9)EX

(1)
=L (140)? 4+ 20140 o ——
oz~ (10)7 + 20140) (84 —y

2 2 2
LR ey U (ot 1) (02) °

Similarly, since

2 O+l o+l n
(5-16) Xy X (1) ='fg ,fx n(a-1) (x - ;) %dx_dx,
1
n(n-1
T (o) (m2)
we find
2 1
(5.17) Ex(l)x(n) =0 4+9 4 315 .

It follows from equations (5.11) and (5.12) that

e, 2 2 1.2
(5.18) V(X)) = 0"+ =8 ‘e e - O oy

n

3 = V(X .),
(2t1) (n+2) (n)

A e

and from equations (5.11), ¢5.12) and (5.17) that

1

(5.19) Cov(X X, ) m—
(1)""(n) (o+1)% (nt2)

Thus

(5.20)

V(o) = %{V(x(l)) VX ) + ZCov(x(l),x(n)))

1
T 2wy (or2)




Hence the optimal bound is evidently, for large n, approximately 1/2n2.

5.2 Estimation for a Mixture of Two Uniform Distributions

Suppose xl,...,xn are a sample of size n from a mixture of two uni-
farm disctributions, defined on (0,01) and (0,02). respectively. Recall
that the uniform distribution itself presents a non-regular estimation
problem. This is also true of a mixture of uniforms. 1In fact, such
mixtures are exampies of distributions for which the regularity con-
ditions fail to hold for several parameters. Although we are admittedly
a long way from solution of the general problem of non-regular esti-
mation, it is interesting to investigate the additional complexity
introduced because of the mixture structure. The mixtre to be con-
sidecred is one of the simplest such distributions. Furthermore, as we
shall see, the estimation problem has been partially solved for this

example.

The density function of a mixture of two uniform distributions is

o az
1 2
- 4
2 <x2
- 7 91 X 92
2
-0 otherwise,
W < = ].
where 0 < el < 92 ® 01’02 > 0 and o, +0'2 l. We shall assume that
the mixing probabilities alxrz are known. Although we shall not give a

detailed analysis of the estimation problem as far as 92 is concerned,

t is easy to see that the maximum observation, x(n)’ is a consistent,
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highly accurate estimator of 8,, having vari..ce of order n ‘. In fact

2

x(n) is the maximum likelihood estimator of 92. We proceed with the

problem of estimating 01.
Note firstly that the likelihood function can be written as

o a, R n-R

2 a, |
(5.22) Lm. === 2

../ ./ ,

A 01 2 35

where R = number of Xi = Gl- Thus

Ql Go a2
(5.23) logL = R log T Te + (n-R) log N,

1 2 2
a, a o
=nlog —=— ,+Rlog 1+—7 .
N 92 ~ ~ \1291 /
*
The maximum likelihood estimator of 91 is therefore that value 91 = X(N)
such that
o 9. a.0
max J log \} +3 ; 5 \ =N log 1+ 5 ; 2 J
(5.24) j=1,...,n 2°¢3) 7 ~ 25Ny 7
where either 8, is alsc known or X(n) is substituted for 92. Note that
e - - 1 * : )
if we write Yj j log L1+ &ylezAazx(j))J, then G1 fs a function only of
Y(n)' an extremal order statistic. This suggests, from past expetience,
* -

that the variance of 91 is of smaller order than n l. Before proceeding

with this analysis, we consider the problem ¢. constructing a lower
bound on the variance of estimators of 91.

We aote that the Chapman-Rebbins bound is soplicable and that {a
similar problems it has resulted in bounds of the correct order of mag-
nitude. There are several ways of formulating ~he Chapman-Robbins bound

in this problem. The simplest procedure is evidently to derive the

. We find

bound in terms ~f f(x.Ol) and f(x,ol-h), with 0 < h « 91
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hz
(5.25) v(t) - sup

1f2 x ﬂ[f(x ORI (\(1,9 yax ] - 1

The integral in the denominator of inequality (5.25) is

0
(2 (2 -1 1"
(5.26) (Jo £°(x,8 -h)E " (x,8))dx }

Tt 2 Loy ol i 70t
'U‘ \Q-h -9—-' __+'9-—/ dx + —/\5-"'6"1/ dx
o ~9% 27N 8 5 ® -h r v %
8, « n
SIS
91 2
@, 02 2 or 2 a, @, a, a, az -1 n
'L\o *9 J® h)*\oz/“*r\e /(99)1\9 6,7 J

a o . o (e -1 n
r %2 2 7, 1 2 .
— + £ —_— == j
e/
U 1 92JK91 92/
Thus
h2
(5.27) V(t) £ sup 3 ) n
(Kh«ﬂl ! 1 2 I S -1
W = ¥ - —
c 9. -h ng e, .
wheir e
c l+m2
5.28 9 T8
( ) 91 02

Stnce the exact determination of the buousd leads to certain algebraic

dif€i{culties, we shall coannider only its asyamptotic form.
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To compute the supremum for large n, we proceed as follows. Con-
sideration of the form of inequality (5.27) suggests that the supremum

will occur at a point h which is 0(1/n). Let us therefore make the

transformation
zOl
(5.29) h= - -

The denominator of the right-hand side of inequality (5.27) then becomes

o
(5.30) [a% (éT((’ff}z—/E*'%i)J'E%;]n -1

¥ +0'2 % ]
] v, v
- _!'.__—g.- + 1 -1
ﬁ 1 ,% S
s Yoo 14+ -2Y1 - 2/n)
L 1 2 1 2

. b B
'(a * T2/ ) -1,
say. Note that a+ b = 1. It follows that

b
n log a-l-—Tl_z n>

) b -
(5.31) 1im (a + = 1im e
n— 1-z/n )n 2> ®

n—)

toa -
= exp | lim 103(\#*"1‘_‘57;)
1/n

=1 - z
i (Ga?)

- I/n2

= axp{ 1lim
n—>y o
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- ez(l-a)

zdb

= e ’

where L'Hospital's Rule, with n considered a continuous variable, has
been employed in the third step of the derivation. It follows that for
large n the bound becomes approximately

22912/n2

{5.32) V(t) 2 sup - 3 -
vz /8. ch-1
O<z<n ©XP{Z) /8]

4 2
91 ¢ QIAZZ/Q 2c2
,  Sup 1

0<2<0 aperd o 270 -
1 expiz!l /Glcj 1

na

4 2
91 ¢ 2
= sup u
noyo 2 u ‘
1 0<h<&1 n/Olc e -1

The supremum required is precisely that encountered in the correspending
analysis in the case of the exponential and uniform distributions.

(Cf. reference [ 2 ].) From these we conclude that the supremum OCCurs

at approximately u = 1.5936 (an acceptable solution if n > 1.593691cﬁ712;

hence for sufficiently large n). By analogy with the previous such

analyses, we conclude that

.64891“c2
nza 14

(5.33) v(t) 2

60




-

- o . oanlaretnam o oo rs

Although this is not an optimal result, the bound is apparently of the
correct order of magnitude. From past experience it is conjectured
that the Fraser-Guttman will provide, in the limit, the optimal bound.
The soluticn of the estimation problem itself is given by Chernoff
and Rubin [ 5] in a paper in which this solution enables the authors
to attack a more general problem of estimat.ng the location of a dis-
continuity in density. Chernoff and Rubin derive the maximum likeli-
hood estimator give 1in equation (5.24) and investigate its asymptotic
properties. By a rather complex ana'ysis, they deduce the limiting
distribation of u(e’:-gl‘,‘ and thereby verify that, in fact, V(o:) o O(n 2).
We note that this does not complete the solution of the mixture
problem. An estimator of the mixing measure has yet to be constructed.
Although this should not be difficult, the problem of de*ermining the
joint asymptotic distribution of the estimators cculd provide some
difficulty. This problem may be investigated further in future research.
In addition, cther mixtures of non-regular distributions may also be
considered. The motivation for this line of investigation is as follows.
We have been concerned with distributicns, such as the Pearson Type III
and Weibull, which have many applications in areas such as life-testing.
The specific problem under investigation is that of estimaiing a location
parameter presumably different from the origin. 1In the life-testing
applications this parameter would therefore necessarily be posicive. [t
follows that the distributions considered give zero probability to some
non-degenerate interval to the right of the origin. This does not sppear
te be a very realistic model. In most 1ife-testing applications unusually
early failures occasionally occur. 1If such an unusual observution 1is

obtained, then a very misleading picture of the distribution cen result
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by usiog thc estimator under consideration in spite of the fact that the
given life distribution may fit very well to the remaining data. The
problem is further aggravated by the fact that the estimators are

chosen on the basis of their asymptotic properties, whereas it is pre-
cisely in large samples that such unusual observations can be expected

to occur. The fact that early failures may be "unusual" in some appli-
cations, f.e., may, in fact, be outliers, suggests that a more appropriate
rnodel ray be a mixture of distributions with one component of the mix-
ture located at the origin (possibly with small mixing probability) and

one component with positive locatioun pacameter.
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APPENDIX

COMPUTER PROGRAM FOR CALCULATION OF BOUND

Description of Program

MAIN
The number IKONT is read in. If non-zero, it indicates that tables

of values for the g(.,.,.) function follow, and the routine TAPEIN is
called to recad these in.  These quantities are now read in: (All sywbols

refer to inequality (2.14))

H: Starting value for h

XN: Sample size n (in floating point form)

P: Starting value for p

ALPHA: «

IPRST: 1f non-zero, certain additiomal output is printed for debug

purposes.

1f H = 100.0, this signifies the end of calculations for the current
ALPHA value, we call OUTIT, and proceed to the next ALPHA value, if any.
These quantities are next read in:

S: Step size for search procedure (initial value)

FINCR: 1Increment for use in tables of g-function

CST: Cut-off value for use when variation in the variance bound
is small

FNQl: Number of iterations to be performed using iunterpolation method

FNQ2: Number of iterations to be performed using exact method + FNQl
(i.e. total number of iterations)

GFAC: Cut-off value for use, in comparison with current gradient of
search path, to decide whether to reduce step size

GFLAG2t When non-zero, P is constrained to be unity.
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The initial value of the variance bound V is obtained, for the
init ‘ally specified p,h values, by callirg VAR(V). The specified
number of interpolation iterations, followed by the specified number
of exact iterations,is performed and the resulting variance bound is
printed oct. The procedure is truncated if the variation in the last
experimental design for V becomes sufficiently small. The terminology
"experimental design" is used iu conformity with most papers on optimum
seeking procedures. Each iteraction 18 performed by calling FUDGIT. In

the case where P is comstrained to be unity, PFUDG is used instead.

FUDGIT

An experimental design, consisting of the four cornmers of a square
is set up. If the design overlaps the experimental boundaries, the de-
sign is reduced in size. (The side of the square is always maintained
at 0.6 times the step-size. Hence reduction of the size in design
always implies reduction in step-size, and vice versa.) The routine
VAR(V) is called four times to obtain V at these four experimental
points and, if none of the calculated values at the four corners ex-
ceeds that at the center, the design is also reduced in size. Finally,
a st~r is taken in the direction of steepest ascent. If this results
in improvement, similar sleps are taken, until no improvement is ob-
served. If the current point is within step-size of any of the last
six, the quantity NRFLAG is set equal to 1 and step-size reduced by the
factor 0.6. Otherwise ISTYMI is set equal to 1, and the question of
whether to reduce step size {8 dealt with in the next iteration, once

the current gradient of the path is known.
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This calculates the variance bound V uzing equation (2.14), and

obraining the values for g(.,.,.) from GETALL(GVALl1, GVAL2).

GETALL(GVAL1, GVAL2)

This obtains the g(.,.,.) values either by table interpolation,
or by calculation exactly in either of two events: (1) If GFLAG is
non-zero. (2) If GFLAG2 is non-zero (the P = 1 case, used by the PFUDG
routine). In case (1), EXGETL is called, and in case (2) PGETAL is
called. These routines are in fact identical, and obtain the g values
from the routine G(.,.,.) in a straightforward way. The remainder of
this description applies to the interpolation case.

The (p,h) point in question,(po,ho) say, is imbedded within the
appropriate square (pi’hi)’ i=1,...,4, whose corners are integral
multiples of the tabular interval, FINCR. According to which quadrant

of the square (po,ho) is in, two further points are added, for example,

These 6 points determin~ a quadratic surface, from which the g value at
(po,ho) is obtained. The selection of points 5 and 6 is performed by
the routine KUSS. The g values for the six points are obtained from the
routine SEARCH, described helow. The routine PERM orients the points tc

the standard form:

2:(0,1) b:(1,1)
5:(-1,0) 1:(0,0) 3:(1,0)
6:(0,-1)

66




where (.,.) denotes the ordered pair (p,h) with suitable origin. For
convenience we shall change variable nomenclature to (x,y). The vector

of the g values is denoted by (Zi,i-l...6). Then we have, for the

2 2
quadratic surface Alx + Azy + A3xy + Aax + Asy + A6 = 0,
[Al,...,A6] 0 0 1 1 1 0| = [21""’26]'
0 1 0 1 1
o 0 0 1
0 0 1 1 -
0 1 O 1 0 -
L} 1 1 1 1
or
— .
[Al,---.A6]~[zl.--o,26] -1 -1 1 0 o0 1
1 1
0 2 -1 0 3 0
1 1
2 0 -1 7 0 O
0 0 1 0O 0 o
1 -1
> 0 0 3 0 0
1 ~1
L 0 > 0 o 2 0 ]
Thus
6
A(I) = T Z(J)G(I,)).
i=1

The G(I,J) entries are read in by means of the routine STRATE. The
A(I), I =1,..., 6, are calculated and used to calculate the g-values at
(po,ho). Since two forme of the g function are involved in inequality

(2.14), the whoie process is carried out for each form, in parallel.

67




SEARCH

The routine attempts to locate a table entry for a specified (p,h)
ordered pair, and, if it does not find one, calculates the value and
stores it for future reference. The initial search iz made in the section
of the table thc~ was read in, corresponding to the p-value. The
starting location of this section {s stored in IP(1,IPVAL), where IPVAL
is p expressed in units of FINCKR. If not found there, we search in the
blocks (each 10 cells long) whose starting locations are given by
IP(2,1PVAL), IP(3,IPVAL),..., YIP(10,IPVAL). 1If the required h-value is
found in this search, we take the corresponding values for G(.,.,.),
GVAL1l, and GVAL2, and return.

If not, we calculate them, using the routines VALUT and VALU2, and
store them (using the routine STORE) in the next available location in
the storage block -~ @.g., the block whose starting location is given by
I1P(2,1IPVAL) -- currently being used (or, if exhausted, assign a new block).

In the storage area TAB(.,.), the h values are stored in TAB(1,.),

the first form of g in TAB(2,.), and the second form in TAB(3,.) .

G(B,AC,C

This is a numerical integration routine that calculates the function
defined in equation (2.15). It takes special account of the case o0 <1
where the ordinate tends to infinity as (x-a) tends to zero. Since
standard numerical integration methods are used, the routine will not be

described in detail.

PRUDG
This is a max{mm seeking routine used when p is constrained equal to

1--1i.e, the search is performed Iln one dimension, with h the variable.
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An suxiliary routine LARMAX is employed. This has been described in
the main body of this report. LARMAX uses the same routines described
above to obtain calculated values for the 8(.,:,.) functions -- no

interpolation is employed.

REMAINING ROUTINES

The remaining routines are sufficiencly well described by their
flow-charts and listings. The flow charts are given in Figures A-1
through A-6, below. A sample input sheet is given in Figure A-7. The

listing follows the figures.

€9




Jigure A-1: Flow-chart for MAIN routine

MAIN
« | START: Initialize ‘
4 Read in IKONT
e ‘LEE}I TAPEIN 1: READ IN H, XN, P, £
ALPHA, IPRST 1
|
! This ALPHA value Do, for J = 1 to 150,
v < — teruinsted. Call . IPLTH(J) = IP(1,J+1)
| QUTIT l - 1P(1,J)
, * ' 1
Read in S, FINCR, CST, FNQl, FNQ2, GFAC, GFLAG2
Set GFLAG = 0
>3
Set GFLAG = 1.0 Calculate PLIM
)- Call VAR(V)
Set NOG, ISTYMI = 0
N 5
r 7
n(o, FLAG] >a
[call wupcrT Call PRUDC,
1*‘
) o
‘ —_
A 7 NH -NQD* 20
- / \
¥ 1
Use exact calculatfon for
g function.
: Set GFLAG = 1.0, ¥MAX = O
‘f L A T T )
.‘ “~~ v
—ds  © < - NQ2 ———-s\;,-}
| carv woerr G




FUDGIT

Figure A-2: Flow-chart for FUDGIT Routine

call
£°>__5\1} NOGIT
Get HF(J), PF(I), I = 1,4 ___+

(Corners of experimental design)

A

(- - (>

'po 10, 1224 o

— S H = HF(1), P = FF(1)
e () feans vy

-§_e_t-£l VL1 VF(I) - v

10

@ <>

A
3

= U |

VF(1)=V

A

Set VL=V,

A

HL=H, PL=P
Y

VFD = VL—VS-—%>—4::Z>
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Figure A-2: Flow-chart for FUDGIT (Cont inued)

N
2i)-—4%——*nn = NQ2
SN
DO 7(70 I =
l
Multiply stepi GRAD
Lsize by .6 - GFAC \];
S R
VU e eren 1
('HOLD is nev v . |
lvalue for H 5 = NQ2[—>—{ 25 }
I e :
(/‘_ / s Get new values for H,P’
\2G \:jl/ NOG = NOG + 1
Call NOGIT
am)‘* NOG = 0
L_____T.__._a

DO 3G70 ... (Keep last 6 values of P,H; set NRFLAG ¢)

DO 3040 ... (Get distances from last 6 points; if any are
g less than current step size, set NRFLAG = 1)

e

— —/\ L
Multiply step —o{ >0 NRFLAG
size by .6 )

e VMAX = V ]
25 Write S0, GRAD, RX, -
N

o RY, HO, PO, VO |

Y

A

RETURN

WA ——————
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AR - et s o e

—

WD, orhe . et gt < s

P -

Figure A-3: Flow-chart for VAR routine

VAR(V

I Start !

fcall GETALL ( GVALl, GVAL2 )

j Calculate V

< s> — 50
N’

'Print detailed outputJ
V/ o _
Print V ?

i i

I REIURN

Figure A-4: Flow-chart for GETALL routine

GETALL ( GVAL1, GVALZ )

' Start |
- T
£0 ~—%c_, >0 Call EXGETLL, S -
r"w——" —
:0 ——@G?/—- >0 [Call PGETAL" - o -
" ' ‘ i

Call STRATE{G) T i
(Gets matrix values for interpolation)

Call KuUssS
(Gets the six points for_gggﬂig_igsgfpolationz_ \
Do 9000 I = _1, 6 T ° - - ) T [
Call SEARCH

(Gets, from the tables or by calculation, the 8(eseys)
values for the six points)

Call PERM (orients the points for application of the matrix)
Calculate GVAL1l, GVAL2 by interpolation
35—

Write GVALl, GVAL2 e
RETURN T .
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Figurs A-5; Flow-chart for TAPEIN routine

TAPEIN
fay=3 |
{ THOLD = 3 |
OLD
S — 2005

o e - ——— A A e A & e

- -_..._.._")__._ ———

READ IN IFVAL

T 1 (p expressed in integer form,
with unit = FINCR)
RETURN
IP( 1, IPVAL ) = JJ

(Starting point for

table for new p value)

-
t

! Read in table entries: ITEMP,

- - o

TAB2J, TAB3J

ITEMP3, TAB2L, TAB3L

l ITEMP2, TAB2K, TAB3K

| -
A K99 ~{TEMP @

A e e

Store the above
table entries

J= 3JJ+3

This p value exhausted
IHOLDN = JJ

IPLTH = [IHOLDN - THOLDO
= length of record
IHOLDO.= IHOLDN
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oten S-Sy

Figure A-6: Program flow-chart

STRATE
S5

MAIN

TAPEINJ

PRIN1

—

GETALL _ __

T

'STORE

.

SEARCH ‘

—

i VALUT |

| PRINZ_ |

| vaLu2 l ai S

e
i g(b,ac,c);
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